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Abstract
We give applications of the theory of superoscillations to various questions, namely
extension of positive definite functions, interpolation of polynomials and also of R-
functions; we also discuss possible applications to signal theory and prediction theory
of stationary stochastic processes. In all cases, we give a constructive procedure, by
way of a limiting process, to get the required results.

Keywords Superoscillations · Analytic extension · Stationary stochastic processes

Mathematics Subject Classification 30D15 · 30A14 · 42A82 · 42A10 · 60G10

1 Introduction

The notion of superoscillatory functions appears in a series of works of Aharonov,
and Berry, see [1–3,19–21], and this mathematical theory has been developed and
described in [4–9,11,22–25] and in the monograph [10], and for a historical insight to
the function theory see [12,13,17].

The appearance of the superoscillatory phenomenon in quantummechanics is based
on the definition ofweak values, see [3]. This value, which is a complex number, comes
from a weak measurement of a quantum observable, represented by the self-adjoint
operator A, involving a pre-selected stateψ0 and a post-selected stateψ1, and is defined
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as

Aweak := (ψ1, Aψ0)

(ψ1, ψ0)
= b + ib′.

Its real part b and its imaginary part b′ can be interpreted as the shift b and the
momentum b′ of the pointer recording the measurement.

An important feature of the weak measurement is that, in contrast with the strong
measurements of von Neumann (given by the expectation value of the operator A)

Astrong := (ψ, Aψ),

the real part b of Aweak can be very large, because (ψ1, ψ0) can be very small when
the statesψ0 and ψ1 are almost orthogonal. This is what produces the so-called super-
oscillations.

From the mathematical point of view the archetypical superoscillatory sequence,
that first appeared in connection with the theory of weak values, is the sequence of
complex valued functions Fn(x, a) defined on R by

Fn(x, a) =
(
cos

( x
n

)
+ ia sin

( x
n

))n =
n∑

k=0

ck(n, a)eix(1−2k/n) (1.1)

where

ck(n, a) =
(
n

k

) (
1 + a

2

)n−k (
1 − a

2

)k

, (1.2)

a > 1, and
(n
k

)
denotes the binomial coefficients. If we fix x ∈ R, and we let n go to

infinity, we immediately obtain that

lim
n→∞ Fn(x, a) = eiax , a > 1.

So for a > 1 the frequency appearing in eiax is larger then the frequencies 1−2k/n in
eix(1−2k/n) that are bounded by 1. From this observation we have the intuitive notion
of superoscillatory functions that are, as we will see precisely in the sequel, a special
case of super-shift.
To show how superoscillations will be used in this paper, we begin with a question.

Problem 1.1 Assume to know the values of a polynomial p, whose degree is fixed but
unknown, on the set

{
1 − 2k

n
, n = 1, 2, . . . , k = 0, . . . , n

}
⊂ [−1, 1]

(of course, the degree of p is uniquely fixed since we know the values of p on a
countable set of points). How can we find the values of p on R \ [−1, 1]?

We cannot use directly the Lagrange interpolating polynomials, since we are not
given the degree of p. One could define a family of Lagrange interpolating polynomi-
als, of increasing degrees, but convergence is not clear.
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Remark 1.2 This is an extrapolation problem, of the kind considered also in [18,29,30,
34], but here we use different techniques. In fact, we use superoscillations to answer
this question. We also note that methods of extrapolation involving Carleman’s ideas
as developed by Aizenberg, see [14], deserve to be mentioned.

Moreover, considering the coefficients ck(n, a), defined in (1.2), with a ∈ R, n =
0, 1, . . . and k = 0, 1, . . . , n, one can prove that the formula

p(a) = lim
n→∞

n∑
k=0

ck(n, a)p(1 − 2k/n), a ∈ R \ [−1, 1].

answers the question.
More generally, consider a function f analytic in an open connected set of the

complex plane. By analytic extension, f is uniquely determined by its values on a
zero set, but in general no practical formulas seem to be known in general to recover f
from this set. In this paper and using the theory of superoscillations we show how one
can, in certain cases, give a practical way to recover f . As a prelude to the introduction
let us state three theorems, whose proofs will be given in the paper. These results can
be put under the following common umbrella: When does the limit

lim
n→∞

n∑
k=0

ck(n, a) f (1 − 2k/n) , a ∈ R \ [−1, 1] (1.3)

exists, and what is its significance?
The first result will be of special interest for researchers in function theory; the

second result is also in function theory, with possible applications in Schur analysis
and in quantum mechanics via the theory of R-functions, while the third will be of
special interest in the theory of stochastic processes in the case of perfect prediction. In
the three results, the stress is on the possibility of an explicit approximation procedure
to obtain the solution.

