
This document is downloaded from the
VTT’s Research Information Portal
https://cris.vtt.fi

VTT
http://www.vtt.fi
P.O. box 1000FI-02044 VTT
Finland

By using VTT’s Research Information Portal you are bound by the
following Terms & Conditions.

I have read and I understand the following statement:

This document is protected by copyright and other intellectual
property rights, and duplication or sale of all or part of any of this
document is not permitted, except duplication for research use or
educational purposes in electronic or print form. You must obtain
permission for any other use. Electronic or print copies may not be
offered for sale.

VTT Technical Research Centre of Finland

Textile Recognition and Sorting for Recycling at an Automated Line Using
Near Infrared Spectroscopy
Cura, Kirsti; Rintala, Niko; Kamppuri, Taina; Saarimäki, Eetta; Heikkilä, Pirjo

Published in:
Recycling

DOI:
10.3390/recycling6010011

Published: 01/03/2021

Document Version
Publisher's final version

License
CC BY

Link to publication

Please cite the original version:
Cura, K., Rintala, N., Kamppuri, T., Saarimäki, E., & Heikkilä, P. (2021). Textile Recognition and Sorting for
Recycling at an Automated Line Using Near Infrared Spectroscopy. Recycling, 6(1), 1-12. [11].
https://doi.org/10.3390/recycling6010011

Download date: 19. Dec. 2021

https://doi.org/10.3390/recycling6010011
https://cris.vtt.fi/en/publications/b6b7a5cd-b699-4da6-af8a-8a84c62e38fc
https://doi.org/10.3390/recycling6010011


recycling

Article

Textile Recognition and Sorting for Recycling at an Automated
Line Using Near Infrared Spectroscopy

Kirsti Cura 1,*, Niko Rintala 1, Taina Kamppuri 2, Eetta Saarimäki 2 and Pirjo Heikkilä 2

����������
�������

Citation: Cura, K.; Rintala, N.;

Kamppuri, T.; Saarimäki, E.; Heikkilä,

P. Textile Recognition and Sorting for

Recycling at an Automated Line

Using Near Infrared Spectroscopy.

Recycling 2021, 6, 11. https://

doi.org/10.3390/recycling6010011

Academic Editor: Martin Schlummer

Received: 29 October 2020

Accepted: 28 January 2021

Published: 8 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Technology, LAB University of Applied Sciences, Mukkulankatu 19, 15210 Lahti, Finland;
niko.p.rintala@lab.fi

2 VTT Technology Research Centre of Finland, P.O. Box 1000, FI-02044 VTT Espoo, Finland;
taina.kamppuri@vtt.fi (T.K.); eetta.saarimaki@vtt.fi (E.S.); pirjo.heikkila@vtt.fi (P.H.)

* Correspondence: kirsti.cura@lab.fi

Abstract: In order to add value to recycled textile material and to guarantee that the input material
for recycling processes is of adequate quality, it is essential to be able to accurately recognise and sort
items according to their material content. Therefore, there is a need for an economically viable and
effective way to recognise and sort textile materials. Automated recognition and sorting lines provide
a method for ensuring better quality of the fractions being recycled and thus enhance the availability
of such fractions for recycling. The aim of this study was to deepen the understanding of NIR
spectroscopy technology in the recognition of textile materials by studying the effects of structural
fabric properties on the recognition. The identified properties of fabrics that led non-matching
recognition were coating and finishing that lead different recognition of the material depending on
the side facing the NIR analyser. In addition, very thin fabrics allowed NIRS to penetrate through the
fabric and resulted in the non-matching recognition. Additionally, ageing was found to cause such
chemical changes, especially in the spectra of cotton, that hampered the recognition.

