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Abstract—When applying deep learning methods in an indus-
trial vision application, they often fall short of the performance
shown in a clean and controlled lab environment due to data
quality issues. Few would consider the actual labels as a driving
factor, yet inaccurate label data can impair model performance
significantly. However, being able to mitigate inaccurate or in-
complete labels might also be a cost-saver for real-world projects.
Here, we survey state-of-the-art deep learning approaches to
resolve such missing labels, noisy labels, and partially labeled
data in the prospect of an industrial vision application. We sys-
tematically present un-, weakly, and semi-supervised approaches
from ’A’ like anomaly detection to ’Z’ like zero-shot classification
to resolve these challenges by embracing them.

Index Terms—deep learning, computer vision, label quality

I. INTRODUCTION

Utilizing machine learning in an industrial application
poses additional challenges compared to research lab envi-
ronments [1], [2], e.g., in the form of data quality and data
quantity issues [3]. “Garbage in, Garbage out” is an often
stressed dictum in machine learning – even more so in indus-
trial applications, where data samples and labels collection
is difficult and costly [4]. Supervised learning approaches
for deep neural networks not only require large amounts of
data but also reliably labeled ones. Usually, the data labeling
process is conducted manually by individual experts and may
involve complex decisions based on years of expert training.
To scale-up data labeling in a cost-efficient manner, this
process is increasingly outsourced to external contractors (the
market for data labeling is expected to reach USD 1.2bn by
2023 [5]). These factors can compromise the labeling quality,
often leading to incomplete or uncertain, i.e., noisy labels.
Incomplete labels can constitute partially labeled samples or
altogether missing labels in a dataset.

To illustrate the importance of clean labels, Fig. 1 shows
how model performance is affected by noisy labels. Here, we
randomly flipped the labels of a proportion of training data
for an exemplary binary classification task in visual quality
control. The results show robustness to low proportions of
noisy labels (less than 20% noise). However, with increased

Fig. 1. Exemplary binary classification results showing the effect of increasing
label noise on model performance (AUC [6]) in a real-world visual quality
control application [7].

noise the performance rapidly decreases, reaching a level of
guessing if more than 30% of the labels are noisy.

This paper presents a survey of methods aimed at coping
with the aforementioned challenges related to data labeling.
We focus on methods for computer vision in industrial ap-
plications, comprising both image classification and semantic
segmentation. The surveyed methods include approaches based
on unsupervised, weakly supervised, and semi-supervised
learning that lend themselves to real-world applications.

II. PROBLEM DESCRIPTION

The issue of data quality can be caused by factors such
as (i) inaccurate or inappropriate sensors causing inconclusive
readings; (ii) human mistakes while performing repetitive tasks
during data collection; or (iii) financial restriction and too
tightly scheduled time-frames for data collections. Frequently,
data sample quality (i.e., sensor readings or image quality)
is the predominantly optimized part of the data collection
process. However, the often neglected aspect of label quality
manifests in the three issues of missing, noisy or partial
labels. They are the focus of this paper and described in
the following paragraphs. Per issue, we present solutions
from the following domains, where applicable (see Tab. I):



TABLE I
OVERVIEW OF IDENTIFIED ISSUES AND THEIR RESPECTIVE STATE-OF-THE-ART SOLUTIONS.

Issue Solutions Supervision Key literature

Missing labels Contrastive learning, clustering Unsupervised [8]–[11]
Missing labels Label propagation, label regularization, game theory, self-training Semi-supervised [12]–[19]
Noisy labels Mixture modeling, collaborative unsupervised domain adaption Unsupervised [20]–[23]
Noisy labels Confident learning, rank pruning Weakly supervised [24], [25]
Noisy labels Outlier/anomaly detection, mixture modeling Semi-supervised [26]–[30]
Partially labeled data Change detection, multi-task learning, multi-instance learning, refine-

ment of object-based class-activation maps
Weakly supervised [31]–[39]

unsupervised learning (learning from unlabeled data); semi-
supervised learning (training on a small subset of labeled data
first and subsequently utilizing similar unlabeled data); and
weak supervision, which however is an umbrella term [40]
for (i) incomplete supervision (e.g., when not all objects in
an image are labeled), (ii) inexact supervision (e.g., coarse or
loose markings of defects), and (iii) inaccurate supervision
(e.g., labels containing mistakes).