Theorem 1.3 Let f (z) be an entire function of finite exponential type, and assume
given f (t), t ∈ [−1, 1]. Then, for every real a ∈ R \ [−1, 1] we have

f (a) = lim
n→∞

n∑
k=0

ck(n, a) f (1 − 2k/n)

where the limit is uniform on compact sets on the real line.

Theorem 1.4 Let dμ be a positive and finite measure on the real line, and assume that
μ̂ has compact support. Let z = iy0 + x, x ∈ [−1, 1], with y0 > 0 fixed but arbitrary.
Let

φ(z) = 1

i

∫

R

dμ(t)

t − z
. (1.4)
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Then,

φ(z) = lim
n→∞

n∑
k=0

ck(n, x)φ(iy0 + (1 − 2k/n)). (1.5)

In other words, we can explicitly recover all values of φ in the open upper half-plane
from the values on the band [−1, 1] × (0,∞).

In these theorems, analytic extension insures that f and φ respectively are uniquely
determined by their values on a much smaller set, but the point here is to recover the
values of the function in an explicit way.

Theorem 1.5 Let (Xt )t∈R be a zero-mean second order wide sense stationary process
in the probability spaceL2(�, C, P), with covariance function EP (Xt Xs) = r(t−s),
and assume that r is entire of finite exponential type. Assume known r(t) for t ∈
[−1, 1]. Then, for any a ∈ R \ [−1, 1] we have

Xa = lim
n→∞

n∑
k=0

ck(n, a)X(1−2k/n) (1.6)

where the limit in the L2(�, C, P) sense.

As explained in the paper, the hypothesis in the theorem imply that we are in the
perfect prediction case; equation (1.6) gives a constructive way to find the value Xa

for any a ∈ R \ [−1, 1].
The purpose of this paper is to discuss links between superoscillations and harmonic

analysis, the above theorems being some of the surprising results. The paper consists
of five sections besides the introduction. In Sect. 2 we give a short review of the theory
of superoscillations. Section 3 contains results on super-shift of entire functions and on
interpolation of polynomials. In Sect. 4wegive a result on extension and reconstruction
in the setting of positive definite functions on the real line. Connections with the
trigonometric moment problems, to the theory of stationary stochastic processes and
to signal theory are given in Sect. 6.

2 A Short Review on Superoscillations

A superoscillatory function frequently considered in the context of weak measure-
ments is of the type (1.1) where we choose a > 1 and the coefficients ck(n, a)

are given by (1.2). If we fix x ∈ R and we let n go to infinity, we obtain that
limn→∞ Fn(x, a) = eiax . We point out that in the following we will denote Fn(x, a)

also by the symbol Fn(x) when it is not important to specify the dependence on the
parameter a. The above fact can be put in precise mathematical terms in the frame-
work of holomorphic entire functions as follows. We recall some notions and results
on entire functions. Let f be a non-constant entire function of a complex variable
z. We define M f (r) = max|z|=r | f (z)|, for r ≥ 0. The non-negative real number ρ

defined by

ρ = lim sup
r→∞

ln lnM f (r)

ln r
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is called the order of f . If ρ is finite then f is said to be of finite order and if ρ = ∞
the function f is said to be of infinite order. In the case f is of finite order we define
the non negative real number

σ = lim sup
r→∞

lnM f (r)

rρ
,

which is called the type of f . If σ ∈ (0,∞) we call f of normal type, while we say
that f is of minimal type if σ = 0 and of maximal type if σ = ∞. The constant
functions are said to be of minimal type of order zero.

