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A NEW APPROACH  TO THE OPTIMIZATION PROBLEM 

João Ferreira do Amaral1 

 

Abstract 

A new approach to the problem of optimization is developed using tools such as the concepts of aggregate and of 

combined functions. The solving of a simple problem of calculus of variations with inequality constraints illustrates 

the potentiality of this new method.   

Keywords: optimization, calculus of variations, convexity, quasi-convexity 

JEL classification: C61, C65 

 

I Introduction 

The problem of optimization that is described as the maximization of a functional 

defined on the space of real functions of real variables is often too simplified in its 

formulation.  

The usual presentation of the problem includes  a functional J : U→R where (U, ∥.∥) is 

the  Banach space of real functions and a set V ⊂ U (Céa, 1971 p. 61). 

The problem is presented as  

Find sup J(u) for all the   u  ∈  V ⊂ U 

This formulation may be enriched in order to contemplate, for example, the situation 

where the set V is determined by inequality constraints. 

This paper presents a new formulation that for a particular situation (maximization and 

quasi-convex functionals) describes a simple process in order to solve a problem of 

calculus of variations with inequality constraints. 

To develop the solution of the problem we need some auxiliary concepts. Actually it 

would be fair to say that the main intention of the paper is to develop some new (in the 
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present context) concepts that can be useful for solving a maximization problems. This 

means that the development of the concepts takes a large proportion of the paper and 

that is why some patience is required from the reader before arriving to the real solving 

of problems. However we hope that the development of the concepts will be interesting 

in its own right.  

Section II is devoted to the presentation of those auxiliary concepts. Section III solves a 

general problem of maximization and section IV is devoted to the solution of a specific 

problem of calculus of variations with inequality constraints.  

 

II Preliminary concepts 

1 Atomizable and non-atomizable functions 

1.1 Atomizable functions 

Let X be the space of real functions of real variable defined on a set A of real numbers 

and consider the set L of functions F: X →X. 

For each x of X let y = F(x) be the value of F at x and consider the following function 

F*   F*: F(X) X A→R that to each y of F(X) and each t of A associates the real number 

y(t). We  represent this number with the symbols y(t) ≡ F*(x, t) ≡  F(x)(t) . 

Before defining the concept of atomizable function we define the following relation 

between functions:  

Definition 1 (Equivalence). Let g:  R2→R be a real function defined on R2.  We say that 

F ∈ L and g ∈ C where C is the set of real functions of R2 are equivalent on A if F(x)(t) 

= g(x(t), t) for each x of X defined on A and all the t of A. 

Remark 1. The function may depend on other functions y if these don’t depend on the 

variable x, for instance if F is such that F(x) = u.x2 where u is the function of L such  

that u(t) = t for all t . For each t the value of the equivalent function in this case is g 

such that g(x(t), t) = tx(t)2. 

Remark  2. Obviously if the function F has an equivalent function on A this is unique. 

We can now define atomizable function in the strong sense. 
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Definition 2 (Atomizable function in the strong sense). A function F such that it has an 

equivalent function g is an atomizable function in the strong sense.  

This concept is a particular case of the concept we used in a previous paper (Amaral, 

2007) that we called atomizable but that we now define as atomizable in the weak 

sense: 

Definition 3 (Atomizable function in the weak sense). F is atomizable in the weak sense 

if and only if F(x)(t*)  = F(zx(t*) )(t*) for all the  zx(t*) such that zx(t*)(t*) = x(t*). 

It is easy to see that an atomizable in the strong sense is atomizable in the weak sense:  

Suppose that F(x) is atomizable in the strong sense. It has an equivalent function, that is 

for each t* of A we have F(x)(t*) = g(x(t*), t*) = g(zx(t*)(t*), t*) for all the zx(t*) such that 

zx(t*)(t*) = x(t*). 

But as F(zx(t*))(t*) = g(zx(t*)(t*), t*) because F it is atomizable in the strong sense we 

have 

 F(zx(t*))(t*) = F(x)(t*) for all the zx(t*) such that zx(t*)(t*) = x(t*) and F is atomizable in 

the weak sense.  

However we can prove the equivalence of the two concepts, if the following axiom is 

valid. 

Axiom For each  y = F(x) and each t, the value y(t) depends strictly on the value of t 

and on the  values of the function x at numbers t* of A, the same numbers for all the x. 

Theorem 1. If the axiom is valid both concepts of atomizable functions coincide. 

Proof 

We need to prove that if the axiom is valid a function atomizable in the weak sense is 

also atomizable in the strong sense. 

Suppose that  F(x)(t*)  = F(zx(t*) )(t*) with x(t*) = zx(t*)(t*) and that there exists a   t**≠ 

t* belonging to A such that  

 F(x)(t*)  = θ({x(t*), x(t**)}, t*)= F(zx(t*))(t*) = θ({x(t*), zx(t*) (t**)}, t*) 
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But as the equality F(x)(t*)  = F(zx(t*) )(t*) is valid for all the  zx(t*)  such that zx(t*) = x(t*) 

then for z = z x(t*) + h with any h such that   h(t) ≠ 0 for t ≠ t* and h(t*) = 0 we have,  

F(zx(t*) )(t*)= θ({(x(t*), zx(t*) (t**), t*}) = F(z )(t*) = θ({(x(t*), z(t**), t*})                  

As z(t**) ≠ zx(t*) (t**), for all the t** ≠ t*, this is not possible so that F(zx(t*) )(t*) and 

consequently F(x)(t*) don’t depend on any other value x(t**) different from x(t*). 

Therefore F(x)(t) = g(x(t), t). □                                                                          

1.2 Non-atomizable functions 

Non-atomizable functions and aggregates 

Definition 4 (Non-atomizable functions). Non-atomizable functions are the functions 

that verify the axiom and are not atomizable.  

Two important species of non-atomizable functions are respectively those that are based 

on a correspondence of sets and those based on correspondence of aggregates. 

It is now necessary to define the concept of aggregate (later on in this section, p.16, 

more on aggregates). Given a function f defined on A we represent the aggregate of A 

under f as f*(A). 

Consider a set A of real numbers t and let f be a real function that to each t of A 

associates an element f(t) of the set R. 

Definition 5 (Aggregate). The aggregate f*(A) is the collection of elements f(t), such 

that for this collection , if f(t) = f(t*) (according to the relation of equality of real 

numbers) with t ≠ t* , f(t) and f(t*) are considered as distinct elements of the collection. 

For this reason an aggregate is not a set. 

Later on we will see examples of relations and operations on aggregates. For the time 

being it is sufficient to define the relation of belonging and inclusion.  

Definition 6 (Belonging). The element x belongs to the aggregate f*(A), x ∈ f*(A), if 

and only if there exists one and only one t of A such that x = f(t) . 

Definition 7 (Inclusion). f*(C) ⊂  f*(D) if and only if for every x belonging to f*(C),  x  

belongs to f*(D). 



5 
 

Remark 1. We use the same symbols of the relations of sets although the concept of 

aggregate and set do not coincide. 

Remark 2.  Obviously f*(C) ⊂ f*(D) if and only if C ⊂ D , but for image-sets the double 

inclusion is not true. It is true that C ⊂ D implies f(C) ⊂ f(D), but the reciprocal is not 

always true. 

With these concepts we may define disjoint aggregates, that is aggregates that have no 

common element (in the sense of element of an aggregate).  

Obviously if C and D are disjoint sets so are the aggregates f*(C) and f*(D) and the 

reciprocal is also true (again, this is not always true for image sets).  

Set functions, aggregate functions, mixed functions and non-atomizable functions 

We may define real aggregate functions in a similar way as real set functions, that is as   

functions μ 

μ: 2x*(A)→R taking real values μ[x*(C)]. 

If we have a function F defined on a set X of real functions of real variable and taking 

values in X that is 

F:    x ∈ X →y ∈  X  

we may define the aggregate function μ with real values μ[F(x)*(C)]. 

A more general concept is the concept of mixed set/aggregate functions that is X   

μ: 2F(x)*(A) X  2A → R 

with real values  

μ[F(x)*(C), D] with C, D ∈ 2A. 

Especially important is the particular case C = D. 

Finally we can define mixed aggregate/point functions as 

μ: 2F(x)*(A) x A → R with real values μ[F(x)*(C), t]. 

This allows us to define non-atomizable functions in terms of aggregates. 
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Definition 8 (Non-atomizable functions in terms of aggregates). A non-atomizable 

function F : F(x) X  A →R in terms of aggregates is a  mixed aggregate/point function 

such that for each t of  A we have 

F(x)(t) = μ[x*(B(t)), t] with t ∈ B(t), B(t) ∈ 2A the same for every x 

The function μ is 

μ:  2x*(A) X  A → R  and it is a mixed aggregate/point function defined for each x*(B(t)) 

and each t of A. 

Note that μ is based on a correspondence t → B(t), B(t) ∈ 2A. 

Definition 9 (Non-atomizable functions in terms of sets). The definition is the same as 

Definition 8 replacing aggregate by set. 

These two definitions verify the conditions of the axiom on page 3 and the difference of 

both definitions from atomizable functions with values  F(x)(t) =g(x(t),t) is readily seen 

since, for a non-atomizable function, for each t it is determinant the set x(B(t)) or the 

aggregate  x*(B(t)) whereas  for an atomizable function is determinant only the  number 

x(t). This of course is the justification for the name “atomizable functions”. These 

functions, for each t have their values determined by each “atom” x(t), something that is 

not the case for non-atomizable functions. 

These are the basic cases of non-atomizable functions. More complex cases are those 

where we have the real values 

F(x)(t) = μ[x*(B(t)), x(B(t)), t]  

However these cases are not met again in this paper. 

A definition that may be useful in some applications is the definition of continuity. 

Definition 10 (Continuity). A non-atomizable function F in terms of sets (the same for 

aggregates) such that  F(x)(t) = μ[x(B(t)),t]  is continuous in the non-empty and closed 

set A if and only if  it is defined on all elements of A and 

limt→a μ[x(B(t)),t] = μ[x(B(a)),a] for each a ∈ A. 

We have the following theorem for non-atomizable functions in terms of sets. 
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Theorem 2. Let x be continuous in A closed and non-empty. It is necessary for F to be 

continuous that the correspondence A → 2x(A)
  is upper semi-continuous at each t of A. 