Missing labels: Resource availability, including financial
resources or access to expert labels, constrain real-world
projects. This often leads to compromises, e.g., to label only
a subset of the data and use machine learning methods to
increase the labeled proportion of the data. Various approaches
to overcome missing labels are described in Sec. III.

Noisy labels: To speed up the collection process, data
labeling is often parallelized through the use of multiple
experts (or observers). This approach has multiple benefits
as (i) it can speed up the labeling process by splitting the
work and save time; (ii) depending on the setup, multiple
observers can cross-validate results to ensure quality; and
(iii) if appropriately applied, multiple opinions on the same
sample can mitigate misjudgment and increase trust in the
labels. However, this kind of crowdsourcing has its drawbacks
since observers may be unreliable and biased [41]. Manual
labeling by multiple experts can also cause disagreement in
how a sample is labeled (i.e., inter-observer variability [42]),
especially when the subject of labeling involves considerable
study of the sample. This issue will manifest itself in an
uncertainty on the label itself. We cover approaches to resolve
respective label noise in Sec. IV.

Partially labeled data for semantic segmentation: Fully
supervised training of image segmentation models requires
pixel-level annotations, i.e., assigning a semantic label (e.g.,
“carrot”, or “person”) to every single pixel in the image. While
detailed pixel-level annotations would yield better models, this
is a very time-consuming, hence expensive, process. Alter-
natively, weak annotations such as scribble annotations [43],
point annotations [44], bounding boxes, or image-level labels
can be used. Collecting bounding boxes is about 10–15 times
faster/cheaper than pixel-level annotation [44], [45]. Image-
level labeling, point annotation, and scribble annotation take
even less time (around 1-2 seconds per image) [44]. Ap-
proaches for reduced labelings are surveyed in Sec. V.

III. MISSING LABELS

Typical approaches to resolve missing label issues are based
on the idea of “finding similar samples”, i.e., contrastive learn-
ing (unsupervised), or “label propagation” (semi-supervised).

In the unsupervised contrastive learning [11] approach, a
model is trained to discriminate between similar and different
images that are all derived from the same unlabeled data
by mere augmentation (picking two random images yields a
dissimilar pair, taking an image and its augmented version
produces a matched pair). In order to classify images using
the learned representations, fine-tuning the model using a
tiny set of labeled data is required. In recent years, the
performance of these methods has increased significantly.
The SimCLR [8] framework is able to outperform supervised
methods on ImageNet [46]. However, these results may not
apply to industrial applications, as they can only be learned
with very large batch sizes, i.e., a lot of data and long training
times. SimCLRv2 [9] is even larger and more complex. Subse-
quent knowledge distillation shrinks the model and simplifies
deployment. Another approach based on unlabeled data is to
utilize a clustering algorithm to group similar features. One
of the most recent works in this area is SwAV [10]. This
method predicts the cluster assignment of a view from the
representation of another view. Compared to SimCLR, SwAV
achieves a slightly higher score on ImageNet. Its disadvantage
is the higher complexity, as not only are two views compared,
but all of them are clustered.

For a thorough evaluation of semi-supervised learning in
the area of image classification, see Ref. [47]. The approaches
used are typically split into two categories: (i) the addition
of an unsupervised loss term, or (ii) the assignment of pseu-
do-labels to the unlabeled examples. Popular examples in the
first category are the “consistency loss” between the outputs
of a network on random perturbations of the same image [12],
or the “mean teacher” method [48], which replaces output
averaging by averaging of network parameters. The second
category uses the regular classifiers to infer pseudo-labels of
unlabeled examples by choosing the most confident class [13],
[49]. These pseudo-labels are treated like standard labels in
the cross-entropy loss. More recently, the “noisy student”
training [14] showed improved ImageNet classification per-
formance by training using an EfficientNet [50] model.

