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◼ Physics-based modeling methods compromise between the 
run-time simulation efficiency and accuracy 
• E.g. finite element method (FEM) is accurate but slow, and 

electrical equivalent circuit method is fast but less accurate

◼ Surrogate modeling offer a way to avoid the trade-off 
between efficiency and accuracy
• Machine learning (ML) and artificial neural networks (ANNs) 

enable developing surrogate models for numerous applications 
that require good computational performance

◼ In this study, an ANN surrogate model for simulating torque 
behaviour of a permanent magnet synchronous machine 
(PMSM) finite element model was developed
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Figure 1. (a) FEM mesh, and (b) 
magnetic flux density and flux lines 
of the FEM solution
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◼ Comparison of models trained with 1) the 3-phase 
current and 2) the following extracted features:
▪ Absolute values of the three current values
▪ Maximum value of the absolute values
▪ 1st discrete difference of each of the three current signals
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Figure 2. Overview of the surrogate modeling workflow
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Figure 3. Data generation with FEM

Figure 4. Resampled input (phase A) 
and output time series



◼ Comparison between ANN and gradient boosting 
decision tree (GBDT):
▪ ANN more suitable for EM applications, since its 

predictions smoother and continuous
▪ The “resolution” of GBDT wasn’t high enough to produce 

smoother output

◼ Sampling experiments with ANN – Comparison 
between randomized and grid sampling, and a 
combination of these two
▪ Grid sampling dataset: ~200 cases
▪ LHS-based randomized sampling: 50, 100, 200, or 300 

cases
▪ Validation and testing dataset: 150 and 190 cases
▪ Combining grid and LHS samples resulted in the best 

accuracy, but for low currents in general, the ANN 
accuracy was worse, due to strong nonlinearity in that area
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Figure 5. Example case of ANN and GBDT predictions.

Training dataset NRMSE 
avg [%]

NRMSE 
max [%]

LHS_50 4.1 38.0
LHS_100 2.2 28.0
LHS_200 2.0 29.9
LHS_300 1.6 29.6
GRID_196 3.2 16.4
GRID_196+LHS_100 1.4 11.5
Table 1. Test accuracy of ANN models trained with 
differently sampled training datasets.



◼ Hybrid model structure was employed to increase 
the accuracy in low currents

◼ The magnitude of torque is almost linearly 
dependent on the current amplitude

1. ANNs were trained to predict the ratio of torque to the 
current amplitude

2. The actual torque value is computed as a 
post-processing step by multiplying the ANN output with 
the current amplitude

3. The low current accuracy was improved to a sufficient 
level
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Dataset NRMSE avg [%]NRMSE max [%]
Baseline (non-hybrid with 
extracted input features) 1.38 11.45

Hybrid with extracted 
input features 1.14 (-0.24) 5.47 (-5.97)

Hybrid with original input 
features 1.77 (+0.39) 4.42 (-7.03)

Table 2. Test accuracy of ANNs with different training 
setups. NRMSE was computed for each test case 
(n=190), and values shown here are the average and 
maximum

◼ Without hybrid structure, feature extraction was needed to improve the normalized root 
mean square errors (NRMSEs)

◼ With hybrid structure, the extracted features worked well, but with the original features 
NRMSE max was improved even more (with the cost of slightly worse NRMSE avg.)



◼ Run-time efficiency:
▪ FEM: avg. 146.5 s / case
▪ ANN*: 56.1 ms / case (*hybrid model with the best accuracy)
➢ The surrogate model is ~2600 times faster in average

▪ Surrogate* development took 32 h without parallelization

◼ ANN surrogates can be used to accelerate FEM-based engineering design tasks 
(surrogate model-based optimization), for example
▪ Simulation-based surrogates can be also utilized in control applications and condition 

monitoring, for which they could be adapted using e.g. transfer learning
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Training dataset FE simulation [h] ANN training [h] Total [h]
LHS_100 17.9 2.2 20.1
GRID_196 21.8 5.5 27.3
GRID_196+LHS_100 25.9 5.7 31.6

Table 3. Breakdown of surrogate model 
development time. FE simulation time 
include simulations of training, 
validation and testing data
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