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SOME JOINT PROBABILITY DISTRIBUTIONS

In the Technical Report EP76-R-A, it has been observed that the time 
to wait for the occurrence of an 'event' in a job network can be expressed 
in the generic form

Y = [(Xi + X2) A (X3 + X4 + )] A [XnAVj * [•...]• • •

where the X^ are the random activity times. The formal rules of 
manipulating and expanding these expressions have also been laid down. 
It should be clear, then, that in order to calculate the expected 
value of Y, one must have some formulas for the expected value of 
'suprema' and 'infima' of several random variables. This calls for 
not only a knowledge of their joint probability distributions but 
also, more concretely, some assumption regarding their mutual 
dependence or independence. Now, in the analysis of job networks 
that are equipped with a precedence relation, it has been customary 
to assume that service-times (i.e., completion-times for an 
individual, component task) are mutually independent, each being 
distributed exponentially.

The purpose of this and the following Chapter is to relax the 
assumption of independence. Accordingly, we present some preliminary 
results which will prepare the way for the substantive results.

§1 SOME RESULTS ON REPRESENTATION

Theorem 1 : If X and Y are arbitrary r.v.'s with a joint distribution 

function and if E(y|x = x) has a linear representation ax + b, then

the coefficients in the representation are given by :

a
P E(X),a = p -X- 

a ; b= E(Y) -
x x

where p is the correlation coefficient.
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= E(XY) - E(x) E(Y)
Proof : From the definition, namely, p , onea a

x y
can write

// xy f(xy) dx dy = // xy f(x) f(y|X=Tc) dy dx = pa a -*-E(x)E(Y)
x y

which is equivalent to

/x E(Y|x=x) f(x)dx = pa a +E(x)E(Y), E(y|X=x) = g(x).
x y

Suppose g(x) ==E(y|X=^c) has the form ax + b. So, it remains to

determine a and b. Thus,

/ x(ax + b) f(x) dx =

aE(X2) + bE(x) = pa a + E(x)E(Y)
x y

Applying the well-known formula E(x2) = E2(x) + a^ , one has

aa2 + E(x) (aE(X) + b) = pa a + E(x)E(Y) from which it 
x x y

pa a + E(X)E(Y) 
x y

i.e.,

follows that
a a

p-^ ; b = E(Y) - p E(X). 
a

= E(Y) + p ^

a =
0x X

(X - e(x)).Therefore g(x) •-= ax + b
x

Theorem 2 : Under the same assumption, the variance of 

2
is a "°y (1 - P2).{Y|X = x} y!x

cam be written as :ay|x=xProof :

2
=// [y - E(Y|X = x)] f(xy) dxdy2

ay|x=x

which after expansion becomes,

= // y2 f(xy) dxdy - // 2y E(y|X=^c) f(xy) dxdy 

+ // E2 (Y|X=x) f(xy) dxdy

a2
y|x=x

The first integral on the right-hand side is seen to be

// y2 f(y|x-x) f(x) dydx =E(Y2) = o* + E2(Y)
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The second integral can he evaluated hy substituting E(y|x=x) by 
a

E(y) + p -X- (X-E(x)) and a rearrangement of terms : 
x
If 2y E(Y|x=x) f(xy) dxdy = 2[e2(y) +• p2 a2] ,

y

and the third integral, after expansion and simplification becomes, 

a 2 
// [E(Y)+ p ^ (X-E(X))]2 f(xy) dxdy = E2(Y) + p2 [e(X2) - E2(x)] .

x x

Regrouping these three integrals, one has 

°y|X=x ** ay (1-p2) a iv = a / 1-p2 . 
y |X==x y

or

Theorem 3 : The linear representation is unique in the class of

polynomial representation.

Let us assume that E(y|x^x) = ax2 -t- bx + c; we will try to 

evaluate the parameter a, b and c by the same procedure used in

Proof :

Theorem 1.

