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Abstract
Land-cover change is a critical concern due to its climatic, ecological, and socioeconomic consequences. In this study, we 
used multiple variables including precipitation, vegetation index, surface soil moisture, and evapotranspiration obtained 
from different satellite sources to study their association with land-cover changes in the Mediterranean region. Both obser-
vational and modeling data were used for climatology and correlation analysis. Famine Early Warning Systems Network 
(FEWS NET) Land Data Assimilation System (FLDAS) and Global Land Data Assimilation System (GLDAS) were used 
to extract surface soil moisture and evapotranspiration data. Intercomparing the results of FLDAS and GLDAS suggested 
that FLDAS data had better accuracy compared to GLDAS for its better coherence with observational data. Climate Hazards 
Group Infra-Red Precipitation with Station Data (version 2.0 final) (CHIRPS Pentad) were used to extract precipitation data 
while Moderate Resolution Imaging Spectroradiometer (MODIS) products were used to extract the vegetation indices used 
in this study. The land-cover change detection was demonstrated during the 2009–2018 period using MODIS Land-Cover 
data. Some of the barren and crop lands in Euphrates-Tigris and Algeria have converted to low-vegetated shrublands over 
the time, while shrublands and barren areas in Egypt’s southwestern Delta region became grasslands. These observations 
were well explained by changing trends of hydrological variables which showed that precipitation and soil moisture had 
higher values in the countries located to the east of the Mediterranean region compared to the ones on the west. For evapo-
transpiration, the countries in the north had lower values except for countries in Europe such as Bosnia, Romania, Slovenia, 
and countries in Africa such as Egypt and Libya. The enhanced vegetation index appeared to be decreasing from north to 
south, with countries in the north such as Germany, Romania, and Czechia having higher values, while countries in the south 
such as Libya, Egypt, and Iraq having lower trends. Time series analysis for selected countries was also done to understand 
the change in hydrological parameters, including Enhanced Vegetation Index, evapotranspiration, and soil moisture, which 
showed alternating drop and rise as well as stagnant values for different parameters in each country.
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1 Introduction

Land cover is an important factor in maintaining environ-
mental, climatic, ecological, and economical stability in a 
region, and tracking its changes is very important for plan-
ning for different fields of study in the Earth Sciences, espe-
cially climate changes. For example, the amount of solar 
energy reflected from a land surface can change the local 
surface energy balances (Dickinson 1983; Feddema et al. 
2005; Vargo et al. 2013). Changes in land cover can also 
impact the properties of absorbed energy that is released as 
heat as well as the energy that is dissipated through evapora-
tion (Vargo et al. 2013). Land-cover changes mainly affects 
the environment through biogeochemical and biogeophysical 
processes (Feddema et al. 2005) (Fig. 1). The biogeochemi-
cal effects of land-cover change change the concentration of 
greenhouse gases in the atmosphere through carbon storage 
or release and also affects long (short) wave radiation, while 
the biogeophysical effects of land-cover change changes the 
physical characteristics of the land surface (such as surface 
albedo, surface emissivity, surface roughness, evapotranspi-
ration, etc.), which in turn affects the distribution of surface 
energy and the circulation of water, which has an impor-
tant impact on the climate (Pielke et al. 2002). In particular, 
changes in the surface albedo change the surface’s absorp-
tion of solar short-wave radiation and changes the leaf area 
index (vegetation coverage), which affects evapotranspira-
tion and leads to redistribution of surface energy. Surface 
Albedo differs with land type wherein the albedo of a for-
ested land is typically lower than that of a cultivated land. 
In polar regions, the extra absorption of shortwave radiation 
as ice melts renders the surface less reflective. There are 
studies which have shown how surface albedo impacts cli-
mate change like a study by Betts which concluded that the 
positive forcing induced by decreases in albedo can offset 
the negative forcing, that is expected from carbon seques-
tration in boreal forest areas, and thus, some high-latitude 

forestation activities may therefore increase climate change, 
rather than mitigating it as intended (Betts 2000). Another 
study by Winton also showed surface albedo feedback to be a 
contributing factor in the simulated Arctic amplification and 
its intermodel variation (Winton 2006). Apart from surface 
albedo and evapotranspiration, land cover also affects precip-
itation in a region. A study conducted in the Amazon basin 
by Bagley et al. displayed that drought conditions brought 
a decrease in dry season heat flux, while an increase in dry 
season moisture recycling as well as deforestation impacts 
on surface conditions. The study concluded that land-cover 
change is capable of reducing precipitation and increasing 
the amplitude of droughts in the Amazon basin (Bagley et al. 
2014). Yet, another study by Perugini et al. concluded that 
there is a strong regional effect on temperature and precipita-
tion and a minor global impact on temperature due to large-
scale land-cover changes (Perugini et al. 2017). Surface soil 
moisture is also one of the important biophysical parameters 
affected by land-cover change. A study by Jiang et al. in 
the midwestern part of United States of America compared 
various land-cover types and their corresponding changes 
to the change in parameters like land surface temperature 
(LST), fractional vegetation cover, Normalized Difference 
Water Index (NDWI), impervious fractions evaporative frac-
tion, and soil moisture. The results from the study showed 
that areas with low temperature, dense vegetation cover, 
and high surface moisture conditions were affected by the 
land-cover chages more than areas with higher temperature, 
sparse vegetation cover, and low surface moisture conditions 
(Jiang et al. 2015). Large-scale events namely El Niño and 
La Niña are known to affect western US, namely California 
and Nile river basin countries (Le et al. 2017, 2020). Land-
cover change also has an ecological and socioeconomic 
impact. Changing the natural vegetation to agriculture land 
would impact the energy absorption and reflection. Also, 
agricultural expansion would be good on a short-term basis, 
but for long term, the quality of land after being exploited 
would come into play which could change the dynamics of 
economic statbility in a region. Thus, tracking land-cover 
changes would help in efficient land-use planning which 
would in turn increase productivity from energy resources. 
Remote sensing and GIS frameworks, such as image analy-
sis, are combined with contemporary information extraction 
approaches to detect vegetation changes (Sluiter 2005; Li 
et al. 2019a, b, c) as well as soil assessment (Whitney et al. 
2018). Apart from detecting vegetation changes, remote 
sensing and GIS processes have been extensively used in 
land-use/land-cover (LULC) classification (Rwanga and 
Ndambuki 2017) and LULC change detection (Kafi et al. 
2014), as well. Therefore, remote sensing and GIS processes 
are cost-effective and flexible with monitoring, storing, ana-
lyzing, and displaying land-cover changes.

