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a b s t r a c t 

Objective: This research aims to develop a basic understanding of a demand management process inte- 

grating sales and operations planning (S&OP) and order promising in a Make-To-Stock environment and 

to compare different demand management policies with limited capacity. 

Contribution: Typical researches about demand management processes analyze few system specifications 

or vary few potential factors one at a time. Yet, additional insights can be obtained by employing a space- 

filling design and Kriging metamodeling for analysis. 

Methodology: We compare two configurations of the integrated demand management process. While the 

First-Come First-Served concept is used at the order promising level for the first configuration, the sec- 

ond configuration uses nested booking limits and gives advantage to profitable customers and attractive 

periods. Considering various order arrival sequences, we generate Kriging metamodels that best describe 

the nonlinear relationships between four environmental factors (demand intensity, demand forecast er- 

ror, customer heterogeneity and coefficient of variation) and three performance measures (yearly profit 

margin, yearly sales and high-priority fill rate) for Canadian softwood lumber firms. Since our simulation 

experiments are time-consuming, we employ a Latin hypercube design to efficiently take into account 

different market situations. 

Results: Our analysis reveals the potential to improve the performance of the demand management pro- 

cess if we know high-priority customers needs before fulfilling low-priority orders and if we use nested 

booking limits concept. 

© 2018 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

.1. Motivation and background 

The Canadian softwood lumber industry is struggling to cope

ith certain challenges. The industry difficulties are mainly due

o the increased cost of woody supply and reduced demand dur-

ng the last decade [1] , coupled with the increased low-cost com-

etition from emerging countries in Asia and Latin America [2] .

oreover, sawmills’ profitability can be severely affected by fluc-
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uations in the Canada–U.S. exchange rates and the numerous soft-

ood lumber disputes between Canada and the United States [1] . 

Canadian softwood lumber companies have employed cost-

utting strategies to maintain competitiveness and profit margins

2] . However, they must be able to remain profitable in situations

here markets experience disturbances. This requires a deepened

nderstanding of the market side of the supply chain to take ad-

antage of sales opportunities [3] , and an improvement of existing

rocesses by using real-time monitoring systems as well as inte-

rated planning systems [4] . 

This research is motivated by the need for Canadian softwood

umber firms operating in a supply-constrained environment and

acing heterogeneous and seasonal market, to improve their de-

and management process and to anticipate how this process will

erform in different situations. The dominant thinking currently in

he Canadian lumber industry is to produce maximal volume from

he available resource, which is constrained by raw material avail-
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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ability and complexity of divergent production processes. Although

sawmills operate at full capacity most of the time, they do not take

advantage of seasonal fluctuations of prices and of the willingness

of some customers to pay more for better products and better

services. To this end, an integrated demand management process

(IDMP) has been proposed by Ben Ali et al. [5] . They integrated

sales and operations planning (S&OP) and order promising models,

particularly those based on revenue management (RM) concepts. 

The integration between RM and S&OP is not well understood

either in theory or in practice, particularly for Canadian softwood

lumber firms. It is unclear how an IDMP, that can be configured

differently as presented in [5] , can perform facing various order

arrival sequences and market disturbances. In fact, Canadian soft-

wood lumber managers are confronted with different challenges

such as a change of demand intensity, a rise of demand variability,

poor accuracy of demand forecasts and increasingly heterogeneous

customers. The simulation of the IDMP proposed by Ben Ali et al.

[5] offers the possibility to experiment several demand manage-

ment approaches and to measure the effect of these environmental

factors on the IDMP performance. 

Searching for effects by varying factors one at a time is an inef-

fective means to estimate the factor effects [6–8] since it imposes

restrictions on the number of factors and the number of values

that these factors can take with a limited simulation budget, and

so fails to consider nonlinear relationships. Using space-filling de-

signs, and then Kriging metamodeling, is advantageous as an ef-

ficient tool with time-consuming simulation experiments to esti-

mate factor effects on the IDMP performance in different situa-

tions. 

Our paper aims i) to develop a basic understanding of the IDMP

proposed by Ben Ali et al. [5] facing various order arrival sequences

and taking various market disturbances into account and ii) to

compare different demand management policies. For these pur-

poses, we have to identify: which factors are expected to have the

most significant impacts on the IDMP? And how can they affect

the performance (improvement or deterioration and in which situ-

ations)? 

1.2. Contributions and paper structure 

Most multi-level decision processes and integrated decision-

support systems in manufacturing context are too complex to be

evaluated analytically and so have to be studied by means of sim-

ulation before implementation. This paper addresses the need to

evaluate the ability of a multi-level decision process to face the

different factors that could affect its performance. One of the main

contributions of this paper is the novel procedure to experiment

and to analyze the behavior of an integrated demand management

process (IDMP) under a variety of scenarios: we employ a space-

filling design and Kriging metamodeling to scan the effects of some

relevant market factors on the IDMP performance. To the best of

our knowledge, our study is among the few papers which use

space-filling design and Kriging in a realistic supply chain setting,

particularly to analyze factor effects and to compare different de-

mand management approaches/practices. In addition, as motivated

by an industrial problem, the paper discusses the potential impli-

cations of this analysis for firms operating in supply-constrained

environments, such as Canadian softwood firms. 

The remainder of this paper is organized as follows.

Section 2 presents the related literature. In Section 3 , we de-

scribe the industrial context. Section 4 exposes the performance

measures, the factors considered in the experimentation and the

experimental design. While Section 5 explains the different steps

for data generation and analysis, Section 6 presents the analysis

results and discusses managerial implications. Finally, conclud-
ng remarks and further research opportunities are provided in

ection 7 . 