/x(ax2 + bx + c) f (x) dx ^ pa a +E(x)E(Y)x yThus,

the results obtained by expanding and evaluating the left-hand side

of the equation shows that the parameters a_ and b_ are function of c_. 

Which implies that the representation used for EjŸ|x=x] is not 

feasible.

Therefore we can see easily that the same type of results will be 

obtained for any representation of E^jx^x] by any polynomial of higher 

degree.
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§2 JOINT DISTRIBUTION OF EXPONENTIAL VARIABLES

The ideas developed in theorems 1, 2 and 3 will be used in the joint

exponential distribution.

Theorem 4 :

i+p' ,e(y1x^)1pH _ y-E(Y|x^c)
(l*p) . ly-E[Y]x^c]1p # e L ay|x=x
cy|x=x _ ay|x=x

-Xix eLfUtyHXje

is the joint exponential density distribution, written under the form

f(xy) = f(x) • f(y|x=x) of the random variables X and Y.

Proof : The proof will be carried out by showing that the marginals 

are exponential and that f(x,y) is a density of distribution.

First, expand f(xy) using the regression formula
a

E(Y|X=x) — E(Y)+p ^ (x-E(x) ) ; ay|x^ = ay 

Replacing E(x), ax by — and E(Y), ar by f-
j A2

E(Ï|X^) _ i_ [ltp 2. x . p] .

one obtains

which gives
P+-1

- xpAi+p-1 •
P-A^x

A 2 ( 1+ p ) A2y-pAiX4p-l/ l-p^ 
e KfUjyHAje

/ l-p2 /T-P7
p1-1

A2y-pAiX+p -1

/ 1-p2

■ e
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a) Proof that, the integration of f(xy) with respect to y gives an 

exponential distribution :

-X jx00 oo

/ f(xy)dy = / f(x) • f(y|x=x) dy = Xi e
0 0

P+1
-xpXi+p-1

X2(1+ p ) rx2y-pX1x^p-l1pvl-p^
/ xle 
0

e
/ 1-p ^ / 1-p ^

p +1
x2y-pXix+p-l

/ l-pz
dy• e

pri p +1--xpXi-fp-l-i X2y-pXix+p-l

OO/l-p7-X^x
• {-e }= X^e • e

0

P TlP+1
■-xpXi+p-1- -pXjx+p-l

L vT-p7-Xjx
{ }= Xje e e

-X jx
— X^e

b) Proof that, the integration of f(xy) with respect to x gives an
OO

exponential distribution, / f(x,y) dx = X2 e
0

out in an analogous manner, replacing f(x,y) by f(y) • f(x|Y=y).

. This can be carried
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00 00

c) Proof that / / f(xy) dx dy = 1 : Replace f(xy) "by f(x) • f(y|x=x);
0 0 00 00^/''

then, the expression hecomes / / f(x) f(y|x=x) dydx = /
0 0 o

Therefore, f(x,y) is the joint exponential distribution of the random 

variables X, Y.

oo
-A }X

A i e dx = 1.

§ 3 MEAN-VALUES AND VARIANCES OF XVY AND XAY

Consider the random variable Z(aj) = X(m) VY(o)), and suppose that X(aj) 

and Y(üj) are jointly distributed vith the density f (xy).
A X

probability density function of Z(iij) is given by :

,a) dx

Then, the

a a
fz(a) =/ fxy (a ,y) dy+-/ ^(x

— CO —oo

a a
= / fx(a) • fY(y|x=a) dy •+/ fY(a) • fx(x|Y=y) dx (15)

—00 —00

00

The expected value of Z(w), i.e., E(Z) = f zf (z) dz may be calculated
— 00

Replace fz(z) ^7 the corresponding expressionin the following manner, 

found in (15), to obtain

c° a 00 a
E(z) = / a / fx(a) fY(y|x=a)dyda +{ a Jf^a) fx(x|Y=tt) dxda (16)

— OO —oo —oo — OO

In the case where fXY(xy) is jointly exponential, the following theorem

can be proved :

