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Ecologists are interested in the composition of species in various ecosystems. Study-

ing population dynamics can assist environmental managers in making better decisions for

the environment. Traditionally, the sampling of species has been recorded on a regular time

frequency. However, sampling can be an expensive process due to financial and physical con-

straints. In some cases the environments are threatening, and ecologists prefer to limit their

time collecting data in the field. Rather than convenience sampling, a statistical approach

is introduced to improve data collection methods for ecologists by studying the dynamics

associated with populations of interest. Population models including the logistic equation

and the Lotka-Volterra differential equations are employed to simulate species composition.

This research focuses on sequentially learning about the behavior of dynamical systems to

better inform ecologists of when to sample. The developed algorithm of sequential opti-

mality designs sampling regimes to assist ecologists with resource allocation while providing

maximum information from the data. This research in its entirety constructs a method for

designing sampling schedules for ecologists based on the dynamics associated with temporal

ecological models.
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CHAPTER 1

INTRODUCTION

1.1 Statistical Approach to Ecological Modeling

Statistical inference refers to the use of statistics to draw conclusions about the unknown

aspects of a population based on a sample. Sampling is an important stage in research given

that studying whole populations is rarely practical, efficient or ethical according to Marshall

(1996). Specifically in ecology, population and community studies rely heavily on sampling

procedures (Green, 1979; Greig-Smith, 1983). Sampling is the first stage of ecological re-

search and directly impacts the entire study. Ecologists are interested in improving sampling

techniques given the nature of ecological data. Bowser (1986) separates historic ecological

data into three categories as either planned, opportunistic or serendipitous. Planned data

is defined as well-documented long-term records involving continuous data collection over

an extended period of time. Opportunistic data are used for short-term goals typically lim-

ited by funding as seen in the literature. Whereas, serendipitous data are not collected for

scientific intent and are usually used for census purposes. In practice, ecologists are most

concerned with planned data and tend to follow the procedures of classical sampling theory

(Cochran, 1977).

Issues arise when collecting ecological data due to inconsistencies between theory and

practice (Albert et al., 2010). Classical sampling theory is impractical in ecology due to the

fact that resources, accessibility and time do not permit excessive sampling. Thus, conve-

nience sampling and simplified methods have become more commonplace but may disregard

1



many ecological questions. Population ecologists prefer to study the distribution of individ-

uals in a population over time and space (Williams et al., 2002). Specifically, ecologists are

interested in estimating population dynamics for spatial and temporal models. Techniques

such as maximum likelihood and ordinary-least squares are commonly used. Bulmer (1974)

uses maximum likelihood estimates to compare the log-normal and Poisson distributions

when fitting species-abundance data. Hilborn (1990) studies the population dynamics and

movement of tagged fish in spatial locations over time using maximum likelihood estima-

tors. Whereas, ordinary least squares estimates are typically used for regression analysis

of factors affecting a population. As seen in the literature, traditional methods are consid-

ered stronger and more robust based on their theoretical foundation. However, estimating

ecological models is not limited to the frequentist framework.

Ecologists are shifting towards Bayesian modeling of natural systems based on the in-

creasing resources for ecological Bayesian models (Hobbs and Hooten, 2015; Hooten and

Hobbs, 2015). Bayesian analysis combines prior beliefs with sample information to make

inferences about the posterior belief of the population parameter. The posterior is a condi-

tional probability of an unknown parameter given the observance of data defined by Bayes’

Theorem (Bayes, 1763). For more on Bayesian modeling see Anscombe (1961); Box and

Tiao (1973); Ellison (2004). Using Bayesian inference, the probability of the model param-

eters can be predicted based on simulated data by employing Markov Chain Monte Carlo

(MCMC) methods (Robert and Casella, 2013). Heavy MCMC sampling provides substan-

tial representation of the model helping ecologists to learn about the system and identify

sampling needs as well as where gaps in knowledge occur.

In practice, simulations are performed due to the limitations involved with collecting

ecological data. Improving sampling techniques for ecologists can be done by using ex-

perimental design methods (Fisher et al., 1960). Specifically, optimal designs can be used

to sample based on the dynamics associated with a population of interest. Though large

sample sizes provide more information, sampling according to the population dynamics can
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decrease the number of samples needed to accurately represent a model. According to the

literature, designing experiments in practice can be quite difficult. McAllister and Peterman

(1992) discuss issues with experimental design and possible ways to improve experimentation

applied to fisheries management. In more recent years, Williams et al. (2018) demonstrate

how to allocate resources for monitoring ecological processes using design-based inference for

spatiotemporal models. In both cases, optimal designs improve estimation for abundance

and population dynamics. This research specifically focuses on determining optimal sam-

pling regimes that capture population dynamics of temporal models using various optimality

criteria.

Not many disciplines have conducted research involving the prediction of future samples.

Most fields study the prediction capabilities of a specified model. Houlahan et al. (2017)

emphasizes that prediction is the core of all disciplines and demonstrates true scientific

understanding. Similar to work by Pagendam and Pollett (2009), the goal of this research is

to develop a methodology that can predict optimal design points by learning about dynamical

systems in a sequential manner using specified design criteria. This dissertation is formatted

with an introduction followed by three chapters each of which are individual manuscripts

and concludes with chapter five. The first paper and second chapter of this dissertation

introduces an approach that predicts optimal samples based on the dynamics associated

with a simple univariate model. The second paper and third chapter further develops the

methodology by applying the technique to a complex model involving a pair of first-order

nonlinear differential equations. Finally, the third paper and fourth chapter focuses on

determining a stopping criterion that can halt the process once the dynamics of the system

are captured. Thus, repetition will occur throughout this dissertation, but the research as a

whole completely develops an algorithm that ecologists can implement to improve statistical

practices and optimize resource allocation.
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1.2 Population Dynamics

This research focuses on temporal models that are commonly used in ecology. Population

growth models are frequently studied by ecologists given the numerous applications and the

simplistic nature of the models. Though easy to implement, simple models can be unrealistic.

As a way to incorporate more complex dynamics, ecologists are also interested in studying

predator-prey relationships as these models represent realistic environmental encounters.

In this section, simple and complex population dynamics are introduced using well-known

ecological models.

1.2.1 The Logistic Equation

Assessing population growth is essential when studying ecology and wildlife management.

Growth models track the population dynamics of a single species across time, making them

quite simple. Tsoularis and Wallace (2002) believe the simplest realistic model of population

dynamics is exponential growth. Exponential growth follows the biological assumptions

that in a population all individuals are genetically identical, no immigration or emigration

occurs, the growth rate per capita is not time dependent and there are unlimited resources

available. Given the aforementioned assumptions, exponential growth can be written in the

mathematical form

dN

dt
= rN (1.1)

with solution

N(t) = N0e
rt,

where r represents the growth rate per capita and N0 is the population size at time t = 0.

If the rate parameter r is negative, the solution equates to extinction making the model

useless. On the other hand, a positive parameter r would result in uncontrolled increases

in population making the model unrealistic and impractical in the context of ecological

data. Real data has shown that growth rates eventually decline as the population begins to
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approach an asymptotic level (Eberhardt, 1977; Eberhardt and Siniff, 1977). Ecologists thus

need a better way to assess population growth other than using the exponential model.

The logistic equation was first developed by Verhulst (1838). The rediscovery of the

equation by Pearl (1925) is popularly used in ecology and represents the population dynamic

where the reproduction of a species is proportional to both the current population and

resource availability. Tsoularis and Wallace (2002) explain logistic growth as an augmented

version of exponential growth, where a factor of 1 − (N/K) represents the deficit of the

current population from the carrying capacity

dN

dt
= rN(1− N

K
) (1.2)

with solution

N(t) =
KN0

(K −N0)e−rt +N0

.

The parameter K represents the maximum level that the population can reach. All other

variables and parameters are the same as those defined in Equation 1.2.1 for exponential

growth. Population dynamics for the logistic equation show a low growth rate when the

population size is close to zero or the carrying capacity. Alternatively, the highest growth

rate for the logistic curve occurs at the inflection point when the population size is half

of the carrying capacity, N(t) = K/2. Since this model is a dynamical system, steady-

state conditions may exist. However, the two equilibrium states for logistic growth occur

during extinction or maximum population capacity. Though there exists prior steady-state

knowledge of the system, the existence of an analytic solution provides more information

when specifying the model in the Bayesian framework.

Specifying Equation 1.2.1 as a Bayesian model requires the specification of the likelihood

of the experiment and any prior knowledge of the parameters. The logistic equation records

the population count of a single species across time. Although the model could be distributed

in many ways, the Poisson assumption (Chen, 1987) best represents a sequence of counts
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observed over a fixed period of time. This implies a Poisson likelihood for the model

Ni|ti ∼ Poisson(λi|ti).

Ni|ti is the population at time t = i, and λi = KN0

(K−N0)e−rti+N0
.

As for prior knowledge, the carrying capacity K represents a maximum population size,

which requires a positive parameter value. The growth rate parameter r is assumed to

be positive as well to ensure population growth. Due to these constraints, the log-normal

distribution can be used, which has been classically studied by Aitchison and Brown (1957).

The log-normal distribution is known for being skewed to the right and starting at zero,

implying a positive support that increases to the mode and decreases thereafter. Given these

unique properties, the prior distributions for the parameters are specified in this research as

k ∼ Lognormal(µk, σ
2
k)

K ∼ Lognormal(µK , σ
2
K).

The mean µ and variance σ2 for the prior distribution of each parameter can change depend-

ing on expert knowledge provided by ecologists. This specified Bayesian model provides a

general introduction to logistic growth as it will be employed later in this research.

1.2.2 The Lotka-Volterra Differential Equations

Lotka (1926) and Volterra (1928) developed the Lotka-Volterra differential equations as a

model for the interactions between a predator and its prey. This dynamic behavior having

such broad applications has been frequently modeled among ecologists. The traditional

Lotka-Volterra model captures realistic encounters between one predator and one prey

dx

dt
= αx− βxy

dy

dt
= δxy − γy

(1.3)
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where x and y represent the prey and predator populations respectively. The parameter α

represents the birth rate of the prey, β is the predation success rate, δ is the efficiency of

converting prey into predators and γ represents the mortality rate of the predator. Unlike

Equation 1.2.1, the Lotka-Volterra differential equations do not have an analytic solution.

However, a stability analysis of the dynamical system (Hale and Koçak, 2012) can ensure

specified parameter conditions.

The Lotka-Volterra model is considered stable at certain equilibrium points in the sys-

tem. Performing a stability analysis finds these stable points mathematically. By setting

both the derivatives equal to zero

αx− βxy = 0

δxy − γy = 0

two solutions exist. The first solution to the system is

{x = 0, y = 0},

implying a scenario of extinction. Given extinction of species is a key component in the study

of evolution, many ecologists study this steady-state. For instance, Parker and Kamenev

(2009) study the stability of the Lotka-Volterra model and how the populations are driven

towards extinction. In some cases though, ecologists may consider exponential decay of each

species rather than continuing to study this model. The second solution to the system is

{x =
γ

δ
, y =

α

β
},

representing a continually oscillating behavior between the two species. This consistent

fluctuation between predator and prey is commonly studied as a more realistic solution.

This fixed point solution models both populations maintaining a non-zero state indefinitely.

The parameter values of α, β, δ and γ can further be investigated to achieve this equilibrium

state.
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Evaluating the stability of the fixed point {x = γ
δ
, y = α

β
} can be done using the Jacobian

matrix. The Jacobian of the Lotka-Volterra differential equations is

J(x, y) =

α− βy −βx

δy δx− γ

 .
Using this matrix, the solutions of the oscillating state are substituted into the Jacobian

J(
γ

δ
,
α

β
) =

 0 −βγ
δ

αδ
β

0

 ,
which can be solved for the eigenvalues

λ1 = i
√
αγ

λ2 = −i√αγ.

Given purely imaginary conjugate eigenvalues ensures an elliptic or periodic solution for the

fixed point (Strogatz, 2018). Based on the knowledge of the system, the Lotka-Volterra

differential equations can be specified as a Bayesian model.

Equation 1.2.2 has more complex dynamics that can be specified as a Bayesian model.

This model as stated previously is temporal and counts the population size of two species

making the likelihood of the predator and prey

xi|ti ∼ Poisson(λi|ti)

yi|ti ∼ Poisson(λi|ti).

xi|ti is the population of the prey at time t = i, and yi|ti is the population of the predator

at time t = i. As for the priors, each parameter represents a positive rate of change. Thus,

the conjugate prior, Gamma distribution, to the Poisson distribution can be used to define
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the priors of the parameters

α ∼ Γ(αα, βα)

β ∼ Γ(αβ, ββ)

δ ∼ Γ(αδ, βδ)

γ ∼ Γ(αγ, βγ).