. Related literature 

.1. S&OP and R evenue management in manufacturing 

S&OP is a tactical process which supports cross-functional in-

egration [9] and links company strategy and operational planning

10,11] . In fact, it is important to create a specific leadership style

nd a culture in the organization to ensure integrated demand

anagement and supply chain planning. This required the involve-

ent of all functions in each stage through a continuous mecha-

ism. However, the survey of Wagner et al. [12] shows that orga-

izations’ current S&OP performance is underdeveloped and many

mprovements are indispensable to concretize the alignment pro-

ess. The lack of participants’ commitment and information relia-

ility, the absence of cross-functional integration and a siloed cul-

ure are the main barriers that jeopardize S&OP success [13] . 

Although there are diverse researches available concerning

&OP implementation [13] , the role of S&OP as a powerful tool

or reaching business targets is mostly absent from the current lit-

rature [11] . Moreover, systematic revues of Thom et al. [14] and

uomikangas and Kaipia [11] show that there is still a need for

ore in-depth case studies with multiple perspectives to provide a

eeper understanding and guidelines for companies to manage the

&OP implementation challenges. In this context, this paper aims

o provide a better understanding of the link between the S&OP

nd the order promising function, particularly when the organiza-

ion strategy focuses on customer heterogeneity. 

While S&OP makes mid-term decisions, order promising is a

eal-time problem which has impacts not only on company prof-

tability and customer service level in the short, medium and long

erm, but also has significant influence on scheduling and execu-

ion of manufacturing and logistics activities [15] . When all de-

and cannot be fulfilled, introducing RM in order promising ac-

ivity can be considered as a powerful tool ensuring higher prof-

tability and forging a stronger relationship with customers less

ensitive to price [16] : Order promising concerns how to manage

apacity allocation, aggregately set by tactical planning, to differ-

nt customers and introducing RM in order promising activity con-

ists in protecting capacity reserved for each customer segment by

efining booking limits [17] . Regarding application of RM concepts

n manufacturing context, two research streams can be distin-

uished. Within the first stream, the focus is on the implantation

f RM in Make-To-Stock (MTS) context [18–20] . A second stream

as evolved from more advanced work on Assemble-To-Order en-

ironment [21–23] and Make-To-Order environment [24,25] . 

The relevance of integrating order promising with tactical plan-

ing tasks was exhibited in a built-to-order context by Volling

nd Spengler [26] , who explicitly model order promising and mas-

er production scheduling as distinct and interdependent planning

unctions. Ben Ali et al. [5] have taken a further step forward by

onsidering complex transformation processes with heterogeneous

aw materials and divergent product structure, mid-term market

easonality and customer differentiation. 

Unlike existing studies which dealt separately with S&OP and

M in complex manufacturing situations (See Appendix A and

ppendix B ), Ben Ali et al. [5] proposed an IDMP including S&OP at

he tactical level and real-time order promising based on RM con-

epts at the operational/execution level (see Fig. 1 ). This IDMP sup-

orts sales decisions in a way to maximize profits and to enhance

he service level offered to high-priority customers: First, consider-

ng demand and prices forecasts, sales commitments made in pre-

ious periods and current inventories, S&OP is executed monthly

ver medium-term horizon to predetermine supply, production,
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Fig. 1. The integrated demand management process (IDMP) proposed by Ben Ali 

et al. [5] . 
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ransport and sales plans, taking into account demand and prices

easonality. Second, real-time sales decisions have to be taken for

ach received order based on RM concepts, which offers the pos-

ibility of prioritizing orders from customers less sensitive to price

nd for more profitable periods and to select the most profitable

ourcing location. Our paper proposes going further by examining

ow such integrated process will perform using different demand

anagement policies and facing different market situations. 

Among all researches dealing with S&OP and RM in manufac-

uring context (See Appendix A and Appendix B ), analysis by run-

ing only a single system specification or by varying some poten-

ial factors one at a time were performed. Nonetheless, these tests

an lead to different conclusions if we make some changes in the

actor settings. Using a conventional Design Of Experiments (DOE),

dditional insights can be gleaned with the same simulation bud-

et. 

.2. Conventional designs of experiments for simulation systems in 

upply chain settings 

Factorial designs (full or fractional) are the most popular DOEs

sed in supply chain settings (See Appendix C ), but the disadvan-

age of these designs is that the number of scenarios grows ex-

onentially when the number of factors or the number of factor

evels increases. Taguchi’s [27] designs are also widely common to

dentify robust decision factor settings. These designs are limited

o main effects, which is usually too restrictive for simulation en-

ironments [6] . Employing finer grids (more than two or three lev-

ls) for some factors is important to view nonlinear relationships. 

Space-filling designs, including Latin Hypercube Designs (LHD),

ake the samples more uniformly spread in the experimental re-

ion [28] . They can be employed for continuous factors or discrete

actors with a potentially large number of levels [29] . These de-

igns are more interesting for time-consuming experiments like

urs. On one hand, they are efficient and flexible for analysis. On

he other hand, they use an attractive sampling technique to pro-

ide data with few restrictions on factors and to cover large design

paces [6] . 

.3. Kriging metamodeling 

Metamodeling is usually employed to analyze time-consuming

imulation experiments. The objective is to represent the In-

ut/Output (I/O) function implied by the underlying simulation

odel, and so predict outputs for new factor combinations, other

han those simulated. In particular, Kriging (also called Gaussian

rocess modeling) is typically used to develop global metamod-

ls [29] : “Kriging models are fitted to data that are obtained for

arger experimental areas than the areas used in low-order poly-

omial regression metamodels” [30] . Kriging has traditionally been

sed for deterministic computer models. However, during recent

ears, the application of Kriging to outputs from stochastic simu-
ation models, as is our case, has been explored by Kleijnen [30] .

imulation analysts often use LHD to generate the I/O simulation

ata to which they fit a Kriging metamodel [30] . 

