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Abstract: The design of innovative reference aspheric and freeform optical elements was investigated
with the aim of calibration and verification of ultra-high accurate measurement systems. The
verification is dedicated to form error analysis of aspherical and freeform optical surfaces based
on minimum zone fitting. Two thermo-invariant material measures were designed, manufactured
using a magnetorheological finishing process and selected for the evaluation of a number of ultra-
high-precision measurement machines. All collected data sets were analysed using the implemented
robust reference minimum zone (Hybrid Trust Region) fitting algorithm to extract the values of
form error. Agreement among the results of several partners was observed, which demonstrates
the establishment of a traceable reference full metrology chain for aspherical and freeform optical
surfaces with small amplitudes.

Keywords: robust reference minimum zone (Hybrid Trust Region) fitting; aspheric and freeform
optical elements; ultra-high precision measuring machine; dimensional metrology; measured data
evaluation; uncertainty

1. Introduction

With respect to the increasing demand for high quality aspherical and freeform optics
in different fields (lithography, lasers, imaging, etc.) [1–4], metrology capabilities of aspheric
and freeform surfaces must be aligned with advances made in the optical design domain [5].
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The need for an accurate full metrology chain for asphere and freeform optics is not
exclusively reserved to the extreme ultraviolet lithography (EUVL) [6], but it concerns also
the synchrotron [7,8], astronomy [9,10], medical device [11], security and several other
domains. The full metrology chain could include the development of robust reference
mathematical least-squares (LS) and minimum zone (MZ) fitting algorithms, thermo-
invariant material measures and ultra-high precision measuring machines (Figure 1); the
three components are necessary for building the traceable full metrology chain at NMIs
(national metrology institutes) and DIs (Designated Institutes).

Sensors 2021, 21, x FOR PEER REVIEW 2 of 18 
 

 

domain [5]. The need for an accurate full metrology chain for asphere and freeform optics 
is not exclusively reserved to the extreme ultraviolet lithography (EUVL) [6], but it con-
cerns also the synchrotron [7,8], astronomy [9,10], medical device [11], security and sev-
eral other domains. The full metrology chain could include the development of robust 
reference mathematical least-squares (LS) and minimum zone (MZ) fitting algorithms, 
thermo-invariant material measures and ultra-high precision measuring machines (Figure 
1); the three components are necessary for building the traceable full metrology chain at 
NMIs (national metrology institutes) and DIs (Designated Institutes). 

 
Figure 1. Description of the traceable reference full metrology chain for aspherical and freeform 
optical surfaces with respect to the SI unit meter definition. The traceable full metrology chain 
includes: high quality optical surfaces (1), ultra-high precision measurement machines (2) and 
robust reference algorithms (3) ensuring calculation error below the nanometer level. 

Form error is a function of form deviations that define the orthogonal distances be-
tween the measured data points and the reference surface. When this function is taken as 
the difference between maximum and minimum deviations (PV: peak-to-valley), mini-
mum zone is the least value of form error among all choices of reference surfaces [12]. 
Although there exist different methods to determine the so-called reference surface, no 
specific method is consensual. Among those methods, two approaches are extensively 
used in dimensional metrology, namely, least squares (LS) (also called Gaussian or L2 fit-
ting) and minimum zone (MZ) (Chebyshev, L∞ fitting). The choice of approach depends 
on the parameters required. Thus, when the RMS (Root Mean Squares) is sought [13], LS 
fitting is preferred. In the case where the least value of PV is required, L∞ fitting is more 
suitable. Minimum zone is of crucial importance in form metrology. It indicates the form 
quality of the manufactured components. Nevertheless, for canonic surfaces such as cy-
lindrical surface, a more clear definition still exists. Then, roundness could be estimated 
over the range 2–15 upr (undulation per revolution), while the waviness is assessed for 
the range 16–50 upr as indicated in [14–16]. Similar definition does not exist yet in the ISO 
standards for aspherical and freeform surfaces, which could represent an evident lack. 

Form errors of aspheric and freeform surfaces have been traditionally estimated us-
ing LS fitting algorithms [12,17]. However, it has been shown that, in some circumstances, 
the LS method overestimates form error and hence can result in the rejection of conform-
ing parts [18,19]. Recently, the MZ criterion has become popular since it conforms to the 
ISO Geometrical and Product Specifications [20]. MZ is more mathematically challenging 

Figure 1. Description of the traceable reference full metrology chain for aspherical and freeform
optical surfaces with respect to the SI unit meter definition. The traceable full metrology chain
includes: high quality optical surfaces (1), ultra-high precision measurement machines (2) and robust
reference algorithms (3) ensuring calculation error below the nanometer level.