Fig. 1  Flowchart for the effect of land-cover changes on environment
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The Mediterranean region is amongst the most arid/semi-
arid areas in the world, due to its warm weather throughout 
the year. It is also known to have rich biodiversity, diverse 
vegetation, and specific regional features. Over the past 
years, the Mediterranean region is facing complex unantici-
pated and gradual land-cover changes (Lasanta and Vicente-
Serrano 2012). The Mediterranean and its adjacent regions 
form an extremely fragile ecological system and sensitive to 
human activities in terms of marine productivity (Li et al. 
2017, 2018), air quality (El-Askary et al. 2019; El-Nadry 
et al. 2019; Li et al. 2019a), and land and coastal environ-
ment (Li et al. 2019b, c; Sardi et al. 2020; Serra et al. 2008). 
It is also found that major land-cover changes in this region 
are due to urban developments, industrial activities, land 
expansions, and, due to the forest fires, global warming and 
droughts (Lasanta and Vicente-Serrano 2012; Mahmoud and 
Alazba 2015).

Hydrological variables such as precipitation, enhanced 
vegetation index (EVI), evapotranspiration (ET), and soil 
moisture are suggested to be prominent indicators to detect 
and explain land-cover and land-use changes (Li et al. 2020a, 
b; Maneja et al. 2020a, b). The main objective of the current 
study is to focus on detecting land-cover changes from 2009 
to 2018 in the Mediterranean region. This will take place by 
analyzing 10 years of data from the aforementioned indica-
tors and look into their mean distributions, correlations, and 
interactions amongst them. To achieve our objectives, model 
data from the Famine Early Warning Systems Network 
(FEWS NET) Land Data Assimilation System (FLDAS) and 
the Global Land Data Assimilation System (GLDAS) will 
be employed and utilized against remote-sensing observa-
tions for data validation and for possible integration. We 
have used such datasets to investigate land-cover changes in 
drylands where drier trends were observed in the south of 
Africa and the east of Australia as compared to wetter trends 
in Mesopotamia and North America (Li et al. 2020b). To 
achieve higher accuracy in land-cover changes detection, we 
compared data from the FLDAS against the GLDAS model 
data and the accuracy assessment is presented and discussed 
in subsequent sections. The objective is further strengthened 
by conducting a time series analysis of some hydrological 
variables namely precipitation, evapotranspiration, and soil 
moisture over selected areas within the region of interest 
where major class changes were observed.

2  Data and Methods

2.1  Study Region

The terrain surrounded by the Mediterranean Sea and seven 
member states from Europe, Africa, and Asia is known as 
Mediterranean region (Fig. 2). The Mediterranean region 

exists between approximately 30°–40° N and 8°–40° E cov-
ering parts of Europe and Africa continents (Anon 2021a). 
In general, the weather is characterized as warm and sunny 
throughout the year. The specific regional features such as 
hot summer with high ET and cool, humid winter have high 
impact on the biodiversity of this region (European Com-
mission 2021). The average precipitation is about 20 in. of 
annual rain fall (Anon 2021c). During the winter months, 
the average temperature varies between 35° and 60° and in 
warmest month average temperature is about 72 degrees 
(Anon 2021c). Vegetation in the Mediterranean region can 
survive long dry summers and typical vegetation types found 
in this region are forests, woodlands, savannas, shrublands, 
and grasslands (Anon 2021b). Short trees and evergreen 
shrubs are the common tree species as they can last the sum-
mer’s heat. The Mediterranean region undergoes exceptional 
threats due to human invention. The wide variety in biodi-
versity in this region has also gained tourist attraction which 
leads to the destruction of coastlines (European Commission 
2021). In addition to that, limited water resources, consistent 
threat from forest fires, and impact of climate change are a 
big challenge for Mediterranean agriculture and sustainable 
development. The reference to months in this study is given 
by DJF (Dec–Feb), MAM (Mar–May), JJA (Jun–Aug), and 
SON (Sep–Nov).

2.2  Data

The FLDAS dataset used in this study is designed to facili-
tate forecast requirements associated with food security 
assessment in data-sparse, developing country settings 
(McNally et al. 2017; NASA GSFC Hydrological Sciences 
Laboratory (HSL) 2018). It has been operational since 1982 
and still running. The spatial resolution of FLDAS is 0.1° 
and 0.25° depending on the land surface model used, while 
the temporal resolution is daily output of 15-min, time steps. 
The various information that can be gleaned from datasets 
are elevation, vegetation cover, albedo, greenness, soil struc-
ture, and others (McNally et al. 2017). For this study, we 
used parameters including evapotranspiration and soil mois-
ture (0–10 cm underground) from FLDAS data.