Proof 

Suppose that A → 2x(A) 
  was not upper semi-continuous. Then we would have an a*∈ A 

such that for a sequence  {x(tn)} with  x(tn) ∈ x(B(tn)) and lim x(tn) tn→a* = x(a*),   x(a*) ∉ 

x(B(a*)) so that a*∉ B(a*). Then F(x) would not be continuous in A because μ[x(B(t)),t] 

would not be defined for t = a*.□ 

Remark. The theorem may be generalized to aggregates if the concept of upper semi-

continuity is defined for correspondences of aggregates. 

We will come back to aggregates later on in section. But before that it is necessary to 

define concepts of quasi-convexity and convexity. 

2  Quasi-convexity and convexity 

2.1 Atomizable functions 

We begin by considering atomizable functions of two variables (x,y) both being real 

functions of real variable t. 

Definition 11 (Quasi-convexity). Let C2 be the set of all the pairs of functions (u,v) that 

are convex linear combinations  u = λx1 +(1- λ)x2 v = λy1 +(1- λ)y2 for all the λ of C 

such that  0 ≤ λ  ≤ 1  (that is  0 ≤ λ(t)  ≤ 1  for all the t of A),  and all the x1, x2, y1, y1 

belonging to C. A function  f: C2 ⊂ X2 →X is quasi-convex in C2 if and only if for each 

4-uple x1, x2, y1 e y 2 of functions of C, with x = λx1 +(1- λ)x2 , y = λy1 +(1- λ)y2
 and for 

all functions λ of X such that  0 ≤ λ  ≤ 1  we have  

f(x(t), y(t)) ≤ max {f(x1(t),y1(t)), f(x2(t),y2(t))}, for each t de A. 

Remark 1.  The function v is not necessarily the derivative of u although in a lot of cases 

this does happen. 

Remark 2. A set that verifies the properties of  C2 (or for any other number of variables) 

is called a strong convex set or s-convex set. We could call it a convex set, as a 

generalization of the common concept of convex set. However most of the interesting 

properties of convex sets (for example those related to the concept of segment) do not 



8 
 

apply to s-convex sets. That is why we prefer to designate them by a different name. Of 

course a s-convex set is a convex set. 

Definition 11.a (Convexity). A function f: C2→ R defined on the s-convex set C2 is 

convex if and only if under the same conditions of the previous definition we have  

f(x(t),y(t))≤ λ(t) f(x1(t),y1(t))+(1- λ(t)) f(x2(t),y2(t)) for each t of A. 

Remark 1. The usual definition of quasi-convex or convex function is a particular case 

of the antecedent when the λ(t) are constant functions of  t. 

Remark 2. If a function with values f(x,y) is quasi-convex or convex this does not mean 

that the corresponding composed function F: R →R with F(t) ≡ f(x(t), y(t)) is quasi-

convex or convex. 

For example, the function f(x,y) ≡ x2 + x´2 (where x´ is the derivative of x) is convex but 

with x(t) ≡ log t, t > 0, F(t)=(log t)2+(1/t)2 F is not convex for sufficient large values of 

t. 

We can prove the following theorem. 

Theorem 3. Let f be non-decreasing with x and non-decreasing with y in a s-convex set. 

If x(t) e y(t) are non-decreasing real functions of t defined on an interval A, F(t) is 

quasi-convex.  

Remark.  f(x,y) is non-decreasing with x if and only if for all the h  ≥ 0 (that is such that 

h(t) ≥ 0  for all the t of A) we have f(x+h, y) ≥ f(x,y)   

(that is, f(x(t)+h(t), y(t)) ≥ f(x(t), y(t)) for all the t of A).  

Proof 

Consider t1, t2 , t1 < t2 and one  t belonging to [t1, t2]. 

Since x and y are non-decreasing we have x(t) ≤ x(t2) and  y(t) ≤ y(t2) so that  

x ≤  x(t2)  and y ≤  y(t2) where x(t2) and y(t2) are constant functions, that is x(t2)(t) = x(t2) 

for all the t. 

As f (x, y) is non-decreasing in x and y we have for every t 
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f(x(t), y(t)) ≤  f (x(t2)(t), y(t2)(t)) = f(x(t2), y(t2))  

That is, for every t of A, F(t) ≤ F(t2) = max{F(t1), F(t2)} and F(t) is quasi-convex.□ 

We have the following theorem concerning convex functions. 

Theorem 4.  If f is convex and non-decreasing in x and y in a s-convex set and if x(t) 

and y(t) are convex functions, F(t) is a convex function in the interval A. 

Proof 

Consider t0 and t1, a real number μ,  0 ≤ μ ≤ 1 and the corresponding t* , t* =μt0 + (1-

μ)t1  

 As  x(t) and  y(t) are convex in A we have 

x(t*)≤ μx(t0) + (1-μ)x(t1) 

y(t*)≤ μy(t0) + (1-μ)y(t1)  

Therefore given the fact that f is non-decreasing in x and y we have for the following 

constant functions μ, x(t0),  x(t1), y(t0) and y(t1), 

f(x(t*),y(t*)) ≤  f(μx(t0)(t*) + (1-μ)x(t1)(t*), μy(t0)(t*) + (1-μ)y(t1)(t*))=  f(μx(t0) + (1-

μ)x(t1), μy(t0) + (1-μ)y(t1)) 

Due to the convexity of f we have  

f(x (t*),y(t*)) ≤  f(μx(t0) + (1-μ)x(t1), μy(t0) + (1-μ)y(t1)) ≤ μf(x(t0), y(t0)) + (1-μ) f(x(t1), 

y(t1)) 

That is  F(t*) ≤  μF(t0)+(1-μ)F(t1).□ 

Remark. In the particular case where y = φ(x), is important not to confound the quasi-

convexity of f  that is defined by   

f(λ x1 +(1-λ)x2, λφ (x1) +(1-λ)φ(x2)) ≤  max {f(x1, φ (x1)), f(x2, φ (x2))}  

with the relation f(λx1 +(1-λ)x2, φ(λx1 +(1-λ)x2)) ≤ max{f(x1, φ (x1), f(x2, φ (x2)} which is 

something different. 

Related to this we have the following theorem. 
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Theorem 5. If f  is quasi-convex and non-decreasing in φ(x), where φ is convex we have 

f(x, φ(x)) ≤  max {f(x1, φ (x1), f(x2, φ (x2))}. 

Proof 

As φ is convex  we have φ(x) ≤ λ φ (x1) +(1-λ) φ(x2) and since f  is non-decreasing in φ 

we have for x1 e x2 and any x = λx1 + (1-λ)x2,  

f(x, φ(x)) ≤  f (λ x1 +(1-λ)x2, λ φ (x1) +(1-λ) φ(x2)) 

But as f is quasi-convex 

 f (λ x1 +(1-λ)x2, λφ(x1) +(1-λ) φ(x2)) ≤ max {f(x1, φ (x1), f(x2, φ (x2))} 

so that  

f(x, φ(x)) ≤  max {f(x1, φ (x1), f(x2, φ (x2))}. □ 

Later on (section III) we consider a specific case where φ is not necessarily convex but 

where  

f(x, φ(x))≤  f(x1, φ (x1), f(x2, φ (x2)) is still valid. 

Let us look now to non-atomizable functions. 

2.2 Quasi-convex non-atomizable functions in one variable 

We define the concept for aggregates (for sets the definition would be analogous) 

Definition 12 (Quasi-convexity). Let F(x)(t) = μ[x*(B(t)),t] be a non-atomizable 

function in terms of aggregates. Let x1, x2 be real functions belonging to a s-convex set 

C and λ (0 ≤  λ  ≤ 1) with x = λx1 (1- λ)x2 .  F(x) defined on C is quasi-convex if and only 

if  for each t of A 

F(x)(t) ≤ max {F(x1)(t), F(x2)(t)} that is 

μ[x*(B(t)),t] ≤ max{μ [x1*(B(t)),t] , μ [x2*(B(t)),t]}. 

This is the essential of quasi-convexity and convexity that is needed for the study of 

maximization in the context we have determined in the Introduction. 

We introduce now another concept. 
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3 Combined functions-n (CF-n) 

3.1.Definition. Equivalence 1 and 2 

Let X be a set of real functions of a real variable and B a closed interval  B = [t0 t1]. Let 

{Ai}, i=1,…n  be a partition of B in n disjoint sets. 

Definition 13 (Combined functions-n and generated set).   

a) z is a CF-n (combined function-n) in A if and only if for a partition {Ai}, and for each 

t of  Ai we have  z(t) = xi(t), where xi are functions belonging to X  

b) The set of all the z is the set generated by X and it is represented by X*(X)  

c) the natural number n is the degree of the CF. 

It is possible to define a wide set of properties and operations for CF-n. For our 

purposes in this paper it is sufficient to develop the case CF-2, that is functions z 

defined on A such that for a partition A = A1∪ A2 with A1 and A2 disjoint sets there exist 

x1, x2 of X such that  z(t) = x1(t) for all the t of A1 and z(t) = x2(t) for all the t of A2. 

We use the following evident notation to represent functions CF-2 

z ≡ (x1, A1, x2, A2) 

Remark. Until otherwise stated both the two sets of the partition are considered non-

empty sets. 

Definition 14 (Equivalence-1, equivalence-2 and equality).  

The CF-2 function z* is equivalent-1 to the function z ≡ (x1, A1, x2, A2) if there is a 

partition C1, C2 of A such that  

z * ≡ (x1, C1, x2, C2). 

The CF-2 function z* is equivalent -2 to z if and only if  

z ≡ (x1, A1, x2, A2)  

z * ≡ (y1, A1, y2, A2). 

It is to verify that each of these relations is a relation of equivalence. 



12 
 

Now the definition of equality  

For z = (x1, A1, x2, A2) and w = (y1, C1, y2, C2)  

w = z if and only if  Ai = Ci and xi = yi for i = 1,2. 

Remark. Note that we consider as two different CF-2 the functions (x, A1, x, A2) and (x, 

C1, x, C2) if Ai ≠ Ci . 

Evidently two CF-2 are equal if and only if they are equivalent-1 and equivalent-2. 

Let us develop these concepts. 

