
Génie Industriel

ON THE STRUCTURE QF AU. MINIMUM QiïS IN A NFTWDRK 

m APPLICATION

Jean-Claude PICARD 

Maurice QUEYRAf\INF
BY

AND

Departement de Genie Industriel, 

ECOLE POLYTECHNIQUE DE MONTREAL.

ffiRCH 1979. Rapport Technique No. EP-ZQ-R-IS

Ecole Polytechnique de Montréal

CA2PQ
UP4 Campus de l'Université 

de Montréal 
Case postale 6079 
Succursale X 
Montréal, Québec 
H3C 3A7

79R15

J



m
ltbltotI|?qup iErnif

Polgtpr^ntqup
MONTRÉAL

133439

@=,
COTE

UFA

ë



9 AVR 1379
ECOLE POLYTECHNIQUE BIBLIOTHEQUE

OH THF STRIir.TIIRF OF Al 1 Mltliwim
CUTS IN A HFTHORK AHO APPI lOATIOHS

<) by Jean-Claude PICARD

and Maurice QIJEYRANNE

Departement de Genie Industriel 

Ecole Polytechnique de Montreal

MARCH 1979 Rapport Technique EP-79-R-15

À CONSULTER
SUR PLACE



ABSTRACT

This paper presents a characterization of all minimum cuts,

separating a source from a sink in a network. A binary rela­

tion is associated with any maximum flow in this network, and

minimum cuts are identified with closures for this relation.
/

As a consequence, finding all minimum cuts reduces to a straight­

forward enumeration. Applications of this result arise in sen­

sitivity and parametric analysis of networks, algorithms for mi­

nimum cost flow, the vertex packing and maximum closure problems,

in unconstrained boolean optimization and project selection, as

well as in other areas of application of minimum cuts.
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I. INTRODUCTION

Consider a finite directed network with positive arc capacities,

and two special vertices, a source s and sink t. The problem of finding

a cut separating s from t, with minimum capacity can be solved by applying

any maximum flow algorithm and using the maximum flow-minimum cut theorem

of Ford and Fulkerson. Here we consider the problem of finding all the

minimum cuts.

It appears that this is only the problem of finding all optimum

solutions to a linear programming problem. However, this is not a simple

task . Consider for instance a network with n vertices and 2n-4 arcs, name­

ly (s,i) and (i,t) for all vertices i ^ s and t, all with equal capacities

n-2
(see Figure I): this network admits 2 cuts separating s from t, all

being minimum cuts. It follows that we cannot expect a polynomial algorithm

for finding all minimum cuts.

In the next section, we show that we can associate a binary relation

with every network, such that finding all minimum cuts reduces to finding all

closures for this relation. There exist efficient enumerative methods for

generating all closures, thus producing all minimum cuts. In addition this

associated binary relations provides more insight into the structure of mini­

mum cuts in a network.

i
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In the last section, we mention several applications in which

it is useful to know all the minimum cuts in a network or at least all

the arcs which belong to some minimum cut. In these applications, finding

all the minimum cuts allows to better solve the problem considered, or

at least helps reducing the computational burden for a subsequent algorithm.
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2. STRUCTURE OF MINIMUM CUTS

We are given a finite directed network N=(V,A,c) , with vertex

set V, including a source s and a sink t, arc set A and positive arc

capacities c defined on A. Given two disjoint subsets S and T of V,
ij

we denote by (S,T) the set of all arcs in A with tail in S and head in T.

When a function f is defined on A, we denote by f(S,T) the sum of the

values of f on the arcs in (S,T). A cut separating s from t is any arc

set (S,S) where s e S, S=V-S is the complement of S and t e S. By a mini­

mum cut we mean a cut separating s from t with minimum capacity.

Given a binary relation R defined on V, whenever iRj we say

that i is a predecessor of j and j is a successor of i. A subset

C Ç V is a closure [18] for R iff for all vertices i, j e V, the condi-

(This is sometimes called an hereditarytions i e C and iRj imply je C.

subset for R, [7 ]).

Consider any maximum flow f in N. From the maximum flow-minimum

cut theorem of Ford and Fulkerson [5 ], we know that such a flow exists

and has a value equal to the minimum capacity of a cut. We assume that

such a maximum flow is given, since it can be computed by efficient algo­

rithms (see [22 ] for a recent review).
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THEOREM I:

Let f be any maximum flow in N. Define a relation R on the vertex

set V as follows:

<((i,j) e A and f ) or ((j,i) e A and f .j > 0)iRj (1)c. . 
ij

Then a cut (S,S) separating s from t is a minimum cut if and only if S is

ij

a closure for R containing s and not t.