The GLDAS dataset used in this study captures the 
ground-based observational data and combining advanced 
land surface modeling and data assimilation techniques, 
generates optimal fields of land surface states, and fluxes 
at a global scale (Kansara et al. 2021). It has been opera-
tional since 1948 and still running. The spatial resolution 
of GLDAS is 0.1° and 0.25° depending on the land surface 
model used, while the temporal resolution is 3 hourly out-
put of 15-min time steps. The various information that can 
be gleaned from datasets is elevation, vegetation cover, soil 
structure, and others. For this study, we used parameters 
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such as evapotranspiration and soil moisture from GLDAS 
data (Rodell et al. 2004).

NASA-USDA global soil moisture data (Bolten et al. 
2010; Bolten and Crow 2012; Kerr and Levine 2008) used 
in this study provides soil moisture information such as 
surface and subsurface soil moisture (mm), soil moisture 
profile (%), and surface and subsurface soil moisture anoma-
lies across the globe at 0.25° × 0.25° spatial resolution. The 
dataset is available since 2010. This dataset is generated by 
integrating satellite-derived Soil Moisture Ocean Salinity 
(SMOS) data into the model derived Ensemble Kalman Fil-
ter (EnKF) data. Thus, this model-based soil moisture pre-
diction enhances the accuracy of predictions for areas such 
as Southern Africa and Middle East where they lack good 
quality precipitation data. For this study, we used surface 

soil moisture (SSM): mm parameter. CHIRPS Pentad (cli-
mate hazards group infra-red precipitation with station 
data) (version 2.0 final) (Funk et al. 2015) used in this study 
contains 0.05° resolution satellite imagery of quasi-global 
precipitation data which is used for time-series analysis to 
show the precipitation trends and seasonal differences within 
the study area.

The moderate resolution imaging spectroradiom-
eter (MODIS) data from both, the Terra and Aqua satel-
lites, were employed in this analysis. To assess land-cover 
changes in this work, the MODIS VI products (MOD13), 
that provide spatial and temporal time series comparisons 
of global vegetation conditions, were utilized. Specifically, 
the MOD13A2.006 product (from Terra MOD13 series) was 
used that provides two vegetation indexes data, namely, the 

Fig. 2  The maps of land-cover 
types (a) and shuttle radar 
topography mission elevation 
(b) with country boundaries of 
the Mediterranean region
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Normalized Difference Vegetation Index (NDVI) and the 
EVI, that has been operational from 2000 to present (Didan 
et al. 2015). The spatial resolution of this data product is 
1 km (km) while having a multi-day temporal resolution. 
Moreover, the MOD16A2.006 data product (from Terra 
MOD16 series) was also used for the ET analysis, that 
has been operational from 2001 to present (Running et al. 
2017). The MOD16 series output is based on the logic of the 
Penman–Monteith equation and uses daily meteorological 
reanalysis data as well as 8-day remotely sensed vegetation 
property dynamics as inputs. This data product contains lay-
ers of composited ET, latent heat flux (LE), potential ET 
(PET), and potential LE (PLE) along with a quality con-
trol layer. The spatial resolution is 500 m (m) while having 
multi-day temporal resolution. Here, we also used the third 
data product from MODIS, which is the Terra and Aqua 
combined MODIS land-cover type (MCD12Q1) Version 6, 
which has been operational from 2001 to 2019 (Friedl and 
Sulla-Menashe 2015). This data product provides global 
land-cover types and is derived using supervised clas-
sifications of MODIS Terra and Aqua reflectance data. It 
has a spatial resolution of 500 m while a yearly temporal 
resolution.

All the datasets have been retrieved using the Google 
Earth Engine platform (Gorelick et al. 2017) using its code 
editor.

2.3  Methods

The land-cover changes between 2009 and 2018 were pro-
cessed by the ArcGIS change detection tool. Harmonic anal-
ysis is a method involving the representation of functions 
or signals as a superposition of elementary waves (Li et al. 
2020a). In this study, to estimate the variation of multiple 
hydrological factors (e.g., EVI, ET, and precipitation), we 
build the harmonic model H(t) with elements of a constant 
band (β0), a linear term of slope (β1), and harmonic terms 
of amplitudes (β2, β3, β4, and β5). The term β1, associated 
with the linear part of the factor, represents the increasing/
decreasing trend, whereas a constant band β0 represents the 
extent of consistency of the time series. Moreover, f repre-
sents the fundamental frequency. The β1 of the harmonic 
analysis can show linear trend of a series regardless of the 
seasonal variations. The t is the time record for each param-
eter H(t) (e.g., EVI and SSM). In this research, the value 
β1 shows the yearly trend in the MENA region regardless 
of seasonal variations. Positive value represents increasing 
trend, and negative value decreasing:

(1)

H(t) = �0 + �1t + �2 cos (2�ft) + �3 sin (2�ft)

+ �4 cos (4�ft) + �5 sin (4�ft).

In addition, correlation analysis is also used to evaluate 
the relationship between two variables. In this study, lag 
correlation analysis was performed for all the bivariate com-
binations of evapotranspiration, soil moisture, precipitation, 
and EVI. These parameters are used to generate the changing 
trend map of the MENA region during 2009–2018, as well 
as lag correlation analysis using their anomalies value Xa 
calculated in Eq. (2):

with X as the monthly value and X as the monthly mean 
value.

3  Results

3.1  The Mean Distribution for Each Parameter

Figure  3 illustrates the seasonal (DJF = Dec–Feb, 
MAM = Mar–May, JJA = Jun–Aug, SON = Sep–Nov) maps 
of ET (Fig. 3a-3c), soil moisture (Fig. 3d-3f), EVI (Fig. 3g), 
and precipitation (Fig. 3h), as well as FLDAS and GLDAS 
datasets from 2009 to 2018 in the Mediterranean region.

