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Preface

Digital twins are under active research and development, both in the industry as well as in the
research community. The concept of digital twin promises benefits and added value due to the
improved use of data and better control of products, systems and assets. While the new op-
portunities are introduced and the benefits are emphasised throughout the life cycle of the
physical twin, the life cycle of the digital twin seems to gain less attention. Similar to the imple-
mentation of all the new digital technologies, such as the Internet of Things, edge computing
and advanced data analytics, digital twins would also increase the overall complexity of the
solution and bring new dependencies to the solutions’ life cycle management. This issue be-
comes even more challenging when the wide variety of technologies, the pace in the technol-
ogy development, and the expected life cycles of technologies are considered. With industrial
machines and systems, the life cycle expectation of several decades is common. On the other
hand, in information technology and especially in computing, a decade is a long time and, e.g.,
the technical support of computer operating systems is typically shorter.

This work is part of the DigiBuzz research project in which the business aspects of digital twin
technologies are taken into account, together with technical opportunities and new business
opportunities, but also raising risks are considered. Being critical and pointing out challenges
does not mean that we think the progress in the concept of digital twin and the related tech-
nologies is a waste of resources, but, to the contrary, we try to highlight the potential challenges
that could arise later during the application of digital twins. This would help us to tackle the
risks before they can even emerge. Digital twin is a powerful concept and like many other
breakthrough technologies, it requires new kind of thinking to fully realise its potential but also
to avoid the associated pitfalls.

We thank the funding parties, Business Finland and the participating companies and organi-
sations, for enabling an interesting research project that clearly has relevance. The combina-

tion of technology and business research in the same package is strong and enables the part-
ners to understand the elements of complex solutions from all the important directions.

Espoo 26.3.2021
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1. Introduction

Today, the digital twin is a buzzword in academia as well as in the industrial sector. Developing
digital twins of the physical assets (e.g. components, products, systems or processes) operat-
ing in the real-world are promising several benefits, including better monitoring and control,
improved performance, and lower maintenance costs. However, there are still some chal-
lenges associated with the development and management of digital twins that need to be ad-
dressed before the actual realisation of digital twins’ applications. In this work, we look at the
data management issue of simulation-based digital twins.

As digital twins can be categorised in several ways, nevertheless, they are mainly data-driven
(i.e. based on static and dynamic data of the real-world system and, e.g., Al and ML algo-
rithms), simulation-based (i.e. based on first-principles or other kinds of simulation models), or
hybrid (i.e. a combination of the first two). In this work, we focus on the simulation-based digital
twins that are built using simulation software. The problem with most of the commercial mod-
elling and simulation software is their proprietary data models and storing models in software
application-specific formats. The data model of one software can hardly be related to the data
model of another software and, in the worst-case, their simulation model formats are black
boxes that do not provide information about the mathematics and physics involved in the sim-
ulation process. Since digital twins of certain assets (e.g. aircraft, ships, defence systems, and
process plants) need to be operated for several decades, there is a possibility that the under-
lying application software will not be available through the assets’ life cycles. Thus, for the
development of simulation-based digital twins, it is advisable to consider only those application
software that provide detailed information about the simulation models and preserve this infor-
mation in long-lasting formats. This is to ensure that in situations where the original software
is inappropriate/inaccessible for opening/running a digital twin model, one should be able to
revive the models, using the preserved information, and adopt alternative tools without sub-
stantial costs or business disruption.

The operation of a computer simulation of a system or phenomenon requires a computer sys-
tem, a simulation software and a description of the actual simulation model. The computer
system typically contains the hardware, i.e. the physical computer system, and the operating
system that provides the common functions and services for the computation, such as net-
working and computing process scheduling. The simulation software is a dedicated software
application enabling the execution of a simulation. The simulation software can be a general
simulation software application for the selected type of simulations, or it can be a simulation
model dedicated software application that contains the integrated simulation model description
and numerical solver algorithm. In the first case, the general simulation software can be called
a solver, as it is used for solving a mathematical representation of the simulation model. Ex-
amples of this kind of solver software are majority of the computational fluid dynamics and
finite element method software applications, such as Ansys Fluent [1] and Dassault Systémes
Abaqus [2]. In the second case, i.e. when the simulation model and the solver algorithm are
integrated, the overall software application is usually implemented by coding it with the appro-
priate programming language and programming tools. There are simulation solutions that com-
bine the two, i.e. they are general simulation applications, but also produce a dedicated soft-
ware application that contains the description of the dedicated simulation model and the nu-
merical solver to run the simulation. Many Modelica language implementations represent this
category. A simulation model is the representation of a particular simulation case in a format
that can be used with the selected simulation software application. The simulation model con-
tains information about the components and features included in the simulation. For example,
in the case of a thermodynamic system, the simulation model has information about what kind
of system components are included, what are the parameters and initial simulation values of
the components, and how the components are connected and interacting with each other.
Together with the simulation software application, the simulation model defines the mathemat-
ical representation of the physics, phenomenon and features that are included in the simulation
of the physical product or system.
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In this study, we consider the example of Modelica [3], which is an open, object-oriented and
equation-based language for modelling and simulation of complex systems. The Modelica li-
braries [4], especially the open-source libraries, provide detailed information about the models
of components. For example, the source code of the Modelica Standard Library [5] is publicly
available for exploration and implementation. In addition, the different versions of the Modelica
Specification [6] are freely available for developing Modelica translator or compiler. Further-
more, different commercial and open-source tools [7] can be used for the implementation of
Modelica Specification. For example, OpenModelica [8], [9], which is used in this study, is a
free Modelica environment available for modelling and simulation of Modelica-based models.
The two Modelica system simulation models presented in this study are developed in the
OpenModelica Connection Editor (OMEdit) environment [10], which is a free graphical user
interface for model creation, connection editing, simulation of models, and visualisation of sim-
ulation results. These models do not correspond to any real-world system but are used for
illustration purposes only.