. Industrial context and case study 

.1. Market characteristics 

Confronting various trade and economic pressures, Canadian

oftwood lumber companies try hard to remain profitable and to

aintain positive profit margins [31] . In this context, our case

tudy, illustrated by Fig. 2 , is inspired from softwood lumber man-

facturers located in Eastern Canada. In this region, lumber manu-

acturers principally offer their products to different markets such

s the Canadian market, the Northeastern American market, etc. A

arge portfolio of products is offered to heterogeneous customers,

aving different attitudes and priorities. Home improvement ware-

ouse companies and housing component manufacturers, for ex-

mple, are willing to pay more for shorter lead times and person-

lized services. Other customers, such as dealers and distributors,

re more sensitive to price. 

.2. Demand characteristics 

In this study, we deal with ten lumber commodity products.

emand for such products greatly exceeds supply offered by the

ompany, as is usually the case for softwood lumber companies in

astern Canada. In addition, prices are expected to move higher

oing into some periods of the year. Most of these seasonal fluc-

uations in softwood lumber prices can be explained by demand

easonality related to construction activities. 

.3. Sawmills/production characteristics 

Sawmills can be considered as a MTS environment as its ac-

ivities are driven by forecasts. Unlike traditional manufacturing

i.e. assembly) which has a convergent product structure, sawmills

ave complex transformation processes (i.e. sawing, drawing, plan-

ing) with heterogeneous raw materials (great diversity in terms

f wood quality, diameters, length, etc.), divergent product flows

generating many products at the same time) and radically differ-

nt planning problems to be solved by each mill. 

Although sawmills operate most of the time at full capacity,

roducts are not always available in stock at the right time to take

dvantage of price fluctuation for many reasons. First, there is little

exibility in raw material availability, depending on regulations of

orestry activities and on the seasonal nature of harvesting opera-

ions, which limits the variation in the lumber sawing process. Sec-

nd, production operations are complex since divergent processes

nduce the production of multiple products simultaneously. 

The studied network, illustrated by Fig. 2 , is composed from

hree sawmills with the same capacity and dispersed over Que-

ec province. Sawmills can be supplied from two sources and sell

o various markets (customers from different geographical regions

nd so with different transport costs) composed of differentiated

egments (customers classified according to their willingness to

ay). 

.4. Actual situation 

Whatever the market conditions, the dominant thinking of the

anadian lumber manufacturers is to produce the maximum vol-

me from the available resource. Production is oriented towards

arge batches resulting in large inventories, low flexibility and low

gility. Ben Ali et al. [5] have shown the potential profit that can be

btained by taking into account demand/price seasonality and by
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Fig. 2. The case study: A supply network of a multi-site softwood company. 
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rejecting orders, not only if not enough resources are available, but

in anticipation of more valuable ones from profitable customers

and for more attractive periods. 

Based on multiple meetings with softwood lumber managers

from the Eastern Canadian region, we identified that they have two

principal preoccupations: To maximize the profit margin and the

sales and to sell scarce products to the right customer (i.e. high-

priority customers) at the right time. Therefore, in what follows,

we will consider profit margin, sales and high-priority fill rate as

performance measures. 

4. Experiments 

In this study, we follow the procedure recommended by Mont-

gomery [7] for designing and analyzing experiments (see Fig. 3 ).

We have already recognized the problem and identified the objec-

tives of the experiments. Next, we have to define the performance

measures which reflect the system/process performance. Then, we

have to set the list of factors and the categories that they can take

or the ranges over which these factors will be varied. Depending

on the objectives of the experiments and the number and the na-

ture of factors, we have to choose the type of experimental design.
Fig. 3. Procedure for designing and analyz
.1. Performance measures 

Based on sales managers objectives in softwood lumber in-

ustry, we choose to analyze results regarding three performance

easures (see Fig. 4 ): 

- The yearly profit margin (YPM) is calculated as the total sell-

ing price minus production, transportation and inventory costs.

This output is measured over a year to take into account the

benefits of tactical planning considering cyclical rises of de-

mand/price. 

- The yearly sales (YS) represent the total volume sold and deliv-

ered over a year. 

- The HP fill rate (HPFR) measures the proportion of demand re-

ceived from high-priority (HP) customers that has been ful-

filled. 

While the two first indicators are oriented to evaluate global

erformance, the last one concerns the service level offered to HP

ustomers. 
ing experiments (adapted from [7] ). 
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Fig. 4. Performance measures and factors. 

Table 1 

Factors and their associated categories/ranges. 

Factor type Factors Notation Categories/Ranges # of Combinations 

Categorical decision factors Order promising approach A NBL, FCFS a 6 combinations 

Order arrival sequence S ASC, RAND,DESC b 

Continuous environmental factors Demand intensity I [1.25,1.75] 24 environmental scenarios c 

Demand forecast error E [ −20 %,+20%] 

Customer heterogeneity H [ + 5%,+25%] 

Coefficient of variation V [0,1] 

a NBL: approach using Nested Booking Limits, FCFS: First-Come First-Served approach. 
b ASC: ascendant sequence, RAND: random sequence, DESC: descendant sequence. 
c see Table S1.1. 
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.2. Factors 

We have clustered the factors examined in this study into cat-

gorical decision factors and continuous environmental factors. In

hat follows, combinations of values for environmental factors are

alled environmental scenarios. Table 1 and Fig. 4 expose the fac-

ors and their associated categories or ranges. 

.2.1. Decision factors 

In this study, we assume that customer orders are treated in-

ividually and that the decision of accepting or refusing an order

as to be instantaneous and definitive. However, order assignment

o sourcing locations is temporary and may be changed. Partial ful-

llment is not allowed, but an order can be fulfilled from different

ourcing locations. Although the expected periodical demand is ap-

roximately known based on forecasts, the exact ordering quantity

aries randomly. 