For Terra ET (Fig. 3a), the overall lowest and highest 
recorded ET is illustrated during DJF and JJA, respectively. 
Both FLDAS (Fig. 3b) and GLDAS (Fig. 3c) ET products 
achieve a general consistency with Terra data. However, 
both datasets missed the seasonal higher ET in Egypt’s Nile 
Delta region (Area A). Meanwhile, compared with satellite 
observations, the models show higher ET levels in Euphra-
tes-Tigris region (Area B). A possible reasoning for this is 
provided in the discussion section of this manuscript.

For SSM (Fig.  3d), the overall lowest and highest 
recorded SM is illustrated during JJA and DJF, respectively. 
This contrasts with SM FLDAS (Fig. 3e) and SM GLDAS 
(Fig. 3f), where, though the highest recorded SM is dur-
ing DJF, there is no obvious lowest recorded SM. The SSM 
is systematically lower that FLDAS/GLDAS, because it 
is surface SM, while FLDAS/GLDAS are entirely SM in 
0–10 cm. It is noted that FLDAS achieved better consist-
ency with SSM than GLDAS. For example, the SSM pat-
terns in Areas C, D, & E can be found in FLDAS but not 
in GLDAS. GLDAS also has noises/inconsistencies within, 
such as patches in Fig. 3f.

For Terra EVI (Fig. 3g), the highest recorded EVI is dur-
ing MAM in the north and during DJF in the Nile Delta, 
while the lowest recorded EVI is during DJF in the north and 
during SON in the southern area. Precipitation (Fig. 3h) is 
observed to vary among the regions. The highest recorded 
precipitation is during DJF in most regions (eastern Mediter-
ranean), and during SON, high values have been recorded in 

(2)Xa = X − X,
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Fig. 3  Map of seasonal averages for ET, SM, EVI, and precipitation in Mediterranean region
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regions other than the eastern regions. The Area F (Fig. 3g, 
3h) is a mountainous area (probably the Alps), which shows 
highest recorded precipitation during MAM. It has higher 
precipitation (Fig. 3h) and lower EVI (less vegetation) 
(Fig. 3g) than the surrounding areas.

3.2  The correlation for each parameter

Figure 4 demonstrates correlation plots for the bivariate 
combinations of parameters including ET, soil moisture, 
and precipitation. For each combination, dark blue and dark 
red colors represent the highly correlated areas and the cor-
relation values in the figure range from − 0.7 to 0.7. Precipi-
tation is very highly correlated with soil moisture and ET 
obtained from FLDAS data source (Fig. 4a, b) and moder-
ately correlated in GLDAS data source (Fig. 4c, d). Precipi-
tation vs ET FLDAS (Fig. 4a) shows strong positive cor-
relation in North Africa, while Precipitation vs ET GLDAS 
(Fig. 4c) shows negative correlation in the Egypt/Nile Delta. 
Similar negative correlations are also observed north of the 
Mediterranean Sea in countries like Switzerland, Austria, 
some parts of Romania, Germany, and France. We suggest 
that these negative correlations are because of the high alti-
tudes in these regions as they are basically, mountainous 
regions. The correlation values indicate that both FLDAS 
and GLDAS can have similar good results as observed in ET. 
According to Fig. 4b and Fig. 4f, there is a very strong posi-
tive correlation between precipitation with SM FLDAS and 
SSM, except for some weaker correlation in the mountain-
ous regions. Precipitation vs SM GLDAS (Fig. 4d) has lesser 
correlation with precipitation when comparing precipitation 
with SSM and SM FLDAS. This is even a negative correla-
tion in the Egypt/Nile Delta. There are some missing values 
predominantly seen in the African countries for Fig. 4e, g, 
i. There is a consistent negative correlation observed in the 
northern Mediterranean region between precipitation and 
Terra ET (Fig. 4e). There is moderate correlation between 
Terra ET and ET FLDAS (Fig. 4g), and Terra ET and ET 
GLDAS (Fig. 4i) as observed in the northern Mediterranean 
region, while there are high correlations among SSM and 
SM FLDAS (Fig. 4h), SSM and SM GLDAS (Fig. 4j), ET 
FLDAS and ET GLDAS (Fig. 4k), and SM GLDAS and SM 
FLDAS (Fig. 4l). For Fig. 4h, j–l, negative correlations can 
be observed in the Nile Delta region, which is not observed 
anywhere else in these figures.

3.3  Trend Analysis

The trend analysis is performed for hydrological factors such 
as Precipitation, EVI, Evapotranspiration, and SSM over 
the period of 2009–2018, as shown in Fig. 5. It is observed 
(Fig. 5a) that there is higher precipitation increase in the 
countries located to the east of the Mediterranean region 

(e.g., Iraq) while decrease to the west (e.g., Spain). There is 
a similar distribution for soil moisture in FLDAS (Fig. 5b), 
where the soil moisture values increase as moving from west 
to east. This high correlation between precipitation and SM 
FLDAS is also observed in the correlation figure (Fig. 4b). 
Soil moisture in GLDAS (Fig. 5c) has mixed trends over 
the entire region. Observational data SSM (Fig. 5d) has 
increasing trends throughout the region especially in the 
west, north, and east of the region. The southern region does 
not highlight any increasing or decreasing trend predomi-
nantly. However, as we observed earlier, SM FLDAS data 
seem to be a good fit due to the smoothness of data when 
compared with SM GLDAS and SSM. ET for observational 
data (Fig. 5e) has high values in the countries located to the 
north of this region (e.g., Italy, Greece, and France) with 
some missing values in the south. For ET FLDAS (Fig. 5f), 
it has lower recorded values when compared with ET. Most 
of the northern areas in ET FLDAS has low trend except for 
countries in Europe such as Bosnia, Romania, Slovenia, and 
countries in Africa such as Egypt and Libya. ET GLDAS 
(Fig. 5g) has mixed patterns like SM GLDAS (Fig. 5c), with 
higher values in the north-western part. Random patterns in 
GLDAS data for both soil moisture and ET probably suggest 
that there is noise in data, and it could be problematic to use 
this data for further analysis. For EVI (Fig. 5h), it appears 
to be decreasing from north to south, with countries in the 
north such as Germany, Romania, and Czechia having higher 
values, while countries in the south such as Libya, Egypt, 
and Iraq having lower trends.