When X and Y are jointly exponential, then the E Sup(X,Y)Theorem 5 :

is given by :
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p+1P + 1•-xpXi+p-1- -X2X-pXiX+p-l-|CO

T— + T-----/ xXi exp{ -Xix +
X1 X2 J0 j } dx

/ 1—p2■ / 1—p 2

P+1 p + 1r-ypx2+p-i'| rXiy-pX2y-»p-l-i00

- / yX2 exp{ -X2y } dy
■ / l-p^0 / l-p^

Proof : As it is well know , the expected value of Z is given
» x 00 y

by E(Z) = / x / f(x,y) dydx + / y / f(x,y) dxdy 
0 0 00

Since f(x,y) is jointly exponential, therefore, the first integral on 

the right-hand side becomes

p+1
--xpXi-'-p-l-

■ / l-p^-Xjx00 X

/ X / xie X 2 ( 1+ p ) rX^-pX^/p-l-] Pe
00

/ 1-p 2 / 1-p2

P + 1•x2y-pXix+p-i-|

/ l-p^
dydx• e

p + 1 p +1--xpXi+p-1 -X2y-pXix+p-l-
x-Xjx00

eL /Tlp7= / xX* e } dx
0 0

p+1 p+1 p+1pxpXi+p-l-|

1—p ^

•X2x-pXix+p-l- pXjXtp-1-F/ i-pz / l-p ^-X^xCO

= / xXi e {- e } dx+• ee
0
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Now split this expression into two integrals, namely.

pi-1 P +1-Xjx xpX 2 + p—1-oo

= / xAi e dx - / x\x exp { -Ajx -t }dx
■ / 1-p^o

which is simplified as

ptl p + i—xpAj+p-1- -A2x-P^ix+P-1-OO

Y----- / xXj exp { - +
Al 0

}dx
/ 1—p ^

The second integral on the right-hand side of E(Z) can he evaluated

in a similar manner, giving

pi-1ptlr-ypA2tp-l-] rAiy-pA2yip-l-|00

/ yA2 exp { -A2y + 
À2 g

*
} dy

- / 1-p^ v 1-p^

The integrals can always he evaluated by numerical methods in the

general cane.

The expected value of Inf, using the relation (13) becomes :

E(U) = E(X) E(Y) - E(Z)

pt! ptl■-xpAi+p-1- -A2X-P A jXtp-1-00

E(U) — / xAi exp { -Ajx t } dxor
/ 1-p ^- / 1-p ^ -

, .. p 1
r-yp^2+p-1n

0

pti
rA1y-pA2ytp-l-]00

/ yA2 exp { -A2y + } dy
/ l-p^/ 1-p ^0

* Special case, p ^ 0; here, E(Z) becomes.
00 00

E(Z) + / x^ie ^lX _^2Xdx - / yA2 e
Al A2 0 0

-^y -My dy

X1 a2_ 1_+1_ _ 
Ai A2

1

(x^x2)z (a1+a2)2 Al

which corresponds to the results obtained in the case of independence.

A2 (Ai+-A2)
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The same method can be used to evaluate the variances of supremum

and infinum of a joint exponential r.v. s.

In certain classes of problems, the joint normal-exponential density

may be useful.

§ 4 JOINTLY NORMAL-EXPONENTIAL RANDOM VARIABLES

Two random variables X and Y are said to be jointly normal-exponential,

when their marginal densities are of the forms,

(x-E(X))2
2a2f(x) = 1 -Ayx ; f(y) = Ae/~2Tra * 

x
First, write f(xy) as f(x) f(y|X"=x)

~-e(y|x^)~ p +1 

e CTy|x=* • .
- V-e(y| x=x)1 p~fl 

e Lay|x- J
-(x-E(X))2

ry-E [y I X=x] -|p(p+D2az1 xe

CTy|x=x ay | X=x

and note that in this case, the regression formulas.
a

E(Y|x^c) ~ E(Y) t- p -J1- (x-E(X) ) and oy|x==x = ay / 1-p2

become, with the proper parameters.