Form error is a function of form deviations that define the orthogonal distances
between the measured data points and the reference surface. When this function is taken as
the difference between maximum and minimum deviations (PV: peak-to-valley), minimum
zone is the least value of form error among all choices of reference surfaces [12]. Although
there exist different methods to determine the so-called reference surface, no specific
method is consensual. Among those methods, two approaches are extensively used in
dimensional metrology, namely, least squares (LS) (also called Gaussian or L2 fitting) and
minimum zone (MZ) (Chebyshev, L∞ fitting). The choice of approach depends on the
parameters required. Thus, when the RMS (Root Mean Squares) is sought [13], LS fitting is
preferred. In the case where the least value of PV is required, L∞ fitting is more suitable.
Minimum zone is of crucial importance in form metrology. It indicates the form quality
of the manufactured components. Nevertheless, for canonic surfaces such as cylindrical
surface, a more clear definition still exists. Then, roundness could be estimated over
the range 2–15 upr (undulation per revolution), while the waviness is assessed for the
range 16–50 upr as indicated in [14–16]. Similar definition does not exist yet in the ISO
standards for aspherical and freeform surfaces, which could represent an evident lack.

Form errors of aspheric and freeform surfaces have been traditionally estimated using
LS fitting algorithms [12,17]. However, it has been shown that, in some circumstances, the
LS method overestimates form error and hence can result in the rejection of conforming
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parts [18,19]. Recently, the MZ criterion has become popular since it conforms to the ISO
Geometrical and Product Specifications [20]. MZ is more mathematically challenging
than LS, especially for aspheric and freeform surfaces. Only a small number of MZ fitting
algorithms, in particular Exponential Penalty Function (EPF) and Primal-Dual Interior Point
Method (PDIP), for aspheric and freeform surfaces have been developed, implemented
and validated using a number of reference softgauges [18].

A material measure is a realisation of the definition of a given quantity with a stated
value and an associated measurement uncertainty [21]. Material measures allow the
determination of the metrological characteristics of the instrument being calibrated [22,23],
and only few have been developed using a high-precision process [5,24,25]. Additional
innovative thermo-invariant material measures (TIMMs) have been designed in this work
and manufactured using the original magnetorheological finishing (MRF) process. Two
of these thermo-invariant material measures were used for the evaluation of a selected
number of improved ultra-high precision measurement machines at the LNE (France),
UNOTT (United Kingdom), IPP (Czech Republic), THALES-Agx (France), VTT (Finland),
NMIJ (Japan) and ITO (Germany).

Most of the existing ultra-precision reference single point instruments that could be
used for the calibration of aspheric and freeform surfaces are briefly described in [23,26–29].
They are equipped with accurate optical and/or tactile probing systems, or optical imaging
instruments such as the Tilted-Wave Interferometer (TWI) [30]. They could be used for the
achievement of surface topography measurements with low uncertainties at the nanometer
level in order to guarantee the best dissemination and transfer of the established traceable
reference full metrology chain at NMIs and Dis to accredited laboratory and industry
(Figure 2). Furthermore, modelling the physical interaction of a tactile probe tip with a
surface in order to improve the measurement uncertainty has become very common, but
ongoing research is focused on the best modelling of the optical interaction with the optical
surface. The development of contactless measurement instruments has several advantages
and is attractive due to their non-contact nature and higher measurement speeds than
tactile systems [31–35].

Measurements performed on two selected innovative TIMMs were conducted such as
to demonstrate improvements in the freeform metrology domain. The aim is to evaluate
the measurement results obtained when using different measurement techniques. The
first selected material measure represents a high optical quality aspheric surface with
nine additional asymmetric steps. The second is an optical quality freeform surface.
All the collected data sets obtained using the selected ultra-high precision measuring
instruments were evaluated using a robust reference MZ fitting algorithm. Thus, this
paper is organised as follows. Section 2 is a description of the selected thermo-invariant
material measures and their manufacturing process. In Section 3, a description of the used
ultra-high measurement techniques is given. Section 4 details the implemented robust
reference MZ fitting algorithms. Finally, Section 5 deals with the evaluation process, main
obtained results and analysis.
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Figure 2. Description of the traceability chain in asphere and freeform metrology. The SI unit meter
definition is established at the BIPM (International Bureau of Weights and Measures) by experts from
NMIs (National Metrology Institutes) and DIs (Designated Institutes), materialised at NMIs and DIs
and shared to manufactures and end users with respect to a pyramid organization.