In this context, two categorical decision factors affecting the

ystem performances are identified based on Ben Ali et al.’s

5] study: 

• Order promising approach (A): r eflects how orders have to be

fulfilled. Quantities to sell for each customer segment at each

period of the year are already set by the S&OP at the tacti-

cal level (see Fig. 1 ). Then, for each received order, real-time

sales decisions have to be taken. For this purpose, different or-

der promising approaches can be considered. First, we consider

a First-Come First-Served approach (FCFS), which simply de-

cides if we accept or refuse each order, based only on resources

availability. FCFS approach will be compared to a second ap-

proach (NBL) based on RM concepts and using Nested Booking

Limits. This approach can be applied in a manufacturing set-

ting in order to take advantage of customer heterogeneity and
profitability variation over time. According to Talluri and Van

Ryzin [32] , setting booking limits is a way to control the avail-

ability of capacity. NBL approach can support managers in a

supply-constrained environment, such as in the softwood lum-

ber case, to decide which orders should be rejected in anticipa-

tion of more valuable orders, not only if not enough resources

are available. Further on, with nesting, capacities overlap in a

hierarchical manner depending on the expected profit margin,

so that capacities initially designated to a specific couple (cus-

tomer segment, period) can be sold to other couples generating

better profits. 

• Order arrival sequence (S): r eflects how orders arrive at order

promising level. In this study, we consider three arrival se-

quences: a random sequence (RAND) where orders from dif-

ferent segments are randomly received, an ascendant sequence

(ASC) where orders are received in an ascending order of prior-

ity i.e. low-priority orders arrive first, and finally a descendant

sequence (DESC) where orders are received in a descending or-

der of priority i.e. high-priority orders arrive first. S can be con-

sidered as a decision factor since, in our industrial context, sales

managers can stimulate HP customers to express their needs

before dealing with low-priority orders. 

.2.2. Environmental factors 

Environmental factors are uncontrollable in the real-world, but

hey are estimated and approximately controlled for experimental

urposes. Inspired from market disturbances confronted by Cana-

ian softwood lumber managers and S&OP and RM literature (See

ppendix A and Appendix B ), we select four relevant environmen-

al factors. Each factor can take a numeric value in a defined range.

• Demand intensity (I): i s introduced at S&OP level and at order

promising level. It represents the percentage of the production
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Fig. 5. Experimental design. 
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capacity required to fulfill the demand [33] . A demand intensity

I equal to 1 has been estimated by pushing infinity of supply

into the supply chain and observing the maximum production

output that can be produced (i.e. the capacity). Then, we cal-

culate demand as: Demand = I × Capacity . Since we are dealing

with limited capacity, we vary I between 1.25 and 1.75, simi-

larly to [34] . 

• Demand forecast error (E): i s introduced at S&OP level. Similarly

to [20] , demand forecasts of all products in all weeks present an

error E between −20% and + 20% in terms of demand volumes.

Demand forecasts are upper bounds for sales planned by S&OP,

such as in [5] , and are computed as: Demand f orecast = (100 +
E)% × Demand = (100 + E)% × I × Capacity . 

• Customer heterogeneity (H): i s introduced at order promising

level and reflects the willingness to pay of customer segments:

High-priority segments are ready to pay H % more than the mar-

ket price, while low-priority segments pay H % less than the

market price. Medium-priority segments represent the major-

ity of customers and the price that they will pay is equal to

market price. 

• Coefficient of variation (V): r eflects the demand variability such

as in [19] and is introduced at the order promising level. Or-

der size is affected by a standard deviation = V × average or-

der size, while the average order size is calculated as the total

demand (already affected by I) divided by a fixed number of

received orders. 

4.3. Experimental design 

Fig. 5 illustrates the experimental design. We consider the 6

combinations of the categorical decision factors. Each combination

is simulated for m different environmental scenarios (i.e. combina-

tions of the continuous environmental factors) generated using a

Latin Hypercube Design (LHD). 

For each environmental scenario i (where i denotes a LHD row,

i = 1 . . . m ), we will have n multiple outputs y ir (where r denotes

a replication, r = 1 . . . n ). Then, we will apply Kriging to ȳ i , the av-

erage outputs for decision factor combination i across the n repli-

cations, similarly to [29] . So, a total of 6 × m × n runs will be per-

formed. We consider m = 24 1 and the LHD is designed by JMP soft-

ware (see Table S1.1 in the Supplementary Material S1). 

5. Data generation and analysis 

The Supplementary Material S1 visually schematizes the differ-

ent steps for data generation and analysis. 

5.1. Generating data 

Due to time considerations, we performed 3 replications. 2 For

each environmental scenario (i.e. combination of the environmen-

tal factors), we generate data as presented in Fig. S1.1, which con-

sists in: 

1. g enerating data for the S&OP level, 

2. generating data for the 3 replications of the order promising

level: 
1 The total number of runs per replication is 6 × m = 6 × 24 = 144 , which is 

equal to the number of runs ( 2 4 × 3 2 = 144 ) of a full factorial design with 4 two- 

evel factors (A, I, H, V) and 2 three-level factors (S, E). However, much more infor- 

ation can be obtained through our design. 
2 This was sufficient to assess the variability of the performance measures since 

we obtained 95% confidence-interval half-lengths that are less than 10% of the aver- 

age values. 10% is considered as a reasonable relative error [29] , especially tempered 

y the cost associated with the current number of replications. 

d  

s  

t  

W  

p  

i

f

2.1. generating a list of orders for each replication r(r = 1 . . . 3 ),

using different pseudo-random numbers. In fact, random-

ness in our experiments concerns generating orders for the

order promising level and includes inter-arrival times, lead

times and quantities required by customer orders: (1) We

assume that we receive, on average weekly, 200 orders per

week, one at a time. In order to generate the inter-arrival

times for a given couple (customer segment, product), we

used a Poisson process with an arrival rate proportional to

the demand of this specific (customer segment, product).