The hyper-parameters for the prior distributions will change according to the expert knowl-

edge provided by experts. For now, a general Bayesian model has been defined and can be

simulated using Bayesian sampling techniques.

1.3 Simulation Techniques

1.3.1 Metropolis-Hastings Algorithm

Markov Chain Monte Carlo (MCMC) sampling techniques (Gilks et al., 1995) can be used

for simulation purposes. Among the MCMC techniques, the Metropolis-Hastings algorithm

(Metropolis et al., 1953; Hastings, 1970) is broadly used in practice. Martino and Elvira

(2014) support the Metropolis-Hastings sampler as the core of MCMC sampling and state

that the algorithm consists of three main elements: the candidate density q(z|x), the ac-

ceptance probability α(x, z), and the target function π(x). Based on the acceptance ratio

α(x, z), the algorithm proceeds by randomly attempting to move about the sample space

sometimes accepting points and alternatively remaining in place. Ultimately a set of samples

x(1), ..., x(T ) or a subset of them is returned. As t grows (t→∞), the density of the current

state x(t) converges to the target density π(x), implying that large quantities of samples can

provide a substantial representation of the model.
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Algorithm 1: Metropolis-Hastings

Begin

Initialization: Choose an initial state x(0)

For t = 1, ..., T :

(a) Draw a sample z′ ∼ q(x|x(t−1))

(b) Accept the new state, x(t) = z′, with probability:

α(x(t−1), z′) = min[1, π(z′)q(x(t−1)|z′)
π(x(t−1))q(z′|x(t−1))

]

Otherwise, set x(t) = x(t−1)

End

For more on Metropolis-Hastings see Chib and Greenberg (1995); Hitchcock (2003).

1.3.2 Gibbs Sampler

In this research, the Gibbs-sampler is used to simulate population dynamics. Wakefield

et al. (1994) promote Gibbs sampling as a method that can numerically solve complex

linear and non-linear population models. First introduced by Geman and Geman (1984),

the Gibbs sampler is a popular choice Markov Chain Monte Carlo algorithm. The algo-

rithm generates posterior samples for each random variable by sampling from a conditional

distribution of the remaining variables fixed to their current state. Consider random vari-

ables X1, X2, . . . , Xn, the algorithm begins by setting initial values of x
(0)
1 , x

(0)
2 , . . . , x

(0)
n sam-

pled from a prior distribution q(x). At the ith iteration, random variable X1 is sampled

x
(t)
1 ∼ p(X1 = x1|X2 = x

(t−1)
2 , . . . , Xn = x

(t−1)
n ), and X2 is sampled x

(t)
2 ∼ p(X2 = x2|X1 =

x
(t)
1 , X3 = x

(t−1)
3 , . . . , Xn = x

(t−1)
n ) and so on. The process continues until the sample values

match the same distribution as the posterior joint distribution. The algorithm is given in

detail as follows.
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Algorithm 2: Gibbs-Sampler

Begin

Initialization: Choose an initial state x(0) ∼ q(x)

For t = 1, ..., T :

x
(t)
1 ∼ p(X1 = x1|X2 = x

(t−1)
2 , X3 = x

(t−1)
3 , . . . , XT = x

(t−1)
T )

x
(t)
2 ∼ p(X2 = x2|X1 = x

(t)
1 , X3 = x

(t−1)
3 , . . . , XT = x

(t−1)
T )

...

x
(t)
T ∼ p(XT = xT |X1 = x

(t)
1 , X2 = x

(t)
2 , . . . , XT = x

(t)
T−1)

End

For more on Gibbs sampling see Casella and George (1992); Smith and Roberts (1993);

Gelfand and Smith (1990); Gelfand (2000).

1.3.3 Simulated Annealing

Simulated Annealing applied by Laarhoven and Aarts (1987) is an adaptation of the Metropo-

lis algorithm and is used for a discrete design space to approximate the global optimum of a

given function. Given that the Metropolis-Hastings algorithm returns a discrete number of

samples, the simulated annealing algorithm by Metropolis et al. (1953) can be implemented

to explore the sample space for an optimal design. The algorithm begins by defining an initial

state x0. Then a temperature T is set, which resembles the boiling point in the metallurgy

process of annealing. A neighboring state xnew is evaluated using a temperature dependent

probability P (x0, xnew, T ) which indicates moving to a lower energy state. The algorithm

continuously repeats until the discrete budget k has been exhausted.
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Algorithm 3: Simulated Annealing

Begin

For a finite set of iterations, choose an initial state x0

For k = 1, ..., kmax:

(a) Let T = k
kmax

(b) Pick a random neighbor, xnew

Jump to the new sample xnew with probability P (x0, xnew, T )

where P (x0, xnew, T ) =


1 f(xnew) ≥ f(x0)

e
f(xnew)−f(x0)

T otherwise

End

Simulated annealing does not guarantee an optimal design but is relatively easy to implement.

Typically, specific optimality criteria is incorporated as a condition for the algorithm to

converge. For more on simulated annealing see Kirkpatrick et al. (1983); Goffe et al. (1994);

Bohachevsky et al. (1986).

1.4 Optimal Experimental Design

Design of experiments was first used in early research by Wald (1943); Hotelling (1944);

Elfving et al. (1952). However, Kiefer et al. (1958); Kiefer (1959); Kiefer and Wolfowitz

(1959) are known for significant contributions in the area of optimal design. Optimal exper-

imental designs are intended to improve the precision of statistical inferences. Specifically,

traditional optimality criteria minimizes the variance of parameter estimates by maximizing

the information matrix of the design. Among the various optimality criteria, A, D, and E

optimal designs are quite popular. A-optimal designs minimize the trace of the inverse of the

information matrix, which results in minimizing the average variance of the estimates of the

model parameters. D-optimal designs minimize the covariance matrix, which equivalently

maximizes the determinant of the information matrix. Whereas, E-optimal designs maxi-

mize the minimum eigenvalue λ of the information matrix. Given a design matrix denoted
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by X, the optimality criteria can be written mathematically as

A - Optimal: min tr ((X ′X)−1)

D - Optimal: max|X ′X|

E - Optimal: max minλi, where λi is the ith eigenvalue of X ′X.

This research focuses on A and D optimal designs since these criteria are easy to implement.

Prediction based criteria can also be used for determining optimal experimental designs. I-

optimal designs are known to minimize the average prediction variance over the entire design

region (Atkinson et al., 2007). Of the possible predictive designs, I-optimality criterion best

suits the aims of this research.

Considering the Population Dynamics previously introduced, the design matrices for

each experiment may be difficult to calculate. Alternative criteria can be used for the in-

tended purposes of this research. Rather than attempting to calculate the information matrix

for each population model, the design criteria can be applied to the parameter covariance

matrix. Replacing the information matrix with the covariance matrix updates the criteria

denoted by Φ or other notations throughout subsequent chapters. Let Φ = cov(β̂) = V ar(θ̂),

then the criteria can be redefined

A - Optimal: min tr (Φ−1)

D - Optimal: max|Φ|.

Now, A-optimal designs minimize the trace of the inverse of covariance matrix, and D-

optimal designs maximize the determinant of the covariance matrix. For more on traditional

optimal designs see Hardin and Sloane (1993); Goos and Jones (2011); Montgomery (2017).

Bayesian optimal designs are considered solely in Chapter two of this dissertation.

Bayesian analysis expresses experimental design as a decision problem that selects opti-

mal designs by maximizing the expected utility Chaloner and Verdinelli (1995). Bayesian

optimal designs can be written in the form of a utility function U(d∗xf ), where d∗xf represents

a design chosen from the design region dxf . The design region is explored using Bayes I, D,

and A optimal designs written mathematically as follows.
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Bayesian I-Optimal

ŪI(d
∗
xf

) = min

∫
Θ

mindxf (Y2 − E[Y2|y1, dxf ])2p(Y2|y1, dxf )dY2

Bayesian D-Optimal

ŪD(d∗xf ) = min

∫
Θ

mindxf |Cov(θ|Y2, y1, dxf )|p(Y2|y1, dxf )dY2

Bayesian A-Optimal

ŪA(d∗xf ) = min

∫
Θ

mindxf tr(θ|Y2, y1, dxf )p(Y2|y1, dxf )dY2

Y2 represents the predicted designs, while y1 represents the current design. Θ is the param-

eter space including the parameters θ from the model. Similar to the traditional criteria,

the Bayesian optimality criteria are minimizing the posterior predictive distribution across

the parameter space Θ and design space dxf . The Bayesian I-optimal designs minimize the

distance between the squared predictions. Bayesian D-optimal designs minimize the deter-

minant of the covariance of the posterior predictive distribution. The Bayesian A-optimal

designs minimize the trace of the posterior predictive distribution. For more on Bayesian

experimental design see Verdinelli (1992); Clyde (2001).
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CHAPTER 2

BAYESIAN EXPERIMENTAL DESIGN WITH THE LOGISTIC EQUATION

FOR POPULATION GROWTH APPLICATIONS

2.1 Introduction

Population growth models are commonly used in ecology when studying plants, animals, and

organisms as they grow over time and interact with the environment. In earlier research,

Hsu et al. (1984) evaluate seedling growth under laboratory and field conditions. According

to Huang et al. (2016), early life-cycle events play critical roles in determining the dynamics

of plant populations and their interactions with the surrounding environment. Germina-

tion patterns modeled by growth help ecologists understand the diversity, variation, and

climate change within a system. Gamito (1998) further emphasize the importance of mod-

eling growth and community dynamics using applications to fish populations. Population

dynamics of fish are commonly studied to learn about water quality and the environment.

In riverine settings, the health of a waterway can be determined by the abundance of

fish present. Kennard et al. (2005) study species that are highly tolerant of human-induced

disturbances and consider certain fish as good indicators of river health. Ecologists model

the population growth of indicator species to preserve habitats as land is developed along

the banks of rivers. Not only can population growth models help preserve the environment,

but also ecologists model growth of crops to improve economies. In Vietnam, rice-shrimp

farming highly impacts the economic security of the country as these are the two main crops

in the region. Leigh et al. (2017) study the environmental conditions of ponds used for
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harvesting and address the risks that affect the survival and yields of crops. In order to

improve year-round farming, ecologists monitor the growth and abundance of shrimp and

rice.

Whether researchers are interested in improving yields for farmers, preserving the health

of rivers or studying germination of seedlings, collecting ecological data has always been a

time consuming and expensive process. Ecologists fishing in rivers face strenuous terrain,

varying water levels, and dangerous wildlife and prefer to limit their time collecting samples.

Though farmers raise crops in controlled environments, limiting sampling costs can increase

revenue. During germination studies, scientists prefer to optimize their time and resources

required to grow samples. In all cases, researchers prefer to reduce costs when collecting data

by decreasing their necessary sample size without compromising the ability to accurately

track growth.

Rather than traditional sampling methods, this study proposes an approach that designs

optimal sampling regimes based on the dynamics associated with a population. Though

traditional methods are often convenient, statistically designing an experiment can optimize

sampling procedures for ecologists without compromising the information obtained from

the data. As seen in Pagendam and Pollett (2009), experimental design is combined with

Bayesian techniques to determine optimal designs for population growth models. Similarly,

this paper investigates capturing the dynamics of various theoretical ecological growth models

by designing optimal sampling regimes. Given the approach is intended to design experiments

prior to data collection, simulations are conducted using a well-known ecological model with

set parameters that can later be replicated with minimal error.

Using Bayesian inference, the probability of the model parameters are predicted based

on simulated data by employing Markov Chain Monte Carlo (MCMC) sampling techniques

demonstrated by Gilks et al. (1995). The intent of this study is to learn about dynamical sys-

tems in a sequential manner by using various criteria to optimize the system. The Bayesian

model combined with design of experiment techniques can be used to determine the optimal
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sampling frequency that minimizes costs associated with data collection while obtaining the

maximum amount of information from the data. The statistical methods in this paper are

applied to various theoretical models and compared across optimality criteria to evaluate

the performance. The goal of this research is to develop a new methodology that provides

ecologists with optimal times to collect data that accurately captures the population growth

dynamics of a system.