3.2 Functions equivalent -1 

Sum and product  

When we have two equivalent-1 CF-2 functions defined in the same set A we may 

define a sum and a product of those functions. 

Definition 15 (Sum). Let z and z* be two functions equivalents-1 with z defined on the 

partition  A = A1 ∪ A2 and z* defined on a different partition A = C1∪ C2 , with  

Ai ≠ Ci±1. The sum z**=z ╬ z* is the function z** such that  

z** ≡ (x1, (A1∩ C1) ∪ (A2∩ C2),  x2, (A1∩ C2) ∪ (A2∩ C1)). 

Note that as can be easily checked with Ai ≠ Ci±1, {(A1∩ C1) ∪ (A2∩ C2), (A1∩ C2) ∪ 

(A2∩ C1)} is a partition of A in two non-empty sets so that z**is equivalent-1 to z and 

z*. 

It is also easy to see that the operation is commutative and associative.  

The following operation could be designated by multiplication but can be reduced to the 

previous as we will see. 

Definition 15.a (Product). Let z and z* be two equivalent-1functions with z defined on 

A = A1∪A2 and z* defined on a different partition A = C1∪ C2. The product z**= z ● z* 

is defined as 

z** ≡ (x1, (A1∪ C1) ∩ (A2∪ C2),  x2, (A1∪ C2) ∩ (A2∪ C1)) 



13 
 

Note that again {(A1∪ C1) ∩ (A2∪ C2),   (A1∪ C2) ∩ (A2∪ C1)}  is a partition of A , so 

that z** is an equivalent-1 to z and z*. 

Symmetric and null elements 

The symmetric element of z = (x1, A1, x2, A2)  is represented by  –z such that  

-z = (x1, A2, x2, A1) 

Obviously - (-z) = z and - (z ╬ z*)= z ╬ (-z*)   

On the other hand we have z ● z* = - (z ╬ z*) as the following identities show 

z ● z*  ≡ (x1, (A1∪ C1) ∩ (A2∪ C2),  x2, (A1∪ C2) ∩ (A2∪ C1)) = 

= (x1, (A1∩ A2) ∪ (A1 ∩ C2) ∪(C1∩ A2) ∪ (C1 ∩ C2) ,  x2 (A1∩ A2) ∪  (A1 ∩C1) ∪ 

C2 ∩ A2) ∪ (C2 ∩ C1))  = (x1, (A1∩ C2) ∪ (A2∪ C1),  x2 (A1∪ C1) ∩ (A2∪ C2))= 

=   - (z ╬ z*). 

Therefore as mentioned above the product reduces to a sum, after we define symmetric 

elements. 

On the other hand as - (z ╬ z*)= z ╬ (-z*)  we can also write 

z ● z* = z ╬ (-z*)  

and this allows us to eliminate the operation of multiplication.   

Till now we considered only non-empty sets. It is time now to introduce the possibility 

of empty sets. This can be done through the definition of null elements. 

Null elements 

For each pair x1, x2 there are two null elements defined respectively by 

0 = (x1, A, x2, ∅) 

and  

-0 = (x1, ∅, x2, A) 
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Note that this is just an operational definition since it makes no sense to say that a 

function of a point is defined on the empty set, but is a concept that has the advantage of 

extending the definition of the sum to the case where Ai = Ci±1. 

We have 

0 ╬ z = z 

-0 ╬ z = -z 

z ╬ z = 0 

-z ╬ z = - 0  

If we define for a natural number m  

mz ≡ z ╬ z ╬...╬ z  with m terms, 

we have mz =0 if m is even  and mz = z if m is odd and other similar results for -0. 

Unit elements 

It is important to define unitary elements. The definition is such that there is a unitary 

element for each element t de A. 

We define the unitary element 1 for the value of t as  

1(t) = (x1, A-{t}, x2, {t})  

Consider  

z ≡ (x1, A1, x2, A2), 

if t ∈ A1 we have 

z ╬ 1(t) = (x1, [(A1∩(A-{t})]∪[(A2∩{t})], x2, [(A1∩{t})∪ (A2∩ (A-{t})] = (x1, A1-{t},x2, 

A2∪{t}) 

and if t ∈ A2,  

z ╬ 1(t)  = (x1, A1 ∪ {t}, x2, A2 -{t}).  
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In each of the cases this operation transfers one element of A from one of the sets to the 

other set. 

For each t we have  

z ╬ -1(t) = - (z ╬ 1(t))               

Let us now look at equivalent-2 functions. 

3.3 Operations with CF-2 equivalent-2.Integration and aggregates 

Generally when the functions are defined on the same partition, {A1, A2} of a given set  

A , that is when we have equivalent-2 functions, if f represents a function of functions,  

op represents a binary operation and if 

z* ≡ (x1, A1, x2, A2) 

z** ≡ (y1, A1, y2, A2) 

we have respectively 

f(z*) ≡  (f(x1), A1, f(x2), A2) 

z ≡ op(z*, z**) = (op(x1,y1), A1, op(x2,y2), A2) 

In what concerns integration if x1 and x2, are integrable functions of t we define 

∫A z* dt ≡ ∫A1 x1 dt +∫A2 x2 dt. 

Aggregates and CF-2 

For aggregates if z ≡ (x1, A1, x2, A2) we have obviously 

z*(A) = x1*(A1) ∪ x2*(A2)  and 

f(z)*(A) = f(x1)*(A1) ∪ f(x2)*(A2) 

We have also the following theorem 

Theorem 6. Let X be a s-convex set of functions defined on a set A. Then for each 

partition {Ai} the set X*({Ai}) of all the equivalent-2 CF-2 functions is s-convex. 

Proof 
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Let x* = (x1, A1, x2, A2) and y*= (y1, A1, y2, A2)   belonging to X*({Ai}) and z*= λx* + (1-

λ)y*. Then as we have seen regarding binary operations  

z* =(λx1+(1-λ)y1, A1, λx2+(1-λ)y2, A2) 

As X is a s-convex set, λx1+(1-λ)y1 and  λx2+(1-λ)y2 belong to X so that  z* belongs to 

X*({Ai}).□ 

Distance between equivalent-2 functions  

Metric issues are important since the space of real functions with real variables is a rich 

metric space. Based on this fact we can define a distance for equivalent-2 functions. 

Consider a partition of  A, {A1, A2} and suppose that for each pair (x,y) of functions of 

the set X we define two distances on each set of the partition, designated respectively by 

dA1 and dA2. The values dA1(x,y) and dA2(x,y) are dependent, respectively on A1 and A2. 

Definition 16 (Distance). We may define for each A = A1∪ A2, where none of the sets is 

empty, for each pair of elements of X* and for equivalent-2 functions w e z with w= (w1, 

A1, w2, A2) and z =(z1, A1, x2, A2), the distance between w and z on the set A as  

dA(w,z) ≡ dA1(w1,z1) + dA2(w2,z2). 

Remark 1. It is easy to verify that dA(w,z) is indeed a distance.  Note also that dAi (x,y) is 

not the restriction  of dA to a subspace since dAi (x,y) = 0 does not imply dA(x,y) = 0. We 

say that dAi is a contraction of dA and  dA an expansion of dAi. 

Remark 2. We assume that if Ai = {t}, dAi(wi,zi) = d*(wi(t),zi(t)) where d* is a distance 

defined on R.  

It is now time to return to the concept of aggregate for further developments. 

4 Aggregates and sets 

Recall the concept of aggregate. 

Consider a set A of elements t and a function f that to each t of A associates a certain 

element of the image set f(A). 

The aggregate f(A)*  is the collection of elements f(t) for each t of A, such that if f(t) = 

f(t*) when  t ≠ t* ,  f(t) and f(t*) are considered distinct elements of the collection. 
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4.1 Homologous aggregates and sets 

It is useful to avoid possible confusions when we use the concepts of aggregates and 

sets. 

Let A and B be two sets and x: A→B a function for which we calculate for each C ⊂ A 

the set x(C) ⊂ x(B) and the aggregate x*(C) ⊂ x*(B).  

Definition 17 (Homologous). x*(C) is homologous to the set x(C) and we represent this 

fact by  x*(C)↔x(C) if for any t and t* of C such that t ≠ t* we have x(t) ≠ x(t*). We use 

the convention  x*(∅) ↔ x(∅) and x*({u}) ↔ x({u}) for all the u of A. 

Let  Fx ⊂  2A be the family of all the sets  C ⊂ A such that x*(C)↔x(C). 

We have the following simple theorem 

Theorem 7.  If C ∈ Fx then for any C1⊂ C we have C1 ∈ Fx . 

and the corollary 

Corollary If C ∈ Fx, then for any D of 2A,  C∩D and C- D ∈ Fx . 

Remark . Obviously there is always a function H : 2x*(A)→ 2x(A) such that  H(x*(C)) = 

x(C) for each C of 2A. But there is no inverse function unless the respective 

correspondence is restricted to the family Fx.  

The following theorem applies to real functions. 

Theorem 8. If x is a continuous real function of real variable defined on the closed 

interval A we have x*(A)↔x(A) if and only if x is strictly monotonous (increasing or 

decreasing). 

Proof 

Suppose that x*(A)↔x(A).  

 Then if t ≠ t*, x(t) ≠ x(t*). Suppose that t < t* and x(t) < x(t*) and that there were  t** 

and t*** with   t** <  t*** such that  x(t**) >  x(t***). 

Consider the case t < t* < t**< t***. If x(t**) > x(t*) then  x(t*) < x(t**)  and x(t***) < 

x(t**) so that given the continuity of x(t), for α > 0 such that  x(t**) – x(t*) > α and 
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x(t**) – x(t***) > α there would exist t+ and t++, t+ ≠ t++ such that  x(t+) = x(t++) = 

x(t**) - α, something that is not possible. The same argument with the necessary 

adaptations for  x(t**) < x(t*) and for any other case since there will always be t+ that is 

not a extreme of the interval and a α > 0  such that for two t++ and t+++, t++ ≠ t+++ we 

have x(t++) = x(t+++) = x(t+) – α. 

The reciprocal is obvious. Note that for the reciprocal to be true it is not necessary to 

suppose that x is continuous.□ 

This theorem is important because shows that this relation between homologous 

aggregates and sets happens in a very specific situation. For most of the cases there is a 

real risk of confounding the two concepts.  