3.4  Land‑Cover Change Detection

Investigating the results obtained in 3.1–3.3 for climatology, 
correlation, and trend analysis, it can be observed that the 
landscape of this region has undergone a drastic change, over 
the decades. In this study, land-cover change detection was 
performed for Mediterranean region during the 2009–2018 
period using MCD12Q1.006 MODIS Land Cover Type 
Yearly Global 500 m data. Land cover in Mediterranean 
region was classified into ten classes (Table 1).

Table 1 also displays the change (in %) of different land-
cover types between each year from 2009 to 2018. Each col-
umn (Class 1–Class 10) represents the change for that class 
into other classes (corresponding rows). Almost all classes 
have changed into other classes except for class 6 (Urban and 
built-up lands) and class 10 (water bodies) where there are 
no changes. A primary reason for no or negligible changes in 
class 6 and class 10 could be because more and more lands 
are converted into urban lands because of a better standard 
of living, but urban lands are not changed into other types. 
Similarly, even water bodies are generally not changed into 
any other type. Approximately 10% of Class 1 (Open Shrub-
lands) in 2009 changed to other classes by 2018 and whereas 
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majority of these Open Shrublands (~ 6%) changed to Grass-
lands. About 9% of class 2 (Grasslands) in 2009 changed 
into other classes by 2018, and majority of these Grasslands 
(~ 6%) changed to Open Shrublands and Croplands. For class 
3 (Evergreen Needleleaf Forests), there is an overall 15% 
change and majority of these Evergreen Needleleaf Forests 
(about 10%) changed into Grasslands. Approximately 11% 
of Class 4 (Permanent Wetlands) in 2009 changed to other 
classes by 2018, and majority of these Permanent Wetlands 
(~ 8%) changed to Grasslands. Class 5 (Croplands) changed 
to other classes by 5% where, major change is into the Grass-
lands. Class 7 (Cropland/Natural Vegetation Mosaics) had 
the highest percentage change (~ 20%) and the majority of 
these changes are into the Croplands (12%) and Grasslands 
(7%). Class 8 (Permanent Snow and Ice lands) changed by 
15% over the period of 2009–2018 and, majority of these 
Permanent Snow and Ice lands changed into Barren lands 
(13%). For Class 9 (Barren) and Class 10 (Water Bodies), 
the change into other land-cover types is significantly low 
(~ 1%).

Figure 6 provides a clear visualization of land-cover 
change over the period of 2009–2018. The color scheme 
in the legend represents the change from class i to class j 
where i, j = 1,2 … 10 and i ≠ j . The zoomed areas of Fig. 6 
demonstrate noticeable color changes, which emphasize 
that there is change of land-cover types in Mediterranean 
region over the period of 2009–2018. According to Fig. 6f, 
it could be observed that majority of land-cover changes in 
Iraq are from class 9 (Barren) to class1 (Open Shrublands), 
and with some minor changes from Class 5 (Croplands) to 
Class 1 (Open Shrublands), Class 2 (Grasslands) to Class 
5 (Croplands), and Class 1 (Open Shrublands) to Class 5 
(Croplands). Figure 6e illustrates that there are changes from 
Class 1 (Open Shrublands) to Class 2 (Grasslands), Class 9 
(Barren) to Class 2 (Grasslands), and Class 2 (Grasslands) 
to Class 5 (Croplands) in the Northern part of Egypt. For 
most part of Morocco and Libya, there are land-cover type 
changes such as Class 5 (Croplands) to Class 1 (Open Shrub-
lands), Class 2 (Grasslands) to Class 1 (Open Shrublands), 
and Class 2 (Grasslands) to Class9 (Barren). Figure 6b, c 
demonstrates that in Turkey the noticeable change is from 
class 1 (Open Shrublands) to Class 2 (Grasslands) and in 
Greece its Class 5 (Croplands) to Class 2 (Grasslands). 
According to Fig. 6a most of the land-cover change for Spain 
is from Class 2 (Grasslands) to Class1 (Open Shrublands) 
with few changes from Class 5 (Croplands) to Class 1 (Open 
Shrublands).

3.5  The Time‑Series of the Parameters for Selected 
Countries

Figure 7 illustrates the time-series plots of soil moisture 
obtained from observational data (SSM), EVI, Precipitation, 
ET obtained from observational data (ET) within selected 
countries (Turkey, Spain, Italy, Greece, Tunisia, and Egypt) 
of Mediterranean region from 2010 to 2018. In general, there 
are random variations for all the selected countries within 
this period. From the observational data (SSM) (Fig. 7a), 
it is observed that there are lesser variations for most of 
the countries, except for the alternating SSM drop and rise 
observed in April for the years 2012, 2014, 2016, and 2018 
for Spain. For Egypt, it can be observed that soil moisture 
level fluctuates closer to zero with very few deviations over 
the period. Such disagreements are also found for EVI 
(Fig. 7b) and Precipitation (Fig. 7c) for Egypt from 2010 
to 2018. For EVI, in Turkey, there are significant low val-
ues observed in April 2012 and 2017, while significant high 
values observed in April 2018 compared to other countries.