2. Design and Manufacturing of Innovative Thermo-Invariant Material Measures

A number of innovative TIMMs were designed and developed within the European
projects IND-FORM and FreeFORM-15SIB01 [36]. Two additional reference TIMMs were
recently designed, manufactured and considered for the evaluation of ultra-high precision
measurement machines. The first, “TIMM-1”, is designed for the assessment of the mathe-
matical MZ approach with aspheric surfaces. The second, “TIMM-2”, is designed for the
evaluation of the MZ approach with industrial freeform surfaces.

The TIMM-1 is an aspheric surface described using the ISO 10110-12 formulation [37]
given in Equation (1), where z represents the sag of the surface, r is the radial distance, R is
the radius of curvature at the apex of the surface, κ is the conic constant of the conic section
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and a2m+4 are the monomial coefficients. This representation could be used to approximate
any symmetric shape with arbitrary accuracy while M is allowed to be large.

z(r) =
r2

R
(

1 +
√

1− (1 + κ) r2

R2

) +
M=3

∑
m=0

a2m+4 r2m+4 (1)

Nine steps were added along normal directions to the asphere, as shown in Figure 3.
They present an asymmetric distribution along the axis of revolution. The approach for
the combination of the steps and the aspheric surface is summarised in Figure 4. These
steps represent artificially added form errors (or an artificial envelope) that illustrate the
departure from the ideal asphere. They materialise the upper and lower surfaces defining
the MZ. In this way, the locations of the significant points defining the MZ are known prior
to the process of MZ fitting.
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The nominal peak-to-valley (PV) of the steps (defined as the difference between
maximum and minimum amplitudes to the nominal shape calculated along the normal
direction to the ideal asphere) is equal to 7 µm, which will be used as the nominal MZ
value. This value is the smallest amplitude that could be manufactured using the available
MRF technology. The final obtained optical surface represents neither axis of symmetry
nor degrees of invariance, as illustrated in Figure 5a,b. The nominal shape parameters of
the selected asphere are given in Table 1.
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Table 1. Nominal shape parameters for TIMM-1.

Parameter Value

R (mm) 9.127 × 1040

κ −1
a4
(
mm−3) 1.278 × 10−9

a6
(
mm−5) 7.922 × 10−16

a8
(
mm−7) −1.859 × 10−18

a10
(
mm−9) 1.733 × 10−21

The proposed TIMM-2 is a freeform surface that has existent applications in industry.
It could be incorporated in transparent screens of the oxygen mask embedded in firefighters’
helmets, which allows them to have real time information through augmented reality dur-
ing action. The shape is described using the explicit polynomial equation presented in (2).
The corresponding nominal values of the coefficients {ai}1≤i≤8 were selected according
to the constraints imposed by the MRF manufacturing process in terms of amplitude and
slope (Table 2) and, as such, the resulting shape has zero degrees of invariance (Figure 6).

Z = a1
(

x3 + y3) +a2
(
xy2 + x2y

)
+ a3

(
x5 + y5)+ a4

(
xy4 + x4y

)
+a5

(
x2y3 + x3y2)− a6x− a7y− a8

(2)

Both material measures were manufactured using the MRF process. MRF uses a MR
polishing fluid with liquid composition that undergoes a change in mechanical properties
in the presence of a magnetic field [38]. MR fluid contains very small ferromagnetic
particles (0.1 µm) that are organised into chains of particles, forming then a spatial structure
resulting in a change in mechanical properties. Without the magnetic field, the particles
return progressively to a disorganised state and the initial condition of the overall material
is restored. The MR fluid contains four main constituents: water, chemical additives,
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polishing abrasives (oxide cerium or diamante) and magnetic particles. Nevertheless,
water is almost used as a carrier fluid for polishing glasses and silicon substrates without
any additional chemical agent.

Table 2. Nominal shape parameters for TIMM-2.

Parameter Value

a1
(
mm−2) 9.792 × 10−7

a2
(
mm−2) 4.940 × 10−7

a3
(
mm−4) −6.31 × 10−10

a4
(
mm−4) −3.086 × 10−10

a5
(
mm−4) 2.551 × 10−10

a6 3.087 × 10−4

a7 3.087 × 10−4

a8(mm) −6.876 × 10−10

Sensors 2021, 21, x FOR PEER REVIEW 7 of 18 
 

 

 
 

(a) (b) 

Figure 5. (a) Design of the thermo-invariant material measure for aspherical surface (TIMM-1), (b) bottom: y = 0 plane. 
The nominal shape is contained inside two similar aspherical shapes forming the artificial envelope, which represent the 
form error. 

