
Journal of Intelligent & Robotic Systems (2021) 101:79
https://doi.org/10.1007/s10846-021-01344-y

REGULAR PAPER

Dynamic Movement Primitives: Volumetric Obstacle Avoidance
Using Dynamic Potential Functions

Michele Ginesi1 ·Daniele Meli1 · Andrea Roberti1 ·Nicola Sansonetto1 · Paolo Fiorini1

Received: 1 July 2020 / Accepted: 8 February 2021
© The Author(s) 2021

Abstract
Obstacle avoidance for Dynamic Movement Primitives (DMPs) is still a challenging problem. In our previous work, we
proposed a framework for obstacle avoidance based on superquadric potential functions to represent volumes. In this work,
we extend our previous work to include the velocity of the system in the definition of the potential. Our formulations
guarantee smoother behavior with respect to state-of-the-art point-like methods. Moreover, our new formulation allows
obtaining a smoother behavior in proximity of the obstacle than when using a static (i.e. velocity independent) potential.
We validate our framework for obstacle avoidance in a simulated multi-robot scenario and with different real robots: a pick-
and-place task for an industrial manipulator and a surgical robot to show scalability; and navigation with a mobile robot in
a dynamic environment.

Keywords Obstacle avoidance · Dynamic movement primitives · Learning from demonstration

1 Introduction

Robots are now used in complex scenarios, ranging from
industrial and manufacturing processes to aerospace and
health care. As their involvement in common human tasks
increases, adaptability and reliability at the motion planning
level are often required, and imitation of human behavior
often helps in this direction.

Standard motion planning techniques, such as splines,
potentials, and others [20, 21, 30, 32], work well when
an objective function has to be optimized (e.g. minimize
the time of execution of the trajectory, or the energy
consumption). A Learning from Demonstration (LfD)
approach, is usually preferable if one needs to learn human
gestures. In LfD, a human operator shows an example of
trajectory or task execution, and parameters are learned for
replication in different situations and environments. In last
fifteen years, various LfD approaches (such as Gaussian
Mixture Models [17], Extreme Learning Machines [3, 11],

� Michele Ginesi
michele.ginesi@univr.it

1 Department of Computer Science, University of Verona,
Strada le Grazie 15, 37134, Verona, Italy

and others [1]) have been developed in order to replicate
human gestures. These LfD techniques may require a huge
amount of demonstrations to be properly trained, which
can represent a bottleneck when many different motion
primitives have to be learned (e.g., for productive and cost
reasons in the industry).

A crucial problem for all motion planning strategies is
obstacle avoidance. Methods for obstacle avoidance may
either be position-dependent [4, 31] or velocity-dependent
[5, 44], with the latter guaranteeing smoother trajectories,
especially in the presence of moving agents and obstacles.
In this paper, we focus on the obstacle avoidance
problem within the Dynamic Movement Primitives (DMPs)
framework [10, 14, 23, 36]. DMPs permit to learn a
trajectory from just one demonstration. They encode the
trajectory in a system of second-order linear Ordinary
Differential Equation (ODE), where a forcing term is
learned as a linear combination of predefined time-
dependent functions. They are successfully used in many
robotic scenarios, such as cloth manufacturing [16],
reproduction of human walk for exoskeletons [12], and
collaborative bimanual tasks [6]. Obstacle avoidance for
DMPs has been successfully treated for point-like obstacles
(e.g. [23] and [10]). On the other hand, volumetric obstacle
avoidance has been treated in our previous work [8] using
potential functions. Other approaches (e.g. [22, 28, 29,

http://crossmark.crossref.org/dialog/?doi=10.1007/s10846-021-01344-y&domain=pdf
http://orcid.org/0000-0001-5845-3692
mailto: michele.ginesi@univr.it

 79 Page 2 of 20 J Intell Robot Syst (2021) 101:79

37]) require multiple demonstrations with different types
and sizes of the obstacles to learn the obstacle avoidance
behavior.

In this work we improve our previous framework [8].
In particular, we introduce a new potential function. This
new potential is velocity-dependent, and this allows to
achieve smoother obstacle avoidance behaviors compared
to static (i.e. dependent only on position) potentials.
Moreover, we will show that our approach results in
trajectories that deviate less from the desired behavior than
other frameworks. Both these properties are desirable in
any obstacle avoidance method. In particular, a smooth
trajectory is preferable since reduces both the robot’s energy
consumption and the damage done to the actuators [7].
Moreover, remaining closer to the desired trajectory avoid
strong reduction of the available workspace [8].

We validate our approach in a simulated multi-robot
coordination scenario, where three mobile robots have to
reach pre-defined targets while avoiding each other and
obstacles in the scene. We also show the generality of our
frameworks as applied to different real robotic scenarios.
In detail, we test a pick-and-place task with an industrial
manipulator, combining DMP-level obstacle avoidance with
collision-free inverse kinematic computation. We then
show that the scalability of DMPs is preserved with our
framework, replicating the pick-and-place task on a smaller
setup with a bi-manual surgical robot. Finally, we show the
reactivity of our approach with a mobile robot in a dynamic
scene with moving obstacles to be detected by an RGB-D
camera.

In Section 2 we recall the theory of DMPs, focusing,
in Section 2.1, on the existing methods to treat obstacle
avoidance. Then, in Section 3 we present our new dynamic
potential function. In Section 4 we show our results: in
Section 4.1 we analyze the computational time of the
presented methods, in Section 4.2 we compare our new
method to the state of the art, showing that our novel method
results in a trajectory that is both smoother and it remains
to the learned one; in Section 4.3 we compare our previous
static potential for volumes with the new dynamic one,
in a scenario with multiple mobile robots and prior scene
awareness; in Section 4.4 we compare our frameworks
(static and dynamic) with the aforementioned robots.

Our code, freely available at https://github.com/mginesi/
dmp vol obst includes a Python 3.6 implementation of
DMPs and our proposed approach to volumetric obstacle
avoidance.

2 Dynamic Movement Primitives

Dynamic Movement Primitives (DMPs) is a framework for
trajectory learning. It is based on an Ordinary Differential

Equation (ODE) of spring-mass-damper type with a forcing
term. This framework has numerous advantages that make
it well suited for robotic applications. First, any trajectory
can be learned and subsequently executed while changing
starting and goal positions. Second, the executed trajectory
will always converge to the goal, maintaining a similar
shape to the learned trajectory. Third, the learned trajectory
can be executed at different speeds simply by changing
a single parameter. Finally, DMPs have been proven to
be flexible enough to be extended in multiple ways: for
instance, the formulation can be modified to deal with
periodic movements [15, 38], to learn sensory experience
[25, 26], and to work in unit quaternion space (in order
to model orientations) [35, 39]. Another extension, that is
the topic treated in this paper, is the inclusion of obstacle
avoidance in the DMP framework [8, 10, 23].

In this Section, we recall the DMP formulation given in
[10, 23, 24] upon which our work is based. Such formulation
is an improvement of the original formulation by [13–
15, 36]. Subsequently, in Section 2.1 we will present the
state of the art of obstacle avoidance methods for DMPs,
highlighting their strengths and weaknesses.

Dynamic Movement Primitives consist of the following
system of Ordinary Differential Equations:{

τ v̇ = K(g − x) − Dv − K(g − x0)s + Kf(s) (1a)
τ ẋ = v (1b)

Vectors x, v ∈ R
d are, respectively, the position and velocity

of the system; and x0, g ∈ R
d are, respectively, the starting

and goal positions. Matrices K,D ∈ R
d×d+ are, respectively,

the elastic and damping terms of the system. Both are
diagonal matrices, K = diag(K1, K2, . . . , Kd), D =
diag(D1, D2, . . . , Dd), and satisfy the critical damping

relation Di = 2
√

Ki , so that the un-perturbed system, i.e.
when f ≡ 0, converges as fast as possible to (x, v) = (g, 0),
since s → 0 and term −K(g−x0)s vanishes as t → ∞ (for
details, see [10]). Scalar τ ∈ R+ is a temporal scaling factor
which can be used to make the execution of the trajectory
faster or slower. Function f : R → R

d is the forcing
(also called perturbation) term. Scalar s ∈ (0, 1] is a re-
parametrization of time t ∈ [0, T] governed by the so called
canonical system

τ ṡ = −αs, (2)

where α ∈ R+ and the initial state is s(0) = 1.
The forcing term f(s) = [f1(s), f2(s), . . . , fd(s)]ᵀ is
written in term of basis functions. Each component fp(s),
p = 1, 2, . . . , d has the form

fp(s) =
∑N

i=0
pωi ψi(s)∑N

i=0 ψi(s)
s, (3)

where pωi ∈ R is called weigth, and ψi(s) is a basis
function. In the literature, Gaussian Radial Basis (GRB)

https://github.com/mginesi/dmp_vol_obst
https://github.com/mginesi/dmp_vol_obst

J Intell Robot Syst (2021) 101:79 Page 3 of 20 79

function are mostly used (see e.g. [10, 14, 15, 23, 36]), even
if other set of basis functions have been presented [9, 42].
These functions are defined as

ψi(s) = exp
(
−hi(s − ci)

2
)

, (4)

with centers ci defined as

ci = exp

(
−α i

T

N

)
, i = 0, 1, . . . , N, (5)

and widths defined as

hi = 1

(ci+1 − ci)
2
, i = 0, 1, . . . , N − 1,

hN = hN−1.