For the management and long-term preservation of simulation-based digital twin’s data (i.e.
simulation model data), we consider the example of Web Ontology Language (OWL) [11],
which is used for standardised representation of ontologies and knowledge models on the
Semantic Web [12]. The concept of semantic data management of multibody system modelling
was introduced by Kortelainen in 2011 [13]. We designed four ontologies that provide the nec-
essary concepts and relationships for information representation of the simulation models.
These concepts and relationships were utilised to generate OWL data models of the two Mod-
elica system simulation models using the Protégé tool [14], which is an open-source ontology
editor and a knowledge management system.

This work demonstrates the chain of information in different forms that enables reviving the
functionality and accuracy of the original simulation models in other tools if the original model
cannot be used. In this work, the chain contains the information about the model components,
their parameters and relations in the system simulation model in the form of OWL data model,
information about the mathematical implementation of the simulation model components in the
form of openly available Modelica libraries, and finally the semantics and syntax of the Model-
ica language itself in the form of the openly available Modelica language specification docu-
mentation. The chain of information discussed in this work does not contain the description of
the physical phenomena involved and the mathematical representation of the physics. The
numerical representation of the mathematical presentation and the implementation of the nu-
merical representation in the form of a software application are assumed to be implemented
based on the information that is available in open Modelica domain libraries and the specifica-
tion of the Modelica language itself. The whole chain, i.e. the fundamental elements of a com-
puter simulation, is illustrated in Figure 1. The three topics, enclosed in a dash-lined box in the
figure, are emphasised within this study. As Modelica is an open and well-specified language,
it would be possible to only rely on it as the means to represent the model information. The
OWL was selected to demonstrate the overall approach for data modelling. In addition, general
data modelling technologies can provide better tools for data transformation from one repre-
sentation to another.

The rest of the report is organised as follows. Section 2 briefly discusses the Modelica lan-
guage and the OMEdit tool. Section 3 introduces the OWL language and Protégé tool. Section
4 presents two Modelica system simulation models built in OMEdit environment. Section 5
shows the development process of four ontologies using the Protégé tool. Section 6 explains
the OWL data modelling of the simulation models. Finally, Section 7 summarises and con-
cludes the findings of this study.
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Figure 1: The fundamental elements of computer simulation.

2. Modelica language and OMEdit tool

In this section, we briefly introduce the Modelica language and OMEdit tool. We chose Model-
ica because it is open-source and provides detailed information (mathematics and physics)
about the components of a simulation model. By preserving this information in long-lasting
formats, one would be able to reproduce a simulation model by using up-to-date tools, in case
the original application software is not available. For the implementation of Modelica system
simulation models, we chose the OMEdit tool, which is a free graphical user interface for model
creation, connection editing, simulation of models, and visualisation of simulation results.

2.1 Modelica language

Modelica language [15] is a free language developed and maintained by the non-profit Model-
ica Association [16] since 1996. It is an object-oriented and equation-based language for mod-
elling and simulation of complex systems consisting of components from, e.g., mechanical,
electrical, thermal, hydraulic, control, and other domains. The different versions of the Modelica
Specification [6] are publicly available for the implementation of Modelica compiler that trans-
forms a Modelica model into a form (usually C-code), which can be simulated by standard
tools. Both commercial and free simulation tools [7] that implement the Modelica Specification
are available, for example, Simplorer (by ANSYS), Dymola (by Dassault Systemes) and solid-
Thinking Activate (by Altair) are among the commercial tools, whereas, OpenModelica (by the
Open Source Modelica Consortium [8], [9]) is an open environment for modelling and simula-
tion of Modelica models. Similarly, there are both free and commercial Modelica libraries [4]
available covering different industries including automotive, aerospace, building and energy.
The Modelica Standard Library [5] is a free library from the Modelica Association containing
basic components for several domains, such as control, fluid and media, mechanical and elec-
trical systems.

The expressive power of Modelica is large, supporting both high-level modelling by composi-
tion and detailed library component modelling by equations. Models of standard components
are typically available in model libraries and users can also define their own model compo-
nents. Using a graphical model editor (such as OMEdit), a model can be defined by drawing a
composition diagram (also called schematics) by positioning icons that represent the models
of the components, drawing connections between components and giving parameter values in
dialogue boxes.
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Figure 2 shows an example of a composition diagram of a double pendulum system, which is
a “DoublePendulum” example available under the Mechanics package of the Modelica Stand-
ard Library. The system contains a set of components that are connected by drawing connec-
tions between their connectors. The textual representation of this model is shown in Figure 3,
and the detailed model representation (definitions and equations) of the damper component of
the system is shown in Figure 4.

damper

connector connection

world

boxBodyl boxBody2

r={0.5, 0,0} m r={0.5, 0, 0} m

X revolutel revolute?

Figure 2: An example of a composition diagram of a double pendulum system.

1 model sampleDP "Simple double pendulum with two rewolute joints and two bodies™
extends Modelica.Icons.Example;
inner Modelica.Mechanics.MultiBody.World world annotation({ [_...);

B A

Modelica.Mechanics.MultiBody.Joints.Revolute revolutel (useRzisFlange = true, phi(fixed = true), w(fixed =
true)}) annotation( | ...);
c] Modelica.Mechanics.Rotational.Components.Damper damper (d = 0.1) annotation{ [ ...):

3]

Modelica.Mechanics.MultiBody.Parts.BodyBox boxBodyl(r = {0.5, 0, 0}, width = 0.0€) annotation( | ...):
Modelica.Mechanics. MultiBody.Joints.Revolute revoluteZ (phi(fixed = true), w(fixed = true)) annotation( [ ...):
Modelica.Mechanics.MultiBody.Parts.BodyBox boxBody2(r = {0.5, 0, 0}, width = 0.06) annotation( | _...);
equation
connect (damper. flange_ b, revolutel.axis) annctation( [ ...);
connect (revolutel.support, damper.flange_a) annotation( [ .
connect (revolutel. frame b, boxBodyl.frame_a) annotation( | .):
connect (revolutel. frame b, boxBody2.frame a) annctaticon( [ ...):
connect (boxBodyl. frame b, revoluteZ.frame a) annotation( | )
connect (world.frame b, revolutel.frame a) annotation( [ ...}
annotation( [_...);
end sampleDP;

)

B A

()

B A E

Figure 3: A textual representation of the example double pendulum system.

model Damper "Linear 1D rotational damper”™

extends
Modelica.Mechanics.Rotational.Interfaces.PartialCompliantWithRelativeStates;

parameter SI.RotationalDampingConstant d(final min=0, start=0)
"Damping constant™;

extends
Modelica.Thermal .HeatTransfer.Interfaces.PartialElementaryConditionalHeatPortWithoutT;

2631 eguation

tau = d*w_rel;
lossPower = tau*w rel;
= annctation { | ...); |

end Damper;

Figure 4: Detailed model representation of damper component of the double pendulum sys-
tem example.

