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ABSTRACT

 

Climate scenarios in the Mediterranean predict raising temperatures and more frequent and 

extreme drought. We focused on analysing the effect of drought on cork growth and chemical 

composition to evaluate if more frequent and severe forthcoming droughts will compromise the 

performance of cork as a sealant for wine bottles. 

A few species can produce cork in a significant proportion. We initiated this research on 

gathering the available information to put cork oak and its cork under this general panorama. 

We concluded that the cork from Quercus suber is presently the only raw-material with the 

characteristics necessary for production of solid cork products and focused our research on it. 

To study the response of cork-growth to drought and the effect of phellogen age we used a 

dendroecological methodology and a components resilience analysis, confirming that drought 

reduces growth and provided extra knowledge on this subject: cork oak is very tolerant and 

resilient to extreme droughts but more severe droughts correspond to higher decrease of 

growth and more trees affected although to greater recovery performance. Nevertheless, there 

are other factors involved in the response: site, tree and the age of the phellogen.  

Regarding chemical composition the research developed brings insights into the effect of 

drought on the proportion of its main components. Our results show that, in general, drought 

does not affect it, with some exceptions. Nevertheless, the variability associated to the tree is 

much more relevant than the effect of drought conditions and affects all the parameters 

analyzed.  

In practical terms, the potential increased occurrence of droughts arising from climatic changes 

will not compromise the performance of cork as a sealant for wine bottles but cork debarking 

rotations should be enlarged in order to have the necessary cork plank width, namely if the 

drought occurs in the first 2 years. 

 

Keywords: Quercus suber; cork, dendroecology; chemical composition; Mediterranean climate 

change mitigation. 
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RESUMO

 

Os cenários climáticos preveem, para o Mediterrâneo, um aumento da temperatura e secas mais 

frequentes e extremas. A nossa análise incidiu no efeito da seca no crescimento e na composição 

química da cortiça, no sentido de avaliar se as secas irão comprometer o desempenho da cortiça 

enquanto vedante de garrafas de vinho. 

Apenas um conjunto restrito de espécies produz cortiça em quantidades significativas. 

Começámos a nossa investigação recolhendo a informação disponível por forma a colocar o 

sobreiro e a sua cortiça no panorama geral, concluindo que a cortiça de Quercus suber é no 

momento a única matéria-prima com as características necessárias para a produção de produtos 

de cortiça sólida e focámos a nossa investigação nela. 

Para estudar a resposta do crescimento da cortiça à seca utilizámos uma metodologia 

dendroecológica e uma análise das componentes da resiliência, confirmando que a seca reduz 

o crescimento e fornecendo conhecimento adicional sobre este assunto: o sobreiro é muito 

tolerante e resiliente à seca extrema, mas secas mais extremas conduzem a maiores reduções 

no crescimento, mais árvores afectadas mas também maior capacidade de recuperação. No 

entanto, existem outros factores envolvidos: local, árvore e idade do felogénio. 

No que respeita à composição química, a investigação desenvolvida traz conhecimento sobre o 

efeito da seca na proporção dos componentes principais. Os nossos resultados demonstram 

que, em geral, a seca não a afecta havendo algumas excepções. No entanto, a variabilidade 

associada à árvore é muito mais relevante afectando todos os parâmetros analisados. 

Na prática, o potencial aumento de ocorrência de secas associado às alterações climáticas não 

irá comprometer o desempenho da cortiça como vedante de garrafas de vinho, mas as rotações 

de descortiçamento devem ser alargadas no sentido de produzir pranchas com a espessura 

necessária, nomeadamente se a seca ocorrer nos primeiros dois anos. 

 

Palavras-chave: Quercus suber; cortiça, dendroecologia; composição química; mitigação das 

alterações climáticas no Mediterrâneo. 
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RESUMO ALARGADO

 

Os cenários climáticos para a região da bacia mediterrânica indicam um aumento da 

temperatura e condições de seca cada vez mais frequentes e severas. O sobreiro é uma espécie 

cuja área de distribuição natural ocorre na zona ocidental desta região do globo, ocupando cerca 

de 22% dos espaços florestais em Portugal (ICNF, 2019). A cortiça tem uma importância 

económica grande, constituindo a base para o fabrico de muitos produtos, com diversas 

aplicações, sendo as rolhas o produto mais conhecido e com maior valorização económica, 

representando cerca de 70% do valor dos produtos fabricados a partir desta matéria-prima. 

Neste trabalho começámos por reunir a informação disponível sobre outras espécies para além 

do sobreiro, que produzem cortiça em quantidade significativa, por forma a permitir a sua 

utilização industrial. De forma integrativa apresentamos uma descrição da formação, dos tipos 

de cascas e do desenvolvimento da cortiça em cada uma das espécies, numa perspectiva 

comparativa com a cortiça de sobreiro. Adicionalmente são, por um lado, identificadas as 

lacunas de conhecimento, e por outro apresentadas e discutidas as linhas futuras de 

investigação e as utilizações potenciais deste material em cada espécie. 

Concluímos que apesar da cortiça de outras espécies ter potencial para algumas utilizações 

industriais, a cortiça de sobreiro é a única matéria-prima com as características necessárias para 

a manufactura de produtos de cortiça sólida (e.g. rolhas de cortiça natural) sendo a sua 

trituração e utilização na produção de aglomerados linhas de produção complementares. 

Em seguida, procurou avaliar-se o efeito da seca na cortiça, nomeadamente no seu crescimento 

e na proporção relativa dos seus constituintes químicos: suberina, lenhina, polissacáridos e 

extractivos, nos monómeros da suberina e dos polissacáridos, com o objectivo de avaliar se as 

cada vez mais intensas e frequentes secas que se preveem para a região do Mediterrâneo irão 

comprometer a utilização da cortiça como vedante natural das garrafas de vinho. 

Desta forma, o trabalho posterior à recolha de informação, dividiu-se em duas grandes tarefas 

–análise do efeito da seca a) no crescimento da cortiça e b) na proporção dos constituintes 

químicos - que se complementam, uma vez que a utilização que se faz da cortiça advém da sua 

espessura (que resulta do seu crescimento) e das suas propriedades que resultam da 

composição química. 
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No âmbito da análise do efeito da seca e da idade do felogénio no crescimento da cortiça 

realizámos, inicialmente, um estudo preliminar em amostras de cortiça produzida em três locais 

na região de Coruche (a mais vasta região de produção de cortiça em Portugal). Os dados 

correspondentes ao crescimento anual da cortiça possibilitaram-nos construir uma cronologia 

entre 1999 e 2011 em que todas as amostras apresentavam 8 anos completos de crescimento, 

permitindo-nos dispor de três conjuntos de amostras em que a seca de 2005 ocorreu em três 

idades do felogénio diferentes – um com dois anos, um com 5 e outro com 7 anos. Com esta 

análise dendrocronológica não só corroboramos os resultados obtidos anteriormente por outros 

autores, confirmando que a seca reduz a quantidade de cortiça produzida, como concluímos 

também que a resposta do crescimento da cortiça é independente da idade do felogénio, isto é, 

o decréscimo de crescimento (estandardizado) devido à seca e a recuperação após a seca não 

parecem ser afectados pela idade do felogénio. Verificámos, no entanto, que em valor absoluto, 

as reduções de crescimento observadas são maiores para felogénios mais jovens. 

Após este estudo preliminar, e no sentido de confirmar os resultados obtidos, construímos uma 

série cronológica com dados de crescimento ao longo de 30 anos (entre 1986 e 2015) incluindo 

diversos episódios de seca, com várias intensidades e, pela primeira vez nesta espécie, 

recorrendo a uma metodologia dendroecológica conjugada com uma análise das componentes 

da resiliência. Esta série foi também construída com dados de crescimento de cortiça de 

amostras com 8 anos completos, provenientes de 12 locais na região de Coruche. Os nossos 

resultados confirmaram, mais uma vez, que a seca reduz o crescimento da cortiça e que quanto 

maior a severidade da seca maior a sua redução (e.g. no ano com seca mais severa – 2005 – a 

redução do crescimento foi de cerca de 46% quando comparado com os dois anos precedentes) 

mas, pela primeira vez, constatou-se que quanto mais intensa é a seca maior o número de 

árvores afectadas: em 2005, 82% das árvores apresentaram uma redução no crescimento da 

cortiça de pelo menos 30% em relação à média dos dois anos anteriores. No entanto, nestas 

circunstâncias foi também maior a capacidade de recuperação (1.62 em 2005). 

Os nossos resultados confirmaram também que, tal como referido por outros autores, a 

resistência e a recuperação dependem da quantidade de reservas (nomeadamente açúcares) 

previamente armazenadas uma vez que menores valores de resistência corresponderam a 

maiores valores de recuperação. Com efeito, uma resistência baixa indica um consumo de 

reservas durante a seca, mas também que, havendo recuperação depois da seca, há um efeito 

positivo da recuperação da actividade fotossintética após a seca. 
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Adicionalmente, os valores médios de resiliência nos anos de seca foram em geral superiores a 

0.80, demonstrando que o crescimento da cortiça após a seca é em geral semelhante ao 

crescimento antes deste evento (resiliência unitária indica que os valores de crescimento antes 

e após a seca são iguais), indicando, mais uma vez, uma grande capacidade de recuperação por 

esta espécie. Desta forma, verificámos que o impacto da seca no crescimento da cortiça nos 

anos subsequentes à seca é moderadamente baixo, suportando a hipótese de que o sobreiro é 

bastante tolerante e resiliente às secas extremas. 

Neste estudo, confirmámos também as constatações de outros autores relativamente ao facto 

de a precipitação no inverno, primavera e anual serem determinantes para o crescimento da 

cortiça. No entanto, a nossa análise estatística com recurso a modelos mistos demonstrou que 

existem outros factores envolvidos na resposta do crescimento da cortiça, durante e após a seca, 

em particular: as condições intrínsecas do local, a árvore e a idade do felogénio. Tal contraria o 

estudo preliminar referido anteriormente dado que nos 2 primeiros anos e nos 2 últimos anos 

do ciclo de crescimento da cortiça os efeitos da seca são mais pronunciados do que no período 

intermédio, sendo este factor determinante na recuperação, na resistência e na resiliência mas 

não na resiliência relativa – e.g as diferenças mais pronunciadas manifestaram-se ao nível da 

recuperação que em amostras com felogénio com idade inferior a três anos aquando da seca, 

apresentaram valores 17% mais baixos do que amostras com felogénio com idades 

compreendidas entre 3 e 6 anos. Adicionalmente, o facto da resiliência relativa não ser afectada 

pela idade do felogénio sugere que a capacidade de recuperação do crescimento da cortiça não 

é afectada pela idade do felogénio. No entanto, a nossa análise incidiu em dados provenientes 

de amostras com felogénio com idades compreendidas entre 1 e 8 anos e, por isso, deve haver 

alguma prudência em relação às conclusões obtidas. 

Importa salientar que não existe ainda informação suficiente sobre o limite mínimo de 

precipitação para a recuperação do crescimento da cortiça, ou seja, ainda não é possível 

determinar quais as condições de precipitação capazes de comprometer a recuperação 

posterior da capacidade meristemática do felogénio. 

Em condições de seca, os resultados obtidos sugerem que, para garantir a produção de pranchas 

de cortiça com espessura suficiente para a produção de rolhas, poderá ser necessário prolongar 

os períodos entre descortiçamentos para além dos habituais 9 anos. Adicionalmente, atendendo 

às previsões de alterações climáticas para a bacia mediterrânea, poderá ser conveniente que 

novas plantações sejam instaladas em regiões mais húmidas do que as actuais regiões 

características do sobreiro. 
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Relativamente à composição química da cortiça, o nosso estudo incidiu na análise do efeito da 

seca na proporção dos componentes da cortiça (suberina, lenhina, polissacáridos e extractivos) 

e nos monómeros da suberina e dos polissacáridos. Para o efeito analisámos três conjuntos de 

10 amostras provenientes do mesmo local, no concelho de Coruche. Num conjunto as amostras 

cresceram sem nenhum evento de seca, noutro conjunto com duas secas e no outro as amostras 

cresceram sob efeito da seca de 2005. Os resultados obtidos sugerem que a seca não afecta a 

proporção da maior parte dos constituintes químicos da cortiça, dos monómeros da suberina ou 

dos polissacáridos, havendo, no entanto, algumas poucas excepções. Com efeito, o teor de 

extractivos em etanol e a proporção de xilose nos polissacáridos aumentam ligeiramente com a 

seca e a arabinose nos polissacáridos diminui. A análise estatística, com recurso a modelos 

mistos, permitiu verificar que a variabilidade associada à árvore, provavelmente resultado da 

informação genética, é muito mais relevante na composição química da cortiça afectando todos 

os parâmetros analisados. 

Desta forma, a análise efetuada no âmbito deste trabalho, sugere que as secas mais severas e 

mais frequentes que se preveem para a bacia do Mediterrâneo no âmbito das alterações 

climáticas não deverão comprometer o desempenho deste material natural enquanto vedante 

das garrafas de vinho, sendo a variabilidade genética o factor que mais contribui para esta 

característica. 

Palavras-chave: Quercus suber; cortiça, dendroecologia; composição química; mitigação dos 

efeitos das alterações climáticas no Mediterrâneo. 
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I - INTRODUCTION AND OBJECTIVES

 

Introduction 

Climate change is an unquestionable and challenging issue by now, either in a mitigation or an 

adaptation perspective (Stott et al., 2016). Changes in climate and, in particular, weather 

extremes will regionally conditionate forest structure, including tree species composition with 

consequent negative economic impacts (Kätzel and Höppner, 2011). Moreover, the continuity 

of the forest ecosystems is constrained by the adaptive capacity of species (Bräuning et al., 2017) 

under its two mechanisms: the intrinsic adaptive capacity of trees and forests, and the socio-

economic factors determining the capability to perform planned adaptation measures (Lindner 

et al., 2010). 

Under this framework and although tree species can adjust to new environmental conditions, 

the course is too slow and there is not much knowledge about the processes involved (Lindner 

et al., 2010). In the meantime, forest managers must adapt to this new reality, so they can satisfy 

the needs of all their stakeholders, from the public in general to a rather competitive and 

demanding forest industry and, therefore, the scientific community must give inputs for this 

adaptation/mitigation process. 

All climatic change scenarios for Mediterranean ecosystems predict increasing temperatures, 

water deficits and periodicity of extreme events, namely severe droughts, heat waves, heavy 

rainfall and fewer cold days (IPCC, 2014; Lindner et al., 2010). Additionally, due to summer water 

deficits, it is expectable to have productivity losses and changes in the species distribution (Gea-

Izquierdo et al., 2013; Piayda et al., 2014; Santos and Miranda, 2006). In fact, ground water 

availability constrains survival and tree growth (Kelly et al., 2002) as when evaporation is greater 

than soil moisture uptake, stomata close to reduce water loss decreasing carbon uptake and 

consequently growth. 

Cork oak forests are distributed in the Mediterranean basin, in an area of approximately 2.2 

million ha corresponding to an annual production of up to 200 thousand tons of cork supplying 

an important industry (APCOR, 2018). These forests also have an outstanding ecological role, 

namely, against desertification and in maintaining animal and plant biodiversity, in their 

restricted area of occurrence, in most of the western Mediterranean countries. 
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Portugal, with about 34 % of the world’s cork oak area (APCOR, 2018) is the leader producer of 

raw cork and cork products namely cork stoppers for the wine industry and boards (Pereira, 

2007). According to the foreign trade data from the National Statistics Institute (INE), Portugal 

exported 986 million euros (197 thousand tons of cork) in 2017. Cork stoppers lead the 

Portuguese cork exports, accounting for about 70 % of their total value (711 million euros), 

followed by cork building materials with 25 % (APCOR, 2018).  

The production of cork is based on a sustainable periodical removal of the cork layer from the 

stem. In the main producing regions, the period between consecutive cork removals is usually 9 

years, enabling to have a cork plank with the required thickness (> 27 mm) for the production of 

cork stoppers (the cork product with the major added value that supports all the cork segment). 

Cork is a natural material with outstanding properties, namely, low density, very little 

permeability to liquids and gases, chemical and biological inertia, mechanical elasticity, high 

friction, good insulation and high damping capacity (Pereira, 2007). These characteristics largely 

justify the interest of cork as a raw material for multiple usages from sealants to agglomerates 

and composites, apt for diverse utilizations (Pereira, 2015, 2007; Silva et al., 2005), such as 

insulation materials, surfacing panels for construction and aeronautics, pollutants absorbers, 

clothing, decorative articles and the one with the most important economic income – cork 

stoppers. 

The above-mentioned restricted cork availability, both geographically and in quantity, 

conditions the development of the cork industrial sector. Therefore, the study of other species 

with barks containing a high cork proportion is a promising research line. Several authors report 

species whose bark has high cork content, and a few have been used to replace cork from the 

cork oak but usually for niche markets or in times or regions with restricted access to Q. suber 

cork. However, the number of species that may have potential to be a source of cork and 

therefore enlarge the cork supply to the industry is not very high and little information regarding 

them is available. 

The cork thickness, and the related cork annual growth that defines it, determines its suitability 

for specific products, namely for the production of natural cork stoppers (Costa et al., 2002; 

Ferreira et al., 2000). In fact, given its importance, the cork plank thickness is normalized by 

caliper classes (NP 298:1993 and ISO 1219:1998). Thicker corkboards are less suitable for the 

production of stoppers because of their weaker performance in the bottle (Lauw et al., 2018) 

e.g. oxygen permeability, an important property related to the behavior of cork stoppers as wine 
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bottle sealants, is different when the stoppers are produced from thinner (27–32 mm) or thicker 

(45–54 mm) corkboards (Faria et al., 2011; Oliveira et al., 2013). 

In addition to the cork thickness, the cellular structure and chemical composition are also 

decisive characteristics in the behavior and properties of this material. In fact, most of the 

properties of cork that are used in the above identified products arise from its structure and 

chemical composition, namely, high compressibility, flexibility under compression, permeability 

and chemical and biological inertness (Pereira, 2015, 2007). 

 

Objectives and Overview 

Under the climate change scenarios for the Mediterranean region framework, the research 

carried out in this work aimed to: 

1. compare the characteristics and properties of cork produced by the cork oak with the 

ones from other species that produce cork in substantial amounts, providing a general 

integrative appraisal of the formation and types of barks and of cork development as 

well as the identification of knowledge gaps, potential interesting research lines and the 

utilization perspectives. 

2. contribute to a deeper understanding on the effect of drought on cork from cork oak1 

growth and to evaluate, for the first time, the effect of this extreme climatic event on 

the cork chemical composition, namely if drought induces any changes on the 

proportion of the main chemical constituents of cork (suberin, lignin, polysaccharides, 

extractives) and on the suberin and polysaccharide monomeric composition. 

3. evaluate if drought compromises the utilization of cork for the production of cork 

stoppers, regarding their thickness and their chemical composition, and to propose 

forest management advices to mitigate the effects of the forthcoming more frequent 

droughts in the Mediterranean basin. 

To achieve this overall target, the specific objectives were: 

Objective 1 Gather the information available for most of the species with barks containing a 

substantial amount of cork, concerning the development, structural and chemical 

 

1 From now on and unless otherwise mentioned, “cork” refers to the cork from cork oak  
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characteristics of the cork component, as well as their potential usage for cork-based 

bioproducts. 

Objective 2 Study the effect of drought on cork growth, through the establishment of a 30-

year chronology and applying a dendroecological approach. 

Objective 3 Assess the effect of the phellogen age on the response of cork growth to 

drought. 

Objective 4 Evaluate the effect of drought on the proportion of the main chemical 

constituents of cork and on the suberin and polysaccharide monomeric composition. 

This thesis is organized in chapters, with the results presented as internationally refereed papers 

published in scientific journals. 

The current chapter intends to be a brief introduction of the thesis with a description of the 

main objectives and the list of publications that came from the development of the PhD 

program. 

The second chapter presents the state of the art related to the subjects dealt within this work. 

It gives a general overview of barks and of cork in particular, followed by a general description 

of the cork oak tree and the sustainable management for cork production, reviewing the 

formation, structure and chemical composition of this material. 

Because the work focused on the effect of drought on cork growth, a state of art about drought 

and cork growth is also presented. 

The third chapter presents the original research starting with an outline, followed by the 

material and methods used in this work, and the results that encompass a total of one book 

chapter and three articles published in international journals, all with referees. In sequence, an 

integrative discussion of all the results is presented, and at last the conclusions are highlighted 

with the perspective of future works. 

 

List of Publications and Presentations 

This thesis is based on the following peer-reviewed publications:  

1. Leite C and Pereira H. 2017. Cork-Containing Barks—A Review. Front. Mater. 3:63. doi: 

10.3389/fmats.2016.00063 
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the production cycle. In Alves, F., Leal Filho, W. Azeiteiro, U. (Ed) Theory and Practice of 

Climate Adaptation, Springer, Berlin. DOI: 10.1007/978-3-319-72874-2_7 

3. Leite C., Oliveira V., Lauw A., Pereira H. 2019. Cork rings suggest how to manage Quercus 

suber to mitigate the effects of climate changes. Agricultural and Forest Meteorology, 
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All publications are reproduced here with the permission of the publishers. 
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conferences: 
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Archaeology, Climatology and Ecology, 7-10 May, San Leucio - Caserta, Italy. 
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the production cycle. 2nd World Symposium on Climate Change Adaptation (WSCCA-
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nk/events/portugal-wscca-2017.html 

4. Leite C., Oliveira V., Pereira H. 2017. Impact of climatic events on cork growth and 

production. Encontro Ciência 2017, 3-5 July, Lisbon, Portugal. 

http://www.encontrociencia.pt/2017/home/  
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II - STATE OF THE ART

 

Bark structure and formation 

Bark is a heterogeneous cellular material, resulting from the activity of the two radial meristems: 

the vascular cambium and the phellogen (Evert, 2006). The vascular cambium encircles the stem 

of plants and produces xylem cells inwards and phloem cells to the outside (Figure 1). Phloem is 

the main food-conducting tissue and includes a functional layer near the cambium and a non-

functional layer to the outside. Functional and non-functional phloem are also called, 

respectively, non-collapsed and collapsed phloem. The phellogen originates phellem (cork) cells 

to the outside and phelloderm cells to the interior. Together, phellem, phellogen and 

phelloderm form the periderm, as represented in Figure 1. In most species, the phellogen has a 

limited lifespan, and after its death a new one is formed inside the phloem. The successive 

periderms, which are separated by layers of phloem are called rhytidome. 

Therefore, bark consists of phloem, periderm and rhytidome and its macroscopic appearance 

and properties will depend on the structure of these tissues, their extent and relative proportion 

(Huang et al., 2006). 

 

Figure 1. Schematic drawing of a cross section of a tree stem showing: (A) the xylem (wood), the 

phloem (functional and non-functional) and the periderm; and (B) the xylem (wood), the phloem 

(functional and non-functional), the periderm and the rhytidome with successive periderms and 

phloem layers between them (adapted from Sen et al., 2015). 
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Periderm development 

The periderm is a protective tissue formed in most dicotyledons and gymnosperms to replace 

the epidermis when this tissue no longer is able to accommodate radial growth and cracks. Also, 

in the case of an injury, a traumatic periderm may form to protect from exposure and infection. 

The phellogen initials result from the differentiation (i.e. return to a meristematic function) of 

mature parenchyma cells. The first phellogen can arise in different locations: in most situations 

it is formed below the epidermis, but in some cases it appears in the epidermis or in the phloem 

(Evert, 2006; Pereira, 2007). The phellogen mother-cells start their meristematic activity by 

periclinal division: the inner cell differentiates as phelloderm; the outer cell undergoes another 

periclinal division and originates to the exterior a phellem cell (cork) and inwards the initial 

phellogen that continues this meristematic activity. Sometimes, cork cells occur immediately by 

the first division and no phelloderm cell is formed (Fahn, 1990; Pereira, 2007). In general, plants 

produce more phellem cells than phelloderm; in many cases, there is only one layer of 

phelloderm and several layers of phellem, although in a few species the phelloderm may be up 

to six layers thick (Beck, 2010; Fahn, 1990). 

The first phellogen can be initiated uniformly around the stem or in localized areas and acquires 

continuity as the result of lateral spread due to meristematic activity (Evert, 2006). Timing and 

location of phellogen initiation is influenced by several factors, namely, genetics, physiology and 

environment (Lev-Yadun, 2011). The phellogen has only one kind of cells that appear in 

transverse sections as a tangentially disposed layer of rectangular cells, in radial section they 

appear flattened and in tangential view they show a polygonal structure, sometimes rather 

irregular (Evert, 2006; Pereira, 2007). There are no intercellular spaces between the phellogen 

cells, except where lenticels arise. 

The phellogen activity, like that of the vascular cambium, is seasonal with periods of dormancy 

and of activity depending on environmental conditions, namely, light, water and temperature 

(Evert, 2006; Fahn, 1990). The number of cork layers is very variable between species and with 

plant age, and may be very large, as in the cork oak. In fact, the longevity and activity of the 

phellogen are decisive factors to determine the thickness and homogeneity of the cork tissue. 

There is also a large variability between species about the duration of the first phellogen and in 

some species, like the cork oak, the first phellogen is active throughout the entire life of the 

plant (Fahn, 1990; Pereira, 2007). 
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When one periderm ceases its functional activity and dies, it is substituted by a new functioning 

periderm, each time forming deeper inside the living tissues. Therefore the first formed 

periderm is the outermost in the rhytidome, while the newest one (and active) is the innermost 

(Fahn, 1990). These successive periderms may completely encircle the stem with a cylindrical 

shape, or not, e.g. with lens-shaped or shell-like portions, partially overlapping each other (Beck, 

2010). Trees from temperate zones usually produce more sequential periderms than tropical 

ones. 

As phellem and phelloderm cells result from periclinal divisions of the phellogen, i.e. parallel to 

the tangential direction, they are disposed in well-defined radial rows. To allow for diameter 

increment, the phellogen cells also perform occasional anticlinal divisions thereby increasing the 

number of radial rows (Beck, 2010; Pereira, 2007). 

The phelloderm cells are living cells with non-suberized walls that resemble parenchyma cells 

but identified by their arrangement in radial rows under the phellogen initials. The phellem cells 

are dead cells, characterized by a cell wall containing suberin that is internally deposited onto 

the primary cell wall. Subsequently the phellem cells lose their protoplasm and the cell lumen 

becomes empty (Pereira, 2007). 

 

Rhytidome  

In most woody species in temperate climates, the initial periderm is only functional for a few 

years and is replaced, in the interior, by a new functional periderm. Consequently, bark 

accumulates to the outside of the functioning periderm layers of dead non-functional periderms 

and phloem tissues between them, forming the so-called rhytidome (Evert, 2006). The term 

outerbark is also commonly used to designate these non-living layers, and innerbark the living 

tissues between cambium and the active phellogen (Pereira, 2007). Figure 1B shows a schematic 

diagram of a bark containing successive periderms in the rhytidome. 

Along time, there is a noticeable diametric expansion of the stem because the cambium 

produces many xylem and phloem cell layers. Consequently, there is a compression of the outer 

phloem and also a substantial tangential tensile stress on the bark, leading to cracking, splitting 

and wrinkling in the most external layers of the rhytidome (Beck, 2010). The structure of the 

rhytidome e.g. the number of different periderms and their cellular features and development, 

and the cellular composition and arrangement of the phloem tissues e.g. the proportion and 
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arrangement of fibers, directly influence the surface morphology of the bark, and often give the 

unique features of particular species, like depth and direction of wrinkling and the kind of 

exfoliation (Beck, 2010; Roth, 1981). These characteristic external features of bark can be very 

useful for taxonomy, especially for tropical trees. 

As rhytidome is the result of the development of successive periderms, barks that have only one 

periderm do not have rhytidome (Evert, 2006). For instance, Quercus suber, Q. variabilis and 

Kielmeyera coriacea do not have rhytidome and are some of the species analyzed in this work. 

 

Cork-rich barks 

The barks may be classified in two groups in relation to periderm characteristics: those that have 

only one superficial periderm and do not have rhytidome (Figure 1A); and those that have 

rhytidome (Figure 1B). This distinction is of particular relevance when a potential exploitation of 

the cork layer is envisaged. When only one periderm is present, the cork layer is radially and 

tangentially homogenous and if its thickness is adequate, it may be used for production of solid 

cork products e.g. cork stoppers. In the case of a rhytidome, the cork layers of the successive 

periderms are separated by phloemic layers; therefore, the recovery of cork will require 

trituration of the rhytidome and fractionation of the cork component, thereby obtaining it in a 

granulated form that only allows use in cork agglomerated products. 