2.2 Logistic Growth Model

Logistic curves are used to model growth in various contexts. Originally developed by Ver-

hulst (1838), logistic curves were used to model population growth as an adaptation of

exponential growth. Verhulst developed the logistic growth model by adding a multiplica-

tive factor to exponential growth, which stabilizes the model at a particular population size

due to competition for resources. The self-limiting growth of the population is referred to

as the carrying capacity. The carrying capacity is the maximum population that terminates

the growth rate, at which point the system enters a steady-state.

The logistic growth model has been implemented in numerous fields. Logistic growth

has been used to estimate parameters and inform intervention strategies during a pandemic

involving influenza as demonstrated by Hedge et al. (2013). Furthermore, coal production

peaks and trends in China have been modeled with logistic growth by Lin and Liu (2010).

Similarly, the logistic curve has taken the form of Hubbert’s model (Hubbert et al., 1956) to

forecast the production of petroleum. In this paper, the proposed model represents ecological

modeling of population growth.

The rediscovery of the logistic equation by Reed and Pearl (1927) is often used in ecology

to represent the population dynamic where the rate of reproduction is proportional to both

the existing population and the amount of available resources. This model is popular in

ecology due to the realistic dynamic of the carrying capacity and existence of the analytic
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solution. The equation is written in the mathematical form

dN

dt
= rN

(
1− N

K

)
(2.1)

with analytic solution

N(t) =
KN0

(K −N0)e−rt +N0

.

The variables N and t represent population size and time respectively. N0 represents the

population at time t = 0 referred to as the initial population. Parameter r is the population

growth rate, and parameter K is the carrying capacity.

The parameters of logistic growth can be difficult to estimate since the model does not

always provide a good fit to true data. Thus, parameter estimation techniques are commonly

studied in the literature. Oliver (1964) demonstrates methods for estimating model param-

eters across a variety of logistic growth models. In more recent times, Bayesian inference

has become more accessible to ecologists and used for parameter estimation. Heydari et al.

(2014) use Bayesian inference to determine fast estimation methods for logistic growth. In

general, ecologists are shifting towards Bayesian modeling of population dynamics based on

the increasing resources for ecological Bayesian models (Hobbs and Hooten, 2015). In this

paper, logistic growth is specified probabilistically in the Bayesian framework in order to

perform a new method for parameter estimation.

2.3 Methods

2.3.1 Statistical Model

Given that ecologists have expertise in modeling logistic growth, the Bayesian approach

can be used to incorporate prior knowledge of the system. Thus, the model in equation

2.1 can be specified probabilistically in the Bayesian framework. The Bayesian approach

is implemented using Bayes’ Theorem (Bayes, 1763). The theorem combines prior beliefs

with the likelihood of an experiment to determine a posterior belief. The prior belief of a
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parameter θ is noted by π(θ). The likelihood of the experiment is a conditional probability

of the data x given the parameter θ noted by L(x|θ). The posterior belief is given by the

continuous case of Bayes’ Theorem, also known as the posterior distribution. The posterior

distribution defines the conditional probability of a parameter θ given the observance of data

x, which is written mathematically as

P (θ|x) =
L(x|θ)π(θ)∫

Θ
L(x|θ)π(θ)dθ

.

Specifying equation 2.1 as a Bayesian model requires the specification of the likelihood

of the experiment and the prior distributions for each parameter. The nature of the logistic

equation tracks the population of a species N across a fixed time t where the growth rate

parameter r and carrying capacity K are independent fixed values. The population at a

specified time Ni|ti is assumed to have a Poisson likelihood given that the observations Ni

are independent counts occurring at known times ti. The analytic solution to the logistic

equation provides the expected value of the likelihood set as λi = N(ti). This provides the

conditional likelihood of the experiment

Ni|ti ∼ Poisson(λi|ti),

where λi depends on the parameters r and K. Thus, the prior distributions must be specified

for the growth rate and carrying capacity parameters.

When modeling logistic growth, ecologists are aware that a population can only reach

a maximum capacity by increasing at a positive rate. This implies that the growth rate r

and carrying capacity K must be positive values. Though many distributions have positive

supports, the log-normal distribution easily specifies numerical information by using the

mean and variance. Less informative priors such as the gamma distribution can cause model

instability, which defeats the purpose of incorporating prior beliefs. Thus, informative priors
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are specified as

r ∼ Lognormal(1, 10)

K ∼ Lognormal(2000, 0.10),

where the expected growth rate is centered about one and the carrying capacity is assumed

to reach a large quantity. During implementation various priors were explored to test the

sensitivity of these set values. As the variance σ2 of both parameters r and K increased the

priors became more informative. Though expert knowledge of the system needs to be incor-

porated, providing too much information would limit the ability to test the robustness of the

proposed methods in this paper. For example when selecting priors r ∼ Lognormal(0.5, 20)

and K ∼ Lognormal(2000, 100), the predicted model more closely fit the true model during

implementation and did not fully allow the likelihood of the data to inform the decision-

making process. On the other hand, decreasing the variance created uninformative priors

even with a mean close to the true value. Rather than providing less information, it would

be more beneficial in this case to change the distribution and use an uninformative prior such

as the uniform distribution. Thus, the above explicit priors were implemented to represent

some form of prior knowledge of the system and are used for all simulations in this paper.

The Bayesian approach emphasizes combining informative prior beliefs with experimental

knowledge to determine a posterior belief. Thus, the specified model will be used to predict

the parameters of various theoretical population growth models that can be optimized by

assessing various criteria.

2.3.2 Optimal Designs

Optimal designs are used to estimate statistical models while reducing experimental costs.

The objective of optimal design is to eliminate uncertainty by minimizing the variability of

the parameter estimates. Traditionally, optimal designs (Kiefer, 1959) minimize the variance

of the parameter estimates while maximizing the information matrix. Specifically, the Fisher
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information matrix is defined as the negative expectation of the second derivative of the log-

likelihood function with respect to the parameter θ

F (θ) = −E[
∂2

∂θ2
logL(x|θ)],

where the expectation is taken over the sample space of the observations x and parameter

space of θ. Optimality criteria are applied to the Fisher information matrix F (θ) and provide

measures of fit to assist with model selection. The popular A and D optimal designs are

commonly used in experimentation due to their ability to limit computational expenses.

A optimality criterion minimizes the trace of the inverse of the Fisher information matrix,

which equivalently minimizes the average variance of the parameter estimates of a model.

Whereas, D optimal designs consist of maximizing the determinant of the Fisher information

matrix, again minimizing the parameter estimates of the model.

A - Optimal: min tr(F−1(θ))

D - Optimal: max |F (θ)|

Though these designs are commonly used in practice, F (θ) can be difficult to calculate

when the model parameters are unknown. Instead of estimating the Fisher information

matrix using parameter estimates noted by θ̂, the variance of the parameter estimates are

considered. The inverse of the estimated Fisher information matrix F (θ̂) is an estimator of

the asymptotic covariance matrix (Abt and Welch, 1998).

Φ = V ar(θ̂) = [F (θ̂)]−1

The covariance matrix is much easier to calculate than the Fisher information matrix for

certain models. Thus, defining F (θ̂) in terms of Φ redefines the optimality criteria in terms

of the estimated covariance matrix. I-optimal designs (Atkinson et al., 2007) are known

for minimizing the average prediction variance over the entire design region and are also
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considered.

AΦ - Optimal: min tr(Φ)

DΦ - Optimal: min |Φ|

I - Optimal : min Φ̄pred

(2.2)

Φ̄pred notes the average prediction variance of the model. Rather than minimizing the trace

of the inverse of the Fisher information matrix, AΦ-optimal designs minimize the trace of the

covariance matrix. DΦ-optimal designs minimize the determinant of the covariance matrix.

While, I-optimal designs minimize the average prediction variance over the design space.

Again, optimality criteria are measures of fit used to guide optimization processes. AΦ, DΦ

and I optimality criteria are used in the proposed sequential optimality algorithm presented

in the next section.

2.3.3 Sequential Optimality

In practice, design techniques are used prior to collecting data in order to optimize the

amount of information obtained during experimentation. For instance, simulated annealing

applied by Laarhoven and Aarts (1987) is a commonly used probabilistic technique that

searches the design region for an approximation of the global optimum of a given function.

Though easy to implement, simulated annealing can be computationally expensive and does

not learn about a system in a sequential manner. We compare simulated annealing to our

proposed adaptation of the method that predicts the optimal future design point based on

the current information of the system. We prefer this Bayesian approach to incorporate prior

knowledge into the decision-making process. The proposed algorithm sequentially searches

subsets of the design space to determine the best future time for ecologists to collect data.

Sequential optimality is written below as Algorithm 4.
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Algorithm 4: Sequential Optimality

Begin

Choose an initial design t1, ..., tn

Set a design budget, b

Set a design window, w

Set criteria, C:

(i.) AΦ = min tr(Φ)

(ii.) DΦ = min |Φ|

(iii.) I = min Φ̄pred

For D = t1, ..., tn:

(a) Draw a sample t∗ = {tn+1, ..., tn+w}

(b) Accept the new state tnew = argC(t∗)

Repeat until D = t1, ..., tb

End

The algorithm begins by setting an initial design of size n typically set as the number

of parameters in the model plus one. Then, a design point budget b is chosen according to

the number of runs the experimenter can afford. Once the initial data is collected and a

design budget is set, the design window w can be set. The design window can be established

by dividing the planned time interval by the design point budget. The window of points

following the current design D are explored as candidate samples. Each candidate is eval-

uated by running the Metropolis-Hastings (MH) algorithm (Metropolis et al., 1953) guided

by specified optimality criterion, C. The optimal point within the window tnew is added to

the design, and the process repeats until the design point budget is exhausted. These steps

are demonstrated and explained further through a worked example.

Worked Example

This worked example uses Algorithm 4 to find an optimal design for a normal 10% logistic

growth model using A-optimality criterion. Each step is provided in detail as follows.
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Step 1: Choose an initial design t1, ..., tn
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Fig. 1.: An initial design of three points is plotted in blue. The ground truth model of

normal 10% growth is plotted as a black curve across one hundred time points with a carrying

capacity of two thousand and initial population of two hundred.

Logistic growth has two parameters, growth rate and carrying capacity. Therefore, three

initial design points, t1, t2 and t3, are selected as shown in Figure 1 representing samples

collected on days 0, 5 and 10 of the season. The population size is calculated at these time

points using the analytic solution with random Poisson noise. In this example the coordi-

nates are (0, 205), (5, 295) and (10, 453).
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Step 2: Set a design budget, b

The design budget is chosen at the discretion of the expert based on available resources. In

this example, we select a budget of ten, b = 10.

Step 3: Set a design window, w

This study focuses on sampling across a one hundred day season with a design budget of

size ten. A practical design window would be to search ten days into the future. Thus, we

set w = 10.

Step 4: Set criteria, C

For demonstration purposes, A-optimal criterion is selected as C = AΦ = min tr(Φ).

Step 5: Draw a sample t∗ = {tn+1, ..., tn+w}

The initial design consists of three points. Therefore, t∗ represents a window of the ten

consecutive points following the last point sampled from t4, ..., t13 = Day 11, ..., Day 20.

Step 6: Accept the new state tnew = argC(t∗)

Here, we calculate the trace of the covariance matrix for each point in t∗ = t4, ..., t13, which

comes from the MH algorithm producing estimates for the carrying capacity and growth

rate.

tr(Φ(t∗)) =(1.09× 1014, 1.16× 1014, 1.94× 1014, 8.75× 1013, 1.01× 1014,

7.45× 1013, 6.32× 1014, 2.37× 1014, 1.40× 1014, 1.39× 1014)

min tr(Φ(t∗)) =(7.45× 1013)

arg min tr(Φ(t∗)) =16

Based on the calculations, the optimal point selected in the design window is Day 16, which

leads to the selected design point (16, 661) calculated by the analytic solution with random
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Poisson noise. Figure 2 illustrates the candidate sample region in red and the selected point

among the candidates is shown in Figure 3.
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Fig. 2.: A window of ten candidate points are selected from the last point sampled illustrated

by the red region.
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Fig. 3.: Each point is evaluated using A optimality criterion in the window from Figure 2

and the argument with the minimum trace in the window is selected.

Step 7: Repeat until D = t1, ..., tb

Steps 5 and 6 are repeated until all ten points in the budget are exhausted. The parameter

estimates are updated as each new design point is added as shown in Figure 4. The final

design consists of ten points calculated by the analytic solution as follows: (0, 205), (5, 295),

(10, 453), (16, 661), (26, 1202), (36, 1498), (46, 1885), (56, 1927), (64, 2019) and (68, 1961).
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Fig. 4.: The fifth design point is selected in panel (a) found in a window following the design

from Figure 2: panel (b). Panels (b)-(f) represent each additional design point added until

the budget of ten points is exhausted. Each panel plots the ground truth model in black, the

design points in blue and fits the design with a red curve based on the parameter estimates.