Definition 2.1 Let p ≥ 1. We denote by Ap(C) the space of entire functions with
either order lower than p or order equal to p and finite type. It consists of entire
functions f , for which there exist constants B,C > 0 such that ∀z ∈ C

| f (z)| ≤ CeB|z|p . (2.1)

Let ( fn)n∈N, f0 ∈ Ap(C). Then fn → f0 in Ap(C) if there exists some B > 0 such
that

lim
n→∞ sup

z∈C

∣∣∣( fn(z) − f0(z))e
−B|z|p

∣∣∣ = 0. (2.2)

Theorem 2.2 For any a ∈ C, the sequence {Fn(z, a)}n≥1 converges to z 
→ eiaz in
A1(C).

Remark 2.3 In particular the convergence in A1(C) implies the convergence on the
compact sets of C.

Lemma 2.4 Let a ∈ R and let Fn(z, a) be as in definition (1.1) for z ∈ C. Then, for
all p ∈ N

lim
n→∞ ∂

(p)
z Fn(z, a) = ∂

(p)
z eiaz

uniformly on every compact set K in C.

The precise definition of superoscillatory functions is as follows.

Definition 2.5 (Generalized Fourier sequence). We call generalized Fourier sequence
a sequence of the form

Yn(x, a) :=
n∑
j=0

C j (n, a)eik j (n)x (2.3)

where a ∈ R, C j (n, a) and k j (n) are real valued functions of the variables n, a and
n, respectively.

The sequence of partial sums of a Fourier expansion is a particular case of this notion
with C j (n, a) = C j ∈ R and k j (n) = k j ∈ R.
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Definition 2.6 (Superoscillating sequence). Let a ∈ R. A generalized Fourier
sequence

Yn(x, a) =
n∑
j=0

C j (n, a)eik j (n)x

is said to be a superoscillating sequence if:

• |k j (n)| ≤ 1;
• there exists a compact subset of R, which will be called a superoscillation set,
on which Yn converges uniformly to eig(a)x where g is a continuous real value
function such that |g(a)| > 1.

The classical Fourier expansion is obviously not a superoscillating sequence since its
frequencies are not, in general, bounded. It is possible to construct a large class of
superoscillatory function using continuity theorems of suitable convolution operators
acting on spaces of entire functions. For example, consider the function

ψn(x, t) =
n∑
j=0

ck(n, a)eix(1−2k/n)m , m ∈ N,

where ck(n, a) are defined in (1.2) taking the limit we have

lim
n→∞ ψn(x, t) = eia

mx .

More general we can consider holomorphic functions g such that under suitable con-
ditions the sequence

φn(x, t) =
n∑

k=0

ck(n, a)eixg(1−2k/n)

where ck(n, a) are defined in (1.2) is superoscillatory and

lim
n→∞ φn(x, t) = eig(a)x .

3 Super-Shift of Polynomials and of Entire Functions

In this section we show how to answer the first question in the Introduction, namely,
how to find the values of a polynomial p of fixed, but unknown, degree, knowing its
values in [−1, 1]. To this end, we consider the points 1 − 2k/n ⊆ [−1, 1] and the
sequence

n 
→
n∑

k=0

ck(n, a)p (1 − 2k/n) .

We have:
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Theorem 3.1 Let p be a polynomial. Then,

lim
n→∞

n∑
k=0

ck(n, a)p (1 − 2k/n) = p (a) a ∈ R \ [−1, 1]. (3.1)

Proof We first prove

lim
n→∞

n∑
k=0

ck(n, a)
ku

nu
=

(
1 − a

2

)u

, u = 0, 1, . . . (3.2)

and proceed by induction on the degree u of p. For degree 0, the result is true since∑n
k=0 ck(n, a) = 1. Assume the result true at degree u − 1. We can write

n∑
k=1

ck(n, a)
ku

nu
=

n∑
k=1

k

n

(
n

k

) (
1 + a

2

)n−k (
1 − a

2

)k ku−1

nu−1

=
(
1 − a

2

) (
n∑

k=1

(
n − 1

k − 1

)(
1 + a

2

)n−k (
1 − a

2

)k−1 ku−1

nu−1

)

=
(
1 − a

2

)
(n − 1)u

nu

(
n∑

k=1

(
n − 1

k − 1

)(
1 + a

2

)n−k (
1 − a

2

)k−1 ku−1

(n − 1)u−1

)

and so

lim
n→∞

n∑
k=0

ck(n, a)
ku

nu
= 1 − a

2
lim
n→∞

n−1∑
k=0

ck(n − 1, a)
ku−1

(n − 1)u−1

= 1 − a

2

(
1 − a

2

)u−1

=
(
1 − a

2

)u

.

