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Abstract
Working in an arbitrary category endowed with a fixed (E,M)-factorization system such
that M is a fixed class of monomorphisms, we first define and study a concept of codense
morphisms with respect to a given categorical interior operator i . Some basic properties of
these morphisms are discussed. In particular, it is shown that i-codenseness is preserved
under both images and dual images under morphisms in M and E , respectively. We then
introduce and investigate a notion of quasi-open morphisms with respect to i . Notably, we
obtain a characterization of quasi i-open morphisms in terms of i-codense subobjects. Fur-
thermore, we prove that these morphisms are a generalization of the i-open morphisms that
are introduced by Castellini.We show that everymorphismwhich is both i-codense and quasi
i-open is actually i-open. Examples in topology and algebra are also provided.

Keywords Interior operator · Codenseness · Openness · Quasi-openness

Mathematics Subject Classification 06A15 · 18A20 · 54B30

1 Introduction

A categorical closure operator on an arbitrary category is a family of functions (on suitably
defined subobject lattices) which are expansive, order preserving and compatible with tak-
ing images or equivalently, preimages, in the same way as the usual topological closure is
compatible with continuous maps. The formal theory of categorical closure operators was
introduced by Dikranjan and Giuli [11] and then developed by these authors and Tholen [12].
The theory was largely inspired by Salbany’s paper [23], where regular closure operators on
the category of topological spaces and continuous maps were introduced. These operators
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have played a vital role in the development of Categorical Topology by introducing topologi-
cal concepts, such as connectedness, separatedness, compactness, denseness and closedness,
in an arbitrary category and they provide a unified approach to various mathematical notions
(see [4,13]).

Motivated by the theory of categorical closure operators, the categorical notion of interior
operators was introduced by [24]. These operators have received more recent attention and
a few papers are published on the subject; see [3,5–9,17,20,22].

In general topology, interior and closure characterize each other via set-theoretic comple-
ment. More generally, closure and interior operators characterize each other in a category
equippedwith a categorical transformation operator (see [24]). As a consequence, most of the
theory of interior operators can be derived from that of closure operators and vice versa. Nev-
ertheless, the two operators are not categorically dual to each other on an arbitrary category.
It is shown in [24] that the category of groups does not have a categorical transformation,
hence the two notions are not necessarily equivalent. Moreover, in any category for which all
subobjects are normal, in particular, in all abelian categories (such as the category of mod-
ules over a ring, the category of all abelian groups), while there is an abundance of closure
operators there is a unique interior operator, which is the discrete one (see [14]).

A crucial property of closure operators is that they are compatible with taking both images
and preimages (Captured by the diagonalization lemma in [13]). This plays a significant role
in the development of closure operators and enables each closure operator to give rise to
an endofunctor of the arrow category M; see [4]. Since categorical interior operators are
not compatible with taking images, they cannot be seen as endofunctors on a suitable class
M of embeddings, hence the preservation property of interior operators fails; see [5–7].
Furthermore, the dual closure operator introduced in [14] is a categorical dual to closure
operator and does not lead to interior operators.

For the above reasons, the study of a categorical notion of interior operators for its own sake
is interesting enough. The aim of this paper is to apply these operators in some areas where
they are useful in deriving new results. In particular, we investigate the notions codenseness
and quasi-openness with respect to a given interior operator i . Moreover, we provide further
characterizations and properties of i-open morphisms.

Most of this paper forms part of the first author’s Ph.D. Thesis [2] written under the
supervision of the second author.

2 Preliminaries

We use general categorical terminology from [1], while for categorical closure operators we
refer to [13] or [4]. Throughout the paper, we consider a finitely complete category C with
a proper (E,M)-factorization system for morphisms (cf. [1]). Consequently, M is a fixed
class of C-monomorphisms and E is a fixed class of C-epimorphisms, both containing C-
isomorphisms, such that each morphism f inC has an essentially unique factorization given
by f = m ◦ e with m ∈ M and e ∈ E . Further, M contains the C-regular monomorphisms
and is closed under composition and stable under pullback and is left cancellable.

The category C is further assumed to be M-complete so that arbitrary M-intersections
of M-morphisms exist and belong to M.