Keywords: textile recycling; textile reuse; fibre recognition and sorting; automation; near infrared
spectroscopy; circular economy

1. Introduction

Reusing and recycling discarded textiles are, in general, preferable waste management
options to incineration and landfilling. In the environmental context, reusing products
has been shown to be preferable to recycling textile materials [1]. However, at some point
in its lifecycle, a textile product will be worn out or get dirty so it is no longer suitable
for reuse. In this case, recycling may offer the material a new lifecycle. To add value to
the recycled material and to guarantee that it has adequate quality as an input material
for the subsequent recycling processes, it is essential to be able to recognise and sort the
item according to its material content [2]. Manual sorting of textile waste based on the
fibre material content listed on product labels is possible but slow and often unreliable,
because the labels may have been removed, be worn out or have faulty information.
According to a study by Circle Economy, up to 41% of labels on blended materials contain
inaccurate information [3]. There are methods available for the identification of textile
materials, such as ISO standardised quantification methods based on different dissolution
behaviour (ISO 1833-1, etc.), morphological differences detected by microscopy [4], DNA
recognition [5] and differences in thermal behaviour detected by differential calorimetry,
thermogravimethic analysis and gas chromatography [6]. These are accurate, but require
sample preparation and, as such, are too slow for automated recognition and sorting of
textile materials needed for recycling. Therefore, to enhance the use of recycled material,
there is a need for an economically viable and effective way to recognise and sort textile
materials. In NIR spectrometry (NIRS), sample preparation is not required, and it is
widely used in industry for a variety of operations. Additionally, NIRS has been used in
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textile identification, for example detection of cotton content in blend fabrics [7], analysing
material contents in cotton polyester blends [8], identification of cashmere from other
animal fibres [9] and determining the contents of four different materials (wool, polyester,
polyacrylonitrile, and nylon) at the same time [10]. Hyperspectral near infrared imaging
has also been used in identifying polyester content in blended textiles [11].

Automated recognition and sorting lines provide a method for ensuring better quality
of the fractions being recycled and thus enhance the availability of such recycled frac-
tions with accurately known material content. The two best-known commercial or close
to commercial automated recognition and sorting lines are FIBERSORT [12] by Valvan
in the Netherlands and SIPTex [13] in Sweden which uses Tomra’s NIR technology. A
requirement for mandatory EU-wide separate collection for textile waste by European
Union starting from 2025 [14] will no doubt accelerate a transition towards cost-effective
textile sorting plants. However, to our knowledge, this is the first time that chemical struc-
tural modifications research of textiles has been carried out using NIRS at the automated
sorting line.

LAB University of Applied Sciences has developed a method and equipment for
the recognition of textile fibre materials that can be used for research and development
purposes for studying qualitative and quantitative textile fibre recognition. The recognition
and sorting lab pilot (REISKAtex) identifies unknown textile fibres by comparing their near-
infrared (NIR) spectrum, which has been mathematically processed (normalisation and
second derivative), to a validated material spectral library and then sorting the identified
samples using automated air blowers [15]. A schematic picture of the lab pilot is depicted
in Scheme 1.
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Scheme 1. The REISKAtex recognition and sorting lab pilot.

While NIRS offers benefits to material sorting, it has some limitations. For example,
because the electromagnetic radiation of the used wavelengths does not penetrate the
sample effectively, thick layers of other materials on the sample will affect recognition.
The aim of this work was to gather understanding of NIR technology in the recognition of
textile materials and especially identify reasons for non-matching recognition. The work
was carried out by using over 250 fabrics, both pre- and pre-consumer samples, which
were sorted using the lab pilot. Majority of the samples (73%) were recognised correctly.
The identified properties of fabrics that led non-matching recognition, such as coating,
finishing, thickness and material blends are discussed further. Additionally, ageing was
found to cause such chemical changes especially in the spectra of cotton that hampered the
recognition.

2. Results and Discussion

Using the lab pilot with its material recognition spectral libraries, a sample set of
253 pieces of fabrics was tested. The samples were measured at room temperature as they
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were, i.e., no washing or other pre-treatments were performed. It can be assumed that
such conditions apply in a recycling centre where large quantities of discarded textiles
will be sorted. In this set of samples, 74 pieces were collected from post-consumer and
179 pieces from pre-consumer textiles. The identity of the sample materials was confirmed
and cross-checked twice, so that a material recognition method could be set up reliably.
For reference, the fabric samples were analysed with a pre-commercial recognition line
based on an NIR sensor, SIPTex [8]. The samples were considered to be correctly identified
if both our lab pilot and SIPTex lines agreed on the recognition. The samples that had
deviating recognition result, i.e., material label and the sorting systems identified the
samples differently, were studied further by optical microscope, and Fourier transform
infra red (FT-IR) to confirm the material composition and to understand the reason for
unrecognition.