(6)

During the learning phase, a desired trajectory x̃(t) and
its velocity ṽ(t) are recorded. Then, from Eq. 1a, the desired
forcing term f̃(s(t)) is computed (after fixing matrices K
and D). Finally, the weights pωi , i = 0, 1, . . . , N , p =
1, 2, . . . , d that best approximate the desired forcing term f̃
using formulation (3) are computed using linear regression.

During the execution phase, starting and goal positions
x0, g are set, and the forcing term f is computed using Eq. 3
with the weights computed before. Solving the dynamical
system Eq. 1 will give a trajectory of similar shape to the
learned one, that starts from x0 and converges to g. In Fig. 1
an example of the spatial generalization property of the
DMP framework is shown.

2.1 Methods for Obstacle Avoidance

In the literature, there exist two main ways to imple-
ment obstacle avoidance in the DMP framework. The first
approach is the so-called Stylistic DMPs [22] in which
a probability distribution q(pωi |ζ) of the weights, condi-
tioned to a style parameter ζ is learned, instead of the set of
weights {pωi}. The style parameter can be, for instance, the
size of an obstacle. The second approach, instead, consists
in adding in Eq. 1a a repulsive term ϕ(x, v) ∈ R

d [8, 10,

23], that ‘pushes’ the trajectory away from the obstacle that
then reads:

τ v̇ = K(g − x) − Dv − K(g − x0)s + Kf(s) + ϕ(x, v). (7)

In full generality, the repulsive term ϕ depends on both
position x and velocity v of the system, but we will
see that for some methods, it depends only on the
position. The ‘repulsive term’ approach (7) can be further
subdivided into two sub-categories. The first includes all
those approaches that require an additional learning phase,
in which executions both with and without obstacle are
recorded, to model ϕ. For instance, in [29] and [37] a Neural
Network is used to model the perturbation term. In [28]
an analytical formulation is presented, but the number of
free parameters that has to be tuned requires an additional
learning process.

The second sub-category, in which our approach fits,
comprehends all approaches in which there is no need for
any additional learning phase. This is a great advantage,
since the DMP can be used in virtually any situation, while
the learning approaches may fail in situations too dissimilar
to the ones shown during the learning phase.

Since the proposed method enters the ‘designed by hand’
approaches, we will recall here, and compare our approach
to later, only the methods that do not require any additional
learning phase.

A potential field approach for point obstacles is proposed
in [18] where an obstacle creates a potential field U(x) at
the system position x. The perturbation term ϕ(x, v) in this
case depends only on the position (and not on the velocity)
and is the negative gradient of the potential:

ϕ(x, v) ≡ ϕ(x) = −∇xU(x), (8)

with the potential defined as

Us(x) =
⎧⎨
⎩

η
2

(
1

p(x) − 1
p0

)2
if p(x) ≤ p0

0 if p(x) > p0

, (9)

Fig. 1 Example of execution of
a DMP in R

2. On the left, the
trajectory is shown. On the right,
we plot the time evolution of
each component. In both plots,
the blue dashed line shows the
desired behavior, which start at
x0 = [0, 0]ᵀ and ends at
g = [π, 0]ᵀ. The green solid line
shows the execution of the
learned DMP. The solid red line
shows the execution of the
learned DMP when changing
goal position to g′ = [π, 0.5]ᵀ

a b

 79 Page 4 of 20 J Intell Robot Syst (2021) 101:79

where η ∈ R+ is a constant gain, p0 ∈ R+ is the influence
radius of the obstacle, and p(x) ∈ R+ is the distance
between the obstacle and the system’s position.

It was pointed out in [23] that the perturbation term Eq. 8
obtained using Eq. 9 as potential may result in non-smooth
obstacle behaviors since it does not depend on the velocity
v of the system. Thus, the following ‘dynamic’ (i.e. velocity
dependent) potential is proposed

Ud(x, v) =
{

λ(− cos θ)β
‖v‖
p(x) if θ ∈ (

π
2 , π

]
0 if θ ∈ [

0, π
2

] , (10)

where λ, β ∈ R+ are constant gains, and θ , depicted in
Fig. 2a, is the angle taken between the current velocity v
and the system’s position x relative to the position o of the
obstacle:

cos θ = 〈v, x − o〉
‖v‖p(x)

, (11)

where 〈·, ·〉 denotes the standard scalar product in R
d , and

p(x) still denotes the distance between x and the obstacle.
For potentials depending on both position x and velocity
v of the system, the perturbation term is defined as the
negative gradient with respect to the position:

ϕ(x, v) = −∇xU(x, v). (12)

The following perturbation term was proposed in [10]:

ϕ(x, v) = γ Rvϑ exp (−βϑ) , (13)

where γ, β ∈ R+ are constant gains. The steering angle ϑ

(depicted in Fig. 2b) is defined as

ϑ = arccos

(〈o − x, v〉
‖o − x‖ ‖v‖

)
, (14)

where o is the position of the point obstacle. Matrix R is
defined as the rotation matrix of angle π/2 with respect to
the axis generated by (o − x) × v, where × denotes the
cross product in R

3. This formulation presents an important
advantage and two important shortcomings with respect to
the previous two approaches. The advantage is that this
formulation guarantees convergence to the goal position if

a b

Fig. 2 Depiction on the definition of angle θ and ϑ in Eq. 11 and
Eq. 14 respectively. We remark that the two angles are complementary,
assuming same x − o, v, and ȯ = 0, since in this case the cosines are
opposite: cos θ = − cos ϑ

the obstacles are still. On the other hand, using potential
functions Eqs. 9 and 10, there may be cases in which the
system remains ‘trapped’ in a local minima. However, as
defined in [10], the matrix R makes sense only in R

3 (and
R

2). Thus this approach can be used only when DMPs
are used in ambient space, and not joint space. Moreover,
formulation Eq. 13 does not depend on the distance from
the obstacle, and the same ‘importance’ is given to close
and far obstacles: this may result in oscillatory behaviors, as
pointed out in [8].

The presented methods work only on point obstacles.
Volumetric obstacles can be modeled using point clouds
or by choosing a ‘critical point’ on the surface of the
obstacle itself. However, both these strategies may generate
odd behaviors: using a point cloud may result in high
computational time, and it is in general hard to decide a
priori how dense the point cloud should be, and the use of a
critical point (e.g. the closer one) can result in non-smooth
behaviors since this point is constantly changing.
For this reason, we proposed, in [8], a novel method to
implement volumetric obstacle avoidance, based on the
theory of superquadric potential functions [40]. In this
approach, the following static potential function is defined

US(x) = A exp (−η C(x))
C(x)

, (15)

where A, η ∈ R+ are gain parameters. Function C : Rd →
R is an isopotential, that is a function satisfying

I1. The boundary of the obstacle is the zero-level set of
the isopotential;

I2. The value of C increases when the distance from the
obstacle increases.

An example of isopotential is the superquadric potential
function [40]

C(x) =
((

x1

f1(x)

)2n

+
(

x2

f2(x)

)2n
) 2m

2n

+
(

x3

f3(x)

)2m

−1,

(16)

that vanishes on the surface of a generalized ellipsoid.
The main advantage of this isopotential is that, by tuning
parameters m, n and functions f1, f2, f3 : R

3 → R, it is
possible to model obstacles of any shape (their boundary
will be the zero-level set of Eq. 16) [19, 27, 41].

In [8] we used a slightly simpler formulation of Eq. 16

C(x) =
(

x1 − x̂1

�1

)2n1

+
(

x2 − x̂2

�2

)2n2

+
(

x3 − x̂3

�3

)2n3

−1,

(17)

J Intell Robot Syst (2021) 101:79 Page 5 of 20 79

which, in general j−dimensional spaces generalize in

C(x) =
d∑

j=1

(
xj − x̂j

�j

)2nj

− 1.