PROOF :

Consider a cut (S,S) separating s from t. For any feasible flow

f in N, we have.

c(S , S) > f(S,S) - f(S,S) (2)

and equality holds if and only if both f is a maximum flow and (S,S) is a

Thus if (S,S) is a minimum cut then for all arcs (i,j) e (S,S)minimum cut.

we have f and for all arcs (j,i) with i e S and j e S ..=0.

This implies that S is a closure for R, containing s and not t, for otherwise

we have fij Cij

there would exist two vertices i and j such that i e S, je S and either

< > 0, a contradiction.f. .
IJ

for R, containing s and not t.

or f Conversely, consider a closure SCij ji

For every arc (i,j) in (S,S) we must have

and for every arc (j,i) in (S,S) we must have ff. . c. . , 
ij ij

that equality holds in (2) and thus (S,S) is a minimum cut.

= 0. It follows
ji

//
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This theorem gives more insight into the structure of minimum cuts

in N. The following proposition is immediate from the definition of a closure:

PROPOSITION 2:

Given a binary relation R on a set, if C and C' are closures for

R, then C U c' and C C' are also closures for R.

Hence the following corollary f 5 ] , a proof of which requires two

pages in [ 10] :

COROLLARY 3:

If (S,S) and (S',S') are minimum cuts in a network N, then

(S Us', S Us') and (S H s', S Cl s') are also minimum cuts in N.

Given a maximum flow, the corresponding relation R can be deduced

by a simple examination of all the arcs in A. Distinct maximum flows

may produce different relations but the set of closures remains the same.

Define the transitive closure R of a binary relation R as the smallest binary

relation on the same set, containing R. The following proposition is easily

proven :

PROPOSITION 4:

A subset C is a closure for R if and only if it is a closure for R,

A bit more difficult to prove is the following:
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PROPOSITION 5 [241 :

If R and R' are transitive relations defined on the same

set, such that any subset C is a closure for R if and only if it is also a

closure for R', then R = R'.

Thus the different binary relations defined by different maximum

flows have the same transitive closure, which we call the preorder R asso­

ciated with the network N. This transitive closure can be obtained by an

2.81
algorithm in 0(1 V I of Warshall [30] , or slightly better, in 0(1 Vl )

by using the fast matrix multiplication [ 4 ] , [ 2 ] . 

in linear expected time by using the algorithm of Schnorr [ 26] .

It can also be obtained

Once this transitive closure is obtained, we can shrink its strong

connected components to single vertices. The resulting relation R on the

reduced set V is acyclic, that is a precedence relation (or a partial order).

After eliminating the component T containing the sink t, and all its prede­

cessors (which cannot belong to a closure not containing T) and the component

S containing the source s, and all its successors (which must belong to a

closure containing S) we are left with a further reduced relation, every

closure of which induces (after addition of S and all its successors) a mini­

mum cut in N.
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AN EXAMPLE:

Consider the network given by Figure 2. A maximum flow is given

in Figure 3. The associated relation R appears on Figure 4, where an arc

(i,j) represents iRj and a bidirected arc (i,j) stands for both iRj and jRi 

(when the corresponding arc has flow strictly between zero and its capacity).

The strong connected components are

S = {s ,2}, T = {t,8,12}, VI = {1}, V3 = {3,7}

V4 = {4}, V5 = {5,9} and V6 = {6,10,11}, and after shrinking these to a

single vertex, the resulting relation R is given by Figure 5. Here V3

is a successor of S and V6 is a predecessor of T. The other components VI,

V4 and V5 are all predecessors of S and successors of T, and they induce

the relation given in Figure 6. This relation admits six closures C, each

one defining a minimum cut (X,X), as follows:

X = S U V3C = 0 and

C = {VI} X = S U V3 U viand

C = {VI, V4} X = S U V3 U vi U V4and

C = {VI, V4, V5} and X = S U V3 U vi U V4 U V5

C = {VI, V5} X = S U V3 U vi U V5and

C = {V4} X = S U V3 U V4and
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3. APPLICATIONS AND EXTENSIONS

The main result of the previous section provides more insight into

the structure of minimum cuts in a network. In this section we mention

several domains of applications for this result.