For each object X ∈ C, subX denotes the class of M-morphisms with codomain X and
its objects are known as (M-)subobjects of X . This class is preordered with the relation
r ≤ s ⇔ r = s ◦ t for some morphism t (which is necessarily unique and in M, and will
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be denoted by rs);

R
t=rs

r

S

s

X

If r ≤ s and s ≤ r then rs is an isomorphism and we write r ∼= s.
Given any morphism f : X → Y in C, m ∈ subX and n ∈ subY , the image f (m) of m

under f is given by theM-component of the (E,M)-factorization of the composition f ◦m.
By image of f we mean f (1X ) for 1X : X → X . Preimage f −1(n) of n under f is given by
the pullback of n along f .

As a consequence of the above assumptions and terminologies one has:

(a) For each X ∈ C, subX is a complete lattice with 0X : OX → X and 1X : X → X as the
least and greatest member of the lattice, respectively. The meet of s and r in subX is
given by s ∧ r ∼= s ◦ s−1(r) ∼= r ◦ r−1(s).

(b) Every morphism f : X → Y in C induces an image-preimage adjunction:

subX ⊥
f (−)

subY
f −1(−)

that is: f (m) ≤ n ⇔ m ≤ f −1(n) for all m ∈ subX and n ∈ subY .

Furthermore:

Remark 2.1 [10,13] Let f : X → Y be a morphism in C, m ∈ subX and n ∈ subY . Then:

(a) f (0X ) ∼= 0Y , m ≤ f −1( f (m)) and f ( f −1(n)) ≤ n.
(b) f ∈ E if and only if f (1X ) ∼= 1Y .
(c) If f ∈ M then f (m) ∼= f ◦ m and f −1( f (m)) ∼= m.
(d) Let E be stable under pullback along M-morphisms. If f ∈ E then f ( f −1(n)) ∼= n.

Recall from [17] that a morphism f : X → Y reflects the least subobject if f −1(0Y ) ∼= 0X .
Note that each M-subobject reflects the least subobject, since if f ∈ M then f −1(0Y ) ∼=
f −1( f (0X )) ∼= 0X .
We sometimes assume that the preimage f −1(−): subY → subX preserves arbitrary

joins for every morphism f : X → Y in C, as in [2,3,20]. Consequently, f −1(−) has a right
adjoint f∗(−), which is given by f∗(m) = ∨{n ∈ subY : f −1(n) ≤ m}. Hence, one has
f −1(n) ≤ m if and only if n ≤ f∗(m) for all m ∈ subX and n ∈ subY . This in turn implies
f −1(0Y ) ∼= 0X , f −1( f∗(m)) ≤ m (with “∼=” holding true if f ∈ M) and n ≤ f∗( f −1(n))

(with “∼=” holding true if f ∈ E with E is stable under pullback along M-morphisms). We
call f∗(m) the dual image of m. In fact, f∗(m) is the greatest subobject n: N → Y such that
the pullback f −1(n): f −1(N ) → X factors through m.

3 Codenseness

We begin with the following definition of an interior operator in an arbitrary category which
was introduced by Vorster [24].
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238 F. S. Assfaw, D. Holgate

Definition 3.1 An interior operator i on C with respect to M is a family

i = (iX : subX → subX)X∈C

of functions which are

(I1) contractive: iX (m) ≤ m,
(I2) order preserving: if k ≤ m then iX (k) ≤ iX (m),
(I3) and which satisfy the continuity condition: f −1(iY (n)) ≤ iX ( f −1(n)),

for all f : X → Y in C and k,m ∈ subX and n ∈ subY .

In the sequel, unless stated otherwise, we use i to denote an interior operator on C with
respect to M.

Given an M-subobject m: M → X , contractivity ensures a unique morphism jm ∈ M
such that iX (m) = m ◦ jm .

iX [M] jm

iX (m)

M

m

X

The following terminologies are from [5,17,24] and will be used whenever necessary.

Definition 3.2 We call

(a) an M-subobject m: M → X i-open (in X ) if iX (m) ∼= m;
(b) i idempotent if iX (iX (m)) ∼= iX (m) for all m ∈ subX , X ∈ C;
(c) i standard if iX (1X ) ∼= 1X for all X ∈ C.
(d) i additive if iX (m ∧ k) ∼= iX (m) ∧ iX (k) for all m, k ∈ subX and X ∈ C.

We recall the following definition from [2,3].

Definition 3.3 Assume that for any C-morphism f : X → Y , f −1(−) commutes with the
joins of subobjects. Let i be an interior operator on C. Then i is said to be hereditary if for
all r ≤ s in subX and X ∈ C, one has

iS(rs) ∼= s−1(iX (s∗(rs))).

