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EFFECT OF WAVE ACTION ON MOVEMENT IN THE OWL 
LIMPET, Lottia gigantea, IN SANTA CRUZ, CALIFORNIA

William G. Wright and James W. Nybakken

ABSTRACT
The critical role of wave energy in the ecology of nearshore organisms is widely 

accepted, based primarily on biotic correlations over large scales of time and space. 
Much less is known about how large waves impact the behavioral ecology of indi-
vidual organisms. Theoretical considerations and measurements of tenacity predict 
that intertidal gastropods should minimize the chances of dislodgement during pe-
riods of high waves by remaining stationary. We tested this prediction by observing 
a population of the owl limpet, Lottia gigantea G. B. Sowerby I, 1834, in a range of 
sea conditions. We found the proportion of the population moving during high tide 
was reduced when maximum wave height exceeded 1 m. This relatively low thresh-
old suggests that ambient sea state has a consistent influence on foraging strategy 
of intertidal limpets.

Extreme environments have long been recognized as fertile testing grounds for 
adaptive hypotheses (Wharton, 2002). One such environment is the intertidal zone 
of the world’s oceans (Lewis, 1964; Stephenson and Stephenson, 1971; Ricketts et al., 
1992). In addition to wide fluctuations in temperature and salinity, intertidal organ-
isms of outer-coast intertidal zones are also exposed to damage and dislodgment 
due to high fluid velocities generated by ocean swells as they collide with the shore-
line (Denny 1985, 1988). Swell-induced wave energy is thought to have profound ef-
fects on intertidal community structure (e.g., Dayton, 1971; Paine and Levin, 1981; 
McQuaid and Branch, 1985), as well as the biology of individual species, both ses-
sile (Denny et al., 1985; Holbrook et al., 1991; Blanchette, 1997; Denny and Gaylord, 
2002) and mobile (Denny 1985, 1988). Intertidal limpets have been widely utilized for 
research into the ecological effects of wave energy on mobile species (Denny, 1985, 
1988; Brown and Quinn, 1987; Judge, 1988; Denny and Blanchette, 2000; Jenkins and 
Hartnoll, 2001; Jonsson et al., 2006), and the overwhelming consensus is that wave 
energy can exert strong selection on the ecology of these organisms. Nevertheless, 
the evidence for such selection is mainly indirect, resting on experiments and cor-
relations across relatively large scales of space and time (e.g., Dayton, 1971; Paine and 
Levin, 1981; McQuaid and Branch, 1985). 

Additional independent tests of the adaptive hypothesis that wave energy con-
strains the biology of mobile intertidal invertebrates may be realized by behavioral 
observations. For example, brooding starfish have been shown to allocate a greater 
proportion of their arm length to adhering to the substratum in sites of high wave 
energy compared to sites of low wave energy (Menge, 1974). Similarly, when drag-
inducing flanges are attached to the shell of exposed limpets, movement is inhibited, 
relative to unmanipulated control limpets (Judge, 1988). Although these observa-
tions provide indirect evidence that high wave-energy constrains movement of in-
tertidal organisms, there are no direct observations of the influence of large waves 
on the decision to move. Early studies (Miller, 1974; Denny, 1985; W.G.W., pers. obs.) 
and recent work on the properties of mucous in gastropods (Smith et al., 1999; Smith, 
2002), indicate that moving limpets are more vulnerable to dislodgement than are 
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stationary ones. Thus, an adaptive limpet would be expected to curtail movement 
during periods of high wave energy. The present paper tests this prediction, and re-
ports, for the first time, that natural variation in wave energy is correlated with the 
decision to move: movement in the owl limpet Lottia gigantea G. B. Sowerby I, 1834 
is inhibited at high tide during periods of relatively larger waves. Some of the results 
of this research have been reported in abstract form (Wright, 1978)

Materials and Methods

We took advantage of an accessible sandstone cliff in Santa Cruz, California, to observe the 
movement of 9–13 marked limpets during 14 study periods from April, 1977 through March, 
1978. The observer used a wooden A-frame (Fig. 1A) with a block and tackle to lower himself 
to a position over the limpets, in order to map their position and orientation every 0.5 hrs for 
the duration of each study period (8–30 hrs). The map was made from photographs of the area 
(Fig. 1B), and allowed a precise estimate (ca nearest 1 cm) of the position of each limpet.

We subjectively estimated maximum swell height before each study by comparing the size of 
the waves at a nearby surfing area (“Stockton Avenue”) to the surfers riding them. Head-high 
wave-faces were considered 1.25 m, double overhead waves were considered 2.5 m, etc. These 
estimates ranged from 0.5 to 2.5 m and were used to rank each of the 14 study periods.