By preserving this information (mathematics and physics) about the components of a simula-
tion model in a certain general format (e.g. in OWL), one can reproduce a similar component
or system model using other languages or tools than Modelica, if needed. In this way, the
simulation-based digital twins of long-lasting products and systems can be made less depend-
ent on the computing infrastructure (software, operating system and computer system), which
usually have shorter lifespan.
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From the model description point of view, however, Modelica language has its own semantics
and syntax, which may introduce some challenges in data modelling. For example, the con-
nector type is a feature of the Modelica language that enables specifying restrictions on how
the components of the system model can be connected and how the information is exchanged
between the components. In Modelica library development, the type system of the Modelica
language can be used for restricting connections to be defined only between limited types of
connectors. Another noteworthy detail with Modelica is that the models and more specifically
the connections between components are acausal, i.e. a connection does not have a direction
and connecting component A to component B is equivalent to connecting component B to
component A. In the case of data modelling, this is different from OWL, where the connections
or relations are always directional. This is discussed in more detail in Section 5. The semantic
and syntactic differences may cause challenges in data modelling due to the need for using
complex data model structures to capture the semantics and details of the description of the
target information.

2.2 OMEdit tool

OMEdit [10] is an open-source graphical user interface for model creation, connection editing,
simulation of models, and plotting of results. The interface supports the creation of user-de-
fined models or extensions. The models can be viewed as graphical or textual (see Figure 2
and Figure 3). Also, there is a possibility to add information about the model as documentation.
The tool contains the Modelica Standard Library as well as several other open-source libraries
(e.g. ThermoSysPro, Nuclear, SolarTherm), which can be found in System Libraries under the
File tab. Figure 5 shows the user interface of OMEdit environment.

4
Git
+ i Ly =} [} . .
TwHEE Heee \SHOTR <= O%9E %9995 &
Libraries Browser 8x A DoublePendulum [x] Documentation Browser g x
Filter Classes ] ‘.'. AE O |wmma ‘Mode\ |D\agram View |Mndelia‘MemaniG.MulﬁEndy.Examp‘asEamemary.Dnub\aPendu\um ‘c: mo ‘ | i.w; M‘ _5“:’
Libraries ~ ~ i i i
- Modelica.Mechanics.MultiBody.E>
OpenModelica
& E ThermoSysPro Simple double pendulum with two revolute
joints and two bodies
D @ ModelicaReference
@ (] ModelicaServices Information
= Complex This example demonstrates that by using joint and
— X body elements animation is automatically available.
= P72 Modelica damper Also the revolute joints are animated. Note, that
- o UsersGuid animation of every component can be switched of
O Userstuide deo. 1N.m.sf... by setting the first parameter animation to false or
® (B Blocks by setting enableAnimation in the world object
— to false to switch off animation of all components.
® || ComplexBlocks
= y pworld o N
i pd StateGraph F l l boxBody1 baxBody2
E 54] Electrical EN el N o
— ={0.5, 0, 0 =1{0.5, 0,0
® [€] Magnetic » n=g0, 31 L S R im
=2 x
5 [~ Mechanics
= [%] Multigody
© @ UsersGuide z X
® fil} world
= (] Bxamples ¥
= [B] Elementary
(») DoublePendulum
DoublePenduluminitTip
ForceAndTorque
v
FreeBody @
InitSpringConstant Tt 8 x
LineForceWithTwoMasses Al Notffications  Warnings  Errors
Pendulum
PendulumW...ingDamper
() PaintGravity v Q )

¥:-120,¥: 103 @ Welcome  of Modeing B Plotting @ Debugging

Figure 5: A user interface of the OMEdit tool.



v I T RESEARCH REPORT VTT-R-01517-20

9 (31)

3. Web Ontology Language and Protégé tool

3.1 Web Ontology Language

OWL [11] is used for standardised representation of ontologies and knowledge models on the
Semantic Web [12]. The language supports defining libraries of domain concepts and using
the concepts for modelling the data, information or knowledge in the selected cases. The li-
braries of concepts are called ontologies and they contain descriptions of the concepts (clas-
ses) and their attributes (data properties), named and typed relations between the concepts
(object properties), and restrictions how the concepts are used and connected. In addition to
OWL, the umbrella of the Semantic Web contains a large set of technologies that provide the
bases for OWL, such as Resource Description Framework or RDF [17], the SPARQL query
language for RDF [18], and the Semantic Web Rule Language or SWRL [19]. RDF defines the
basis for the information model by defining the concept of data triple (subject — predicate —
object, or object — relation — object), SPARQL defines a query language that unifies data re-
trieval from semantic databases, and SWRL adds a mechanism of simple rules and restrictions
to OWL and extends it.

The purpose of the resulting ontology is to provide a library of concepts or a vocabulary that
can be used for generating a data model of something concrete within a domain of interest. A
data model, based on the ontology, then uses the concepts and relationships defined in the
ontology. For example, the concepts (classes), Person and Pet, and relationships (object prop-
erties and data properties), ownsPet and hasFurColor, are defined in an ontology, which can
be used to generate a data model of some facts. For example, Sally (an individual of Person)
ownsPet Fido (an individual of Pet); Fid hasFurColor ‘grey’ (data value), and so forth.