Another method to infer the unknown labels is label prop-
agation, where labels of labeled samples are propagated to



unlabeled samples in close proximity (defined relationally or
in terms of similarity). In Ref. [15], it is performed on a large
image dataset with convolutional neural network (CNN) [51]
descriptors for few-shot learning (FSL). Unseen images are
classified via online label propagation, which requires storing
the entire dataset while the network is trained in advance
and descriptors are fixed. In Ref. [16], label propagation
on the training set is performed offline while training the
network, such that inference is possible without accessing the
original training set. A transductive label propagation method
is used, based on the manifold assumption (i.e., that similar
examples should get the same prediction), to make predictions
on the entire dataset and use them to generate pseudo-labels
for the unlabeled data for training. The authors improve
the performance on several datasets, especially in the few-
labels regime. Ref. [17] proposes a Transductive Propagation
Network (TPN) that performs end-to-end labeling of unlabeled
images. The network performs the feature extraction using a
standard CNN and the graph construction in one. A benchmark
on miniImageNet [52] and tieredImageNet [53] shows superior
performance compared to other state-of-the-art FSL algorithms
especially using zero to five shots, which means it works
especially well if only few labels are available. However, a
typical issue with FSL is that the training and test samples
are disjoint [18]. This causes the feature extractor of a TPN
to produce embeddings that are seemingly uncorrelated for
unseen classes. This manifests as a disadvantage in terms of
robustness when the TPN tries to propagate the labels dur-
ing graph construction. The Embedding Propagation Network
(EPNet) [18] addresses this shortcoming of TPNs by applying
the propagation at embedding creation time, thus locating an
image’s embedding close to images with similar features in
embedding space, resulting in closer labels in their respective
space. EPNet achieves superior performance over the TPN
architecture in one- and five-shot benchmarking.

The Graph Transduction Game (GTG) [19] is a popular
method in the category of label propagation and can be seen
as a special case of relaxation labeling [54]–[56], which in
turn addresses the problem of label disambiguation. GTG’s
general idea is to propagate contextual (i.e., relational) in-
formation of labeled instances to classify the unlabeled ones
consistently. While, in general, label propagation methods
are based on graph Laplacian regularization, GTG is based
on non-cooperative game theory. It has been used for the
determination of pseudo-labels [57], however in this case, the
network is pre-trained, such that the graph remains fixed and
there is no weighting mechanism. In general, recent years
have seen a steep rise in the application of graph neural
networks [58], [59], including graph convolutional neural
networks [60] to solve problems which can be represented
using graph-structured data. Knowledge graphs can be used
as extra information to guide zero-shot classification [61],
[62]. The similarity between images in the dataset is also
useful in the case of few-shot learning [52]. Ref. [63] proposes
to build a weighted fully-connected image network based
on similarity and perform message passing in the graph for

few-shot recognition. Ref. [64] selects some related entities
to build a sub-graph based on object detection results and
applies a gated graph neural network to the extracted graph for
prediction. Finally, Ref. [65] proposes to build a knowledge
graph where the entities are the different categories.

The abundance of solutions regarding missing labels
promises that this issue can be resolved in real world tasks.

IV. NOISY LABELS

Despite that neural networks exhibit certain robustness
towards label noise (cp. Fig. 1 and Refs. [20], [66]), the
problem of noisy labels is striking. Various methods in all three
learning categories exist to identify and resolve this issue.

Ref. [20] introduces an unsupervised approach while sug-
gesting that noisy labeled samples are harder to learn by
a model than correctly labeled ones. This allows for noise
identification by fitting a mixture model on the loss values
and subsequently using the model’s posterior probabilities to
identify noisy labels. Unfortunately, the authors have not yet
been able to replicate the modeling approach’s performance
on other datasets apart from CIFAR-10 & CIFAR-100 [67].
Collaborative unsupervised domain adaption [21] can mitigate
label noise in an unsupervised manner when applied on a
real-world dataset. The approach is based on unsupervised
domain adaption, which aims to transfer knowledge from a
labeled source domain to an unlabeled target domain [22]. The
authors evaluate their method by benchmarking it on a medical
image diagnosis dataset consisting of H&E stained colon
histopathology slides [23] with a convincing performance.