The samples were recognised and categorised according to six libraries, aka Classes:
cotton CO) 100%, CO ≥ 90% and CO ≥ 60%; polyester (PES) 100%, PES ≥ 90%; and viscose
(CV) 100%. Fabrics with coatings and functional finishes were separated from the sample
set and their results were studied separately later because they gave irregular results, for
example, the front and back sides gave different results. The rest of the fabric samples
were analysed, and 73% of the studied samples were correctly recognised to the library
classes or to an Others class. For example, fabric consisting of 80% cotton and 20% PES
was correctly recognised when it did not pass to CO 100% and CO ≥ 90% classes, but was
passed to CO ≥ 60%. Of the correct recognitions, 53% were for monomaterial samples and
the rest were different blends with a maximum of either 90% or 60% of cotton blended with
other materials; and a maximum of 90% of polyester blended with other materials. The
fabric samples that did not belong to any of the classes, for example, samples containing
80% polyester and 20% viscose (PES/CV 80/20), were identified as “Others”. All the
samples that were made from such material blends, and which did not fit a recognition
class (29 pieces), were correctly sorted into the Others class.

Samples which did not yield matching recognition results were designated into two
categories: (1) False Positive (FP)/Category 1 in which the sample was misrecognised as
too pure, e.g., 90% PES recognised as 100% PES, and (2) False Negative (FN)/Category
2 in which the sample was not recognised as pure enough, e.g., 100% PES recognised as
≥90% PES, see Table 1. The percentage accuracy is the ratio of the correctly identified
samples. False Positives (FP) were mainly caused by a small percentage of other material,
for example, samples consisting 98% polyester and 2% elastane PES/EL 98/2) and samples
consisting 95% cotton and 5% elastane (CO/EL 95/5) fabrics were recognised as monoma-
terials. False Negatives were mainly due to the structural characteristics of the fabrics, such
as loose knits and thin fabrics, and changes in the chemical structure of polymers, such
as ageing and mercerising of cotton. These are discussed in more detail in the following
chapters.

Table 1. Recognition classes, the number of samples with non-matching results grouped into two categories, and percentage
accuracy.

Recognition Class 100% CO ≥90% CO ≥60% CO 100% PES ≥90% PES 100% CV

Number of samples in class 71 77 86 54 67 11

FP/Category 1: Samples recognised as this
class but not belonging to it 7 4 1 9 4 0

FN/Category 2: Samples belonging to this
class but not recognised correctly 11 5 1 4 4 0

Total amount of non-matching recognitions 18 9 2 13 8 0

Percentage accuracy 76% 88% 98% 76% 88% 100%
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The accuracy gets higher as the tolerance of the class is increased. This was clearly
seen in the cotton and polyester samples in which there was more than one class. This
indicates that the number of rejects in the recognition process can be controlled by adjusting
the tolerance of the recognition class. In practice, this means that if a next user of the sorted
material can tolerate some impurities then the yield can be improved by adjusting the
tolerance to accept small percentages of blends. Further tests with our lab pilot have shown
that the best throughput for sorted textiles was achieved when impurities of 1–5% were
accepted for 100% recognition. This means that yields of acquired textile fibre streams were
high even though some small impurities were allowed.

With the limitations of NIRS, samples with large prints, thin and loosely knitted
fabrics, lace and coated fabrics proved difficult to recognise. Because fabrics with large
prints are not usually wanted in the material flow, this was a positive result. In automated
systems, folding samples reliably during automatic sorting may not be easy. This may
result in thin samples being either misrecognised or rejected and discarded because the
NIRS will penetrate through the fabric and measure the spectrum of the sorting line’s
conveyer belt instead. To overcome this, loose and/or thin fabrics can be manually folded
sufficiently to minimise belt exposure.