The perturbation term in this approach is defined as in
Eq. 8: ϕ(x, v) = ϕ(x) = −∇xUS(x).

3 New Potential Function

In this work, we propose a dynamic potential function
for volumetric (non-pointwise) obstacles, thus merging the
frameworks (10) and (15).

Similarly to [23], we aim at designing a potential that
satisfies the following three properties:

P1. The magnitude of the potential decreases with the
distance of the system from the obstacle;

P2. The magnitude of the potential increases with the
velocity of the system ‖v‖ and is zero when the system is
not moving;

P3. The magnitude of the potential decreases with the
angle between current velocity direction v/ ‖v‖, and the
direction towards the obstacle; and, if the system is
moving away from the obstacle, the potential should
vanish.

To this end, mimiking (10), we define the dynamic potential
function

UD(x, v) =
⎧⎨
⎩

λ(− cos θ)β
‖v‖

Cη(x)
if θ ∈ (

π
2 , π

]
0 if θ ∈ [

0, π
2

] , (18)

where λ, β, and η ∈ R+ are constant gains, and function
C(x) is any ispotential satisfying Properties I1 and I2 given
in Section 2.1. The angle θ is taken between the system’s
velocity v and the direction between the system’s position x

and the closest point of the obstacle. Thanks to Property I2,
we have that the gradient ∇xC(x) of the isopotential C(x), is
always perpendicular to the obstacle surface. Thus, at least
for convex obstacles, the angle θ can be computed using

cos θ = 〈∇xC(x), v〉
‖∇xC(x)‖ ‖v‖ , (19)

while it is not well defined for non-convex obstacles. An
intuition for these two observations are given in Fig. 3.

Remark 1 For non-convex obstacles, some workarounds
can be used. First, if neither the starting position nor the goal
is in the ‘holes’ of the obstacle, that is they are not in the
convex hull of the obstacle, then the convex hull itself can
be used as the obstacle. Second, one can think of relaxing
the concept of gradient to allow sub-differentials. In such
a case, the sub-gradient exists but it is not unique. Third,
a non-convex obstacle can be split into multiple convex
components, and each component would generate its own
potential.

In Section 4.2 we test the first and third proposed
workaround.

The potential defined in Eq. 18 clearly satisfies
Properties P1., P2., and P3. Indeed, the potential is a
decreasing function of C(x) and an increasing function of
θ , thus it satisfies P1 and P3. Moreover, it is an increasing
function of ‖v‖, and thus it satisfies also P2.

As an example, we show in Fig. 4 the potential (18) for
an elliptic obstacle in R

2, whose isopotential is

C(x) =
(

x1 − x̂1

�1

)2

+
(

x2 − x̂2

�2

)2

− 1,

where the center of the ellipse is x̂ = [̂x1, x̂2]ᵀ and the
horizontal and vertical axes are, respectively, �1 and �2. The
perturbation term is defined as in Eq. 12 and is computed

Fig. 3 Figure 3a shows how the
angle θ is defined when the
gradient ∇xC(x) of the
isopotential exists. Fig. 3b,
instead, shows an example on
how non-convex obstacles result
in non differentiable
isopotentials, and thus it is not
possible to define the angle θ

a b

 79 Page 6 of 20 J Intell Robot Syst (2021) 101:79

a b

Fig. 4 Example of the dynamic potential UD(x, v) given in Eq. 18 for
an ellipse in R

2. The velocity vector v is set to v = [1, 1]ᵀ. The gains
are set to λ = 2, β = 2, and η = 1. The ellipse has center in [1/2, 1]ᵀ,
horizontal axis 2, and vertical axis 1. In both figures, the potential has

been cropped at the value 1 for display purposes: it goes to infinity on
half of the boundary of the obstacle (on the other half, the system goes
away from the obstacle, so the potential is zero)

as follows. Clearly, for θ ∈ [0,π /2] ϕ(x, v) ≡ 0. When
θ ∈ (π/2, π], instead, we compute
ϕ(x, v) = −∇x

(
UD(x, v)

)

= −∇x

(
λ(− cos θ)β

‖v‖
Cη(x)

)

= −λ ‖v‖ (− cos θ)β−1

Cη(x)

(
−β ∇x(cos θ) + η cos θ

C(x)
∇x(C(x))

)
.

The term ∇x(cos θ) can be computed as

∇x(cos θ) = ∇x

(〈∇xC(x), v〉
‖∇xC(x)‖ ‖v‖

)

= 1

‖v‖ ‖C(x)‖2

(
‖∇xC(x)‖ ∇x

(〈∇xC(x), v〉)

−〈∇xC(x), v〉 ∇x
(‖∇xC(x)‖))

. (20)

For instance, let us consider the case in which the
isopotential C(x) is an ellipsoid in R

3 with center x̂ =
[̂x1, x̂2, x̂3]ᵀ, and axes (�1, �2, �3),

C(x) =
(

x1 − x̂1

�1

)2

+
(

x2 − x̂2

�2

)2

+
(

x3 − x̂3

�3

)2

.

In this case, the gradient is

∇xC(x) = 2

⎡
⎢⎢⎢⎣

x1−x̂1
�2

1
x2−x̂2

�2
2

x3−x̂3
�2

3

⎤
⎥⎥⎥⎦ .

The quantities ∇x
(〈∇xC(x), v〉)

and ∇x
(‖∇xC(x)‖)

in
Eq. 20 read, respectively,

∇x
(〈∇xC(x), v〉) = 2

⎡
⎢⎢⎣

v1
�2

1
v2
�2

2
v3
�2

3

⎤
⎥⎥⎦ , and ∇x

(‖∇xC(x)‖)

= 4

‖∇xC(x)‖

⎡
⎢⎢⎢⎣

x1−x̂1
�4

1
x2−x̂2

�4
2

x3−x̂3
�4

3

⎤
⎥⎥⎥⎦ .

We emphasize that the proposed approach encompasses
most of the desired properties of obstacle avoidance
frameworks for DMPs since it is: dynamic, well defined
in R

d , volumetric, and distance-dependent. On the other
hand, this approach does not guaranteed the convergence
to the goal since local minima may arise. However, as we
already pointed out in [8], it is unlikely to encounter a local
minimum, and if it happens, a perturbation term pushing
the trajectory out of it can be easily added to the DMP
formulation.

In Table 1 a summary of the properties of all the
approaches presented in Section 2.1 and the proposed
approach is given. From this, it is possible to observe
that the proposed method is the one satisfying the greatest
number of desirable properties.

Remark 2 Dynamic formulations (11), (13), and (19) do
not take into account the velocity of the obstacle. However,
it is straightforward to extend the definition to this case
by simply substituting v with v − ȯ, where ȯ denotes the
velocity of the obstacle.

4 Results

4.1 Execution Time

Before showing the experiments to test our new method
and compare it to the methods presented in Section 2.1, we
discuss the computational time. Our DMPs’ implementation
and obstacle avoidance methods are implemented in
Python3.6 and can be found at https://github.com/mginesi/
dmp vol obst.

To test the execution time we generate one obstacle
for each method for different dimensionalities d of the
state space. Then, for each value of d , we generate 100

https://github.com/mginesi/dmp_vol_obst
https://github.com/mginesi/dmp_vol_obst

J Intell Robot Syst (2021) 101:79 Page 7 of 20 79

Table 1 Summary of the properties of various methods for obstacle avoidance

Method Type of Space of Type of Distance Guaranteed

obstacle definition potential dependent convergence

Static Point R
d , d ∈ N Static Yes No

potential (9)

Dynamic Point R
d , d ∈ N Dynamic Yes No

potential (10)

Steering Point R
2, R3 Dynamic No Yes

angle Eq. 13

Static Volumes R
d , d ∈ N Static Yes No

potential (15)

Dynamic Volumes R
d , d ∈ N Dynamic Yes No

potential (18)

The desired properties are underlined

random positions and velocities to compute the perturbation
terms ϕ(x, v), and use these values to compute the average
computational time and its standard deviation. Table 2 show
the results of this test (we remark that the steering angle
method makes sense only in R

2 and R
3 due to the cross

product in the definition of R in Eq. 13).
The new proposed method results to be the slowest. How-

ever, it is computed in about a tenth of a millisecond which
still makes it able to be computed fast enough to not influence
the on-line control of most robots. For instance, our Panda
industrial manipulator works at approximately 50 Hz.