The red dotted lines represent the 2.5% and 97.5% prediction quantiles.

The sequential optimality algorithm is intended to search the design space of temporal mod-

els. The above example demonstrates the procedure learning about a temporal system in a

sequential manner. The proposed method will be implemented later across various logistic

growth models using all design criteria to compare the technique in reference to simulated an-
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nealing. The purpose of this design study is to develop and demonstrate statistical methods

that can optimize sampling procedures for ecologists.

2.4 Simulation Study

This simulation study demonstrates methods that can be used to design sampling schedules

for ecologists applied to three theoretical scenarios of logistic growth provided by Table

1. All simulations are programmed in R (R Core Team, 2013). Data is simulated for

normal, fast and slow logistic growth models across one hundred time points. The normal

growth rate is set to 10%, the fast rate is set to 100%, and the slow rate is set to 5%

growth. All models have a maximum carrying capacity of two thousand, and ten thousand

MCMC samples are used to predict the probability of the model parameters. Based on the

planned time interval of one hundred days, all optimal designs will consist of ten points that

search windows of size ten. This allows the entire budget to be used should the farthest

point in each window be selected. Simulated annealing is implemented first to demonstrate

the global optimum for each scenario as a reference when comparing sequential optimality.

Therefore, ten design points are also selected during simulated annealing for comparison

purposes. Then, sequential optimality is demonstrated as a novel approach to designing

optimal sampling regimes.

Label Growth Rate Carrying Capacity Initial Population

Normal 0.10 2000 200

Fast 1.00 2000 200

Slow 0.05 2000 200

Table 1.: Logistic Growth Scenarios

All ground truth models are generated using the logistic equation and analytic solution

provided by Equation 2.1. Each simulation plots the ground truth model as a black curve

34



tracking the population size across time. 10,000 MCMC samples are used for each simulation,

and the optimal design points selected are plotted as blue open circles. The designs are fit

by a red curve with the prediction interval plotted as red dotted lines calculated by the 2.5%

and 97.5% quantiles of the predicted values. It will become clear by the results that there

are many ways to successfully design experiments for logistic growth models.

2.4.1 Simulated Annealing

Simulated annealing is implemented as an adaptation of the MH algorithm to explore the

design space for an optimal solution. Considering normal, fast and slow growth rates, the

specified optimality criteria are used to guide the algorithm and find global optimal solutions.

As stated previously, the models simulate growth at 10%, 100%, and 5% rates. Each criterion

guides the simulated annealing process to produce optimal designs for each model.
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Fig. 5.: 10,000 MCMC samples are used to simulate AΦ - optimal designs for (a) normal,

(b) fast and (c) slow growth models. All models are simulated across 100 time points with

a carrying capacity of 2000. The ground truth models are plotted in black. The optimal

design points are plotted in blue and fit by a solid red curve, where the 2.5% and 97.5%

quantiles of the predicted values are plotted as red dotted lines.
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Fig. 6.: 10,000 MCMC samples are used to simulate DΦ - optimal designs for (a) normal,

(b) fast and (c) slow growth models. All models are simulated across 100 time points with

a carrying capacity of 2000. The ground truth models are plotted in black. The optimal

design points are plotted in blue and fit by a solid red curve, where the 2.5% and 97.5%

quantiles of the predicted values are plotted as red dotted lines.
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Fig. 7.: 10,000 MCMC samples are used to simulate I-optimal designs for (a) normal, (b)

fast and (c) slow growth models. All models are simulated across 100 time points with a

carrying capacity of 2000. The ground truth models are plotted in black. The optimal design

points are plotted in blue and fit by a solid red curve, where the 2.5% and 97.5% quantiles

of the predicted values are plotted as red dotted lines.

Simulated annealing successfully captures the dynamics of all growth models using each

criterion. Figure 5 demonstrates the designs generated using AΦ optimality criterion. Figure

6 fits the DΦ-optimal designs. Figure 7 illustrates the fit of I-optimal designs. In the

next section, simulation studies are conducted using sequential optimality to demonstrate
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a new method for prediction based optimization. Sequential optimality is an adaptation of

simulated annealing that predicts optimal design points.

2.4.2 Sequential Design

Sequential optimality searches subsets of the design space to find the next best point. Normal,

fast and slow growth at 10%, 100% and 5% rates respectively are simulated. All simulations

use 10,000 MCMC samples plotted across one hundred time points. The carrying capacity

is two thousand. The design point budget consists of ten points, and the algorithm uses

the optimality criteria. As each criterion guides the sequential optimality process, the final

optimal designs are compared for each model. Again, the ground truth model is plotted as

a black curve. The optimal design points are plotted as blue points fit by a solid red curve

with the 2.5% and 97.5% quantiles of the predicted values plotted as red dotted lines. As

the system updates, our goal is to fit the ground truth model as accurately as possible with

the final optimal design. I, AΦ, and DΦ optimal designs are compared across normal, fast,

and slow growth rates.

The simulations begin with the I-optimality criterion to demonstrate prediction based

designs. Figure 8 demonstrates sequential optimality using the prediction based I-optimality

criterion to search a normal growth model. Given the model specification and priors, there is

expert knowledge informing the growth rate parameter but limited knowledge regarding the

carrying capacity. This simulation specifically demonstrates the ability of the algorithm to

explore the uncertainty of the carrying capacity and capture the dynamic. An initial design

is set of three points given the logistic equation has two parameters, carrying capacity and

growth rate. One hundred day seasons are modeled with a design point budget of ten. The

ten candidate points following the base design are evaluated using the I-optimality criterion

to select the point with the minimum prediction variance. Once the optimal point is added

to the design, the process repeats until all ten design points are sampled. Notice that the

change from step 6 in panel (e) to step 7 in panel (f) of Figure 8 demonstrates the method
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searching uncertainty of the plateau level of the curve. As the process updates, the width

of the decision boundary decreases showing more certainty around the steady state of the

system. Based on the simulation, the prediction based I optimality criterion is successful

in capturing the dynamics of a normal growth model. However, different combinations of

criteria and growth models are simulated to test the robustness of the technique.
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Fig. 8.: The ground truth normal growth model is plotted as a black curve. I-optimality

criterion guides the sequential optimality process. The design points are plotted in blue and

are fit by a solid red curve. The red dotted lines represent the 2.5% and 97.5% predicted

quantiles. Panel (a) plots the base design, panel (b) fits the design, and panels (c)-(i) plot

the optimal points as they are fit.
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Fig. 9.: 10,000 MCMC samples are used in this simulation of a normal growth curve in-

creasing at a 10% rate across 100 time points with a carrying capacity of 2000. Sequential

optimality is used to find the ten best points for (a) I, (b) AΦ and (c) DΦ optimal designs.

The optimal points are plotted in blue and fit with a solid red curve. The red dotted lines

represent the 2.5% and 97.5% quantiles of the predicted values of the model. The black

curve represents the ground truth model.
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Fig. 10.: 10,000 MCMC samples are used in this simulation of a rapid growth curve increasing

at a 100% rate across 100 time points with a carrying capacity of 2000. Sequential optimality

is used to find the ten best points for (a) I, (b) AΦ and (c) DΦ optimal designs. The optimal

points are plotted in blue and fit with a solid red curve. The red dotted lines represent the

2.5% and 97.5% quantiles of the predicted values of the model. The black curve represents

the ground truth model.
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Fig. 11.: 10,000 MCMC samples are used in this simulation of a slow growth curve increasing

at a 5% rate across 100 time points with a carrying capacity of 2000. Sequential optimality

is used to find the ten best points for (a) I, (b) AΦ and (c) DΦ optimal designs. The optimal

points are plotted in blue and fit with a solid red curve. The red dotted lines represent the

2.5% and 97.5% quantiles of the predicted values of the model. The black curve represents

the ground truth model.
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The simulations of normal growth show varying results in Figure 9 across the optimality

criteria. The I and AΦ optimal designs successfully capture the dynamics of the population

with ten points. Whereas, the DΦ optimal design did not capture the dynamic of the carrying

capacity. This indicates the need for a larger design point budget or smaller design window

when using DΦ optimality criterion with a normal growth curve. On the other hand, all

three optimality criteria capture the dynamics of the fast growth rate in Figure 10, which is

expected given that the model plateaus rapidly. This implies that the design point budget

could be decreased in this case. As for the slow growth rate model in Figure 11, no criteria

could capture the population dynamics. This could indicate a need to increase the design

point budget or decrease the design window for slow growth models. The size of the design

point budget was set to ten points with a window of ten points to simply demonstrate this

novel approach of sequential optimality.

Bayesian optimal designs (Chaloner and Verdinelli, 1995) are also examined for com-

parison purposes. Bayesian optimal designs can be written in the form of a utility function

U(d∗xf ), where d∗xf represents a design chosen from the design region dxf . The design region

is explored using Bayes I, D, and A optimal designs written mathematically as follows.

Bayesian I-Optimal

ŪI(d
∗
xf

) = min

∫
Θ

mindxf (Y2 − E[Y2|y1, dxf ])2p(Y2|y1, dxf )dY2

Bayesian D-Optimal

ŪD(d∗xf ) = min

∫
Θ

mindxf |Cov(k,K|Y2, y1, dxf )|p(Y2|y1, dxf )dY2

Bayesian A-Optimal

ŪA(d∗xf ) = min

∫
Θ

mindxf tr(k,K|Y2, y1, dxf )p(Y2|y1, dxf )dY2

Y2 represents the predicted design points, while y1 represents the current design. Θ is the

parameter space including parameters k and K from the model in Equation 2.1. Similar to
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the criteria from Equation 2.2, the Bayesian optimality criteria are minimizing the posterior

predictive distribution across the parameter space Θ and design space dxf . The Bayesian I-

optimal designs minimize the distance between the squared predictions. Bayesian D-optimal

designs minimize the determinant of the covariance of the posterior predictive distribution.

The Bayesian A-optimal designs minimize the trace of the posterior predictive distribution.

Implementing the Bayesian criteria into our process of sequential optimality gives various

results. The frequency tables illustrate the precision of each criteria based on the probabilities

assigned to each candidate point.
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Fig. 12.: Bayesian optimality criteria are used to guide the sequential optimality process. The

frequency tables plot the probabilities assigned to the first ten candidate points following the

initial base design for a normal growth model. Panel (a) represents candidate probabilities

under the ŪI criterion. Panel (b) plots probabilities of the candidates for ŪA criterion. Panel

(c) provides the frequencies associated with ŪD criterion.

The frequency plots in Figure 12 show the probability densities associated with the

first set of candidate points evaluated in the sequential optimality algorithm. The Bayesian

I-optimal design gives weight to specific candidate points, whereas the Bayesian A and D

optimality criteria provide a wide range of optimal candidates. Based on the frequency

charts, it is clear that the Bayesian I-optimal design can provide a precise optimal design
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point. Whereas, the Bayesian A and D optimal designs appear to lack precision. These

results are further visualized by plotting the Bayesian sequential designs in Figure 13 for the

normal growth model.
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Fig. 13.: 10,000 MCMC samples simulate a normal growth curve increasing at a 10% rate

across 100 time points with a carrying capacity of 2000. Sequential optimality is used with

the Bayesian design criteria to find the ten best points for (a) ŪI , (b) ŪA and (c) ŪD optimal

designs. The optimal points are plotted in blue and fit with a solid red curve. The red

dotted lines represent the 2.5% and 97.5% quantiles of the predicted values of the model.

The black curve represents the ground truth model.
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Given all of the criteria and varying growth rates, the simulations using sequential

optimality resulted in different designs. Some designs are able to capture the dynamics

of the system while others require a larger design point budget. Ultimately, this indicates

that there are several ways to design experiments for dynamic models. Using the simple

example of population growth modeled by the logistic equation, the sequential optimality

simulations demonstrate an adaptation of the commonly performed simulated annealing

algorithm. Thus, sequential optimality can be recommended when limitations arise for

sampling.

2.4.3 Potential Difficulties

As demonstrated previously, sequential optimality predicts optimal future design points in

a sequential manner by learning about the dynamics of a system. Thus far, the simulations

use the analytic solution to the logistic equation with Poisson noise to produce simulated

data that closely resembles a specified model. This raises concern when evaluating the

proposed method given that scenarios exist where logistic growth may not be appropriate.