The proposed TIMM-2 is a freeform surface that has existent applications in industry. 
It could be incorporated in transparent screens of the oxygen mask embedded in firefight-
ers’ helmets, which allows them to have real time information through augmented reality 
during action. The shape is described using the explicit polynomial equation presented in 
(2). The corresponding nominal values of the coefficients {𝑎 }  were selected accord-
ing to the constraints imposed by the MRF manufacturing process in terms of amplitude 
and slope (Table 2) and, as such, the resulting shape has zero degrees of invariance (Figure 
6). 𝑍 = 𝑎 (𝑥 + 𝑦 ) + 𝑎 (𝑥𝑦 + 𝑥 𝑦) + 𝑎 (𝑥 + 𝑦 ) + 𝑎 (𝑥𝑦 + 𝑥 𝑦)+ 𝑎 (𝑥 𝑦 + 𝑥 𝑦 ) − 𝑎 𝑥 − 𝑎 𝑦 − 𝑎  (2) 

 
Figure 6. Design of the proposed thermo-invariant material measure for freeform surface TIMM-2 
with application in industry. 

  

Figure 6. Design of the proposed thermo-invariant material measure for freeform surface TIMM-2
with application in industry.

Figure 7a,b illustrate the multi-axis computer-controlled MRF machine Q22. The
optical element being polished is fixed such that a converging gap can be formed between
the element and the rotating spherical wheel. The MR polishing fluid is loaded into
the closed-loop fluid delivery system, where fluid properties, such as temperature and
viscosity, can be continually monitored. The fluid is driven from the conditioner in a thin
ribbon (2 mm × 6 mm) in contact the optical surface, removed by a suction cup and fed
back into the conditioner. A local electromagnetic field gradient (0.1 T) is generated by an
electromagnet located below the polishing wheel, which causes a change in the mechanical
properties of the MR. The MR stiffens in milliseconds and then returns to its original fluid
state as it leaves the field, again in milliseconds. The precisely controlled zone of the MR
fluid that stiffens becomes the polishing tool. When the optical surface is placed into the
fluid, the stiffened fluid ribbon is squeezed from its original thickness, which results in
significant shear stress and subsequent polishing pressure over that section of the optical
surface [39]. A CNC positioning unit controls the motion of the polishing tool such as to
polish the whole workpiece. High-precision surfaces might be achieved by varying the
dwell time of the polishing tool on the workpiece surface.
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The motion resolution of the used Q22 is equal to 1 µm for linear axes and 2 × 10−5 rad
for rotational axes. Thus, the MRF process has made it possible to produce classical
aspherical glass surfaces with a defect of form (PV) around 0.3 µm and a roughness (Ra)
less than 5 nm. The Q22 MRF machine can manufacture aspheres up to 600 mm diameter
in the max size.

The described accurate MRF process was used to manufacture the two designed
innovative material measures TIMM-1 and TIMM-2 made of Zerodur® Class 0 SPE-
CIAL, which is a glass-ceramic with a very low thermal expansion coefficient (less than
0.01 × 10−6 K−1) [40] (Figure 8). Additional mechanical, optical and chemical properties
are given in Table 3.
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Table 3. Typical mechanical, optical and chemical properties of Zerodur® [40].

Parameter Value

Young‘s modulus E at 20 ◦C [GPa]-mean value 90.3
Knoop Hardness HK 0,1/20 (ISO9385) 620

Density [g/cm3] 2.53
Refractive index nd 1.5424

Stress optical coefficient K at λ = 589.3 nm [10−6 MPa−1] 3.0
Acid resistance class (ISO 8424) 1.0

3. Selected Measurement Instruments

Only ultra-high precision measurement instruments were selected, as given in Table 4.
Most of these instruments apply the dissociated metrological structure principle detailed
in [23]. Therefore, the selected ultra-high precision instruments are:

• LNE—ultra-high precision primary profilometer: its design has a metrology frame
that is separated from the supporting frame [23]. The measured specimen is mounted
on a slide way made of Zerodur®, which is translated in the horizontal plane, and the
motion is tracked in real time by three laser interferometers (Figure 9a), aligned to point
at the centre of the contact stylus along the three directions, to minimise Abbe error [41].

• THALES-Agx—Sub-aperture stitching interferometer (SSI) is a Fizeau interferometer
with a height range of 6 µm and a multi-axis control system. The lateral measuring
range of the SSI is 200 mm with slope angles up to 90◦ (concave and convex).