The classes in this study were not selected based on the suitability of the material
for certain recycling process. The classes have been chosen to give an indication of how
easily fabrics from blended materials can be recognised. Cotton, polyester and their blends
are the most used materials in clothing. Viscose was selected to study if NIR was able to
recognise different cellulose types.

All of the studied material fractions, including the Others class, are suitable for
mechanical recycling. However, a user of the mechanically recycled fibres may have some
material specifications that the sorting process should fulfill. Recycling processes for the
textiles are evolving at the moment. For the dissolution methods developed for cotton,
the purity of cotton fractions needs to be over 95%. However there are technologies in
the development stage that can be used to separate cotton from polyester and for this sort
of processes the share of the materials are not that important, but maybe the processes
are better suited for fabrics closer to 50%/50% CO/PES. The depolymerisation processes
require high-purity materials, but as the filtration steps are developing, different fibre
materials can be separated more easily compared to other additives in materials such as
dyes. Thus, the sorting line needs to have classes for blended materials as well in order to
face evolving needs for recycling.

2.1. Effects of Coatings and Finishes

Coated textiles are generally not easy to recycle using the same process as for uncoated
textiles. In order to prevent coated fabrics ending up in the same fraction than fabrics to
be mechanically opened, automated sorting should identify them regardless of their base
material. The coated fabrics in this study were polyester fabrics coated with polyurethane
(29 samples). The amount of coating, if listed, varied between 13% and 25% and did not
have an effect on the recognition. The samples were fed into the sorting line manually
twice so that both sides were identified. Our lab pilot identified 61% in the reject category
regardless of the side being measured. Of the samples which were not rejected, the
side without coating was identified in the class ≥90% PES and the coated side in the
reject category. In such cases, the side facing the sensor will determine the result of the
recognition.

In this study, 28 samples of 100% cotton fabrics had functional finishing, such as
anti-wrinkle, crease resistant and waterproof finishing treatments. The fabrics were pre-
consumer, i.e., never washed. The fabric samples were fed twice through the recognition
line so that both sides were measured. The recognition line was able to classify the material
as cotton, but only two samples were identified as 100% cotton. Other fabric samples were
identified as being in other cotton classes, and one side of the fabric gave a different result
from the reverse side (e.g., one side was 100% CO and the other side was 90% CO). For
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other cotton samples without finishing, recognition usually gave the same result for both
sides of the fabric. The fabric samples with finishings behaved more like the coated ones,
and gave irregular results depending on the measurement side.

2.2. Effect of Blends/Elastane

The presence of a low percentage of blended materials, such as elastane, may cause
misrecognition. Low blended content generally becomes harder to identify as the material-
specific spectrum of the low content material overlaps with the main material spectrum. In
addition, most low-content blends are produced in a way where the blended material is
partially hidden within the yarn. Most prominently, elastane is commonly incorporated
within the core of the textile fibres (examples shown in Figure 1) and so cannot be detected
in low amounts with NIRS. A study with six elastane-containing cotton samples indicated
that elastane content, rather than the location of it, would determine whether elastane
would affect recognition, see Table 2. A similar result was also obtained with other material
blends where the amount of the second material was low, for example, fabric with 99% PES
and 1% CV was identified as 100% PES.
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Figure 1. Microscope images of elastane-containing materials (a) cotton yarn where elastane was
in the core of the yarn; (b) knitted cotton textile where elastane is fed backside of the fabric; and (c)
polyester filament yarn including elastane.

Table 2. Recognition of elastane from cotton and polyester blends.