An approach rooted in the area of weak supervision is based
on Confident Learning (CL) [24], where the authors do not
focus on a particular loss function or model architecture. It
uses out-of-sample prediction probabilities that are obtained
using cross-validation on noisy labeled data. CL performs
(i) the estimation of the joint distribution of noisy labels and
true labels, (ii) the identification and pruning of noisy samples,
and (iii) the re-training and re-weighting of samples with a new
estimated latent prior to identify label noise in a dataset. The
main advantage of CL is the absence of hyperparameters and
that it does not require guaranteed clean labels. As a result,
the authors can test on many publicly available datasets for
label noise using CL and, e.g., found an abundant amount of
label errors in ImageNet, CIFAR, and even the MNIST dataset
[68]. CL is available as an open-source Python package.

Similar to Ref. [20], but in a semi-supervised manner, is the
approach followed by the authors of Ref. [27]. The proposed
DivideMix architecture models the loss on a sample level using
a mixture model to separate clean (labeled) samples from noisy
(unlabeled) samples. To prevent confirmation bias, the authors
propose to train two networks simultaneously, both generating
the sample split for the other network for further training. Both
networks then co-refine and co-guess on labeled and unlabeled
samples to improve with each iteration. DivideMix achieves
outstanding performance on CIFAR-10 and CIFAR-100 and
thus outperforms Ref. [20].



Another prominent semi-supervised methodology is to
model the problem of noise detection as anomaly (or: outlier)
detection (AD) [28]. Ref. [26] proposes a respective con-
ditional variational autoencoder (CVAE) system fit for real-
world applications. Benchmarked on both MNIST and the
newer MNIST fashion dataset [69], it compares favourably
with other well-known AD algorithms like ν-SVM [29] and
Isolation Forest (IF) [30]. The authors also present a real-world
application using data collected from CMS experiment at the
CERN Large Hadron Collider [70]. Despite the absence of
hyperparameter optimization, their method shows great per-
formance compared to ordinary methods on both the artificial
datasets and real-world data from CERN.

A promising procedure that can be fitted to any method
during training is called Sharpness-Aware Minimization
(SAM) [71]. SAM aims to find model parameters during
gradient-descent that produce consistently flat minima [72] and
thus can improve any training on noisy labels.

The availability of potential real-world solutions in all three
surveyed supervision domains stresses this issue’s feasibility
to be resolved.

V. PARTIALLY LABELED DATA

Here, we survey approaches for learning pixel-level classi-
fications from image-level labels. Some of these approaches
formulate the problem as a multi-instance learning (MIL)
problem [73], where a multi-class MIL loss is designed for
training the network [33], [34]. Generally, weakly supervised
approaches try to infer predictions with high information
content from labels with low information content. This is espe-
cially interesting for semantic segmentation, where generating
pixel-level ground truth data is very time-consuming and labor-
intensive. Likewise, image-based change detection has similar
properties, with the additional challenge of comparing two
images and identifying relevant differences.

Ref. [32] uses a directed acyclic graph (DAG) to perform
weakly supervised change detection on image series. On top
of the DAG, a conditional random field (CRF) model is
defined [74] that helps to refine the change mask. Generally,
all weakly supervised approaches face the challenge that pre-
dictions are coarse. Thus, using a CRF as post-processing is an
easy and effective way to increase performance. Ref. [35] pro-
poses a simple architecture that can leverage information from
different annotations such as image-level labels, bounding-box
labels, and pixel-level labels to improve a semantic segmenta-
tion network. The authors use an arbitrary, fully convolutional
network to predict the segmentation masks. Afterward, a seg-
mentation mask is fed in an annotation-specific loss module.
Depending on the label’s form, a different loss function is
applied to improve the segmentation network. They can show
that this method can effectively make use of training data with
different levels of supervision.