The present main commercial provider of cork is the cork oak, Quercus suber, that has only one 

periderm and a substantial production of cork. The Chinese cork is also commercially used: it is 

obtained from Quercus variabilis, a tree that also has only one periderm. Other species were 

referred as having been used for production of cork or as having potential for it. Natividade 

(1950) points out Q. variabilis, Phellodendron amurense, Ulmus campestris auct. var. suberosa, 

as having been industrially used in a similar way as Q. suber. This author also refers that 

Pseudotsuga menziesii bark and the rhytidome of Abies lasiocarpa var. arizonica, Abies concolor 

and Erythrina spp. were used in agglomerates. Further he identified Pithecolobium incuriale, 

Enterolobium ellipticum, Kielmeyera coriacea, Aspidosperma tomentosum, Zeyheria montana, 

Connarus suberosus as Brazilian cork producing species with a potential value. Melaleuca 

leucadendron spongy and impermeable bark was also mentioned as a possible substitute to cork 

from the cork oak. 
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Rizzini and Mors (1995) referred that Agonandra brasiliensis, Pisonia tomentosa, Aspidosperma 

dasycarpum, Erythrina mulungu, Symplocos lanceolata produce enough cork to justify their 

commercial exploitation. Abramovay (1999) suggested Erythrina crista-galli, Pithecolobium 

incuriale, Stryphnodendron adstringens and Anona coriacea as promising cork species. Pereira 

(1988) showed that Calotropis procera has a suberous bark. Sen et al. (2010, 2011a,b) studied 

Quercus cerris rhytidome and its cork to evaluate its potential for agglomerates. Bhat (1982) 

observed the bark structure and some physical properties of Betula pendula, identifying several 

cork layers in the rhytidome. Recently, Mota et al. (2016) studied the cork of Plathymenia 

reticulata from the Brazilian cerrado and Sen et al. (2018) Beaucarnea recurvata cork. 

As far as we know, only Q. suber, Q. variabilis, Q. cerris, Kielmeyera coriacea, Pseudotsuga 

menziesii, Betula pendula, Plathymenia reticulata, Abies lasiocarpa var arizonica and Abies 

concolor have been studied at variable degree for their bark and potential cork utilization. Table 

1 lists these species dividing them in Gymnosperm and Angiosperm and classifies them 

regarding their bark characteristics i.e. bark with or without rhytidome. 

 

 Bark with rhytidome Bark without rhytidome 

Gymnosperm Pseudotsuga menziesii 
Abies lasiocarpa var. 

arizonica 
Abies concolor 

 

Angiosperm Quercus cerris 
Betula pendula 

Quercus suber 
Quercus variabilis 

Kielmeyera coriacea 
Plathymenia reticulata 

Table 1 - List of gymnosperm and angiosperm species that have been studied in relation to their 

cork-rich barks, classified according to their bark structure (presence/absence of rhytidome). 

 

The sustainable management of cork production 

Cork oak spreads along the western part of the Mediterranean basin with economic and 

ecological importance in the Mediterranean countries. It covers around 2 million hectares of 

which Portugal has 736 thousand hectares (34% of the world’s area and 23% of the national 

forest). The world cork production is more than 200 thousand ton., with Portugal being 

responsible for around 50% of it. (APCOR, 2018). 
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Ecologically, cork oak forests have several functions: environmental protection against soil 

erosion and desertification; unique and valuable landscape role; support to high levels of 

biodiversity; aesthetic and identity values and attractiveness for recreation and environmental 

balance  (Bugalho et al., 2011; Costa et al., 2009; Pinto-Correia et al., 2011; Surová et al., 2011; 

Surová and Pinto-Correia, 2008). 

Moreover, cork oak forests are a multifunctional agro-forestry-pastoral system called 

“montado” that is considered by the European Environmental Agency as a High Nature Value 

Farming System (Pinto-Correia et al., 2011). These ecosystems are also recognized as habitats of 

conservation value in the Habitats Directive (Catry et al., 2012). 

Under this framework, cork harvesting is still the foremost economic activity, and cork the most 

valuable (non-wood forest) product. The entire cork chain from the forest to the consumer relies 

on the regular and sustainable production of cork. To maintain cork production and provide the 

above-mentioned environmental services, cork oak forests need to be properly and sustainably 

managed (Pereira, 2007). 

The exploitation of the cork oak as a cork producer relies on the periodical removal of the cork 

from the stem and branches in an adequate degree with the preservation of the tree in good 

physiological conditions (Pereira, 2007). Cork production yields depend not only on the tree 

growth and cork growth, but also on management decisions such as the intensity of cork 

extraction and the interval between strippings which are regulated by strict rules under the 

Portuguese legislation (Decreto-Lei n.º 155/2004). 

In fact, cork oaks are debarked every 9 years (the legal minimum allowed) or more and the 

decision of longer production cycles is often needed in order to achieve a minimum cork plank 

thickness. This means that in cork management decisions cork growth is probably one of the 

most important criteria to consider since it defines the thickness of the cork plank that is 

available for industrial processing, which is mostly oriented for the production of wine stoppers 

(requiring a minimum thickness of 27 mm after boiling).  
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Cork biology 

Cork formation 

Cork is a protective tissue located in the outer bark of trees, as described previously (Figure 1). 

The cork oak produces a periderm with special characteristics of development, regularity, 

growth intensity and longevity, as well as with regeneration capacity after removal that have 

made this species very unique. The phellogen initials result from the dedifferentiation (i.e. 

return to a meristematic function) of mature parenchyma cells (Pereira, 2007). The phellogen 

mother-cells start their meristematic activity by periclinal division: the inner cell differentiates 

as phelloderm; the outer cell undergoes another periclinal division and originates to the exterior 

a phellem cell (cork) and inwards the phellogen initial that continues this meristematic activity. 

In the cork oak, the first phellogen maintains its activity year after year, producing successive 

layers of cork. The phellogen may be functional for many years, probably during the lifetime of 

the tree, but the intensity of its activity decreases with age (Pereira, 2007). 

Each time cork is removed from the cork oak, in a procedure called cork stripping, a new 

phellogen is formed inside the phloem forming a traumatic periderm and its subsequent cork 

layer. The first cork produced is called virgin cork and the subsequent second cork. If the second 

cork is removed, the process is replicated forming a new phellogen and a new cork layer 

(reproduction cork). After the stripping of this reproduction cork, the procedure is periodically 

repeated, along the entire life of the tree allowing for the continuous (every 9 years or more) 

removal of the reproduction cork. 

The phellogen activity, like that of the vascular cambium, is seasonal with periods of dormancy 

and of activity depending on environmental conditions, namely light, water and temperature 

(Evert, 2006; Fahn, 1990). In fact, due to the Mediterranean climatic conditions, the phellogen 

is functional between April and September/October, with a maximum activity in June and a 

minimal growth in the summer (Pereira, 2007). Therefore, it is possible to observe annual rings 

that are marked by the presence of a layer of latecork cells at the end of the growth season. 

These cells are darker, smaller, with thicker cell walls than the earlycork cells (Fortes and Rosa, 

1992). The rate and duration of the meristematic activity of the phellogen largely determines 

the width of a cork ring (Pereira, 2007). 

The structure of cork 

To better describe cork structure, we need to place it in relation to its original position in the 

tree (Figure 2) and the usual plant anatomist nomenclature will be used here. The transverse 
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section is perpendicular to the axial direction (x-y plane); the tangential section is perpendicular 

to a radial direction (x-z plane); and the radial section contains the axial direction and is 

perpendicular to the tangential direction (z-y plane). 

 

Figure 2. Diagram for the spatial description of cork structure showing the axis system and 

sections nomenclature as used in plant anatomy (Pereira, 2007). 

 

In the transverse and radial sections, the structure is a brick-wall type with the cells cut parallel 

to their prism axis and appearing with a rectangular form. In the tangential section the cork cells 

appear polygonal, mostly as hexagons with a honeycomb structure (Figure 3).  

 

Figure 3. Schematic representation of the cellular structure of cork (Oliveira et al., 2014). 
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The cork is a tissue with a compact structure and a very regular arrangement of the individual 

cells without intercellular spaces. The cells are in general hexagonal prisms stacked base-to-base 

in radial rows, and the rows aligned in parallel; in adjacent rows the prism bases often in 

staggered positions. The structure of cork observed by scanning electron microscopy in the three 

principal sections is shown in Figure 4.  

 

Figure 4. Scanning electron micrographs of sections of reproduction cork:  

(a) tangential; (b) radial; and (c) transverse sections (Pereira, 2007). 

The cell volume is on average 1.7x10-5 mm3, and the solid cell-wall content 10%. The cork cell-

walls, especially those that constitute the lateral prism faces, show ab initio some bending and 

undulations of varying intensity that can attain strong corrugation derived from constraints 

during cork growth in the tree (Fortes and Rosa, 1992; Pereira et al., 1987). Observing the sides 

of the cells from the tangential section corrugations are not visible but some buckling may take 

place (Pereira, 2007). 

Cork cell-walls are composed of a suberinic secondary wall and are flexible enough to undulate 

or corrugate with variable intensity under compression without fracture. The smaller and thick-

walled latecork cells are much more rigid and stronger when compared to earlycork cells, and 

do not show any undulations. When the phellogen starts its meristematic activity at the 

beginning of the growing season, the first cork cells formed are pushed against the existing cork 

layers and compressed against the previous year’s latecork cells causing the undulation of the 
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cell walls (Pereira, 2007). A brief summary of the average earlycork and latecork cells dimensions 

is presented in Table 2. 

 Earlycork Latecork 

Prism height 30-40 µm 10-15 µm 

Prism base edge 13-15 µm 13-15 µm 

Average base area 4x10-6 to 6x10-6 cm2 4x10-6 to 6x10-6 cm2 

Cell face thickness 1-1.5 µm 2-3 µm 

Number of cells per cm3 4x107 to 7x107 10x107 to 20x107 

Table 2 – Dimensions of cork cells (Pereira et al., 1987) 

 

Chemical composition 

Cork is chemically very different from other plant tissues, namely from wood and phloem. It is 

out singled by the presence of suberin as a major cell wall structural component. Suberin is a 

large biopolymer of lipid nature formed by the esterification of glycerol and long chain fatty 

acids, α,ω-diacids and ω-hydroxyacids, either saturated or with an unsaturation, epoxy or vicinal 

diol substitution at mid-chain chain (Graça and Pereira, 1997). Suberin also includes a few 

aromatic monomers in most cases ferulic acid (Graça and Pereira, 1998; Marques et al., 2015). 

Suberin confers impermeability to water and gases, resistance to acids and contributes to 

compressibility (Pereira, 2015, 2007). 

Lignin is the second most important structural component of cork. This macromolecule is a 

cross-linked aromatic polymer with strong covalent bonds disposed as a 3D-network that 

confers strength to the cell wall (Pereira, 2007). Lignin is usually defined as a polymer of 

phenylpropane units with three different aromatic units - p-hydroxyphenyl (H), guaiacyl (G) and 

syringyl (S) - and the lignins are classified according to their H/G/S ratios. Lignin structural 

composition of barks, namely of corks, is largely unknown except for a few cases that showed 

that cork lignin is composed mainly of guaiacyl units with a low proportion of syringyl units 

(Marques et al., 2006, 1999, 1996, 1994, 2015; Marques and Pereira, 2013). 

The structural polysaccharides of cell walls are cellulose and hemicelluloses. While in wood they 

represent up to 80% of the structural components of the cell wall, in cork they have a much 

lower importance and correspond to about 20% of cork (Pereira, 2007; Silva et al., 2005) Xylans 

are the most important hemicelluloses in cork (Pereira, 1988b). 
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Cork also contains non-structural components that are soluble in different solvents. Lipophilic 

extractives including fatty acids and alcohols, sterols and terpenes, as well as polar compounds 

of phenolic nature are present in substantial amounts (Pereira, 2007). 

The inorganic materials content, determined as ash, is usually below 3% (Pereira, 1988b; Ponte-

e-Sousa and Neto-Vaz, 2011). 

Much effort has been undertaken to study the variability of Q. suber cork in relation to chemical 

composition because this characteristic is responsible for many of its properties (Bento et al., 

2001; Pereira, 2013, 1988b; Sen et al., 2016). In fact, it is the cell structure and chemical 

composition that determine cork properties e.g. the solid volume ratio and the material’s 

density that influence elasticity and mechanical strength, as well as cork performance in 

insulation (Pereira, 2015). Of all mechanical properties, compression behavior is the one that 

has attracted most attention, due to the importance of compression in the world-known use of 

cork as stoppers for wine bottles (Anjos et al., 2014, 2008; Oliveira et al., 2014). 

 

Cork growth and climate 

From a physiological point of view, water deficit situations cause, for example, a decrease in 

photosynthesis, stomatal closure, and reduced leaf area. The cork oak is sensitive to the amount 

and the moment when spring rains occur, recovering quickly after a year of extreme dryness 

(Besson et al., 2014). Moreover, this species manifest resilience to interannual variability of 

rainfall, since it can use the water stored in the soil in greater depth. In relation to cork oak 

growth, cumulative precipitation between January and June (growth season) and in the previous 

autumn-winter is the most important positive influencing factor (Leal et al., 2008). The monthly 

temperature has a less significant effect, found to be negatively correlated with the summer 

growth and positively at the beginning of the growing season (Costa et al., 2002). 

Regarding cork growth, the results showed that rainfall, summer drought and temperature are 

determining factors. In particular, water availability is the most limiting factor for growth (Caritat 

et al., 2000; Cherubini et al., 2003; Oliveira et al., 2016). In fact, as shown by Pizzurro et al. (2010), 

the rain period from May to September strongly influences phellogen activity. Cork growth is 

extremely affected by drought conditions in short time scales (from 2 to 11 months) namely 

regarding spring precipitation. Nevertheless, cork growth rapidly recovers when drought 

conditions end (Oliveira et al., 2016). Temperature has also some influence in phellogen activity, 
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namely the absolute minimum temperature in June and the absolute maximum temperature in 

September show a positive correlation (Pizzurro et al., 2010). Also, as reported by Oliveira et al. 

(2016), it has a positive influence on growth at the beginning of phellogen activity post-

dormancy (until April) but shows a negative influence during the growth period (from May to 

August). 

It is key to note that in the Mediterranean conditions the access to water resources and the 

relationship to soil-site conditions are crucial factors for cork oak development (Costa et al., 

2008). Soils with low depth and high compactness have a negative influence on the development 

of the cork oak deep root system, thereby diminishing the access to direct ground water 

resources, namely during summer drought (Costa et al., 2008; David et al., 2013, 2007). 

Nevertheless, the climate-cork growth relationship is not straightforward. In fact, as resumed by 

Paulo et al. (2017), several factors/variables (e.g. tree; management; site; climatic conditions 

and intra specific competition) affect cork growth. 

Taking into consideration that future climate scenarios predict a reduction of spring 

precipitation and greater severity of droughts in the Iberian Peninsula, a cork growth decrease 

is expected, with narrower annual rings and a consequent decrease of cork thickness. This will 

have implications regarding the raw-material adequacy to the cork industry, and the need for a 

potential adjustment of the silvicultural cork management. 
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III – ORIGINAL RESEARCH

 

Research outline 

The research carried out in this work aimed at undertaking an analysis on the effect of drought 

on cork growth with an increased depth and detail in relation to the studies performed so far on 

this matter, and also at evaluating, for the first time, the effect of this climatic event on the cork 

chemical composition, in order to assess if the more frequent forthcoming drought conditions, 

associated to climate change in the Mediterranean region, may compromise the utilization of 

cork as a sealant for wine bottles. To achieve this objective several tasks were outlined. 

The first task consisted in gathering information about species whose bark has high cork content, 

concerning the development, structural and chemical characteristics of the cork component, as 

well as their potential usage for cork-based products, to contextualize the cork from the cork 

oak and its characteristics under the general panorama of corks. 

The second task involved a dendroclimatological exploratory study about the effect of a severe 

drought in different moments of the cork 9-year production cycle, e.g. beginning, middle or end 

of the cycle, to evaluate if the age of the phellogen had any influence on cork growth under and 

after drought conditions. The results obtained in this study were published in a book chapter 

and orally presented in two international congresses. 

This assessment was complemented by a more detailed understanding on the response of cork 

production under drought conditions, through a component resilience analysis, considering not 

only the effect of the phellogen age on that response but also the effect of site and tree on it. 

This was our third task and a publication with the obtained results was written as well as an oral 

presentation in an international congress. Forest management advices were also suggested to 

mitigate drought effects under climate change. 

The fourth task consisted in analyzing the cork chemical composition under no drought 

conditions, one drought event and two drought events and compare them to assess if drought 

induces any change on the relative amounts of suberin, lignin, polysaccharides, extractives, 

monosaccharides and suberin monomers produced by cork oak. These results were submitted 

to a scientific journal. 
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Material and Methods 

Study area 

The study area consisted in 12 sites each corresponding to private montado estates located in 

the Coruche municipality, in an area considered to be one of the main continuous production 

areas for the cork oak. The dominating soils are litholic, non-humic, little unsaturated, derived 

from coarse consolidated sands (sandstones) with low water storage capacity. 

The climate is Mediterranean with Atlantic Ocean influence, which means, temperate with dry 

summers. According to the climatic data obtained in the 30-year period from 1980 to 2010, by 

the Climate Change Research Group of Faculdade de Ciências da Universidade de Lisboa, 

Coruche has an annual average precipitation of 647 mm from which 83 % is concentrated from 

October to April. The mean annual temperature is 16.6 °C but the highest temperatures occur 

in the summer when the precipitation is the lowest. 

The cork oak stands in this region are characterized by a multifunctional use of the land, 

combining agriculture with silvopastoral activities. Therefore, trees are planted at wide spacings 

into grazed pastures. 

The stands in which the cork samples were collected had a mean density of 83 trees/ha, ranging 

from 63 to 106 trees/ha and an average tree diameter at breast height between 32 and 75 cm. 

Management practices are similar in all stands with natural pasture and extensive grazing of 

cows under coppice in most of them. 

Cork samples 

The cork samples used in this research were provided by Associação de Produtores Florestais de 

Coruche (APFC) and resulted from the annual cork quality sampling procedure performed by this 

forest producer association. The samples were collected during several years between 1994 and 

2016 and in most of the sites it was possible to have two consecutive strippings and in two of 

them three. 

These allowed us to have cork growth data (complete years) between 1986 and 2015 building a 

30-year chronology with a variable sample depth (Figure 5). It should be noticed that the striping 

years are not coincident in all the sites. 
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Figure 5 – Sample depth of each debarking year. 

The samples were collected at breast height (1.30m) during the stripping season on mature cork 

oak trees under cork production. The trees were randomly selected, and the number of trees 

sampled per site was proportional to the total number of trees under stripping on the site. The 

cork production cycle was of 9 years in all the sites, corresponding to 8 complete years of cork 

growth as stripping interrupts the cork growth of that year. 

The samples (with approximately 15 × 15 cm2) were boiled in water for one hour and left to air 

dry until equilibrium in a similar procedure as performed by cork industry in raw corkboards. 

In terms of cork growth analysis, the samples collected by APFC can be divided in two groups - 

a set of 1584 samples was collected between 1994 and 2010, corresponding to a 24-year 

chronology, was previously measured and analyzed by Oliveira et al. (2016), and a second set of 

497 samples stripped between 2012 and 2016 that was just used under this research. The cork 

growth analysis object of this work included these two sets of data, corresponding to a growth 

period from 1986 to 2015. 

The samples used for the chemical analysis belonged to one of the sites with three consecutive 

strippings, allowing the comparison of the chemical composition of cork produced in three 

different growth periods – one without drought effects, one with the effect of one severe 

drought and one when two droughts occurred. For each growth period, 10 samples were 

randomly selected and used for the chemical analysis. 
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Climate data 

The droughts occurring from 1986 to 2015, were characterized by the drought index Standard 

Precipitation Evapotranspiration Index (SPEI) developed by Vicente-Serrano et al. (2010) 

because it is one of the most generalized approaches for drought analysis, and droughts in the 

Iberian Peninsula are better detected with SPEI than with other indices like the Standard 

Precipitation Index (SPI) (Páscoa, et al., 2017). 

In fact, SPEI is multi-scalar drought index based on a monthly climatic water balance 

(precipitation minus potential evapotranspiration) and not only on precipitation data as the SPI, 

therefore representing a simple climatic water balance. Furthermore, as it includes temperature 

data, it accounts for the warming-related drought impacts on diverse ecological, hydrological 

and agricultural systems (Vicente-Serrano et al., 2010). Also, SPEI can be used to analyze drought 

at different time scales (Beguería et al., 2013 - http://spei.csic.es/home.html ). Furthermore, it 

accounts for the accumulation of deficits/overplus at diverse timescales (Drew et al., 2013). SPEI 

values are negative in situations with water stress while humid periods correspond to positive 

values of SPEI. The SPEI data were downloaded from the Global SPEI database 

(http://sac.csic.es/spei/database.html), with a 0.5° spatial resolution for Coruche municipality. 

The values used are based on the FAO-56 Penman-Monteith estimation of potential 

evapotranspiration which is advised for most situations including long-term climatological 

analysis. 

Moreover, to climatically categorize the years of our chronology, we used the classification 

proposed by (Agnew, 2000) and followed by Páscoa, et al. (2017) that orders drought indices 

according to four classes: no drought if SPEI>-0.84; moderate if -0.84 > SPEI>-1.28; severe, if -

1.28>SPEI>-1.65 and extreme, if -1.65 > SPEI. 

Cork-ring measurements 

For a more precise observation of the growth rings, the transversal sections were polished and 

two radial strips per sample with approximately 1 cm thickness were cut and fixed on a 

microscope slide (Figure 6) and digitalized in a laser-based fluorescence imager (Fluoro Image 

Analyzer FLA -5100, Fujifilm, Life Science USA, Stamford, CT 06092) according to the 

methodology developed by Surový et al. (2009) (Figure 7). Cork ring thickness was measured 

with AnalySIS® image processing software (Analysis Soft Imaging System GmbH, Münster, 

Germany, version 3.1) and, whenever possible, along two transects in the radial direction with 

an accuracy of 0.01 mm. For each tree the average of the two measurements was determined. 
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Figure 6 – Preparation of the cork samples to measure cork rings. 

 

Figure 7 – [A] Fluorescence imager with cork samples and [B] image obtained for a set of 90 

microscope slides. 

The initial and final half rings corresponding to the years of the strippings were not considered 

for analysis as they are not complete growth years (Figure 8 - A). As recognized earlier by several 

authors (Caritat et al., 1996; Oliveira et al., 2016; Surový et al., 2009), the delimitation of annual 

rings was not unequivocal in all the samples (Figure 8 - B), and only in 67 % of the samples (1403 

samples) cork rings were measured and dated. Each cork ring chronology was plotted and 

visually checked with TSAP-Win™ software (Rinntech, Heidelberg, Germany). 
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A       B   

Figure 8 – A - Cork sample measured and dated showing two incomplete years B – cork samples 

where annual ring measurement was not possible. 

Chemical analysis 

Each sample was cut in small pieces with a chisel and the back (outermost bark layer of phloemic 

tissues) and the belly (innermost cork layer) removed to avoid contamination with other 

materials. The small pieces of cork were first milled with a knife mill (Retsch SM 2000) passing 

through a 2x2 mm2 sieve and, afterwards, with an ultra-centrifugal mill (Retsch ZM 200). The 

material was granulometric separated with a vibratory sieve (Retsch AS 200basic) for 10 

minutes. The fractions that passed the 60 mesh screen (0.250 mm) were discarded to avoid 

contamination with lenticular material or woody inclusions that are chemically different from 

cork and the particles between 40 (0.425 mm) and 60 mesh were used, as usually performed for 

cork chemical analysis (Pereira, 2007). 

The chemical summative analyses included determination of extractives soluble in 

dichloromethane, ethanol and water, suberin, klason and acid soluble lignin and the monomeric 

composition of polysaccharides. All the results were quantified as percent of dry cork mass. 

Extractives determination was adapted from TAPPI 204 cm-97 procedure, in a Soxhlet system 

using successively dichloromethane (6 h), ethanol (16 h) and water (16 h). The extractives 

solubilized by each solvent were determined from the mass solid residue after drying for two 

days at 60ºC and over-night at 105ºC. 
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The suberin content was determined in the extractive-free residue after methanolysis for 

depolymerization (Pereira, 1988b). A sample of 1.5g of extractive-free material was refluxed 

with a 3 % (m/v) solution of sodium methoxide in methanol (100 ml) for 3 h. After that, the 

sample was filtrated and washed with methanol, and the filtrated residue refluxed again with 

100 ml methanol for 15 min and filtrated again. Both filtrates were acidified to pH 6 with sulfuric 

acid 2 M and evaporated to dryness. The residues were suspended in water (50ml) and the 

products recovered with dichloromethane in three successive extractions of 50 ml each. The 

combined extracts were dried over anhydrous sodium sulfate, and the solvent evaporated to 

dryness. The suberin extracts were quantified after drying at 60ºC over-night and at 105ºC for 

two hours. 

Klason and acid-soluble lignin, and carbohydrates contents were determined on the extracted 

and desuberinized materials. 3.0 ml of sulphuric acid (72 %) were added to 0.35 g of that material 

and the mixture placed in a water bath at 30 °C for 1 h. The solution was watered down until the 

sulfuric acid concentration was 3% and then autoclaved at 121 °C for 30 min. After cooling down, 

the insoluble fraction was separated by filtration and the Klason lignin was weighed after drying 

at 105 °C. The acid-soluble lignin was measured through the UV absorption at 206 nm using an 

extinction coefficient of 110 l g − 1 cm− 1 (UV-Vis spectrometer 160A, Shimadzu, Nakagyo-ku, Kyoto, 

Japan). 

The polysaccharides content was determined by quantification of the content in neutral 

monossacharides (rhamnose, arabinose, xylose, galactose, mannose and glucose) and uronic 

acids (galacturonic and glucuronic acids released by the total acid hydrolysis used for lignin 

determination, after derivatization as alditol acetates. The sugar monomers were determined 

using a high-performance anion exchange chromatography (HPAEC) with Aminotrap plus 

CarboPac PA10 column (250 x 4 mm). The content of acetic acid was also determined in the 

hydrolysate using a High-Pressure Ion exclusion Chromatography with a UV/Visible detector 

(HIPCE-UV). The compounds were separated in a Thermo Finnigan Surveyor installed with a 

Biorad Aminex 87H column (300 x 7.8 mm). The carbohydrate composition was expressed in 

percent of total monosaccharides.  

Extractives analysis was done in triplicate aliquots, determination of suberin and lignin were 

done in duplicate aliquots, and monomeric composition of polysaccharides was determined in 

one sample/tree. 

Regarding the analysis of the monomeric composition of the suberin, one aliquot/tree of the 

methanolic extracts (5 ml) from the suberin depolymerization was taken and evaporated under 
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nitrogen flow and dried under vacuum at r.t. overnight. The samples were evaporated, 

derivatized by trimethysilylation and immediately analyzed by GC-MS, with the following Zebron 

conditions: Zebron 7HGG015-02 column (Phenomenex, Torrance, CA, USA) (30 m, 0.25 mm; ID, 

0.1 µm film thickness), injector 400C, oven temperature program: 50C (held 1 min), 10Cmin-

1 to 150C, 5C min-1 to 200C, 4C min-1 to 300C, 10C min-1  to 380C (held 5 min). The MS 

source was kept at 220ºC and the electron impact mass spectra (EIMS) taken at 70 eV of energy. 

The area of peaks in the total ion chromatograms of the GC–MS analysis was integrated, and 

their relative area proportions expressed as percentage for semi-quantitative analysis. 

Compounds were identified as TMS derivatives by comparing their mass spectra with a GC–MS 

spectral library (Wiley, NIST), and by comparing their fragmentation profiles with published data 

(Graça, 2015; Graça and Pereira, 2000a,b; Pereira, 2007), reference compounds, ion 

fragmentation patterns, and/or retention times.  

It is key to note that the experimental procedure used for the suberin compositional 

determination does not allow the quantification of glycerol but only of the long-chain fatty 

components, alcohols and the other monomers that are soluble in dichloromethane. 
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Cork-Containing Barks—A Review
Carla Leite* and Helena Pereira

Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal

Tree barks are among the less studied forest products notwithstanding their relevant 
physiological and protective role in tree functioning. The large diversity in structure and 
chemical composition of barks makes them a particularly interesting potential source of 
chemicals and bioproducts, at present valued in the context of biorefineries. One of the 
valuable components of barks is cork (phellem in anatomy) due to a rather unique set of 
properties and composition. Cork from the cork oak (Quercus suber) has been exten-
sively studied, mostly because of its economic importance and worldwide utilization of 
cork products. However, several other species have barks with substantial cork amounts 
that may constitute additional resources for cork-based bioproducts. This paper makes 
a review of the tree species that have barks with significant proportion of cork and on 
the available information regarding the structural and chemical characterization of their 
bark. A general integrative appraisal of the formation and types of barks and of cork 
development is also given. The knowledge gaps and the potential interesting research 
lines are identified and discussed, as well as the utilization perspectives.