Now we provide some examples of interior operators from [5,7–9,20,24].

Example 3.4 (a) The discrete interior operator d in is defined by d inX (m) = m for all m ∈
subX and X ∈ C.

(b) LetCbe any category such that all itsmorphisms reflect the least subobjects (in particular,
in categories in which preimages preserve arbitrary joins). Then t in = (t inX )X∈C with
t inX (m) ∼= 0X for all m ∈ subX is an interior operator on C. We call t in the trivial interior
operator.

(c) Let C = Top with (Surjections, Embeddings)-factorization system and M ⊆ X ∈ Top.
The assignments

(i) kinX (M) = ⋃{O open in X : O ⊆ M},
(ii) k∗in

X (M) = ⋃{C closed in X :C ⊆ M}, and
(iii) q inX (M) = ⋃{O clopen in X : O ⊆ M}
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Codenseness and Openness with Respect to an Interior Operator 239

define standard, additive and idempotent interior operators onTopwith respect to embed-
dings. The operators kin, k∗in, and q in are called the Kuratowski, inverse Kuratowski,
and quasicomponent interior operators, respectively. The kin (k∗in, q in, resp.)-open sub-
spaces of a topological space X are exactly the open (closed, clopen, resp.) subsets of
X .

(d) Let C = Grp with the (Surjective homomorphisms, Injective homomorphisms)-
factorization system and H ≤ G ∈ Grp. nG(H) = ∨{N � G: N ≤ H} defines a
standard, additive and idempotent interior operator of Grp called the normal interior
operator. The n-open subgroups of a group G are precisely the normal subgroups of G.
We remark that G is a Dedekind group if and only if the normal and discrete interior
operators coincide.

(e) Consider C = Rng with the (Surjective homomorphisms, Injective homomorphisms)-
factorization systemand S ≤ R ∈Rng. Then the assignment jR(S) = ∨{I � R: I ≤ S}
is a standard, additive and idempotent interior operator of Rng. J = ( jR)R∈C is called
the ideal interior operator. The J -open subrings of a ring R are precisely the ideals of
R. We note that even if R has a unity, its subrings need not contain this. Let us also note
that if R is a cyclic ring (a ring in which its additive group is cyclic, hence each of its
subrings is an ideal), then the ideal and discrete interior operators coincide.

Definitions 3.1 and 3.2(a) allow us to obtain:

Remark 3.5 The preimage of an i-open subobject is an i-open subobject; see [5–7].

Next we introduce some basic properties of the notion of codenseness with respect to an
interior operator i on C with respect to M. To this end, we first observe the following:

Remark 3.6 Recall from [15] that a subset M of a topological space X is called codense in
X if the complement X\M of M in X is dense in X , that is: if kX (X\M) = X , which is
equivalent to kinX (M) = ∅, where k and kin are the Kuratowski closure and interior operators,
respectively.

The above description of codenseness in terms of the Kuratowski interior operator moti-
vates the following:

Definition 3.7 Given an interior operator i , we say that an M-subobject m: M → X is
i-codense (also called i-isolated in [5,9]) in X if iX (m) ∼= 0X .

A notion of i-codense subobjects was used in [9] to define indiscrete objects with respect
to an interior operator i in order to introduce the notion of disconnectedness in Top.

Remark 3.8 (a) A subobject of an object X ∈ C is both i-codense and i-open if and only if
it is the least subobject of X .

(b) For a standard interior operator i , the identity morphism 1X : X → X on a non-trivial
object X ∈ C can not be i-codense. Note that an object X of C is trivial if 0X ∼= 1X .

(c) Let m ≤ k be subobjects of X . If k is i-codense in X , so is m.

Example 3.9 (a) Consider the normal interior operator n onGrp. Then for any group G, the
n-codense subgroups are precisely the subgroups H 
= G which do not contain proper
normal subgroups of G.

(b) Consider the ideal interior operator J on Rng. Then every subring S 
= R of a simple
ring (a non-zero ring that has no proper ideal) R is J -codense in R while (0R) is the
only J -codense subring of a cyclic ring R.
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240 F. S. Assfaw, D. Holgate

The following property of M-morphisms will be useful.

Lemma 3.10 Let i be an interior operator on C with respect to M and let f : X → Y be a
morphism in M. Then iY ( f (m)) ≤ f (iX (m)) for all m ∈ subX.