Tests were performed on a machine with a quad-core
Intel Core i7-7000 CPU with 16 GB of RAM.

4.2 Synthetic Experiments

In this Section, we test and compare the behaviors of
the approaches recalled in Section 2.1 and our novel
approach, presented in Section 3, performing the same test
we performed in [8]. In the first test, we show the behaviors
of all the methods in the presence of a single obstacle
(an ellipse). For the point obstacle methods, the obstacle
is modeled using a point cloud on the boundary of the
obstacle itself. We then add a second obstacle (a circle) to
the previous scenario.

Moreover, we present an additional test to show how to
treat non-convex obstacles as explained in Remark 1.

Table 2 Computational time (in seconds) of the perturbation term for various methods of obstacle avoidance

Eq. 9 Eq. 10 Eq. 13 Eq. 15 Eq. 18

d = 2 mean 1.31e-05 3.91e-05 6.27e-05 2.01e-05 1.14e-04

st. dev. 6.86e-06 1.61e-05 2.57e-05 7.20e-06 3.83e-05

d = 3 mean 1.17e-05 2.63e-05 8.00e-05 2.11e-05 1.08e-04

st. dev. 3.57e-06 1.03e-05 1.62e-05 5.75e-06 2.52e-05

d = 4 mean 1.14e-05 3.14e-05 �� 2.29e-05 1.04e-04

st. dev. 3.23e-06 1.06e-05 �� 6.44e-06 1.67e-05

d = 5 mean 1.12e-05 2.63e-05 �� 2.52e-05 1.06e-04

st. dev. 2.69e-05 9.96e-06 �� 6.44e-06 1.67e-05

d = 6 mean 1.20e-05 3.38e-05 �� 2.73e-05 1.16e-04

st. dev. 4.66e-06 1.20e-05 �� 6.40e-06 3.31e-05

d = 7 mean 1.31e-05 2.43e-05 �� 3.14e-05 1.20e-04

st. dev. 4.62e-06 1.07e-05 �� 8.52e-06 2.32e-05

 79 Page 8 of 20 J Intell Robot Syst (2021) 101:79

Table 3 Hyper-parameters for obstacle avoidance methods

Method Hyper - parameters

Static potential (9) p0 = 0.1, η = 1

Dynamic potential (10) λ = 0.2, β = 2

Steering angle (13) γ = 20, β = 3

Static potential (15) A = 10, η = 1

Dynamic potential (18) λ = 10, β = 2, η = 1/2

In the first test, we generate the following trajectory in the
plane: (x1(t), x2(t)) = (t cos(π t), t sin(π t)), t ∈ [0, 1].
Then, we learn a DMP with elastic and damping constants,
respectively, K = K Id2 and D = D Id2, where Id2 denotes
the 2 × 2 identity matrix, and K and D have values K =
1050 and D = 2

√
K ≈ 65. In this test, the obstacle is

an ellipse centered in (−0.5, 0.7) with semi-axis 0.3 and
0.2. For the tests done using point-wise obstacle avoidance
methods Eqs. 9, 10, and 13, the boundary of the obstacle is
discretized using fifty equally distributed points. The hyper-
parameters for all the methods are given in Table 3. The
resulting trajectories are shown in Fig. 5. From this first test,
we compute, at each time t how much the trajectory deviate
from the learned behavior in order to avoid the obstacle.
This “error” is computed as

ε(t) = ‖xtrue(t) − x(t)‖,
where xtrue(t) is the learned trajectory, and x(t) is the
adapted behavior. In Fig. 6a it is possible to observe that
the proposed method results in a trajectory that deviates less
from the learned one.

To discuss the smoothness of the different behaviors, we
compute, at each time t , the norm ‖ẍ(t)‖ of the acceleration
ẍ(t) of the adapted trajectory. As shown in Fig. 6b, we
see that the proposed method results in the less oscillatory
behavior of ‖ẍ(t)‖. This last aspect makes the proposed
method the most stable one when controlling the position of
a robot.

Table 4 shows the maximum and average values of both
the error and the acceleration norms. From it, we see that the
steering angle method Eq. 13 result in smaller accelerations.
However, the acceleration profile still results in more
oscillatory behavior than our novel dynamic potential (18).

In summary, the proposed dynamic potential (18) gives
both the smoother behavior and the trajectory that remains
closer to the learned one between all the methods we
presented in Section 2.1, thus making it the most suitable in
real applications.

As a second synthetic experiment, we maintain the
same conditions of the experiment before (desired curve,
as well as DMP and obstacles’ hyper-parameters), and
we add a second obstacle. This new obstacle is a circle
centered in (0.15, 0.4) and with radius 0.1. For the point-
wise obstacle avoidance methods, the circumference is
discretized with fifty equally distributed nodes. Figure 7
shows the adaptation of the DMP to the presence of the
obstacles, Fig. 8a shows the distance between desired
trajectory and DMP, and Fig. 8b shows the 2-norm of the
acceleration of the DMP as function of time.

Table 4 shows the maximum and average values of both
the error and the acceleration norms. As for the one obstacle
test, the steering angle method Eq. 13 result in smaller

Fig. 5 Obstacle avoidance
behavior for the methods
recalled in Section 2.1 and the
proposed method from
Section 3. In all plots, the
dashed orange line shows the
desired trajectory, while the
solid line shows the adaptation
of the DMP to the presence of
the obstacle. In the three top
figures, the black dots mark the
point obstacles used as mesh. In
the two bottom figures, the
boundary of the obstacle is
plotted using the full black line

a b c

d e

J Intell Robot Syst (2021) 101:79 Page 9 of 20 79

Fig. 6 For tests depicted in
Fig. 5, plot of the distance
between desired and executed
trajectory (left), and of the norm
of the acceleration (right) as
functions of time

a b

Table 4 Statistics of synthetic tests shows in Figs. 5 and 7. Minimum values for each statistic are underlined

Eq. 9 Eq. 10 Eq. 13 Eq. 15 Eq. 18

1 obstacle maximum error 0.157 0.163 0.126 0.137 0.089

average error 0.029 0.040 0.066 0.030 0.022

maximum acceleration norm 277.99 42.55 22.02 26.15 22.32

average acceleration norm 19.11 12.40 11.08 12.77 11.20

2 obstacles maximum error 0.210 0.205 0.149 0.150 0.092

average error 0.064 0.082 0.088 0.052 0.035

maximum acceleration norm 311.32 50.60 21.29 47.67 53.53

average acceleration norm 30.00 15.42 11.65 18.11 16.13

Fig. 7 Obstacle avoidance
behavior for the methods
recalled in Section 2.1 and the
proposed method from
Section 3. In all plots, the
dashed orange line shows the
desired trajectory, while the
solid line shows the adaptation
of the DMP to the presence of
the obstacle. In the three top
figures, the black dots mark the
point obstacles used as mesh. In
the two bottom figures, the
boundary of the obstacle is
plotted using the full black line

a b

d e

c

 79 Page 10 of 20 J Intell Robot Syst (2021) 101:79

Fig. 8 For tests depicted in
Fig. 7, plot of the distance
between desired and executed
trajectory (left), and of the norm
of the acceleration (right) as
functions of time

a b

accelerations, even tho the acceleration profile results more
oscillatory than the dynamic potential (18).

Also in this test, it is possible to observe that the proposed
method still gives the trajectory that less deviates from the
learned one while maintaining the less oscillatory behavior
at the acceleration level.

Finally, we present a synthetic test with a non-convex
obstacle, testing two workarounds given in Remark 1. We
define a ‘U’-shaped non-convex obstacle and present two
scenarios.

In the first scenario (Fig. 9a) the goal is inside the
‘hole’ of the ‘U’. Thus, we subdivide the obstacle into
three components (two vertical and one horizontal); then,
we cover each component with a 2-dimensional pseudo-
ellipsoid (i.e. we use formulation (17) with n1 = n2 = 2
and no vertical component).

In the second scenario (Fig. 9b) neither the goal nor the
initial position is in the ‘hole’ of the obstacle. Thus, we
consider as the obstacle the convex hull of the ‘U’, and we
cover it with the 2-dimensional pseudo-ellipsoid.

It is possible to see that both approaches result in proper
obstacle avoidance behavior.