Keywords: cork, Quercus suber L., bark, periderm, rhytidome, phellem, suberin

INTRODUCTION

Trees are externally covered on their stems and branches by the bark that represents 9 to 15% of 
the stem volume (Harkin and Rowe, 1971). The bark is composed of several types of tissues and 
cells with different functions: translocation and storage of organic materials, water storage, wound 
healing, protection from herbivores, pathogens, and environmental factors (e.g., irradiation, desic-
cation, wind, flooding, hail, snow, fire), and photosynthesis in shoots (Lev-Yadun, 2011). Barks are 
very variable in thickness, color, and texture depending on species, age, and growing conditions, 
among other factors. The bark often gives a species its characteristic appearance and may be used 
for taxonomic purposes.

The radial growth of woody plants results from the activity of two meristems: the vascular cam-
bium, which gives rise to the xylem (wood) and to the secondary phloem, and the cork cambium or 
phellogen that produces the phelloderm and phellem (cork), which together constitute the system 
named periderm. Bark can be defined as all the tissues formed to the outside of the vascular cam-
bium, therefore including the phloem and the periderm (Trockenbrodt, 1990; Junikka, 1994; Richter 
et al., 1996; Evert, 2006). A schematic diagram of a tree stem cross section is given in Figure 1A.

Barks have been used since ancient times for several purposes: medicine, construction, chemistry, 
clothing, and energy. More recently, they are viewed as a potential raw material for biorefineries, 
given their complex structure and rich chemistry, as well as large availability (Şen et al., 2015). In 
fact, roundwood world production was about 3.591 million m3 in 2013 (FAO, 2015), generating 
over 300 million m3 of bark that are largely concentrated at processing sites and industrial mills. 
Nevertheless, the timber economy usually treats barks as a residue, and their main use is as fuel. 
Consequently, the effort undertaken to study bark development, structure, and chemistry is quite 



FIGURE 1 | Schematic drawing of a cross section of a tree stem showing (A) the xylem (wood), the phloem (functional and non-functional), and the 
periderm and (B) the xylem (wood), the phloem (functional and non-functional), the periderm, and the rhytidome with successive periderms and 
phloem layers between them [adapted from Şen et al. (2015)].

2

Leite and Pereira Cork-Containing Barks

Frontiers in Materials  |  www.frontiersin.org January 2017  |  Volume 3  |  Article 63

limited, e.g., only a small portion of the one given to wood (Lev-
Yadun, 2011).

One exception is the bark produced by the cork oak (Quercus 
suber L.), and this is because of cork, a material that has attracted 
the curiosity of mankind for many centuries and is now the basis 
of an economic relevant industry. Cork is a cellular material with 
an outstanding set of properties, namely, low density, very little 
permeability to liquids and gases, chemical and biological inertia, 
mechanical elasticity, high friction, good insulation, and high 
damping capacity (Pereira, 2007). These characteristics largely 
justify the interest of cork as a raw material for multiple usages 
(Pereira, 2015). Cork is used for many products, from sealants to 
agglomerates and composites, suitable for diverse purposes, such 
as bottle stoppers for the wine industry, insulation, and surfacing 
panels for construction and aeronautics, pollutants absorbers, 
clothing, and decorative articles (Fortes et al., 2004; Pereira, 2007; 
Gil, 2009, 2015; Duarte and Bordado, 2015).

The cork oak produces a periderm with special characteristics 
of development, regularity, growth intensity, and longevity, as 
well as with regeneration capacity after removal, which has made 
this species very unique. Cork oaks have a distribution restricted 
to the western Mediterranean basin, with the largest areas located 
in Portugal and Spain, and an annual total production of cork is 
limited to about 200,000 tons (APCOR, 2015).

This restricted cork availability, both geographically and in 
quantity, conditions the development of the cork industrial sec-
tor. Therefore, the study of other species with barks containing a 
high cork proportion is a promising research line. Several authors 
report species, whose bark has high cork content, and a few have 
been used to replace cork from the cork oak but usually for niche 
markets or in times or regions with restricted access to Q. suber 
cork. However, the number of species that may have potential to 
be a source of cork and, therefore, enlarge the cork supply to the 
industry is not very high, and little information regarding them 
is available.

The present review presents a general overview of barks and 
of cork in particular and gathers the information available for 
some of the species with barks containing a substantial amount 
of cork, concerning the development and structural and chemical 
characteristics of the cork component, as well as their potential 
usage for cork-based bioproducts.

BARK STRUCTURE AND FORMATION

Bark is a heterogeneous cellular material, resulting from the 
activity of the two radial meristems: the vascular cambium and 
the phellogen (Evert, 2006).

The vascular cambium encircles the stem of plants and produces 
xylem cells inwards and phloem cells to the outside (Figure 1). 
Phloem is the main food-conducting tissue and includes a func-
tional layer near the cambium and a non-functional layer to the 
outside. Functional and non-functional phloem are also called, 
respectively, non-collapsed and collapsed phloem. The phellogen 
originates phellem (cork) cells to the outside and phelloderm cells 
to the interior. Together, phellem, phellogen, and phelloderm 
form the periderm, as represented in Figure 1. In most species, 
the phellogen has a limited lifespan, and after its death a new one 
is formed inside the phloem. The successive periderms, which are 
separated by layers of phloem are called rhytidome.

Therefore, bark consists of phloem, periderm, and rhytidome, 
and its macroscopic appearance and properties will depend on 
the structure of these tissues, their extent, and relative proportion 
(Huang et al., 2006).

Periderm Development
The periderm is a protective tissue formed in most dicotyledons 
and gymnosperms to replace the epidermis when this tissue no 
longer is able to accommodate radial growth and cracks. Also, in 
the case of an injury, a traumatic periderm may form to protect 
from exposure and infection.

The phellogen initials result from the dedifferentiation (i.e., 
return to a meristematic function) of mature parenchyma cells. 
The first phellogen can arise in different locations: in most situa-
tions it is formed below the epidermis, but in some cases it appears 
in the epidermis or in the phloem (Evert, 2006; Pereira, 2007). 
The phellogen mother-cells start their meristematic activity by 
periclinal division: the inner cell differentiates as phelloderm; the 
outer cell undergoes another periclinal division and originates to 
the exterior a phellem cell (cork) and inwards the phellogen initial 
that continues this meristematic activity. Sometimes, cork cells 
occur immediately by the first division, and no phelloderm cell 
is formed (Fahn, 1990; Pereira, 2007). In general, plants produce 
more phellem cells than phelloderm; in many cases, there is only 
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one layer of phelloderm and several layers of phellem, although in 
a few species the phelloderm may be up to six layers thick (Fahn, 
1990; Beck, 2010).

The first phellogen can be initiated uniformly around the 
stem or in localized areas and acquires continuity as the result of 
lateral spread due to meristematic activity (Evert, 2006). Timing 
and location of phellogen initiation is influenced by several fac-
tors, namely, genetics, physiology, and environment (Lev-Yadun, 
2011). The phellogen has only one kind of cells that appear in 
transverse sections as a tangentially disposed layer of rectangular 
cells; in radial section, they appear flattened and in tangential 
view they show a polygonal structure, sometimes rather irregular 
(Evert, 2006; Pereira, 2007). There are no intercellular spaces 
between the phellogen cells, except where lenticels arise.

The phellogen activity, like that of the vascular cambium, is 
seasonal with periods of dormancy and of activity depending on 
environmental conditions, namely, light, water, and temperature 
(Fahn, 1990; Evert, 2006). The number of cork layers is very vari-
able between species and with plant age and may be very large, as 
in the cork oak. In fact, the longevity and activity of the phellogen 
are decisive factors to determine the thickness and homogeneity 
of the cork tissue. There is also a large variability between species 
about the duration of the first phellogen, and in some species like 
the cork oak and others, the first phellogen is active throughout 
the entire life of the plant (Fahn, 1990; Pereira, 2007).

When one periderm ceases its functional activity and dies, it 
is substituted by a new functioning periderm, each time form-
ing deeper inside the living tissues. Therefore, the first formed 
periderm is the outermost in the rhytidome, while the newest 
one (and active) is the innermost (Fahn, 1990). These successive 
periderms may completely encircle the stem with a cylindrical 
shape, or not, e.g., with lens-shaped or shell-like portions, par-
tially overlapping each other (Beck, 2010). Trees from temperate 
zones usually produce more sequential periderms than tropical 
ones.

As phellem and phelloderm cells result from periclinal divi-
sions of the phellogen, i.e., parallel to the tangential direction, 
they are disposed in well-defined radial rows. To allow for 
diameter increment, the phellogen cells also perform occasional 
anticlinal divisions, thereby increasing the number of radial rows 
(Pereira, 2007; Beck, 2010).

The phelloderm cells are living cells with non-suberized walls 
that resemble parenchyma cells but identified by their arrange-
ment in radial rows under the phellogen initials. The phellem cells 
are dead cells, characterized by a cell wall containing suberin that 
is internally deposited onto the primary cell wall. Subsequently 
the phellem cells lose their protoplasm, and the cell lumen 
becomes empty (Pereira, 2007).

Rhytidome
In most woody species in temperate climates, the initial periderm 
is only functional for a few years and is replaced, in the interior, 
by a new functional periderm. Consequently, bark accumulates 
to the outside of the functioning periderm layers of dead non-
functional periderms and phloem tissues between them, form-
ing the so-called rhytidome (Evert, 2006). The term outerbark 
is also commonly used to designate these non-living layers, and 

innerbark the living tissues between cambium and the active 
phellogen (Pereira, 2007). Figure 1B shows a schematic diagram 
of a bark containing successive periderms in the rhytidome.

Along time, there is a noticeable diametric expansion of the 
stem because the cambium produces many xylem and phloem 
cell layers. Consequently, there is a compression of the outer 
phloem and also a substantial tangential tensile stress on the 
bark, leading to cracking, splitting, and wrinkling in the most 
external layers of the rhytidome (Beck, 2010). The structure of 
the rhytidome, e.g., the number of different periderms and their 
cellular features and development, and the cellular composition 
and arrangement of the phloem tissues, e.g., the proportion and 
arrangement of fibers, directly influence the surface morphol-
ogy of the bark and often give the unique features of particular 
species, like depth and direction of wrinkling and the kind of 
exfoliation (Roth, 1981; Beck, 2010). These characteristic exter-
nal features of bark can be very useful for taxonomy, especially 
for tropical trees.

As rhytidome is the result of the development of successive 
periderms, barks that have only one periderm do not have rhyti-
dome (Evert, 2006). For instance, Q. suber, Quercus variabilis, and 
Kielmeyera coriacea do not have rhytidome and are some of the 
species analyzed in this review.

CORK STRUCTURE AND CHEMICAL 
COMPOSITION

Cork is formed by cells with empty lumens and suberized cell 
walls. The presence of suberin is the specific characteristic of cork 
and often used to identify cork cells in plant anatomy by apply-
ing specific suberin staining, e.g., sudan dye. Suberin confers 
impermeability to water and gases and resistance to acids and 
contributes to compressibility (Pereira, 2007, 2015).

The cork structure is compact with a very regular arrangement 
of the individual cells and without intercellular spaces. The cells 
are in general hexagonal prisms that are stacked base-to-base in 
radial rows, and the rows aligned in parallel; in adjacent rows, the 
prism bases often lay in staggered positions. When observed two-
dimensionally, i.e., in sections, the arrangement has a different 
appearance. In the transverse section (the plane perpendicular 
to the plant axis), the structure is a brick-wall type with the cells 
cut parallel to their prism axis and appearing with a rectangular 
form. The radial section (the plane that contains the plant axis 
and a diameter) is very similar. In the tangential section (the 
plane perpendicular to a radius), the cork cells appear polygonal, 
mostly as hexagons with a honeycomb structure (Figure 2).

It is often possible to identify growth increments in cork. 
Macroscopically they are distinguished by the darker color of the 
cell layers formed at the end of the growing season, that have 
thicker walled cells and smaller in the radial direction (latecork 
cells) in contrast to the thinner walls and radially longer cells of 
the beginning and core of the growing season (earlycork cells) 
(Pereira, 2007).

The cork cells may have evenly or unevenly thickened walls, 
e.g., some have U-shaped wall thickenings of the inner or outer 
tangential wall (Evert, 2006). In some species, the phellem 



FIGURE 2 | Schematic representation of the cellular structure of cork.
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contains also non-suberized cells, the phelloids, which have thick 
or thin cell walls and differentiate as sclereids.

In addition to the typical hollow, thin-walled, and radially 
widened cork cells, the cork layer may include thick-walled and 
radially flattened cells, often filled with dark resins or tannins 
that occur in some species in alternating tangential bands 
(Fahn, 1990).

Cork is chemically very different from other plant tissues, 
namely, from wood and phloem. It is out-singled by the presence 
of suberin as a major cell wall structural component. Suberin 
is a large biopolymer of lipid nature formed by the esterifica-
tion of glycerol and long-chain fatty acids, α,ω-diacids and 
ω-hydroxyacids, either saturated or with an unsaturation, epoxy, 
or vicinal diol substitution at mid-chain (Graça and Pereira, 
1997). Suberin also includes a few aromatic monomers in most 
cases ferulic acid (Graça and Pereira, 1998; Marques et al., 2016). 
The specific composition of suberin, i.e., the proportion of 
monomers varies between species, as detailed in the following 
sections.

Lignin is the second most important structural component 
of cork. This macromolecule is a cross-linked aromatic polymer 
with strong covalent bonds disposed as a 3D-network that 
confers strength to the cell wall (Pereira, 2007). Lignin is usually 
defined as a polymer of phenylpropane units with three different 
aromatic units—p-hydroxyphenyl (H), guaiacyl (G), and syrin-
gyl (S)—and the lignins are classified according to their H/G/S 
ratios. Lignin structural composition of barks, namely of corks, 
is largely unknown except for a few cases that showed that cork 
lignin is composed mainly of guaiacyl units with a low proportion 
of syringyl units (Marques et al., 1994, 1996, 1999, 2006, 2016; 
Marques and Pereira, 2013).

The structural polysaccharides of cell walls are cellulose and 
hemicelluloses. While, in wood they represent up to 80% of 
the structural components of the cell wall, in cork they have a 
much lower importance and correspond to about 20% of cork 
(Silva et al., 2005; Pereira, 2007). Xylans are the most important 
hemicelluloses in cork (Pereira, 1988).

Cork also contains non-structural components that are soluble 
in different solvents. Lipophilic extractives including fatty acids 
and alcohols, sterols, and terpenes, as well as polar compounds of 
phenolic nature are present in substantial amounts. The propor-
tion and the composition of cork extractives differ substantially 
between species (Ferreira et  al., 2015a,b, 2016a,b; Mota et  al., 
2016; Sen et al., 2016a).

The inorganic materials content, determined as ash, is usu-
ally below 3% (Pereira, 1988; Sen et al., 2010; Ponte-e-Sousa and 
Neto-Vaz, 2011; Ferreira et al., 2015a).

Much effort has been undertaken to study the variability of 
Q. suber cork in relation to chemical composition because this 
characteristic is responsible for many of its properties (Pereira, 
1988, 2013; Bento et  al., 2001; Sen et  al., 2016a). For corks of 
other species, there is no systematic study of natural chemical 
variation.

Together, the cell structure and chemical composition deter-
mine cork properties, e.g., the solid volume ratio and the mate-
rial’s density that influence elasticity and mechanical strength, 
as well as cork performance in insulation (Pereira, 2015). Of all 
mechanical properties, compression behavior is the one that has 
attracted most attention, due to the importance of compression in 
the world-known use of cork as stoppers for wine bottles (Anjos 
et al., 2008, 2014; Oliveira et al., 2014).

CORK-RICH BARKS

The barks may be classified in two groups in relation to periderm 
characteristics: those that have only one superficial periderm and 
do not have rhytidome (Figure 1A); and those that have rhytidome 
(Figure  1B). This distinction is of particular relevance when a 
potential exploitation of the cork layer is envisaged. When only 
one periderm is present, the cork layer is radially and tangentially 
homogenous and if its thickness is adequate, it may be used for 
production of solid cork products, e.g., cork stoppers. In the case 
of a rhytidome, the cork layers of the successive periderms are 
separated by phloemic layers; therefore the recovery of cork will 
require trituration of the rhytidome and fractionation of the cork 
component, thereby obtaining it in a granulated form that only 
allows use in cork agglomerated products.

The present main commercial provider of cork is the cork oak, 
Q. suber, which has only one periderm and a substantial produc-
tion of cork. The Chinese cork is also commercially used: it is 
obtained from Q. variabilis, a tree that also has only one periderm. 
Other species were referred as having been used for production 
of cork or as having potential for it. Natividade (1950) points out 
Q. variabilis, Phellodendron amurense, and Ulmus campestris auct. 
var. suberosa, as having been industrially used in a similar way 
as Q. suber. This author also refers that Pseudotsuga menziesii 
bark and the rhytidome of Abies lasiocarpa var. arizonica, Abies 
concolor, and Erythrina spp. were used in agglomerates. Further, 
he identified Pithecolobium incuriale, Enterolobium ellipticum, 
K. coriacea, Aspidosperma tomentosum, Zeyheria montana, and 
Connarus suberosus as Brazilian cork-producing species with a 
potential value. Melaleuca leucadendron spongy and imperme-
able bark was also mentioned as a possible substitute to cork from 
the cork oak.



TABLE 1 | List of gymnosperm and angiosperm species that have been 
studied in relation to their cork-rich barks, classified according to their 
bark structure (presence/absence of rhytidome).

Bark with rhytidome Bark without rhytidome

Gymnosperm Pseudotsuga menziesii
Abies lasiocarpa var. arizonica
Abies concolor

Angiosperm Quercus cerris Quercus suber
Betula pendula Quercus variabilis

Kielmeyera coriacea
Plathymenia reticulata

TABLE 2 | Cellular biometry of cork of Quercus suber, Quercus variabilis, 
Kielmeyera coriacea, Plathymenia reticulata, Quercus cerris, and 
Pseudotsuga menziesii.

Species Prism height 
(μm)

Prism base  
edge (μm)

Cell wall 
thickness (μm)

Q. subera Earlycork 30–40 13–15 1–1.5
Latecork 10–15 13–15 2–3

Q. variabilisb Earlycork 22.7 13.6 n.d.

K. coriaceac 40–70 24 1.5–2

P. reticulatad Earlycork 21 24 1.2
Latecork 12 n.d. 1.4

Q. cerrise Earlycork 25 16 2–3
Latecork 14 16 3–5

P. menziesii f 55 25 1.3

aPereira et al. (1987), reproduction cork.
bFerreira et al. (2016a), reproduction cork.
cRios et al. (2014).
dMota et al. (2016).
eSen et al. (2011a).
fCardoso et al. (2016).
n.d., no data available.
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Rizzini and Mors (1995) referred that Agonandra brasiliensis,  
Pisonia tomentosa, Aspidosperma dasycarpum, Erythrina 
mulungu, and Symplocos lanceolata produce enough cork 
to justify their commercial exploitation. Abramovay (1999) 
in Rios (2007) suggested Erythrina crista-galli, P. incuriale, 
Stryphnodendron adstringens, and Anona coriacea as promising 
cork species. Pereira (1988) showed that Calotropis procera has a 
suberous bark. Sen et al. (2010, 2011a,b) studied Quercus cerris 
rhytidome and its cork to evaluate its potential for agglomerates. 
Bhat (1982) observed the bark structure and some physical 
properties of Betula pendula, identifying several cork layers in 
the rhytidome. Recently, Mota et al. (2016) studied the cork of 
Plathymenia reticulata from the Brazilian cerrado.

As far as we know, only Q. suber, Q. variabilis, Q. cerris, K. 
coriacea, P. menziesii, B. pendula, P. reticulata, A. lasiocarpa var 
arizonica, and A. concolor have been studied at variable degree 
for their bark and potential cork utilization. Table 1 lists these 
species dividing them in gymnosperm and angiosperm and clas-
sifies them regarding their bark characteristics, i.e., bark with or 
without rhytidome.

In the following sections, a brief explanation is given for each 
species about distribution area and economic importance, as well 
as a review of the information available about their periderm and 
cork characteristics, and a brief discussion about prospective 
utilizations.

CHARACTERIZATION OF SOME  
CORK-RICH BARKS

There are few works on the barks that were identified as having 
a high cork content and on the characteristics of their cork com-
ponent. One exception is the cork oak, Q. suber, the present main 
provider of commercial cork used by an integrated industrial 
chain of high economic relevance in the production regions. It 
has been extensively studied, and the rich array of publications 
was compiled in a reference book (Pereira, 2007). The barks of the 
other species listed in Table 1 have been much less studied, and 
in some cases only a few notes on bark development are available. 
The features of Q. suber cork, therefore, benchmark the general 
characterization of cork materials.

In the following sections, a synthesis of the existing knowledge 
on the cork of the different barks is made, organized by species, 
including, when available, details on periderm or rhytidome, 
cork cellular and chemical features, and use potential. Summary 

tables were prepared for comparison of corks from the different 
species: Table 2 summarizes cell dimensions, Table 3 summarizes 
chemical composition, Table 4 summarizes polysaccharide com-
position, and Table 5 summarizes suberin composition.

Quercus suber
The cork oak (Q. suber) is a species native to the western 
Mediterranean basin, with the largest cork-producing areas 
situated in Portugal and Spain. The Q. suber trees are of median 
height (15–20 m) and may reach up to 25 m, with a broad crown 
and a very conspicuous bark (Figure 3).

Cork from the cork oak has high economic importance, 
mainly as a raw material for wine stoppers and also for surfacing 
and insulating materials. The tree is exploited using a sustainable 
management with periodic removals of the cork layer under a sil-
vicultural system that has been perfected along time, integrating 
a multifunctional agro-forest system called montado (Natividade, 
1950; Pereira and Tomé, 2004).

Periderm Development
In the cork oak, the phellogen forms a continuous layer surround-
ing stem and branches and may live as long as the tree, although 
the intensity of its activity decreases with age (Natividade, 1950).

The phellogen activity begins in the first year of the shoot; the 
first cork cells keep the tangential form of the phellogen initial 
and build up radially aligned rows (Graça and Pereira, 2004). 
Besides the periclinal divisions of the phellogen cells, some anti-
clinal divisions also occur that increase the number of phellogen 
initials, and therefore of the radial rows of cork cells.

The cork in the first periderm is called virgin cork (Figure 3A). 
It shows numerous and deep cracks that run mostly longitudinally 
due to the radial enlargement of the tree (Pereira, 2007).

If the initial phellogen is destroyed, as it happens by the strip-
ping of the cork layer, a new (traumatic) phellogen is formed in 



TABLE 4 | Polysaccharides composition (% of total neutral monosaccharides) of the cork of Quercus suber, Quercus variabilis, Kielmeyera coriacea, 
Plathymenia reticulate, Quercus cerris, Betula pendula, and Pseudotsuga menziesii.

Species Glucose Mannose Galactose Rhamnose Xylose Arabinose

Q. suber Virgin corka 50.6 (48.9–51.7) 2.8 (2.3–3.7) 3.6 (3.2–4.3) 1.7 (1.6–1.8) 35.0 (32.9–37.3) 7.0 (6.2–7.7)
Reproduction corkb 46.1 (53.6–41.8) 3.0 (12.4–2.1) 7.3 (10.4–5.2) 0.5 (1.1–0.0) 25.1 (31.7–21.4) 18.0 (24.4–12.7)

Q. variabilisc Virgin cork 51.6 2.9 5.7 1.4 28.0 10.5
Reproduction cork 51.7 2.7 6.2 1.3 27.9 8.2

K. coriacead 55.5–64.6 1.8–5.7 5.5–9.5 0.6–1.7 19.7–26.2 6.0–8.0

P. reticulat5e 51.9 8.1 8.1 n.d. 18.8 13.1

Q. cerrisf 49.7 2.4 7.3 1.2 27.9 11.5

B. pendulag 41.7 4.8 8.1 n.d. 19.1 26.3

P. menziesiih 55.4 10.1 10.3 n.d. 13.3 10.9

aBento et al. (2001).
bPereira (2013).
cFerreira et al. (2016a).
dRios et al. (2014).
eMota et al. (2016).
fSen et al. (2010).
gFerreira et al. (2016b).
hFerreira et al. (2015a).
n.d., no data available.

TABLE 3 | Chemical composition (% total dry mass) of the cork of Quercus suber, Quercus variabilis, Kielmeyera coriacea, Plathymenia reticulata, 
Quercus cerris, Betula pendula, and Pseudotsuga menziesii.

Species Extractives Suberin Lignin Polysaccharides

Q. subera 16.2 (8.6–32.9) 42.8 (54.2–23.1) 22.0 (17.1–36.4) 19.0b

Q. variabilisc Virgin cork 9.2 37.4 27.6 24.7d

Reproduction cork 9.1 38.1 29.4 22.8d

K. coriaceae 14.2–23.0 16.1–30.3 43.6–55.3 10.5–16.6

P. reticulataf 12.7 24.7 34.5 20.9

Q. cerrisg 16.7 28.5 28.1 16.5

B. pendulah 32.2 36.2 14.3 10.3

P. menziesiii 29.2 36.2 16.8 16.9

aCalculated from Pereira (2013), reproduction cork.
bCalculated by difference to 100%.
cFerreira et al. (2016a).
dCalculated by difference to 100% after accounting for the ash content.
eCalculated from Rios et al. (2014).
fMota et al. (2016).
gSen et al. (2010).
hFerreira et al. (2016b).
iFerreira et al. (2015a).

6

Leite and Pereira Cork-Containing Barks

Frontiers in Materials  |  www.frontiersin.org January 2017  |  Volume 3  |  Article 63

the inner tissues of the phloem and begins its meristematic activ-
ity in the same way as it happened in the first periderm, thereby 
forming a new regular cylindrical layer of cork cells around the 
tree; this cork is called reproduction cork. This new periderm is 
covered externally by the tissues that remained to the outside of 
where the phellogen was formed; therefore they include the first 
phelloderm (formed by the initial phellogen) and a layer of the 
non-functional phloem. As these tissues become exposed to air, 
they dry out and develop thin fissures building up what is called 
the cork back (Figure 3B) (Taco et al., 2003).

The first reproduction cork produced by this second phellogen 
(also called second cork) is often longitudinally fissured due to the 
still high tangential growth stress of the young tree (Figure 3B). 
When the second cork is removed, the process is repeated as 
described above, and the new cork layers no longer fissure since 
the tangential growth stress is much smaller (Figure 3C).

In the commercial exploitation of cork oaks, this process is 
repeated successively and a new phellogen and periderm are 
formed as described. This ability to develop each time a new 
periderm is the basis for the sustainability of the cork production 
and cork oak exploitation.

Cork Cellular Structure
The cork cells are mostly hexagonal prisms that are stacked by 
their bases in radially aligned rows disposed in parallel without 
intercellular voids (Figure 4). Therefore the cork cells appear as 
a honeycomb structure in the tangential section (Figure 4A) and 
as a brick-wall structure in transverse (Figure 4B) and radial sec-
tions (Figure 4C). On average the cell prism height is 30–40 µm 
and the cell wall thickness 1–1.5 µm (Table 2). It is possible to 
observe annual rings that are marked by the presence of a layer of 
latecork cells at the end of the growth season with a shorter prism 



FIGURE 4 | The cellular structure of Quercus suber cork: (A) tangential section; (B) transverse section; and (C) radial section (Pereira, 2015).

FIGURE 3 | Quercus suber stem showing (A) virgin cork; (B) second cork; and (C) reproduction cork in mature trees and the removal of cork from 
Q. suber trees: (D) cutting the cork layer; (E) pulling out of the cork planks; and (F) cork piles.

TABLE 5 | Suberin composition (mass % of the total compounds detected by GC) of the cork of Quercus suber; Quercus variabilis, Kielmeyera coriacea, 
Plathymenia reticulata, Quercus cerris, Betula pendula, and Pseudotsuga menziesii.

Species ω-Hydroxyacids α,ω-Diacid Fatty acids n-Alkanols Ferulic acid Other compounds Unidentified

Q. suber Virgin corka 47.0 11.7 5.3 2.0 6.0 1.0 27.0
Reproduction corkb 30.6 53.0 n.d. 0.5 0.6 11.6 3.7

Q. variabilisc Virgin cork 62.8 21.7 5.2 1.7 3.6 4.9 0.1
Reproduction cork 54.5 34.4 3.6 1.5 3.0 3.0 0.1

K. coriacead 54.2 31.6 1.4 2.8 1.7 – 8.3
P. reticulatae 48.6 30.1 10.5 2.7 3.9 1.8 2.4
Q. cerrisf 85.9 7.4 n.d. 1.4 0.7 – 2.7
B. pendulag 74.6 15.9 n.d. 0.2 1.9 2.3 5.1
P. menziesiih 36.2 18.6 6.2 6.2 1.4 6.8 24.6

aCalculated from Bento et al. (2001).
bCalculated from Graça and Pereira (2000).
cFerreira et al. (2016a).
dCalculated from Rios et al. (2014).
eMota et al. (2016).
fSen et al. (2010).
gFerreira et al. (2016b).
hFerreira et al. (2015a).
n.d., no data available.
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height (10–15 µm) and a thicker cell wall (2–3 µm) in comparison 
with the earlycork cells.