We now prove (3.1). It is enough to prove the result for monomials. We have for
u = 0, 1, . . ., and using (3.2) to get to the last line,

lim
n→∞

n∑
k=0

ck(n, a)

(
1 − 2k

n

)u

= lim
n→∞

n∑
k=0

ck(n, a)

(
u∑

r=0

(
u

r

) (
2k

n

)r

(−1)r
)

=
u∑

r=0

2r (−1)r
(
u

r

)(
lim
n→∞

n∑
k=0

ck(n, a)

(
k

n

)r
)

=
u∑

r=0

2r (−1)r
(
u

r

)(
1 − a

2

)r
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=
u∑

r=0

(
u

r

)
(a − 1)r

= au .

�

Formula (3.1) allows to reconstruct a polynomial of any degree from its values at
the points 1 − 2k

n , n = 1, 2, . . . , and k = 0, 1, . . . , n.
The above observation and the definition of superoscillatory functions naturally lead
the definition of super-shift.

Definition 3.2 (Super-shift). Let I ⊆ R be an interval with [−1, 1] ⊂ I, � ⊆ R
d be

a domain and let ϕ : I × [0, T ] × � → R, T > 0 be a continuous function on I.
If ϕλ(t, x) := ϕ(λ, t, x), we can consider a sequence of points {λk,n} in [−1, 1] for
n = 0, . . . ,+∞, and a sequence of complex numbers {ck(n)}, and define the functions

ψn(t, x) =
n∑

k=0

ck(n)ϕλk,n (t, x). (3.3)

If
lim
n→∞ ψn(t, x) = ϕa(t, x)

for some a ∈ I, we say that the function λ → ϕλ(t, x), for t and x fixed, admits a
super-shift in λ.

The previous result generalizes to entire functions:

Theorem 3.3 Let f ∈ A1(C), i.e. let f be an entire function such that there exist
C f > 0, b > 0 for which

|αu | ≤ C f
bu

u! . (3.4)

Then we have

f (a) = lim
n→∞

n∑
k=0

ck(n, a) f (1 − 2k/n).

Proof We introduce the auxiliary complex variable ξ so that

Dr
ξe

iβξ = (iβ)r eiβξ

so

βr = 1

ir
Dr

ξe
iβξ |ξ=0. (3.5)
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We have the following chain of equalities:

n∑
k=0

ck(n, a) f (1 − 2k/n) =
∞∑
u=0

αu

n∑
k=0

ck(n, a)(1 − 2k/n)u

=
∞∑
u=0

αu

n∑
k=0

ck(n, a)
1

iu
Du

ξ e
i(1−2k/n)ξ |ξ=0

=
∞∑
u=0

αu
1

iu
Du

ξ

n∑
k=0

ck(n, a)ei(1−2k/n)ξ |ξ=0

=
∞∑
u=0

αu
1

iu
Du

ξ Fn(ξ, a)|ξ=0.

Now we consider the operator

U (Dξ ) :=
∞∑
u=0

αu
1

iu
Du

ξ

and since the coefficients αu satisfy the condition (3.4) we have by Theorem 2.3 in
[17] (see also [16] for more details) that it acts continuously on the functions inA1(C).
So we get

lim
n→∞

n∑
k=0

ck(n, a) f (1 − 2k/n) = lim
n→∞U (Dξ )Fn(ξ, a)|ξ=0

= U (Dξ ) lim
n→∞ Fn(ξ, a)|ξ=0

= U (Dξ )e
iaξ |ξ=0

=
∞∑
u=0

αua
u = f (a),

and this concludes the proof. �

Remark 3.4 The proof of Theorem 3.3 suggests a second proof of Theorem 3.1. In
fact, we have

n∑
k=0

ck(n, a)p(1 − 2k/n) =
N∑

u=0

αu

n∑
k=0

ck(n, a)(1 − 2k/n)u .
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Using (3.5) we can write

n∑
k=0

ck(n, a)PN (1 − 2k/n) =
N∑

u=0

αu
1

iu
Du

ξ

n∑
k=0

ck(n, a)ei(1−2k/n)ξ |ξ=0

=
N∑

u=0

αu
1

iu
Du

ξ Fn(ξ, a)|ξ=0.