4.3 Experiments with Robots in Simulation

In this Section, we describe experiments performed with
Kuka YouBot models in a simulated environment. These

experiments are useful to validate the results highlighted in
the previous section with an application of our framework
to a more realistic use case. The simulation scene is shown
in Fig. 10. It includes three YouBots that can move in
a rectangular region defined by four walls (treated as
obstacles), with fixed cubes as obstacles on the way. Each
robot must reach a specific target position, defined by a
platform with the same color as the robot. We assume
that the geometry and the positions of the obstacles in
the scene is known in advance. The scene is built in
the popular CoppeliaSim simulation environment from
Coppelia Robotics [34], which allows to simulate the
dynamics of the robots and to control them through ROS
topics as in real applications.

Each Youbot is controlled in position by a DMP with
x, v ∈ R

2; we do not control the orientation of the
robots along their normal axis, since we are interested
in the obstacle avoidance problem for Cartesian DMPs.
In order to guarantee the synchronization between the
robots, we construct a 6-dimensional DMP, concatenating
the components x, v, v̇ ∈ R

2 of position, velocity, and
acceleration of each YouBot in a single array. In this
way, the robots share the same canonical system. The
obstacle-free trajectory of each robot towards its target is
a straight line. In this way, it is clear from the scene that
the robots would collide during their motion. Since the
objects in the scene are known a priori, one could argue

Fig. 9 Different method to deal
with non-convex obstacles. The
obstacle is depicted with a gray
shade. Dashed lines show the
convex components in the plot
on the left, and the convex hull
in the plot on the right. Both
plots show the enlarged potential
(to be written as a generalized
ellipsoid) in the same color as
the obstacle. The black solid line
shows the executed DMP

a b

J Intell Robot Syst (2021) 101:79 Page 11 of 20 79

Fig. 10 The simulation scene in CoppeliaSim for the three YouBots

that the collision between the robots could be avoided by
computing the trajectories in advance, and coordinating
the motion of the robots (e.g. tuning the speed of each
of them appropriately). Multi-robot motion coordination
has been extensively studied, and it is out of the scope
of this paper. We refer the reader to [43] for a recent
survey. In our experiments, we have decided to simulate
a more realistic multi-robot task, in which the robots do
not know the trajectory of each other in advance. Hence,
we model each YouBot as a dynamic potential using our
formulation as in Eq. 18, so that it influences the forcing
terms of the other robots. In this way, we show how our
framework for obstacle avoidance is suitable for reactive
motion planning. At each time step, we build an ellipsoid
around each YouBot, setting n1 = n2 = 1 in Eq. 17. We
control the center point of the YouBots, therefore the semi-
axes of the ellipsoid are set as the full dimension of the
robot (width × length) to avoid collisions. The parameters
for the dynamic potential function are set as λ = 60, η =
0.2, β = 2 after empirical evaluation. When computing
the forcing term for each robot, we compute the velocity
term in Eq. 12 as the relative velocity between the robots.
We test two different straight-line trajectories, one with null
forcing term and the other with constant speed, to verify the
independence of our framework with respect to the specific
trajectory to be executed. The constant speed trajectory is
first generated synthetically; then, the weights are learned
as explained in Section 2. The DMP parameters are set as
as K = 3050, α = 4, D = 2

√
K ≈ 110.45 for both

sets of weights. The trajectories are computed at 1ms step
of integration. We model the walls and the fixed obstacles
as generalized ellipsoids (enlarged of the dimension of the
YouBots), setting n1 = n2 = 2 in Eq. 17 to better
approximate the sharp edges. We compare the performance
of our previous static obstacle formulation (15) with our
novel one, modeling the fixed obstacles with both methods.
The results are shown in Fig. 11.

Figure 11a-b are obtained setting A = 60, η =
2 in Eq. 15. Figure 11c-d are obtained setting λ =
60, β = 2, η = 2 in Eq. 18. Parameters are set after

empirical evaluation. We notice that the dynamic potential
formulation results in smoother trajectories as the robots
move close to the cubes in the scene. Indeed, in Fig. 11a it
is possible to observe that both the red and green YouBots
have oscillatory behaviors near the obstacles, as for the red
and blue Youbots in Fig. 11b. On the other hand, oscillations
are greatly reduced when the dynamic potential is used, as
can be seen in Fig. 11c and d.

4.4 Experiments on Real Setups

We now show the results of the tests performed on different
robots. At first, we tested our obstacle avoidance framework
on an industrial manipulator Panda from Franka Emika,
studying a standard pick-and-place task with pegs and rings.
Then, we replicated the same task on a smaller setup
with a surgical robot da Vinci from Intuitive Surgical,
showing that our framework is able to scale with the
dimension of the setup. Finally, a scenario with a YouBot
in a partially unstructured environment is tested, showing
how our framework can be easily integrated with scene
reconstruction techniques through vision sensors.

4.4.1 Experiments with Panda Robot

The setup for the Panda robot is shown in Fig. 12a. The
robot must pick the green ring and place it on the green
peg. On the way to the peg, the robot has to avoid the
red peg, i.e. neither the end effector nor the grasped ring
has to hit the peg. The task can be described by a simple
state machine with four actions/states: move to ring, grasp,
move to peg and release gripper. The moving actions are
kinematically described with two DMPs in Cartesian space
with null weights, i.e. straight-line trajectories, with K =
1050, α = 4, D = 2

√
K . The trajectories describe the

motion of the center of the gripper of the robot. Notice
from Fig. 12a that the encumbrance of the end effector is
significant, and controlling only the center of the gripper
does not guarantee safe collision avoidance. As explained in
our previous work [8], there are two solutions to this issue.
One is to enlarge the radial dimension of the pegs according
to the size of the end effector. The second solution is to
exploit the kinematic redundancy of the 7-DOF manipulator
and compute an obstacle-free joint configuration for each
point in the DMP. We have chosen the latter approach
to limit the size of the obstacles and, hence, maximize
the reachable workspace for the robot. We control the
robot through its standard MoveIt/ROS interface, setting
TRAC-IK [2] as the inverse kinematics solver. TRAC-IK
is a state-of-the-art library for this purpose, and it has
been chosen because it allows defining optimal metrics to
compute the joint configuration from a given pose. We
set the solver to compute an inverse kinematics solution

 79 Page 12 of 20 J Intell Robot Syst (2021) 101:79

Fig. 11 DMPs with constant
speed and with null weights of
the three YouBots in simulation.
Obstacles are represented in the
scene with the superquadric
isopotential approximation,
enlarged of the dimensions of
the YouBots. The walls are
represented as a rectangle
containing the robots and the
other obstacles for simplicity.
Trajectories are referred to the
center points of the robots

a b

c d

which maximizes the manipulability of the robot, defined
as

√
det(JJᵀ) [8]. Though we do not control the orientation

of the end effector with our DMP formulation, we constrain
the orientation to be within 5◦ (along each axis) from the
initial orientation for each Cartesian waypoint (shown in
Fig. 12a). Then, we gradually relax this tolerance if no
inverse kinematics solution is found. We also constrain
two consecutive joint configurations to differ no more than
45◦ on each joint, so that we are able to avoid abrupt
movements during the execution. The scene (location of the
peg base, the pegs, and the ring) is assumed to be known
in advance. Hence, obstacles (the base and the pegs) are
represented as superquadric potential function shaped as
cylinders (assuming the z−axis as the normal to the base,
exponents in Eq. 17 are set as n1 = n2 = 1, n3 = 2).
Figure 12 shows the main steps in the task execution.

After the ring is grasped (Fig. 12b), we have that both the
end-effector and the ring should avoid the pegs. Thus, when
the ring is held by the robot, we ‘enlarge’ each obstacle by
the radius of the ring. Indeed, in Fig. 13a and b we have that
the robot is not holding the ring, and the pegs are modeled
with their actual radius. On the other hand, in Fig. 13c and d
the ring is held by the robot, and the obstacles are larger.

In Fig. 13 we show the trajectories for the two actions.
Notice that the radial dimension of the pegs is enlarged
when moving to the peg, i.e. in Fig. 13d and d, since we need
to avoid that the grasped ring hits the obstacles. Hence, the
radius of the base of the pegs is augmented by the radius of
the ring. Obstacles are modelled with our dynamic potential
formulation when moving to the ring, setting λ = 10, η =
1, β = 1 in Eq. 18. We compare our novel approach with the
static potential formulation in Eq. 15, setting A=10, η = 1.

Fig. 12 The pick-and-place task
with the Panda robot

a b c d

J Intell Robot Syst (2021) 101:79 Page 13 of 20 79

Fig. 13 Moving trajectories for
the pick-and-place task with the
Panda robot. Axes coordinates
are referred to the frame of the
base link of the robot

a b

dc

Figure 13 shows the result of these experiments.
Figure 13a and b shows that, both for the static and
dynamic volume potentials (15) and (18), the trajectories for

Fig. 14 The setup for the peg transfer task with the da Vinci surgical
robot: PSM1 on the right and PSM2 on the left

the move-to-ring gesture do not result perturbed from the
presence of the obstacles, since there is no risk of collisions.