The solid fraction in the cork is 8–9% in the earlycork and 
15–22% in the latecork region (Pereira, 2007), which justifies the 
low density of cork.

An important structural characteristic is the corrugation 
of the radial aligned cell walls that arise from compression 

stresses during cork growth, i.e., the new cell layers compress the 
already existing cork cells by pushing them toward the exterior. 
Sometimes the cell wall corrugation may be strong, especially in 
virgin cork (Pereira et al., 1987).

Lenticels are present and develop as lenticular channels that 
cross radially the cork layers; they cause the so-called porosity of 
cork that appears as more or less circular in tangential sections 
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of cork and as thin strips in the other sections. Cork porosity 
has been extensively characterized because it is a visual quality 
parameter that defines the commercial quality of cork stoppers 
(Pereira et al., 1996; Costa and Pereira, 2007; Oliveira et al., 2012, 
2015).

Chemical Composition
Reproduction cork has on average 16% extractives, 43% suberin, 
22% lignin, and 19% cellulose and hemicelluloses (Table 3). The 
extractives include non-polar compounds that are extracted by 
solvents such as dichloromethane (representing on average 5.8% 
of cork) and polar compounds solubilized by ethanol and water 
(5.9 and 4.5%, respectively) (Pereira, 2013).

Suberin is the most important component of Q. suber cork. 
Its composition regarding the long-chain lipid monomers is 
shown in Table 5. In reproduction cork, the α,ω-diacids are the 
most abundant monomers (53.0% of the monomers), followed 
by ω-hydroxyacids (30.6%). The most abundant single mono-
mer is the 9-epoxyoctadecanedioic acid (26.7%), followed by 
22-hydroxydocosanoic acid (9.2%), 9,10-dihydroxyoctadecano-
dioic acid (9.0%), and 9-epoxy-18-hydroxyoctadecanoic acid 
(8.5%). In terms of chain length, most fatty acids have 18 and 22 
carbons, representing, respectively, 66.2 and 14.4% of the total 
monomers. Suberin also contains, as a major monomer, glycerol 
that accounts on average to 8.5 or 14.2% of the suberin (Graça and 
Pereira, 2000; Pereira, 2015).

Lignin is the second most important component in the cork 
cell wall. Cork lignin is a G-type lignin composed by 95% guaiacyl 
units, 3% syringyl units, and 2% 4-hydroxyphenyl units (Marques 
et al., 2006; Marques and Pereira, 2013) with 80% of the inter-unit 
linkages as β-O-4-alkyl-aryl ether bond (Marques et al., 2016).

The hemicelluloses are mainly composed of xylose and arab-
inose, with smaller amount of galactose and mannose (Table 4).

There is a substantial chemical variability of Q. suber cork 
regarding between-tree and between-site differences that has 
been addressed in several studies (Pereira, 1988, 2013; Conde 
et al., 1998; Bento et al., 2001; Sen et al., 2016a). The content of 
suberin is the most important chemical attribute of cork since it is 
its chemical fingerprint and is directly related to most of its typical 
properties (Pereira, 2015).

Utilizations
Cork oak forests extend to about 2.2  million  ha and produce 
annually up to 200,000  tons of cork that feed an important 
industry (APCOR, 2015). Portugal is the main producer of raw 
cork and of cork products that include mainly cork stoppers for 
the wine industry and insulation and surfacing boards (Pereira, 
2007). The production of cork is based on the periodical removal 
of the cork layer by cutting large planks that are pulled out from 
the stem (Figures 3D–F). The cork removal is made usually in 
June–July, when the tree and the phellogen are active and allow 
an easy separation of the cork. The period between cork removals 
is usually 9 years in the major producing regions, which allows a 
thickness of the cork plank suitable to produce the cork stoppers 
(>24 mm). The cork oak silvicultural system is directed for cork 
production and is regulated, e.g., the minimum period between 

cork removals or the extension of the debarking, aiming at main-
taining the overall sustainability of the forests.

The cork planks are primarily directed for the production of 
natural cork stoppers that are bored out from the planks in the 
axial direction (Costa and Pereira, 2010). If the cork planks are 
too thin to allow this, they are directed to produce cork discs 
to be used for sparkling wine stoppers. The residues of these 
production lines, as well as other unsuitable cork pieces (for 
instance, virgin cork) are triturated, and the cork granules are 
agglomerated with suitable adhesives for production of technical 
wine stoppers, insulation boards, flooring and surfacing boards, 
joint sealants, and damping and shock absorption layers, among 
other usages (Pereira, 2007).

The cork of Q. suber has been comprehensively studied. 
Nevertheless, areas of interest remain where more knowledge 
and research are needed, e.g., fundamental studies on the topo-
chemistry and 3D architecture of the cork cell wall, the extent and 
causes of natural variability in chemical composition and cellular 
features, and how these relate with properties, as well as innova-
tive approaches to product development and new uses.

Quercus variabilis
Quercus variabilis (Chinese cork oak) is a species with a distribu-
tion area in China, Korea, and Japan; in China, it is found mostly 
in the Shaanxi province and in neighboring western Hubei and 
eastern Sichuan provinces (Zhang and Lu, 2002; Zhou et  al., 
2010). In China, it is exploited for cork production but with less 
importance than the cork oak in Europe, although cork produc-
tion has increased in the last years to approximately 50,000 tons 
in conjunction with the marketing of some cork products (Zhao 
et al., 2013; Ferreira et al., 2016a). The tree is medium-sized to 
large, growing up to 25–30 m, and the bark forms a continuous 
periderm around the stem with a thick layer of cork, as in the 
cork oak, and the stem appearance of these two species is similar 
(Figure 5).

Some research about this species can be found, mainly in 
China, Japan, and Korea as demonstrated by several authors 
[e.g., Kim et  al. (1990), Kim (1993), Wei et  al. (2007), YaFang 
et al. (2009, 2012), Zhang et al. (2009), and Miranda et al. (2013)], 
but with the limitation that most of it is not written in English. 
Recently, Ferreira et al. (2016a) analyzed the virgin and reproduc-
tion cork, comparing their chemical and cellular characteristics 
with those of the cork oak.

Cork Cellular Structure
The cork cells from Q. variabilis are polygonal in a honeycomb-
like arrangement in the tangential section, while the transverse 
and radial sections show a brick-wall structure with an alignment 
in parallel rows (Figure 2) (YaFang et al., 2009; Miranda et al., 
2013; Ferreira et al., 2016a). Cork cells are prismatic, and the cell 
walls present corrugations, especially the earlycork cells that form 
against the previous latecork cells (Miranda et al., 2013; Ferreira 
et al., 2016a).

Like in the cork oak, the Chinese cork has rings with larger 
earlycork cells and with thinner walls than latecork cells. The 
average ring width of Q. variabilis is significantly smaller than 
in Q. suber cork (0.82 vs. 2.06  mm), and each ring has two to 



FIGURE 5 |  Quercus variabilis stem—“Chinese cork oak bark” by 
Velela—own work. Licensed under Public Domain via Commons  
https://commons.wikimedia.org/wiki/File:Chinese_cork_oak_bark.jpg#/
media/File:Chinese_cork_oak_bark.jpg.
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six latecork cells representing 14% of the ring width (Kim, 1993; 
Miranda et al., 2013; Ferreira et al., 2016a).

Prism height in the earlycork cells of the reproduction cork of 
Q. variabilis is smaller than in Q. suber (23 vs. 30–40 µm, Table 2). 
The solid fraction in earlycork is, therefore, higher in the Chinese 
cork than in Q. suber cork (13 vs. 8–9%) (Miranda et al., 2013; 
Ferreira et al., 2016a). Consequently, Q. variabilis cork has higher 
density than Q. suber, what constitutes a disadvantage as an 
insulating material (Kim, 1993; Miranda et  al., 2013). Another 
difference between these two corks is the appearance of the cell 
wall: the lumen side of the cork surface of Q. variabilis is rough 
with deposits of several dimensions, while in Q. suber, it is smooth 
and with only occasional deposits (Miranda et al., 2013).

Like in the cork oak, lenticular channels cross radially the cork 
layer with a circular or elliptical shape in the tangential section 
and with filling tissue (Kim, 1993; Ferreira et al., 2016a).

Chemical Composition
Virgin and reproduction cork of Q. variabilis are chemically very 
similar: on average 0.9% ash, 9.2% extractives, 37.8% suberin, 
and 28.5% lignin. The composition is within the variation range 
of reproduction cork from Q. suber (Table 3) although with less 
extractives, with lower levels of non-polar compounds extracted 
by dichloromethane (YaFang et  al., 2009; Miranda et  al., 2013; 
Ferreira et al., 2016a). The ratio suberin/lignin is 1.4 (virgin cork) 
and 1.3 (reproduction cork), lower than the average of 2.0 in 
Q. suber (Ferreira et al., 2016a). Given that most of the properties 
of cork result from the joint presence of suberin and lignin in 
the cell wall and their relative proportion, the higher proportion 
of lignin will give Q. variabilis cork higher compressive strength 
than Q. suber (Pereira, 2013).

Polysaccharides (Table  4) show a large presence of xylan-
based hemicelluloses and a comparable proportion of cellulose 
(glucose amounts to 52% of the neutral sugars).

Suberin composition (Table 5) shows a substantial difference 
in relation to the reproduction cork from cork oak: Q.  vari-
abilis cork has more ω-hydroxyacids and less α,ω-diacids. The 
main monomers in Q. variabilis suberin are 22-hydroxydoc-
osanoic acid (35.1–21.4%), 18-hydroxy-9-octadecenoic acid 
(22.0–17.1%), and 9,10-epoxy-18-hydroxyoctadecanoic acid 
(10.0–10.2%) (Ferreira et  al., 2016a). Epoxyacids have lower 
contents (13.3–14.4%, Ferreira et  al., 2016a) than in Q. suber 
suberin (30%, Graça and Pereira, 2000). The relation between 
the saturated and the substituted acids in Q. variabilis suberin 
is 1.0–0.7 (0.4 in Q. suber) (Ferreira et al., 2016a). Therefore, it 
is to be expected that suberin spatial development may be more 
compact in Q. variabilis cork. Ferulic acid is also present in the 
suberin extracts (3.6–3.0%), enforcing the conclusions about 
its function in the cross-linking between suberin and lignin 
(Marques et al., 2016).

Utilizations in Perspective
Cork of Q. variabilis is at present already harvested, industri-
ally processed, and commercialized. Due to the characteristics 
of the raw material, it cannot be used for production of solid 
cork products, namely for wine stoppers; instead, it is granulated 
and used in agglomerates for various surfacing and insulation 
applications.

The cork from Q. variabilis presents lower quality than that 
from Q. suber, namely, higher density, compressive strength, 
and elasticity. However, this cork presents characteristics that 
are compatible with its use as an insulating, sealing, and energy 
absorption material and may be considered as a complementary 
raw material for cork from cork oak (Miranda et al., 2013; Ferreira 
et al., 2016a). The cork from Q. variabilis can also be a potential 
source of friedelin or of betulinic acid, due to the high levels of 
these triterpenes in the extractives (Ferreira et al., 2016a).

The exploitation of this species as a cork provider is far from 
being developed and optimized as it is for Q. suber and its cork, 
e.g., the development and improvement of Q. variabilis silvi-
culture and forest management as well as of the respective cork 
industry may overcome the present constrains. More knowledge 
and research are certainly needed in the tree physiology related 
to the bark and cork formation that would complement applied 
silvicultural studies. The variation of cork characteristics 
between trees and geographical locations as well as with tree 
age is also important for improving products and industrial 
processes.

Kielmeyera coriacea
Kielmeyera coriacea is natural from the savannah-type ecosys-
tems of the Brazilian cerrado. The trees are in general 1–4 m high 
(Rios, 2007) and the stem is covered by a conspicuous cork bark 
(Figure 6).

The bark can be several centimeters thick and has a periderm 
with 1.1–1.8 cm of cork and only a few inclusions of phloem (Rios 
et al., 2011). The cork tissue may be detached from the stem and 
the tree has a high regeneration capacity of the periderm and its 



FIGURE 6 |  Kielmeyera coriacea tree in the Brazilian cerrado (Minas Gerais) and its cork bark.
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cork; this has led to suggestions of exploitation with successive 
cork removals at 5- to 6-year rotations (Souza, 1974; Lima and 
Marcati, 1989).

The phloem inclusions appear as thin bands, approximately 
tangentially oriented and parallel to the phellogen, representing 
from 10 to 25% in area. Lenticels are present and correspond from 
less than 1 to 15% of the cork cross section. Together phloem 
inclusions and lenticels represent between 12 and 40% of the 
outer bark area (Rios, 2011).

Cork Cellular Structure
The cellular structure of K. coriacea cork is similar to that of 
Q. suber cork. The cork cells are hexagonal prisms, disposed in 
a honeycomb-like arrangement (Figure 2); cell wall thickness is 
between 1.5 and 2 µm, and cell length in the radial direction is 
significantly higher than in cork oak cork (Table 2).

Chemical Composition
The chemical analysis of K. coriacea virgin cork, shown in Table 3, 
includes not only the cork tissue but also its phloem inclusions. 
The content of suberin is from 16 to 30%, and this species presents 
higher contents of lignin than cork oak cork with 43.6–55.3% 
(Rios et al., 2014).

Table  4 shows that xylans are the most important hemicel-
luloses in the virgin cork from K. coriacea; the glucose proportion 
is higher than in cork of Q. suber and of all the other reported 
species.

Kielmeyera coriacea cork suberin (Table 5) is chemically com-
posed mainly by ω-hydroxyacids and α,ω-diacids have a lower 
proportion (Rios et al., 2014). The main ω-hydroxyacids are the 
C18 9,10 mid-chain substituted ones, namely, with an unsaturated 

group (18-hydroxyoctadec-9-enoic-acid) and a vicinal diol group 
(9,10,18-trihydroxyoctadecanoic acid). The α,ω-diacids include 
the octadec-9-ene-1,18-dioic acid and 9,10-dihydroxyoctade-
cane-1,18-dioic acid. This suberin does not contain acid mono-
mers with saturated chains, either ω-hydroxyacids, α,ω-diacids, 
or n-alkanoic acids (Rios et al., 2014).

Utilizations in Perspective
There is no industrial utilization of K. coriacea bark as a raw 
material for cork products. However, its exploitation as a 
cork provider has been already suggested (Natividade, 1950), 
namely, for the production of cork agglomerates (Rios et  al., 
2014) since the homogeneity of the cork layer does not seem 
suitable as a raw material for solid cork products. The cellular 
and chemical characteristics of K. coriacea cork are compatible 
with the common uses of cork, namely, as an insulation and 
surfacing material after trituration and agglomeration. Its use 
as a source for bio-based chemicals was also suggested, e.g., 
xantones and long-chain fatty acids from the extractives, or the 
bifunctional ω-hydroxyacids and α,ω-diacids monomers from 
suberin (Rios et al., 2014). However, any further considerations 
on the potential use of K. coriacea cork will require studies on 
its characterization as well as on tree-related aspects of cork 
development.

Plathymenia reticulata
Plathymenia reticulata is a species native to South America that 
vegetates in the Atlantic forest and, as also K. coriacea, in the 
cerrado, a particular savannah-type ecosystem. It grows up to 
30 m but in the cerrado it is generally smaller reaching only 5 m. 
Its most important applications are relative to the wood which 



FIGURE 7 | Stem cross section of Plathymenia reticulata, a tree from 
the Brazilian cerrado (Minas Gerais).
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is rot-resistant and widely used as a structural timber and in 
high-end carpentry (Carvalho, 2009). The stem has a cork bark, 
as shown in Figure 7.

The only study on the cork of this species is reported here, 
giving data on chemical composition and cellular structure (Mota 
et al., 2016).

Periderm Development
The bark of this species presents an internal thick brown layer of 
phloem that is covered by a periderm containing a conspicuous 
light brown layer of cork with deep fissures that result from the 
tangential growth stress. The periderm develops continuously 
around the stem with a lifespan probably equal to the tree age 
and with an annual regular activity of the phellogen (Mota et al., 
2016).

Cork Cellular Structure
Plathymenia reticulata cork cellular structure has no substantial 
difference from the one of Q. suber cork. The cork cells are 
polygonal, in a honeycomb-like arrangement (as in Figure  2), 
cell wall thickness is within the variation range observed for 
Q. suber but prism base edge is much higher than in cork oak 
(Table 2).

The cork from P. reticulata shows growth rings, with fewer and 
smaller latecork cells (two to four cells in a radial row) and more 
and larger earlycork cells (six to nine cells), although the differ-
ences between earlycork and latecork are not so pronounced as in 
the cork oak cork, leading to a more homogeneous material (Mota 
et al., 2016). Large variations of size between cells were observed, 
either in the tangential or in the non-tangential sections. Like 
in Q. suber, the cork cells of this species have undulations in the 
non-tangential sections as well lenticular channels, sometimes 
with filling tissue.

Chemical Composition
The summative chemical composition is included in Table  3 
(Mota et  al., 2016). The important feature is that lignin is the 
major structural component and not suberin (34.5 and 24.7%, 
respectively). This indicates a low value of the suberin/lignin ratio 
of 0.7; this was also found by Rios et al. (2014) for the other cer-
rado species K. coriacea. In comparison with the cork of Q. suber 
although there is a large variability in the chemical composition 
values, the ratio suberin:lignin is quite above this value (Pereira, 
2013). This chemical difference certainly will bring differences in 
the chemical behavior, as discussed in Pereira (2015).

In P. reticulata cork, xylan-based hemicelluloses prevail with a 
considerable proportion of arabinose (Table 4), including acetyl 
substitutions and uronic acid monomers (Mota et al., 2016).

The suberin composition (Table 5) shows more ω-hydroxyfatty 
acids and less α,ω-diacids than in Q. suber reproduction cork 
suberin. The main individual suberin monomers are the 
18-hydroxyoctadecanoic acid (saturated and substituted), the 
octadecanodioic acid, the tetracosanoic acid, and the hexacosa-
noic acid while only minor values of the 9-epoxyoctadecandioic 
acid (<1%) were found (Mota et al., 2016), contrarily to what hap-
pens in the suberin from cork oak where it is a main component.

Utilizations in Perspective
The cellular and chemical characteristics of P. reticulata cork are 
compatible with the common uses of cork, namely, as an insula-
tion and surfacing material after trituration and agglomeration 
(Mota et al., 2016). Other potential utilizations were identified, 
namely, as a biosorbent and as a raw material for extraction of 
valuable compounds like lupeol, fatty acids, and terpenoids.

However, in order to fully develop the utilization of P. reticu-
lata cork as a raw material for cork products under a sustainable 
cork production management, further research is needed to 
understand how periderm regenerates after cork removal and 
the characteristics of the subsequent cork layers. Should the cork 
be obtained as a by-product of tree exploitation for timber, i.e., 
the bark is produced as a residue, then its valorization for cork 
agglomerates is possible straightaway. In any case, studies on P. 
properties, e.g., density, compression, and insulation properties 
are needed.

Quercus cerris
Quercus cerris L. (Turkey oak) is a medium-sized tree that can 
reach up to 30  m. It has a distribution area from central and 
south-eastern Europe to Asia Minor (Sen et al., 2011b).

Quercus cerris bark (Figure 8) is thick (3–7 cm) with a brown 
grayish color, hard to the touch, and with short deep longitudinal 
furrows. It is composed of phloem, periderm, and a consider-
able proportion of rhytidome. The rhytidome has sequential 
periderms with phloem tissue between them. The cork is clearly 
distinguished forming patches of variable radial thickness that are 
non-continuous tangentially and axially. The external periderms 
of the rhytidome do not shed (Sen et al., 2011b).

There are some records on the utilization of Q. cerris cork as 
a substitute from Q. suber cork for agglomerates and stoppers 
(Sen et al., 2011b). Nowadays, neither the wood nor the bark of 



FIGURE 8 |  Quercus cerris logs (Turkey) and bark cross section.

12

Leite and Pereira Cork-Containing Barks

Frontiers in Materials  |  www.frontiersin.org January 2017  |  Volume 3  |  Article 63

this species is economically exploited, and until recently, very 
little research was made on the characterization of its cork.

Periderm Development
Quercus cerris has a conspicuous cork presence in the rhytidome 
as layers with a radial width from about 1 to 10 mm, while the 
phelloderm is composed of a layer of only two or three thin-
walled cells (Sen et al., 2011b).

The phellem layers present 2–5 growth rings, and each ring 
is composed of about 6–12 layers of phellem cells more or less 
radially aligned without intercellular voids. The phellem cells 
are suberized, with thin walls with a uniform thickness in the 
tangential and radial walls and are sometimes radially flattened. 
Like in Q. suber, at the beginning of the growth ring, cells are 
larger with thin walls, while at the end of the growth ring, they 
are smaller and have thicker walls. Despite this similarity, both 
species have different intensities of phellem growth. In fact, in 
turkey oak, each phellogen cell produces only 6–12 phellem cells/
ring in each radial row (Sen et al., 2011b), and in Q. suber, this 
figure is about 10–20 in young plants (Graça and Pereira, 2004) 
and up to 100 in mature trees (Pereira et al., 1992). It is also to 
remark that in this species, but not in Q. suber, one or two layers 
of the cork cells, in the limit of each growth ring, can thicken up 
and become very lignified (Sen et al., 2011b).

Lenticular channels crossing radially the periderm are rare and 
without filling material. This feature can be explained because in 
turkey oak cork layers are not continuous around the stem, as it 
happens in cork oak, and therefore, gas exchange between the 
innermost living tissues and the exterior does not require the 
development of these channels (Sen et al., 2011b). The cork tissue 
also includes lignified phloem cells (fibers and sclereids).

In what concerns phellogen longevity, it is probable that its 
lifespan is around 25 years (Sen et al., 2011b) but, the fact that each 
periderm presents from two to five rings suggests that phellogen 
activity is not annual and that the rings cannot be considered as 
successive annual rings (Sen et al., 2011a).

Cork Cellular Structure
The cork cellular structure of Q. cerris is very similar to the one 
presented in Section “Cork Structure and Chemical Composition” 
for Q. suber cork (Figure  2). In fact, the cork cells form a 

bidimensional network of edges and vertices without intercellular 
voids. The cells are mostly hexagonal prisms, stacked base-to-
base disposed in parallel rows aligned in the radial direction, in a 
compact space-filling arrangement. Frequently, in adjacent rows 
prism bases coincide with each other or lay in staggered positions 
(Sen et al., 2011a).

The cell walls also present corrugations. The intensity of cor-
rugation is greater in Q. cerris than in Q. suber, possibly due to the 
thicker cell walls and to the more irregularity in the stress radial-
growth distribution along the cork tissue as a consequence of the 
presence of phloem between the cork layers (Sen et al., 2011a).

Cork ring width is on average 201 µm and contains seven to 
nine earlycork cells and two to four latecork cells in each radial 
row (Sen et al., 2011a). Dimensions of earlycork and latecork cells 
are presented in Table 2. Prism base edge and cell wall thickness 
are higher in Q. cerris cork than in Q. suber cork, and therefore, 
Q. cerris cork has a higher density (Sen et al., 2011a).

Chemical Composition
The chemical composition of Q. cerris cork is given in Table 3. 
Suberin is the major cell wall structural component of the cork 
from Q. cerris but almost in the same proportion as lignin; the 
suberin:lignin ratio is 1.0. In the polysaccharides, that represent 
almost 16.7%, glucose is the major monosaccharide (Table 4) but 
important contents of xylose, arabinose, and galactose are also 
present. This composition suggests that the main hemicelluloses 
are xylans (Sen et al., 2010).

In Q. cerris cork suberin, ω-hydroxyacids represent almost 90% 
of all long-chain monomers (Table 5). The single most abundant 
compound is the vic-diol mid-chain substituted ω-hydroxyacid 
in C18: the 9,10,18-trihydroxyoctadecanoic acid represents about 
54% of all long-chain monomers. The saturated ω-hydroxyacid 
in C22 represents 20% and the unsaturated ω-hydroxyacid 
18-ω-hydroxyoctadec-9-enoic acid 11%. The α,ω-diacids are pre-
sent in less than 8% of the total suberin and are constituted mostly 
by vic-diol substituted 9,10-dihydroxyoctadecanedioic acid with 
5% of the long-chain monomers (Sen et al., 2010). Alkanoic acids 
in C16 and C18 as well as alkanols in C20, C22, and C24 represent 
a small part of the suberin (Sen et al., 2010). The C18 monomers 
are the most abundant, followed by C22 monomers, and their 
relative amounts are not very different from the ones found in 
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cork oak (Sen et  al., 2010). The major quantitative difference 
between Q. cerris suberin and Q. suber reproduction cork suberin 
lies on the relative proportion of α,ω-diacids and ω-hydroxyacids 
which is much lower in the first one (Table 5).

Utilizations in Perspective
Due to the characteristics of Q. cerris bark, the industrial utiliza-
tion of its cork requires previous trituration and fractioning by 
size and density in order to obtain pure cork or cork-enriched 
fractions. Therefore, the use of cork is limited to granulates and 
the production of cork agglomerates. A pilot-scale fractioning 
of Q. cerris bark was already made (Sen et  al., 2016b): a yield 
of 8.4% cork pure granulates suitable for agglomerated stoppers 
was obtained as well as 18.5% of cork-rich fractions usable in the 
production of surfacing and other cork agglomerates.

Considering the comparative cost advantage of the Q. cerris 
cork, it seems economically interesting to integrate it into the pre-
sent cork industrial production lines, thereby allowing to enlarge 
the cork raw-material supply base. However, further studies are 
required for process optimization and for the development of 
Q. cerris-specific cork-based products.

Betula pendula
Birch (B. pendula) covers a large part of the Eurasian continent, 
from the Atlantic to eastern Siberia (except Iceland, the Iberian 
Peninsula, and Greece) but is present mainly in northern Europe 
where it is one of the most important species for pulp production 
(Hultén and Fries, 1986). Birch is a deciduous medium-sized tree, 
usually 15–25 m high but can reach 30 m.

In 2013, the European pulp and paper industry consumed 
about 19.6 million m3 of birch wood, thereby generating a large 
amount of bark (CEPI, 2013). Given a content of outer bark at 
3.4% (Jensen, 1948), an annual estimate potential availability of 
birch outer bark at about 900,000 tons may be made.

The outer bark of birch has been used traditionally in small 
handicrafts, e.g., boxes, for canoe building, and for the still in-use 
roof coverings, but it is at present mainly used for energy.

Periderm Development
Betula pendula bark has a rhytidome with numerous tightly 
packed periderm layers that consist of thick-walled cork cells 
inwards and thin-walled cells outwards (Schönherr and Ziegler, 
1980), that resemble annual increments produced in the early and 
late season of the growth period (Ferreira et al., 2016b). The birch 
periderm contains alternate layers of strongly suberized cells 
(five layers of cells with tangential walls up to 2 µm thickness) 
with a variable number of layers with little or no suberization 
(Schönherr and Ziegler, 1980). The cells are mostly flattened in 
the radial direction and stretched in the tangential direction and 
show many cell wall deposits on the lumen side (Ferreira et al., 
2016b). Figure 9 shows SEM photographs of the cross section of 
birch outerbak.

Birch bark is described as having a rhytidome composed 
by periderms with successive cork layers and phloem layers 
with several sclerenchymatic tissues (fibers, sclereids, cortical, 
and parenchyma cells) and showing conspicuous lenticels that 
contain suberized and non-suberized cells disposed in stratified 

layers (Bhat, 1982; Trockenbrodt, 1991; Ferreira et  al., 2016b). 
Suberized layers are continuous across the lenticels and maintain 
in between the loose tissue together, breaking up successively as 
a new phellogen is formed. Intercellular spaces with diameters 
up to 5 µm are seen in the tangential section across the lenticels 
that represent about 3% of the total periderm area (Schönherr 
and Ziegler, 1980).

Chemical Composition
There are a few studies on B. pendula bark chemical composition 
made in the 70s and 80s of last century [e.g., Holloway (1972, 
1983), Holloway and Deas (1973), Ekman (1983), and Ekman 
and Eckerman (1985)] and more recently on suberin composition 
[e.g., Gandini et al. (2006) and Ferreira et al. (2013, 2016b)]. It 
should be noticed that several of the studies were made with the 
whole birch outer bark instead of only the cork fraction, thereby 
including the non-suberized cells.

Betula pendula cork contains a large amount of extractives 
of about 32% (Table  3) mostly corresponding to lipophilic 
extractives, i.e., 98% of the total extractives are dichloromethane 
solubles. Their composition shows the striking dominance of trit-
erpenoids (90–97% of all compounds) where betulin corresponds 
on average to 71% of the extract; the other compounds are lupeol 
(on average 14%) and betulinic acid (4%) (Ferreira et al., 2016b).