The following simulation details potential difficulties with the sequential optimality algorithm

in a scenario that tests if the method can detect a model lack of fit. The simulated data is

generated using a piecewise function where the population count suddenly decreases rather

than reaching the carrying capacity.

This simulation is performed under the assumption that the logistic growth model is ap-

propriate to fit the simulated data. Figure 14 illustrates sequential optimality being informed

by data that does not follow the logistic growth trend. The prediction based I-optimality

criterion is used for demonstration purposes. First, an initial design is set of three points

given the logistic equation has two parameters, carrying capacity and growth rate. Then,

the ten candidate samples following the initial design are evaluated using the I-optimality

criterion to select the point with the minimum prediction variance. Once the optimal design

point is added, the process repeats and updates three times. However on the fourth run, the
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logistic growth curve is poorly fit, and we see a decrease in the population size. By the fifth

run and addition of the seventh design point, the I-optimality criterion creates a range that

becomes extremely large, which signals an incorrect model. Though the budget is set for ten

design points, the process fails to continue once the population reaches zero. This implies

that the process can detect a lack of fit and abnormality in the system.
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Fig. 14.: 10,000 MCMC samples are used to simulate normal 10% logistic growth across a 100

day period with a carrying capacity of 2000. The ground truth model is plotted as a black

curve. I-optimality criterion guides the sequential optimality process. The optimal design

points are plotted in blue and are fit by a solid red curve. The red dotted lines represent the

2.5% and 97.5% quantiles of the predicted values. Panel (a) plots the base design of three

points, panel (b) plots the fit of the base design, and panels (c)-(f) plot the fourth through

seventh optimal points in the design as they are fit. This simulation demonstrates a lack of

fit scenario.

2.5 Discussion

In this study, the dynamics of various logistic growth models were investigated in order

to design optimal sampling regimes for ecologists. Efforts were focused on a simple model

with limited external factors to demonstrate the approach of sequential optimality. For

the purpose of this study, the logistic equation provided a straightforward model used to

compare sampling techniques. Simulated annealing was implemented to explore the design
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space using various optimality criteria. Despite the growth rate and criterion used, simulated

annealing was able to capture the dynamics of the models by exploring the entire design

region. However, sequential optimality found sampling regimes that capture the dynamics

of a system in a sequential manner.

The proposed method of sequential optimality incorporates prior information into the

design process. Rather than exploring the entire design space at once, the sampling method

evaluates subsets of the region using parameter based criteria. Sequential optimality cap-

tured the dynamics of a normal growth rate using the I optimality criterion. However,

implementing this method across criteria and growth rates led to different results. The nor-

mal growth rate model was captured by I and AΦ optimal designs but required more design

points for the DΦ optimal design. Models with fast growth rates were always captured lead-

ing to the belief that a smaller design point budget could be explored. On the other hand,

slow growth rates required a larger design point budget no matter the criteria used. The

algorithm had a more difficult time distinguishing the dynamics of the slower growth rate.

Bayesian optimal designs were also considered as a method for comparison. The ŪI-

optimality criterion had more precise candidate points than the ŪA or ŪD optimality criteria.

This led to the results that only the ŪI Bayesian optimal design was able to capture the

dynamics of the curve with a set of ten design points. The other two designs required

more design points to capture the dynamics of the model. Comparing Bayesian sequential

designs to the traditional criteria provided yet another technique available for determin-

ing the optimal design points in the region. Comparing these processes across criteria and

models suggests that there are several ways to design experiments. Numerous approaches

exist for Bayesian experimental design including studies by Müller et al. (2007), Williamson

and Goldstein (2012) and Jones et al. (2018). Furthermore, research by Ford et al. (1989)

demonstrates advancements in experimental design for nonlinear systems. Though alterna-

tive methods are available to help ecologists allocate resources, our approach of sequential

optimality is particularly beneficial when predicting the next step, or optimal time, to collect
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data.

2.6 Conclusions

In this paper, the ecological model known as the logistic equation was used based on the

various applications and popularity of the model. The proposed design space tracked the

change in population dynamics across time and was explored using the novel approach of

sequential optimality. When using prediction based criteria for a normal growth model, the

method captured the dynamics of the system and found an optimal design that translates

to an optimal sampling regime for ecologists. Rather than sampling out of convenience

or across an equal interval, the simulations demonstrate that the method can provide the

next optimal time to sample given the current state of the environment. Real data cannot

be incorporated at this time given that this paper introduces a new method for designing

sampling regimes. However, the developed method does learn about theoretical processes

in a sequential manner and has the potential to assist ecologists when planning sampling

schedules.

Though the analysis is performed on a straightforward univariate model, we acknowledge

that more complex dynamics exist and can represent more realistic environmental encounters.

Incorporating external factors into the model could lead to substantial improvements to

the method. Furthermore, there are many design problems that can be investigated by

a Bayesian approach. Specifically related to sequential optimality, this study focuses on

designs of a set size that explore a set window of time into the future. The method could be

expanded by studying varying design sizes and design windows. Also, sampling techniques

used by ecologists could be invasive and change the process. These changes could be taken

into consideration as they may affect the model. In this paper, we focus on providing optimal

designs based on temporal models. However, in the future spatial models could be explored

along with a hierarchical network of temporal models. Given these additional conditions,

there are many levels of uncertainty that could be incorporated to reflect the reality of an
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ecological system.
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CHAPTER 3

BAYESIAN EXPERIMENTAL DESIGN WITH THE LOTKA-VOLTERRA

DIFFERENTIAL EQUATIONS FOR PREDATOR-PREY DYNAMICS

3.1 Introduction

Community ecologists are interested in studying the temporal and spatial changes in species

resembling community structures. The most fundamental relationship within a community is

the temporal predator-prey dynamic. Predator-prey interactions highly influence population

and community dynamics (Lima, 1998). The removal of prey or flooding of predators can

drastically change an entire ecosystem. Hence, ecologists prefer to study predation effects on

populations, communities and ecosystems (Crawley, 2009). The most popular representa-

tion of predator-prey dynamics can be modeled by the Lotka-Volterra differential equations.

Lotka (1926) and Volterra (1928) developed the Lotka-Volterra differential equations as a

model for the interactions between a predator and its prey.

The Lotka-Volterra equations have broad applications and are frequently modeled among

ecologists. Extensions of the deterministic Lotka-Volterra system have been used by Gard

and Hallam (1979) to study food webs as well as Hening and Nguyen (2018b) to study

intraspecific competition. Hening and Nguyen (2018a) further study persistence and extinc-

tion of species based on the food-chain version of the Lotka-Volterra model. The possibility

of two species competing for the same food supply is modeled as a special case by Lotka

(1978). However, the traditional model most simply captures realistic encounters between

two species in a predator-prey relationship. In this study, the traditional Lotka-Volterra
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differential equations are employed to model predator-prey population dynamics.

Many efforts have gone towards estimating the parameters of differential equations. In

the Bayesian framework, estimation can be performed using various Markov Chain Monte

Carlo (MCMC) sampling techniques (Girolami, 2008). Though ample sampling produces

a more accurate representation of dynamical systems, in practice ecologists do not have

the resources to excessively sample. Thus, Sequential Optimality (Atanga et al., 2020) is

performed to learn about the system in a sequential manner and design optimal sampling

regimes according to the population dynamics. Modeling in the Bayesian framework will

inform the process and maximize the information obtained from the data. The goal of

this simulation study is to demonstrate how sequential optimality can inform ecologists of

when to collect data based on the population dynamics associated with the Lotka-Volterra

differential equations.

3.2 Predator-Prey Dynamics

The Lotka-Volterra differential equations model the interactions between predators and prey

(Lotka, 1926; Volterra, 1928). Though applied frequently in ecology, the model is quite

versatile. Variations of the Lotka-Volterra system have been implemented across disciplines.

Competitive behavior in the marketplace has been modeled using autonomous Lotka-Volterra

systems by Marasco et al. (2016). Gatabazi et al. (2019) use the grey Lotka-Volterra model

of higher dimensions to study the interactions between cryptocurrencies. Furthermore, the

interaction terms in the Lotka-Volterra equations have represented the effect of technology

interaction as demonstrated by Zhang et al. (2018a). Though the model can adapt to specific

applications, in this study the traditional model is used to represent an ecological relationship

between predator and prey.

The traditional mathematical model for predator-prey interactions are given by the

Lotka-Volterra equations (Murray, 2002). The simple first order nonlinear pair of differential
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equations are written mathematically as

dx

dt
= αx− βxy

dy

dt
= δxy − γy

(3.1)

where x and y represent the prey and predator respectively. The coefficient α denotes the

birth rate of the prey, β is the predation success rate, δ is the efficiency of converting prey into

predators and γ represents the mortality rate of the predator. Given the complex features of

the model, the oscillating steady-state better represents a realistic relationship between two

species. Though ecologists study extinction of species as it affects evolution, the oscillating

behavior of the system can be simulated using numerical methods.

Fig. 15.: The Lotka-Volterra differential equations are simulated using Runge-Kutta methods

with parameter values α = 1.0, β = 0.1, δ = 1.5 and γ = 0.75. The numerical solutions of

the prey and predator populations are plotted as blue and orange curves respectively ranging

from zero to ten thousand across one hundred time points.
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The model is simulated in Figure 15 using the Runge-Kutta method famously developed

by Runge (1895) and Kutta (1901). A sequence of approximate solutions is obtained from the

differential equations to simulate data that continually oscillates with parameter values α =

1.0, β = 0.1, δ = 1.5 and γ = 0.75. The defined parameters serve as the true values that need

to be estimated in this study using Bayesian inference and design of experiment techniques.

In the next section, the Lotka-Volterra model is specified in the Bayesian framework.

3.3 Statistical Model

Ecologists are shifting towards Bayesian modeling of natural systems based on the increas-

ing resources for ecological Bayesian models (Hooten and Hobbs, 2015). Bayesian analysis

combines prior beliefs with sample information to make inferences about the posterior belief

of the population parameter. The posterior is a conditional probability of parameter θ given

observed data x defined by Bayes’ Theorem (Bayes, 1763)

π(θ|x) =
h(x, θ)

m(x)
,

where h(x, θ) is the joint density of the prior π(θ) and likelihood f(x|θ)

h(x, θ) = π(θ)f(x|θ),

and m(x) is the marginal density of the data

m(x) =

∫
Θ

π(θ)f(x|θ).

Equation 3.1 is a temporal model that tracks the populations of two species across time

implying a Poisson likelihood for the data. Thus, the likelihood can be written for both

predator and prey as

xi|ti ∼ Poisson(λ1i|ti)

yi|ti ∼ Poisson(λ2i|ti)
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where xi|ti is the population of the prey at time t = i, yi|ti is the population of the predator

at time t = i, λ1i is the numerical solution of the prey population at time ti and λ2i is the

numerical solution of the predator population at time ti. The numerical solutions are both

dependent on parameters α, β, δ, and γ, where each parameter represents a positive rate

of change. The gamma distribution has a positive support and is conjugate to the Poisson

likelihood. Therefore, informative priors are specified using the gamma distribution as

α ∼ Γ(1.0, 1)

β ∼ Γ(0.1, 1)

δ ∼ Γ(1.5, 1)

γ ∼ Γ(0.75, 1).

The true parameters for the simulated data are α = 1.0, β = 0.1, δ = 1.5 and γ = 0.75.

In reality, ecologists at this stage will not know the true parameter values of the model.

Though maximum likelihood estimation methods are available for the gamma distribution

as demonstrated by Harter and Moore (1965) and Johnson (1970), the specified priors are

chosen to represent limited expert knowledge of the system. When incorporating too much

information, the algorithm relies heavily on the priors rather than the information provided

by the likelihood of the data. During implementation the following priors were tested,

α ∼ Γ(1, 1), β ∼ Γ(0.01, 0.1), δ ∼ Γ(2.25, 1.5) and γ ∼ Γ(0.56, 0.75). The hyper-parameters

were calculated using method of moments to test more informative priors. However, the

simulations performed with great precision when limited data was available implying that

experts should know the behavior of the system prior to sampling. Given the purpose of

this study is to quantify the uncertainty of a dynamical system, less informative priors were

tested. Alternatively, uninformative priors were tested where all priors for α, β, δ and γ

were set to Γ(0.1, 0.1). This created too much uncertainty in the simulation and caused

the algorithm to perform poorly since all four priors provided no information. Thus, the

Bayesian model is specified so that MCMC sampling can me employed combined with design
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of experiment techniques to estimate the true model parameters.