In this work, we developed the same kind of statements describing the design of simulation
models. Such simulation models, as shown in Figure 2, are composed of components and
connections between these components. Thus, the components and connectors will serve as
the individuals of classes and the parameters of the components will serve as the data prop-
erties. For example, we can state by using triples (subject — predicate — object, see Figure 6):

e DoublePendulum (individual of the class model) contains (object property) damper (in-
dividual of the class Damper)

e damper (individual of the class Damper) hasDataProperty Diameter = 7.0 (individual of
the data property Diameter with value ‘7.0°)

In this way, we can preserve detailed information about a simulation model and in situations
where the underlying system is not available for running the models, we can utilise the infor-
mation and create new solutions. In our work, we use the Protégé tool for data modelling.

Subject Predicate Object

contains
DoublePendulum : damper
hasDataProperty
damper :

>
>

Diameter = 7.0

Figure 6: Examples of data triples for representing the information of a simulation model.
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3.2 Protégé tool

Protégé [14] is an open-source ontology editor and a knowledge management system. There
are both desktop and web versions of Protégé tool available. The desktop version has more
functionalities than the web version and can be further extended by installing various plugins.
Figure 7 shows the desktop version of Protégé tool used in this work.

<
File Edit View Reasoner Tools Refactor Window Help

< ® untitled-ontology-56 (http://www_semanticweb_org/azakhtar/ontologies/2020/9/untitled-ontology-56) ~ Search...

Active ontology = | Entities = | Individuals by class = DL Query =

Datatypes Individuals Object property 210 = m & §f Data property 2101 =M ] § Individuals: I=HmE &S owl:Thing — http:/fwmw.w3.or

Annotation properties [ bx§  Asserted v T i Asserted v | @
Data properties [JowitopObjeciProperty P owitopDataProperty ®
S pories | I
Classes | Object properties Lo e o L Annotations
Asserted -
------ owl:Thing
Equivalent To
SubClazss Of
General class axioms
SubClass Of (Anonymous Ancestor)
Target for Key
Digjoirt With
Disjoint Union Of
To use the click R > Start v Show E

Figure 7: A user interface of the Protégé tool (Desktop version).

4. Modelica system simulation models

In this section, we present two Modelica system simulation models that are built in the OMEdit
environment (see Section 6 for the OWL data modelling of the corresponding models using
the Protégé tool). These system simulation models do not correspond to any real-world appli-
cation and are used for illustration purposes only. The first model is named as Irrigation_Sys-
tem (shortly “irs”) and the second model as Pumping_System (shortly “ps”). The Irrigation_Sys-
tem is comprised of model components available in the ThermoSysPro library, and the Pump-
ing_System consists of components available in the Modelica Standard Library.

4.1 ThermoSysPro library and the Irrigation_System model

ThermoSysPro [20] is an open-source Modelica library that has been mainly designed for the
static and dynamic modelling of power plants, but can also be used for other energy systems
such as industrial processes, buildings, etc. [21], [22]. It is developed by Electricité de France
(EDF) and contains over 100 model components such as heat exchangers, steam and gas
turbines, compressors, pumps, furnaces, and combustion chambers. In particular, one- and
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two-phase water/steam flow, as well as flue gases flow are handled [21]. Figure 8 shows the
packages (e.g. Solar, Thermal, WaterSteam) and some of the model components (e.g. Com-
pressor, Generator, StaticCentrifugalPump) of the ThermoSysPro library in the OMEdit.
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Figure 8: ThermoSysPro library in OMEdit tool, its sub-libraries and model components.

The model components of the ThermoSysPro library are used to build a Modelica system sim-
ulation model in the OMEdit environment, as shown in Figure 9. We named this system simu-
lation model as “Irrigation_System” and abbreviated as “irs”. The Irrigation_System consists of
five components: 1) source, 2) pump, 3) pipe, 4) valve, and 5) sink. These components are
connected with each other, or more precisely, with the help of connectors. Each component of
the Irrigation_System (and every component of the ThermoSysPro library) has one or more
inlet and outlet connectors. For example, the pipe component has one inlet (dark blue square)
and one outlet (dark red square) connectors as shown in Figure 9.

In this case, the pressure, temperature and elevation of water at the source (i.e. inlet boundary)
is 1 bar, 30 °C, and 0 m, respectively. At the sink (i.e. outlet boundary), the water pressure is
8 bar and elevation 5 m, whereas, the temperature of the water does not change during the
process. The purpose of the system is to pump water from the lower pressure level (source)
to the elevated higher pressure level (sink) with a mass flow rate of 10 kg/s through the pipe.
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Figure 9: Simulation model of the Irrigation_System consisting of model components of the
ThermoSysPro library and developed in the OMEdit environment.

In the Irrigation_System above, the water elevation is defined using the inlet and outlet altitude
parameters of the pipe component (e.g. z1 and z2 in Figure 10). Each component of the Irri-
gation_System (as well as every component of the ThermoSysPro library) has several param-
eters and attributes with default values. Figure 10 shows a pipe component (named as
“PIPE_irs” which is also an attribute) has parameters “L” (pipe length), “D” (pipe internal diam-
eter), “ntubes” (number of pipes in parallel), and so forth. The values of these parameters and
attributes are modified by the modelling and simulation experts according to their needs.

ot

Parameters

General Modifiers
Component
Mame: PIPE_irs
Class

Path: ThermoSysPro.WaterSteam Pressurelosses, LumpedStraightPipe
Comment: Lumped straight pipe {circular duct)

Parameters

L m Pipe length

D m Pipe internal diameter

ntubes l:l Mumber of pipes in parallel

lambda Friction pressure loss coefficient (active if lambda_fixed=true)

rugosrel Pipe roughness (active if lambda_fixed=falze)

z1 CI m Inlet altitude

z2 m Outlet altitude

lambda_fixed true o true: lambda given by parameter - false: lambde computed using Idel'Cik correlation
inertia true: momentum balance equation with inertia - false: without inertia
continuous_flow_reversal m true: continuous flow reversal - falee: discontinuous flow reversal

fluid l:l 1: water/steam - 2: C3H3FS

p_rho l:l gfem3 = | If = 0, fixed fluid density

mode l:l IF97 region. 1:liquid - 2:steam - 4:saturation line - 0:automatic

Initialization

Q.start [] | 100 | kafs Mass flow rate

Cancel

Figure 10: An example of parameters and attributes of a pipe component of the Ther-
moSysPro library opened with OMEdit tool.
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In this study, the focus is not on the development of an optimal simulation model but on the
creation of a data model that can provide enough information for the reverse engineering of
simulation models. The need may come up when the original modelling and simulation soft-
ware is not available or cannot be used for running and editing an already existing simulation
model. Thus, just for the sake of keeping the target data model simple, we modified only a few
parameters and attributes of the Irrigation_System’s components; most of the components’
parameters and attributes were left unchanged with their default values and are not docu-
mented here. All the attributes and parameters of the components with their default values are
available from the ThermoSysPro library and can be saved in a convenient format (see Figure
3 and Figure 4).