Proof Since f (m) ∼= f ◦ m ≤ f , one has iY ( f (m)) ≤ iY ( f ) ≤ f . Consequently,
iY ( f (m)) ∼= f ∧ iY ( f (m)) ∼= f ◦ f −1(iY ( f (m))) ≤ f ◦ iX ( f −1( f (m))) ∼= f ◦ iX (m) ∼=
f (iX (m)). ��
Consequently, i-codenseness is preserved by images under M-morphisms:

Proposition 3.11 Let f : X → Y be a morphism in C, m ∈ subX and n ∈ subY .

(a) If f ∈ M and m is i-codense in X, then f (m) is i -codense in Y .
(b) If f ∈ E with E stable under pullback alongM-morphisms and f −1(n) is i -codense in

X, then n is i-codense in Y .

Proof (a) Indeed, since f ∈ M, one has iY ( f (m)) ≤ f (iX (m)) by Lemma 3.10, hence
iY ( f (m)) ≤ f (iX (m)) ∼= f (0X ) ∼= 0Y .

(b) If iX ( f −1(n)) ∼= 0X and f ∈ E , then iY (n) ∼= f ( f −1(iY (n))) ≤ f (iX ( f −1(n))) ∼=
f (0X ) ∼= 0Y . ��

Remark 3.12 Let preimages commute with arbitrary joins in the category C, f : X → Y a
morphism in C, m ∈ subX and n ∈ subY . Since f −1( f∗(m)) ≤ m and n ≤ f∗( f −1(n)), it
follows from Remark 3.8(c) that the statements

(i) if f −1(n) is i-codense in X , then n is i-codense in Y ,
(ii) if m is i-codense in X , then f∗(m) is i-codense in Y

are equivalent. Consequently, Proposition 3.11(b) yields that i-codenseness is preserved by
dual images under E-morphisms whenever E is stable under pullback along M-morphisms,
that is: if f ∈ E then (ii) holds.

Codenseness is naturally extended from subobjects to i-codense morphisms.

Definition 3.13 We say that a C-morphism f : X → Y is i-codense whenever its image
f (1X ) is an i-codense subobject of Y , that is: iY ( f (1X )) ∼= 0Y . We denote by CD(i) the
class of i-codense morphisms in C.

The following characterization is then an immediate consequence of Remark 3.8 and
Definition 3.13.

Proposition 3.14 The following statements are equivalent for a C-morphism f : X → Y :

(a) f ∈ CD(i);
(b) For all m ∈ subX, f (m) is an i-codense subobject of Y .

We can now provide some of the stability properties of CD(i).

Proposition 3.15 The class CD(i)

(a) is stable under composition with C-morphisms from the right, that is: if g ∈ CD(i) and
f in C then g ◦ f ∈ CD(i),

(b) is stable under composition with M-morphisms from the left, that is: if g ∈ M and
f ∈ CD(i) then g ◦ f ∈ CD(i), and

(c) is right-cancellablewith respect to E , that is: if g◦ f ∈ CD(i) and f ∈ E then g ∈ CD(i).
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Codenseness and Openness with Respect to an Interior Operator 241

4 Openness

The notion of an open morphism with respect to an interior operator was introduced in [6].
We investigate this further, giving a number of new characterizations and some properties of
i-open morphisms.

Definition 4.1 [6] A morphism f : X → Y is called i-open if f (iX (m)) ≤ iY ( f (m)) for all
m ∈ subX . We denote by O(i) the class of i-open morphisms in C.

Since, by adjointness, f (iX (m)) ≤ iY ( f (m)) ⇔ iX (m) ≤ f −1(iY ( f (m))) for all m ∈
subX , one has f : X → Y ∈ O(i) ⇔ iX (m) ∼= iX (m) ∧ f −1(iY ( f (m))) for all m ∈ subX .
Moreover, from the order preservation and continuity condition of i and from the adjointness
property one obtains:

Proposition 4.2 For a morphism f : X → Y in C, the following statements are equivalent:

(a) f ∈ O(i);
(b) m ≤ iX ( f −1(n)) ⇔ f (m) ≤ iY (n) for all m ∈ subX and n ∈ subY ;
(c) iX ( f −1(n)) ∼= f −1(iY (n)) for all n ∈ subY (see [6]).

Proposition 4.3 [6] Let Oi
X denote the class of i-open subobjects of X. If f : X → Y ∈ O(i)

then
(
m ∈ Oi

X ⇒ f (m) ∈ Oi
Y

)
for all m ∈ subX. Moreover, if i is idempotent then the

converse is true.