3.4 Experimental Design

Design of experiments is intended to reduce costs by establishing designs prior to experimen-

tation. Specifically, optimal designs estimate statistical models and improve the precision

of statistical inference. Traditional optimal designs applied to predator-prey models by

Zhang et al. (2018b) typically optimize the design region by minimizing the variance of the

parameter estimates. In this study, traditional optimality criteria is applied to the esti-

mated covariance matrix. The covariance matrix is much easier to estimate in the Bayesian

framework using MCMC sampling for complex models compared to calculating the Fisher

information matrix. The estimated covariance matrix is written mathematically as

V ar(θ̂) = Cov(θ̂, θ̂) = E((θ̂ − E(θ̂))(θ̂ − E(θ̂))T ),

where θ̂ represents a vector of the parameter estimates of the model. The diagonal of the

estimated covariance matrix contains the variances of the estimated parameters, and the

off-diagonals give the covariances between each of the parameter estimates.

Traditional optimality criteria (Goos and Jones, 2011) are applied to the estimated

covariance matrix. Specifically, A, D and I optimal designs are employed in this study.

A optimality criterion minimizes the trace of the estimated covariance matrix. D-optimal

designs minimize the determinant of the estimated covariance matrix. I-optimal designs are

prediction based and minimize the average prediction variance over the entire design region.

A - Optimal: min tr(V ar(θ̂))

D - Optimal: min |V ar(θ̂)|

I - Optimal : min V̄ ar(θ̂)pred

(3.2)

V̄ ar(θ̂)pred denotes the average prediction variance of the model parameter estimates. Op-

timality criteria are measures of fit used to guide optimization processes. Thus, all three of
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these criteria are implemented in this simulation study to guide the process of sequential

optimality.

3.5 Sequential Optimality

Sequential optimality proposed by Atanga et al. (2020) begins by setting an initial design

n, a design point budget b, and window size w. The initial design size is calculated as the

number of parameters in the model plus one. The design point budget is up to the discretion

of the expert based on available resources, and the window size is determined by dividing the

timeline of the experiment by the design point budget. The sequential optimality algorithm

is then guided by the set criteria C provided by Equation 3.2. As each design point is

accepted, the process updates and continues until a finalized design D is produced.

Algorithm 5: Sequential Optimality

Begin

Choose an initial design t1, ..., tn

Set a design budget, b

Set a design window, w

Set criteria, C:

(i.) A = min tr(V ar(θ̂))

(ii.) D = min |V ar(θ̂)|

(iii.) I = min V̄ ar(θ̂)pred

For D = t1, ..., tn:

(a) Draw a sample t∗ = {tn+1, ..., tn+w}

(b) Accept the new state tnew = argC(t∗)

Repeat until D = t1, ..., tb

End

The Bayesian model tracks the population of predators and prey across one hundred

time points with ground truth parameters of α = 1.0, β = 0.1, δ = 1.5 and γ = 0.75. The
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simulations use the numerical solution with MCMC sampling to predict the probability of

the model parameters. Each design criteria is implemented to find designs with varying

budgets and window sizes for comparison purposes. The goal of this design study is to

optimize sampling procedures for ecologists by sequentially learning about the predator-prey

dynamics of the Lotka-Volterra differential equations.

3.6 Simulation Study

The Lotka-Volterra differential equations model the fluctuation of predator and prey popu-

lations as they pass through time. All simulations are programmed in Python (Van Rossum

and Drake Jr, 1995). The dynamics are simulated where α = 1.0, β = 0.1, δ = 1.5 and

γ = 0.75. The simulated data is illustrated in Figure 15 where the blue curve represents

the prey and the orange curve represents the predators interacting across a one hundred day

period. However in this section, the simulation results are shown on two separate plots to

provide clear graphics for each population. The ground truth curves for both predator and

prey are plotted as grey dashed lines. The optimal design points are plotted in blue and

are fit by a solid red curve calculated by the 50% quantiles of the predicted values of the

model. The red dotted lines represent the 2.5% and 97.5% quantiles of the predicted values

and serve as a decision boundary.

It is of interest to select an optimal design using each criteria across varying budgets and

window sizes. The simulation results in Figure 16 demonstrate sequential optimality selecting

an I-optimal design of size fifteen. First, the initial design of five points is plotted. Then, the

design is fit using the predicted parameter values. The sequential optimality algorithm then

searches a design window of size ten to select the next optimal design points and updates

the estimates. The process continues until the budget of fifteen points is exhausted.
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(c) (d)

(e) (f)

76



(g) (h)

(i) (j)

(k) (l)

Fig. 16.: I-optimality criterion is used to select the blue design points. The design is fit by a

solid red curve and the true values are plotted as dashed grey curves. The 2.5% and 97.5%

quantiles of the predicted values are plotted as red dashed lines. Panel (a) plots the initial

design, panel (b) fits the design, and panels (c)-(l) represent each optimal point added to

the design selected from a window of size ten. The final design consists of fifteen points.
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Atanga et al. (2020) demonstrate sequential optimality using various logistic growth models

and compare criteria across designs of size ten. However in this study, the model parameters

remain the constant and the criteria are compared across varying design budgets and window

sizes. The simulation results in Figure 17 compare the optimality criteria across designs with

budgets of fifteen points and windows of size ten.
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(a) (b)

(c)

Fig. 17.: The simulated predator and prey populations are plotted using grey dashed lines

where α = 1.0, β = 0.1, δ = 1.5 and γ = 0.75. The design points are plotted in blue and fit

by the 50% quantile of the predicted parameters represented by a solid red line. The 2.5%

and 97.5% quantiles of the predicted values are plotted as red dashed lines. Each criteria

evaluated candidate points in windows of size ten to select a final design of size fifteen. The

panels plot the final designs using (a) I-optimality, (b) A-optimality, and (c) D-optimality

criteria.

The next set of results simulate optimal designs of size ten as shown in Figure 18. The

decrease in the design budget represents limited resources available to ecologists. Given

a smaller design point budget, the window size is increased to evaluate fifteen candidate

samples. The larger window size allows for optimal placement of design points as well as

79



another scenario to compare each criterion. Notice in these results the loss in dynamics.

(a) (b)

(c)

Fig. 18.: The simulated predator and prey populations are plotted using grey dashed lines

where α = 1.0, β = 0.1, δ = 1.5 and γ = 0.75. The design points are plotted in blue and fit

by the 50% quantile of the predicted parameters represented by a solid red line. The 2.5%

and 97.5% quantiles of the predicted values are plotted as red dashed lines. Each criteria

evaluated candidate points in windows of size fifteen to select a final design of size ten. The

panels plot the final designs using (a) I-optimality, (b) A-optimality, and (c) D-optimality

criteria.

Ideally, the design point budget should increase so more knowledge can inform the model.

In another theoretical scenario, there is potential to design sampling regimes with twenty

design points. As the design budget increases, ecologists can explore smaller windows of time
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in the future to collect data. In the simulation results provided by Figure 19, the sequential

optimality algorithm evaluates windows of size five to select optimal designs consisting of

twenty points.

(a) (b)

(c)

Fig. 19.: The simulated predator and prey populations are plotted using grey dashed lines

where α = 1.0, β = 0.1, δ = 1.5 and γ = 0.75. The design points are plotted in blue and fit

by the 50% quantile of the predicted parameters represented by a solid red line. The 2.5%

and 97.5% quantiles of the predicted values are plotted as red dashed lines. Each criteria

evaluated candidate points in windows of size five to select a final design of size twenty. The

panels plot the final designs using (a) I-optimality, (b) A-optimality, and (c) D-optimality

criteria.

The simulations appear to provide a wide range of results. In the first scenario shown by
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Figure 17, the I-optimal design captures the dynamics more closely than the A or D-optimal

designs. However, decreasing the design budget as shown in Figure 18 causes a loss in

dynamics overall. All three criteria provide low budget designs that poorly capture the true

parameter values of the specified Lotka-Volterra model. On the other hand, increasing the

design budget and evaluating smaller window sizes as shown in Figure 19 creates favorable

circumstances. In this case, the larger I, A and D-optimal designs outperform the results

from the other simulation scenarios.

This study theoretically designs sampling schedules for ecologists based on simulated

predator-prey dynamics. Real data cannot be used given the method of sequential optimality

has not yet been implemented in practice. However, each result in this study further validates

the process by demonstrating the robustness of the technique. It is clear that there are

several ways to design experiments for dynamical systems. Sequential optimality serves as a

new and novel approach to sampling that can predict optimal future points when designing

experiments.

3.7 Conclusions

The intention of this study is to expand the applications of the sequential optimality al-

gorithm. Implementing the Lotka-Volterra model refines the method by considering more

realistic dynamics within an ecosystem. Designs were selected using I, A and D optimality

criteria. The designs were compared by altering the budgets and windows evaluated in the

process. Based on the results, smaller designs poorly captured the dynamics of the system

while larger designs produced more accurate parameter estimates. The main purpose of

these simulations was to demonstrate that the method can determine the next optimal time

to collect data rather than sampling according to convenience over an extended period of

time.

Sequential optimality has thus far focused on temporal models. Specifically in this

design study, predator-prey dynamics are explored using the algorithm. However, ecologists
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are interested in studying communities involving temporal and spatial changes in ecosystems.

Thus, there is potential to appeal to a larger audience by studying spatiotemporal models

in the future. The purpose of this design study was to demonstrate a new way to improve

sampling methods for ecologists. Therefore as the technique expands and becomes more

versatile, it is believed that researchers can implement this method in practice.
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CHAPTER 4

RESOURCE-BASED SEQUENTIAL BAYESIAN EXPERIMENTAL DESIGN

FOR DYNAMIC MODELING

4.1 Introduction

Ecological population and community studies rely heavily on sampling procedures. Sampling

is the first stage of ecological research and directly impacts the entire study. Therefore, it

is imperative to develop sampling techniques that ecologists can use when making sampling

decisions. General data collection methods are recommended in the ecological literature

such as those reviewed by Henderson (2001). Though many sampling procedures exist and

vary depending on species and habitat, all methods have underlying expenses that limit

the process. Thus, research involving cost-effectiveness such as studies by Caughlan and

Oakley (2001) and Mode et al. (1999) are of the utmost importance. The increasing number

of sampling design methods are expanding practices for ecologists and evolving ecological

sampling techniques.

Bourdeau (1953) studies random and systematic ecological sampling methods to improve

sampling efficiency. Similarly, Dennis et al. (2010) focuses on increasing sampling efficiency

through replication when monitoring biological populations. Furthermore Schweiger et al.

(2016) optimize sampling approaches using reproducible, statistical simulations to combat

erroneous conclusions made by studies with flawed sampling design. Given the many crit-

icisms against the reliability of ecological sampling designs, the purpose of this simulation

study is to further develop design algorithms that can determine the optimal budgets needed
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when allocating resources and monitoring species composition and abundance.

Ecologists mathematically model ecological systems and are interested in estimating

various population dynamics. As seen in McCallum (2008), there are various methods

for population parameter estimation. Though the frequentist approach is favorable, the

Bayesian framework provides Markov Chain Monte Carlo sampling techniques (Brooks et al.,

2011) that can be used to estimate dynamical systems. Given raised concerns with cost-

effectiveness, design of experiment techniques are incorporated with Bayesian inference to

further extend Sequential Optimality as proposed by Atanga et al. (2020). This design study

focuses on developing a stopping criterion for the algorithm that determines the optimal bud-

get size necessary to capture the dynamics of ecological systems. The logistic equation and

Lotka-Volterra differential equations are modeled to demonstrate the technique across sim-

ple and complex ecological systems. The intention of this simulation study is to broaden

statistical methods available to ecologists for designing sampling regimes.

4.2 Statistical Models

Ecologists have expertise in modeling ecological systems. Thus, the Bayesian approach can

be used to combine prior knowledge with the likelihood of an experiment to probabilistically

specify various dynamic models. The Bayesian approach comes from Bayes’ Theorem (Bayes,

1763). The theorem requires the specification of prior beliefs and merges this knowledge with

the likelihood of an experiment to form a posterior belief. Prior knowledge is always assumed

to exist about a parameter θ and can be written as π(θ). The conditional probability of the

data x given the parameter θ is known as the likelihood of the experiment noted as L(x|θ).

The posterior distribution is then defined as the conditional probability of parameter θ given

the observance of data x, which can be written mathematically as

P (θ|x) =
L(x|θ)π(θ)∫

Θ
L(x|θ)π(θ)dθ

.