We continue now with the case of real functions. 

4.2 The case of real functions of real variable 

The particular case of aggregates that we are going to use is the case where A⊂ R  and X 

is a set of real functions of real variable defined on A. 

For each function x of X, x(A) is the image set of  A and x*(A) is the aggregate of all the 

values x(t) for all the  t of A.  

The study of aggregates may proceed in three directions: 

a) focus on a function  x and study the aggregates x*(B) corresponding to sets B⊂A  

b) focus on a set A and study the aggregates x*(A), y*(A),… for the corresponding 

functions of X. 

c) consider simultaneously different aggregates and different functions 

4.2 a) the same function and different sets and aggregates 

Consider all the sets that are elements of the family 2A. 

We start by recalling the relation of belonging. 

Belonging 
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An element r belongs to the aggregate x*(B) if and only if there is t of B such that r = 

x(t). 

Remark. Note that the elements r aren’t plain real numbers. They are characterized not 

only by a value corresponding to a real number but also by a value of t, that creates a 

new order relation ∟ (not the order of the set R) defined by x(t)∟x(t*) if and only it t < 

t*. The ontology of aggregates and their elements is an interesting topic in its own right 

but it is not the object of the present paper. 

Empty aggregate 

x*(B) is empty if and only if B is the empty set and it is designated by x*(∅). 

Complement 

The aggregate of all the elements r = x(t*) for all the t* of A not belonging to B is the 

complement of x*(B) and it is designated by  ⌐x*(B) or by x*(A-B). Note that the same 

real number my belong to x(B) and to x(A-B) but this is by definition impossible for any 

element and the corresponding aggregates x*(B) and x*(A-B). 

Inclusion  (see p.4) 

x*(B)⊂ x*(C) if and only if for every x(t) belonging to x*(B) x(t) belongs x*(C). It is 

easy to see that x*(B) ⊂ x*(C)  if and only if B ⊂ C. 

Equality 

x*(B) = x*(C) if and only if  x*(B) ⊂ x*(C) and x*(C) ⊂x*(B). 

Obviously x*(B) = x*(C) if and only if B = C 

Union and intersection  

Given B and C we define:  

Union of the two aggregates, x*(B) ∪ x*(C) is the aggregate of all the elements that 

belong to x*(B) or to x*(C).We have always x*(B) ∪ x*(C) = x*(B ∪ C) (this can be 

generalized for any number finite or infinite of sets). 
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Intersection of the two aggregates,  x*(B) ∩ x*(C) is the aggregate of all the elements 

that belong to x*(B) and to x*(B). We have always x*(B) ∩ x*(C) =  x*(B ∩ C) (again, 

this can be generalized for any number finite or infinite of sets).  

Remark. Note that regarding intersection if x(B) is the image set of B, then it is not 

always true that x(B) ∩ x(C) = x(B ∩ C).  

Obviously x*(B) ∩⌐x*(B) = x*(∅). 

Difference  

We define x*(B) – x*(C) ≡ x*(B) ∩⌐x*(C) = x*(B - C). 

Analysis of aggregate functions 

Let  μ: 2x*(A)→R with real values μ[x*(C)]. 

We can develop an analysis of real aggregate functions in a manner similar to the 

analysis of set functions. We exemplify briefly. 

Let F ⊂ 2A be a family of subsets of A and x*[F] the family of the aggregates x*(B) for 

all the B of F. 

It is easy to verify that if F is a ring of sets (or a σ-ring) the same is true for the family 

x*[F]. 

More generally if the family F is characterized by a property P such that op (Eα) 

belongs to F where op(Eα) is a set that is the result of an operation op on any number of 

sets Eα  of F and if op*(x*(Eα)) = x*(op(Eα)) where op* is the corresponding operation 

for aggregates, then x*[F]  has the property P applied to aggregates. 

Other properties could be defined and it is possible to define measures of aggregates. 

For instance if λ is a measure defined on the sets of F we may define a measure λ* on 

the family x*(F) putting  

λ*(x*(C)) ≡ λ(C). 

It easy to see that it is a measure, that is, non-negative σ-additive and such that   

λ*(x*(∅))=0. 

4.2b) The same set and different functions 
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We focus now on a given set and look at the aggregates x*(A), y*(A),…  

Note that if x*(A) ≠ y*(A) we cannot have x*(A) ⊂ y*(A) neither y*(A) ⊂ x*(A) so that 

the relation of inclusion doesn’t apply to this case. However we can define 

Definition 18 (partial order that is not the relation of inclusion). 

x*(A) ≤ y*(A) if and only if for any t of A, x(t) ≤ y(t). 

Remark. In this definition since t is the same in the two members of the inequality it is 

the usual order defined for real numbers that matters and not the relation ∟ (p. 19). 

Equality  

x*(A) = y*(A)  if and only if x(t) = y(t) for every t of A or equivalently, 

if and only if x*(A) ≤ y*(A) and y*(A) ≤ x*(A). 

Operations with real numbers 

These operations are easily defined. Two examples are sufficient to illustrate the 

procedure 

x*(A) + y*(A) ≡(x+y)*(A). 

Or , being  λ a real number  

λx*(A)≡ (λ x)*(A). 

We have now the following lemma that will be used later 

Lemma. If  x(t) ≤ y(t) for all the values t ∈ A⊂ R  then for all the functions u defined on 

A  is necessary and sufficient for u to be u = λx + (1-λ)y  for a certain λ, 0 ≤ λ ≤1 that 

we have x*(A) ≤  u*(A) ≤ y*(A). 

Proof  

If u = λx + (1-λ)y we have for every t  x(t) ≤ u(t) ≤ y(t) so that  x*(A) ≤ u*(A) ≤ y*(A). 

Reciprocally  if for each t  x(t) ≤ u(t) ≤ y(t) we have u(t) = x(t) + λ(t)[y(t) –x(t)] with   

0 ≤ λ(t) ≤1 . Then  λ is the function that we were looking for.□ 

Remark. Similar results could be proved for other situations. 
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We have also the following theorem 

Theorem 9. Let u be defined on A and X be the set of all the functions x defined on A 

such that x*(A) ≤ u*(A) (u*(A) ≤  x*(A)).  Then X is a s-convex set. 

The proof is obvious. 

Metric 

We may define a metric between the pairs x*(A), y*(A)... provided that there is a 

distance dA(x,y) defined for all the functions defined on A. 

We put simply  

D(x*(A),y*(A)) ≡ dA(x,y). 

It easy to verify that is really a distance so that the family of all the aggregates x*(A), 

y*(A)... can be easily be endowed with a useful structure of metric space. Note that this 

cannot be done for the family of image sets x(A), y(A),... because it may easily happen 

that x(A) = y(A)  with x ≠ y.  

A final important concept has to do with continuity of aggregates relative to mixed 

functions based on functions F:X→X. 

 Definition 19 (Continuity). Let μ be a real mixed aggregate/set function defined on the 

aggregate  F(x)*(B) for all the x of X and on a given set B ⊂ A. The function μ is 

continuous at the function a ∈ X if and only if for any  δ > 0 there exits ε > 0 such that 

for all the x such that ∥ x - a∥ < ε we have │μ[F(x)*(B)]- μ[F(a)*(B)]│< δ. 

4.2 c) Different sets and different functions 

Definition of equality  

x*(A) = y*(B)  if an only if x(t) = y(t) and A= B 

Definition of partial order 

If A is a non-empty set and {A1, A2} is a partition of A, we have x*(A1) ∪ w*(A2) ≤ 

y*(A1) ∪ z*(A2) if and only if   x(t) ≤ y(t)  for all the t of A1 and  w(t) ≤ z(t) for all the t 

of A2 . 
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4.2 d) Analysis of aggregate functions 

We have already seen (p. 21) the possibility of defining measures for aggregates. The 

concept of additivity when the aggregates depend on real functions plays an important 

role in the analysis of real aggregate functions. We begin by the definition, 

Definition 20 (Additivity). A real function of aggregate μ is additive if for every x of X  

being F(x)*(A) and F(x)*(B)  disjoint aggregates we have 

μ[F(x)*(A) ∪ F(x)*(B)] = μ(F(x)*(A) + μ(F(x)*(B)) . 

Remark 1. An example is one where μ is the integral. In the case of a CF-2 (see p. 15) if 

z**≡ (F(x) , A , F(x), B) we have ∫A∪B z**dt =∫A F(x) dt + ∫B F(x)dt . 

Remark 2   For each x we always have μ[F(x)*(A) ∪ F(x)*(B)] = μ[F(x)*(A ∪ B)], so 

that if μ is additive, 

μ[F(x)*(A ∪ B)] = μ[F(x)*(A)] + μ[F(x)*(B)]. 

Definition 21 (Additivity fin terms of aggregates/sets). For a function μ that is mixed 

aggregate/set given A and B disjoint sets the property of additivity is defined as  

μ[F(x)*(A) ∪ F(x)*(B), A ∪ B)] = μ[F(x)*(A), A]  + μ[F(x)*(B), B] that is  

μ[F(x)*(A ∪ B), A ∪ B] = μ[F(x)*(A), A]  + μ[F(x)*(B), B]. 

Other properties may be important. 

One example is sub-additivity. In the case where μ is a mixed aggregate/set function, μ 

is sub-additive if  

μ[F(x)*(A) ∪ F(x)*(B), A ∪ B)] ≤ μ[F(x)*(A), A] + μ[F(x)*(B), B] 

for any A and B not necessarily disjoint. 

A more restricted sub-additivity may be defined for A and B disjoints only 

Example of sub-additivity for disjoints aggregate/sets. 

Consider F the identity function, that is F(x) = x for every x of X and μ with values 

μ[x*(A), A)] = α[x*(A), A)].φ[x*(A), A] 
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where α and φ are additive functions such that their non-zero values have different 

signs, that is  

α[x*(A), A)].φ[x*(B), B] ≤ 0  

If A and B are disjoint we have  

μ[x*(A ∪ B), A ∪ B] = α[x*(A ∪ B ), A ∪ B] .φ[x*(A ∪ B), A ∪ B] = 

= α[x*(A), A)].φ[x*(A), A] + α[x*(A), A)].φ[x*(B), B]+ α[x*(B), B)].φ[x*(A), A] + 

α[x*(B), B)].φ[(x*(B), B]  

As α and φ have values with different signs, all the terms of the sum are non-positive so 

that   

μ[x*(A ∪ B), A ∪ B] ≤ μ[x*(A), A] + μ[x*(B), B] 

so that μ is sub-additive for disjoint aggregates/sets. 