Suberin represents 36% of cork (Ferreira et  al., 2016b) cor-
responding to 53% on extractive-free cork that are in agreement 
with previous reported values of 59% (Holloway, 1983) and 51% 
(Holloway and Deas, 1973). Lignin amounts are 14% of the cork, 
and therefore, the suberin:lignin ratio is 2.5.

Cellulose and hemicelluloses represent only 10% of B. pendula 
cork with most hemicelluloses formed by arabinose and xylose 
(Table 4).

The suberin from B. pendula (Table  5) contains aliphatic 
ω-hydroxyacids of chain lengths between C16 and C26, with a 
large proportion of components in C18 (73% of all long-chain 
monomers) and C22 and with smaller quantities of fatty acids 
and neutral constituents (Holloway, 1972). In comparison with 
Q. suber reproduction cork, birch cork suberin contains much 
more ω-hydroxyfatty acids and much less α,ω-diacids. In fact, 
the main individual suberin monomers are the 9,10-epoxy-
18-hydroxyoctadecanoic acid (30% of total monomers), the 
22-hydroxydocosanoic acid (13%), the 9,10-dihydroxyoctade-
candioic acid (12%), and the 18-hydroxyoctadecanoic acid (12%) 
(Ferreira et al., 2016b).

Utilization in Perspective
Birch cork does not have the structural and cellular characteristics 
that impart the properties that have made cork so interesting as 
a material. The cell biometry, e.g., the radially flattened cells and 
the cork thickness of the periderms, the weak tangential cohe-
sion, and the heavy inclusion of lumen deposits do neither allow 
a prospective utilization for stoppers nor for the most common 
applications of cork as a cellular material (Ferreira et al., 2016b). 
Consequently, this cork main utilization and valorization will be 
as a chemical source.

Due to its high content in suberin, birch outer bark has been 
proposed as a source of monomers, e.g., of ω-hydroxyfatty acids, 



FIGURE 10 | Pseudotsuga menziesii stem, cross section of the bark and SEM photograph of a transverse section of cork.

FIGURE 9 | SEM photograph of a transverse section of Betula pendula outerbark and of cork cells.
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α,ω-dicarboxylic acids, and homologous mid-chain dihydroxy 
or epoxy derivatives for production of novel macromolecular 
materials (Gandini et al., 2006), polyesters (Olsson et al., 2007; 
Sousa et al., 2007), polyols (Evtiouguina et al., 2000, 2002), polyu-
rethanes (Cordeiro et  al., 1997, 1999; Evtiouguina et  al., 2001) 
and has also been considered as a source of extractives, namely, 
of triterpenoids and in particular of betulinol (Pinto et al., 2009). 
Some patents have already addressed the possibility of using birch 
bark as a source of chemicals (Krasutsky et al., 2003, 2005, 2009).

Pseudotsuga menziesii
Douglas-fir (P. menziesii) is a conifer native from western North 
America, occupying approximately 14.4 million ha in the USA 
and 4.5 million ha in Canada (Weiskittel et al., 2012) and intro-
duced into many parts of the temperate regions of the world, 
including Europe (Lavender and Herman, 2014). It is a very 
important species for timber production in its natural distribu-
tion area and also in Europe. The height of P. menziessi mature 

trees depends on site location, but it can reach up to 100  m 
(Lavender and Herman, 2014).

The bark contains a substantial proportion of cork from 25 to 
almost 50% (Kurth, 1953; Ross and Krahmer, 1971; Krahmer and 
Wellons, 1973), and cork formation occurs at a relatively early 
age (Hergert and Kurth, 1952). Douglas-fir bark presents a great 
variety in thickness, density, chemical composition, and cork 
content according to site quality, tree age, and axial position on 
the tree (Kurth and Kiefer, 1950; Hergert and Kurth, 1952; Ross 
and Krahmer, 1971).

The stem appearance is shown in Figure 10. The rhytidome 
contains alternated bands of phloem (dark brown) with cork 
tissues (light cream brown) very well distinguishable to the 
naked eye.

Periderm Development
The development of the first periderm in P. menziesii is similar to 
the process reported in Section “Bark Structure and Formation” 



15

Leite and Pereira Cork-Containing Barks

Frontiers in Materials  |  www.frontiersin.org January 2017  |  Volume 3  |  Article 63

and when it dies, a new phellogen forms inside the phloem (Grillos, 
1956). The new phellogen does not form a whole circumference 
around the tree, but only in short portions around and along the 
length of the stem; therefore, the cork layer is interspersed with 
small parts of inactive crushed phloem (Grillos, 1956; Krahmer 
and Wellons, 1973). Douglas-fir rhytidome is composed by 
approximately 49% (in volume) of dead phloem and 51% of 
periderms (Patel, 1975).

Although the first phellogen can be functional for 25 to 
35 years, only the deeper phellogens produce enough cork that 
show distinct increments (Grillos, 1956).

Most of the periderm is formed by cork cells disposed in 
well-oriented radial rows and the phelloderm layer is between 
one and three cells thick (Chang, 1954; Grillos, 1956; Krahmer 
and Wellons, 1973). The cork thickness is very variable between 
trees, in average 1.8  cm at breast height ranging from 2 cm to 
less than 1 mm at root collars and from 5 to 40 cell layers (Kurth, 
1953; Grillos, 1956; Ross and Krahmer, 1971). At any particular 
tree height, the number of cork growth increments is inferior to 
the age of the tree (Ross and Krahmer, 1971).

One striking feature of Douglas-fir cork is the major presence 
of bands of compressed cork cells that build up a compact layer 
of crushed cells due to a severe folding of the radial cell walls 
(Ross and Krahmer, 1971; Cardoso et al., 2016). These bands of 
high solid content appear as dark layers, with a successive tan-
gential alignment, separated by light colored layers. These layers 
have been called as growth increments (Chang, 1954; Ross and 
Krahmer, 1971; Krahmer and Wellons, 1973).

Cork Cellular Structure
Pseudotsuga menziesii cork cells are in general thin-walled and 
uniform in thickness. Some thick-walled cells with small pores 
or pits are occasionally observed either disposed in bands or 
scattered (Chang, 1954; Grillos, 1956); when their proportion is 
high the cork is referred as “woody cork” (Grillos, 1956; Krahmer 
and Wellons, 1973).

Cork cells are more or less isodiametric, symmetrical in shape, 
and disposed without intercellular voids. On the transverse 
(Figure  10) and radial directions, they are similar, square to 
rectangular (if the cells have not been crushed); on the tangential 
direction, the cells are mostly pentagonal or hexagonal (Krahmer 
and Wellons, 1973; Cardoso et al., 2016).

Douglas-fir cork cell dimensions are presented in Table 2. The 
cell prism height and base edge are high and cell wall thickness is 
low; the radial walls are wrinkled due to growth stresses after the 
cell walls are formed (Grillos, 1956; Krahmer and Wellons, 1973; 
Cardoso et al., 2016); 60% of the cells observed by Cardoso et al. 
(2016) were crushed.

Chemical Composition
Pseudotsuga menziesii cork has a high content of extractives 
(Table 3) that are mostly polar compounds soluble in ethanol and 
water (23.5% of the cork) (Ferreira et al., 2015a). The lipophilic 
extracts (5.4% of the cork) contain as major component catechin 
(49% of the total), as well as pinoresinol and β-sitosterol (Ferreira 
et al., 2015a).

The cell walls are composed mainly of suberin (Krahmer and 
Wellons, 1973; Graça and Pereira, 2000). Suberin represents 
36.2% of the Douglas fir cork and lignin 16.8% (Ferreira et al., 
2015a). The suberin:lignin ratio is 2.2, a value similar to the one 
in Q. suber cork (Pereira, 2013).

The monosaccharide composition (Table 4) shows that hemi-
celluloses contain arabinoxylans and also galactoglucomannans, 
e.g., galactose and mannose represented 20.4% of the sugars, and 
xylose and arabinose 24.2%. This differs from the compositions 
of the other corks and is associated to the fact that Douglas-fir is 
a softwood (Ferreira et al., 2015a).

Suberin composition (Table 5) shows that the most important 
monomers are the ω-hydroxyacids, representing 36.2% of the 
total, followed by the α,ω-diacids (18.6%); chain lengths of C16 
and C22 are more relevant (49% of the identified long-chain 
monomers) (Ferreira et al., 2015a).

When comparing with Q. suber cork suberin, the Douglas-fir 
suberin contains more saturated α,ω-diacids (hexadecanedioic 
and octadecanedioic acids), less unsaturated α,ω-diacids, and no 
epoxyacids (Graça and Pereira, 2000; Ferreira et al., 2015a).

Utilizations in Perspetive
The potential of Douglas-fir bark as a raw material, namely, of its 
cork component, was recognized since the 50s of last century and 
several studies were performed (Kurth and Kiefer, 1950; Hergert 
and Kurth, 1952; Kurth, 1953; Grillos, 1956).

Although there is a considerable proportion of cork in 
Douglas-fir bark, the small dimensions of the cork layers and 
their discontinuous distribution with interspersed phloem 
restrict its direct use and require previous bark milling and 
particle size separation (Ferreira et al., 2015a,b). An integrated 
bark valorization approach should contemplate the separation 
of cork-rich fractions to be further purified and used as a raw 
material for cork-based products (e.g., composites), while 
phloem-rich fractions can be used for the extraction of polar 
soluble compounds (e.g., phenols and polyphenols), while the 
polysaccharide–lignin matrix may be considered for biorefiner-
ies (Ferreira et al., 2015b).

The utilization of the Douglas-fir cork granulates in products 
that rely on the properties given by the typical cork cellular 
structure is hindered by the high proportion of crushed cells in 
this cork (Cardoso et al., 2016). Studies on structural improve-
ment, e.g., cell expansion might therefore increase its utilization 
potential.

Abies lasiocarpa var. arizonica
Abies lasiocarpa var. arizonica (corkbark fir) is a gymnosperm 
that occurs naturally in the United States of America, namely, in 
the Arizona, Colorado, and New Mexico at about 2400–3400 m 
of altitude. The wood is used for general structural purposes and 
pulp manufacture. This species is a medium-sized tree growing up 
to 20 m, exceptionally to 40–50 m.1 The bark forms a rhytidome 
and has a rough aspect.

1 http://www.conifers.org/pi/Abies_lasiocarpa.php.
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The only works found on the cork from the corkbark fir 
were from the 50s and the 60s of last century (Chang, 1954; 
Mogensen, 1968).

Periderm Development
The first phellogen initiates in the outermost layer of the cor-
tex below the epidermis. It is long lived and remains active, 
producing a relatively large amount of cork before a new one 
is formed, deeper inside the phloem, initiating the formation 
of a rhytidome. The rhytidome starts at 43–88  years of age, 
depending on sun exposure (Mogensen, 1968). Before rhyti-
dome formation, the external bark has a soft and spongy nature 
given by the phellem but becomes rough and hard to the touch 
after the formation of the rhytidome. The cork layers do not 
form a complete circumference around the stem and crack 
due to diameter growth, and the outer layers may wear away 
(Mogensen, 1968).

Within the cork, there are periodic rows of cells with thick and 
sclerified outer tangential walls that mark the separation between 
the growth increments which, in young stems, can be correlated 
with the age of the stem. The other cork cells are thin-walled and 
usually slightly elongated radially.

Utilizations in Perspective
The use of this species as a raw material for cork products seems 
possible since the initial phellogen remains functional for a long 
period and produces a large quantity of cork. However, little is 
known on the structure, chemical composition, and properties 
of this cork, and research is needed to evaluate its potential 
utilization.

Abies concolor
Abies concolor (white fir) is a gymnosperm that occurs through-
out much of the mountainous western North America and, more 
scattered, in Mexico (Farjon, 2013). The trees are in general 
12–15 m high and are exploited for lumber (Gilman and Watson, 
2014). The bark in mature trees may be 10–15 cm thick at the stem 
base and is deeply furrowed, hard, and resistant to fire.

The outerbark contains salmon-colored corky layers inter-
spersed with areas of dark red phloem; cork represents from 25 
to 55%, depending on age and location on the stem (Hergert, 
1958). Only a few studies were performed in the 50s of last cen-
tury on white fir bark and on its cork fraction that was separated 
from air-dried pulverized bark by suspending in 60–85°C water 
and skimming off the cork particles (Hergert and Kurth, 1953; 
Hergert, 1958).

The chemical analyses of cork gave the following composi-
tion: 26% extractives removed with methylethylketone:water and 
water, 18.8% hydroxy fatty acids; 26.7% polyphenolic acids, 4.7% 
low-molecular-weight phenols mainly ferulic acid, 8.2% polysac-
charides (mainly cellulose, with glucose amounting to 58% of the 
neutral monosaccharides), and 15.6% lignin (Hergert, 1958). It 
should be noted that these results were obtained with a chemical 
protocol that markedly differs to the more recent summative 
chemical analysis.

Utilizations in Perspective
The potential commercial value of the cork fraction of white 
fir bark was recognized early (Hergert, 1958). However, the 
knowledge is very scarce, and further research should be car-
ried out to characterize this cork and its potential application 
value.

CONCLUDING REMARKS

This review shows that there are some species with a high 
content of cork in their barks which should be scrutinized, 
given the importance of cork as a raw material. The species with 
cork-containing barks may be classified as those with only one 
periderm and a continuous cork layer, e.g., Q. suber, Q. variabilis, 
and the cerrado species K. coriacea and P. reticulata, and those 
who form a rhytidome, therefore with cork layers interspersed 
with phloem, e.g., P. menziesii and Q. cerris.

The present cork industrial chain is based on the sustainable 
exploitation of cork from Q. suber, a species for which a dedicated 
silviculture and management have been fine-tuned along the 
centuries allowing a sustainable exploitation of the raw material; 
in succession, the cork industry has developed with sound and 
innovative technologies, and the body of knowledge on cork and 
the cork oak science is very large.

The cork from Q. suber is presently the only raw material that 
has the characteristics necessary for production of solid cork 
products, e.g., of wine natural cork stoppers, and for which the 
trituration and production of cork agglomerates are complemen-
tary production lines.

A new cork raw material has been brought recently to the 
market, the Chinese cork from Q. variabilis. Presently used only 
in triturated form, this raw material appears to have an interesting 
place given the already large amounts that are harvested as well 
as the existing forest potential, now still far from an adequate 
cork-targeted management. Research is under away, and it is 
foreseeable that in a few years the body of knowledge on this cork 
will increase substantially.

The valuable properties of cork, as benchmarked by the 
Q.  suber cork, require an adequate combination of structural 
and cellular features with the chemical composition. This is met 
by the corks of several species, e.g., K. coriacea, P. reticulata, and 
Q. cerris, that despite species specificities regarding cell biom-
etry and chemistry, have characteristics that allow forecasting 
“corkish” properties and uses. It is clear that knowledge on the 
raw material and on the species has to be gathered before any 
utilization attempts. This knowledge is scarce for most of the 
cases, with the exception of Q. cerris cork that has been recently 
under study and for which a pilot scale test has demonstrated the 
feasibility of cork separation and use.

The specific cellular characteristics may hinder or limit the 
use of cork as a cellular material. This is the case of B. pendula 
cork mainly due to cell biometry, and of P. menziesii due to the 
large proportion of heavily corrugated or collapsed cells. The 
use of such corks as a chemical source is, therefore, a promis-
ing valorization route. In fact, the extractives are a chemical 
component group that is receiving a lot of attention in research 
and development in various fields, including biomedical and 
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health  care. Also  suberin, the main structural component of 
cork cell walls, is a macromolecule with an unusual composition 
of long-chain fatty acids with different functional groups, e.g., 
hydroxyl, epoxide, and unsaturation, that is species specific and a 
potential source of chemical intermediates.

The available information gathered in this review on dif-
ferent species with cork-containing barks clearly shows that 
knowledge is still very limited or inexistent. Research on such 
barks, namely, regarding their structural and chemical char-
acteristics, is, therefore, a first step toward their prospective 
valorization.
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Effect of a Drought on Cork Growth
Along the Production Cycle

Carla Leite, Vanda Oliveira, Alexandra Lauw and Helena Pereira

Abstract Cork oak (Quercus suber L.) grows in the western Mediterranean region
for which the most recent climatic scenarios predict higher temperatures and lower
precipitation than usual values. Cork, the tree’s outerbark, is obtained under a sus-
tainable management system and has a considerable economic importance for forest
producers and industry. Cork’s specific set of properties allows multiple usages, from
cork stoppers to insulating materials. This paper presents the first results of a den-
droclimatological exploratory study about the effect of a severe drought in different
moments of the cork 9-year production cycle, e.g. beginning, middle or end of the
cycle. The results showed that the response of the phellogen (cork cambium) to the
severe drought of 2004–2006 is independent of its age. In a mitigating strategy for
the impact of the forthcoming more frequent drought events, and since cork growth
decreases due to the reduction of water availability, forest managers should extend
cork growth cycles and/or water cork oak stands. This is a way to ensure the
production of cork with enough thickness to produce stoppers, thereby contributing to
the overall sustainability of the cork sector in a climate change context.

Keywords Drought � Cork oak � Mediterranean region � Climate change

Introduction

Climate change is one of our most challenging issues in the 21st century1 either
regarding mitigation or adaptation strategies. The long term maintenance of
forests is greatly determined by the adaptive capacity of species2 under its two
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1Stott et al. (2016).
2Braeuning et al. (2017).
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components: the intrinsic adaptive capacity of trees and forests, and the
socio-economic factors determining the capability to perform planned adaptation
measures.3 Although tree species can adjust to new environmental conditions, there
is not much expertise about the processes involved.4 In the meanwhile, forest
managers do need to adapt their practices to the new reality in order to satisfy the
needs of all their stakeholders, from the public in general to a rather competitive and
demanding forest industry.

All climatic scenarios for Mediterranean ecosystems predict increasing tem-
peratures, water deficits and periodicity, intensity and duration of extreme events,
namely severe droughts, heat waves, heavy rainfall and fewer cold days.5,6 Tree
growth is constrained by water availability e.g. when evaporation is greater than
soil moisture uptake, stomata close to reduce water loss decreasing carbon uptake
and growth. For the Mediterranean basin, due to summer water deficits, it is
expectable to have productivity losses and changes in species distribution.7,8,9

Cork oak forests cover an area of approximately 2.2 million ha and produce
annually up to 200 thousand tons of cork that supply an important industry. 10

Portugal is the main producer of raw cork and cork products namely cork stoppers
for the wine industry and boards.11 The production of cork is based on the periodical
removal of the cork layer from the stem. In the main producing regions, the period
between consecutive cork removals is usually 9 years, enabling to have a cork plank
with the desirable thickness (>24 mm) for the production of cork stoppers (the cork
product with the major added value that supports all the cork segment).

The cork oak is ecologically plastic, adapting physiology and phenology to a
changing environment, namely to summer drought and higher temperatures. This
species vegetates well with mean annual precipitations of 600–800 mm, with
500 mm considered to be the minimum annual precipitation for a balanced tree
development.12 and 13 Furthermore it is sensitive to the amount and the moment
when rains occur, namely precipitation in late spring has more influence on cork
oak growth than the total annual precipitation, while it recovers quickly after a year
of extreme dryness.14

3Lindner et al. (2010).
4See footnote 3.
5IPCC (2014).
6See footnote 3.
7Santos and Miranda (2006).
8Gea-Izquierdo et al. (2013).
9Piayda et al. (2014).
10APCOR (2016).
11Pereira (2007).
12Natividade (1950).
13See footnote 11.
14Besson et al. (2014)
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In what relates to cork growth, results showed that rainfall, summer drought and
temperature are determining factors; in particular, water availability is the most
limiting factor for growth. 15,16,17 In fact, the rain period from May to September
strongly influences activity of the phellogen (the cork cambium).18 Cork growth is
also extremely affected by drought conditions in short time scales (from 2 to
11 months) namely regarding spring precipitation. Nevertheless, cork growth
rapidly recovers when drought conditions end.19

Similar to wood, it is possible to observe annual growth rings in cork as they are
marked by the presence of a layer of darker latecork cells at the end of the growth
season; the width of a cork ring is largely determined by the rate and duration of the
meristematic division of the phellogen20 which is seasonal with the environmental
conditions of light and temperature as the main drivers for begin and end of
dormancy.21

In spite of all the research performed so far about cork growth and its relation
with climate (e.g. temperature and precipitation), we identified a gap of knowledge
about the effect on cork growth of drought occurring in different moments of the
9-year cork growth cycle e.g. beginning, middle and end. Furthermore, as pointed
out by22 the present challenge is to translate the ecophysiology and forest ecology
scientific research into forest management prescriptions useful for forest owners and
managers.

This paper is an effort to overcome these shortcomings. With cork samples
collected in three sites, located in one of the largest continuous forest areas of cork
oak, we compared cork growth during the 2004–2006 drought that23 considered as
the driest event in the Iberian Peninsula over the last 140 years. The decrease of
cork growth and also the recovery after the drought were analyzed. The complete
growth (8 years) was also analyzed because the production of cork stoppers
requires to have planks with more than 24 mm thickness. The sites were selected in
order to have this drought event occurring in different moments along the growth
cycle (see Table 1), allowing to study its effect according to the age of the phel-
logen in 2005 (the year in which the growth is negatively affected by the drought).
Moreover, the results obtained are converted in forest management advices in order
to adapt or mitigate the effects of the forthcoming more frequent droughts in the
Mediterranean basin.

15Cherubini et al. (2003)
16Caritat et al. (2000)
17Oliveira et al. (2016)
18Pizzurro et al. (2010).
19See footnote 17.
20See footnote 11.
21Evert (2006).
22See footnote 2
23García-Herrera et al. (2007).
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Methods

Study Area

The cork samples used in this research were collected in three montado estates
located in central-west of Portugal, in the Coruche municipality. The sites are set in
the watershed of the Tagus river, in one of the main production areas of cork oak,
where the Mediterranean climate prevails. In all the sites forest management is
characterized by low tree density, with the trees being exploited for cork production
and, in site 1, the herbaceous layer is used for extensive grazing.

Data Acquisition

A set of 224 cork samples was collected at breast height (1.30 m) during the
stripping season of adult productive cork oak trees. The trees were randomly
selected in the sites and a proportion of the total trees under striping was sampled.
Table 1 shows some characteristics of the 3 sites sampled. All cork samples pre-
sented 8 complete years of growth with the previous debarking occurring 9 years
before (the stripping is performed when phellogen is active thereby interrupting the
cork growth in that year).

After debarking, the samples (±15 � 15 cm2) were boiled in water for 1 h at
atmospheric pressure and left to air-dry until equilibrium. For a more accurate
observation of the growth rings the transversal sections were polished and two
opposite radial strips with approximately 1 cm thickness were cut, fixed on a
microscope slide (Fig. 1a) and digitalized in a laser based fluorescence imager
(Fluoro Image Analyzer FLA -5100, Fujifilm, Life Science USA, Stamford, CT
06092).24 Cork ring thickness was measured with AnalySIS® image processing
software (Analysis Soft Imaging System GmbH, Münster, Germany, version 3.1)
and along two transects in the radial direction with an accuracy of 0.01 mm. For
each tree the media of the two measurements was determined.

Table 1 Number of samples collected in each site, number of samples measured in this research,
stripping year, civil years of the chronology (8 years) and age of the phellogen in 2005

Number of
samples
collected

Number of
samples
measured

Stripping
year

Civil years of
the chronology

Age of the
phellogen in
2005 (years)

Site 1 37 32 2007 1999–2006 7

Site 2 84 60 2009 2001–2008 5

Site 3 92 57 2012 2004–2011 2

24Surový et al. (2009).
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The initial and final half rings corresponding to the years of the present and last
strippings were not considered for analysis as they are not complete growth years.
As recognized earlier by several authors,25,26 and27 the delimitation of annual rings
was not unequivocal in all the samples (Fig. 1b), and only in 70% (149) of the
samples cork rings width were measured and cork rings dated (Fig. 1c).

Data Analysis

In order to take a brief characterization of our raw data a boxplot for each site was
performed, allowing us to compare the sites and evaluate the respective variability.

As usually done in dendroclimatic studies,28 each cork-growth curve was plotted
and standardized in order to remove systematic changes of growth associated with
phellogen age and maximize the inter-annual fluctuations due to weather. Due to
the low age of the phellogen and in a similar approach as performed by29 and30 we
used a negative exponential curve in the standardization process (detrend) through

Fig. 1 a Slides with cork samples b example of a sample in which the delimitation of the 8
complete growth years is not possible c example of a sample from site 3 measured and dated

25Caritat et al. (1996).
26See footnote 24.
27See footnote 17.
28Fritts (1976).
29See footnote 17.
30Costa et al. (2001).
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the dendrochronology program library (dplr) of the R software31 and32. This
procedure fits the following model:

Gt ¼ ae�bt þ k

where Gt is the growth trend and is estimated as a function of time t, being a, b and
k, the coefficients. If that nonlinear model could not be fitted, then a standard linear
model was adjusted Gt ¼ b0 þ b1t where b0 is the intercept and b1 the slope.33

After this procedure, for each tree, RWI—ring width indexes (or Cork Growth
Indexes) were calculated dividing the real cork growth (Rt) by the expected growth
at time t (Gt).

We initially performed the Shapiro-Wilk Normality Test (shapiro.test) in R, and
then, as it failed at a significance level of 0.05, a non-parametric test—the
Kruskal-Wallis rank sum test (kruskal.test) was performed for the RWI of 2005
(year which growth is affected by the drought) and for the difference between RWI
of 2004 and 2005 (RWI2005–RWI2004) to analyze the effect of the drought in
reducing RWI and between RWI of 2005 and 2006 (RWI2006–RWI2005) to evaluate
the phellogen recovery.

Furthermore, as the total growth of the cork determines its industrial utilization,
we also tested if the total growth was different according to the moment in which
the drought occurred. The test was performed with the same methodology as before.

Results

The cork growth of the 8 complete years in each site is presented in Fig. 2. The
minimum total growth is very similar in all the sites (approximately 12 mm) but the
media and the third quartile of site 3 are lower than those of the other sites.

The mean series of annual cork growth indices suggest one strong climatic
signal, and 2005 can be considered a negative pointer year in all the chronologies.
In general, the cork ring indices from the same year have a similar behavior when
compared to the preceding/next year, in all the mean chronologies (Fig. 3).

The Shapiro-Wilk Normality Test performed for the RWI for the year 2005 gave
a p-value below 0.05 (3.71 � 10−6—see Table 2) and we performed a
non-parametric approach through the Kruskal-Wallis rank sum test. We concluded
that the 2005-RWI is not different between all the sites as the p-value is under the
significance level of 5% (Table 2).

We also compared RWI2005–RWI2004 and RWI2006–RWI2005 for the 3 sites. The
normality was again rejected and the results from the Kruskal-Wallis rank sum test

31Bunn (2008).
32R Core Team (2017).
33See fotenote 31.
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suggest that the phellogen behavior is the same (not different) in the 3 sites i.e.
independent of its age. However the total cork growth (of the 8 years) showed
differences between the sites (Table 2).

As there were differences between the sites, we calculated the average growth for
each site: site 1 = 25.57 mm; site 2 = 24.18 mm and site 3 = 20.08 mm. By per-
forming the Wilcoxon test (non-parametric) we concluded (with a significance level
of 5%) that site 3 has less total growth than the other 2 sites, which are not different
from each other.

Fig. 2 Boxplot for the cork
growth of 8 complete years of
the 3 sites considered in this
research

Fig. 3 Mean cork growth chronologies for each site
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Discussion

The values obtained for the cork growth of 8 complete years in each site are below
the average values found by34 in similar locations. The differences of the growth of
the 8 complete years obtained for one of the sites are difficult to explain as several
factors affect growth, namely climate, age of the trees, the site, competition and
other disturbances.35

Analyzing the cork-growth chronology, the results show that in all the sites, the
2004–2006 drought negatively affected cork growth and that 2005 can be consid-
ered a negative pointer year in all the chronologies. This effect of drought on cork
growth is consistent with results obtained by several authors.36,37 The trees
recovered well when precipitation returned to values similar to the long term mean,
which is also in accordance of the findings of several authors38 and.39

Moreover, our results indicate that the age of the phellogen has no influence on
the intensity of growth decline in the drought pointer year, i.e. the ring width index
was similar for all the sites regardless of its occurrence during the cork growth
cycle. Also there was no effect of the age of the phellogen neither on the decreasing
of growth due to the drought nor on the recovery after the drought.

In practical terms however, and considering the absolute values of cork ring in
the successive years along the growth cycle, it is expected to have a stronger impact
on the total 8-year cork growth if the drought event occurs in the beginning of the
cycle.