Now we observe that

lim
n→∞

N∑
u=0

αu
1

iu
Du

ξ Fn(ξ, a)|ξ=0 =
N∑

u=0

αu
1

iu
Du

ξ lim
n→∞ Fn(ξ, a)|ξ=0

=
N∑

u=0

αu
1

iu
Du

ξ e
iaξ |ξ=0 = p(a).

and this concludes the proof.

4 Extension

Given a function D(a), a ∈ [−1, 1] positive definite in [−1/2, 1/2], the theory of the
description of all its positive definite extensions to the real line has a long history, see
[33] and the references therein. The problem can be formulated as follows:

Problem 4.1 Find necessary and sufficient conditions on a given a function D(a), a ∈
[−1, 1] for the existence of a positive measure μ with compact support K such that

∫

K
eiat dμ(t) = D(a), a ∈ [−1, 1]. (4.1)

Here we study this problem using the theory of superoscillations. We first give
necessary conditions:

Lemma 4.2 Assume that Problem 4.1 has a solution. Then the function D is necessarily
continuous in [−1, 1], satisfies D(−a) = D(a), and the kernel k(a, b) = D(a − b)
is positive definite for a, b ∈ (−1/2, 1/2). Finally, D is the restriction to [−1, 1] of a
uniquely defined entire function of finite exponential type and the limit

lim
n→∞

n∑
k=0

ck(n, a)D(1 − 2k/n) (4.2)

exists for every real number a.



Journal of Fourier Analysis and Applications            (2021) 27:28 Page 11 of 19    28 

Proof Let (an)n∈N be a sequence of real points with limit a. Since the support K is a
compact set in R, by dominated convergence can interchange limit with respect to a
and integration and write

lim
n→∞ D(an) = lim

n→∞

∫

K
eiant dμ(t) =

∫

K
lim
n→∞ eiant dμ(t) = D(a).

Interchanging complex adjoint and integration gives D(−a) = D(a). The positivity
claim follows from

D(a − b) =
∫

K
eiat e−ibt dμ(t), a, b ∈ (−1/2, 1/2). (4.3)

D(a) is the restriction to [−1, 1] of an entire function, and so has a unique extension
which is entire. Since the sequence of functions Fn(t, a) converges uniformly on
compact sets to eiat we can write

∫

K
eiat dμ(t) = lim

n→∞

n∑
k=0

ck(n, a)D(1 − 2k/n), (4.4)

which is (4.2). �

Formula (4.3) expresses that the function
∫ 2π
0 eiat e−ibt dμ(t) is a positive definite

extension of D(a − b) to the whole real line.

Theorem 4.3 Let D be continuous on [−1, 1], such that the kernel k(a, b) = D(a−b)
is positive definite on [−1/2, 1/2], and D is the restriction to [−1, 1] of an entire
function of finite exponential type. Then the limit (4.2) exists, and defines a positive
definite function. This function is the only positive extension of D.

Proof The function D has positive definite extensions toR, see [33], and by Bochner’s
theorem (see [35, p. 333]) we can write any of these extensions in the form

∫

R

eiat dσ(t).

The measure dσ defines a distribution on the space of Schwartz functions, and its
Fourier transform is an entire function of finite exponential type. By the Paley–Wiener
theorem, the support of dσ is finite, say K , and so

n∑
k=0

ck(n, a)D(1 − 2k/n) =
∫

K

(
n∑

k=0

ck(n, a)ei(1−2k/n)t

)
dσ(t).
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Since K is compact, one proceeds as in Lemma 4.2, interchange the limit and the
integral, and write

lim
n→∞

∫

K

(
n∑

k=0

ck(n, a)ei(1−2k/n)t

)
dσ(t) =

∫

K
lim
n→∞

(
n∑

k=0

ck(n, a)ei(1−2k/n)t

)
dσ(t)

=
∫

K
eiat dσ(t).