All other selected countries have fewer variations, ran-
domly scattered and no apparent seasonal patterns to be 
observed from the data. Greece appears to have dominant 
variations for precipitation (Fig. 7c) over the period com-
pared to other selected countries with minimum observed 
in October 2012 and the maximum observed in November 
2012. For ET observed from MODIS (Fig. 7d), it has sig-
nificant variation for Greece where the lowest is recorded 
in June 2012 and the highest is recorded in June 2018. All 
the other countries seem to have similar variations over the 
period. There are apparent differences for almost all the 
parameters in all the selected countries as they are randomly 
scattered over the period.

3.6  The Monthly Average of Soil Moisture, 
Precipitation, and EVI for Selected Countries

Figure 8 illustrates monthly average of EVI, precipitation, 
and soil moisture for five major land types in selected coun-
tries (Turkey, Spain, Italy, Greece, Tunisia, and Egypt). In 
general, for Turkey, all types such as EVI, Precipitation, 
and Soil moisture are consistently variate (Fig. 8a–c). All 
the plotted land-cover types for EVI have maximum value 
in May and lowest in DJF. For precipitation, the lowest is 
observed during July–September, and in other months of the 
year, there are higher values with variations. Similar results 
can be observed for surface soil moisture such as lower dur-
ing July–September than other months. This would be due 
to the high correlation between Precipitation and Soil mois-
ture. Monthly average of EVI in Egypt (Fig. 8d) is plotted 
for land-cover types such as Artificial surfaces, Bare areas, 
Irrigated croplands, Mosaic vegetation, and water bodies. 
Irrigated croplands display strong seasonal pattern of low 

Fig. 4  Intercomparison among the modeled and observation datasets 
for the variable ET, soil moisture, and precipitation in Mediterranean 
region, and the brown region is the RGB background from Google 
Map

◂
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values in May and Sep/Oct but high values in summer and 
winter, while Mosaic vegetation shows weak seasonality. 
Other types including artificial surfaces, water bodies, and 

bare areas do not vary because of their low vegetation cover-
age. Monthly precipitation in Egypt (Fig. 8e) demonstrates 
the pattern of nearly no rainfall during summer, and higher 

Fig. 5  The trend map of Precipitation, SSM, ET, and EVI obtained from observational data in Mediterranean region, and the brown region is the 
RGB background from Google Map



Investigating Decadal Changes of Multiple Hydrological Products and Land-Cover Changes in…

1 3Published in partnership with CECCR at King Abdulaziz University

Ta
bl

e 
1 

 T
he

 la
nd

-c
ov

er
 ty

pe
s c

ha
ng

e 
20

09
–2

01
8 

in
 th

e 
M

ed
ite

rr
an

ea
n 

re
gi

on

D
es

cr
ip

tio
n

La
nd

-c
ov

er
 ty

pe
C

la
ss

 1
 (%

)
C

la
ss

 2
 (%

)
C

la
ss

 3
 (%

)
C

la
ss

 4
 (%

)
C

la
ss

 5
 (%

)
C

la
ss

 6
 (%

)
C

la
ss

 7
 (%

)
C

la
ss

 8
 (%

)
C

la
ss

 9
 (%

)
C

la
ss

 1
0 

(%
)

O
pe

n 
Sh

ru
bl

an
ds

: d
om

in
at

ed
 b

y 
w

oo
dy

 p
er

en
ni

al
s (

1–
2 

m
 h

ei
gh

t) 
10

–6
0%

 c
ov

er

C
la

ss
 1

 (%
)

89
.9

2
3.

25
4.

09
0.

43
0.

84
0

0.
06

0.
06

0.
7

0

G
ra

ss
la

nd
s:

 d
om

in
at

ed
 b

y 
he

rb
a-

ce
ou

s a
nn

ua
ls

 (<
 2 

m
)

C
la

ss
 2

 (%
)

6.
17

90
.6

2
10

.5
8

8.
09

3.
31

0
7.

39
2.

04
0.

45
0

Ev
er

gr
ee

n 
N

ee
dl

el
ea

f F
or

es
ts

: d
om

-
in

at
ed

 b
y 

ev
er

gr
ee

n 
co

ni
fe

r t
re

es
 

(c
an

op
y >

 2 
m

). 
Tr

ee
 c

ov
er

 >
 60

%

C
la

ss
 3

 (%
)

0.
72

0.
84

84
.8

9
1.

65
0

0
0

0
0

0

Pe
rm

an
en

t W
et

la
nd

s:
 p

er
m

an
en

tly
 

in
un

da
te

d 
la

nd
s w

ith
 3

0–
60

%
 

w
at

er
 c

ov
er

 a
nd

 >
 10

%
 v

eg
et

at
ed

 
co

ve
r

C
la

ss
 4

 (%
)

0.
02

0.
2

0.
43

88
.7

0
0

0
0.

04
0.

01
0.

01

C
ro

pl
an

ds
: a

t l
ea

st 
60

%
 o

f a
re

a 
is

 
cu

lti
va

te
d 

cr
op

la
nd

C
la

ss
 5

 (%
)

1.
12

3.
43

0
0.

31
94

.3
3

0
12

.5
0

0
0

U
rb

an
 a

nd
 b

ui
lt-

up
 la

nd
s:

 a
t l

ea
st 

30
%

 im
pe

rv
io

us
 su

rfa
ce

 a
re

a 
in

cl
ud

in
g 

bu
ild

in
g 

m
at

er
ia

ls
, 

as
ph

al
t, 

an
d 

ve
hi

cl
es

C
la

ss
 6

 (%
)

0.
02

0.
05

0
0.

04
0.

03
10

0
0.