Table 1 shows only the modified parameters and attributes of the components constituting the
Irrigation_System (irs), which are then used in the data modelling process, as described in
Section 6. Similarly, Table 2 shows the modified names and types (inlet, outlet) of the connect-
ors associated with each component of the Irrigation_System simulation model.

Table 1: Original names (left), and modified parameters and attributes (right) of the compo-
nents constituting simulation model of the Irrigation_System (irs).

Original name of com- | Modified parameters and attributes of component consti-
ponent in the Ther- tuting simulation model of the Irrigation_System (irs)
moSysPro library Modified name | Modified parameter | Left as default
. PO =1 bar
SourceP SOURCE_irs T0 = 30 °C All other parameters
VRot = 1880 rev/min
StaticCentrifugalPump PUMP_irs fluid = 1 (water/steam) | All other parameters
MPower = 100000 W
L=5m
D =0.065m
LumpedStraightPipe PIPE_irs giugeosr; 1 All other parameters
z2=5m
fluid = 1 (water/steam)
CheckValve VALVE _irs fluid = 1 (water/steam) | All other parameters
. . PO = 8 bar
SinkP SINK_irs T0 = 30 °C All other parameters

Table 2: Proposed names for the connectors of different components constituting the Irriga-
tion_System simulation model.

Modified component name of | Proposed connector .
iy . Connector name description
the “irs” simulation model name for component
SOURCE _irs source_irs_out outlet connector of SOURCE _irs
pump_irs_in inlet connector of PUMP_irs
PUMP_irs pump_irs_inl inlet signal connector of PUMP_irs
pump_irs_out outlet connector of PUMP_irs
_ pipe_irs_in inlet connector of PIPE_irs
PIPE_irs - - -
- pipe_irs_out outlet connector of PIPE_irs
_ valve_irs_in inlet connector of VALVE _irs
VALVE_irs - -
- valve irs_out outlet connector of VALVE _irs
SINK _irs sink_irs_in inlet connector of Sink_irs
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4.2 Modelica Standard Library and the Pumping_System model

Modelica Standard Library [5] is developed together with the Modelica language from the Mod-
elica Association [16]. It provides constants, types, connectors, partial models and model com-
ponents in various disciplines. It consists of many sub-libraries or packages, including Fluid,
Blocks, Machines, and MultiBody. Figure 11 shows the Modelica Standard Library, its sub-
libraries or packages (e.g. Blocks, Mechanic, Fluid), and model components (e.g. Constant,
OpenTank). In this study, we only use components of the Fluid and Blocks packages of the
Modelica Standard Library for building the simulation model of Pumping_System.

o OMEdit - OpenModelica Connection Editor
File Edit View Simulation Debug O

FTeB8H HH

Libraries Browser

IF!!ter Classes

Libraries

® | P| openModelica

® ﬂ ThermoSysPro

® o ModelicaReference " (@ Blocks
® D ModelicaServices ® !Ej Examples
® a Complex ® EI Continuous
® EJ Discrete
® 0 UsersGuide ® D Interaction
® @] Blocks ® @ Interfaces o =) @ Fluid
© l@ ComplexBlocks & !E] Logical ® o UsersGuide
) @ StateGraph & [T ® [El Examples
® @ Electrical [:] MathInteger ® @ System
& @ Magnetic ® @ MathBoolean = .—: Vessels

+
&

@ Mechanics @ Nonlinear o ClosedVolume
[@ Fluid ® (IC] Routing
Media 3 @J Noise ® lj BaseClasses
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& D Math 3 RealExpression e [._: Machines
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Figure 11: Modelica standard library in OMEdit tool, its sub-libraries and model components.
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The system simulation model shown in Figure 12 is actually an example under the Fluid pack-
age of the open-source Modelica Standard Library. We named this simulation model as Pump-
ing_System and abbreviated as “ps”. The Pumping_System is composed of 13 components
both from the Blocks and Fluid packages of the Modelica Standard Library. The component
“SYSTEM_ps” (modified name in this study) is needed in each fluid model to provide system-
wide settings, such as ambient conditions and overall modelling assumptions. The purpose of
the system is to pump water from a source by a pump, through a pipe whose outlet is 50 m
higher than the source, into a tank. The water level in the tank is controlled by a valve. The
water controller is a simple on-off controller, regulating on the gauge pressure measured at the
base of the tank. The output of the controller is the rotational speed of the pump, which is
represented by the output of a first-order system. In order to avoid singularities in the flow
characteristic, a small but non-zero rotational speed is used to represent the standby state of
the pump. The system is simulated for 2000 s. When the valve is opened at time t = 200 s, the
pump starts turning on and off to keep the tank level around 2.2 m, which roughly corresponds
to a gauge pressure of 200 mbar, as shown in Figure 13.

RelativePressureSetPuo... CONTROLLER_ps PumpRPMGenerator_ps PT1_ps

reference
B
k=2e4 |—. : T=25

ValveOpening_ps

TANK_ps

startTime=200 s

& porel
TTTTTT
&

SINK_ps

TankPressureSensar_ps

VALVE_ps

PIPE_ps

SOURCE_ps

SYSTEM_ps

defaults
oy
prrra

PUMP_ps

Figure 12: Simulation model of the Pumping_System consisting of model components of the
Modelica Fluid and Blocks sub-libraries, and developed in OMEdit environment.
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Figure 13: Plotting of the simulation results showing the tank level of Pumping_System.