4.2 e) Pseudo-monotony and quasi-convexity  non-atomizable functions 

It is possible to establish a characterization of quasi-convexity (see p. 10) for certain 

non-atomizable functions based upon the following definition of pseudo-monotony 

Definition 22 (Non-decreasing pseudo-monotony in terms of aggregates). The non-

atomizable (in terms of aggregates) function  σ is non-decreasing pseudo-monotonous if 

and only if given two aggregates x*(E(t)) and y*(E(t)) belonging to the domain of  σ, 

such that x*(E(t)) ≤ y*(E(t)) we have σ[x*(E(t)), t]  ≤  σ[y*(E(t)), t] for each t of A. 

Remark. It is important not to confound pseudo-monotony with monotony of set or 

aggregate functions, for example E ⊂ G ⇒ μ(E)  ≤  μ(G)    

We have the following important theorem for non-atomizable functions that provides a 

link between quasi-convexity and pseudo-monotony. 

Theorem 10. The real function F with values F(x)(t) ≡ σ[x*(B(t)), t], B(t) ⊂ A, t ∈ B(t), 

x∈ X, X s-convex  is quasi-convex if σ is non-decreasing pseudo-monotonous in terms of 

aggregates in  the set  X.  

Proof 
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Note in the first place that the property of non-decreasing pseudo-monotony of σ, in 

terms of aggregates means that for each t of A and each pair of functions y1 and y2 of X 

such that  y*1(B(t)) ≥  y*2 (B(t)) we have  

σ[y*1(B(t)),t] ≡ F(y1)(t) ≥ F(y2)(t) ≡ σ[y*2(B(t)),t]. 

On the other hand for each t of A and for any x1, x2  of X, with   x = λ x1 + (1- λ)x2 we 

have 

x(t) ≤ max{(x1(t) ,x2(t)}. 

Let A = A1∪ A2 where A1 is the set of all the t of A such that x1(t)  ≥  x2(t) and A2 the set 

of all the t of A such that x2(t) > x1(t) . 

Then, for each t of A1∩B(t) we have for any x = λ x1 +(1- λ)x2, x(t) ≤ x1(t)  and for each t 

of A2∩B(t),  x(t) ≤ x2(t). 

Therefore, according to the definition of non-decreasing pseudo-monotony in terms of 

aggregates we have x*(A1∩ B(t)) ≤ x*1(A1∩B(t)) for each t of A1∩ B(t) and x*(A2∩ B(t)) 

≤ x2*(A2∩ B(t))  for each t of A2∩ B(t). 

As σ is non-decreasing pseudo-monotonous in terms of aggregates, for each t of A1∩B(t) 

we have F(x)(t) ≤ F(x1)(t) and for each  t of  A2∩B(t) we have F(x)(t) ≤ F(x2)(t), so that 

for each t of (A1∩ B(t)) ∪ (A2 ∩B(t)) = B(t) (since by assumption B(t) ⊂ A) we have   

F(x)(t) ≤ max{(F(x1)(t) ,F(x2)(t)}. 

But as we assume that for each t of A, t ∈ B(t), we finally have for each t of A and each x 

= λ x1 +(1- λ)x2 

F(x)(t) ≤ max{(F(x1)(t) , F(x2)(t)}.□ 

Pseudo-monotony for mixed aggregate/set functions 

The definition of pseudo-monotony can be easily generalized for mixed aggregate/set 

functions: 

Definition 23 (Non-decreasing pseudo-monotony for mixed terms aggreate/set). The 

real mixed aggregate/set real function μ has the property of non-decreasing pseudo-

monotony if and only if given two aggregates belonging to the domain of μ, x*(A) and 

y*(A) such that x*(A) ≤  y*(A) we have μ[x*(A), A)]  ≤  μ[y*(A), A]. 
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Simplification of the notation 

In what follows if we consider a mixed function with values μ[F(x)*(B), B] we simplify 

the notation putting μ[F(x)*(B)]. 

This ends the introduction of complementary concepts. We proceed now to section III 

that is to  the formulation of the maximization problem under some specific conditions. 

 

III Maximization 

 5 One variable 

5.1 Solving the maximization problem 

The entities  

Consider the following entities: 

a) Real functions of real variable t, continuous and differentiable, designated by x, y, z 

,… with values x(t), y(t), z(t) … defined on a set A ⊂ R 

b) The set X of all the previous functions and another set X*(n)(X) that is the set of all 

the CF-n functions generated by X. 

c) A number m of constraints for each function x of X, each constraint represented by a 

proposition mi(x), being  X ∩ Mi the set of functions of X for which mi(x) is true. That is 

X ∩ (∩Mi), i=1,...m - assumed to be non-empty – is the set of  the x of X that verify all 

the constraints. To simplify the notation we designate this set by X ∩ Mi.   

d) The set X ∩ Mi and the corresponding set X*(n)(X ∩ Mi), that is the set of all the CF-

n generated by the set X ∩Mi. It is assumed that X ∩ Mi is a s-convex set. 

e) A function F: X*(n)(X ∩Mi) →X, atomizable (we’ll consider later on non-atomizable 

functions) and the real function  F(x) : A→R  with values F(x)(t), defined for all the t of 

A. 

f) A real mixed aggregate/set function based on real number sets designated by μ 

defined on the aggregate F(x)*(B) and on the set  B, for all the B ∈ 2A  and all the x of (X 

∩ Mi). As 2A ⊂ 2R is the family of all the subsets of A we have μ:  2F(x)*(A) x 2A  →  R 
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Remark. The symbol 2F(x)*(A) represents the family of all the aggregates F(x)*(B) for 

each B ⊂ A. As we have seen at page 19 that B ⊂ A is equivalent to  F(x)*(B) ⊂ 

F(x)*(A) the definition is coherent 

We may now state the problem 

The problem   

Find x*≡ (x*1, A1,…x*n, An) ∈ X*(n)(X ∩Mi),such that: 

 Σi=1
n μ[F(x*i)*(Ai)] = max x ∈ X*(n)(X∩Mi) {μ[F(x)*(A)]}for any partition of A 

and such that for all the p < n max x∈ X*(p)(X∩Mi) {μ[F(x)*(A)]} may not exist. 

Remark. This second condition means that n is the minimum degree of CF that is 

needed to guarantee that we find the maximum (as we‘ll see later on this degree 

depends in general on the number of restrictions mi(x)). 

Why this problem? 

Usually the problems of maximization try to find the maximizing function in the set (X 

∩Mi)  and not in the set X*(n) (X ∩Mi). As sometimes this is not possible we try to find 

the maximizing function in the set X*(n) (X ∩Mi) that is in some sense the “nearest” one 

to the set (X∩Mi). Nearest in the sense that at most n -1 equalities xi = xj are necessary 

to obtain a x of (X ∩Mi)  from x*≡ (x1, A1,…xn, An). 

If we designate by X+ the set of all the x* of X*  such that x1
 = x2 for all the partitions of 

A the proximity of the sets X*-X+  and X+ may be easily attested by the fact that in a 

great number of cases the separation between the sets vanishes (not the Hausdorff 

distance but the separation S defined by S(C,D) ≡ inf{x∈C, y∈D d(x,y)}), for example if the 

set X is such that for each x of  X exists a t of A such that there is a sequence yn of 

elements of X distinct of  x such that limn→∞ yn(t) = x(t).  

Let us prove this for n = 2. If the condition applies we have S(X*- X+, X+) = 0. Consider 

a sequence of functions zn , belonging to X*-X+,  zn = (x,  A-{t}, yn,{t}) with x ≠ yn and 

limn→∞ yn(t) = x(t) for some t. Consider x* of X+  x* = (x , A-{t}, x ,{t}). Using the 

concept of distance defined at page 16,  
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dA(zn, x*) = dA-{t} (x, x) + d{t}(x, yn) = d(x(t), yn(t)) for every t , where the distance of the 

right member is the  distance between real numbers. But for one of these t inf {d(x(t), 

yn(t)}= 0 so that for the sequence {zn} of functions of X*-X+ inf {dA (zn, x*)}= 0 that is , 

S(X*-X+, X+) = 0. 

Solving the problem for the simplest case, n=2 and m=1 (that is one restriction only) 

For this case we have the following theorem 

Theorem 11. If: 

a) F is quasi-convex on the s-convex set X ∩ Mi  

b) μ is defined on all the aggregates determined by subsets of A and is non-decreasing 

pseudo-monotonous and additive in terms of aggregates/sets 

c) there is only one restriction that is of the type x1 ≤ x ≤ x2  

Then there are two disjoint sets A1, A2 such that A1 ∪ A2 = A and for all the CF-2  x* of 

the set  X*(X ∩ Mi) we have 

max x* ∈ X*(X∩Mi) {μ[F(x*)*(A)]}= μ[F(x1)*(A1)]+ μ[F(x2)*(A2)] 

Remark 1. The set A is considered constant (until we proceed later on with the 

sensitivity analysis) 

Remark 2. Obviously for the set X ∩ Mi  to be s-convex it is sufficient that  X and each  

M1 are s-convex since the intersection of s-convex sets is a s-convex set.  

Proof of the theorem 

There is only one restriction x1 ≤ x ≤ x2 

so that for each x verifying the restriction we have  

x= λx1 +(1- λ)x2 

with λ = (x2 - x)/(x2 - x1) for every t such that x2(t) ≠ x1(t) 

As F(x) is quasi-convex we have  

F(x) ≤ max [F(x1),F(x2)] 



29 
 

Let A1 be the set of elements of A for which  F(x1) > F(x2) and A2 =A - A1 the set of 

elements of A for which F(x2) ≥  F(x1). 