01
0

0.
01

0

C
ro

pl
an

d/
na

tu
ra

l v
eg

et
at

io
n 

m
os

a-
ic

s:
 m

os
ai

cs
 o

f s
m

al
l-s

ca
le

 c
ul

ti-
va

tio
n 

40
–6

0%
 w

ith
 n

at
ur

al
 tr

ee
, 

sh
ru

b,
 o

r h
er

ba
ce

ou
s v

eg
et

at
io

n

C
la

ss
 7

 (%
)

0.
02

1.
17

0
0

1.
49

0
80

.0
3

0
0

0

Pe
rm

an
en

t s
no

w
 a

nd
 ic

e:
 a

t l
ea

st 
60

%
 o

f a
re

a 
is

 c
ov

er
ed

 b
y 

sn
ow

 
an

d 
ic

e 
fo

r a
t l

ea
st 

10
 m

on
th

s o
f 

th
e 

ye
ar

C
la

ss
 8

 (%
)

0
0

0
0.

02
0

0
0

84
.3

1
0.

02
0

B
ar

re
n:

 a
t l

ea
st 

60
%

 o
f a

re
a 

is
 

no
n-

ve
ge

ta
te

d 
ba

rr
en

 (s
an

d,
 ro

ck
, 

so
il)

 a
re

as
 w

ith
 le

ss
 th

an
 1

0%
 

ve
ge

ta
tio

n

C
la

ss
 9

 (%
)

2.
01

0.
43

0
0.

59
0.

01
0

0
13

.2
4

98
.8

0.
02

W
at

er
 b

od
ie

s:
 a

t l
ea

st 
60

%
 o

f a
re

a 
is

 c
ov

er
ed

 b
y 

pe
rm

an
en

t w
at

er
 

bo
di

es

C
la

ss
 1

0 
(%

)
0

0
0

0.
18

0
0

0
0.

32
0.

01
99

.9
7

C
la

ss
 to

ta
l (

%
)

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

C
la

ss
 c

ha
ng

es
 (%

)
10

.0
84

9.
38

1
15

.1
07

11
.3

02
5.

66
9

0
19

.9
67

15
.6

95
1.

19
6

0.
02

6
Im

ag
e 

di
ffe

re
nc

e 
(%

)
3.

04
7

−
 2

.2
18

4.
17

1
14

.2
09

 −
 0.

51
9

1.
61

6
22

.1
98

15
.8

44
 −

 0.
23

4
 −

 0.
01

7



 W. Li et al.

1 3 Published in partnership with CECCR at King Abdulaziz University

values during winter yet still low (< 25 mm) and the lowest 
compared to other selected countries. Vegetation types such 
as Irrigated croplands and Mosaic vegetation for surface soil 
moisture in Egypt (Fig. 8f) has the highest values during 
winter but low during fall and summer. Water bodies seems 
to be consistently low throughout the year and the Artificial 
surfaces have a peak and highest values compared to other 
land types during July which may be due to human watering 
vegetation.

In particular, EVI for Tunisia (Fig. 8g) has higher values 
during Spring for all land-cover types, while the highest is 
observed for Rainfed croplands. Precipitation (Fig. 8h) and 
soil moisture (Fig. 8i) for Tunisia are lowest in July and 
higher in DJF period. All the land-cover types in Tunisia 
have very identical trends for both Precipitation and Soil 
moisture. Spain has the maximum EVI (Fig. 8j) observed 
during the April–May and minimum precipitation (Fig. 8k) 
observed during July–August for all the land-cover types. 

Parallel to Precipitation, soil moisture (Fig. 8l) also has 
lower values during July–September. Apparent coherency 
is observed for Precipitation and soil moisture trends for all 
land-cover types in Spain. In Italy, the largest monthly EVI 
(Fig. 8m) is found for Broadleaved Deciduous Forest, which 
is higher than others during May–October and highest in 
May–June. Monthly precipitation in Italy (Fig. 8n) is low in 
July–August and highest in November. Like precipitation, 
soil moisture in Italy (Fig. 8o) is high in winter and spring 
and low during July–August. Analogous to Precipitation and 
soil moisture in Spain, it can be examined that Italy also has 
high correlation between all land-cover types for these two 
variables. EVI in Greece (Fig. 8p) is high in May–June as 
observed in Italy. For the precipitation in Greece (Fig. 8q), 
there is a small peak in May and highest during Fall–Spring. 
Low precipitation is observed during July–August for all 
types in Greece. Soil moisture (Fig. 8r) is low in July–Sep-
tember and high during winter and spring in Greece.

Fig. 6  Land-cover change detection, and class types can be referenced from Table 1. a South-eastern region of Spain; b Southern Greece; c) 
Southern Turkey; d Northern region of Algeria; e Northern Egypt; f Northern Iraq
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4  Discussion

From the climatology plots (Fig. 3), we observed that even 
though data were collected from different sources such as 
FLDAS and GLDAS, there is apparent coherency for the 
same variables such as ET and SM. However, when com-
paring model results with observational data, it could be 
noticed that seasonal averages from Terra satellite for ET 
were lower as compared to the seasonal averages retrieved 
from FLDAS and GLDAS. The data from each source, 
namely, Terra satellite, FLDAS, and GLDAS, were aggre-
gated over the decade 2009–2018. A possible explanation for 
the difference in values could be the difference in temporal 
resolution of these data sources. The Terra satellite records 
real-time observations only once in 16 days as compared 
to the FLDAS and GLDAS data which record observations 
throughout the day in 15 min time intervals. ET values in 

the region of interest would keep on changing as the day 
progresses, which would explain the difference between 
the seasonal averages of Terra satellite retrievals and the 
models (FLDAS/GLDAS). As access to ground observa-
tions in the region of interest was lacking, the results could 
not be validated to check whether the Terra satellite data 
were underestimating, or the models were overestimating 
the ET values. Observational data such as SSM from Fig. 3f 
also have some noise and do not provide a smooth distribu-
tion. Similar results can be observed from Figs. 4 and 5 for 
FLDAS, GLDAS, and SSM data plotted for correlation and 
trend. The study found that climatology of soil moisture and 
ET obtained from FLDAS seems to have less noise com-
pared to the same parameters obtained from GLDAS. It can 
be found that there are high values recorded for both soil 
moisture and ET in the countries located to the North such 
as France, Germany, Austria, and Italy. Low values for soil 