As illustrated in the case of the Irrigation_System model, we followed the same procedure for
defining various elements of the Pumping_System that are used in the data modelling process.

In order to keep the data modelling process simple, we modified only few parameters and
attributes of the components constituting the simulation model of the Pumping_System (ps),
as shown in Table 3. A complete list of parameters and attributes with default values is avail-
able from the Modelica Standard Library under the Fluid sub-library in the “Examples” package

and “PumpingSystem” example.

Table 3: Original names (left), and modified parameters and attributes of the components
constituting simulation model of the Pumping_System (ps).

Original name of Modified parameters and attributes of the components consti-
component in the tuting simulation model of the Pumping_System (ps)
Modelica Standard . .
Library Modified name Modified parameter | Left as default
. p_ambient = 1.01325
FixedBoundary SOURCE_ps T_ambient = 20.0 All other parameters
use_N_in = true
PrescribedPump PUMP_ps N_nominal = 1200.0 | All other parameters
nParallel = 1.0
diameter = 0.3
— nParallel = 1.0
StaticPipe PIPE_ps length = 100.0 All other parameters
height_ab =50.0
height = 3.0
OpenTank TANK ps corssArea = 50.0 All other parameters
: TANK PRESSURE
RelativePressure SENSOR_ps - All other parameters
ValveLinear VALVE_ps dp_nominal =2.0 All other parameters
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m_flow_nominal =
400.0
FixedBoundary SINK _ps 'FI)' z ;'83325 All other parameters
offset = 1.0E-6
Step I\{\IACEVESOPEN' height = 1.0 All other parameters
P startTime = 200.0
. k=1.0
FirstOrder PT1 ps T=20 All other parameters
rising = 3.0
: . PUMP RPM GEN- | amplitude = 1200.0
TriggeredTrapezoid ERATOR ps falling = 3.0 All other parameters
offset = 0.001
OnOffController CONTROLLER_ps bandwidth :_4000'0 All other parameters
pre_y_start = false
RELATIVE PRES-
Constant SURE SET- k =20000.0 All other parameters
POINT ps
System SYSTEM ps - All other parameters

Similarly, the proposed names for each connector of the components constituting the simula-
tion model of Pumping_System are shown in Table 4. As stated earlier, some components
may have two or more inlet connectors (e.g. PUMP_ps), and two or more outlet connectors
(e.g. TANK_ps). Also, in the data modelling process, the signal type of connectors are differ-
entiated from the flow type connectors using the Modelica general ontology class “Connector”
and its sub-classes “FlowConnector” and SingalConnector” (see Section 5.1).

Table 4: Proposed names for the connectors of different components constituting Pump-
ing_System (ps) simulation model.

Modified component
G o Proposed connector name .
name of the “ps f Connector name description
) ) or component
simulation model
source_ps_in inlet connector of SOURCE_ps
SOURCE_ps
source_ps_out outlet connector of SOURCE_ps
pump_ps_inl inlet connector of PUMP_ps
PUMP_ps pump_ps_in2 inlet signal connector of PUMP_ps
pump_ps_out outlet connector of PUMP_ps
ipe_ps_in inlet connector of PIPE_ps
PIPE_ps p.p o P
- pipe_ps_out outlet connector of PIPE_ps
tank_ps_in inlet connector of TANK_ps
TANK ps tank_ps_outl outlet connector 1 of TANK ps
tank_ps_out2 outlet connector 2 of TANK_ps
tank pbressure Sensor bs. in inlet connector of TANK PRESSURE
P PN SENSOR_ps
TANK PRESSURE tank pressure sen- outlet connector of TANK PRESSURE
SENSOR_ps sor_ps_outl SENSOR_ps
tank pressure sen- outlet signal connector of TANK PRES-
sor_ps_out2 SURE SENSOR_ps
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valve_ps_inl

inlet connector of VALVE_ps

VALVE_ps valve_ps_in2 inlet signal connector of VALVE_ps
valve_ps_out outlet connector of VALVE_ps
sink_ps_inl inlet connector 1 of SINK_ps

SINK_ps sink_ps_in2 inlet connector 2 of SINK_ps
sink_ps_out outlet connector 1 of SINK_ps

VALVE OPENING_ps

valve opening_ps_in

inlet connector of VALVE OPENING_ps

valve opening_ps_out

outlet connector of VALVE OPEN-
ING_ps

PT1 ps

ptl ps in

inlet connector of PT1 ps

ptl ps_out

outlet connector of PT1 ps

PUMP RPM GENER-
ATOR_ps

pump rpm generator_ps_in

inlet connector of PUMP RPM GENER-
ATOR_ps

pump rpm generator_ps_out

outlet connector of PUMP RPM GEN-
ERATOR_ps

CONTROLLER_ps

controller_ps_inl

inlet connector 1 of CONTROLLER_ps

controller_ps_in2

inlet connector 2 of CONTROLLER_ps

controller_ps_out

outlet connector of CONTROLLER_ps

RELATIVE PRES-
SURE SETPOINT_ps

relative pressure set-

inlet connector of RELATIVE PRES-

point_ps_in SURE SETPOINT_ps
relative pressure set- outlet connector of RELATIVE PRES-
point_ps_out SURE SETPOINT ps

5. Ontology development

This section introduces four ontologies designed for the demonstration of OWL data modelling
of the two Modelica system simulation models (i.e. Irrigation_System and Pumping_System)
described in the previous Section 4. The ontologies are developed using the Protégé tool,
providing the following concepts:

e The Modelica general ontology contains the concepts of “Model” (i.e. Irrigation_Sys-
tem or Pumping_System) and “Connector” (i.e. inlet/outlet and flow/signal)

e The Modelica blocks ontology contains concepts for the model components available
in the Blocks package of the Modelica Standard Library

e The Modelica fluid ontology contains concepts for the model components available in
the Fluid package of the Modelica Standard Library

e The ThermoSysPro ontology contains concepts for the model components available
in the ThermoSysPro library