(2) The delivery dates (and so lead times) are set according

to customer segments, i.e. on customer willingness to pay

more for a shorter delay. Lead times follow a triangular

distribution whose parameters are respectively set to (1, 2,

3) periods (weeks) for HP segments and (1, 3, 4) periods

for other segments. (3) The quantity required by an order,

associated to a given couple (customer segment, product),

follows a normal distribution. The mean of the distribu-

tion is calculated as the demand forecasts divided by the

expected number of received orders. 3 Then, the mean is

multiplied by the coefficient of variation V to include the

standard deviation. 

2.2. sorting this list differently to obtain 3 arrival sequences: a n

ascendant sequence (ASC), a random sequence (RAND) and

a descendant sequence (DESC). 

So, for each environmental scenario i and replication r , 3 final

ists are obtained, sorted respectively by order of priority and by

eception date. Common random numbers are used, so for each

eplication r , the same seed is used to generate data for the m dif-

erent environmental scenarios. 

.2. Performing the experiments 

We use generated data to simulate the integrated demand man-

gement process (IDMP) with two different approaches A (NBL or

CFS) at the order promising level. The S&OP model and the or-

er promising model are formulated as linear programs (LP) and

re developed within IBM ILOG CPLEX Optimization Studio ver-

ion 12.4. In order to simulate the behavior of the integrated de-

and management process, a rolling horizon simulation is con-

ucted using an algorithm developed in Visual Basic. NET, which

equentially called the S&OP model (executed each month) and

he order promising model (executed for each received order).

e consider 200 orders/week. We need 8.5 s for each order

rocessing, and so a total of 24 h for all the orders of a year
3 For a couple (customer segment s, product p): the average volume of an order 

s equal to the demand forecast for (s,p) divided by the expected number of orders 

or the period. 
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8.5 sec/order × 200 orders /week × 52 weeks). Since we have

 decision factor combinations as explained in Section 4.3 , a total

f 6 × m × n = 6 × 24 × 3 = 432 runs are performed, 24 h each. 

.3. Generating Kriging metamodels for average outputs 

For each environmental scenario i ( i = 1 . . . m ), we have n mul-

iple outputs y ir (where r denotes a replication, r = 1 . . . n ). So, we

ompute the average outputs ȳ i = 

∑ n 
r=1 y ir /n for each decision fac-

or combination. Then, we generate Kriging metamodels for aver-

ge outputs ȳ i , similarly to [29, p.677] . 

Kriging metamodels are constructed using “Gaussian process

latform” of JMP software, to predict the evolution of the per-

ormance measures (i.e. outputs y ) for new combinations of the

nvironmental factors (demand intensity I , demand forecast error

 , customer heterogeneity H and coefficient of variation V ). The

riging makes two assumptions [30] : First, the model assump-

ion is that ȳ i , the average simulation output at input combination

 = (I, E, H, V ) , consists of a constant μ and an error term δi that

s a stationary covariance process with zero mean: 

¯
 i = μ + δi (1) 

econd, the predictor assumption is that y 
i 
′ , the predictor at an

rbitrary “new” input combination i 
′ 
, is a weighted linear combi-

ation of all the “old” output data ȳ i at m already simulated input

ombinations ȳ i ( i = 1 . . . m ): 

 i ′ = 

m ∑ 

i =1 

λi ̄y i (2) 

o select the optimal weights in Eq. (2) , Kriging uses the “Best

inear Unbiased Predictor” criterion, which minimizes the “Mean 
Fig. 6. Performance measures for differ
quared Error” of the predictor y . For more details about Kriging

etamodels, see [30] . 

.4. Statistical analysis of the data 

Our results are analyzed regarding three performance measures

i.e. outputs), as presented in Section 4.1 : t he yearly profit mar-

in (YPM), the yearly sales (YS) and the HP fill rate (HPFR). As

entioned in Section 3 , we consider ten lumber commodity prod-

cts (we have a divergent product structure, so it is not possible

o produce the different products independently). In what follows,

e present performance measures for all products together since

e are interested in the overall process performance of the com-

any. In the following section, we analyze the impact of the deci-

ion factors and then the impact of the environmental factors using

esponse surfaces, prediction profilers and the analysis of variance

ANOVA). 

. Results and discussion 

.1. Impact of the decision factors (order promising approach A and 

rder arrival sequence S) 

Fig. 6 exhibits the performance measures of the two approaches

 for different order arrival sequences S and the 95% confi-

ence intervals on estimates over various environmental scenarios:

oints in Fig. 6 represent average outputs (see Section 5.3 ) for the

ifferent ( I , E , H , V ) combinations. The yearly profit margin (YPM)

nd the yearly sales (YS) are respectively expressed in millions

f Canadian dollars (million$) and in million board-feet measure

MMFBM). 
ent decision factor combinations. 
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Fig. 7. Response surfaces for the effects of demand intensity ( I ) and demand fore- 

cast error ( E ) on the yearly profit margin (YPM) for FCFS and NBL approaches (cus- 

tomer heterogeneity H = 10%, coefficient of variation V = 0.5 and random arrival 

sequence). 
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Less variation is seen for YS (the confidence intervals overlap in

Fig. 6 (b)), clearly due to the limited capacity of sawmills compared

to the total demand. However, YPM and the HP fill rate (HPFR)

are considerably sensitive to the approach A. Gaps between FCFS

and NBL approaches are statistically significant regarding YPM and

HPFR since the confidence intervals do not overlap when we pass

from blue side to red side in Fig. 6 (a) and (c) respectively. The gap

is more pronounced if the HP orders arrived after low-priority or-

ders (ASC sequence). 