On the other hand, we see that for the move-to-
peg gesture, the trajectories deviate from the straight-line
behavior. Both the static (15) and dynamic (18) potentials
result in a proper obstacle avoidance behavior.

4.4.2 Experiments with the da Vinci Surgical Robot

We replicate the peg transfer task using the da Vinci sur-
gical robot from Intuitive Surgical controlled through the
da Vinci Research kit 1 and ROS, with the setup shown in
Fig. 14. The robot has two arms, named PSM1 and PSM2.
Hence, we modify the state machine for the task. The
PSM1 must move to the blue ring, grasp it, move the ring
to the center of the base and exchange it with the PSM2.
Then, the PSM2 carries the ring to the blue peg and the task
ends. The scene description (locations of pegs, the ring,
and the base) is assumed as a prior. We have designed the
initiallocation of the arms and the ring in such a way that

1https://github.com/jhu-dvrk/dvrk-ros/tree/master/dvrk python

https://github.com/jhu-dvrk/dvrk-ros/tree/master/dvrk_python

 79 Page 14 of 20 J Intell Robot Syst (2021) 101:79

Fig. 15 Trajectories executed by
the da Vinci arms. Trajectories
are referred to the center of the
grippers, and they are expressed
in a fictitious coordinate frame
common to the PSMs, obtained
using our calibration procedure
presented in [33]

a b c

Fig. 16 Main steps of the peg
transfer task with the da Vinci
surgical robot

a b

dc

Fig. 17 The YouBot with the Realsense D435 camera on its front Fig. 18 Point cloud filtered with the ellipsoid created around the object

J Intell Robot Syst (2021) 101:79 Page 15 of 20 79

Fig. 19 Main steps of the
YouBot task with the obstacle
added to the scene during the
execution

a b c

the pegs act as obstacles for the robot. In order to make a
comparison with the task with the Panda robot, the trans-
fer action can be seen as a combination of a move to ring
action for the PSM2 and a move to peg action for the PSM1,
where the goal is actually the center of the base instead
of a real peg. Hence, the actions executed by the surgical
robot can be interpreted as a replication of the actions of

the industrial manipulator, just scaled on a smaller size of
the setup. For this reason, we represent the obstacles with
the same superquadric potentials (i.e. the same parameters)
as in the Panda task. The trajectories of the robot are again
described by Cartesian DMPs with null weights, and we
build a single 6-dimensional DMP in order to share the
same canonical system for the arms. We first test our novel
dynamic potential formulation to model the obstacles.
However, the DMPs does not converge to the goal in the
transfer and when moving to the peg. On the contrary, our
static potential formulation converges smoothly, as shown
in Fig. 15. Figure 16 shows the main steps of the task
execution. Notice that we do not need to compute inverse
kinematics solutions from the DMP waypoints as with the
industrial manipulator since the arms of the surgical robot
have 6 degrees of freedom, and we force the orientation

Fig. 20 Main steps of the
YouBot task with the obstacle
added to and removed from the
scene during the execution

a b c

of the grippers to stay constant during the task. Moreover,
Fig. 14 shows that the encumbrance of the grippers is minor,
hence they safely avoid obstacles.

4.4.3 Experiments with Real YouBot

We test our obstacle avoidance framework with one real
YouBot. The robot must move forward in a corridor for
2 meters to a pre-defined target, with an obstacle on its
way. Differently from simulations presented in Section 4.3,
we only assume that the walls are known in advance and
modeled as superquadric potentials. On the contrary, the
obstacle on the path of the robot is unknown, and it can
be added to and moved away from the scene during the
execution. Hence, the YouBot is equipped with a Realsense
D435 RGB-depth camera from Intel as shown in Fig. 17, in
order to record the point cloud of the scene in real-time. At
each time-step, the point cloud is filtered along the world
z-axis to remove the floor and on its own depth to remove
points beyond the target. Then it is clustered into separate
point clouds for each object in the scene and is registered
with the previous point cloud in a common reference frame
to update the scene Fig. 18. Finally an ellipsoid as in

 79 Page 16 of 20 J Intell Robot Syst (2021) 101:79

a b c d

Fig. 21 Results for the experiment with the YouBot with null forc-
ing term. In each plot, the ellipse shows the modeled obstacle, and the
dashed blue line shows the desired (obstacle-free) behavior. The full

line shows the adapted trajectory. The red portion shows the trajectory
executed without the presence of the obstacle, and the green portion
the part of trajectory executed when the obstacle is present

Eq. 17 is fitted with n1 = n2 = 1, enlarging axes of
the dimensions of the robot (since the motion of the robot
is 2-dimensional, we consider only the planar coordinates
of the ellipsoid). Fitting a pure ellipsoid rather than a
pseudo-ellipsoid (n1 = n2 = 2) guarantees a smoother
perturbation to the trajectory of the robot and leverages
the real-time computational complexity. The camera and
the YouBot controller communicate through a ROS
network.

We control the robot with a 2-dimensional DMP with
three different behaviors: null forcing term f ≡ 0, constant
velocity, and a half-circle trajectory. For each of the three
DMPs’ behaviors, we test two different scenarios. At first
(Fig. 19) we add a box as an obstacle on the way to the goal
right after the YouBot has started moving, and we keep the
obstacle in position. In the second scenario (Fig. 20), we
firstly add the box in the scene, and then we remove it after
some time. We test both the static Eq. 15 and the dynamic
Eq. 18 potential formulations.

The DMP’s parameters are K = 500, D = 2
√

K ≈
44.72, and α = 4. The obstacle’s parameters are A = 1,
η = 1 for the static potential (15), and λ = 1, β = 1, and
η = 1 for the dynamic potential (18).

Figure 21 shows the result for the null-forcing term DMP,
Fig. 22 shows the result for the constant-velocity DMP, and
Fig. 23 shows the result for the hal-circle DMP.

From these tests, we see that both static and dynamic
methods result in the obstacle being successfully avoided;
even if some differences emerge.

When the obstacle remains in the scene (subfigures (a)
and (b)), we see that the dynamic potential (18) usually
results in a trajectory that deviates less from the desired
trajectory.

The tests in which the obstacle is removed (subfigures
(c) and (d)) show that the static potential result in the robot
remaining ‘trapped’ longer behind the obstacle, while the
dynamic potential is able to deviate from the trajectory
sooner.

a b c d

Fig. 22 Results for the experiment with the YouBot with constant
velocity. In each plot, the ellipse shows the modeled obstacle, and the
dashed blue line shows the desired (obstacle-free) behavior. The full

line shows the adapted trajectory. The red portion shows the trajectory
executed without the presence of the obstacle, and the green portion
the part of trajectory executed when the obstacle is present

J Intell Robot Syst (2021) 101:79 Page 17 of 20 79

a b c d

Fig. 23 Results for the experiment with the YouBot with the half-
circle. In each plot, the ellipse shows the modeled obstacle, and the
dashed blue line shows the desired (obstacle-free) behavior. The full

line shows the adapted trajectory. The red portion shows the trajectory
executed without the presence of the obstacle, and the green portion
the part of trajectory executed when the obstacle is present

Figure 4.4.3 shows that the static potential result in an
oscillatory behavior when the trajectory starts to deviate
from the obstacle.

The only case in which the dynamic potential seems to be
worse than the static one is for the trajectory with constant
velocity (Fig. 22). This follows from the fact that, once the
obstacle is surpassed, the dynamic potential is null and the
trajectory is no longer pushed to the left, and the system
is only pushed to the right by the DMP’s dynamic. This
reasoning is more clear to understand from Fig. 24, which
plot the time evolution of the trajectories shown in Fig. 22.