• UNOTT—coherence-scanning interferometer (CSI) [42] uses a broadband and spatially
extended light source with an interferometric objective to generate low-coherence
interference fringes as the instrument scans along the optical axis of the system. The
surface topography of a sample is then derived from a combination of the envelope
and phase of these interference fringes.

• IPP—LuphoScan 260 HD is a multiple wavelength single point optical probe that
performs a spiral scan over the surface and produces high-density 3D data. Scanning
is achieved by rotating the object by an air-bearing spindle while the sensor is moved
radially and axially using linear stages. A rotary stage keeps the sensor normal to the
object surface.

• IPP—MarForm MFU 200 is an optical sensor based on multiple wavelength interferom-
etry. The single point optical probe measures along multiple concentric polar profiles
by rotating the spindle and these measuring points are used to generate topography.

• VTT—Multi-sensor optical profilometer is a newly developed instrument based on the
measurement of sub-images using coherence scanning interferometer and stitching
them together to a high-resolution image (Figure 9b). The horizontal displacements
and rotation of the sample between sub-images are tracked using heterodyne laser
interferometers. Straight and accurately tracked movements of the sample allow
correction of the height difference of the sub-images. The instrument also has a
chromatic confocal sensor for fast coarse scans.

• NMIJ—UA3P-4000 is an ultra-high precision profilometer equipped with a single
point diamond stylus. The material measures were measured in multiple lines along
the x-axis of the workpiece coordinate system.

• ITO—Nanopositioning and Nanomeasuring Machine NPMM-200 is equipped with
optical focus sensor fixed on a metrological frame made of Zerodur® that holds a
number of fiber-coupled laser interferometers to track the relative position of the
sample holder (Figure 9c). The single point sensor was used in a null mode; meaning
that the machine controlled the z-position of the sample holder such that the sample
surface was kept in focus [43].



Sensors 2021, 21, 1103 10 of 17

Table 4. Description of the measurement range and resolution of the selected ultra-high precision measurement systems,
and number of collected data points.

Ultra-High Precion
Measurment Machines

Measurment Range X,
Y and Z (in mm) Resolution (in nm)

Number of Recorded Data Points

TIMM-1 TIMM-2

LNE—ultra-high precision primary
profilometer 100 × 100 × 50 0.09 247,590 187,453

THALES-Agx—Sub-aperture Stitching
Interferometer (SSI) 200 × 200 × 6 0.4 192,771 94,486

UNOTT—Coherence-Scanning
Interferometer (CSI) 100 × 100 × 20 0.12 360,291 263,224

IPP—LuphoScan 260 HD 400 × 400 × 100 1 90,646 90,646
IPP—MarForm MFU 200 180 × 180 × 100 0.5 321,657 321,657

VTT—Multi-sensor optical profilometer 0.15 260,830 465,849
NMIJ—UA3P-4000 100 × 100 × 35 0.3 160,504 117,313

ITO—Nanopositioning and
Nanomeasuring Machine NPMM-200 200 × 200 × 25 0.02 237,151 234,739
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4. Implemented Robust Reference Minimum Zone (MZ) Fitting

The evaluation was based on the determination of the MZ value of each measurement.
The MZ value determination problem can be formulated as follows: assume a set of m
measured data points {pi}1≤i≤m and their corresponding orthogonal projections {qi}1≤i≤m
onto a surface described using an implicit equation f (q, s) = 0, where q = (x, y, z) are
the coordinates of a given point on the surface and s are the surface’s shape parameters.
The MZ fitting problem is formulated as:

min
x

φ(x) where φ(x) = max
1≤i≤m

fi(x) (3)

where fi denotes the Euclidean distance between the point pi and its corresponding orthog-
onal projection qi. x ∈ Rn can be either the set of intrinsic shape parameters s or the motion
parameters m: rotation and translation applied to {pi}.

The implemented hybrid trust region method (HTR) was used to solve the optimisa-
tion problem in Equation (3) [44]. HTR is an iterative method that involves approximation
of the MZ fitting problem using quadratic programming at each iteration and then applying
either a trust region step, line search step or curve search step according to the situation at
each iteration. This method avoids solving the trust region problem many times.

The uncertainty on the returned MZ value given by HTR algorithm is estimated to
be less than 10−14 mm. This value was estimated using reference softgauges and does
not include the uncertainties resulting from the measurement instruments or measuring
process [45].