In the next two sections, the ecological models used for simulation purposes are intro-
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duced and specified in this Bayesian framework.

4.2.1 The Logistic Equation

The logistic equation was proposed by Verhulst (1838) as a solution to the dilemma of

exponential growth. The rediscovery of the equation by Reed and Pearl (1927) was intro-

duced as a self-regulating population growth model. The logistic equation has since inspired

much ecological research and has grown in popularity as seen in works by Feller (1940) and

Hutchinson (1978). As a simple and straightforward ecological model, the logistic equation

is written mathematically as

dN

dt
= rN

(
1− N

K

)
(4.1)

with solution

N(t) =
KN0

(K −N0)e−rt +N0

.

The equation tracks the size of a population N across time t. Parameter r is the population

growth rate, parameter K is the carrying capacity, and the initial population N0 represents

the population at time t = 0. The logistic equation models species abundance across time.

Hence, the model can be specified in the Bayesian framework with a Poisson likelihood

Ni|ti ∼ Poisson(λi|ti),

where λi = N(t) which depends on the parameters r and K. The prior distributions for the

growth rate and carrying capacity parameters are specified as

r ∼ Lognormal(1, 10)

K ∼ Lognormal(2000, 0.10),

where these specified priors represent expert prior knowledge of the system. This Bayesian

model is used for all simulations involving logistic growth. Given the logistic equation is

commonly used to model the growth of a single species system, in the next section a more
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complex model is specified to represent species interactions.

4.2.2 The Lotka-Volterra Differential Equations

The Lotka-Volterra differential equations are implemented as a more realistic model demon-

strating the relationship between multiple species. Lotka (1926) and Volterra (1928) devel-

oped these equations to represent predator-prey interactions. The simple first order nonlinear

pair of differential equations are written mathematically as

dx

dt
= αx− βxy

dy

dt
= δxy − γy

(4.2)

where x represents the prey population, and y represent the predator population. The

parameters α, β, δ and γ represent the birth rate of the prey, predation success rate, efficiency

of converting prey into predators and mortality rate of the predator respectively. The Lotka-

Volterra model can be specified in the Bayesian framework. The abundance of each species

is tracked across time implying a Poisson likelihood

xi|ti ∼ Poisson(λ1i|ti)

yi|ti ∼ Poisson(λ2i|ti)

where xi|ti is the population of the prey at time ti and yi|ti is the population of the predator

at time ti. λ1i and λ2i represent the numerical solutions of the prey and predator populations

at time ti respectively. The numerical solutions to the differential equations depend on α,

β, δ, and γ. The gamma distribution has a positive support and is conjugate to the Poisson

likelihood, which can serve as a prior that ensure positive rates of change for each parameter.
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Informative priors are specified as

α ∼ Γ(1.0, 1)

β ∼ Γ(0.1, 1)

δ ∼ Γ(1.5, 1)

γ ∼ Γ(0.75, 1).

The real parameters for the simulations are α = 1.0, β = 0.1, δ = 1.5 and γ = 0.75. Given

ecologists at this stage will not know the true parameter values of the model, the above

priors represent limited expert knowledge of the system.

4.3 Sequential Optimality

Sequential optimality (Atanga et al., 2020) sets an initial design n, a design point budget

b, window size w and predicts the optimal design points in a sequential manner guided by

optimality criteria. The set of criteria C consists of choosing either I, A, and D optimality

criterion defined traditionally by Montgomery (2017). I-optimal designs minimize the average

prediction variance of the of the parameter estimates. A-optimal designs minimize the trace

of the estimated covariance matrix. D-optimal designs minimize the determinant of the

estimated covariance matrix. Using this same criteria and algorithm, this study updates the

method by creating a stopping criterion that eliminates the need to set a budget b.

Instead, an initial design is chosen of size n along with a window size w. Rather than

proceeding through the algorithm until the budget is exhausted, the process halts once the

decision boundary or predictive region stabilizes. Though a similar method is performed

by Pagendam and Pollett (2009), the standard errors cannot be used in practice to stop

the process since ecologists will not know the true model and parameter values. Thus, the

average distance between the 2.5% and 97.5% prediction quantiles (Bmean) is calculated for

each time step, and the criterion is set to stop the process when the difference in the mean

boundaries stabilizes or minimizes between time steps, S = |(Bmean(ti)−Bmean(ti−1))| < V .
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The stopping criterion must fall below a specified variability V that may change depending

on the model. Indicating that the variation V is small implies that the process has stabilized.

Once the process stabilizes, the final design point is added and a final design D is produced.

Thus, this proposed algorithm provides an optimal budget that captures dynamic models.

Algorithm 6: Sequential Optimality

Begin

Choose an initial design t1, ..., tn

Set a design window, w

Set optimality criteria, C = I, A, or D

For D = t1, ..., tn:

(a) Draw a sample t∗ = {tn+1, ..., tn+w}

(b) Accept the new state tnew = argC(t∗)

Repeat until S = |(Bmean(tnew)−Bmean(tnew−1))| < V

End

Sequential optimality is implemented on the statistical models specified earlier in the Bayesian

framework. In the next section, the ground truth models are discussed and optimal designs

are chosen for various scenarios.

4.4 Simulation Study

4.4.1 Logistic Growth

In this section, the sequential optimality algorithm is implemented across various logistic

growth models. Normal, Fast and Slow growth are simulated with rates of 10%, 5%, and

100% respectively. All models have a carrying capacity of two thousand. Each simulation

plots the ground truth dynamics as black curves across a one hundred day period. For

comparison purposes, the window size w in the algorithm is set as ten and the selected

designs are chosen using I, A and D optimality criteria. The stopping criterion for these

models is set to be lower than a variability V of ten. This level of variability is chosen based
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on the simplicity in the model dynamics. The design points are plotted in blue and all base

designs consist of three points. The designs are fit with a solid red curve and a decision

boundary plotted as red dashed lines calculated by the 2.5% and 97.5% prediction quantiles.

The first simulation in Figure 20 demonstrates the process of sequential optimality guided by

I optimality criterion on a normal growth model. Table 2 provides the corresponding design

step, design size, parameter estimates and stopping criterion for each panel represented in

Figure 20.

Design Step Design Size Parameter Estimates S < V = 10

Base Design 3 r = 0.09199 K = 10384280.00

Step 1 4 r = 0.07806 K = 27105724.00 S = 227027.46

Step 2 5 r = 0.06768 K = 19204298.00 S = 26523.50

Step 3 6 r = 0.05798 K = 18348205.00 S = 4799.73

Step 4 7 r = 0.07686 K = 17342.41 S = 2468.94

Step 5 8 r = 0.09448 K = 2137.59 S = 4118.63

Step 6 9 r = 0.09904 K = 2072.92 S = 17.45

Step 7 10 r = 0.09743 K = 2080.52 S = 5.65

Table 2.: I-Optimal Design Steps for Normal Growth
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Fig. 20.: Sequential optimality plots the base I-optimal design (a), the fit of the base design

(b), and the fourth to tenth points as they are added to the design (c)-(i) for a normal growth

model. The ground truth model is plotted as a black curve. The design points are plotted

in blue and are fit by a solid red curve. The red dotted lines represent the 2.5% and 97.5%

quantiles of the predicted values.
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The next set of simulations in Figure 21 compare the final sequential designs of a normal

growth model for I, A and D optimality criteria. Table 3 compares the designs simulated

in Figure 21 by recording the budget sizes, parameter estimates and corresponding stopping

criterion. Notice that the I-optimal design captures the dynamics with a budget of size ten,

whereas A and D optimal designs require larger budgets of sizes eleven and fifteen to stop the

process. All of the parameter estimates are relatively close to the true values and stabilize

similarly by the final step.

Design Criterion Budget Size Parameter Estimates S < V = 10

I 10 r = 0.09743 K = 2080.52 S = 5.65

A 11 r = 0.09791 K = 2046.45 S = 4.37

D 15 r = 0.09591 K = 2099.31 S = 4.91

Table 3.: Normal Logistic Growth Designs
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Fig. 21.: Sequential optimality is used to find (a) I, (b) A and (c) D optimal designs across

normal logistic growth models. The optimal points are plotted in blue and fit with a solid

red curve. The red dotted lines represent the 2.5% and 97.5% quantiles of the predicted

values of the model. The black curve represents the ground truth model.
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The simulations illustrated in Figure 22 provide the optimal designs chosen for fast growth

models across all optimality criteria. Table 4 compares the designs in Figure 22 with the

recorded budget sizes, parameter estimates and stopping criterion. Notice that fast growth

models require less design points to capture the population dynamics. Though the I and

A-optimal designs only require four design points, the D-optimal design needed eight points

to capture the dynamics.

Design Criterion Budget Size Parameter Estimates S < V = 10

I 4 r = 1.75723 K = 2049.17 S = 2.93

A 4 r = 1.91222 K = 2041.99 S = 5.50

D 8 r = 2.75906 K = 1997.40 S = 4.24

Table 4.: Fast Logistic Growth Designs
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Fig. 22.: Sequential optimality is used to find (a) I, (b) A and (c) D optimal designs across

fast logistic growth models. The optimal points are plotted in blue and fit with a solid red

curve. The red dotted lines represent the 2.5% and 97.5% quantiles of the predicted values

of the model. The black curve represents the ground truth model.
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Figure 23 illustrates I, A and D optimal designs selected for slow growth models. Table 5

compares the designs in Figure 23 reports the information about each design with the budget

size, parameter estimates and stopping criterion. It is clear that the slow growth models

have subtle dynamics that require larger design point budgets. Again, the I-optimal design

requires the smallest budget of thirteen compared to the A and D-optimal designs which

require budgets of size eighteen and nineteen. This trend across all scenarios and designs

demonstrates that the I optimality criterion most efficiently captures the model dynamics.

Design Criterion Budget Size Parameter Estimates S < V = 10

I 13 r = 0.04855 K = 2094.80 S = 6.07

A 18 r = 0.04468 K = 2482.20 S = 2.63

D 19 r = 0.04783 K = 2174.10 S = 2.19

Table 5.: Slow Logistic Growth Designs
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Fig. 23.: Sequential optimality is used to find (a) I, (b) A and (c) D optimal designs across

fast logistic growth models. The optimal points are plotted in blue and fit with a solid red

curve. The red dotted lines represent the 2.5% and 97.5% quantiles of the predicted values

of the model. The black curve represents the ground truth model.
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Additional Comparison of Sampling Regimes

The simulation results thus far compare sampling regimes produced by Algorithm 6 based

on the allocated budgets. The intended goal of this study is to convince ecologists to use

the proposed statistical method over current practices. Therefore, the next set of simula-

tions compare the designs produced by sequential optimality with a random design produced

by randomly sampling within windows of time. The random design represents convenience

sampling as a current method that ecologists use when collecting data. Since this is a simu-

lation study and the behavior of the true model is known, the coefficient of determination,

also known as R-squared, can be calculated for each predicted model to provide a more

robust and straightforward comparison for ecologists. Rather than using the algorithm with

a stopping criteria to compare sampling budgets, each predicted model will be tested by fit.

For comparison purposes, the results in this section produce designs of size ten for a normal

logistic growth model.

Design Parameter Estimates R2

I r = 0.0981 K = 2040.35 0.9967

A r = 0.0896 K = 2232.20 0.9855

D r = 0.0889 K = 3754.77 0.8881

Random r = 0.0578 K = 24887376 0.0261

Table 6.: Comparing Fit of Designs
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Fig. 24.: Sequential optimality is used to find (a) I, (b) A and (c) D optimal designs for

a normal logistic growth model. Panel (d) compares convenience sampling by plotting a

randomly generated design. The optimal points are plotted in blue and fit with a solid red

curve. The red dotted lines represent the 2.5% and 97.5% quantiles of the predicted values

of the model. The black curve represents the ground truth model. The designs are compared

in Table 6.
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Previous simulations indicated that the I-optimal designs outperformed the other criteria

in terms of cost efficiency. Though final budget size indicates a better performance, the

designs can also be compared by the model goodness-of-fit. Table 6 compares the designs by

their R-squared values and provides the corresponding parameter estimates. For each design

of size ten illustrated in Figure 24, the R-squared values reflect the fit of each model.