Cotton/Elastane Blends Polyester/Elastane Blends

Material composition

(a) 2–3% elastane in cotton

• skin-core yarn, elastane in the core

(b) 5% elastane in cotton

• elastane spun together with cotton yarn

(c) 2–11% elastane in polyester

• elastane spun together with polyester
filament

Recognition result (a) three samples as 100% CO, one sample as 90% CO
(b) one sample as 100% CO, others as 90% CO

(c) one sample as 90% PES, six samples as
100% PES

Accuracy 2/6 1/7

While blended materials with low percentage content are difficult to recognise, decreas-
ing the allowed variance in the algorithm increases the purity of the yielded monomaterials.
The purer yields are the result of the system discarding samples with impurities rather than
recognising and categorising them. Therefore, our lab pilot could theoretically be used to
filter pure, 100% homogenous materials out of the heterogenous feed. As previously stated,
the capabilities of NIR do not necessarily allow 100% pure fractions to be collected from
a heterogenous sample set, but further studies with random sampling have indicated up
to 99.2% accuracy when sampling post-consumer cotton. Therefore, our lab pilot could
alternatively be used to gain greater yields of slightly impure (99–95%) heterogenous
materials.

The recognition algorithm was set to allow <5% impurities within 100% categories,
increasing the yields of the sorted materials. In larger-scale operations this should be
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permissible, as this kind of composition should not affect further processes much; a 5%
source material impurity does not directly translate to an end-fraction with 5% impurities.
Moreover, the purity of sorted material can be increased after recognition by feeding more
monomaterial into it, either virgin or recycled.

2.3. Effects of Structures

Whether the samples are knitted or woven does not have an effect on recognition
with monomaterial samples, as the texture has no effect on the chemometric analysis.
However, very loosely knitted thick fabrics were not recognised because the NIR sensor
acquired chemical data partially through the sample from the conveyor belt. The texture
may have an effect depending on which material is facing the spectrometer, and this can
therefore cause misrecognition with fabrics which have different materials on different
sides or in the middle layers. Most of these difficulties are due to the fact that the NIR
beam cannot penetrate the sample surface layers. The thicker the layer, the harder core
textile material identification becomes. Folding dual layered samples so that both sides
faced the NIR sensor caused the recognition algorithm to find both materials, but the
material composition was then categorised based on how much of each layer was within
the observed area; i.e., 33%/67% composition if 33% of second surface covers observed
area. It can be concluded that, to date, there is no reliable way of categorising multi-layered
samples with our lab pilot.

2.4. Effects of Ageing on Cotton Fabrics

In the 100% cotton sample group, there were fabrics which gave False Negative
results even though they did not any have special structural features. The samples were
first studied using an optical microscope and as no other fibres than cotton fibres were
visible under the microscope, they were studied further by FTIR-ATR. Interestingly, the
unrecognised fabrics were all post-consumer fabrics. FTIR spectra showed them to be cotton,
but there were spectral changes in the wavenumber range 1700–1730 cm−1, see Figure 2.
where a pre-consumer cotton spectrum was compared to a post-consumer cotton spectrum.
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Figure 2. Full FTIR spectra of a pre-consumer cotton sample (blue) compared to a post-consumer cotton sample (red) with
changes caused by dialdehyde formation on the cellulose by oxidation; enlarged FTIR spectra of a pre-consumer cotton
sample (blue) compared to a post-consumer cotton sample (red) with changes caused by dialdehyde formation on the
cellulose by oxidation: a change in the area of 1700–1730 cm−1.
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It has been observed that during the oxidative ageing of cellulose, the degradation of
the cellulose backbone leads to an increase in dialdehyde cellulose, which in turn is shown
as a growing carbonyl peak at wavenumbers between 1700 and 1730 cm−1 [16–18]. This
also seemed to be a plausible explanation in our case, because the fabric samples with these
spectral changes were post-consumer samples and it is likely that they have been exposed
to ageing. Oxidation of cellulose causes formation of dialdehyde, visible in spectral region
from 1700–1730 cm−1 [16].

Our lab pilot identified aged cotton samples to CO ≥ 90% class, not to 100% class.
Further investigation of the aged cotton samples with an optical microscope confirmed that
there were only cotton fibres in the sample. With the help of FTIR, dialdehyde fingerprint
was detected. As aged cotton samples was not passed to CO 100% class with our lab pilot,
this suggested that it may be able to find similar markers even though the wavelength
areas of NIR and FTIR are different, 1100–1650 nm and 2500, respectively. However, more
research is needed to find out how the effects of ageing could be recognised with our
lab pilot.