Table 2 Results (p-values) of the Shapiro-Wilk Normality Test and Kruskal-Wallis rank sum test
performed for the Cork Ring Index for the year 2005, for the differences of the indexes for the
years 2005–2004 and 2006–2005 and for the growth of the 8 complete years

Shapiro-Wilk normality test Kruskal-Wallis rank sum test

RWI2005 3.71 � 10−6 0.0681

RWI2005–RWI2004 2.69 � 10−6 0.5932

RWI2006–RWI2005 0.004727 0.1972

Total growth 0.000188 5.19 � 10−6

34Costa et al. (2016).
35Cook and Kairiukstis (1989).
36See footnote 17.
37See footnote 34.
38See footnote 17.
39See footnote 14.
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Conclusion

The results of this exploratory study suggest that the age of the phellogen has no
effect on the response of the tree to a drought event and on its recovery.
Consequently, forest managers shall adapt their management practices to drought
events independently of the moment of its occurrence along the cork growing cycle.

The results once again confirmed that drought decreases cork growth, which
may hinder the possibility of producing, in the usual 9-year cycle, a cork thick
enough for the manufacture of cork stoppers, especially if occurring in the first part
of the growth cycle. This is a strong signal for forest managers to consider the
feasibility to water the cork oak trees and/or to enlarge the cork growing cycles of
cork.

Nevertheless, the results obtained should be confirmed with a larger sample and
number of chronologies in order to analyze the severe drought of 2004–2006 with
samples for more sites as well as to evaluate the effects of other severe droughts.
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A B S T R A C T

Climate scenarios in the Mediterranean region predicts raising temperatures and more frequent and extreme
drought conditions. Cork oak is a Mediterranean species with a large distribution in Portugal from which cork is
extracted in a sustainable way and mainly used as the raw material for cork stoppers and insulating materials. To
study the response of cork oak to drought and the effect of phellogen age on that response we examined cork
growth from a 30-year chronology of trees from 12 sites in the main Portuguese cork oak production area. For
the first time in cork, a components resilience study was performed. The research confirmed that drought re-
duces cork growth and provided extra knowledge on the responses of cork oak to drought: more severe droughts
correspond to higher decrease of cork growth and more trees affected but to greater recovery performance.
Moreover, cork oak is very tolerant and resilient to extreme droughts. Nevertheless, there are other factors that
affect cork growth during and after drought, namely site, tree and the age of the phellogen. In fact, in the first 2
years and in the last 2 years of the production cycle the effects of drought on growth are more pronounced than
in the middle of the cycle. The age of the phellogen is significant in the recovery, resistance and resilience but not
in the relative resilience. The most noticeable differences occurred in the recovery for phellogen under 3 years
(17% lower than that for phellogen with 3 to 6 years of age). Moreover, under drought conditions, there is a
strong evidence that forest managers should enlarge debarking rotations, namely if drought occurs in the first 2
years of the production cycle and/or establish new cork oak stands in more humid areas, namely, in higher
latitudes than the actual species distribution area.

1. Introduction

Climate change is one of the worldwide main and challenging issues
of the XXIst century requiring either a mitigation or an adaptation
perspective (Stott et al., 2016). Changes in climate and, in particular,
weather extremes will condition forest structure and tree species com-
position (Kätzel and Höppner, 2011) and consequently forest manage-
ment strategies.

Although tree species can adjust to new environmental conditions,
there is not much knowledge about the processes involved (Lindner
et al., 2010). Nevertheless, forest managers need to adjust to this new
reality and meet stakeholders needs, from a more demanding public to
a more competitive and exigent forest industry.

All climatic scenarios for the Mediterranean region foresee raising
temperatures, water deficits and more intense, frequent and long ex-
treme events, in particular, severe droughts, heat waves, heavy pre-
cipitation and fewer cold days (IPCC, 2014; Lindner et al., 2010). It is
predictable that this region will have a decrease in productivity and

changes in species distribution as a consequence of summer water
deficits (Kelly et al., 2002; Santos and Miranda, 2006; Gea-Izquierdo
et al., 2013). Albeit we are only at an initial step in the forecasted
tendencies of global warming, ecological responses to recent climate
change are by now clearly noticeable (Walther et al., 2002) and a
deeper understanding on tree response strategies should be a scientific
priority (Anderegg et al., 2015; Allen et al., 2010).

One of the Mediterranean forest systems that may severely suffer
from climate changes is the cork oak (Quercus suber) based agro-forestry
system (Santos and Miranda, 2006). Cork oak forests are distributed in
the Mediterranean basin, in an area of approximately 2.2 million hec-
tares directed to an annual production of up to 200 thousand tons of
cork that supply an important industry (APCOR, 2016). Portugal is the
leader producer of raw cork and processed cork products namely cork
stoppers for the wine industry, the most important product in all the
cork segment, with the greatest added value (Pereira, 2007). The pro-
duction of cork is based on a sustainable periodical stripping (usually
with 9 year interval) of the cork (outer bark of the cork oak) from the
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stem, allowing to have a plank with a thickness required for the man-
ufacture of cork stoppers (> 24mm).

Ecologically Q. suber grows well with mean annual precipitations
from 600mm to 800mm, with 500mm considered to be the minimum
for a balanced tree development (Natividade, 1950; Pereira, 2007).
However, it is susceptible to the amount and moment of precipitation,
and late spring precipitation has more influence on cork oak growth
than the entire annual precipitation, while it recovers quickly after a
year of extreme dryness (Besson et al., 2014).

In respect to cork growth, rainfall, summer drought and tempera-
ture are determining factors and, in particular, water availability is the
most constraining growth factor (Cherubini et al., 2003; Caritat et al.,
2000; Costa et al., 2016; Oliveira et al., 2016) with a great effect of the
precipitation from May to September on the activity of the phellogen
(Pizzurro et al., 2010). Cork growth is conditioned by water availability
in short time scales (from 2 to 11 months), with spring precipitation
having a major effect. Moreover, cork growth rapidly recuperates when
drought circumstances end (Oliveira et al., 2016).

As well as wood, cork has two different annual growth periods
(spring and autumn) and annual growth rings are detectable due to the
presence of a noticeable layer of darker latecork cells at the end of the
growth period (Pereira et al., 1988). The rate and duration of the
meristematic activity of the phellogen largely determines the width of a
cork ring (Pereira, 2007).

In spite of all the research conducted so far about the relation be-
tween cork growth and climate (e.g. Caritat et al., 1996, 2000; Costa
et al., 2016; Oliveira et al., 2016), there is little knowledge about the
effect on cork growth of drought occurring in different moments of the
9-year cork growth cycle (e.g. beginning, middle and end), corre-
sponding to different phellogen ages. Only a preliminary study of Leite
et al. (2018) addressed this issue. Therefore, the focus of the present
research is the investigation of the influence of phellogen age on the
cork-growth responses to drought. This goal is addressed through a
pointer year analysis followed by a resilience components study using a
mixed model approach.

This publication is, as far as we know, the first analysis of resilience
components on cork growth and, furthermore, the first dendroclimatic
study on cork using a mixed model methodological approach. The

results obtained are converted in forest management advices to mitigate
the effects of the forthcoming more frequent droughts in the
Mediterranean basin. This is of great importance because one of the
present challenges is to transpose the ecophysiology and forest ecology
scientific research into forest management prescriptions suitable for
forest owners and managers (Bräuning et al., 2017).

2. Material and methods

2.1. Study area

The cork samples used in this research were collected in 12
Portuguese central-west montado estates placed in one of the largest
continuous forest areas of cork oak and located in the Coruche muni-
cipality, Portugal. Montado is a multifunctional system characterized by
a forest with low density trees combined with agriculture and/or pas-
toral activities. The sampling sites are set in the Tagus river basin, in
one of the main production areas for the cork oak, characterized by a
Mediterranean climate influenced by the Atlantic Ocean, as previously
described in detail in Oliveira et al. (2016).

2.2. Data acquisition

A total set of 2081 cork samples, of which 1584 from Oliveira et al.
(2016), was collected at breast height (1.30m) during the stripping
season in adult productive cork oak trees. The trees were randomly
selected in the sites as a proportional part of the total trees under
stripping. All the cork samples included 8 complete years of growth
with the preceding debarking taking place 9 years before (the stripping
is performed when phellogen is active leading to an incomplete cork
ring). The stripping years occurred between 1994 and 2016, allowing
the study of cork growth in the time span between 1986 and 2015,
corresponding to a 30-year chronology, which includes several drought
events occurring in different moments along the growth cycle of cork,
i.e. corresponding to different ages of the phellogen.

The collected samples (± 15×15 cm2) were boiled in water for 1 h
at atmospheric pressure and left to air-dry until equilibrium, in a pro-
cedure similar to the one performed by the cork industry in raw

Fig. 1. A - Transverse view of a radial strip cut from a cork sample B – Fluorescence image of the cork radial strip C - Sample measured and dated, showing the two
incomplete growth rings.
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corkboards. For a more precise observation of the growth rings, the
transversal sections were polished with fine sandpaper and two radial
strips per sample with approximately 1 cm thickness were cut (Fig. 1A),
fixed on a microscope slide and digitalized in a laser-based fluorescence
imager (Fluoro Image Analyzer FLA -5100, Fujifilm, Life Science USA,
Stamford, CT 06092) according to the methodology developed by
Surový et al. (2009) – (Fig. 1B). Cork ring thickness was measured
(Fig. 1C) with AnalySIS® image processing software (Analysis Soft
Imaging System GmbH, Münster, Germany, version 3.1) and, whenever
possible, along two transects in the radial direction with an accuracy of
0.01mm. For each tree the average of the two measurements was de-
termined.

The initial and final half rings corresponding to the years of the
strippings were not considered for analysis as they are not complete
growth years (see Fig. 1C). As recognized earlier by several authors
(Caritat et al., 1996; Surový et al., 2009; Oliveira et al., 2016), the
delimitation of annual rings was not unequivocal in all the samples, and
only in 67% of the samples (1403 samples) cork rings were measured
and dated. Each cork ring chronology was plotted and visually checked
with TSAP-Win™ software (Rinntech, Heidelberg, Germany).

2.3. Exploratory data analysis

A brief characterization of the raw data was performed with a
boxplot for the cork growth in each site, allowing to compare the sites
and evaluate the respective variability. As the research focus is not the
analysis of these specific sites but, instead, the potential climatic signal
they reflect, the performed characterization was only for a descriptive
analysis purpose.

Ring width curves were plotted for visual inspection and the sign
test Gleichläufigkeit (glk) calculated using the dendrochronology pro-
gram library (dplr) of the R software (Bunn, 2008; R Core Team, 2017).
Gleichläufigkeit (glk) is a measure of pairwise comparison of chron-
ologies, testing if two chronologies are simultaneously increasing/de-
creasing in growth at the same time (Speer, 2010); it is therefore, a
measure for the likeness of tree ring curves from different trees. Fur-
thermore, glk is a statistic that assesses the homogeneity of the sam-
ples/sites (Schweingruber et al., 1990). If in the common intervals trees
respond in the same way glk is one, if they disagree glk is zero.

As usually done in dendroclimatic studies (Fritts, 1976), each cork-
growth curve was plotted and standardized in order to remove sys-
tematic changes of growth associated with tree age and maximize the
inter-annual fluctuations caused by the weather. In a similar approach
as performed previously (Caritat et al., 2000; Costa et al., 2001;
Oliveira et al., 2016), a negative exponential curve was used in the
standardization process (detrend) through the early mentioned dplr
library. This selection is also in accordance to Cook (1987), as the
montado system is characterized by trees growing in open-environments
with negligible competition for light. Indexation equalizes all ring
width curves to an unitarian mean value, so that a tree with a large
average growth will not dominate over other trees with small growth
when they are put together in a mean chronology (Douglass, 1919).

This procedure fits the following model:

= +
−G ae kt

bt

Gwhere t is the growth trend and is estimated as a function of time t,
being a b, and k, the coefficients. If that nonlinear model could not be
fitted, then a standard linear model was adjusted = +G b b tt 0 1 where b0
is the intercept and b1 the slope (Bunn, 2008).

After this procedure, for each tree, RWI - ring width indices (or cork
growth indices) were calculated dividing the real cork growth (Rt) by
the expected growth at time t (Gt). The division of Rt by Gt not only
removes the trend in growth but also scales the variance so that it is
approximately the same all over the entire period of the time series
(Fritts, 1976). Furthermore, this approach also retains as much poten-
tial low-frequency climate information as possible (Fritts, 1976; Cook

et al., 1990; Cook and Kairiukstis, 1990; Briffa et al., 1992).
After detrending, the signal-to-noise ratio (SNR) was calculated also

with the dplR package to assess the strength of the observed mutual
signal between trees (Cook et al., 1990). Furthermore, a final chron-
ology was created with the average of the indices of all the trees and
plotted (sample depth is also showed). This final index chronology
contains the environmental signal common to all trees, i.e. the popu-
lation signal (Fritts, 1976).

2.4. Climate data

The droughts that occurred in the 30-year period of our chronology,
were characterized by the drought index Standard Precipitation
Evapotranspiration Index (SPEI) developed by Vicente-Serrano et al.
(2010) because it is one of the most generalized approaches for drought
analysis, and droughts in the Iberian Peninsula are better detected with
SPEI than with the Standard Precipitation Index (SPI) (Páscoa et al.,
2017). In fact, SPEI is based on a monthly climatic water balance
(precipitation minus potential evapotranspiration) and not only on
precipitation data as the SPI, therefore representing a simple climatic
water balance. Furthermore, as it includes temperature data, it accounts
for the warming-related drought impacts on diverse ecological, hy-
drological and agricultural systems (Vicente-Serrano et al., 2010). Also,
SPEI can be used to analyze drought at different time scales (Beguería
et al., 2013; http://spei.csic.es/home.html). Furthermore, it accounts
for the accumulation of deficits/overplus at diverse timescales (Drew
et al., 2013).

Cork has two different annual growth periods in spring and in au-
tumn, and is affected mainly by drought conditions from two to eleven
months (Oliveira et al., 2016). The highest Pearson correlations be-
tween SPEI and cork growth (index) were found, by these authors, for
time scales comprising previous winter and spring of the growth year.
So, to reproduce the previous winter growing conditions we used the
accumulated SPEI of April with the previous seven months (SPEI Oct-
Apr) and to reflect the spring growing conditions we used the accu-
mulated SPEI of August with the previous five months (SPEI Apr-Aug).
We also used the SPEI of the hydrologic year (from October of the
previous year until September of the growth year) to reflect the drought
conditions of the entire year (SPEI Oct-Sep). The three accumulated
SPEI data were directly retrieved from the Global SPEI database
(http://sac.csic.es/spei/database.html), with a 0.5° spatial resolution
for the Coruche municipality. This index is based on the FAO-56
Penman-Monteith estimation of potential evapotranspiration that is one
of the most recommended for long-term climatological analysis (http://
spei.csic.es/home.html). A plot with the SPEI and RWI for the 30-year
period was produced to better demonstrate the relation between growth
and the diverse SPEI.

In order to climatically categorize the years of our chronology, we
used the classification proposed by Agnew (2000) and followed by
Páscoa et al. (2017) that orders drought indices according to four
classes: no drought if SPEI> -0.84; moderate if -0.84 > SPEI> -1.28;
severe, if -1.28> SPEI> -1.65 and extreme, if -1.65 > SPEI.

2.5. Pointer years

As the main interest of our research is the study of the effect of
drought on cork growth and the influence of the phellogen age on the
cork oak response to those climatic events, a pointer years analysis was
performed. In fact, pronounced pointer years are formed in years of
climatic extremes (Matisons et al., 2013; Schweingruber et al., 1990).
Pointer years are years with remarkable growth responses at the stand
level (Schweingruber et al., 1990). To identify a pointer year, we used
the package pointRes of the R software (van der Maaten-Theunissen
et al., 2015; R Core Team, 2017) with a relative growth change ap-
proach. We considered that a pointer year occurred when at least 55%
of the trees had 30% (or more) increase/decrease in cork growth when
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compared with the average growth of the preceding 2 years. Only the
previous 2 years were considered because cork growth is influenced
mainly by the precipitation in the previous winter and February mean
minimum temperature, and not by earlier weather conditions (Oliveira
et al., 2016).

For the negative pointer years, the components of resilience were
also calculated (Lloret et al., 2011). In fact, these authors preconize that
these components of resilience analysis can be used to better under-
stand the mechanisms underlying resilience patterns as the recovery
after drought is an indicator of individual-level resilience. Therefore,
this methodology considers the following indicators (components): 1)
resistance, the opposite of the decrease in ecological performance
during the disturbance, and estimated by the ratio between growth
during and before the disturbance; 2) recovery, that is the recuperating
capacity in relation to produced damage, and estimated by the ratio
between the growth after and during the disturbance; 3) resilience,
defined as the ability to return to the previous ecological performance,
and assessed by the ratio between the growth after and before the
disturbance; and 4) relative resilience, the resilience weighted by the
growth decrease experienced during the disturbance – this index is
based on the concept that the impact (in this case the reduction in cork
growth) during the disturbance determines the ability to reach the pre-
disturbance growth. However, the interpretation of this index, at the
individual level, is not unambiguous since high values can mean either
a higher recovering capacity (through, for example, mobilization of
stored reserves) or the effect of the decrease in the competition (due to
increased neighbor mortality) (Lloret et al., 2011).

2.6. Statistical analysis

To evaluate the effect of the age of the phellogen in the ecological
performance of the trees when exposed to drought (disturbance), a
mixed model approach was used (Pinheiro and Bates, 2000). Although
we were not interested in analyzing the covariance structure induced by
the grouping of the data, the account of that variability in the model
allowed to better detect the effect of our variables of interest (phellogen
age and drought) than if a fixed effects model was used (e.g. ANOVA,
ANCOVA or other non-parametric models). Indeed, mixed models have
several advantages when compared with fixed effects models (Brown
and Prescott, 2014). As highlighted by (Paulo et al., 2017) this ap-
proach has been used in several analysis of cork oak relevant tree
dendrometric variables (e.g. height-diameter relation; weight of de-
barked cork; crown diameter and, by these authors, cork caliper). In our
approach, we considered the age of the phellogen, SPEI Oct-Apr, SPEI
Apr-Aug and SPEI Oct-Sep as fixed effects and site and tree nested on
the site as random effects. The sites were considered random effects
because they are a random sample of all the sites in the Coruche region,
and also because we are not interested in studying the sites by them-
selves. The age of the phellogen was grouped in 3 classes – young (1–2
years); mean (3–6) and old (7–8).

The R package nlme was used for this analysis (Pinheiro et al., 2018;
R Core Team, 2017), specifying the fitting method of maximum like-
lihood, as it is the only method that allows the estimation of the fixed
effects estimators. The best model was selected with the R package
MuMln (Bartón, 2018; R Core Team, 2017).

3. Results

3.1. Cork growth and pointer years

The average annual cork-ring width distribution is presented in
Fig. 2. The minimum value occurred in site 2 (0.78 mm) and the
maximum value in site 6 (8.22mm), corresponding to an amplitude of
7.44mm. If the possible outliers are not considered, the most hetero-
geneous sites are sites 1 and 2, and site 6 is the one with the lowest
amplitude. The mean values are in the range from 2.60mm (site 6) to

3.67mm (site 11), revealing a considerable homogeneity between sites.
The mean value of the entire sample is 3.30 ± 1.44mm.

In respect to the dendrochronological statistics, the sign test -
Gleichläufigkeit (glk) presented a value of 0.656 representing a good
homogeneity of the samples/sites. The SNR was considerably high –
144 times more signal than noise, the total number of trees was 1403
and the mean number of trees used to calculate SNR was 371, which
reveals the robustness of the sample.

Fig. 3 shows the final mean chronology for the entire period and the
respective sample depth. The mean sample depth is 370 and the
minimum sample depth occurs in the years from 2012 to 2015 with
almost 100 samples, also giving confidence to the results. A total of five
pointer years were identified: positive (2007) and negative (1995,
1999, 2005 and 2012) pointer years are highlighted. It should be also
pointed out that the cork growth index of the year immediately after a
negative pointer year is always greater than 1, thereby revealing a great
growth recovery i.e. growth in these years is above the mean value.

For the negative pointer years, Table 1 presents the percentage of
trees that have a 30% deviation under the mean value of the growth of
the previous 2 years and the mean deviation from the mean growth
value of the 2 previous years. It should be noticed that the mean de-
viation from the mean growth in 2005 reaches almost -46% indicating a
great decrease on growth due to the extreme drought conditions ex-
perienced in this year. Additionally, in all the negative pointer years
more than 55% of the trees have a growth 30% under the mean value
and in 2005 this value is greater than 80% revealing that the great
majority of the trees were very affected by drought in this year.

Fig. 4 shows the relation between the cork-growth index mean
chronology and the standard precipitation evapotranspiration index
(SPEI) representative of the drought conditions in the winter before the
growing season (SPEI Oct-Apr), in the spring of the growing season
(SPEI Apr-Aug) and in the hydrologic year (SPEI Oct-Sep). In most of
the years, there is a clear cause-effect relationship between the three
SPEIs (e.g. 1986, 1987, 1988, 1995, 1996, 1999, 2002, 2005, 2007,
2009, 2010, 2011, 2014 and 2015), as to negative/positive SPEIs

Fig. 2. Boxplot of the average annual cork ring width (mm) in each site.

Fig. 3. Cork-growth index (RWI) chronology (in black) and sample depth of
each year (grey area). Pointer years are highlighted by arrows.
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correspond a decline/increase in cork growth indices. Nevertheless, in
the years when there is not a synchrony between all the SPEIs and cork
growth indices, this relation occurs in at least one of the SPEIs
(1989–1994, 1997, 2000, 2001, 2003, 2004, 2008, 2012, 2013). In fact,
only in 1998 did a decline on cork growth index correspond to positive
SPEIs while in 2006 the inverse situation occurred. It should be noticed
that large negative values of SPEIs in 1992 and 1993 did not correspond
to great decreases on cork growth index as already pointed out by
(Oliveira et al., 2016). Further, except in 2012, all the other pointer
years experienced a clear situation of drought corresponding to at least
two of the SPEIs. Also, some years (e.g. 1991 and 2013) had extreme or
severe drought in spring (SPEI Apr-Aug) while the cork growth index
showed an above the average growth; on the contrary, in 2004, wet
conditions were prevailing, but the mean cork growth index was under
the mean value. Furthermore, 1992 was not considered a pointer year
even if the winter prior to the growing season (SPEI Oct-Apr) and the
hydrological year (SPEI Oct-Sep) were considered to have extreme
drought, according to the classification proposed by Agnew (2000), and
the mean cork growth was below 1.

It should also be highlighted that several authors (e.g. García-
Herrera et al., 2007 and Páscoa et al., 2017) considered that 2005 had
the most severe drought in the Iberian Peninsula which is in accordance
to the classification of extreme drought.

Overall the analysis of Fig. 4 suggests that drought reduces cork
growth and that more severe drought conditions correspond to a
greater decrease in growth. However, there should be other factors
affecting cork growth, rather than climate conditions since this relation
is not universal (e.g. 2012 and 2004).

3.2. Resilience components

The results presented in Table 2 show that 2005, the year with the
most severe drought conditions (lowest SPEI for all the time spans), is
the year with the lowest mean resistance (0.54), which means, that it is
the year with the major cork growth loss due to drought but also the
year with the greatest mean recovery (1.62), i.e. the year with the
highest recovering capacity. However, this behavior is not transversal
to all the years: for example, 1999 is a year of extreme drought in the
winter and severe all over the year but has the lowest recovery value

(1.16), while 1995 with less severe drought conditions than 1999 in all
the timespans has higher mean recovery (1.48 vs 1.16).

Moreover, the pointer year of 2012 with the highest SPEI for all the
timespans does not stand out in any one of the calculated parameters; in
fact, it has the 2nd lowest mean recovery (1.32) and relative resilience
(0.16) and the 2nd highest average resistance (0.67) and resilience
(0.82).

Furthermore, recovery is the component of resilience with the
greatest heterogeneity (standard deviation values between 0.40 and
0.70) for all the pointer years and to the greater mean values (2005 and
1995) correspond greater variability.

It should also be pointed out that mean resilience is always at least
0.79 and in 2005 (year with most severe drought conditions) corre-
sponds to the 2nd highest value (0.82).

The correlation between the components of resilience and SPEIs is
shown in Table 3. Resistance (growth during vs. before drought) is
highly and positively (from 0.72 to 0.88) correlated with less severe
drought conditions (higher SPEI values); also, resilience (growth after
vs. before drought) is positively (from 0.23 to 0.35) correlated with less
severe drought conditions but less than resistance. It is also evident that
recovery (growth after vs. during drought) and relative resilience (re-
silience weighted by reduction during drought) are positively corre-
lated with more severe drought conditions (lower SPEI values).

3.3. Statistical analysis

The effect of the age of the phellogen in the ecological performance
of the trees regarding cork growth when exposed to drought (dis-
turbance) was evaluated by modelling the resilience components. The
best linear mixed model for recovery and resilience was the full model,
which means the model that included all the considered fixed effects
(SPEI Apr-Aug, SPEI Oct-Apr, SPEI Oct-Sep and phellogen age), as well
as the effects of site and tree, nested on site, that were considered
random. The effect of the phellogen age was statistically significant in
the recovery (p-value = 0.002) and in the resilience (p-value = 0.004).

The recovery of the cork growth when the age of the phellogen is
less than 3 years was approximately 17% lower than when the phel-
logen is between 3–6 years old and when the age is above 6 years the
recovery was 8% lower. The resilience when the phellogen age is above
6 years was 9% lower than when the phellogen age is between 3–6
years.

In what concerns the resistance, the best model did not include the
SPEI Oct-Apr but included all the random effects. The effect of the
phellogen age was statistically significant for this component (p-value =
4.93×10−14). When the phellogen age was greater than 6 years the
decrease was 14% compared to the phellogen with 3–6 years.

The best model for the relative resilience was the model that did not
include the age of the phellogen but included all the SPEI’s and all the
random effects (site and tree, nested on site).

4. Discussion

The studies on cork growth and its relation with climate started
about 20 years ago (Caritat et al., 1996) and continued since then
(Caritat et al., 2000; Costa et al., 2001, 2016; Oliveira et al., 2016 and
Leite et al., 2018). Also, the response of trees, communities and

Table 1
Characterization of the identified pointer years regarding the number and proportion of trees with growth decreases above 30% and mean growth deviation.

Year Number of trees in the series Proportion of trees with growth 30% under the mean growth of the 2
previous years (%)

Mean growth deviation from the mean growth of the 2 previous
years (%)

1995 440 55.23 −30.51
1999 405 66.17 −35.26
2005 409 81.66 −45.64
2012 91 60.44 −33.36

Fig. 4. Relation between cork-growth index (RWI) chronology (line) and SPEI
for different timescales reflecting spring, winter and hydrologic year wet con-
ditions (bars).
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ecosystems to short-term disturbances has been widely explored as
described by Lloret et al. (2011). Nevertheless, this present research on
cork growth is, as far as we know, the first one on disturbance analysis
through a component resilience approach.

The mean values reported in this study for cork ring width
(3.30 mm) are in accordance to the ones reported by several authors for
the cork oak and also encompass the variability between trees and sites
that is consistently reported. In fact, the values found for cork ring
width by different authors are in the range from 2.8 to 3.6 mm
(3.30mm and 3.56mm by Caritat et al., 2000; 3.8mm by Costa et al.,
2002; 3.5mm by Pereira, 2007; 3.3mm by Oliveira et al., 2016;
3.6 mm, 3.1mm and 2.8mm by Costa et al., 2016). In a large cork
sampling covering all the production regions in Portugal, a mean value
of cork ring width of 3.6mm was reported ranging from site means of
1.6 mm to 4.6mm (Lauw et al., 2018).

The high number of samples analyzed (1403, with a minimum of 91
samples/year, Fig. 3) allowed us to better account for the variability of
the entire population of interest and therefore to have better estima-
tions. This sampling intensity combined with the high value of the SNR
(144) are strong evidences of the reliability of our results.

We confirmed the outcomes of several authors about the negative
effect of drought on cork growth (Caritat et al., 1996; Costa et al., 2016
and Oliveira et al., 2016), reinforcing that the spring and winter rain
strongly influences phellogen activity. Furthermore, our results
(Table 1) demonstrated that more severe drought conditions corre-
spond to greater decreases in cork growth and to more trees affected by
drought, although, as pointed out by Oliveira et al. (2016) and Besson
et al. (2014), cork oak rapidly recovers as water availability increases,
achieving previous ecological performance (see Table 2 and Fig. 4).

Our analysis demonstrated that the age of the phellogen is a re-
levant factor on the recovery and on the resilience of cork oak regarding
cork growth and that the younger the phellogen (up to 2 years) the
greater the effect of the drought on growth. These findings are not in
accordance to the previous results (Leite et al., 2018), that supported
the hypothesis that the age of the phellogen has no influence on the
magnitude of cork growth decline in response to drought. However this
assumption was supported on data from a small sampling and number
of drought events (3 sites, 149 samples and 1 drought event). The
present study expanded the number of sites and samples (12 and 1403)
and analyzed various drought events/pointer years (4) while applying a
methodology of analysis of resilience components instead of cork

growth indices with a mixed model approach that better detect the
effect of the variables of interest.