Notice that the I-optimal and A-optimal designs have good fits with 99.67% and 98.55%

of the variability from the true model accounted for by the predicted models. Whereas, the

D-optimal design has less of a fit to the true model with an R-squared of 88.81%. This is

not surprising given all previous results indicated a need for a larger budget when using D

optimality criterion. However, the randomly collected data in comparison to the others also

performed poorly with an extremely low R-squared of 2.61%. If ecologist were to randomly

collect data, it is clear by these results that convenience sampling would require a larger

sampling budget. Though the designs are similar, these results show that using a specified

criterion to select the optimal points is preferred to randomly selecting days in a season to

sample. All of the results in this paper thus far demonstrate the benefits of the sequential

optimality algorithm. In the next section, more complex dynamics will be incorporated into

the process to provide more realistic simulation results.

4.4.2 Predator-Prey Dynamics

Predator-Prey dynamics are explored in this section using the Lotka-Volterra differential

equations with true parameter values of α = 1.0, β = 0.1, δ = 1.5 and γ = 0.75. The

simulations plot the ground truth model as grey dashed lines where the top plot represents

the prey and the lower plot illustrates the predators. The selected design points are blue

and fit with a solid red curve. Again, the 2.5% and 97.5% prediction quantiles are plotted

as red dashed lines. Rather than creating scenarios with varying parameter values, these

simulations are compared by setting different windows w in the algorithm. Given the complex

dynamics, there is more variance in the decision boundary. Thus, the stopping criterion in
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this section is set to fall below one hundred.

The first simulation in this section demonstrates sequential optimality selecting an I-

optimal design for the provided model searching windows of size ten. Figure 25 illustrates

each step in the process while Table 7 provides the details of each step including the De-

sign Step, budget size b, parameter estimates and stopping criterion. Sequential optimality

captures the dynamics of the Lotka-Volterra with an I-optimal design of size fifteen. Unlike

the logistic growth results, the parameter estimates begin relatively close to the true values.

However, there is still a decrease in the size of the decision boundary, which leads to the

developed stopping criterion.

Design Step b Parameter Estimates S < V = 100

Base Design 5 α = 0.6504 β = 0.000034 δ = 1.2896 γ = 0.8585

Step 1 6 α = 1.0444 β = 0.000028 δ = 1.2789 γ = 0.6685 S = 1547.59

Step 2 7 α = 1.4026 β = 0.000002 δ = 1.2831 γ = 0.7925 S = 15846376

Step 3 8 α = 1.0873 β = 0.000002 δ = 1.2476 γ = 0.8317 S = 15847395

Step 4 9 α = 0.8810 β = 0.000003 δ = 1.4689 γ = 0.7702 S = 13307.16

Step 5 10 α = 0.7593 β = 0.000044 δ = 1.7771 γ = 0.6778 S = 13806.63

Step 6 11 α = 0.7451 β = 0.000048 δ = 1.2507 γ = 1.0021 S = 18533.48

Step 7 12 α = 1.0212 β = 0.000014 δ = 1.2125 γ = 0.8595 S = 17586.48

Step 8 13 α = 1.1189 β = 0.000005 δ = 1.4858 γ = 0.4799 S = 148.43

Step 9 14 α = 0.6359 β = 0.055385 δ = 1.4942 γ = 0.8496 S = 4055.88

Step 10 15 α = 0.9171 β = 0.085404 δ = 1.3222 γ = 0.9341 S = 3616.31

Step 11 15 α = 0.9718 β = 0.102767 δ = 1.5043 γ = 0.8988 S = 18.77

Table 7.: I-Optimal Design Steps Exploring Window of Size 10
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(g) (h)

(i) (j)

(k) (l)

Fig. 25.: I-optimality criterion is used to select the blue design points. The design is fit by a

solid red curve and the true values are plotted as dashed grey curves. The 2.5% and 97.5%

quantiles of the predicted values are plotted as red dashed lines. Panel (a) fits the initial

design, and panels (b)-(l) represent each optimal point added to the design selected from a

window of size ten until the dynamics are captured.
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The next set of simulations illustrate sequential optimality selecting designs searching

windows of size ten. Figure 26 illustrates each of the designs per panel, and Table 8 records

the corresponding budget size b, parameter estimates and stopping criterion. Notice when

searching windows of size ten, the designs require large budgets. The I-optimal design

captures the dynamics with sixteen points, the A-optimal design captures the dynamics

with twenty-one points, and the D-optimal design captures the dynamics with twenty-three

design points.

Design Criteria b Parameter Estimates S < V = 100

I 16 α = 0.9718 β = 0.102767 δ = 1.5043 γ = 0.8988 S = 18.77

A 21 α = 1.001 β = 0.110406 δ = 1.5225 γ = 0.6685 S = 12.95

D 23 α = 1.4026 β = 0.000002 δ = 1.2831 γ = 0.8157 S = 67.6

Table 8.: Lotka-Volterra Designs Exploring Windows of Size 10
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(a) (b)

(c)

Fig. 26.: The simulated predator and prey populations are plotted using grey dashed lines

where α = 1.0, β = 0.1, δ = 1.5 and γ = 0.75. The design points are plotted in blue and fit

by the 50% quantile of the predicted parameters represented by a solid red line. The 2.5%

and 97.5% quantiles of the predicted values are plotted as red dashed lines. Each criteria

evaluated candidate points in windows of size ten. The panels plot the final designs using

(a) I, (b) A, and (c) D optimality criteria.

The simulations in Figure 27 search windows of size fifteen to select the optimal design

points. Table 9 compares the designs with the corresponding budget size, parameter esti-

mates and stopping criterion. In these results, less design points were necessary to capture

the dynamics due to the spacing of the points. However, it is clear that there is more vari-

ance in the decision boundaries of the final designs. Again, the I-optimal design requires the
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least number of points with a final design of size thirteen. The A and D-optimal designs

stop with designs of size fifteen and sixteen respectively.

Design Criteria b Parameter Estimates S < V = 100

I 13 α = 1.0172 β = 0.1108 δ = 1.610545 γ = 0.6262 S = 50.83

A 15 α = 1.0787 β = 0.092871 δ = 1.5108 γ = 0.8741 S = 78.88

D 16 α = 0.9697 β = 0.130643 δ = 1.5508 γ = 0.7256 S = 24.31

Table 9.: Lotka-Volterra Designs Exploring Windows of Size 15
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(a) (b)

(c)

Fig. 27.: The simulated predator and prey populations are plotted using grey dashed lines

where α = 1.0, β = 0.1, δ = 1.5 and γ = 0.75. The design points are plotted in blue and fit

by the 50% quantile of the predicted parameters represented by a solid red line. The 2.5%

and 97.5% quantiles of the predicted values are plotted as red dashed lines. Each criteria

evaluated candidate points in windows of size fifteen. The panels plot the final designs using

(a) I, (b) A, and (c) D optimality criteria.

The larger design windows represent limited resources for ecologists. However, the

next set of simulations represent ample resources and exploring smaller windows of size five.

Figure 28 illustrates the optimal designs for windows of size five, and Table 10 compares these

designs with the corresponding budget size, parameter estimates and stopping criterion. As

expected, smaller windows and larger budgets create less variability and closer parameter
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estimates. Notice the I-optimal and A-optimal designs require twenty-three and twenty-two

points. Whereas the D-optimal design requires nineteen to capture the dynamics.

Design Criteria b Parameter Estimates S < V = 100

I 23 α = 1.2028 β = 0.108392 δ = 1.3875 γ = 0.6925 S = 22.42

A 22 α = 1.1408 β = 0.09559 δ = 1.5800 γ = 0.7285 S = 16.81

D 19 α = 1.0492 β = 0.075292 δ = 1.4101 γ = 0.7592 S = 17.66

Table 10.: Lotka-Volterra Designs Exploring Windows of Size 5
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(a) (b)

(c)

Fig. 28.: The simulated predator and prey populations are plotted using grey dashed lines

where α = 1.0, β = 0.1, δ = 1.5 and γ = 0.75. The design points are plotted in blue and fit

by the 50% quantile of the predicted parameters represented by a solid red line. The 2.5%

and 97.5% quantiles of the predicted values are plotted as red dashed lines. Each criteria

evaluated candidate points in windows of size five. The panels plot the final designs using

(a) I, (b) A, and (c) D optimality criteria.

4.5 Discussion

The purpose of this paper is to adapt the sequential optimality algorithm by creating a

stopping criterion that can inform ecologists of the optimal budget sizes required to capture

various population dynamics. The simulation results for the Logistic Equation and the Lotka-
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Volterra differential equations represent various scenarios for ecologists to consider. First, the

simple logistic growth model demonstrated a need to increase the budget size when dealing

with slower growth rates while minimizing the budget when modeling faster growth rates.

This information is beneficial for ecologists when assessing resource availability. The same

can be said when examining more complex dynamics as the simulations of the predator-prey

dynamics reveal that larger windows decrease the necessary samples required to capture the

dynamics. Whereas, smaller windows create larger budgets with more accurate parameter

estimates. In all cases, the developed algorithm is able to determine the optimal budget

size, which ultimately helps with resource allocation and cost-efficiency for ecologists. As

for comparing the criteria, the simulations show that the I optimality criterion consistently

outperforms the other criteria in terms of efficiency. This is slightly expected given that it

determines the optimal points based on the average prediction variance. However, again this

is useful for ecologists when considering implementing this algorithm in practice to develop

sampling designs.
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CHAPTER 5

CLOSING REMARKS AND FUTURE WORK

Sequential optimality is developed in this dissertation as an algorithm intended to improve

sampling design for ecologists. Temporal models were studied to represent ecological rela-

tionships and behaviors present in ecosystems. The logistic equation was first introduced

as a simple model that can demonstrate the technique in a straightforward manner. The

Lotka-Volterra differential equations were then incorporated to show the benefits of sequen-

tial optimality on more complex systems. The finalized algorithm in Chapter 4 determines

optimal sampling regimes with a stopping criterion, which ultimately improves resource al-

location and provides optimal budgets that can assist with efficiency when collecting data.

The univariate model of logistic growth was chosen for this research given its various

applications and popularity in ecology. The design study modeled population dynamics and

compared simulated annealing with the new approach of sequential optimality. It became

clear that there are several ways to design sampling regimes for ecologists. However, sequen-

tial optimality proved to be more beneficial when predicting future design points. Given

the main goal of predicting optimal designs, the results consistently found that the pre-

diction based criterion outperformed the other criteria when selecting designs. This trend

continued with the more complex dynamics. However, regardless of criteria the theoretical

process sequentially learned about the systems and provides an advanced statistical method

for ecological sampling rather than resorting to convenience.

Sequential optimality was then extended to more complex applications. Implementing

the Lotka-Volterra model refined the method by modeling realistic environmental encounters.
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Rather than simulating various predator-prey fluctuations, the purpose of these simulations

was to further develop sequential optimality by studying the window sizes selected for the

algorithm. Exploring larger windows of time represented limited resource availability and

smaller windows implied ecologists had ample resources. Thus, results were provided across

the various windows which compared designs predicted by the different criteria. Again, the

simulations demonstrated that sequential optimality can predict the next optimal design

point. However, the dynamics were not always captured in each scenario. Therefore, the

algorithm was further developed to execute a stopping criterion.

The purpose of this research is to provide a statistical method that can inform ecolo-

gists of the optimal times to collect data. To optimize data collection expenses sequential

optimality is finalized with a stopping criterion that can provide the budget size needed to

capture the dynamics of a system. Both ecological models were implemented in this process,

and again the results favored I optimality criterion. It appeared that the I-optimal designs

required the least number of design points to capture the dynamics in each scenario. Though

this is impressive, the finalized algorithm can successfully capture population dynamics as

intended. Despite criteria, model or window size being explored, the complete algorithm

can now inform ecologists of an optimal sampling regime that guarantees capturing the

population dynamics.

Though temporal models are the focus of this research, it should be acknowledged

that ecologists are interested in studying ecological communities with spatial components.

Sampling does involve collecting data from various regions, and geographic information is

commonly used in ecology to study shifts in population dynamics (Bascompte and Solé,

1995; Czárán, 1998; Fortin et al., 2014; Malchow et al., 2007). Sequential optimality has

potential to further develop by being applied to spatiotemporal models. Optimization of

monitoring stations using integer programming has been studied as seen in Hudak et al.

(1995) and Lee and Deininger (1992) which could lead to significant improvements to the

sequential optimality method. It is always of interest to advance sampling capabilities by
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optimizing sampling efforts (Warrick and Myers, 1987; Stein and Ettema, 2003). Thus, the

purpose of this dissertation was achieved by developing a versatile statistical method that

can improve sampling design in practice for ecologists.
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