2.5. Effects of Mercerisation on Cotton Fabrics

When studying the unrecognised fabrics in the 100% cotton sample group with an
optical microscope, a few samples were confirmed as cotton, but some also included
smooth fibre segments without the characteristic convolutions of cotton. Further studies
with FTIR confirmed that the samples either contained viscose fibres or, more likely, the
surface of the fabric had been mercerised. The FTIR spectra of the studied fabrics and
reference cotton are shown in Figure 3.
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Figure 3. Full FTIR spectra of merceried pre-consumer samples in blue and reference 100% cotton sample in red; enlarged
FTIR spectra of mercerised pre-consumer samples in blue, and reference 100% cotton sample in red with a change from
897 cm−1 to 894 cm−1 (top left); enlarged FTIR spectra of mercerised pre-consumer samples in blue, and reference 100%
cotton sample in red: disappearance of the cotton peak in the mercerised samples at 1107 cm−1 (top right).

Mercerisation of cotton partially changes the crystal structure of cotton from cellulose
I to cellulose II. Notable spectral changes due to this are known to occur at 1430, 1160,
1111 and 897 cm−1 [18–20], resulting in the cotton FTIR spectrum resembling that of vis-
cose. In our case, the spectra of reference cotton and studied samples had clear differences
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(cutting and shifting of peaks at 1108 and 897 cm−1), but certain similarities (clear peaks
at 1160 and 1430 cm−1), as well. Mercerisation cut the peak at 1107 cm−1 from the mer-
cerised samples, but it was still present in the reference cotton (Figure 3) and shifted the
β-glucosidic linkage peak from 897 cm−1 (cotton sample) to 894 cm−1 (mercerised samples)
(Figure 3). However, the broad O–H stretching bands at 3600–3100 cm−1 and C–H stretch-
ing band at 2900 cm−1 of the mercerised fabrics resembled cotton more, and the peaks at
1430 and 1160 cm−1 of mercerised cotton samples were identified as CH2 scissoring of cot-
ton and anti-symmetrical bridge C–O–C stretching of cotton, respectively. These findings
suggested that the mercerised samples still had partially crystal structure of cellulose I
confirming that they were cotton. Additionally, this indicates that the mercerisation had
only caused partial conversion of crystal structure from cellulose I to cellulose II.

2.6. Recognition of Polyester Samples

In the polyester sample group, the accuracy of recognition was at the same level as
in the cotton group, despite the fact that the chemical structure of polyester and thus its
spectral characteristics can have more variations than cotton. Polyester fibre is defined
as fibres that are formed from linear chain macromolecules containing at least 85% esters
of a diol and terephthalic acid [21]. Most common polyester used in textile fibres is
polyethylene terephthalate (PET), but polyester fibres can also be made from, for example,
polybutylene terephthalate (PBT) or polytrimethylene terephthalate (PTT). The difference
of the molecular structures between PET, PBT and PTT is the number of the CH2 groups
in the polymer backbone. It is possible to distinguish PET, PBT and PPT using FTIR [22].
In this study, a spectral library for recognising polyester has been built using different
polyester samples in general, i.e., no special attention was paid to distinguish PET, PBT and
PTT. Therefore, the spectral library consists of different polyester types. Their NIR spectra
have been chemometrically manipulated to form a class PES consisting a combination of
different polyesters’ spectra. No obvious differences in NIR spectra were observed when
making the spectral library of polyester. With textiles, unlike with plastics, it is common
to label different polyester types to one type of textile fibre. In future, it may be beneficial
to separate different polyesters as more precise recycling methods require more precise
information of the feedstock. This is a topic of further study.