These findings reinforce the importance of the sampling size in
evaluating biological/ecological processes namely when a large growth
and response variability is present, such as it is the case of the cork oak
and cork growth.

Additionally, the results (Table 2) suggest that more severe droughts
correspond to lower resistance values, which means, greater the effects
of the drought on the growth of the drought year. The trade-off between
resistance and recovery after drought, as identified by (Galiano et al.,
2011) and highlighted by (Lloret et al., 2011), that states that resistance
and recovery depend on the quantity of stored reserves was confirmed
here, with the lowest value of resistance corresponding to the highest
recovery. A low resistance indicates reserve consumption during
drought but if there is recovery after drought then there is a positive
effect from the regaining of photosynthetic capacity after drought
(Galiano et al., 2011).

Nevertheless, there is not a clear pattern between the severity of
drought and the recovery, resistance or resilience behavior and there is
a great variability on the performed recovery (Table 2 and statistical
analysis). The same conclusions were achieved by (Lloret et al., 2011)
who got miscellaneous results for the impact of drought on subsequent
tree performance and concluded that tree responses to disturbance are
extremely complex. These authors also referred that micro-site quality
is a more determinant factor in response to disturbance than physio-
logical or structural factors.

The mean resilience values were in general higher than 0.80
(Table 2) showing that post-drought cork growth is close to pre-drought
(unitary resilience indicates similar growth values before and after
drought) and demonstrating that cork oak has a great capacity to re-
cuperate the previous ecological performance. Therefore, the impact of
drought on cork growth of the subsequent years was moderately low,
supporting the hypothesis that cork oak is very tolerant and resilient to
extreme droughts. Similar results and conclusions were achieved re-
garding wood growth for other Mediterranean species (Pinus nigra, P.
sylvestris and Juniperus communis) (Herrero and Zamora, 2014) although
not for another oak (Q. faginea) (Granda et al., 2013). P. sylvestris needs
more time than Q. pyrenaica to recover from drought (Gea-Izquierdo
et al., 2014). Regarding this, species acclimated to more humid en-
vironments may be more susceptible to drought as reported for Q. ilex
(Granda et al., 2013).

Table 2
Drought conditions in winter (SPEI Oct-Apr), spring (SPEI Apr-Aug) and hydrologic year (SPEI Oct-Sep), mean and standard deviations of each one of the resilience
components calculated for the negative pointer years (1995, 1999, 2005 and 2012).

Year Drought conditions Mean recovery Mean resistance Mean resilience Mean relative resilience

SPEI Oct-Apr SPEI Apr-Aug SPEI Oct-Sep

1995 severe
−1.30

no drought
−0.21

moderate
−1.22

1.48 ± 0.70 0.70 ± 0.22 1.01 ± 0.28 0.31 ± 0.33

1999 extreme
−1.81

no drought
−0.64

severe
−1.54

1.16 ± 0.42 0.65 ± 0.28 0.79 ± 0.28 0.06 ± 0.26

2005 extreme
−1.94

extreme
−1.71

extreme
−2.22

1.62 ± 0.61 0.54 ± 0.20 0.82 ± 0.23 0.27 ± 0.23

2012 moderate
−0.94

no drought
0.40

no drought
−0.66

1.32 ± 0.40 0.67 ± 0.23 0.82 ± 0.24 0.16 ± 0.19

Table 3
Pearson correlation coefficients between the mean annual components of resilience and SPEI for different timescales reflecting spring, winter and hydrologic year wet
conditions.

Mean annual resistance Mean annual recovery Mean annual resilience Mean annual relative resilience

SPEI Apr-Aug 0.88 −0.52 0.27 −0.24
SPEI Oct-Apr 0.72 −0.18 0.35 0.05
SPEI Oct-Sep 0.83 −0.49 0.23 −0.23

C. Leite et al. Agricultural and Forest Meteorology 266–267 (2019) 12–19

17



The results of this research also enforce that the occurrence of wet
conditions in winter, spring and the whole year are determinant to cork
growth, during and after drought, but there are other factors involved,
namely the site, the tree and the age of the phellogen. This issue was
raised by Sánchez-González et al. (2007) by stating that there is a re-
lationship between cork growth and “unobservable site factors” rather
than average climatic conditions.

Moreover, the ability to recover (expressed by the relative resi-
lience) does not seem to be affected by the age of the phellogen. It
should be stressed that the phellogen age range in the present research
is only between 1–8 years, therefore not allowing to extrapolate the
response for much older meristems. For instance Lloret et al. (2011)
found no overall decrease in all the resilience components in old trees,
supporting the hypothesis that old trees recover better from more re-
cent events.

Also, there is still lack of information about the minimum threshold
for the recovery of cork growth, which means that it is still unknown
which are the drought conditions in which this species no longer is able
to recover. As more frequent drought conditions are expected, further
investigation is needed on the question if the response to drought
conditions remains high after more repeated droughts.

Furthermore, it should also be interesting to analyze not only the
effect of the age of the phellogen but also the effect of the age of the tree
on the post-drought response. Other future research opportunities could
also be related to the simultaneous analysis of these resilience compo-
nents on the growth of the wood and of the cork, to have a deeper
insight in the highly complex phenomena involved under cork oak
drought responses. These issues could contribute to a better knowledge
regarding cork oak vulnerability to drought and should be considered in
a forest management strategy under a context of adaptation/mitigation
of climate change effects in the Mediterranean region.

Transposing our dendroecological results to forest management we
preconize that cork growth cycles should be enlarged in case of oc-
currence of drought and when the production records suggest that the
reduction on growth due to drought may lead to obtain cork planks
under 24mm, and particularly if the drought occurs in the first two
years of the production cycle. This management directive lies on the
economic rationale of not compromising the technological possibility to
produce cork stoppers (Lauw et al., 2018). The extension of the cork
stripping rotation in order to mitigate the effect of climate change was
also proposed by (Palma et al., 2015) and (Leite et al., 2018).

Moreover, the predicted scarcity of water in the actual distribution
area of cork oak also suggests that new cork oak plantations should be
shifted into more humid areas (higher latitudes) where, in the nearest
future, the annual precipitation will be more adequate for the balanced
cork oak development and thereby allowing the maintenance of the
production of cork planks thick enough to manufacture cork stoppers
with the usual 9-year cycle.

5. Conclusions

In a changing climate, Mediterranean ecosystems are expected to be
under more severe, frequent and extreme drought conditions similar to
the ones analyzed in this research. Our results show that dry spells have
a strong impact on cork growth and the more severe the drought the
greater the reduction on growth but also the greater the recovery per-
formed. Moreover, although the effects of drought persist, the re-
covering capacity of cork oak is not affected even in drought conditions
as severe as the ones from 2005. Therefore, we advise forest managers
of the Mediterranean region to continue to produce cork as, according
to our findings, it is expected that cork oak recovers from the growth
reduction imprinted by drought.

Nevertheless, there are other factors that affect the performance of
cork growth during and after drought, namely site, tree and the age of
the phellogen, and have an important role on the responses of cork oak
to drought and on its ability to recover. The effects of drought on

growth are more pronounced in the first two years and in the last two
years of the cork production cycle than in the middle of the cycle.

The results of this study demonstrate that cork oak is very tolerant
and resilient to droughts, has a great capacity to recover from water
scarcity conditions, reflecting its high adaptation to the variability of
water availability in the Mediterranean region. Our research also de-
monstrates that cork-ring data analyses may be adequate to detect
signals of cork oak response to less water availability in a nearest fu-
ture.

Furthermore, there is a strong signal for forest managers to extend
the cork stripping rotation in case of drought, namely if the drought
conditions occur in the beginning of the production cycle (first 2 years)
and if there is the risk that cork planks are under 24mm thickness as
given by the past history of the site. Moreover, our results also suggest
that in a context of more frequent and severe drought episodes, new
cork oak plantations should be established in more humid zones (e.g.
higher latitudes) to ensure the production, in a 9-year cycle, of cork
planks thick enough to produce cork stoppers.
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Cork oak and climate change: 
Disentangling drought effects on 
cork chemical composition
Carla Leite ✉, Vanda Oliveira, Isabel Miranda & Helena Pereira

Climate change induces in the Mediterranean region more frequent and extreme events, namely, heat 
waves and droughts, disturbing forest species and affecting their productivity and product quality. 
The cork oak (Quercus suber) is present along the western Mediterranean basin and its outer bark 
(cork) is sustainably collected and used for several products, mainly wine bottle stoppers. Since most 
cork properties arise from its chemical composition, this research studies the effect of drought on cork 
chemical composition (suberin, lignin, polysaccharides and extractives) and on polysaccharide and 
suberin monomeric composition. Three sets of cork samples, from the same site, were examined: in one 
set the cork grew without drought; in another two drought events occurred during cork growth and in 
the third one drought event happened. The results show that, in general, drought does not affect the 
proportion of the main components of cork, the monomers of suberin or of polysaccharides, with few 
exceptions e.g. drought increased ethanol extractives and xylose in polysaccharides and decreased 
arabinose in polysaccharides. The variability associated to the tree is much more relevant than the 
effect of drought conditions and affects all the parameters analyzed. Therefore, our research suggests 
that the tree genetic information, or its expression, plays a much more important role on the chemical 
composition of cork than the drought conditions occurring during cork growth. In practical terms, the 
potential increased occurrence of droughts arising from climatic changes will not compromise the 
performance of cork as a sealant for wine bottles.

Climate change is happening and several authors agree that forest species are already being affected (e.g1–3.) and 
will keep on being in the future4–8. The intensity and the way species are affected depends on the dimension of 
their present and future distribution area, their environmental tolerance, and capacity to disperse9 while the 
scientific community and forest managers may have an active role in adapting and mitigating climate changes 
effects.

The Mediterranean region is considered to be a hotspot for climate change10 for which the models predict an 
increase in the temperature and a pronounced decrease in the precipitation10–13, corresponding to an intensifica-
tion in frequency, intensity and duration of drought, mainly during the warm season7,11,14,15. Consequently, this 
region will experience high water stress conditions and reduced vegetation production.

The cork oak (Quercus suber) is an evergreen oak species distributed along the western Mediterranean basin, 
covering an area of approximately 2.1 million ha16. Its outer bark (cork) is periodically (usually every 9 years) 
removed on a sustainable procedure, corresponding to an annual production of up to 200 thousand tons16. This 
forest product is the second most important non wood forest product commercially exploited11 and it is the raw 
material of an important industry with diversified products and applications, from sealants to agglomerates and 
composites used as insulation materials, surfacing panels for construction and aeronautics, pollutants absorbers, 
clothing and decorative articles, and the one with the most added value – cork stoppers for the wine industry, 
corresponding to 70% of the generated income of the cork industry17–20.

Most of the characteristics of cork, namely high compressibility, flexibility under compression, low perme-
ability and chemical and biological inertness come from its chemical composition18,21. Actually, many of the 
cork properties arise from the presence in cork cell walls of its main component – suberin18,21. Besides suberin 
(that represents on average 43%), cork is also constituted by lignin (22%), polysaccharides (19%) and extractives 
(16%)19. The monomeric composition of suberin was object of several analysis with different analytical methods 
(see18 for a review on this subject). 22 identified ω-hydroxyacids (31% of the total monomers), α,ω-diacids (53%), 
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n-alkanols (<1%) and ferulic acid (<1%) (values calculated by23). The holocellulose of cork is mainly composed 
of glucose (50% of total monosaccharides) and xylose (35%), with smaller amounts of arabinose, mannose, galac-
tose and rhamnose21. Nevertheless, there is a substantial variability in the chemical composition of Q. suber cork 
regarding between-tree and between site differences that has been evaluated in several research works19,24–28.

The impact of drought on cork growth was addressed in numerous studies (e.g29–34.) concluding that drought 
severely reduces cork growth but cork oak is very resilient and cork growth rapidly recovers when drought con-
ditions end. To date and to our knowledge, there are no studies on the effect of drought on cork chemical compo-
sition. The objective of this study is to analyze the effect of drought on cork chemical composition. Our specific 
goals are to examine if drought induces any changes in the proportion of the main chemical constituents of cork 
and in the suberin and polysaccharide monomeric composition that could compromise the utilization of cork for 
the production of wine stoppers.

Material and Methods
Material.  The cork samples used in this research were collected in a cork oak stand (montado) located in 
central west Portugal, in the Coruche municipality, inside the region that is considered to be one of the best 
production regions for the cork oak. The site has around 190 ha with 67 trees/ha and is located in the Tagus river 
basin where Mediterranean climate is influenced by the Atlantic Ocean.

The samples were randomly collected at breast height (1.3 m above ground), during the cork stripping season, 
in mature trees under exploitation. The analyzed samples were collected with different drought conditions in their 
timespans of the cork production cycle: 10 samples were collected in a timespan without any drought, 10 samples 
in a period when one drought occurred and 10 samples with two droughts.

Table 1 shows a brief description of the climatic framework for the samples - the years of cork striping (harvest-
ing), the years of the occurrence of the droughts, the respective annual Standard Precipitation Evapotranspiration 
Index (SPEI) and the drought classification according to35. The Standard Precipitation Evapotranspiration Index 
(SPEI), developed by36, is one of the most used indicators for drought analysis and droughts in the Iberian 
Peninsula are better detected with SPEI than with other indices like the Standard Precipitation Index (SPI)35. 
Furthermore, the classification of droughts proposed by35 and followed by37 categorizes drought indices according 
to four classes: no drought if SPEI > −0.84; moderate if −0.84 > SPEI > −1.28; severe, if −1.28>SPEI > −1.65 
and extreme, if −1.65 > SPEI.

The 30 samples (with approximately 15 × 15 cm2) were boiled in water for one hour at atmospheric pressure 
and left to air-dry until equilibrium, in a procedure similar to the one usually performed by the cork industry 
for the production of cork stoppers. Each sample was cut in small pieces with a chisel and the back (outermost 
bark layer of phloemic tissues) and the belly (innermost cork layer) removed to avoid contamination with other 
materials. The small pieces of cork were first milled with a knife mill (Retsch SM 2000) passing through a 2 × 2 
mm2 sieve and, afterwards, with an ultra-centrifugal mill (Retsch ZM 200). The material was granulometric sep-
arated with a vibratory sieve (Retsch AS 200basic) for 10 minutes. The fractions that passed the 60 mesh screen 
(0.250 mm) were discarded to avoid contamination with lenticular material or woody inclusions that are chemi-
cally different from cork and the particles between 40 (0.425 mm) and 60 mesh were used, as usually performed 
for cork chemical analysis21.

Chemical analysis.  Summative chemical composition comprised the determination of extractives, suberin, 
Klason and acid-soluble lignin and the monomeric composition of polysaccharides. The analytical procedures 
were previously described by38 and are here only briefly detailed. Extractives content was determined by succes-
sive Soxhlet extractions of cork samples with dichloromethane (6 h), ethanol (16 h) and water (16 h). The suberin 
content was determined in the extractive-free cork using methanolysis for depolymerization38. The suberin con-
tent (that corresponds to the fatty acids and alcohols derivatives resulting from suberin depolymerization) was 
quantified as percent of dry cork mass.

Klason and acid-soluble lignin were determined on the pre-extracted and desuberinized material using total 
hydrolysis with sulphuric acid.

The polysaccharides content was determined by quantification of the monosaccharide monomers released 
by the total acid hydrolysis used for lignin determination38. The sugar monomers were determined using a 
high-performance anion exchange chromatography (HPAEC) using Aminotrap plus CarboPac SA10 anion 
exchange columns. The carbohydrate composition was expressed in percent of total monosaccharides.

For each tree, extractives analysis was performed in 3 independent (sub)samples collected in the fraction of 
particles between 40 (0.425 mm) and 60 mesh (triplicate aliquots), determination of suberin and lignin were done 
in duplicate aliquots, and monomeric composition of polysaccharides was determined in one sample/tree.

Stripping 
year

Years with 
drought

Annual SPEI of the 
drought year

Drought 
classification

1994 — — —

2003
1995 −1.22 Moderate

1999 −1.54 Severe

2012 2005 −2.22 Extreme

Table 1.  Cork stripping years, years with drought, annual SPEI and drought classification of drought years 
according to35.



3Scientific Reports |         (2020) 10:7800  | https://doi.org/10.1038/s41598-020-64650-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

The monomeric composition of suberin was determined in aliquots from the methanolic extracts obtained 
after the depolymerization of suberin38. The samples were evaporated, derivatized by trimethysilylation 
and immediately analyzed by GC-MS, with the following Zebron conditions: Zebron 7HGG015-02 column 
(Phenomenex, Torrance, CA, USA) (30 m, 0.25 mm; ID, 0.1 µm film thickness), injector 400 °C, oven tempera-
ture program: 50 °C (held 1 min), 10 °C min-1 to 150 °C, 5 °C min-1 to 200 °C, 4 °C min−1 to 300 °C, 10 °C min-1 
to 380 °C (held 5 min). The MS source was kept at 220 °C and the electron impact mass spectra (EIMS) taken at 
70 eV of energy. The experimental procedure used for the suberin compositional determination does not allow 
the quantification of glycerol but only of the long-chain fatty components.

Statistical analysis.  All results were expressed as mean and standard deviation.
To evaluate the effect of the occurrence of drought(s) on the chemical composition of cork, a mixed model 

approach was used39, considering the stripping year (that is directly connected to the number of droughts that 
occurred in the growing period of the cork - Table 1) as a factor of fixed effect and the tree, nested on the stripping 
year, as a factor with random effect. With this approach the variability associated to the tree is accounted for and, 
therefore, we can: (i) better estimate the (fixed) effect of the drought on the chemical composition and (ii) eval-
uate if there is variability associated to the tree. For this analyses the R package nlme was used40,41 specifying the 
maximum likelihood as the fitting method, as it is the only method that allows the estimation of the fixed effects 
estimators. To validate the underlying distributional model assumptions39, namely normality of the residuals and 
of the predictors of random effects, independence and homogeneity of variances, we used the traditional plots 
(trough the commands plot and qqnorm), because they are considered to be the most useful methods for assessing 
the validity of the abovementioned assumptions39.

For the monomeric analysis of the polysaccharides and of the suberin, an analysis of variance was performed. 
In this analysis the variability associated to the tree could not be accounted. The normality assumption for all 
the variables was confirmed with the Shapiro-Wilk test and the equality of variances validated with a F test. 
Whenever these tests failed, a non-parametric approach was used with the Kruskal-Wallis rank sum test and if 
differences occurred the Wilcoxon test was also applied. This statistical analysis was performed using the R pro-
gramming language41. In all the statistic procedures the effects were considered as statistically significant when 
the p-value was less than or equal to 0.05.

Results
The summative chemical composition of the cork samples produced without drought and with one and two 
drought events during the cork growth period is shown in Table 2. The mean content of total extractives is 
12.1% (no drought), 12.5% (one drought) and 12.1% (two droughts). The ethanol and water-soluble compounds 
accounted for about 60% of the total extractives and non-polar compounds soluble in dichloromethane for about 
40%. Suberin content ranged between 36.0% (one drought) and 38.2% (two droughts), and total lignin between 
27.9% (no drought) and 26.0% (two droughts).

The mixed model analysis, performed with maximum likelihood, revealed that the year of debarking i.e. 
the number of drought events during the cork growth period did not have a significant effect on the chemical 

Chemical parameter 1994 (no drought) 2003 (two droughts) 2012 (one drought)

Extractives total 12.05 ± 1.79 12.09 ± 1.22 12.52 ± 1.70

Dichloromethane 5.18 ± 1.04 5.33 ± 0.66 4.93 ± 0.82

Ethanol 3.00 ± 1.06 3.03 ± 0.99 4.12 ± 1.23

Water 3.87 ± 0.67 3.73 ± 0.69 3.47 ± 0.72

Suberin 36.56 ± 3.32 38.24 ± 3.67 35.97 ± 4.50

Lignin, total 27.93 ± 2.38 26.04 ± 2.71 27.74 ± 3.30

Klason 26.63 ± 2.36 24.72 ± 2.75 26.54 ± 3.18

Acid soluble 1.30 ± 0.26 1.32 ± 0.19 1.19 ± 0.24

Ratio suberin/total lignin 1.33 ± 0.22 1.49 ± 0.27 1.33 ± 0.33

Polysaccharide composition (% of total monosaccharides)

Rhamnose 1.48 ± 0.50 0.82 ± 0.19 1.35 ± 0.47

Arabinose 19.22 ± 4.25 14.19 ± 2.41 17.82 ± 2.57

Galactose 8.92 ± 2.03 6.31 ± 0.79 8.04 ± 0.77

Glucose 40.73 ± 2.81 40.22 ± 0.96 39.24 ± 1.57

Xylose 20.11 ± 6.16 29.64 ± 3.79 23.78 ± 1.91

Mannose 1.95 ± 3.11 1.12 ± 1.20 1.59 ± 1.97

Galacturonic acid 5.73 ± 1.51 4.45 ± 0.36 5.89 ± 0.93

Glucuronic acid 1.18 ± 1.60 2.47 ± 0.16 1.11 ± 1.44

Acetyl 0.68 ± 0.22 0.78 ± 0.38 1.19 ± 0.76

Table 2.  Chemical composition (mean and standard deviation) of the cork samples according to the year of 
debarking (and number of droughts), in % of total dry mass. Monosaccharide composition is expressed in % of 
total monosaccharides.
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composition of cork, except in the content of extractives soluble in ethanol (p-value = 0.03), that was significantly 
higher in 2012 (see Table 2 and supplementary material).

Concerning the variability associated to the tree, all the chemical parameters (extractives, suberin and lignin) 
showed a significant variability (p-values between 1.4 × 10−3 and <2.0 × 10−16), meaning that the tree has a 
much more significant effect on the proportion of the chemical parameters than the drought conditions during 
the cork growth.

The mixed model assumptions were all confirmed as the performed graphics showed the “confirming” shapes 
and no outliers of random effects were seen. The random effects and residual variances are presented as supple-
mentary material (Table S2). Their estimate was not our primary interest – we actually wanted to evaluate if the 
effect of the fixed factor (drought) was significant on the cork chemical composition and if there was variability 
associated to the tree. Therefore, the mixed model approach was used mainly to account for the variability associ-
ated to the random factor (tree) in the statistical analysis (which cannot be done with other linear models like the 
ANOVA as this variability is included in the error). Regarding the carbohydrate composition in proportion of the 
total monomers, glucose ranged between 39.2% (one drought) and 40.7% (no droughts), xylose between 20.1% 
(no drought) and 29.6% (two droughts), and arabinose between 14.2% (two droughts) and 19.2% (no drought). 
The cork polysaccharides also contained smaller amounts of other monomers: on average 1.2% rhamnose, 7.7% 
galactose, 1.6% mannose, 5.4% galacturonic acid, 1.6% glucuronic acid and 0.9% acetyl groups.

The analysis of variance showed that there is a significant effect of the drought conditions on the xylose and 
arabinose contents (p-value=1 × 10−5 and 5 × 10−3 respectively). Cork produced under two drought events 
had higher amounts of xylose and lower levels of arabinose than the cork produced without or with one drought 
event (p-values = 1.0 × 10−3/1.0 × 10-4 and 4.3 × 10−3/4.0 × 10−3 respectively) that are not different from 
each other. The glucose amounts didn’t follow a normal distribution (p value= 0.04) neither the ratios between 
glucose and xylose and between glucose and the sum of xylose and arabinose (p-values of 8.0 × 10−4 and 5.8 × 
10−5, respectively). The non-parametric test revealed that glucose and the ratio between glucose and the sum of 
xylose and arabinose were not affected by drought but the ratio glucose/xylose showed an unclear pattern since 
cork debarked in 2012 had the highest ratio and cork grown under two drought events the lowest ratio (p-values 
between 0.02 and 7.5 × 10−4). The amount of the other sugars did not seem to be affected by drought.

A graphical representation of most of the chemical parameters summarized in Table 2 can be found as sup-
plementary material.

Suberin composition.  The monomeric composition of the suberin of the samples produced without 
drought (1994), with two drought events (2003) and one drought event (2012) is presented in Table 3, in percent 
of the peak area in relation to the total peak chromatogram area, grouped by chemical families. The detailed 
composition by monomer is shown as supplementary data. The monomers identified by GC-MS were the same 
in all the samples.

The main monomers were the ω- hydroxyl alkanoic acids (representing between 37.7% and 43.1% of the total), 
namely the ω-hydroxyl alkanoic acids with mid-chain substitution, representing between 21.4% and 24.2% of the 
total monomers found in the suberin depolymerization products. Alkanoic acids represented between 23.8% and 
25.8% of the total monomers and were mainly mid chain substituted. Alkanoic diacids ranged between 15.5% 
and 19.0% and showed a higher proportion of saturated acids. The other identified monomers presented much 
smaller values (e.g. 3.2% for glycerol and glycerides under two drought events).

The statistical analysis showed that there was no effect of drought on the proportion of the identified families 
of the suberin monomers.

Discussion
This research focused on evaluating if drought events occurring during the cork production cycle (i.e. the years 
comprised between two cork strippings) affect the chemical composition of cork, namely, if they modify the 
relative proportion of the chemical constituents in a way that could compromise the utilization of cork for wine 
stoppers. In fact, cork chemical composition is directly associated to the material’s properties, namely to the 
permeation to gases and liquids and performance of cork stoppers in wine bottles18.The present study on the 
chemical composition variation of cork was designed to have representativeness of samples while the timespan 
allowed to use a temporal control42 and the use of a single site for the sampling reduced the effects of confounding 
variables rather than the drought. Also the sampling in all the cases at only one location within the tree (breast 
height) avoids any variability associated with a potential chemical variation along the cork oak stem21.

There are a few species in addition to the cork oak that produce considerable amounts of cork, as reviewed 
by23. Most of the scientific works about those species were performed recently and, as far as we know, none has 
addressed the effect of climate on their cork chemical composition. Also, the effect of drought on the chemical 
composition of wood has not gathered much attention among the scientific community. Nevertheless43, ana-
lyzed the effect of drought on the concentration of wood terpenoids in Pinus sylvestris and Picea abies seedlings, 
concluding that severe drought increased the concentration of several individual monoterpenes and resin acids 
(respectively 39 and 32% higher in Scots pine and 35 and 45% higher in Norway spruce). Therefore, drought may 
affect the chemical composition of secondary metabolites extractives, a study that was not made in present cork 
analysis.

Regarding the chemical composition of cork, it is known that there is a large natural variability19 that can, at 
least partially, contribute to understand the diversity in the behavior of cork products, particularly of cork stop-
pers38. Several studies addressed the chemical variation of cork19,25–28,44 but the emphasis of these studies has been 
on the analysis of the geographical variability rather than on the climate effect on the chemical composition. To 
our knowledge, this is the first research about the effect of drought on the chemical composition of cork.
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Overall, the chemical composition of the cork samples that were analyzed (Table 2) are in the range of the 
results known for cork, as reported by several authors (as reviewed in21).

For instance, the average 12.2% extractives of which 40.0% are non-polar compounds soluble in dichlo-
romethane (Table 2) are comprised in the range of values reported by e.g.19,24,26,28. The results show that drought 
does not seem to affect the total amount of extractives and that the variation that was found is more related with 
the genetic information of the tree.

This applies also to the non-polar extractives that are lipophilic compounds including long-chain fatty acids 
and alcohols, and triterpenes19,21 and are related to the permeability of cork with lower amounts inducing higher 
permeability. Our results suggest that drought does not affect this component and that it is the tree that accounts 
for the existing variation. This natural variability is well recognized and translates, for instance, in different oxy-
gen transfer through cork stoppers into the wine bottles45.

Drought enhanced the amount of the polar extractives soluble in ethanol that may contribute to the organo-
leptic properties of the cork bottled wine. However, the tree was a much more significant factor for the variation 
of these extractives thereby overruling any drought induced changes in this wine characteristic.

The content of suberin is the most important chemical attribute of cork since it is its chemical fingerprint and 
directly related to most of its typical properties, namely those linked to the materials flexibility and hydrophobic-
ity18. The mean values for suberin (36.0% to 38.2%, Table 2) are within the range of values reported by the existing 
studies (e.g19,26,28.).

Climate conditions, namely drought, do not seem to induce any changes in the proportion of suberin in cork; 
on the contrary, it is the tree genetic information that has a very strong impact on suberin content. In fact46, refer 
that suberin varies within the species according to its geographical location and the tree condition. Our samples 
were collected in the same site and the trees were all mature production trees in good phytosanitary conditions, 
therefore the high variability found in our results should come from the tree genetics.

Lignin is the second most abundant component of cork, giving mechanical support and rigidity to the cell 
walls21. Our samples contained mean values of total lignin between 26.0% and 27.9% (Table 2) which are in the 
range presented by19 and26. Drought had not a significant effect on Klason lignin, acid soluble lignin or total lignin 
contents, but the tree had a very strong influence on the relative amount of these compounds.