During one study with particularly large waves (10 June, 1977, Fig. 2), which showed clear 
evidence that limpet movement was inhibited at high tide, we began counting the number of 
waves washing the area over a 5 min period. We continued these assessments of wave wash 
in all subsequent studies. This number gave an independent estimate of wave energy, thus al-
lowing evaluation of our more subjective wave-height estimate (see Results). Tidal height data 
were obtained from the program XTide (David Flater) <http://www.flaterco.com/xtide/>.

We performed a two-way repeated measures ANOVA (SPSS, mixed linear model) on the 
entire data set, after first arcsin transforming the proportion moving data. This allowed us to 
test the main effect of waves (low swell vs high swell; between group effect), time (relative to 
higher high tide; within group effect), and their interaction. We also performed non-paramet-
ric Mann Whitney U tests to compare specific low- and high-swell data.

Figure 1. (A) A block and tackle suspended from a wooden frame allowed the observer to make 
precise measurement of the half-hourly positions of 9–13 limpets during all levels of tide and sea 
state. (B) Photograph showing some of the marked limpets (arrows). This photo was traced in 
order to make copies on which to accurately place the location of each limpet at successive half-
hour intervals during each study.

http://www.flaterco.com/xtide/
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Results

Because L. gigantea lives relatively high in the intertidal zone in central California, 
and because of the advantageous geometry afforded us by our “cliff-hanger” (Fig. 1), 
we were able to observe individually tagged limpets at all times of the day and across 
all tides. Furthermore, we found we could observe them over a wide range of sea 
states, from virtually no waves (Fig. 2, upper left panel) to conditions with maximum 
swell heights of > 2 m (Fig. 2, lower right panel). 

We observed limpet movement during 14 separate study periods from June 1977 
through April, 1978 (our planned May, 1978, study was aborted when every limpet 
was removed, most likely by a local fisherman). As a general rule, limpets only moved 
when washed by the sea. As the tide subsided toward ca 0.0 ft, movement generally 
ceased (e.g., 11 Mar 1977, 28 Jun 1977, 8 April 1978). Within this general rule, we ob-
served a good deal of variation. First, limpets moved more at night, even when the tide 
was relatively low (e.g., Fig. 2; 28 Jun 1977, 2 Dec 1977). Second, during times of high 
swell, limpets appeared to be inhibited from moving. Whereas observations made 
during the lowest swells (Fig. 2, left panels) generally showed more limpet movement 
during high tides, observations made during the highest swells (Fig. 2, right panels) 
showed an inhibition of movement during the peak high tides (especially the bottom 
three traces, 11 Mar 1978, 16 Sep 1977, 10 Jun 1977). This inhibition of movement 
was apparent during both day and night-time high tides. 

We next grouped the low-swell observations to compare to the grouped high-swell 
observations. Because every study included one higher high tide, we aligned each ob-

Figure 2. Proportion of limpets moving was quite variable, but appeared to be reduced during 
high-tide during the observations made during the largest waves. All fourteen observation periods 
were ordered according to subjective estimate of maximum swell height: low wave energy studies 
on left, high wave energy studies on right. Tidal height (right vertical scale, closed circles) and 
proportion of limpets moving (left vertical scale, open diamonds) are shown across time. Dark-
ness indicated by shading. Dates enclosed in boxes indicate observation periods in which the 
number of waves washing the limpets (see Figs. 5, 6) was measured.
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Figure 3. Observations made during higher high-tide. All 14 observation periods of Figure 2 were 
aligned by the time of higher high water in each study. (A) Tidal height for low-swell observa-
tions was very similar to that of high-swell studies. Shown is the average tidal height (ft) for the 
low-swell observations (dashed line) separate from the high-swell observations (solid line). Also 
shown are the number of observation periods (ranging from minimum of 2 to maximum of 7) 
represented at each time point for low-swell (open circles) and high-swell (closed squares) obser-
vations. (B) Proportion of limpets moving was relatively constant throughout the higher high tide 
for low-swell observations, but showed a marked decline at the peak tide during the high-swell 
observations. Shown (in addition to the tidal height from part A) at each time, is the average (± 
SE) proportion moving for low-wave (open circles) and high-wave (solid squares) observations. 
Observations within vertical rectangle comprised the data for the statistical analysis (Fig. 4).
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servation period by centering the data set on the half-hour interval that included the 
higher high tide. When aligned in this way, the average observed tidal height of the 
low-swell observations matched very closely the average tidal height of the high-swell 
observations (Fig. 3A). By contrast, when we superimposed the average proportion 
moving on the same figure (Fig. 3B), a clear difference emerged between the low- and 
high-swell observations. In both sets of observations, as the tide flooded from −6 to 
−3 hrs (6–3 hrs before high tide) limpet movement also increased. However, during 
the next 6 hrs, the proportion moving changed in very different ways (Fig. 4). The 
proportion moving during the low-swell observations remained fairly constant at ca 
0.4. By contrast, the proportion moving during the high-swell observations dropped 
dramatically as high tide approached, to a minimum of ca 0.1, increasing again to 
0.4 as the tide ebbed. After arcsin transforming our proportion moving data, we 
performed a repeated measures analysis of variance using a within group treatment 
of time (−3 to +3 hrs) and a between group treatment of waves (low swell, high swell) 
applied to the period 3 hrs before and after the high tide (box, Fig. 3B). This was the 
only period that had a large enough sample size (> 5 observations) to allow mean-
ingful statistical comparison. The repeated measures ANOVA revealed that during 
the high-swell observations, a significantly lower proportion of limpets was moving 
than during the low-swell observations (F1, 12 = 5.1; P = 0.04). Furthermore, there 
was a significant interaction across time (F12, 125 = 1.9; P = 0.04). Because these were 
frequency data, we also performed a non-parametric Mann-Whitney test of these 
data, which revealed a significant difference between low- and high-swell periods 
(P < 0.05; asterisks, Fig. 4) throughout the period extending from 1 hr before until 