As mentioned earlier, every component of the ThermoSysPro library contains one or more inlet
and outlet connectors that are used to connect the model components of a simulation
model/system. For example, Figure 14 shows a pump component having two inlet (dark blue
square and triangle) and one outlet (dark red square) connectors. Thus, from the data model-
ling perspective, there are 4 separate entities to be defined, i.e. pump, inlet 1, inlet 2, and outlet
(see Section 5.1). In addition to the inlet and outlet connectors, it should be noted that in this
study we differentiated the signal type connectors from the flow type connectors by using sep-
arate ontology classes. Table 2 and Table 4 show, respectively, the name and type of con-
nectors for each component of the Irrigation_System and Pumping_system models used in the
data modelling process.
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ThermoSysPro.WaterSteam.Connectors.Fluidinlet C1 ThermoSysPro.WaterSteam.Connectors.FluidOutlet C2
Component declared in Component declared in
ThermoSysPro.WaterSteam.Machines.StaticCentrifugalPump ThermoSysPro.WaterSteam.Machines.StaticCentrifugalPump

ThermoSysPro.InstrumentationAndControl.Connectors.InputReal
rpm_or_mpower
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ThermoSysPro.WaterSteam.Machines.StaticCentrifugalPump (a)
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Figure 14: An example of inlet and outlet connectors of a pump component. Above (a) the
Modelica ThermoSysPro library component presented in Modelica graphical notation, and be-
low (b) the equivalent data model in OWL, visualised in the Protégé editor. In the OWL model,
the individual pump_ps_inl represent the blue rectangular inlet, pump_ps_in2 the blue trian-
gular inlet and pump_ps_out the out red rectangular outlet connector point in the Modelica
component, respectively.

5.1 Modelica general ontology

A Modelica general ontology is developed for demonstrating the data models of the Irriga-
tion_System and Pumping_System. Figure 15 shows the classes or concepts and object prop-
erties defined in the ontology. It consists of “Modelica” as a superclass with two sub-classes
“Connector” and “Model”’. The “Model” class or concept of this ontology can be used to repre-
sent a Modelica model (e.g. Irrigation_System or Pumping_System). The class “Connector”
contains four sub-classes and can be used to describe the connectors of each component
constituting a Modelica simulation model. For example, a component having an inlet connector
can be instantiated using the concept “InputConnector”, a flow type connector can be instanti-
ated using the concept “FlowConnector”, and so forth.

Figure 15 also shows the five object properties defined in the Modelica general ontology. The
property:

e “contains” can be used to describe a Modelica model, e.g. “Irrigation_System contains
PIPE_irs”

e “hasConnector” can be used to describe a connector of the model component, e.g.
“PIPE_irs hasConnector pipe_irs_out”

e “isConnectedTo” can be used to describe the connection between the connectors of
model components, e.g. “pipe_irs_out isConnectedTo valve_irs_in”

e “isConnectorOf” is the inverse of the property “isConnectedTo”

e ‘“isLogicallyConnectedTo” can be used to describe the connection between two model
components, e.g. “PIPE_irs isLogicallyConnectedTo VALVE _irs”
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Figure 15: A Modelica general ontology, its concepts and object properties.

5.2 Modelica blocks ontology

The Modelica blocks ontology is a subset of the Modelica Standard Library and its Blocks
package. The hierarchical structure of the classes/concepts of this ontology is defined in ex-
actly the same manner as presented in the Blocks package (see Figure 11). In addition to its
own concepts and parameters of the model components defined as data properties (e.g. am-
plitude, bandwidth, falling, height, etc.), this ontology also imports the Modelica general ontol-
ogy, as shown in Figure 16.

It should be noted that the Modelica blocks ontology does not include all the concepts and all
the parameters of model components available in the Blocks package. It contains only the
necessary concepts and components’ parameters (as data properties) that are required for the
OWL data modelling of the Modelica model (i.e. Pumping_System) presented in this study.
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Figure 16: A Modelica blocks ontology, its classes and data properties. Also, the Modelica
general ontology is imported.

5.3 Modelica fluid ontology

The Modelica fluid ontology is a subset of the Modelica Standard Library and its Fluid package.
This ontology is designed the same way as the Modelica blocks ontology, i.e. its classes or
concepts hierarchy is defined according to the structure presented in the Fluid package (see
Figure 11).

Figure 17 shows the concepts and parameters of the model components defined as data prop-
erties (e.g. crossArea, diameter, height, etc.) in the Modelica fluid ontology. Also, it imports the
Modelica general ontology. Furthermore, it should be noted that this ontology does not include
all the concepts and components’ parameters as available in the Fluid package, but contains
only the necessary concepts that are required for the OWL data modelling of the Modelica
model (i.e. Pumping_System) presented in this study.
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Figure 17: A Modelica fluid ontology, its classes and data properties. Also, the Modelica gen-
eral ontology is imported.

5.4 ThermoSysPro ontology

The ThermoSysPro ontology is a subset of the ThermoSysPro library. It is designed the same
way as the Modelica blocks and Modelica fluid ontologies, i.e. its classes or concepts hierarchy
is defined according to the structure presented in the ThermoSysPro library (see Figure 8).

Figure 18 shows the concepts and parameters of the model components defined as data prop-
erties (e.g. adiabatic_compression, continuous_flow_reversal, fluid, etc.) in the ThermoSysPro
ontology. Also, it imports the Modelica general ontology. Furthermore, it should be noted that
this ontology does not include all the concepts and components’ parameters as available in
the ThermoSysPro library, but contains only the necessary concepts that are required for the
OWL data modelling of the Modelica model (i.e. Irrigation_System) presented in this study.
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Figure 18: A ThermoSysPro ontology, its classes and data properties. Also, the Modelica
general ontology is imported.