The proportion between suberin and lignin defines cork’s unique properties namely mechanical behav-
ior, resilience and permeability18. Our samples showed a lower mean ratio suberin/lignin when compared to 
the mean results obtained by19 and26 but still within the range of their values. Drought did not influence the 
suberin-to-lignin ratio and again it is the tree genetics the important factor on the variation of this feature.

The monosaccharide composition of the cork samples (Table 2) is within the range of values reported for 
cork18,28. It should be highlighted that the ratio glucose/xylose was influenced by drought although without a clear 
pattern i.e. the cork produced under two droughts episodes (debarked in 2003) had significantly lower levels of 
glucose/xylose than the cork grown in the other two periods but the cork produced without drought had a lower 
ratio than the cork produced under one drought event. Arabinose content increased and xylose was negatively 
affected by drought but only if two droughts occur during the formation of the cork.

Regarding the monomeric composition of suberin obtained by GC-MS analysis (Table 3), our data shows that 
the main chemical families found were ω-hydroxyl alkanoic acids (37.7 to 43.1% of total monomers) especially 
with mid-chain substitution, representing between 24.1 and 24.2% of total monomers. Alkanoic α,ω-diacids (15.5 
to 19.0%) and total alkanoic acids (23.8 to 25.8%) represented most of the remaining monomers. The proportion 
for the three main chemical families is somewhat different from that given by other authors, namely regarding 

Identified families 1994
(no drought)

2003
(two droughts)

2012
(one drought)

Alkanoic acids saturated 6.50 ± 1.46 7.79 ± 1.31 7-90 ± 1.60

Alkanoic acids with mid-chain substitution 17.34 ± 2.12 18.04 ± 1.36 17.41 ± 1.92

(Total alkanoic acids) 23.83 ± 1.54 25.83 ± 1.36 25.31 ± 0.64

Alkanoic α,ω-diacids saturated 14.37 ± 1.35 12.18 ± 1.31 12.95 ± 1.52

Alkanoic α,ω-diacids with mid-chain substitution 4.59 ± 0.94 3.35 ± 0.61 5.10 ± 1.10

(Total alkanoic α,ω-diacids) 18.95 ± 1.58 15.53 ± 1.81 18.06 ± 2.58

ω-Hydroxyl alkanoic acids saturated 19.02 ± 1.28 16.37 ± 1.50 17.18 ± 2.51

ω-Hydroxyl alkanoic acids with mid-chain substitution 24.05 ± 1.46 21.37 ± 2.05 24.19 ± 1.48

(Total ω-hydroxyl alkanoic acids) 43.07 ± 2.50 37.74 ± 1.92 41.37 ± 3.52

Alkanols 1.99 ± 0.30 2.84 ± 0.60 2.44 ± 0.57

Aromatics 2.12 ± 0.29 2.43 ± 0.53 2.10 ± 0.74

Sterols 0.10 ± 0.02 0.11 ± 0.01 0.08 ± 0.06

Glycerol and glycerides 1.81 ± 1.38 3.15 ± 1.04 2.73 ± 0.86

Terpenoids 0.67 ± 0.11 0.90 ± 0.14 0.62 ± 0.29

Identified 92.55 88.53 92.71

Unidentified 7.45 11.47 7.29

Table 3.  Composition (by chemical family) of suberin from cork produced without any drought (1994), with 
two drought events (2003) and one drought event (2012), determined in the GC–MS chromatograms of the 
depolymerization extracts (percentual peak area and standard deviation).
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the content in alkanoic acids22: reported 53.0% of α,ω-diacids, 30.6% of ω-hydroxyl alkanoic acids, and less than 
2% of alkanoic acids, and47 referred 29.5% of α,ω-diacids, 52.9% of ω- hydroxyl alkanoic acids and less than 2% of 
alkanoic acids. This variation reinforces that there is a significant variability on the suberin monomeric composi-
tion, as already reported by24, possibly controlled by the genetic information of the tree.

In fact, our results suggest that the tree is more important in the chemical composition of cork than the wet 
conditions underlying the development of the cork. This conclusion is in line with reports that genetics must be 
a much more relevant factor in cork chemical composition and performance than other factors like geographical 
origin19,21,25,26. The chemical composition of cork produced under drought conditions is well within the variation 
range found by several authors for cork. Moreover, our results show that drought does not trigger the production 
of different compounds and has only a minor effect on the proportion of the chemical constituents of cork.

Therefore, the occurrence of drought events during the cork growth cycle does not seem to compromise the 
behavior of cork, namely when it is used as sealant material in wine bottles. However a word of caution must be 
given since cork properties arise not only from chemical composition but also from the cellular structure, namely 
cell dimensions18,21. With drought leading to thinner cork rings and less and smaller cells33,34,48, an analysis of the 
effect on cork cellular structure should be made in order to evaluate the full impact of drought on cork behavior. 
Nevertheless, the large variation found in cork ring width in commercial cork planks used for the production of 
wine stoppers33,34 allows to consider that this will not be a critical factor.

Conclusions
It is well known that there is large natural variability on the chemical composition of cork but research has focused 
mostly on its geographic variability. This paper presents the first analysis on the climatic effects of drought on 
the chemical composition of cork, including the proportion and monomeric composition of the main chemical 
constituents and an experimental design allowing to discriminate the drought and the individual tree response.

The results show that drought has a negligible effect on the cork chemical constitution namely regarding its 
structural components proportion and composition, and specifically the suberin-to-lignin proportion and sub-
erin composition that are the flagship characteristics of cork underlying its properties. The genetic package of the 
tree is the most important factor of chemical variation of cork that overrules any impact from drought conditions.

Therefore, the expected more frequent and severe forthcoming droughts in the Mediterranean region where 
the cork production areas are included will not compromise the cork properties related to its chemical composi-
tion, namely the performance of cork as a sealant for wine bottles.
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V– INTEGRATIVE DISCUSSION

 

This research focused on two main issues: 

1. positioning the cork oak in relation to the formation, anatomy and chemistry and 

features of its cork, allowing to establish its value as a benchmark industrial raw 

material. 

2. analyzing the effect of drought on cork growth and chemical composition, to evaluate if 

the forthcoming, more frequent and severe, drought events can compromise its 

utilization for the production of cork stoppers since most of the properties of cork that 

determine its use as a sealant for wine bottles are the result of its unique chemical 

composition in conjunction with its structural features. In parallel, the stoppage of cork 

planks requires a minimum cork width of 27 mm, which is determined by cork growth. 

This framework largely justifies the research conducted under this study. 

In order to contextualize the characteristics and properties of cork (from cork oak) under the 

vaster set of corks produced by other species, the information available for some of them was 

gathered in a review about this subject (Publication I). 

Our review points out that cork oak develops only one periderm and not successive periderms, 

which means that cork oak does not have rhytidome. When only one periderm is present, the 

cork layer is radially and tangentially homogenous and if its thickness is adequate, it may be used 

for production of solid cork products e.g. cork stoppers. In the case of a rhytidome, the cork 

layers of the successive periderms are separated by phloemic layers; therefore the recovery of 

cork will require trituration of the rhytidome and fractionation of the cork component, thereby 

obtaining it in a granulated form that only allows its use in cork agglomerated products. This is 

the case for instance of the species Quercus cerris (Sen et al., 2011a) and Pseudotsuga menziesii 

(Cardoso et al., 2017) that have rhytidomes with a substantial proportion of cork. 

Concerning the cork anatomy of Q. suber, cork cells are mostly hexagonal prisms that are stacked 

by their bases in radially aligned rows disposed in parallel without intercellular voids (see Figure 

4 of Publication I) with an average cell prism height of 30-40 µm and 1-1.5 µm cell wall thickness 

(Table 2 of Publication I). The solid fraction in the cork is 8-9% in the earlycork and 15-22% in the 

latecork region (Pereira, 2007), what justifies the low density of cork. This can also be an 

advantage when compared to other species (e.g. Q. variabilis - Kim, 1993; Miranda et al., 2013) 
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as many of the properties used in cork materials come from its low density. However in other 

species with considerable amount of cork in their barks the cork cell walls have pronounced 

corrugations mostly related to higher radial growth stress (e.g. Q. cerris - Sen et al., 2011b or P. 

menziesii Cardoso et al., 2017) which, can result in collapsed cells in some regions, increasing 

the total density of the material and hindering its use in applications where an unfirm cellular 

structure is a key element. 

Relating to cork chemistry, the reproduction cork from the cork oak has on average 16% 

extractives, 43% suberin, 22% lignin and 19% cellulose and hemicelluloses (see Table 3, 

Publication I). Suberin is the most important component and its composition regarding the long 

chain lipid monomers is shown in Table 5 (Publication I). The presence of high amounts of 

suberin is the most important chemical attribute of cork since it is its chemical fingerprint and is 

directly related to most of its typical properties (Pereira, 2015). An important set of properties 

in cork arise from the joint presence of suberin and lignin in the cell wall and their relative 

proportion (Pereira, 2013); in cork oak, the ratio suberin/lignin is almost 2 but in most species 

addressed in this work the proportion of lignin is higher, resulting in corks with higher 

compressive strength than that of Q. suber which means lower quality e.g. for sealants (Pereira, 

2013). Nevertheless, these corks are still compatible with uses as insulating, sealing?? and 

energy absorption material and may be considered as a complementary raw material for the 

cork from cork oak (e.g. Q. variabillis - Ferreira et al., 2016; Miranda et al., 2013).  

Our review emphasized that cork oak is the only species whose cork is fully suitable as raw 

material for cork stoppers production. This is the result of years of dedicated improvement of 

subericulture in a joint venture with a devoted industry, seeking for the production of the best 

sealant material for wine bottles. The review also stressed that in some other species their cork 

can be used in the production of agglomerates and in almost all of them it can be used as 

chemical sources. 

The tree that produces this outstanding material – the cork oak - has its distribution area along 

the western part of the Mediterranean basin, where, according to climate change predictions, 

it is forecasted to have more pronounced summer water deficits. Therefore, in this region it is 

expectable to have a decrease in the production due to the reduction of the photosynthetic 

activity in response to the stomata closure mechanism (Gea-Izquierdo et al., 2013; Kelly et al., 

2002; Piayda et al., 2014; Santos and Miranda, 2006). Cork oak is not an exception and as 

reported by several authors (Caritat et al., 2000; Costa et al., 2016, 2001; Oliveira et al., 2016) 
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cork growth is negatively affected by drought, mainly in short time scales (from 2 to 11 months), 

even if cork growth rapidly recovers when drought conditions end (Oliveira et al., 2016). 

There is still little knowledge about the effect on cork growth of drought occurring in different 

moments of the 9-year cork growth cycle, corresponding to different phellogen ages. This was 

the framework of a preliminary study of the effect of drought along the production cycle 

conducted with data from 3 sites (149 samples – Publication II). 

Furthermore, the biological mechanisms underlying resilience patterns of cork growth under 

drought conditions were never addressed until the present research and this was the context 

for a more complete analysis on cork growth with extensive data (1403 samples) from 12 sites, 

corresponding to a 30-year chronology with multiple drought events and several phellogen ages 

(Publication III). Our study encompassed a detailed resilience components analysis, through a 

mixed model analysis. 

Moreover and regarding cork chemical composition, for the first time, we examined if drought 

induces any changes in the proportion of the main chemical constituents of cork and in the 

suberin and polysaccharide monomeric composition that could compromise the utilization of 

cork for the production of wine stoppers (Publication IV). In fact, cork chemical composition is 

directly associated to this material’s properties, namely to the permeation to gases and liquids 

and performance of cork stoppers in wine bottles (Pereira, 2015). Our study was designed to 

have representativeness of samples while the timespan allowed to use a temporal control 

(Altwegg et al., 2017) and the use of a single site for the sampling reduced the effects of 

confounding variables rather than the drought. 

Our results of the preliminary evaluation of the phellogen age influence on the response of cork 

growth to drought suggested that the age of the phellogen has no influence on the response of 

this species to a drought event and on its recovery although, when regarding the total cork 

growth (9 year production cycle), the reduction of cork thickness is more pronounced if the 

drought event occurs in the beginning of the cycle. However, these assumptions were supported 

on data from a small sampling and number of drought events (3 sites, 149 samples and 1 drought 

event) and a more detailed analysis was necessary. 

In the second and more complete analysis the total sampling showed a mean cork ring width of 

3.30 mm which is in accordance to the values reported by several authors and encompassed the 

variability between trees and sites that is consistently reported. In fact, the values found for cork 

ring width by different authors are in the range from 2.8 to 3.8 mm (3.30 mm and 3.56 mm by 
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Caritat et al., 2000; 3.8 mm by Costa et al., 2002; 3.5 mm by Pereira, 2007; 3.3 mm by Oliveira 

et al., 2016; 3.6 mm, 3.1 mm and 2.8 mm by Costa et al., 2016). In a large cork sampling covering 

all the production regions in Portugal, a mean value of cork ring width of 3.6 mm was reported, 

ranging from site means from 1.6 mm to 4.6 mm (Lauw et al., 2018). 

The high number of samples analyzed (1403, with a minimum of 91 samples/year, see Figure 3 

of Publication II) allowed us to better account for the variability of the entire population of 

interest and therefore to have better estimations. This sampling intensity combined with the 

high value of the Signal to Noise Ratio (144) are strong evidences of the reliability of our results. 

We confirmed the outcomes of several authors about the negative effect of drought on cork 

growth (Caritat et al., 1996; Costa et al., 2016; Oliveira et al., 2016), reinforcing that the spring 

and winter rain strongly influences phellogen activity. Furthermore, our results (see Table I of 

Publication III) demonstrated that more severe drought conditions correspond to greater 

decreases in cork growth and to more trees affected by drought, although, as pointed out by 

Oliveira et al. (2016) and Besson et al. (2014), cork oak rapidly recovers as water availability 

increases, achieving previous ecological performance (see Table 2 and Figure 4 of Publication 

III). 

Our analysis demonstrated that the age of the phellogen is a relevant factor on the recovery and 

on the resilience of cork oak regarding cork growth and that the younger the phellogen (up to 2 

years) the greater the effect of the drought on growth. 

Additionally, the results (see Publication III - Table 2) suggest that more severe droughts 

correspond to lower resistance values, which means greater effects of the drought on the 

growth of the drought year. The trade-off between resistance and recovery after drought, as 

identified by Galiano L. et al. (2011) and highlighted by Lloret et al. (2011), stating that resistance 

and recovery depend on the quantity of stored reserves was confirmed, with the lowest value 

of resistance corresponding to the highest recovery. A low resistance indicates a reserve 

consumption during drought but if there is recovery after drought then there is a positive effect 

from the regaining of photosynthetic capacity after drought (Galiano L. et al., 2011).  

Nevertheless, there is not a clear pattern between the severity of drought and the recovery, 

resistance or resilience behavior and there is a great variability on the performed recovery (Table 

2 and Statistical Analysis, Publication III). The same conclusions were achieved by Lloret et al. 

(2011) who got miscellaneous results for the impact of drought on subsequent tree performance 

and concluded that tree responses to disturbance are extremely complex. These authors also 
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referred that micro-site quality is a more determinant factor in response to disturbance than 

physiological or structural factors. 

The mean resilience values were in general higher than 0.80 (see Publication III - Table 2) 

showing that post-drought cork growth is close to pre-drought (unitary resilience indicates 

similar growth values before and after drought) and demonstrating that cork oak has a great 

capacity to recuperate the previous ecological performance. Therefore, the impact of drought 

on cork growth of the subsequent years was moderately low, supporting the hypothesis that 

cork oak is very tolerant and resilient to extreme droughts. Similar results and conclusions were 

achieved regarding wood growth for other Mediterranean species (Pinus nigra, P. sylvestris and 

Juniperus communis) (Herrero and Zamora, 2014) although not for another oak (Q. faginea) 

(Granda et al., 2013). P. sylvestris needs more time than Q. pyrenaica to recover from drought 

(Gea-Izquierdo et al., 2014). Regarding this, species acclimated to more humid environments 

may be more susceptible to drought as reported for Q. ilex (Granda et al., 2013). 

The results of this research also enforce that the occurrence of wet conditions in winter, spring 

and the whole year are determinant to cork growth, during and after drought, but there are 

other factors involved, namely the site, the tree and the age of the phellogen. This issue was 

raised by Sánchez-González et al. (2007) by stating that there is a relationship between cork 

growth and “unobservable site factors” rather than average climatic conditions. 

Moreover, the ability to recover (expressed by the relative resilience) does not seem to be 

affected by the age of the phellogen. It should be stressed that the phellogen age range in this 

research is only between 1-8 years, therefore not allowing to extrapolate the response for much 

older meristems. For instance, Lloret et al. (2011) found no overall decrease in all the resilience 

components in old trees, supporting the hypothesis that old trees recover better from more 

recent events. 

In terms of forest management, our dendroecological results suggest that cork growth cycles 

should be enlarged in case of occurrence of drought and when the production records suggest 

that the reduction on growth due to drought may lead to obtain cork planks under 27 mm, and 

particularly if the drought occurs in the first two years of the production cycle. This management 

directive lies on the economic rationale of not compromising the technological possibility to 

produce cork stoppers (Lauw et al., 2018). The extension of the cork stripping rotation in order 

to mitigate the effect of climate change was also proposed by Palma et al. (2015). 
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Moreover, the predicted scarcity of water in the actual distribution area of cork oak also 

suggests that new cork oak plantations should be shifted into more humid areas (higher 

latitudes) where, in the nearest future, the annual precipitation will be more adequate for the 

balanced cork oak development and thereby allowing the maintenance of the production of cork 

planks thick enough to manufacture cork stoppers with the usual 9-year cycle. 

Regarding cork chemical composition, our research focused on evaluating if drought events 

occurring during the cork production cycle (i.e. the years comprised between two cork 

strippings) affect the chemical composition of cork, namely, if they modify the relative 

proportion of the chemical constituents in a way that could compromise the utilization of cork 

for wine stoppers.  

It is known that there is a large natural variability on the chemical composition of cork (Pereira, 

2013) that can, at least partially, contribute to understand the diversity in the behavior of cork 

products, particularly of cork stoppers (Pereira, 2015). Several studies addressed the chemical 

variation of cork (Conde et al., 1998; Dehane et al., 2014; Jové et al., 2011; Pereira, 1988, 2013; 

Sen et al., 2016) but the emphasis of these studies has been on the analysis of the geographical 

variability rather than on the climate effect on the chemical composition. To our knowledge, this 

is the first research about the effect of drought on the chemical composition of cork. 

Overall, the chemical composition of the cork samples that were analyzed (Table 2, Publication 

IV) are in the range of the results known for cork, as reported by several authors (as reviewed in 

Pereira, 2007).  

The average 12.2% extractives of which 40.0% are non-polar compounds soluble in 

dichloromethane (Table 2, Publication IV) are comprised in the range of values reported by e.g. 

Jové et al. (2011); Pereira (2013); Bento et al. (2001) and Sen et al. (2016). The results show that 

drought does not seem to affect the total amount of extractives and that the variation that was 

found is more related with the genetic information of the tree. 

This applies also to the non-polar extractives that are lipophilic compounds including long-chain 

fatty acids and alcohols, and triterpenes (Pereira, 2007, 2013) and are related to the 

permeability of cork with lower amounts inducing higher permeability. Our results suggest that 

drought does not affect these compounds and that it is the tree that accounts for the existing 

variation. This natural variability is well recognized and translates, for instance, in different 

oxygen transfer through cork stoppers into the wine bottles (Oliveira et al., 2013). 
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Drought enhanced the amount of the polar extractives soluble in ethanol that may contribute 

to the organoleptic properties of the cork bottled wine. However, the tree was a much more 

significant factor for the variation of these extractives, thereby overruling any drought induced 

changes in this wine characteristic. 

The content of suberin is the most important chemical attribute of cork since it is its chemical 

fingerprint and directly related to most of its typical properties, namely those linked to the 

material’s flexibility and hydrophobicity (Pereira, 2015). The mean values for suberin (36.0% to 

38.2%, Table 2 – Publication IV) are within the range of values reported by the existing studies 

(e.g. Jové et al., 2011; Pereira, 2013; Sen et al., 2016). 

Drought does not seem to induce any changes in the proportion of suberin in cork; on the 

contrary, it is the tree genetic information that has a very strong impact on suberin content. 

García-Vallejo et al. (2009) refer that suberin varies within the species according to its 

geographical location and the tree condition. Our samples were collected in the same site and 

the trees were all mature production trees in good phytosanitary conditions, therefore the high 

variability found in our results should come from the tree genetics. 

Lignin is the second most abundant component of cork, giving mechanical support and rigidity 

to the cell walls (Pereira, 2007). Our samples contained mean values of total lignin between 

26.0% and 27.9% (Table 2, Publication IV) which are in the range presented by Pereira (2013) 

and Jové et al. (2011). Drought had not a significant effect on Klason lignin, acid soluble lignin or 

total lignin contents, but the tree had a very strong influence on the relative amount of these 

compounds. 

The proportion between suberin and lignin defines cork’s unique properties namely its 

mechanical behavior, resilience and permeability (Pereira, 2015). Our samples showed a lower 

mean ratio suberin/lignin when compared to the mean results obtained by Pereira (2013) and 

Jové et al. (2011) but still within the range of their values. Drought did not influence the suberin-

to-lignin ratio and again it is the tree genetics the important factor on the variation of this 

feature. 

The monosaccharide composition of the cork samples (Table 2, Publication IV) is within the 

range of values reported for cork (Pereira, 2013; Sen et al., 2016). It should be highlighted that 

the ratio glucose/xylose was influenced by drought although without a clear pattern i.e. the cork 

produced under two droughts episodes (debarked in 2003) had significantly lower levels of 

glucose/xylose than the cork grown in the other two periods but the cork produced without 
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drought had a lower ratio than the cork produced under one drought event. Arabinose content 

increased and xylose was negatively affected by drought but only if two droughts occur during 

the formation of the cork.  

Regarding the monomeric composition of suberin obtained by GC-MS analysis (Table 3, 

Publication IV), our data show that the main chemical families found were -hydroxyl alkanoic 

acids (37.7 to 43.1% of total monomers) especially with mid-chain substitution, representing 

between 24.1 and 24.2% of total monomers. Alkanoic α,ω-diacids (15.5 to 19.0%) and total 

alkanoic acids (23.8 to 25.8%) represented most of the remaining monomers. The proportion 

for the three main chemical families is somewhat different from that given by other authors, 

namely regarding the content in alkanoic acids: Graça and Pereira (2000) reported 53.0% of α,ω-

diacids, 30.6% of -hydroxyl alkanoic acids, and less than 2% of alkanoic acids, and Marques et 

al. (2015) referred 29.5% of α,ω-diacids, 52.9% of -hydroxyl alkanoic acids  and less than 2% of 

alkanoic acids. This variation reinforces that there is a significant variability on the suberin 

monomeric composition, as already reported by Bento et al. (2001), possibly controlled by the 

genetic information of the tree. 

In fact, our results suggest that the tree genetic (ou as a distinctive factor) is more important in 

the chemical composition of cork than the wet conditions underlying the development of the 

cork. This conclusion is in line with reports that genetics must be a much more relevant factor 

in cork chemical composition and performance than other factors like geographical origin 

(Conde et al., 1998; Jové et al., 2011; Pereira, 2007, 2013). The chemical composition of cork 

produced under drought conditions is well within the variation range found by several authors 

for cork. Moreover, our results show that drought does not trigger the production of different 

suberinic compounds and has only a minor effect on the proportion of the chemical constituents 

of cork. 

Therefore, the occurrence of drought events during the cork growth cycle does not seem to 

compromise the behavior of cork, namely when it is used as sealant material in wine bottles. 

However a word of caution must be given since cork properties arise not only from chemical 

composition but also from the cellular structure, namely cell dimensions (Pereira, 2007, 2015). 

With drought leading to thinner cork rings and less and smaller cells (Oliveira et al., 2016; Pereira 

et al., 1992), an analysis of the effect on cork cellular structure should be made in order to 

evaluate the full impact of drought on cork behavior. Nevertheless, the large variation found in 

cork ring width in commercial cork planks used for the production of wine stoppers (Oliveira et 

al., 2016) allows to consider that this will not be a critical factor. 
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VI– CONCLUSIONS AND FUTURE WORK

 

The research carried out along this PhD project allowed to  compile the disperse – and mostly 

scarce - available information about the characteristics of cork-rich barks and therefore to 

position the cork oak in relation to the formation, growth and features of its cork, and allowing 

to establish its value as an industrial raw-material. Also new knowledge was obtained on the 

effect of drought on cork growth and cork chemical composition and on their potential impact 

on the use for wine stoppers.  

Under our specific objectives, the conclusions can be summarized as follows: 

The cork from Quercus suber is presently the only raw material that has the characteristics 

necessary for production of solid cork products e.g. of wine natural cork stoppers, and for which 

the trituration and production of cork agglomerates are complementary production lines. 

A new cork raw-material has been brought recently to the market, the Chinese cork from 

Quercus variabilis which appears to have an interesting place given the already large amounts 

that are harvested as well as the existing forest potential, now still far from an adequate cork-

targeted management. 

The valuable properties of cork, as benchmarked by the Quercus suber cork, require an adequate 

combination of structural and cellular features with the chemical composition. This is met by 

the corks of several species e.g. Kielmeyera coriacea, Plathymenia reticulata, Quercus cerris, that 

despite species specificities regarding cell biometry and chemistry, have characteristics that 

allow forecasting “corkish” properties and uses.  

The specific cellular characteristics may hinder or limit the use of cork as a cellular material. This 

is the case of Betula pendula cork mainly due to cell biometry, and of Pseudotsuga menziesii due 

to the large proportion of heavily corrugated or collapsed cells. The use of such corks as a 

chemical source is therefore a promising valorization route. In fact, the extractives are a 

chemical component group that is receiving a lot of attention in research and development in 

various fields, including biomedical and healthcare. Also suberin, the main structural component 

of cork cell walls, is a macromolecule with an unusual composition of long chain fatty acids with 

different functional groups e.g. hydroxyl, epoxide, unsaturation, that is species specific, and a 

potential source of chemical intermediates. 
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Regarding the cork from cork oak, dry spells have a strong impact on cork growth and the more 

severe the drought the greater the reduction on growth but also the greater the recovery 

performed. Moreover, although the effects of drought persist, the recovering capacity of cork 

oak is not affected even in drought conditions as severe as the ones from 2005. Therefore, we 

advise forest managers of the Mediterranean region to continue to produce cork as, according 

to our findings, it is expected that cork oak recovers from the growth reduction imprinted by 

drought.  

There are other factors that affect the performance of cork growth during and after drought, 

namely site, tree and the age of the phellogen, and have an important role on the responses of 

cork oak to drought and on its ability to recover. The effects of drought on growth are more 

pronounced in the first two years and in the last two years of the cork production cycle than in 

the middle of the cycle. 

Cork oak is very tolerant and resilient to droughts, has a great capacity to recover from water 

scarcity conditions, reflecting its high adaptation to the variability of water availability in the 

Mediterranean region.  

Cork-ring data analyses is adequate to detect signals of cork oak response to less water 

availability in a nearest future. 

Drought has a negligible effect on the cork chemical constitution namely regarding its structural 

components proportion and composition, and specifically the suberin-to-lignin proportion and 

suberin composition that are the flagship characteristics of cork underlying its properties. The 

genetic package of the tree is the most important factor of chemical variation of cork that 

overrules any impact from drought conditions.  

The expected more frequent and severe forthcoming droughts in the Mediterranean region 

where the cork production areas are included will not compromise the cork properties related 

to its chemical composition, namely the performance of cork as a sealant for wine bottles.  

Nevertheless, in order to have cork planks thick enough to produce cork stoppers, there is a 

strong signal for forest managers to: a) extend the cork stripping rotation in case of drought, 

namely if the drought conditions occur in the beginning of the production cycle (first 2 years) 

and if there is the risk that cork planks are under 27 mm thickness as given by the past history 

of the site and b) establish new cork oak plantations in more humid zones (e.g. higher latitudes). 

Regarding future research, we identified the following promising themes: 
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 structural and chemical characterization of the cork of other species that our review 

showed to be largely unknown as a first step towards their prospective valorization. 

 establishment of a minimum threshold for the recovery of cork growth and verification 

if the recovery response after drought conditions remains high after more repeated 

droughts.  

 combined analysis of the effect of the age of the phellogen and also the effect of the 

age of the tree on the post-drought response.  

 simultaneous analysis of the resilience components on the growth of the wood and of 

the cork, in order to have a deeper insight in the highly complex phenomena involved 

under cork oak drought responses.  

 evaluate if the chemical composition of the cork produced by the more resilient trees to 

drought encompasses the large variability usually found or if it corresponds to a more 

restrict range of values and if they are compatible with the utilization of cork as a sealant 

material. 
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