The structure revealed by the preorder associated with the network

can be used to simplify sensitivity and parametric analyses of the maximum

flow. In sensitivity analysis, it is required to find all the arcs such

that a modification (increase or decrease) of the capacity of one of them

implies a modification of the maximum value of a flow. It is clear that

only saturated arcs are to be considered, and that any reduction in the capa­

city of an arc which belongs to some minimum cut implies a reduction in the

flow value. These arcs are identified as follows:

COROLLARY 6:

A saturated arc belongs to some minimum cut if and only if its ends

do not lie in the same connected component of the relation R.

On the other hand, an increase in the capacity of an arc allows

an increase in the flow value if and only if this arc has its tail in the

connected component containing the source (or some successor of it) and its

head in the component containing the sink (or some predecessor of it).

Similar results apply to various parametric analyses such as adding new
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arcs or nodes [29], finding the most vital arcs I 13| , [28], [ 3 ij or nodes 

[ 9 ] and in the analysis of dynamic maximum flow [ 15, pp. 128-151]. One

practical application of dynamic maximum flow is the modeling of building

evacuation [ 6 ]: given the minimum evacuation time, it is desired to detect

all evacuation bottlenecks which may cause delays and to which special atten­

tion must be given; these are precisely the arcs which belong to some minimum

cut.

Another application arises in computations of minimum cost flows.

In the primal-dual method [ 5 ] , only one dual variable change is necessary

between flow augmentations if the cheapest set of arcs required to connect

the source component to the sink component is identified; using the related

binary relation is an alternative to shortest path computations, taking

advantage of zero reduced costs, which might be of practical interest. For

the primal method Cycle [12] T.C. Hu has noted that, using any minimum cut, 

"we can split the network into two parts and find negative cycles in each 

of these parts" [lO, p.173]; indeed we can further decompose the network and

restrict the search for negative cycles to each connected component of the

associated preorder.

Consider now the problem of finding all minimum cuts in a network.

This is equivalent to enumerating all the closures for the associated binary 

relation R, and we can apply a procedure of Gutjahr and Nemhauser [ 8 1 , or of

Schrage and Baker [27]. The Schrage-Baker procedure appears very efficient,
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requiring very little bookkeeping effort for every closure generation.

Identifying all minimum cuts is useful whenever a problem is reduced to

finding a minimum cut in a network satisfying additional constraints.

Consider for example the vertex packing problem in a vertex-weighted 

undirected graph [ 16] : solving a linear programming relaxation of one

integer programming formulation can be achieved by finding a minimum

cut in a related bipartite network, producing a solution with values

1
0,1 or — and it is desired to find a solution with the maximum number 

of 0,1 components [ 20] ; 

analysis [ 16] , or by a specialized algorithm [ 19] and also by identifying

this can be achieved by classical sensitivity

all minimum cuts and retaining the one producing the most integral solution.

Another problem amenable to a minimum cut solution, which has

significant practical implications is the maximum closure problem [ 18] ,

a generalization of the selection problem [ 25] , [ 3] . In investment

application, or in mining engineering, it is desirable to obtain all

solutions with maximum weight, from which a "best" one is selected on the

basis of ill-formulated constraints or objectives (e.g. [14]). In mathe­

matical programming, the unconstrained maximization (or minimization) of a

boolean polynomial can be approached by solving a related maximum closure

problem [ 21] ; the corresponding solution may be overestimated, by omis­

sion of some nonlinear terms with negative costs which cannot be covered
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by other positive terms (see [21 1 for further details) and identification

of all optimal closures may be useful by producing several tentative solutions

from which the best one can be retained as an incumbent in a subsequent branch-

and-bound algorithm. There are several other applications of minimum cuts

and maximum closures, which may benefit from identification of all optimal 

solutions and the reader is refered to [22 ] for a more detailed survey.

The results of this paper can be extended to undirected networks

and to networks with lower capacities. Any undirected network can be con­

verted to a directed network by arbitrarily directing its edges and adding

some source and sink-arcs, such that the relative capacities of the cuts 

remain unchanged [23 ] . Hence all the minimum cuts of an undirected networks

can be found after this reduction by applying the previous results. Among

possible applications are a layout problem of electrical connexions on a line 

[ 1 ] and the design of optimum communication networks [ 11] . 

of this paper also extend to networks with lower capacities [ 5 ] , and this

The results

is left to the reader as an exercise. The project time/cost tradeoff problem

of critical path analysis can be approached by finding minimum cuts in the

project network, which includes both lower and upper capacities [17].

The authors note that the minimum cut is not necessary unique and state:

"The practical significance of this fact is that a decision based on other

than cost must be rendered to select a minimal cut set " [ 17, p.396] .

Clearly, this selection process is best performed when all minimum cuts have

been identified.
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