E(Y|X-^) -i [1 + (x-E(X) )] ; <,y|x^ -

-(x-E(X))2
2o200

Next, verify that f f(xy)dy = • —
/ 2tto

-(x-E(x))2 r-E(Y|x=^c)
- 0y|x=x 

e 1

x
, observe thate

0 x
1 p 111P+1 - ~y-E ( Y | X=x )

e 0ylx_*ry-E [y I X=x] P(p+D2a100

X/ Jye
0 /~2rra ay |X-=x ay|x=^cx
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-(x-E(x))2 r-E(Y|X-x)lpfl
O ! veL y|X=^c

ip-^i_ y-E(y|x=x)

- ay |x=x -J2a21 00
X i'-e }e

/ 2TTC 0x

-(x-E(X))2
1 2a2x

, which is the marginal density of X.e
i/~2na

-(x-E(x))2x
2a2

x
1CO

On the other hand, / dx = 1 which shows thate
/ 2u

f(xy) == f(x) • f(y|x=x) is a density distribution.

We may also write, f(x,y) as f(y) • f(x|y=y)

-[x-E(x[Y-y)12 

X|Y-y
2a21-Ay

Xe e
0^ v/^2'rr(l-pZ)

In that case, the regression formulas

a
— (y - E(y)) ;E(X|Y y) • E(X) + ax|Y-y= ax /P â
y

become, with the proper parameters,

E(X|Y«y) - E(X)+ p ox (i - j) ; “xlï-ï

CO

-Ay
We now verify that f f(xy) dx = Ae

— 00

.. [x-E(x|Y^y)]2 

2ax|Y-y1-AyOO

~ / Xe dxe
/ 2ir(l-pz)_©0

-ty
which is the marginal density of Y.

OO

On the other hand, /x e ^ &y = 1 which shows that f(xy) = f(y) f(x|Y=y)
0

is a density distribution.

= Xe
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Next, we shall evaluate the expected value of Z 5 XVY for the case on
« x y

x / f(x) • f(y|x=x) dydx t- / y / f(y) f(x|Y=y) dxdy. 
-oo o 0 0

hand. Now, E(Z) = /

The first integral becomes ,

-E(Ylx^c)' ptl 
e ^ ay|x^ -

-(x-E(x))2
(p +1) ry-E(Y|x=^c)ip 

ay|x=x L °y|x=x

2a200 X

/* J 1 Xe
0 / 2ïïa— oo

X

-IP-My-E(Y1X=x)
■ ay |x=x

dy dx• e

p+1 p+1(x-E(X))2 r-EtYlx^)-! ■x-E(y|x=x)-|00 X
= e(x) - / exp{ - •f }dx2a2_oo / 2ira

x
• ay | X=x - '■ ay|x=xx

(1 )

While the second integral in the expression for E(z) becomes,
[x-E ( X1 Y=y ) 1 2

y - *y 100

2a2
/ y / Xe 
0 —00

x|y=t dx dy.e
ax /_2tt (l-p2 )

-Xy00

r-E(xlY-y)-I yX e F (
N(0,1) x|Y=y

) dy . .. (2 )

Therefore, E(XVY) in this particular case is equal to (l ), (2 ),

which can always be evaluated by numerical methods.
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§ 5 PRACTICAL BOUNDS

In Technical Report, we have shown that the assumption of indepen

dence between two activities can be relaxed by the introduction of joint

distributions. But the results are quite complicated and an extension

to the case of more than two random variables is difficult and tedious.

This leads us to search for a new formulation of the P.E.R.T. type

problems.
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§17 PRACTICAL BOUNDS

In this chapter, ve have shown that the assumption of independence

between two activities can be relaxed by the introduction of joint

distributions. But the results are quite complicated and an extension

to the case of more than two random variables is difficult and tedious.

This leads us to search for a new formulation of the P.E.R.T. type 

problems, a task which we take up in the following Chapters.