Regarding the order arrival sequence S, gaps between the three

sequences in Fig. 6 (a) and (c) are statistically significant only for

the FCFS approach. This means that, if we use FCFS, it is more

interesting to receive HP orders early since we do not anticipate

the arrival of HP orders, in contrast to NBL. Further, Fig. 6 (a)

and (c) exhibit that YPM and HPFR behaviors for the three se-

quences are too close to be significantly different if we use NBL:

We can say that with this approach, no order arrival sequence is

preferable. 

6.2. Impact of the environmental factors (demand intensity I, demand

forecast error E, customer heterogeneity H and coefficient of variation

V) 

Response surfaces, prediction profiles and ANOVA tables are

drawn by “Gaussian process platform” of JMP software, based on

Kriging metamodels of the different performance measures for

each decision factor combination (A, S). 

Response surfaces : We start our analysis by visualizing response

surfaces to have an overview about the general trends of all perfor-

mance measures throughout factor ranges. Fig. 7 shows examples

of response surfaces for the effects of demand intensity ( I ) and de-

mand forecast error ( E ) on the yearly profit margin (YPM) for FCFS

and NBL approaches with H = 10%, V = 0.5 and random arrival

sequence. 

It can be seen in Fig. 7 that, for both approaches, YPM increases

as I and/or E increases. This can be explained as follows: As men-

tioned in Section 4.2.2 , demand forecasts are upper bounds for

sales planned by S&OP and are computed as Demand f orecast =
(100 + E)% × I × Capacity . If we increase demand forecasts by in-

creasing the demand intensity I and/or the forecast error E , the

S&OP allocates more for remunerative periods (i.e. periods when

prices are high). Despite the fact that sawmills capacity cannot

fulfill all demand (and so the total volume produced is almost

the same), allocating more for remunerative periods enables our

IDMP to accept more orders in these periods. 4 In our context, ad-

ditional inventory costs generated for example by a positive de-

mand forecasts error ( E > 0% compared to E = 0% ) are compensated

by additional revenues generated by selling more in remunerative

periods. 

As an example, Figs. 8 and 9 present, respectively for NBL

approach and FCFS approach, the variation of sales and in-

ventories over a year considering different demand forecast er-

rors ( E = 0% and E = 20%) with random arrival sequence,

I = 1.5, H = 10% and V = 0.5. When E passes from 0 to 20%,

the number of accepted orders in remunerative periods passes
4 Example for a specific (product, customer segment): Assuming that real weekly 

emand is 100 units and that 2 orders are due for each week, order size varies 

round 50 units (the average size per order). Demand forecasts are 100 units if 

orecast error E = 0% and 120 units if E = 20% . S&OP weekly allocates 100 units if 

 = 0% and 105 units if E = 20% since we have a limited capacity. Suppose that we 

eceive the following order list: order 1 of 45 units due for period t , order 2 of 

0 units due for period t , order 3 of 50 units due for period t + 1 and order 4 of 

5 units due for period t + 1 . The IDMP will accept only 3 orders if E = 0% and 4 

rders if E = 20% . 

i  

s  

f  

t  

a  

a  

s  

s  

t  

c  
rom 2537 to 2701 with NBL approach and from 2433 to 2572

ith FCFS approach (equivalent to an increase of sales in re-

unerative periods by 8% for NBL approach and 6% for FCFS

pproach). 

The IDMP using FCFS approach anticipates remunerative periods

nd sets limits for sales only at the S&OP level. However, the IDMP

sing NBL additionally reserves quantities for HP orders since it

ets limits for sales at the real-time level too. This explains the

ifference between NBL and FCFS curves respectively in Figs. 8

nd 9 . 

Prediction profilers : Prediction profilers offer the possibil-

ty to see how our prediction models change as we change

ettings of individual factors and to find optimal settings

or your factors regarding all our performance measures at

he same time. These two-dimensional multivariate profilers

re interesting in order to interact with responses, which is

nother benefit of using multi-factor Kriging metamodels. Fig. 10

hows examples of the JMP profiler tool, which present the re-

ponse for each performance measure as it relates to each fac-

or, i.e. how the predicted response changes as one factor is

hanged while the others are held constant at the current val-
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Fig. 8. Variation of sales and inventories over a year considering different demand forecast errors ( E = 0% and E = 20%), NBL approach, random arrival sequence, I = 1.5, 

H = 10% and V = 0.5. 

Fig. 9. Variation of sales and inventories over a year considering different demand forecast errors ( E = 0% and E = 20%), FCFS approach, random arrival sequence, I = 1.5, 

H = 10% and V = 0.5. 

Fig. 10. JMP profiler tool for I = 1.5, E = 0, H = 10% and V = 0.5. 
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ues of factors. Current values of factors ( I = 1.5, E = 0%,

H = 10% and V = 0.5) and current predicted values of re-

sponses are presented in red respectively in the x -axis and the

y -axis. 

The first thing to note is that the HP fill rate (HPFR) varies con-

siderably when we change the order promising approach A (when

we pass from left to right side in Fig. 10 ). Regarding the environ-

mental factors, HPFR is almost only sensitive to the coefficient of

variation V (see 3rd row of each profiler). Indeed, HPFR declines

when V goes over 0.6 (the bottom right corner of each profiler).

Even so, we can generalize that, no matter the environmental con-

ditions, NBL has to be chosen if our objective is to improve HP

customers’ satisfaction. 