5. Measurements, Results and Discussion

The manufactured two TIMMs were carefully cleaned inside the LNE’s cleanroom
before proceeding to measurement. An appropriate cleaning process was investigated and
applied in order to eliminate contamination while reducing measurement uncertainty. In
fact, the presence of these undesirable substances on the surface causes the obtained MZ
value to heavily deviate from the actual one (in absence of the particles). The adopted
iterative cleaning process consists of the following steps: (1) Triton and Foam, (2) Ultrasonic
bath Acetone during 10 min, (3) Ethanol ultrasonic bath during 10 min, (4) Rinse with
milliQ water, (5) Compressed air dry and (6) Control of the surface using an accurate
optical microscope.

Within the fixed rule in the procedure, each material measure is probed/scanned three
times by the same ultra-high precision measurement system under restrictive environment
condition. In particular, all measurements were performed inside a metrology cleanroom
where the temperature is controlled to 20 ◦C. The handling of the material measures is
carefully done.

Once the measurement datasets were collected, manual removal approach of outliers
was conducted since there are no automatic processes and studies that can be applied
for such data. Afterwards, the MZ values were extracted using the implemented robust
reference HTR algorithm and the expanded standard uncertainties were estimated when
applying the type-A evaluation, according to the GUM [45].

The obtained residual maps of the measurements are illustrated in Figure 10. Thus,
measurements made by IPP and ITO seem to be slightly rotated around the z-axis compared
to the other measurements. This is due to the initial positioning of the TIMM-1 before
proceeding to the measurement. However, this has no effect on the final value of MZ since
the nominal shape is rotationally symmetric. The residuals calculated on measurement
datasets made by Thales-Agx when using the sub-aperture stitching interferometer show
some missing areas especially due to measurement system limitations on 3D surfaces with
high slope. This has no effect of the final MZ value since the regions defining the minimum
zone were completely detected. Otherwise, most selected ultra-high precision measurement
instruments return measured datasets covering the whole surfaces of the TIMMs.
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Figure 10. Illustration of the obtained residuals when applying the implemented robust reference minmax fitting algorithm
on measured datasets (TIMM-1) using the described ultra-high precision measurement machines at LNE (a), Thales-Agx (b),
UNOTT (c), IPP-LUPHOS (d), IPP-MFU (e), VTT(f), NMIJ (g) and ITO (h).
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Furthermore, the obtained experimental values of MZ (denoted MZex) for both mate-
rial measures (TIMM-1 and TIMM-2) are extracted and presented in Figures 11 and 12. The
Key Comparison Reference Value MZref ([45]) is calculated using the weighted mean given
in Equation (4):

MZre f = ∑
i

ωi.MZex,i (4)

where
ωi = C

1[
u(MZex,i)

2
] (5)

and
C =

1

∑i
1[

u(MZex,i)
2] (6)
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The uncertainty of the weighted mean is calculated using the Equation (7). A coverage
factor k = 2 is used for the calculation of the expanded standard uncertainty.

u
(

MZre f

)
=

√√√√ 1

∑i
1[

u(MZex,i)
2] =

√
C (7)

Figure 11 illustrates the average experimental MZex values with the respective ex-
panded standard uncertainty for TIMM-1. The calculated Key Comparison Reference Value
MZref is equal to 6.303 µm with an associated expanded standard uncertainty of 2 nm.
Based on this value of MZref, a deviation from the theoretical value of MZ (MZth = 7 m)
by 697 nm can be seen. The deviation (MZth—MZref) is due to the manufacturing MRF
process. Thus, a small error in the estimation of the wear rate of the tool used in the MR
process may lead to significant form errors. The manufacturing of TIMM-1, because of its
complex shape compared to a classical asphere, took approximately nine hours while a
normal MRF cycle takes fifteen to forty-five minutes, which may explain this deviation.

The probability density functions based on kernel density estimation were calculated
for all collected measurement data. The obtained functions present similar Gaussian shape
which could validate the measurements qualities.

The average MZex and expanded standard uncertainties obtained from measurements
are respectively equal to 6.305 µm and 5 nm for LNE, and 6.303 µm and 2 nm for UNOTT.
These two measurements could be considered as the most accurate. In addition, the
average MZex value obtained from Thales-Agx measurements is too close to the LNE and
UNOTT values.

Nevertheless, measurements on TIMM-1 made by all participants present a good
agreement as shown in Figure 11, even if deviations can be observed (with comparison to
the MZex values given by LNE, UNOTT and Thales-Agx) due to systematic and random
errors that could be compensated.