6. OWL data modelling of Modelica system simulation models

This section discusses the OWL data modelling of Irrigation_System and Pumping_System
introduced in Section 4.1 and Section 4.2, respectively. As the Irrigation_System consists of
components from the ThermoSysPro library only, thus its data modelling requires the Ther-
moSysPro ontology and the Modelica general ontology. Whereas, the Pumping_System con-
tains components from both the Blocks package and the Fluid package of the Modelica Stand-
ard Library, and therefore its data modelling utilises the Modelica blocks ontology, Modelica
fluid ontology and Modelica general ontology.

6.1 OWL data modelling of the Irrigation_System model

The OWL data model of Irrigation_System was developed using the Protégé tool. Both the
Modelica general ontology and the ThermoSysPro ontology were imported, which contain the
necessary classes/concepts, data properties, and object properties. As shown in Figure 19,
the IRRIGATION_SYSTEM is instantiated using the Model sub-class of the Modelica class.
The IRRIGATION_SYSTEM consists of various components that were defined using the data
property contains, e.g. “IRRIGATION_SYSTEM contains PUMP_irs”, “IRRIGATION_SYSTEM
contains PIPE_irs” and so forth.
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Figure 19: OWL data model of Irrigation_System. Compaosition of the model.

Also, the model components were instantiated using the concepts/classes of the Ther-
moSysPro ontology, as well as the restriction properties for the model components were de-
fined, as shown in Figure 20. For example, the component “VALVE_irs” was instantiated using
the “CheckValve” concept, and its restriction properties were defined, such as “continu-
ous_flow_reversal some xsd:double”. In addition, the object properties were defined, such as
“WVALVE _irs hasConnector valve irs_in”. Furthermore, the data properties were also asserted,
such as “VALVE irs fluid 1.0".

Similarly, the connectors for each model component were defined, as shown in Figure 21. For
example, the pipe outlet (pipe_irs_out) was defined as an outlet connector (OutputConnector)
of flow type (FlowConnector) and is connected to (isConnectedTo) the valve inlet
(valve_irs_in).

Figure 22 shows the complete OWL data model of Irrigation_System, i.e. its model compo-
nents, parameters of the components, and the connectors of each component and their types.
We can see that the visualisation of the complete model is inconvenient. Hence, simulation
models comprised of larger number of components have complex visualisation, as we will see
in the case of OWL data modelling of Pumping_System consisting of 13 components.
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Figure 20: OWL data model of Irrigation_System. Description of model component.
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6.2 OWL data modelling of the Pumping_System model
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The OWL data model for the Pumping_System was created by following the same procedure
as in the case of Irrigation_System. Basically, there is no difference between the two systems
from the data modelling perspective. The only differences are the number of components in
each model (i.e. 5 components in Irrigation_System, and 13 components in Pumping_System)
and the ontologies needed (i.e. Modelica general and ThermoSysPro ontologies for Irriga-
tion_System, whereas, Modelica general, Modelica fluid and Modelica Blocks ontologies for
Pumping_System).

As shown in Figure 23, the Modelica general, Modelica Block, and Modelica Fluid ontologies
were imported into the Protégé tool. The PUMPING_SYSTEM was instantiated using the class
Model, and its components were defined using the object property contains.
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Figure 23: OWL data model of Pumping_System. Composition of the model.



VTT

Similarly, the model components (e.g. PUMP_ps, VALVE_ps, TANK_ps) were instantiated us-
ing the classes/concepts of the Modelica Blocks and Modelica Fluid ontologies. Likewise, the
inlet, outlet, flow type and signhal type connectors of each model components were instantiated
and defined, as shown in Figure 24.
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Figure 25 shows the complete OWL data model of Pumping_System. As we can see, it is quite
difficult to visualise the components, instances of components, parameters of components,
connectors of each components and their types.
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Figure 24: OWL data model of Pumping_System. Description of model component.
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Figure 25: OWL data model of the Pumping_System simulation model, including model com-
ponents, parameters of components, connectors of each components and their type.
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7. Discussion and conclusions

This study focuses on the data management aspect of simulation-based digital twins that are
expected to run for a couple of decades. During such a long time period, there is a possibility
that the underlying computer infrastructure (software, computer hardware and operating sys-
tem) may change or advance to the level where it would be impossible to open and run the
previously developed computer models. The problem is especially associated with the appli-
cation software used for developing the simulation models of digital twins. Most of the com-
mercial modelling and simulation software use proprietary data models and store models in
vendor-specific formats. The data model of one software can hardly be related to the data
model of another software and, in the worst-case, their simulation model formats are black
boxes that do not provide information about the mathematics and physics involved in the sim-
ulation process. For this reason, there is a need to preserve enough information about the
simulation models of digital twins in formats that can be easily processed with tools other than
the ones used for their creation.

To illustrate the preservation of simulation-based digital twins’ data for longer periods, two
Modelica system simulation models were presented. Modelica is an open-source language for
modelling of complex systems and provides detailed information about the models of the com-
ponents. The models were built in the OMEdit environment (a free tool for Modelica). Four
OWL ontologies were created that provide the necessary concepts and relationships for de-
scribing the simulation models. Using the Protégé ontology editor, the OWL data models of the
corresponding models were developed. The resulting OWL data models, containing infor-
mation about the simulation models, can be used for preserving information of the simulation
models in detail and, together with the Modelica libraries and Modelica Specification, they pro-
vide the needed basis for reproducing the simulation models and the simulation solver appli-
cation, if required.

During the study, it was noticed that the visualisation of the complete data model gets compli-
cated as the size of the simulation model grows (i.e. a model with more components is difficult
to visualise in the Protégé tool). This is illustrated by a visualisation of a data model represent-
ing a relatively simple simulation model in Figure 25. The value of visualising the data graphs
comes with the ability to browse the model, study the connections and neighbouring compo-
nents and relations between the components. Another finding was that the OWL language has
its own limitations and is not the best tool for general data representation in diverse applica-
tions. Therefore, the future work should be focused on the feasibility of other data modelling
methods, languages, and tools for preserving simulation models’ data. Especially domain-spe-
cific modelling languages, such as UML profiles, and available technologies and tools for using
them would be worth investigating. In the applications of simulation model data representation,
data transformation from one representation to another is required and is often challenging
due to complex semantics and information structures.
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