Regarding the yearly profit margin (YPM) and the yearly sales

(YS), the prediction profilers in Fig. 10 confirm the important ef-

fect of the decision factors (order promising approach A and order

arrival sequence S ), especially for YPM. They also lead us to be-

lieve that the most pertinent environmental factors affecting the

YPM are the demand intensity I and the demand forecast error E

(the four upper left squares of each profiler), and that YPM and YS

increase if I and/or E increases. The yearly sales (YS) are however

stabilizing when E goes over +5% due to the limited production ca-

pacity. We can see also that, for the ascendant sequence ASC and

with NBL approach, the yearly profit margin (YPM) declines when I

goes over 1.7, due to the rise in quantities stocked and reserved for

HP customers (arriving last in sequence ASC). Finally, we note that

the customer heterogeneity H significantly affects the YPM and YS

if we use FCFS approach (the two upper squares in the 3rd column

of each FCFS profiler). 

Analysis of variance (ANOVA) : Kriging metamodels may also

be analyzed through ANOVA [30] , which allows us to quan-

tify/measure the effects already shown by response surfaces and

prediction profilers as trends, so we can identify the most perti-

nent factors in different situations: the objective for this analysis

is to examine the contributions of environmental factors and in-

teractions for each decision factor combination (A,S). We can as-

sume normal distributions, and so use ANOVA, only for the yearly

profit margin (YPM) and the HP fill rate (HPFR). 5 Considering a sig-

nificant contribution if it exceeds 10%, ANOVA tables presented in

Supplementary Material S3 give evidence that: 

- The coefficient of variation V is the most pertinent environmen-

tal factor affecting the HPFR. In fact, the more V increases, the

more large-size HP orders we have; so it is more often that a

HP order will be rejected since backorders and partial fulfill-

ment (i.e. to fulfill just a part of the order) are not allowed in

our simulation settings. 

- For both NBL and FCFS approaches, the demand intensity I and

the demand forecast error E represent a significant part of the

contribution for YPM (a total of 86–96% for NBL and 65–85% for

FCFS). 

- The customer heterogeneity H represents a significant part of

the contribution only for YPM if we use FCFS approach. How-

ever, the earlier HP orders arrive, the less the YPM will be pe-

nalized by H ( H contribution is 32%, 19% and 7% respectively

for ASC, RAND and DESC sequences). In fact, since FCFS ap-

proach focuses on feasibility rather than profitability, it does

not anticipate receiving more valuable orders. So, capacity can

be exhausted by less profitable orders (paying H % less than the

market price) and cannot fulfill more profitable orders received
later. 

5 See normality tests in Supplementary Material S2. 

a  

h  

i  

c

- There is no significant interaction between environmental fac-

tors. 

.3. Managerial implications 

Our study suggests implications for both supply chain manage-

ent researchers and practitioners. For supply chain management

esearchers, our paper provides an evaluation of the value of in-

egrating two common concepts in the demand management re-

earch, namely S&OP and revenue management (RM). In addition,

e employ a space-filling design and Kriging metamodeling, which

s a relatively new procedure for realistic supply chain manage-

ent experiments. For practitioners, this paper provides a tool to

valuate the performance of an integrated demand management

rocess (IDMP) in different industrial settings. The methodology

roposed can support a sales manager to decide which configu-

ation will be appropriate depending on his specific context and to

dentify the actions to be conducted in order to improve the per-

ormance of the demand management process. 

Our analysis demonstrates that in a supply-constrained envi-

onment such as the Canadian softwood lumber industry, man-

gers can achieve better performances by integrating S&OP and

M: The IDMP makes an implicit trade-off between the objectives

f the production team (dealing with divergent production chal-

enges) and the incentives of sales team (fostering better relation-

hips with profitable customers). 

Facing the potential market disturbances, production/sales man-

gers need to be supported by a tactical plan such as S&OP in or-

er to capture the possible revenue increase, rather than producing

n a push mode. Our study demonstrates that sawmills should take

dvantage of any rise of demand intensity by allocating more for

emunerative periods, which is possible within tactical planning

nd medium-term forecasting. In fact, forecasts are critical inputs

o S&OP: Demand and price forecasting plays a determining role in

he overall planning activities of a firm, especially in the forest in-

ustry [35] since forest product prices and demand are well known

or their fluctuations. Moreover, our analysis has asserted that the

erformance of the IDMP is less affected by the forecasting error

f we use an order promising approach considering nested booking

imits (NBL). 

This study shows that NBL order promising approach is effi-

ient to capture orders from profitable customers and for more

emunerative periods, and so immunize the demand management

rocess against different environmental disturbances. However, the

se of NBL requires a deep understanding of the market. In fact,

ustomer segmentation is needed to group the various types of

ustomers and their behaviors and requirements, according to dif-

erent criteria such as the willingness to pay, loyalty, etc. In this

tudy, we assume that some customers are ready to pay more to

ave shorter transport lead-times. Potentially, other value-added

ervices can be considered, like the stability of product quality

nd partnership agreements (see Lehoux et al.’s [36] study in the

ulp and paper industry). Customer Relationship Management ini-

iatives can be used to identify customer segments and to reach

he customers who are most receptive to the products and services

ffered. 

Considering current practices and existing IT-systems, managers

an face challenges to implement RM and S&OP. Our results are il-

uminating interesting managerial practices that can be easily in-

roduced before RM and S&OP implementation. We demonstrate

hat the order arrival sequence should be taken into consider-

tion: Even if orders are fulfilled on a FCFS basis, sales man-

gers in softwood lumber industry should start by stimulating

igh-priority (HP) customers to express their needs before deal-

ng with low-priority customers to improve the performance of the

ompany. 
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S&
. Conclusion and further research opportunities 

This paper aims to contribute to the research in demand man-

gement for MTS manufacturing systems and to analyze a process

ntegrating S&OP and order promising, considering differentiated

emand segments, divergent product structure and facing various

arket disturbances. For these purposes, we use relatively novel

echniques–a space-filling design and Kriging metamodeling–in

upply chain settings. We are also among the first who address

he impact of decision and environmental factors on performances

f an integrated demand management process. 