Other approaches use a two-stage approach that gener-
ates object-based labels from class activation maps and then
trains segmentation networks based on those maps. The class-
activation map (CAM) [75] method uses global average pool-

ing, typically applied as a structural regularizer for CNNs,
to identify discriminative image regions. This allows using
weakly supervised object localization based on networks
trained with image-level labels. The coarse response maps
are exploited to perform image segmentation using different
approaches, including (i) the use of CAMs as the super-
visory signal [36], (ii) progressive region refinement based
on iterative mining of features [37], or (iii) learning pixel
affinity to identify significant regions or propagate pixel-wise
information [38], [39]. Further, graph neural networks can
be employed to utilize non-local information in the images.
In Refs. [76], [77] for example, a Graph-LSTM model is
presented to incorporate long-term dependencies together with
spatial connections by building graphs and apply the LSTM
to propagate neighborhood information globally. Similar ideas
have been applied in the case of 3D semantic segmentation
and point cloud classification (see e.g., Refs. [78], [79]).

Ref. [31] proposes the weakly supervised change detec-
tion method W-CDNet that can be trained with image-level
labels. It uses a siamese architecture [80] to compare features
from two different images. The change segmentation and
classification (CSC) module forces the model to highlight
relevant changes. It consists of a custom remapping block
that enforces a strong separation between background and
foreground pixels, a CRF-RNN layer [81] that refines the
change mask, and a classifier that predicts the image-level
classification for the image pair. W-CDNet can be trained with
both binary image-level labels (describe whether the image
contains any relevant change at all) and semantic image-level
labels (classify the relevant changes), as well as with full
supervision. W-CDNet makes use of existing architectures like
U-Net [82] and VGG16 [83], which allows the use of pre-
trained weights to speed up the training process. One disadvan-
tage of this method is that the predicted change mask is always
a binary mask and not a semantic segmentation mask. Thus, in
order to perform semantic change detection, one would have
to employ an additional semantic segmentation network on top
of the change detector.

This survey suggests that one can achieve similar perfor-
mance using weaker labels than full (pixel-level) annotations
for semantic segmentation tasks.

VI. DISCUSSION AND CONCLUSIONS

Our survey on the issues of missing labels, noisy labels, and
partially labeled data in real-world applications of computer
vision shows many potential solutions and plenty of active
research. However, our survey also shows that there is no silver
bullet for either issue: it all depends on the application setting.
We conclude by formulating four hypotheses for the further
adoption of deep learning in industrial practice:

Shift towards real-world benchmarks: Although various
approaches have been tested on standard and artificial datasets,
many have not yet seen a noteworthy real-world application.
Nevertheless, we could find a few recent candidates in most
categories. Overall, this trend [84] in the research community
towards more inaccurate and real-world-oriented datasets and



benchmarks is promising and further underlines the impor-
tance of the issues covered in this paper. Traditionally, deep
learning models rely on high-quality and large datasets. How-
ever, some of the presented methods allow for the potential
application of these very models on scarce and unreliable data.
This paradigm shift allows the introduction of deep learning
methods in many more fields, which have been untouched by
modern machine learning so far.

Missing labels sufficiently addressed: We covered solutions
for missing labels in great detail and identified a large amount
of promising research work in both the unsupervised and semi-
supervised domains. The existence of this large number of
potential solutions demonstrates that this specific issue has
been considered a significant pain point in the community.
Obtaining a large amount of data is hard enough, but labeling a
sufficient amount of it is even harder, especially in a corporate
setting compared to a global effort of volunteers. The surveyed
solutions suggest that this problem can be mitigated.

Allowing label noise might pay off: We showed that there are
unsupervised, weakly-supervised and semi-supervised meth-
ods to counteract noisy labels. Even though noisy labels are
rightfully feared when applying deep learning models to real-
world data, it is assuring that there are real-world proven
methods to overcome the issue. If the intentional admittance
of noisy labels in a dataset introduces a quicker turnaround
on the data collection process, it can reduce costs and save
valuable project time.

Pixel-level information potentially not necessary: When
dealing with partially labeled data, we presented promising
weakly supervised methods. For a real-world application, this
implies that it might be easier and faster to label samples using
weaker annotations (e.g., scribbles, image-level labels) rather
than enforcing exhaustive labeling. Thus, relaxing the labeling
requirements can be a considerable cost- and time-saver.

Given the number of potential solutions to crucial but some-
times overlooked (or: underrated) problems in recent years,
we expect a greater adoption in deep learning applications
in years to come, as the feasibility might incline more and
more industries to introduce modern computer vision in their
everyday processes.
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