Fig. 7  Time-series of SSM (in mm), EVI, Precipitation (in mm), and Terra ET (in  10–5 mm/s) over six locations within the Mediterranean region 
from 2010 to 2018
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Fig. 8  Monthly average of soil moisture, precipitation, and EVI for Turkey, Egypt, Tunisia, Spain, Italy, and Greece
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moisture and ET are recorded for countries such as Algeria, 
Libya, Egypt, and Northern Saudi Arabia. FLDAS data have 
better visualization and clear overview in those regions, sug-
gesting that FLDAS performs better in these regions than 
GLDAS in terms of its coherency with the observed hydro-
logical parameters.

There are some known issues with GLDAS-1 data, 
which might have caused noise in soil moisture and ET 
analysis performed with GLDAS model. The GLDAS-2.1 
is revised with upgraded models forced by a combination 
of GDAS, disaggregated GPCP, and AGRMET radiation 
data sets. However, the results from this study emphasize 
that GLDAS-2.1 still has the same issues as GLDAS-1. 
On the other hand, FLDAS data are specifically generated 
for seasonal drought monitoring and trend analysis using 
rainfall data obtained specifically from Africa regions. The 
crop water balance model utilized by the FLDAS is operated 
using a few datasets such as FEWS NET (Verdin and Klaver 
2002), NOAA Climate Prediction Centre, and the CHIRPS, 
a quasi-global rainfall dataset (Xie and Arkin 1997). Addi-
tionally, FLDAS data include temporal disaggregation 
mechanism where the rainfall data are used in crop water 
balance models and irrigation models. Since FLDAS data 
have specific features related to climatology and the study 
region with lesser drawbacks compared to GLDAS data, 
FLDAS data would be ideal for future study. Even though, 
GLDAS data are important for researches in Egypt, due to 
high correlations, similar patterns and trends, FLDAS data 
would be more precise.

In this study, the relationships between the hydrologi-
cal variables and land-cover changes were analyzed. Some 
regions have drying trends, so that most of the Open shrub 
lands have changed to barren lands. On the other hand, some 
regions have land-cover changes by human activities, such as 
Egypt, which has reclaimed croplands. In northern Iran and 
Iraq, areas with at least 60% of non-vegetated barren areas 
have converted to the open shrublands. Most of the crop-
lands in Algeria have changed to open shrublands possibly 
due to the drying tendency. The trend analysis of hydro-
logical parameters resonates with the results obtained above, 
such that there is a decrease in EVI, ET, and soil moisture 
for regions such as Egypt, Iran, Iraq, and Algeria. Declining 
patterns of above hydrological variables is an indication of 
drying trends that cause land-cover changes.

In this study, the intercomparing between six Mediter-
ranean countries in terms of their historical records and 
monthly climatology of EVI, SSM, ET, and precipitation 
are also presented in the Figs. 7 and 8. Mediterranean region 
is diverse among the different countries in the region. Coun-
tries to the south of this region such as Egypt, Libya, Iran, 
and Tunisia experience more dryer and desert climate than 

countries to the north such as Spain, Italy, France, and Ger-
many. Thus, the selection of the proper hydrological prod-
ucts is important for some countries such as Egypt, which 
does not demonstrate noticeable fluctuations for EVI, ET, 
and SM throughout the year. Egypt tends to have consistent 
pattern throughout the year for the hydrological variables, 
which makes it difficult to detect land-cover changes. On 
the other hand, Mediterranean areas in Europe widely face 
land-cover changes due to human intervention activities such 
as land abandonment, which results in soil erosion and fire 
risks. Thus, to detect land-cover changes caused by natu-
ral phenomena and human induced changes, a significant 
attention needs to be provided to the countries by consider-
ing their geological location and diversity among different 
countries.

5  Conclusion

This study presents the association between land-cover 
changes and hydrological parameters such as EVI, ET, pre-
cipitation, and soil moisture in the Mediterranean region. 
Significant changes in land-cover types of Open shrublands, 
Grasslands, Evergreen forests, Wetlands, Croplands, Barren 
lands, and Water bodies are observed throughout the Medi-
terranean region. Significant changes in land-cover types are 
well described by the climatology, correlation, and trend 
analysis of hydrological parameters.

The above-mentioned analysis is performed using 
observational data and model data sources such as 
FLDAS and GLDAS. FLDAS data proved to have bet-
ter performance with exploring trends and patterns with 
less noise and smoother data compared to GLDAS. Trend 
analysis of the hydrological variables such as EVI, ET, 
and soil moisture demonstrate the drying pattern over 
time, which cause Landover changes. Most of the grass-
lands, and croplands in Egypt, Iran, Iraq, and Algeria 
have converted to non-vegetated lands over time and it 
was well illustrated by trend maps of hydrological vari-
ables constructed in this study. To analyze the seasonal 
variations, time series of EVI, precipitation, and soil 
moisture are constructed using monthly averages for the 
selected countries such as Egypt, Turkey, Spain, Italy, 
Greece, and Tunisia.
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