Then for every x of X ∩ M we have  F(x) ≤  F(x1) for all the elements of A1 and F(x) ≤ 

F(x2) for all the elements of A2, that is in terms of aggregates 

F(x)*(A1) ≤  F(x1)*(A1)  and F(x)*(A2) ≤  F(x2)*(A2) 

As μ is non-decreasing pseudo-monotonous and additive in terms of aggregates and sets  

we have  

μ[F(x)*(A) ]= μ[F(x)*(A1) ∪ F(x)*(A1) ] = μ[F(x)*(A1)] +[F(x)*(A1)]   ≤  

μ[F(x1)*(A1)] + μ[F(x2)*(A2)]   

Let us show now that for any other x**= (x3, B1, x4, B2) belonging to X*(X ∩ M) with 

B1∪ B2=A the inequality is still verified. 

We have  

B1 = (B1 ∩ A2) ∪ (B1 ∩ A1) 

B2 = (B2 ∩ A1) ∪ (B2 ∩ A2) 

so that  

F(x3)*(B1) = F(x3)* (B1 ∩ A2) ∪ F(x3)* (B1 ∩ A1) 

F(x4)*(B2)   = F(x4)* (B2∩A1) ∪ F(x4)* (B2∩A2) 

and  

μ[F(x3)*(B1)] = μ[F(x3)*(B1∩A2)]+μ[F(x3)*(B1∩A1)] ≤ μ[F(x1)*(B1∩A1)] + 

μ[F(x2)*(B1∩A2)] 

μ[F(x4)*(B2)] = μ[F(x4)*(B2∩A1)]+μ[F(x4)*(B2∩A2)] ≤ μ[F(x1)*(B2∩A1)] + 

μ[F(x2)*(B2∩A2)] 

Adding the two members  

μ[F(x3)*(B1)] + μ[F(x4)*(B2)] ≤ {μ[F(x1)*(B1∩A1)] + μ[F(x1)*(B2∩A1)]}+ 

{μ[F(x2)*(B1∩A2)] + μ[F(x2)*(B2∩A2)]} = μ[F(x1)*(A1)] + μ[F(x2)*(A2)] 
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Therefore for any function of x** of X*(X∩M) we have μ[F(x**)*(A)]} ≤ 

μ[F(x1)*(A1)]+ μ[F(x2)*(A2)]. As (x1, A1, x2 , A2) belongs to X*(X∩M) the theorem is 

proved.□ 

Remark 1. It is the fact that we can use properties of μ such as pseudo-monotony and 

additivity in terms of aggregates and sets that makes it helpful to use the concept of 

aggregate in maximization problems.  

Remark 2. If instead of assuming that μ is additive we had assumed that it was sub-

additive as the example of page 23 the inequality  

μ[F(x3)*(B1)] + μ[F(x4)*(B2)] ≤ {μ[F(x1)*(B1∩A1)] + μ[F(x1)*(B2∩A1)]}+ 

{μ[F(x2)*(B1∩A2)] + μ[F(x2)*(B2∩A2)]} , 

would still be valid although we can’t prove the theorem. 

5.2  Sensitivity analysis of the values of the maximum 

The intention of this section is to calculate the change of the maximum values when 

there are changes in the set A or in the set X*. 

We consider accordingly two types of sensitivity analysis. 

First type: change in the set A 

Suppose that set A changes to a new set B of real numbers. In most cases the set  

(X∩Mi) will also change so that we have to consider new sets (X ∩ M*i) and X**(X∩ 

M*i) respectively. 

Let μ[F(x**)(A)] be the maximum  μ[F(x*1)(A1)]+ μ[F(x*2)(A-A1)] = maxx* ∈ X*(X∩Mi) 

{μ[F(x)(A)]} and μ[F(x++)(B)]  the maximum μ[F(x+
1)(B1)]+ μ[F(x+

2)(A-B1)] = maxx** 

∈ X**(X∩M*i) {μ[F(x)(B)]}. 

we have the following theorem 

Theorem 12. With the assumptions of theorem relatively to F and μ and assuming that 

the functional J associated to μ is Gateaux-differentiable in the directions of the 

following expression we have 
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μ[F(x*1)*(A1)] + μ[F(x*2)*(A2)] - μ[F(x*3)*(B1)] - μ[F(x*4)*(B2)] = μ[F(x*1)*(A1)] + 

μ[F(x*2)*(A2)] - μ[F(x*1)*(B1)] - μ[F(x*2)*(B2)] + 

Dμ[F(x*3+θ1(x*1-x*3), x*1-x*3)*(A1∩B1)]+ Dμ[F(x*3+θ2(x*1-x*3), x*1-x*3)*(B1-A1)]+ 

Dμ[F(x*4+θ1(x*2-x*4),x*2-x*4)*(A1∩B1)]+ Dμ[F(x*4+θ2(x*2-x*4), x*2-x*4)*(B1-A1)]. 

Remark 1. Functional J associated to μ is the functional J: X→R  with J(y) = μ 

[F(y)*(B)]  

Remark 2. Dμ is the Gateaux differential of J. It is well known that if J is Gateaux-

differentiable at the point y1 in the direction y1 - y2 we have for a certain θ,  0 < θ <1  

J(y1)-J(y2) = J´(y2+θ(y1-y2), y1-y2) that is in our notation 

μ[F(y1)*(B)] - μ[F(y2)*(B) ] =  Dμ[F(y2+θ(y1-y2), y1-y2)*(B)].   

Proof of the theorem 

Consider the first difference μ[F(x*1)*(A1)] - μ[F(x*3)*(B1)]. 

As μ is additive we have  

μ[F(x*1)*(A1)] - μ[F(x*3)*(B1)] = μ[F(x*1)*(A1∩B1)] + μ[F(x*1)*(A1-B1)] - 

μ[F(x*3)*(B1-A1)] - μ[F(x*3)*( A1∩B1)] = 

μ[F(x*1)*(A1∩B1)]+μ[F(x*1)*(A1-B1)] + μ[F(x*1)*(B1-A1)] - μ[F(x*1)*(B1-A1)] - 

μ[F(x*3)*(B1-A1)] - μ[F(x*3)*( A1∩B1)] = 

μ[F(x*1)*(A1∩B1)]- μ[F(x*3)*( A1∩B1)]+ μ[F(x*1)*(A1-B1)] - μ[F(x*1)*(B1-A1)] + 

+ μ[F(x*1)*(B1-A1)] - μ[F(x*3)*(B1-A1)] = 

1)  μ[F(x*1)*(A1-B1)] - μ[F(x*1)*(B1-A1)] + Dμ[F(x*3+θ1(x*1-x*3), x*1-x*3)*(A1∩B1)]+ 

Dμ[F(x*3+θ2(x*1-x*3), x*1-x*3)(B1-A1)]  

But  

μ[F(x*1)*(A1-B1)] = μ[F(x*1)*(A1)] -  μ[F(x*1)*(A1∩B1)]  

μ[F(x*1)*(B1-A1)] = μ[F(x*1)*(B1)] -  μ[F(x*1)*( A1∩B1)]  

So that subtracting both members of the two equalities we get 
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μ[F(x*1)*(A1-B1)] - μ[F(x*1)*(B1-A1)] = μ[F(x*1)*(A1)] - μ[F(x*1)*(B1)]  

Substituting in 1) we obtain  

μ[F(x*1)*(A1)]- μ[F(x*3)*(B1)] = μ[F(x*1)*(A1)] - μ[F(x*1)*(B1)]+ Dμ[F(x*3+θ1(x*1-

x*3), x*1-x*3)*(A1∩B1)]+ Dμ[F(x*3+θ2(x*1-x*3), x*1-x*3)*((B1-A1)].  

For the second difference , μ[F(x*2)*(A2)]- μ[F(x*4)*(B2)],  

in the same way we get  

μ[F(x*2)*(A2)]- μ[F(x*4)*(B2)] = μ[F(x*2)*(A2)]- μ[F(x*2)*(B2)]+ Dμ[F(x*4+θ3(x*2-

x*4), x*2-x*4)*(A2∩B2)]+ Dμ[F(x*4+θ4(x*2-x*4), x*2-x*4)*((B2-A2)]  

and finally summing the two differences 

Δ  ≡ μ[F(x*1)*(A1)]+ μ[F(x*2)*(A2)]- μ[F(x*3)*(B1)] - μ[F(x*4)*(B2)] =  

=μ[F(x*1)*(A1)]-μ[F(x*1)*(B1)]+Dμ[F(x*3+θ1(x*1-x*3),x*1-x*3)*(A1∩B1)]+ 

Dμ[F(x*3+θ2(x*1-x*3), x*1-x*3)*(B1-A1)] + 

+μ[F(x*2)*(A2)]-μ[F(x*2)*(B2)]+Dμ[F(x*4+θ3(x*2-x*4),x*2-x*4)*(A2∩B2)]+ 

Dμ[F(x*4+θ4(x*2-x*4), x*2-x*4)*(B2-A2)] = 

μ[F(x*1)*(A1)]+ μ[F(x*2)*(A2)]- μ[F(x*1)*(B1)] - μ[F(x*2)*(B2)] + 

Dμ[F(x*3+θ1(x*1-x*3),x*1-x*3)*(A1∩B1)]+ Dμ[F(x*3+θ2(x*1-x*3), x*1-x*3)*(B1-A1)]+ 

Dμ[F(x*4+θ3(x*2-x*4),x*2-x*4)*(A2∩B2)]+ Dμ[F(x*4+θ4(x*2-x*4), x*2-x*4)*(B2-A2)],as 

we had to prove.□ 

When all the Dμ are non-negative (non-positive) with at least one positive (negative) we 

have 

Δ > (<)  μ[F(x*1)*(A1)]+ μ[F(x*2)*(A2)]-μ[F(x*1)*(B1)] - μ[F(x*2)*(B2) 

When A1=B1 and A2=B2 , that is when it is the set of constraints only that changes we 

have  

Δ = Dμ[F(x*3+θ1(x*1-x*3),x*1-x*3)*(A1)]+Dμ[F(x*4+θ3(x*2-x*4),x*2-x*4)*(A2)]. 

Second type : transferring one element from A1 to A2 
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Let x**= (x1,A1,x2,A2) such that μ[F(x**)*(A)] = max x* ∈ X*(X∩Mi) {μ[F(x*)*(A)]}= 

μ[F(x1)*(A1)]+ μ[F(x2)*(A2)] 

In may be important for certain cases determine if transferring one element t from A1 to 

A2 (or vice-versa) will change the value of the maximum. 