The function f (a) = ∫
K eiat dσ(t) is positive definite on the real line, and by analyt-

icity is the only entire positive extension of D. It is in fact the only positive extension
of D, since by the above construction, two such extensions D1 and D2 would be such
that

D(a) = D1(a) = D2(a) =
∫

K1

eiat dσ1(t) =
∫

K2

eiat dσ2(t), a ∈ [−1/2, 1/2]

where σ1 and σ2 are positive finite measures with respective supports the compact sets
K1 and K2. �

When the interval [−π, π ] is chosen in (4.1) connections with the trigonometric
moment problem (see e.g. [15]) can be made, but other choices of compact sets are
also of special interest.

Other classes of measures can be considered, which include the compact support
case.

Definition 4.4 We denote by M1 the set of positive finite measures on R such that

∫

R

eC|x |dσ(x) < ∞, ∀C ≥ 0. (4.5)

For instance measures with compact support or measures such as e−x2dx belong
toM1. We note also that the class M1 is related to the discussion in [35, p. 335].

Problem 4.5 Given a function D(a), a ∈ [−1, 1] find a necessary and sufficient con-
dition for a positive measure σ ∈ M1 such that

∫

R

eiat dσ(t) = D(a), a ∈ [−1, 1] (4.6)

to exist, and give a formula for σ .

By (2.2) for every a ∈ R there exist Ba and Na (which depend on a) such that

n ≥ Na �⇒ sup
z∈C

∣∣∣(Fn(z, a) − eiaz)e−Ba |z|
∣∣∣ ≤ 1

and thus for n ≥ Na , and restricting z to be real,

|Fn(x, a)| ≤ 1 + eBa |x |, ∀x ∈ R.
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The dominated convergence theorem allows then to conclude that, for any given a ∈ R

lim
n→

∫

R

∣∣∣Fn(x, a) − eiax
∣∣∣dσ(x) = lim

n→

∫

R

∣∣∣Fn(x, a) − eiax
∣∣∣e−Ba |x |eBa |x |dσ(x)

= 0

More generally, for p ≥ 1, one can introduce the classMp the set of positive finite
measures on R such that

∫

R

eC|x |p dσ(x) < ∞, ∀C ≥ 0 (4.7)

which can be of independent interest, although we do not use them in this paper. We
note that Mp ⊂ Mq ⊂ M1, for p ≥ q ≥ 1.

5 R-Functions and Interpolation

Let dμ be a positive and finite measure on the real line, and let

φ(z) = 1

i

∫

R

dμ(t)

t − z
. (5.1)

Then for z, w ∈ C \ R,

φ(z) + φ(w)

−i(z − w)
=

∫

R

dμ(t)

(t − z)(t − w)

so that iφ is a Nevanlinna function (also known as R-function). For Im z > 0 we have

φ(z) = 1

i

∫

R

dμ(t)

t − z

=
∫

R

dμ(t)
∫ ∞

0
e−i(t−z)udu

=
∫ ∞

0
eizu

(∫

R

e−i tudμ(t)

)
du

=
∫ ∞

0
eizuμ̂(u)du

where we denote by μ̂(u) = ∫
R
e−i tudμ(t) the Fourier transform of the measure μ.

Theorem 5.1 When μ̂ has compact support, one can recover φ(iy0 + x), x ∈ R, from
φ(z), z = iy0 + x, x ∈ [−1, 1], with y0 > 0 fixed but arbitrary, via the limit

φ(z) = lim
n→∞

n∑
k=0

ck(n, x)φ((1 − 2k/n) + iy0). (5.2)
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Proof Let z = iy0 + x , with x ∈ [−1, 1]. We have

φ(z) =
∫ ∞

0
eiux e−y0uμ̂(u)du

=
∫ ∞

0
lim
n→∞

(
n∑

k=0

ck(n, x)ei(1−2k/n)u

)
e−y0uμ̂(u)du

= lim
n→∞

∫ ∞

0

(
n∑

k=0

ck(n, x)ei(1−2k/n)u

)
e−y0uμ̂(u)du

= lim
n→∞

n∑
k=0

∫ ∞

0
ck(n, x)ei((1−2k/n)+iy0)uμ̂(u)du

= lim
n→∞

n∑
k=0

ck(n, x)φ((1 − 2k/n) + iy0).