It is known that degradation of polyester, induced for example by water, UV light
and alkaline conditions at elevated temperatures, changes the spectral characteristics of
fibre-grade PET pellets and PET films [23]. On the other hand, alkaline hydrolysis can be
used to modify the surface of polyester fabrics to improve their moisture absorption [24].
By definition, polyester contains at least 85% (by weight) esters of diol and terephtalic acid.
This means that the pre-consumer polyester samples in our study may have some spectral
characteristics coming from maximum 15 wt% unknown chemical compounds, which
made them difficult to recognise, but the ageing and treatment history of post-consumer
samples may result in even broader spectral changes which cause misrecognition. All of
these known treatments and features could explain why our accuracy for PES100% Class
was 76%, and 88% for PES90% Class. As a conclusion, polyesters as one type of textile
fibre is actually a mixture of various chemical compounds. More research is needed to
understand how important it is to distinguish different polyester types in order to obtain
sufficient quality feedstock for recyclers of different needs.

2.7. Effect of Colours

Depending on the wavelength range of a used NIR equipment, black and dark colours
may interfere with the measurement. Most textiles contain such colourants that do not
cause issues with black and dark materials. This is in contrast with black plastic materials
which cause issues in NIR identification. With plastics the issue rises from carbon black
which is commonly used colourant to achieve black plastic. Carbon black in the plastic
increases energy absorption to the material leading to not detecting sufficient absorbance
in the NIR measurement. With textiles such issues can be present, and from our experience,
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they are mostly limited to black wool, polyamide and very old textiles. Each of these
types have been found to contain the type of colourant that increases the absorption and
noise gain. It has been proven that the effect of black materials could be able to overcome
or be diminished by altering the evaluation algorithm which cuts off wavelengths below
1350 nm. This may affect the accuracy of a used method, which is built on the 1100–1650 nm
range [25]. This is a topic of further study.

3. Materials and Methods

The fabric sample set was composed of 253 different fabric pieces. From the sample
set, 74 pieces were from post-consumer textiles and 179 pieces from pre-consumers tex-
tiles. Of the samples, 59% were monomaterials in the following categories: 100% Cotton
(CO), 100% Polyester (PES) and 100% Viscose (CV), and the rest were blended materials
such as Cotton/Polyester CO/PES and Cotton/Elastane (CO/EL), other blends such as
Wool/Cashmere (WO/WS) and Wool/Polyamide/Elastane (WO/PA/EL), or coated fab-
rics or fabrics with functional finishes (Table 3). The fabric samples were cut into about
20 cm × 30 cm pieces. Both sides of the fabrics were analysed with the automated sorting
lines so that the front side was always measured first and then the sample was turned over
and the back side was measured.

Table 3. Analysed fabrics.

Material Number of Samples Number of Pre- and Post-Consumer Samples
(Pre/Post)

Monomaterials

100% cotton, CO 71 45/26

100% polyester, PES 54 31/23

100% viscose, CV 11 11/0

Blends

CO/EL (2–5% EL) 6 3/3

PES/EL (2–11% EL) 7 4/3

CO/PES a 34 27/7 c

Other blends b 13 5/8

Coated samples 100% PES 29 d 25/4

Finished samples 100% CO 28 28/0

in total 253 179/74
a CO/PES blend ratios (number of samples) 95/5 (1); 90/10 (1); 80/20 (6); 70/30 (1); 60/40 (1); 45/55 (1); 35/65 (3); 30/70 (15); 20/80 (4);
16/84 (1); b other blends WO/WS (2); WO/EL (1); WO/CV (1); WO/PA/EL (1); PES/CV (3); PES/WO (1); PES/PA/EL (1); PES/others
(1); CO/CV (1); CO/PES/EL (1); c for four samples, the results indicated that the label was not correct; d amount of coating listed for
22 samples (13–25% PU).