5 Conclusions

In this paper we have presented a new dynamic potential
formulation for obstacle avoidance with DMPs in the
Cartesian space. This formulation extends our previous
static potential one based on position, in that it takes
into account the velocity of the system governed by the
DMP and of the obstacle. We have designed synthetic
experiments and tests with simulated and real robots to
compare our frameworks with the state-of-the-art ones
existing in the literature about DMPs. Experiments with

Fig. 24 Solutions for the
trajectories obtained with
constant velocity DMP. In all
plots, the blue dashed line shows
the desired solution, and the red
solid line shows the
obstacle-avoidance behavior. In
Fig. 24a and c the black dashed
line shows the time at which the
obstacle is inserted in the scene.
In Fig. 24b and d the obstacle is
present in the time interval
marked by the two black dashed
vertical lines

a b

c d

 79 Page 18 of 20 J Intell Robot Syst (2021) 101:79

real robots are performed with an industrial manipulator,
a surgical robot and a mobile robot, in order to show
the generality of our framework. One advantage of our
formulations is that they consider volumetric obstacles,
instead of point-like obstacles as other state-of-the-art
methods, guaranteeing a more stable behavior. Volumes
are modeled with superquadric functions, which allow
describing shapes of real objects with an arbitrary degree
of approximation. The synthetic experiments show that
our potential formulations guarantee smoother acceleration
behavior and minimal deviation from the obstacle-free
trajectory defined by the forcing term of the DMP.
Moreover, the simulation experiments with three mobile
robots show that our formulations can cope with multi-robot
obstacle avoidance in real-time, without any predefined
coordination strategy between the robots. Our new dynamic
potential formulation generates fewer oscillations in the
proximity of the obstacles with respect to the static potential
one. In fact, the dynamic potential depends on the relative
speed of the robot with respect to the obstacles, hence
it deviates the trajectory earlier when the obstacle is
approached. However, the experiments with real robots
show that the dynamic potential can result in higher
deviations from the original trajectory, depending on the
forcing term of the DMP and the position of obstacles in
the scene. On the contrary, the static potential performs
better in all the experiments with the real robots, including
the scenario with the mobile robot when an obstacle is
added on its way during the execution. The experiments
with the industrial manipulator and the surgical robot on a
pick-and-place task show that our frameworks can scale to
different dimensions of the setup. The major drawback of
our formulations is that they do not guarantee convergence
to the goal, which is a typical issue with potential-based
formulations.

Future research will focus on the extension of our
frameworks to the quaternion space. In fact, while
the superquadric description of the volumes allows to
approximate the shapes of real objects and to save more
of the available workspace, the obstacle-aware adaptation
of the orientation of the robot is not implemented at
the moment. Hence, the obstacles should be enlarged of
the dimension of the end effector. This is particularly
evident in the scenario with the industrial manipulator,
which has a huge end-effector. We have partially solved
this issue in our experiments, exploiting the kinematic
redundancy of the robot and an efficient inverse kinematics
solver to generate obstacle-free joint configurations from
the Cartesian DMP waypoints. However, this yields to
higher computational time and slower execution. We
believe that representing the obstacles directly in the
quaternion space at the DMP level would improve the
performances.

Author Contributions Conceptualization: Michele Ginesi. Data cura-
tion: Daniele Meli, Andrea Roberti. Formal Analysis: Michele Ginesi,
Daniele Meli, Andrea Robeti. Funding acquisition: Paolo Fiorini.
Investigation: Michele Ginesi, Daniele Meli, Andrea Roberti, Nicola
Sansonetto. Methodology: Michele Ginesi, Daniele Meli, Andrea
Roberti, Nicola Sansonetto. Project administration: Paolo Fiorini.
Resources: Paolo Fiorini. Software: Michele Ginesi. Supervision:
Nicola Sansonetto, Paolo Fiorini. Validation: Daniele Meli, Andrea
Roberti. Visualization: Michele Ginesi, Daniele Meli, Andrea Roberti.
Writing – original draft: Michele Ginesi, Daniele Meli. Writing –
review and editing: Michele Ginesi, Daniele Meli, Nicola Sansonetto,
Paolo Fiorini.

Funding Open access funding provided by Università degli Studi di
Verona within the CRUI-CARE Agreement. This research has received
funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme,
ARS (Autonomous Robotic Surgery) project, grant agreement No.
742671.

Availability of Data and Materials The presented framework is
publicly available at https://github.com/mginesi/dmp vol obst.

Declarations

Conflict of Interests The authors have no conflicts of interest to declare
that are relevant to the content of this article.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in
this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds
the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://
creativecommonshorg/licenses/by/4.0/.

References

1. Albrecht, S., Ramirez-Amaro, K., Ruiz-Ugalde, F., Weikersdorfer,
D., Leibold, M., Ulbrich, M., Beetz, M.: Imitating human reaching
motions using physically inspired optimization principles. In:
2011 11th IEEE-RAS International Conference on Humanoid
Robots, pp. 602–607. IEEE (2011)

2. Beeson, P., Ames, B.: Trac-Ik: An open-source library for
improved solving of generic inverse kinematics. In: 2015 IEEE-
RAS 15Th International Conference on Humanoid Robots
(Humanoids), pp. 928–935. IEEE (2015)

3. Duan, J., Ou, Y., Hu, J., Wang, Z., Jin, S., Xu, C.: Fast and
stable learning of dynamical systems based on extreme learning
machine. IEEE Trans Syst Man Cybern. Syst. (99) 1–11 (2017)

4. Fahimi, F., Nataraj, C., Ashrafiuon, H.: Real-time obstacle
avoidance for multiple mobile robots. Robotica 27(2), 189 (2009)

5. Fiorini, P., Shiller, Z.: Motion planning in dynamic environments
using velocity obstacles. Int. J. Robot. Res. 17(7), 760–772 (1998)

https://github.com/mginesi/dmp_vol_obst
http://creativecommonshorg/licenses/by/4.0/
http://creativecommonshorg/licenses/by/4.0/

J Intell Robot Syst (2021) 101:79 Page 19 of 20 79

6. Gams, A., Nemec, B., Ijspeert, A.J., Ude, A.: Coupling movement
primitives: Interaction with the environment and bimanual tasks.
IEEE Trans. Robot. 30(4), 816–830 (2014)

7. Gasparetto, A., Zanotto, V.: A new method for smooth trajectory
planning of robot manipulators. Mechan. Machine Theory 42(4),
455–471 (2007)

8. Ginesi, M., Meli, D., Calanca, A., Dall’Alba, D., San-
sonetto, N., Fiorini, P.: Dynamic movement primitives: Vol-
umetric obstacle avoidance. In: 2019 19th International Con-
ference on Advanced Robotics (ICAR), pp. 234–239 (2019).
https://doi.org/10.1109/ICAR46387.2019.8981552

9. Ginesi, M., Sansonetto, N., Fiorini, P.: Overcoming some
drawbacks of dynamic movement primitives. arXiv:1908.10608
(2019)

10. Hoffmann, H., Pastor, P., Park, D.H., Schaal, S.: Biologically-
inspired dynamical systems for movement generation: Automatic
real-time goal adaptation and obstacle avoidance. In: Robotics and
Automation, 2009. ICRA’09. IEEE International Conference On,
pp. 2587–2592. IEEE (2009)

11. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine:
Theory and applications. Neurocomputing 70(1-3), 489–501
(2006)

12. Huang, R., Cheng, H., Guo, H., Chen, Q., Lin, X.: Hierarchical
Interactive Learning for a Human-Powered Augmentation Lower
Exoskeleton. In: Robotics and Automation (ICRA), 2016 IEEE
International Conference On, pp. 257–263. IEEE (2016)

13. Ijspeert, A.J., Nakanishi, J., Hoffmann, H., Pastor, P., Schaal, S.:
Dynamical movement primitives: Learning attractor models for
motor behaviors. Neural computation 25(2), 328–373 (2013)

14. Ijspeert, A.J., Nakanishi, J., Schaal, S.: Movement imitation with
nonlinear dynamical systems in humanoid robots. In: Robotics
and Automation, 2002. Proceedings. ICRA’02. IEEE International
Conference On, vol. 2, pp. 1398–1403. IEEE (2002)

15. Ijspeert, A.J., Nakanishi, J., Schaal, S.: Learning attractor
landscapes for learning motor primitives. In: Advances in Neural
Information Processing Systems, pp. 1547–1554 (2003)

16. Joshi, R.P., Koganti, N., Shibata, T.: Robotic cloth manipulation
for clothing assistance task using dynamic movement primitives.
In: Proceedings of the Advances in Robotics, p. 14. ACM (2017)

17. Khansari-Zadeh, S.M., Billard, A.: Learning stable nonlinear
dynamical systems with gaussian mixture models. IEEE Trans.
Robot. 27(5), 943–957 (2011)

18. Khatib, O.: Real-time obstacle avoidance for manipulators
and mobile robots. In: Proceedings 1985 IEEE International
Conference on Robotics and Automation, vol. 2, pp. 500–505.
IEEE (1985)

19. Khosla, P., Volpe, R.: Superquadric artificial potentials for
obstacle avoidance and approach. In: Proceedings. 1988 IEEE
International Conference on Robotics and Automation, pp. 1778–
1784. IEEE (1988)