Our simulation results affirm that NBL approach can be a pow-

rful tool to maximize revenues facing different environmental

onditions. We also show how order arrival sequence can play a

elevant role, especially with high customer heterogeneity. There-

ore, sales managers in softwood lumber industry should, first of

ll, intensify their effort s to know, as early as possible, the needs

f HP customers and to improve the performance of Customer Re-

ationship Management, which might be simpler than implanting

 new demand management platform. Then, they should focus on

ustomer heterogeneity by using an integrated demand manage-

ent process able to anticipate orders from profitable customers

nd for more remunerative periods. 

able A1 

&OP literature. 

Factors Description 

Chen- 

Ritzo 

et al. [37] 

Feng 

et al.

Capacity flexibility or 

demand intensity 

compared to capacity 

E.g. overtime hours, stock 

margins, production 

policies 

×

Integrated / decoupled 

approaches 

×

Forecast errors Overestimation or 

underestimation of 

demand volumes 

Supplier flexibility E.g. Delays flexibility 

Emergency supplies 

×

Operational costs E.g. production cost, unit 

purchase cost, unit 

shipping cost, unit raw 

materials cost 

×

Market price ×
Demand pattern E.g. gradually demand 

increase or demand peak 

in a specific period 

Maturity of rework Rework rates and rework 

times 

Order flexibility rate Possibility to delay orders 

ppendix A. Analyzed factors in sales and operations planning (
Feng 

et al. [35] 

Hahn and 

Kuhn [39] 

Lim et al. 

[40] 

Sodhi and 

Tang [41] 

Wochner 

et al. [42] Total 

× × × × 5 

× × 3 

× × 2 

× 2 

× 2 

1 

× 1 

× 1 

× 1 

It is important to note that the validation of experiments was

one only for a specific industrial case study. For generalizing, we

rovide the tool and the methodology needed to perform other

imulation experiments with different settings and in other indus-

ry sectors, especially those dealing with stochastic behaviors in

erms of supply, demand and manufacturing operations and diver-

ent production processes. 

Future research efforts concerning the integrated demand man-

gement process validation may provide some new insights. First,

n other contexts, it could be interesting to include other deci-

ion and environmental factors. Second, since in practice, prices

ffered for upcoming periods are uncertain at the order promis-

ng level, a scenario-based stochastic programming model could

e considered at the tactical level. Third, other order promis-

ng options such as partial fulfillment and substitution could be

nvestigated. 

unding 
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Appendix B. Analyzed factors in literature about revenue management(RM) in manufacturing 

Table B1 

RM in manufacturing literature. 

Factors Description 

Azevedo 

et al. [20] 

Chevalier 

et al. [43] 

Chiang 

and Wu 

[44] 

Gönsch 

et al. [45] 

Guhlich 

et al. [23] 

Kim and 

Bell [46] 

Ovchinnikov 

et al. [47] 

Petrick 

et al. [48] 

Pibernik 

and 

Yadav 

[15] 

Quante 

et al. [19] 

Raza 

[49] Total 

Production shortage or 

demand intensity 

Percentage of production 

capacity required to fulfill 

the demand 

× × × × × × × 7 

Demand variability Coefficient of variation or 

different demand 

distributions 

× × × × × 5 

Profit structure or 

heterogeneity 

Difference of selling prices 

offered by different 

customer segments 

× × × × 4 

Forecast errors Overestimation or 

underestimation of 

demand volumes 

× × × 3 

Order size structure Vary the number of 

orders/Consider different 

order size for each 

segment 

× × 2 

Demand structure Difference between demand 

rates of different 

customer segments 

× × 2 

Lead time structure Difference between lead 

time offered to different 

customer segments 

× 1 

Network structure Compare parallel network 

structures and hub-and- 

spoke networks 

× 1 

Optimization frequency × 1 

Number of product per 

order 

× 1 

Flexible products Consider or not flexible 

products 

× 1 

Customer lifetime value Consider or not customer 

lifetime value calculation 

× 1 

Demand arrival patterns Demand with no peak, 

demand with an early 

peak, demand with a 

middle peak 

× 1 
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Appendix C. Recent literature of conventional DOE for simulation systems in supply chain settings 

Table C1 

Conventional DOE for simulation systems in supply chain settings. 

Paper Research topic DOE type Objective a 

Bottani and Montanari [50] Inventory management Full factorial 1 

Sandhu et al. [51] Inventory management and information sharing Full factorial 1 

Nedaei and Mahlooji [52] Supply chain scheduling Full factorial 1 

Bandaly et al. [53] Supply chain risk management Full factorial 1 

Dev et al. [54] Inventory management and risk management Taguchi 1 

Ciancimino et al. [55] Supply chain collaboration Latin Square 1 

Dominguez et al. [56] Supply chain structure Full factorial 1,2 

Hussain et al. [57] Inventory management Taguchi 1,2 

Ponte et al. [58] Supply chain collaboration Fractional factorial 1,3 

Santa-Eulalia et al. [59] Tactical planning and production control policies Taguchi 2 

Azadeh et al. [60] Supplier selection in a closed loop supply chain Taguchi 2 

Shi et al. [61] Cross-docking distribution Full factorial + LHD 2 

Assarzadegan and Rasti-Barzoki [62] Supply chain scheduling problem Full factorial 3 

Olaitan and Geraghty [63] Production control LHD 2,3 

a 1: Developing a basic understanding of a simulation model/system, 2: Finding robust decisions, 3: Comparing the merits of various decisions/policies. 

Supplementary material 

Supplementary material associated with this article can be 

found, in the online version, at 10.1016/j.orp.2018.01.002 . 
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