�
The above proof still holds if μ̂ has the following property: There exists y0 > 0

such that
∫ ∞
0 e−y0uμ̂(u)du converges absolutely. Using the dominated convergence

theorem, one can then recover explicitly the values of φ for (x, y) ∈ [−1, 1]× (0, y0)
via (5.2).

6 Some Applications

In this section we discuss some possible applications of the ideas and techniques
illustrated in this paper to some other settings.

We start by discussing links of Sect. 4 with the trigonometric moment problem. Let
us consider D as in Sect. 4, and let us denote still by D its entire extension. Then we
have:

|D(λ)| ≤ CeC2|Im λ|, λ ∈ C, (6.1)

where C2 ≥ 0. By Paley-Wiener theorem, the support K of the distribution dσ is
inside the interval [−C2,C2]. We now assume that C2 ≤ π .

Theorem 6.1 Assume that C2 ≤ π in (6.1). There is a unique measure dμ satisfying
(4.1) with K = [−π, π ] and we have:

∫ π

−π

eit + z

eit − z
dμ(t) = D(0) + 2

∞∑
m=1

zm
(

lim
n→∞

(
n∑

k=0

ck(n,m)D(−(1 − 2k/n))

))
,

|z| < 1.

Proof Let

R(m) = lim
n→∞

n∑
k=0

ck(n,m)D(1 − 2k/n), m = 2, 3, . . .
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Then the Toeplitz matrices

TM = (R(u − v))u,v=0,...M

are all non-negative since the function (4.2) is positive definite on the real line.

The second claim is a standard result from the trigonometric moment problem.
Write R(m) = ∫ π

−π
eimudμ(u). Then, on the one hand

ϕ(z) =
∫ π

−π

eit + z

eit − z
dμ(t)

and on the other hand we have:

ϕ(z) = r(0) + 2
∞∑

m=1

R(−m)zm

= D(0) + 2
∞∑

m=0

zm
(

lim
n→∞

(
n∑

k=0

ck(n,m)D(−(1 − 2k/n))

))
.

(6.2)

�
Section 4 also links with stationary stochastic processes. Let (�, C, P) be a

probability space, that is, a measure space, endowed with a sigma-algebra C and a
positive measure P (called probability measure) satisfying P(�) = 1. Functions
from (�, C, P) into C are called random variables. A function X from some set T
into L2(�, C, P) is called a second order probability process. We denote by EP the
mathematical expectation:

EP (X) =
∫

�

X(ω)dP(ω),

and recall that the covariance function of X is the positive definite function defined by

KX (t, s) = EP (Xt Xs).

We will assume here T = R or a sub-interval of R, or T = Z, or a subset of Z.
The process is called wide-sense stationary (we will say stationary in this section) if
function (t, s) 
→ EP (Xt Xs) depends only of the difference t − s then

EP (Xt Xs) = r(t − s) (6.3)

where r is called the the covariance function.
In the case T = R, assuming that r is continuous at the origin, Bochner’s theorem
insures that

r(t) =
∫

R

eitudσ(u)
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where σ is a positive measure, see [35], and it follows that we have the isomor-
phism Xt ⇐⇒ eitu , called the trigonometric isomorphism, from L2(�, C, P) into
L2(R,B, dσ). Let m(u) denote the absolutely continuous part in the decomposition
of σ as a sum of a measure absolutely continuous with Lebesgue measure and a mea-
sure orthogonal to the Lebesgue measure. We assume that dσ has bounded support.
It follows in particular that ∫

R

lnm(u)

1 + u2
du = −∞.