Our lab pilot unit was used to recognise the materials. The unit consists of an NIRS
Analyzer PRO Window Reflectance analyser from Metrohm Nordic Oy, a conveyor belt
and pressurised air deflectors to sort the recognised textile materials into the designated
bins. Sampling speed was 0.5 items/second and belt speed was 0.35 m/second. The unit
has been designed and built by LAB University of Applied Sciences. The recognition model
was developed by using ProFOSS NIR process analyser with Metrohm Vision™ software
for spectral data management. Samples were measured once from both sides at room
temperature, consisting of 24 scans, as this process is supposed to model an industrial
sorting line. The absorbance spectrum was collected between the wavelengths 1100–
1650 nm with 0.5 nm intervals. The material composition was determined by comparing
the 2nd order derivate absorbance spectrum with 10 nm segments to a spectral library.
The recognition algorithm is based on measuring NIR spectra of large amounts of verified
reference samples for each recognition class. The samples are filtered with a maximum
average distance from each other in order to take variations of spectra of the same materials
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into account. The amount of variation allowed can be mathematically defined, so that the
recognition accuracy can be adjusted [26].

A sample spectrum was compared against the spectral library of the lab pilot. The
selected library categories, aka Classes, for this study were cotton 100%, ≥90% and ≥60%;
polyester 100% and ≥90%; and viscose 100%.

Selected samples were further characterised with an FTIR spectrometer and optical
microscopy.

3.1. Fourier Transformed Infrared Spectrometry

Fourier transform infrared (FT-IR)-attenuated total reflection (ATR) spectra of the
selected samples were recorded on FT-IR-ATR spectrometer (Bruker Alpha) at 4 cm−1

resolution with 32 scans per sample from wavelength range 400–4000 nm. The samples
were mounted directly on the sample holder.

3.2. Optical Microscopy

Optical microscopy images of the fabric samples were taken with an optical stereo
microscope (MeijiTechno RXT-LED) with a Photonic PL3000 light source, and fibre images
were taken with an optical microscope (Leitz Diaplan). To enable recognition of the natural
fibres and for the analysis of elastane, the fabrics were manually unravelled via yarns to
their constituent fibres.

4. Conclusions

Near infrared spectrometry can be used to categorise textile waste streams into differ-
ent material fractions easily and efficiently. Overall improvements to automated identifica-
tion lines could help to sort more material from waste streams for reuse.

General problems with automated material identification are related to the limitations
of NIRS and the fact that it only analyses the surfaces of textiles. This is clearly seen when
studying samples with coatings and with multi-layered materials, as well as with some
functional finishes. The thicker the layer facing the NIR sensor, the harder it is to recognise
the material. Multi-layered samples may hide other materials at their core or under the
visible surface, causing false positives, diminishing the yields.

The fabric samples studied were from both pre- and post-consumer clothing. They
were pre-sorted for the study, meaning that fabrics were cut into pieces with the same
dimensions. Multi-layered clothing (i.e., quilted jackets with filling and lining and similar)
were not included in the study. In addition, very thin and loose fabrics caused problems
with recognition because the NIR sensor measured the spectrum of the background material
through the sample. Folding thin samples could be used to counteract this, but it would
be laborious because this would have to be done manually. It was proven that our lab’s
pilot can differentiate between blended materials with large enough increments of fibre
composition, and therefore it can theoretically sort high-purity monomaterial streams
of raw material from heterogeneous sources for reuse. However, our results suggested
that if the ratio of one material is low (under 10%) it hampers recognition. In addition, if
the materials are blended at the fibre level, accurate recognition becomes difficult. The
amount of rejects in the recognition process can be controlled by adjusting the tolerance
of the recognition class and the yield can be improved if a small percentage of blended
materials is acceptable. It must be emphasised that textiles that were not recognised in
our study, however, could potentially be down-cycled, depending on the requirements for
subsequent use.

Interestingly, the age of the textile materials caused such strong chemical changes in
the materials that it hampered their recognition. Further study is required to determine
whether ageing will somehow restrict further use of the sorted materials. If the end user
of the recycled material specifies that aged cotton with aldehyde degradation products
are not wanted, it will be possible to create a recognition class for aged cotton. For the
polyester fraction, more studies are needed to identify chemical changes in the NIR spectra
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which can be used to recognise aged polyester fractions. In addition, it is worth paying
attention to different polyester types and not treating polyester as one type of textile fibre
recognition class.
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