Moreover, the obtained results prove the capabilities of all participants to carry out
measurements on aspherical surface with high accuracy. Once the TIMM-1 is calibrated by
any ultra-high precision measuring machine with a low uncertainty, the collected measured
data could be used for testing or verifying implemented minimax industrial algorithms.
As consequence, the MZ value returned by the minimax industrial algorithms will has a
guaranteed traceability to the SI unit meter definition.

Unlike TIMM-1, the obtained MZex values for TIMM-2 are more dispersed. The
obtained MZex values are plotted in Figure 12. The Key Comparison Reference Value MZref
is equal to 0.768 µm with an associated expanded standard uncertainty of 0.016 µm. The
measurement made by LNE has the lowest expanded standard uncertainty (0.024 µm).

The obtained results show the interest of the design of the proposed TIMMs for MZ
fitting. Both optical and tactile measuring systems provide results with good agreement.
Furthermore, the collected results demonstrate the establishment of a traceable reference
full metrology chain including ultra-high precision measurement instruments, innovative
thermo-invariant material measures and robust reference minimax fitting algorithms ac-
curate at few tens of nanometers for aspherical and freeform optical surfaces. However,
the obtained values are still sensitive to the presence of outliers among the collected data.
Hence, clear pre-processing steps for filtering and outlier removal must be defined.

6. Conclusions

This paper presents the capability to use several ultra-high precision measurement
machines for the evaluation of innovative optical aspheric and freeform surfaces. The eval-
uation was made based on the obtained form errors estimated with the implemented robust
reference HTR algorithm for minimum zone fitting. This procedure includes the main three
components of the traceable reference metrology chain of aspheric and freeform surfaces:
(1) ultra-high precision measuring machines, (2) thermo-invariant material measures and
(3) reference algorithms.
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Measurements were made on two developed TIMMs: TIMM-1 and TIMM-2. TIMM-1
is designed for the assessment of MZ fitting of aspherical surfaces while TIMM-2 is designed
for freeform surfaces with applications in industry.

A number of ultra-high precision measurement machines were selected for the evalu-
ation tests. The overall results show that there is a difference between the theoretical and
measured form error of TIMM-1 and TIMM-2, which is likely due to the MRF manufac-
turing process. MRF process usually requests less than an hour to manufacture classical
optical aspheres, while 9 h was taken for the manufacturing of the designed TIMMs, which
caused the wear to appear in the tool, and then the deviation between both theoretical and
manufactured TIMMs.

Furthermore, good agreement between the obtained results was observed; in par-
ticular, results obtained with the LNE ultra high precision primary profilometer and the
UNOTT improved coherence-scanning interferometer. The expanded standard uncertain-
ties on the weighted mean value of the MZex for the two material measures did not exceed
16 nm. In addition, it is to be noted that these uncertainties were achieved in the case where
the theoretical amplitudes are small (less than 7 µm).

The perspectives of this work are:

• similar measurements tests might be conducted on material measures with higher amplitudes;
• clear pre-processing approaches for filtering and outlier removal must be established

since the obtained results are highly sensitive to each point in the data set;
• the implemented MZ fitting algorithm (HTR) considers motion parameters only.

Indeed the determination of shape parameters might prove important and should
be studied;

• investigation of more robust fitting criteria than MZ. In fact, MZ criterion could be
used with caution since it is highly affected by outliers and no standard outlier removal
method exists;

• development of reference softgauges with a non-vertex solution in the case of
freeform surfaces;

• investigation of a reference metrology accurate at the nanometre level for waviness
and areal texture of aspherical and freeform surfaces. This metrology could include
the development of new material measures, improved ultra-high measurement instru-
ments as well as references algorithms and softgauges. Filtering algorithms could be
also studied.
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16. Adamczak, S.; Zmarzły, P.; Stępień, K. Identification and analysis of optimal method parameters of the V-block waviness

measurements. Bull. Pol. Acad. Sci. Tech. Sci. 2016, 64, 45–52. [CrossRef]
17. Ma, W.; Zhao, N. Catmull-Clark surface fitting for reverse engineering applications. In Proceedings of the Geometric Modeling

and Processing 2000. Theory and Applications, Hong Kong, China, 10–12 April 2000; pp. 274–283.
18. Arezki, Y.; Zhang, X.; Mehdi-Souzani, C.; Anwer, N.; Nouira, H. Investigation of minimum zone assessment methods for aspheric

shapes. Precis. Eng. 2018, 52, 300–307. [CrossRef]
19. Shunmugam, M. New approach for evaluating form errors of engineering surfaces. Comput. Des. 1987, 19, 368–374. [CrossRef]
20. ISO 1101:2017 Geometrical Product Specifications (GPS)—Geometrical Tolerancing—Tolerances of Form, Orientation, Location and