Figure 4. During the 6 hrs of higher high tide, the proportion of limpets moving during high-swell 
observations was significantly lower than during low-swell observations. Shown are the average 
(± SE) proportion of limpets moving for high-wave (black squares) and low-wave (open circles) 
observations. These observations comprise a 6-hr subset of those shown in the rectangle in Figure 
3. Asterisks indicate significant differences (Mann-Whitney U test: P < 0.05) between low- and 
high-swell observations.
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Figure 5. Number of waves washing limpets per 5 min increased with tidal height, and the slope 
of this relationship was much greater during the high-wave observations than during low-wave 
observations. Shown are number of waves washing limpets for each half hour of the observations 
shaded in Figure 2, as a function of tidal height. The slope of the high-wave observations (solid 
squares; b = 2.33) was significantly steeper (P < 0.001) than that (b = 0.52) of low-wave observa-
tions (open circles).  This distinct difference in slope validates the subjective assignment into 
low- vs high-wave categories (Figs. 2–4).

Figure 6. Limpet movement was inhibited during times of high waves. The proportion of limpets 
moving vs number of waves washing them per 5 min is shown separately for low-wave (open 
circles) as well as high-wave (solid squares) observations.  Each symbol represents the propor-
tion of limpets moving during one time-point of 9 of the 14 studies. A reduction in the range of 
observed proportions is evident as the number of waves per 5 min rises above 8. 
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1 hr after the maximum tide. These data clearly indicate that limpet movement was 
inhibited during high tide during high-swell periods relative to movement during the 
low-swell periods. 

The assignment of relative swell height in each of the observation periods in the 
above analysis was based on a subjective assessment of maximum swell height (see 
Methods). In order to gain a more objective measure of swell energy, we counted 
the number of waves in a 5-min period that were big enough to wash the limpets. 
Not surprisingly, this number increased with increasing tidal height, but the func-
tional relationship differed during the different observations periods, in a way that 
was consistent with our subjective assessment of swell height. In particular, we found 
that during the high-swell observations, there was a steeper relationship (slope = 
7.66) between the number of waves washing the limpets and tidal height than during 
low-swell observations (t = 11.7, n = 98, 205; P << 0.01; Fig. 5). 

We used the number of waves washing in a 5-min period as a surrogate measure 
of relative wave action, and plotted the proportion of limpets moving as a function 
of that wave action. Because we only assessed the number of waves washing for 9 
of the 14 observation periods (Fig. 2, dates enclosed in boxes), we were only able to 
analyze this restricted data set (Fig. 6). Nevertheless, this scattergram confirmed that 
(1) the wave energy in the “low swell” studies was on average less than that in the 
“high swell” studies, and (2) that limpet movement was inhibited during periods of 
high wave wash. When the number of waves washing the limpets was intermediate, 
between 4 and 9 waves per 5 min, the proportion of limpets moving ranged up to 
0.8–0.9. However, when more than 9 waves washed the area per 5 min, limpet move-
ment was rarely over 0.5, and in the highest wave wash (12–14 per 5 min) periods, 
even fewer limpets moved.