We have  x*** = x** ╬ 1(t) 

and we check if μ[F(x***)*(A)] = μ[F(x1)*(A1-{t})] + μ[F(x2)*(A2∪{t})] is equal or less 

than  μ[F(x1)*(A1)]+ μ[F(x2)*(A2)], that is if μ[F(x**╬ 1(t))*(A)] is < or = to  

μ[F(x**)*(A)]  and the same for 1*(t). This can be done also for an iteration of the 

operation 

x(n) = x(n-1) ╬ 1(t) 

Degree of approximation and economic decision 

The analysis of the level of approximation can be done in two ways: one calculates the 

difference of the maximum to the value of a function equivalent-2 to the maximizing 

function and the second relatively to the proximity of the set X*-X+ to X+ as we have 

exemplify at page 28.   

Considering the first way, let x** be the maximizing function and another CF-2 

function equivalent-2 to x**, y = (y1,A1,y2,A2) satisfying the constraints. We obtain the 

difference  

μ[F(x**)*(A)] - μ[F(y)*(A)] = μ[F(x1)*(A1)] + μ[F(x2)*(A2)] - μ[F(y1)*(A1)] + 

μ[F(y2)*(A2)]  

and using the definition of distance given at page 16 we can compare the two quantities  

{μ[F(x**)*(A)] - μ[F(y)*(A)]} and [(dA1(x1,y1)+ dA2(x2,y2)]. 

This can be a useful indicator for taking economic decisions when there is a benefit 

associated to the value of μ[F(x**)*(A)] - μ[F(y)*(A)]} and a  cost associated to the 

distance between the two functions. 

In what concerns the approximation of the solutions when calculated for functions y 

such that  y1= y2 we can obtain some information in specific cases. 
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If X ∩Mi, is such that x1 ≤ y ≤ x2 , which is a s-convex set we may write for any y,  y = 

λx1+(1-λ)x2  with 0 ≤ λ ≤1  

so that   

dA(y, x**) = dA1 (y, x1)+ dA2 (y,x2) = ∥(1- λ)(x1-x2)∥A1 +∥(λ(x1-x2)∥A2 

Even if x** is such that  x1 ≠ x2 if we chose appropriate functions λ we can obtain better 

approximations of x** to the functions of X ∩Mi. This is the case where the values λ(t) 

are near 1 for the every  t of A1 and near  0 for every t of A2 – provided of course that the 

properties of λ respect the conditions that allow x to belong  X ∩ Mi (conditions of 

continuity or of differentiability, for example). It is the failure to verify these conditions 

that makes it impossible in most cases to have for a given x** a y of X ∩ Mi such that   

dA(y, x**) =0.  

6 Generalization for two variables 

We can generalize the problem of maximization assuming the existence of a function φ, 

φ : X→ X  and of a function F: X   X  X→ X . 

 The new problem is to find (x*1, A1, x*2 , A –A1) such that  

μ[F(x*1, φ(x*1))*(A1)] + μ[F(x*2, φ(x*2))*(A-A1)] = maxx∈X*(X∩Mi){μ[F(x, φ(x))*(A)]} 

A very important particular case of this kind of problem is the one where X is the set of 

continuous and derivable real functions in A ⊂ R and φ is such that for each x∈ X, φ(x) 

is the derivative of function  x.  

However in this more general formulation some additional assumptions are needed 

regarding the function F. 

We have seen above (theorem 5 p. 10) that for φ convex and F quasi-convex we obtain  

F(x, φ(x)) ≤  max {F(x1, φ (x1), F(x2, φ (x2))}. This allows us to prove the following 

theorem. 

Theorem 13. If F is quasi-convex and non-decreasing monotonous in φ(x) where φ is 

convex and if the assumptions of theorem 11 regarding μ apply, we have the result: 

 μ[F(x*1, φ(x*1))*(A1)] + μ[F(x*2, φ(x*2))*(A-A1)]= maxx∈X*(X∩Mi){μ[F(x, φ(x))*(A)]}. 
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Proof 

As  F is quasi-convex  

F(x, φ(x)) ≤  max {F(x1, φ (x1), F(x2, φ (x2)} 

And from here the proof follows as in theorem 11.□ 

Another example is the one for each  φ (λx1+(1-λ)x2) =  φ(λ)(x1 –x2) + λ φ (x1) +(1-λ) 

φ(x2) (which is verified if φ is the operation of differentiation of x)  

Theorem 14. If the set of constraints is given by x1 ≤ x ≤ x2,   and other constraints that  

imply φ (λ)≤ 0 (φ (λ) ≥ 0 )  for any possible λ, with  0 ≤ λ ≤ 1 and if φ(λx1 +(1-λ)x2) =  

φ(λ)(x1 –x2) + λ φ (x1) +(1-λ) φ(x2) and F is quasi-convex and non-increasing (non-

decreasing) in φ then if the assumptions of theorem 11 regarding μ apply we have 

μ[F(x*1, φ(x*1))*(A1)] + μ[F(x*2, φ(x*2))*(A-A1)]= maxx∈X*(X∩Mi){μ[F(x, φ(x))*(A)]}. 

Proof 

For any possible x = λx1 +(1-λ)x2 we have 

F(x, φ(x)) = F(x, φ(λ)(x1–x2) + λφ(x1) +(1-λ)φ(x2))  

Given the assumptions, φ(λ)(x1 – x2) ≥ 0 and F  is non-increasing in φ so that  

F(x, φ(x)) ≤ F(x, λφ(x1) +(1-λ)φ(x2)) 

As F is quasi-convex we have 

F(x, λφ(x1) +(1-λ)φ(x2)) ≤ max {F(x1, φ(x1)),  F(x2, φ(x2)})     

so that F(x, φ(x)) ≤ max {F(x1, φ (x1), F(x2, φ (x2)} and the proof follows as in theorem 

11.□ 

7  Maximization and non-atomizable functions 

Theorem 11 is easily generalized for a quasi-convex non-atomizable function F and for 

a μ with the properties of the theorem. By theorem 10 if F(x)(t) ≡ σ[x*(B(t)),t] it is 

sufficient to have σ pseudo-monotonous non-decreasing to have F(x) quasi-convex and 

the proof proceeds as in theorem  11. 
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IV A problem of calculus of variations with inequality constraints  

The problem  

Let  f  be a real function integrable over A ≡ [t0 t1] with arguments x(t) and x´(t), where 

x(t) is a continuous real function with second order derivatives at all the elements of A. 

Let X be the set of those functions. 

Consider the problem: 

Calculate sup X   ∫A f(x(t) x´(t))dt, with A ≡ [t0 , t1]   

subject to the restrictions r1 ≤ g(x(t), x´(t)) ≤ r2  

x(t0) = x0 

In terms of the previous notation we have F : X2 → X, where φ is the operation  of 

derivation, the values of F are F(x, x´) = f(x, x´) where the set F(x, x´)*(A) is the 

aggregate  of all the elements f(x(t), x´(t)) for all the t of  A and the mixed aggregate/set 

function  μ such that  μ[F(x, x´)*(A)] = ∫A f(x(t) x´(t)) dt. 

Note that this formulation applies only to atomizable functions F. 

We have two sets Mi that is the set of all the x that verify g(x(t), x´(t)) ≤  r2 and the set of 

all the  x that verify  r1 ≤  g(x(t), x´(t)). 

In the particular case that we solve the double inequality r1≤ g(x(t), x´(t)) ≤ r2 is given 

by 

C1)  r1 ≤ x´(t) - mx(t) ≤ r2  

We join one more constraint given by  

C2)  x´´(t) – mx´(t) ≥ 0 

So that there are in fact three sets Mi. 

The set X* is the set of all the CF-2 generated by the set X of continuous functions with 

second order derivatives. 
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The problem is : 

Assumptions 

Let ∩ Mi, i=1,2,3 be the set of all the functions X that verify simultaneously the 

constraints 

r1≤ x´(t) - mx(t) ≤ r2  

x´´(t) – mx´(t) ≥ 0 

and let  X*[X(∩Mi)] be the set of CF-2 generated by X ∩ Mi.  

Consider the function f: X2→X with values  f(x, x´),  such that 

a) for each t the function f takes the value f(x, x´)(t) ≡ f[x(t), x´(t)]  

b) it is defined on  A ≡ [t0 , t1]    

c) is continuous in A 

d) is quasi-convex on the set of all the linear combinations of functions of X 

e) f is assumed non-increasing in  x´, that is  f(x, x´) ≥  f(x, x´ + h) for any  function h of 

X such that h ≥ 0 (that is , h(t) ≥ 0 for all the values t of A). ´ 

Problem 

Find x*of  X*(X ∩ Mi)   such that   

 ∫A f(x*(t) x*´(t))dt = max x ∈ X*(X∩Mi) { ∫A f(x(t) x´(t)) dt} 

where (see p. 15) ∫A f(x*(t) x*´(t))dt represents the sum ∫A1 f(x1(t) x1´(t))dt + ∫A2 f(x2(t) 

x2´(t))dt for x* ≡ (x1, A1, x2, A2). 

The solution is given by the following theorem 

Theorem 15. Under the previous conditions the maximum of the integral  ∫A f(x(t) 

x´(t))dt on the generated set X*(X ∩ Mi)  is given ∫B f(x1(t), x´1(t))dt + ∫A -B f(x2(t), 

x2´(t))dt where B is the set of all the t of A such that  f(x1(t), x´(t)) ≤  f(x2(t), x2´(t)) for all 

the x of (X ∩ Mi)  and  x1(t) and x2(t) are respectively the solutions of the differential 

equations 
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x(t) – mx´(t) = r1 ( = r2), m ≠ 0.  

Remark. It is necessary to impose the condition for F(t) being defined on all the 

elements of the set A because the fact that x(t) and x´(t) are defined on a set that contains 

A is not sufficient to ensure that F is defined on A. For example if f(x, x’(t)) = log 

x(t)+x´(t) with  x(t)= log t and A =[0.5, 2] the domain of  F(t) would not include the 

elements t ≤ 1. We may have the inverse situation where the domain of F(t) includes the 

intersection of the  domain of x(t) and x´(t). For example if f(x, x´) ≡ ex + x´ and x(t) ≡ 

log t, the domain of F(t) is the set of all the numbers different from 0 but the 

intersection of the domains if x(t) and x´(t) is the set of all the positive numbers. 