Run-Out; ISO: Geneva, Switzerland, 2017.
21. BIPM-International Vocabulary of Metrology (VIM). Available online: https://www.bipm.org/en/publications/guides/vim

(accessed on 26 February 2019).
22. Leach, R.K.; Giusca, C.; Haitjema, H.; Evans, C.; Jiang, X. Calibration and verification of areal surface texture measuring

instruments. CIRP Ann. 2015, 64, 797–813. [CrossRef]
23. Nouira, H.; Bergmans, R.; Küng, A.; Pirée, H.; Henselmans, R.; Spaan, H. Ultra-high precision CMMs and their associated tactile

or/and optical scanning probes. Int. J. Metrol. Qual. Eng. 2014, 5, 204. [CrossRef]
24. Savio, E.; De Chiffre, L.; Schmitt, R. Metrology of freeform shaped parts. CIRP Ann. 2007, 56, 810–835. [CrossRef]
25. Zhou, X.; Zuo, C.; Liu, Q.; Lin, J. Surface generation of freeform surfaces in diamond turning by applying double-frequency

elliptical vibration cutting. Int. J. Mach. Tools Manuf. 2016, 104, 45–57. [CrossRef]
26. Schellekens, P.; Rosielle, N.; Vermeulen, H.; Vermeulen, M.; Wetzels, S.; Pril, W. Design for Precision: Current Status and Trends.

CIRP Ann. 1998, 47, 557–586. [CrossRef]
27. Ruijl, T.a.M. Ultra Precision Coordinate Measuring Machine-Design, Calibration and Error Compensation. 2001. Available online:

http://resolver.tudelft.nl/uuid:647dc01c-787c-4004-acbb-262d156dc0bb (accessed on 22 October 2020).
28. Becker, K.H.; Heynacher, E. M400-A coordinate measuring machine with 10 nm resolution. In Proceedings of the Society of

Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Cambridge, MA, USA, 8–13 November 1987; pp. 209–216.

http://doi.org/10.1109/19.571915
http://doi.org/10.1109/JPHOT.2019.2950038
http://doi.org/10.1109/JPHOT.2019.2951435
http://doi.org/10.1109/JQE.2004.833231
http://doi.org/10.1016/j.cirp.2013.05.003
http://doi.org/10.1016/S0168-9002(01)00296-0
http://doi.org/10.1016/j.precisioneng.2014.06.004
http://doi.org/10.1504/IJPTECH.2013.057051
http://doi.org/10.1515/bpasts-2016-0037
http://doi.org/10.1016/j.precisioneng.2018.01.008
http://doi.org/10.1016/0010-4485(87)90037-6
https://www.bipm.org/en/publications/guides/vim
http://doi.org/10.1016/j.cirp.2015.05.010
http://doi.org/10.1051/ijmqe/2014009
http://doi.org/10.1016/j.cirp.2007.10.008
http://doi.org/10.1016/j.ijmachtools.2015.11.012
http://doi.org/10.1016/S0007-8506(07)63243-0
http://resolver.tudelft.nl/uuid:647dc01c-787c-4004-acbb-262d156dc0bb


Sensors 2021, 21, 1103 17 of 17

29. Haitjema, H.; Pril, W.; Schellekens, P.H.J. A silicon-etched probe for 3-D coordinate measurements with an uncertainty below 0.1
µm. IEEE Trans Instrum. Meas. 2001, 50, 1519−1523. [CrossRef]

30. Pruss, C.; Baer, G.B.; Schindler, J.; Osten, W. Measuring aspheres quickly: Tilted wave interferometry. Opt. Eng. 2017, 56, 111713.
[CrossRef]

31. Naeini, F.B.; Alali, A.M.; Al-Husari, R.; Rigi, A.; Al-Sharman, M.K.; Makris, D.; Zweiri, Y. A Novel Dynamic-Vision-Based
Approach for Tactile Sensing Applications. IEEE Trans. Instrum. Meas. 2019, 69, 1881–1893. [CrossRef]

32. Zhang, K.; Butler, C.; Yang, Q.; Lu, Y. A fiber optic sensor for the measurement of surface roughness and displacement using
artificial neural networks, IEEE Trans. Instrum. Meas. 1997, 46, 899–902. [CrossRef]
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