Discussion

These results support the idea that movement of an intertidal organism can be lim-
ited by large waves. It appears that in the owl limpet, L. gigantea, the decision to move 
or remain stationary includes an assessment of the risk of dislodgement by wave ac-
tion. During days with relatively small swells, limpets tended to move throughout the 
high tide, whereas high-tide movement during days with larger swells was sharply 
reduced. This is the first direct observation to our knowledge of the inhibitory ef-
fects of larger waves on the probability of movement in any species, although Judge 
(1988) observed a reduction in movement when wave-induced drag was artificially 
enhanced with flanges attached to the shells of limpets. 

The idea that gastropods might cease movement to increase their tenacity was first 
proposed by Miller (1974), who observed that gastropods were more easily dislodged 
when moving. This observation was repeated by Denny (1985), who compared the 
force required to dislodge moving and stationary limpets with the forces likely to 
threaten them in the intertidal. Denny found that the wave-induced forces com-
monly observed during periods of high swells in the outer-coast intertidal were fully 
capable of dislodging a moving limpet, and predicted that movement would be cur-
tailed during periods of high swell. 

Although Denny’s (Denny and Blanchette, 2000) theoretical considerations pre-
dicted a reduction of movement during large swells, the present study revealed that 
such reduction is observed even in relatively modest swells. In particular, the maxi-



BULLETIN OF MARINE SCIENCE, VOL. 81, NO. 2, 2007242

mum swell height of our “large swell” studies never exceeded 3 m, whereas the maxi-
mum swell height observed by Denny (1985) was larger (2–4 m). Indeed, inspection 
of Figure 2 suggests that even swells in the 1–2 m range can inhibit movement at 
high tide. Such swells are relatively common in Monterey Bay, suggesting that wave 
energy is an almost daily determinant of limpet foraging. Thus, far from being a “last 
resort” strategy to avoid dislodgement during rare periods of very high swells, it ap-
pears that wave-induced inhibition of movement may be a relatively routine determi-
nant of foraging. Furthermore, the many relatively complex factors of the behavioral 
ecology of L. gigantea, including agonistic encounters (Wright, 1982), reproductive 
biology (Wright, 1989), and risk of predation (Lindberg et al., 1987), are quite likely to 
interact with the risk of dislodgement by waves in ways we cannot yet foresee.

Recent research on gastropods raises some mechanistic hypotheses to account for 
the large differences in tenacity between stationary and moving limpets. Differences 
in the protein composition of the mucous of stationary versus moving gastropods 
may account for the differences. Additionally, “clamping behavior” (Ellem et al., 
2002) may reduce danger from shear forces in stationary limpets below that pre-
dicted by the work of Denny and colleagues (Denny, 1985; Denny et al., 1985; Denny 
and Blanchette, 2000). Finally, interaction of clamping behavior and mucous protein 
content with the homing habit of many limpets to a specific home scar (e.g., Garrity 
and Levings, 2004) may confer even more tenacity to stationary limpets resting on 
their home scars.

These results raise many ecological questions about the role of wave action in the 
ecology of intertidal limpets. At the very least, they suggest that wave-action repre-
sents a routine physical challenge requiring an effective behavioral strategy. Ecologi-
cal trade-offs between the benefits of foraging (e.g., territory maintenance, feeding) 
and the risks of dislodgement while moving during periods of even moderate wave 
action, appear to be evaluated almost daily in the lives of these limpets. It is tempt-
ing to hypothesize that wave action may put limits on limpet foraging, for example, 
during winter months when waves can exceed 2 m for weeks. However, it is not clear 
whether total available foraging time is, in fact, limited by such stormy weather. 
Limpets could very well confine their foraging to times of lower tides, when water 
velocities would be lower; times which would otherwise be dry in low-swell condi-
tions. Interestingly, a cursory look at Figure 3B suggests that the overall percentage 
of limpets moving integrated over this 6-hr time interval is somewhat lower dur-
ing high-swell periods than during low-swell periods. However, because the number 
of observations made outside of the 6-hr window is low, this hypothesis requires 
further observations. In any case, it seems unlikely to us that winter months pose 
an energetic challenge to L. gigantea. Indeed, most population studies (e.g., Daly, 
1975; Shanks and Wright, 1986; Wright, 1989) show maximal growth during winter 
months, inconsistent with such an energetic challenge. Nevertheless, it is at least 
possible that some particularly exposed microhabitats with high flow rates may be 
uninhabitable, not because limpets are washed off the rock, but because the water 
flow prevents them the opportunity to forage.
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