Proof  

Let us begin by characterizing the functions that belong to ∩ Mi, i=1,2,3 

The two restrictions C1) and C2) may be put in the form  

x(t) – mx´(t) = θ(t), r1 ≤ θ(t) ≤ r2,  

where θ´(t) ≥ 0, that is θ is non-decreasing  . 

The solutions x1(t) (x2(t)), are given by  

x(t) – mx(t) = r1 (= r2)  m ≠0 

that is ,  

x1(t) = (x0 + r1/m) em(t-t0) – r1/m 

x2(t) = (x0 + r2/m) em(t-t0) – r2/m 

where x0 ≡ x(t0). 

It is easy to see that x1(t0) = x2(t0) and  x1(t) < x2(t)  (provided that m ≠0 ) for all the t ≠ 

t0. 

For any function x of (X∩Mi) we have  

x(t) – mx´(t) = θ(t)  

and the solution is  
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x(t) = emt[∫[t0, t] θ (τ) e –mt dτ + x0 e
-mt0 ]   

We can now prove the following lemma (see theorem 14 for a similar result). 

Lemma 1. Under the previous conditions and for each t of A we have 

x(t) =λ(t)x1(t) + (1-λ(t))x2(t) with  0 ≤ λ(t) ≤ 1 and λ´(t) ≤ 0. 

Proof   

Obviously the equality is verified for t = t0.  

For any other t of A  t ≠ t0   we can represent by λ(t)  the quotient   

1) λ(t) =[x2(t) –x(t)]/ [x2(t) –x1(t)] =  

=[ (r2/m)em(t-t0) – (r2/m) - emt ∫[t0,, t] θ(τ)e-mt dτ]/ [(r2 –r1) (e
m(t-t0) -1)/m] 

As r1≤ θ(t) ≤ r2 we have obviously 0 ≤ λ(t) ≤1 

Moreover we have λ´(t) ≤ 0 for all the t. From 1) with a simple calculation we have  

λ(t) =[r2 - θ(t*) ] / (r2 –r1) 

where  θ(t*), with  t0 ≤ t* ≤ t is the mean point of the integral . 

As we assume θ´(t) ≥ 0, θ(t*) is non-decreasing so that λ(t) is non-increasing, that is  

λ´(t) ≤ 0 and this completes the proof .□ 

Let’s us now prove a second lemma 

Lemma 2.  If f is quasi-convex for any of X we have for each  t of  [t0 , t1]  

f(x(t), x(t)) ≤  max {f(x1(t), x´1(t)),  f(x2(t), x2´(t)}. 

Proof 

For each t ≠ t0 

a)  x(t) = λ(t)x1(t) + (1-λ(t))x2(t) 

as f is quasi-convex, we have for each t 

f(x(t), λ(t)x1´(t) + (1-λ(t))x´2(t)) ≤  max {f(x1(t), x´1(t)),  f(x2(t), x´2(t)} 
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And from a) we can write for each  t 

x´(t) = λ(t)x´1(t) + (1-λ(t))x´2(t) + λ´(t)(x1(t) - x2(t)) 

As x1(t) ≤ x2(t) and by Lemma 1 λ´(t) ≤ 0, we have for each t  

 λ´(t)(x1(t) - x2(t)) ≥ 0 

As f is non-increasing relatively to x´, we have for each t ≠ t0 

f(x(t), x´(t))  ≤  f(λ(t)x1(t) + (1-λ(t))x2(t),  λ(t)x´1(t) + (1-λ(t))x´2(t)) ≤  max {f(x1(t), x´1(t)),  

f(x2(t), x´2(t)}. 

When t = t0 we have  x1(t0) = x2(t0) = x(t0) and obviously the inequality is verified. 

Then for all the t of A 

f(x(t), x´(t)) ≤ max {f(x1(t), x´1(t)),  f(x2(t), x´2(t))} 

as we had to prove.□ 

With these two lemmas we may prove  

Theorem 16. Under the conditions of the lemmas  

max ʃA f(x(t), x´(t)) dt = ∫B f(x2 (t), x2´(t)) dt +∫A-B f(x1 (t), x´1(t)) dt 

Where B is the set of all the t de [t0 t1]  such that  f(x1(t), x1´ (t)) ≤ f(x2(t), x2´(t)).   

Proof  

First let us verify that f is integrable over B (and therefore over A-B). 

As we assume that F(t)= f(x(t), x´(t))  as a function of t is continuous in A  (actually it 

would be enough for this purpose  to assume that F1(t) = f(x1(t), x´1(t)) and  F2(t) = 

f(x2(t), x´2(t))) are continuous in A), F1(t) and F2(t) are continuous in B so that  they are 

Borel-measurable and the set B of all the t such F1(t) < F2(t) is  Borel-measurable 

(König, 1997 pag 130). Then the integral on B and the integral on A exist.  

We have now to prove that for any other z = (x*, C, x**, A-C) of  X*(X∩Mi)   we have  

∫C f(x*(t), x*´(t)) dt + ∫A-C f(x**(t), x**´(t)) dt ≤  ∫ B f(x2(t), x2´(t)) dt + ∫A-B f(x1(t), x1´(t)) 

dt 
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If  z belongs to X that is if  x* = x** the result is obvious due to lemma 2.  

If x*≠ x** let us consider the partition of A:  (B∩C) ∪ (B∩ A-C)∪(A-B∩C) ∪(A-B∩A-

C) 

Due to lemma 2 we have 

∫ B∩C f(x*(t), x*´(t)) dt +∫(A-B)∩A-C  f(x**(t), x**´(t)) dt ≤ ∫ B∩C f(x2(t), x2´(t)) dt +∫(A-B)∩A-C 

f(x1(t), x1´(t)) dt 

∫(A-B)∩C f(x*(t), x*´(t)) dt +∫B∩(A-C) f(x**(t), x**´(t)) dt ≤ ∫(B∩(A-C)  f(x2(t), x2´(t)) dt+∫(A-B)∩C 

f(x1(t), x1´(t)) dt 

Summing the two inequalities we obtain the result that solves our problem □ 

The set of constraints 

We have already mentioned (p. 28) that the minimum p of CF-p is generally dependent 

on the number of constraints. 

Let us see an example with constraints similar to C1) e C2). 

Suppose that there were two additional restrictions  

C3)  r2 ≤  x(t) – nx´(t) ≤ r3   n ≠ 0,m 

C4)   x´´(t) – nx(t) ≥0 

Using the same process of the proof of theorem we have for t ≠ t0 

c) x(t) =(1-λ(t))x1(t) + λ(t)x2(t) with 0 ≤ λ(t) ≤1 , λ´(t) ≤0, and x2(t) > x1(t) 

d) x(t) =(1-μ(t))x3(t) + μ(t)x4(t) with 0 ≤ μ(t) ≤1, μ´(t)≤ 0 and x4(t) > x3(t) 

So that  (1-λ(t))x1(t) + λ(t)x2(t)= (1-μ(t))x3(t) + μ(t)x4(t) 

and λ(t)= [(x4(t) –x3(t))/ (x2(t) –x1(t))] μ(t)  + [(x3(t) –x1(t))/ (x2(t) –x1(t))] 

To have λ(t) ≤1 is necessary that  [(x3(t) –x1(t))/ (x2(t) –x1(t))] ≤1  so that  x2(t) ≥ x3(t). 

Using the same process to solve in order to μ(t), we get [(x1(t) –x3(t))/ (x4(t) –x3(t))] ≤ 1 

and x4(t) ≥ x1(t) so that we have the following possibilities for any t∈ (t0, t1] 
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x1 ≤ x3 ≤ x2 ≤ x4 , x1 ≤ x3 ≤ x4 ≤ x2 ,  x3≤ x1< x2 ≤ x4  or x3 ≤ x1 ≤ x4 ≤ x2. 

The problems where one of this inequalities is not verified for one t, t∈(t0, t1] are 

unsolvable because the set X is empty. 

Note that as m ≠ n as times goes by the exponential function with exponent max(m,n) 

prevails so that for t sufficiently large the problem has no solution. This may be 

important to explain some situations where there is a rupture at a given point in time.  

If X is non-empty we have   

f(x1(t), x´1(t) ≤ f(x2(t), x´2(t))  for t of B  f(x1(t), x´1(t) > f(x2(t), x´2(t)) for t of A-B 

f(x3(t), x´3(t) ≤ f(x4(t), x´4(t))    for t of C f(x3(t), x´3(t) > f(x4(t), x´4(t)) for t of A-C 

For each t of E1= (B∩C)             f(x(t), x´(t))   ≤  min (f(x2(t), x´2(t)),f(x4(t),x´4(t)) 

For each t of E2 = B∩(A-C)         f(x(t), x´(t))   ≤ min (f(x2(t), x´2(t)), f(x3(t), x´3(t)) 

For each t of E3 = (A-B) ∩C         f(x(t), x´(t))   ≤ min (f(x1(t), x´1(t)), f(x4(t), x´4(t)) 

For each t of E4 = (A-B) ∩(A-C)   f(x(t), x´(t))    ≤ min (f(x1(t), x´1(t)), f(x3(t), x´3(t)) 

On the other side for each Ei we have  Ei = F1i∪F2i where F1i ={t: f(xj(t), x´j(t)) ≤ f(xk(t), 

x´k(t))} and F2i ={t: f(xj(t), x´j(t)) >f(xk(t), x´k(t))} .  

Of course some of the F may be empty. 

Therefore the maximum value will be  

J= Σi=1
4 ∫Ei Hi dt 

where the Hi are the functions corresponding to the minima in the second members of 

the inequalities.,  

That means that  it makes sense in many cases with two set of constraints  C3 and C4 to 

work with a set X* of functions CF-4 because we have no guarantee that  functions CF-

p with p < 4 will solve the problem. 

 

Conclusion 
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The main goal of this paper was to illustrate the use of some new (in this context) 

concepts for approaching the problem of maximization of one functional with inequality 

constraints. The method was successful but the problem solved was indeed a very 

simple one, dealing with quasi-convexity and maximization where ”boundary” solutions 

are to be expected. Further research should seek to determine if the method is useful for 

other situations.    
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