20. Lin, C., Chang, P., Luh, J.: Formulation and optimization of cubic
polynomial joint trajectories for industrial robots. IEEE Trans.
Autom. Control 28(12), 1066–1074 (1983)

21. Magid, E., Keren, D., Rivlin, E., Yavneh, I.: Spline-based robot
navigation. In: Intelligent Robots and Systems, 2006 IEEE/RSJ
International Conference On, pp. 2296–2301. IEEE (2006)

22. Matsubara, T., Hyon, S.H., Morimoto, J.: Learning stylistic
dynamic movement primitives from multiple demonstrations.
In: Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ
International Conference On, pp. 1277–1283. Citeseer (2010)

23. Park, D.H., Hoffmann, H., Pastor, P., Schaal, S.: Movement
reproduction and obstacle avoidance with dynamic movement
primitives and potential fields. In: Humanoid Robots, 2008.
Humanoids 2008. 8th IEEE-RAS International Conference On,
pp. 91–98. IEEE (2008)

24. Pastor, P., Hoffmann, H., Asfour, T., Schaal, S.: Learning and
generalization of motor skills by learning from demonstration.
In: Robotics and Automation, 2009. ICRA’09. IEEE International
Conference On, pp. 763–768. IEEE (2009)

25. Pastor, P., Kalakrishnan, M., Righetti, L., Schaal, S.: Towards
associative skill memories. In: Humanoid Robots (Humanoids),
2012 12th IEEE-RAS International Conference On, pp. 309–315.
IEEE (2012)

26. Pastor, P., Righetti, L., Kalakrishnan, M., Schaal, S.: Online
movement adaptation based on previous sensor experiences. In:
2011 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. 365–371 (2011)

27. Perdereau, V., Passi, C., Drouin, M.: Real-time control of
redundant robotic manipulators for mobile obstacle avoidance.
Robot. Auton. Syst. 41(1), 41–59 (2002)

28. Rai, A., Meier, F., Ijspeert, A., Schaal, S.: Learning coupling
terms for obstacle avoidance. In: 2014 IEEE-RAS International
Conference on Humanoid Robots, pp. 512–518. IEEE (2014)

29. Rai, A., Sutanto, G., Schaal, S., Meier, F.: Learning feedback
terms for reactive planning and control. In: 2017 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pp. 2184–
2191. IEEE (2017)

30. Ratliff, N., Zucker, M., Bagnell, J.A., Srinivasa, S.: Chomp:
Gradient optimization techniques for efficient motion planning.
In: Robotics and Automation, 2009. ICRA’09. IEEE International
Conference On, pp. 489–494. IEEE (2009)

31. Rezaee, H., Abdollahi, F.: Adaptive artificial potential field
approach for obstacle avoidance of unmanned aircrafts. In: 2012
IEEE/ASME International Conference on Advanced Intelligent
Mechatronics (AIM), pp. 1–6. IEEE (2012)

32. Rimon, E., Koditschek, D.E.: Exact robot navigation using
artificial potential functions. IEEE Trans. Robot. Autom. 8(5),
501–518 (1992)

33. Roberti, A., Piccinelli, N., Meli, D., Fiorini, P.: Rigid 3d
calibration in a robotic surgery scenario. Hamlyn Symposium on
Medical Robotics (HSMR) in submission (2020)

34. Rohmer, E., Singh, S.P.N., Freese, M.: Coppeliasim (Formerly V-
Rep): A versatile and scalable robot simulation framework. In:
Proc. of The International Conference on Intelligent Robots and
Systems (IROS) Www.coppeliarobotics.com (2013)

35. Saveriano, M., Franzel, F., Lee, D.: Merging position and
orientation motion primitives. In: International Conference on
Robotics and Automation (ICRA), 2019 (2019)

36. Schaal, S.: Dynamic movement primitives-a framework for motor
control in humans and humanoid robotics. In: Adaptive Motion of
Animals and Machines, pp. 261–280. Springer (2006)

37. Sutanto, G., Su, Z., Schaal, S., Meier, F.: Learning sensor
feedback models from demonstrations via phase-modulated neural
networks. In: 2018 IEEE International Conference on Robotics
and Automation (ICRA), pp. 1142–1149. IEEE (2018)

38. Ude, A., Gams, A., Asfour, T., Morimoto, J.: Task-specific
generalization of discrete and periodic dynamic movement
primitives. IEEE Trans. Robot. 26(5), 800–815 (2010)

39. Ude, A., Nemec, B., Petrić, T., Morimoto, J.: Orientation in
cartesian space dynamic movement primitives. In: Robotics and
Automation (ICRA), 2014 IEEE International Conference On,
pp. 2997–3004. IEEE (2014)

40. Volpe, R.: Real and artificial forces in the control of manipulators:
theory and experiments. Ph.D. thesis, PhD thesis, Carnegie Mellon
University Department of Physics (1990)

41. Volpe, R., Khosla, P.: Manipulator control with superquadric
artificial potential functions: Theory and experiments. IEEE Trans
Syst Man Cybern 20(6), 1423–1436 (1990)

42. Wang, R., Wu, Y., Chan, W.L., Tee, K.P.: Dynamic movement
primitives plus: For enhanced reproduction quality and efficient

https://doi.org/10.1109/ICAR46387.2019.8981552
http://arxiv.org/abs/1908.10608
Www.coppeliarobotics.com

 79 Page 20 of 20 J Intell Robot Syst (2021) 101:79

trajectory modification using truncated kernels and local biases.
In: Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ
International Conference On, pp. 3765–3771. IEEE (2016)

43. Yan, Z., Jouandeau, N., Cherif, A.A.: A survey and analysis of
multi-robot coordination. Int. J. Adv. Robot. Syst. 10(12), 399
(2013)

44. Zhang, W., Rodrı́guez-seda, E.J., Deka, S.A., Amrouche, M.,
Hou, D., Stipanović, D.M., Leitmann, G.: Avoidance control with
relative velocity information for lagrangian dynamics. J. Intell.
Robot. Syst. 1–16 (2019)

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Michele Ginesi received his Master’s Degree in Mathematics at the
University of Verona in 2017. In the same year, he joined the Ph.D.
program in Computer Science at the same University, working at the
Altair Robotics Laboratory. His research focuses on the definition of
a model to learn surgical gestures to automate simple interventions in
the context of Minimally Invasive Robotic Surgery.

DanieleMeli received his Master’s Degree in Automation Engineering
at the Polytechnic University of Bari in 2017. In the same year,
he joined the Ph.D. program in Computer Science at the University
of Verona, working at the Altair Robotics Laboratory. His current
research focuses on explainable AI tools for application in safe task
planning and learning for Minimally Invasive Surgery.

Andrea Roberti received the M.S. degree in computer science from
the University of Verona, Italy, in 2018, where he is currently working
toward the Ph.D. degree in computer science. His research interests
include computer vision with applications to robotics, planning and
control of mobile sensors.

Nicola Sansonetto received his Laurea in Physics and Ph.D. in
Mathematics at the University of Padova, Italy. He then was post-doc
at the Department of Computer Science of the University of Verona
and at the Department of Mathematics Levi-Civita at the University
of Padova. In 2016 joined the Altair Lab at the University of Verona
and in 2019 got the position of Associate researcher at the same
University. His research is meanly devoted to physical and engineering
applications of differential geometry, geometric control theory, and
applied dynamical systems.

Paolo Fiorini received the Laurea in EE from the University of
Padova, (Italy), the MSEE from the University of California at
Irvine (USA), and the Ph.D. in ME from UCLA (USA). From
1977 to 1985 he worked on microprocessor-based controllers for
consumer and industrial systems. From 1985 to 2000, he was with
NASA Jet Propulsion Laboratory, California Institute of Technology,
where he worked on autonomous and teleoperated systems for space
experiments and exploration. In 2001 he joined the University of
Verona (Italy) where is Full Professor of Computer Science. His
research focuses on autonomous robots for medical and surgical
applications.

	Dynamic Movement Primitives: Volumetric Obstacle Avoidance Using Dynamic Potential Functions
	Abstract
	Introduction
	Dynamic Movement Primitives
	Dynamic Movement Primitives
	Methods for Obstacle Avoidance

	New Potential Function
	Results
	Execution Time
	Synthetic Experiments
	Experiments with Robots in Simulation
	Experiments on Real Setups
	Experiments with Panda Robot
	Experiments with the da Vinci Surgical Robot
	Experiments with Real YouBot

	Conclusions
	Declarations
	References