By Szegö’s alternative theorem, the closed linear span of the exponentials is equal to
L2(R,B, dσ).We are in the case of perfect prediction. The trigonometric isomorphism
allows to interpret formula (4.4) as an explicitway of solving the extrapolation problem
for stationary processes in the case of perfect prediction, namely we have:

Theorem 6.2 Let (Xt )t∈R be a zero-mean second order wide sense stationary process
in the probability spaceL2(�, C, P), with covariance function EP (Xt Xs) = r(t−s),
and assume that r is entire of finite exponential type. Assume known r(t) for t ∈
[−1, 1]. Then, for any a ∈ R \ [−1, 1] we have

Xa = lim
n→∞

n∑
k=0

ck(n, a)X(1−2k/n) (6.4)

where the limit is in the L2(�, C, P) sense.

Stationary increments processes form an important class of stochastic processes,
whose covariance functions were studied in particular by Krein, Schoenberg and von
Neumann; see [31,32,36]. These are functions of the form:

∫

R

eitu − 1

u

e−isu − 1

u
dσ(u) = r(t) + r(s) − r(t − s). (6.5)

Assuming that dσ has compact support, and of the form

σ(u) = udμ(u)

we can take

r(t) =
∫

R

(1 − eitu)dμ(u) (6.6)

and we have

r(t) = μ(R) − lim
n→∞

n∑
k=0

ck(n, t)(μ(R) − r(1 − 2k/n))

= lim
n→∞

n∑
k=0

ck(n, t)r(1 − 2k/n)

since
∑n

k=0 ck(n, t) = 1.
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Remark 6.3 de Branges spaces in this context can be defined following a standard
argument. Let dμ be a positive measure on the real line such that

∫
R

dμ(t)
t2+1

< ∞.

For a given T > 0, the closed linear span HT of the functions u 
→ eitu−1
u , |t | ≤

T , plays an important role in prediction theory; when HT �= L2(R, μ), it has a
reproducing kernel of a special form. These spaces were first introduced and studied
by de Branges; see [27], and their application to prediction theory was developed by
Dym and McKean; see [28,29]. However, this theory will not help here, since we are
in the perfect prediction case. The map which to f ∈ L2(R,B, dσ) associates the
function

Ff (t) =
∫

R

eitu f (u)dσ(u)

is an isomorphism between L2(R,B, dσ) and the reproducing kernel Hilbert space
with reproducing kernel ∫

R

ei(t−s)udσ(u)

and one can recover the values of Ff (t) in R from its values in [−1, 1] as

Ff (t) = lim
n→∞

n∑
k=0

ck(t, n)Ff (1 − 2k/n).

To quote [28, p. 302], perfect prediction of the future on the basis of the whole past is
possible precisely in the non-Hardy space.

Finally, it is well known that the theory of superoscillations has applications to
signal theory and in the literature there are plenty of results in this direction, starting
from the early paper by Berry, see [19].
Herewe consider a signal s(t)with band-limited spectrum, so that its Fourier transform
(i.e. its spectrum) ŝ(ω) = ∫

R
e−iωt s(t)dt has a compact support, whichwewill assume

symmetric and denote as [−M, M]. We can write

s(t) = 1

2π

∫

[−M,M]
eiωt ŝ(ω)dw, (6.7)

and in particular s is (the restriction to the real line) of an entire function of finite
exponential type. By analytic extension it can, in principle, be recovered knowing its
values on a zero set, but, as we mentioned above, no practical formula seems to be
known in general. In another direction, Shannon’s sampling theorem asserts that

s(t) =
∑
n∈Z

s
(nπ

M

) sin(Mt − nπ)

Mt − nπ
, (6.8)

and ∫

R

|s(t)|2dt = π

M

∑
n∈Z

∣∣s
(nπ

M

) ∣∣2. (6.9)
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For more details see the paper [26]. In the next result we consider an extrapolation
problem, see also [18,29,30,34], solved with the techniques developed in Sect. 4:

Theorem 6.4 Let s be a signal with band-limited spectrum. Then, for t ∈ R \ [−1, 1],

s(t) = lim
n→∞

n∑
k=0

ck(n, t)s(1 − 2k/n). (6.10)

Proof Since the sequence of function ω 
→ Fn(ω, t) converges uniformly on compact
sets to eitω we can write, as done in (4.4)

∫

K
eiat dμ(t) = lim

n→∞

n∑
k=0

ck(n, a)D(1 − 2k/n), (6.11)

which is (6.10). �
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