Remark 4.4 (a) Let f : X → Y ∈ O(i) and letm ∈ Oi
X . Then the above proposition implies

that f (m) ∈ Oi
Y . Consequently, by Remark 3.5, f −1( f (m)) ∈ Oi

X .
(b) For a standard interior operator i , since 1X is an i-open subobject, the image of an i-open

morphism is i-open by Proposition 4.3.

Proposition 4.3 states that for an idempotent interior operator i , i-open morphisms are
characterized by preservation of i-open subobjects. Consequently,

Example 4.5 (a) In Top, the open morphisms with respect to the inverse Kuratowski (qua-
sicomponent, resp.) interior operator are precisely the continuous maps which preserve
closed (clopen, resp.) subspaces since both operators are idempotent.

(b) In Grp, since the normal interior operator n is idempotent, the open morphisms with
respect to n are precisely the group homomorphims which preserve normal subroups.
Consequently, any surjective group homomorphism is an n-open morphism.

(c) In Rng, since the ideal interior operator J is idempotent, the open morphisms with
respect to J are exactly the ring homomorphims which preserve ideals. Consequently,
any surjective ring homomorphism is a J -open morphism.

Corollary 4.6 Let rs : R → S be an i-open M-subobject, and let s: S → X be an i-open
M-morphism. Then r = s ◦ rs is i-open M-subobject of X.

Proof This follows immediately from Remark 2.1(c) and Proposition 4.3. ��
As a consequence of Lemma 3.10, Definition 4.1 and Proposition 4.3, one has:

Proposition 4.7 Let f : X → Y be an M-morphism. Then the statements (a), (b), (c) below
are equivalent and imply (d):

(a) f ∈ O(i),
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242 F. S. Assfaw, D. Holgate

(b) f (iX (m)) ∼= iY ( f (m)) for all m ∈ subX,
(c) iX (m) ∼= f −1(iY ( f (m))) for all m ∈ subX,
(d) (∀m ∈ subX)

(
m ∈ Oi

X ⇔ f (m) ∈ Oi
Y

)
.

All four statements are equivalent if i is idempotent.

From the above proposition we conclude that i-open M-morphisms are precisely the
morphisms whose images commute with the interior i . Moreover,

Proposition 4.8 The following statements hold for an i-open M-morphism f : X → Y :

(a) Every i-open subobject m of X is of the form f −1(n) for some i-open subobject n of Y ;
(b) If i is idempotent then j f : iY [X ] → X is an i-open subobject (see [6]).

iY [X ] j f

iY ( f )

X

f

Y

The next proposition characterizes i-openness for E-morphisms.

Proposition 4.9 Let f : X → Y be a morphism in E with E stable under pullback along
M-morphisms. Then the conditions (a), (b) below are equivalent and imply (c):

(a) f ∈ O(i),
(b) iY (n) ∼= f (iX ( f −1(n))) for all n ∈ subY ,
(c) (∀n ∈ subY )

(
n ∈ Oi

Y ⇔ f −1(n) ∈ Oi
X

)
.

Proof (a) ⇔ (b) follows from Proposition 4.2 and the adjointness property.
(a) ⇒ (c) Let n ∈ Oi

Y . Then Remark 3.5 implies f −1(n) ∈ Oi
X . On the other hand,

suppose f −1(n) ∈ Oi
X . ThenProposition 4.3 andRemark2.1(d) implyn ∼= f ( f −1(n)) ∈

Oi
Y since f ∈ E .

��
The following is a characterization of open morphisms with respect to any idempotent

interior operator.

Proposition 4.10 Let i be idempotent. A morphism f : X → Y ∈ O(i) if and only if for every
i-open subobject m of X and for every subobject n of Y such that m ≤ f −1(n), there exists
an i-open subobject k of Y such that k ≤ n and m ≤ f −1(k).

Proof

(⇒) Suppose f : X → Y ∈ O(i), n ∈ subY and m is i-open subobject of X such that
m ≤ f −1(n). Then, there exists k = f (m) such that k = f (m) ≤ n and k = f (m) is
i-open subobject of Y by Proposition 4.3(b). Moreover, m ≤ f −1( f (m)) = f −1(k).

(⇐) Suppose f : X → Y satisfies the condition in the proposition and let m be an i-open
subobject of X . Then, for n = f (m), one has m ≤ f −1( f (m)) = f −1(n). Conse-
quently, there exists an i-open subobject k of Y such that k ≤ f (m) = n and m ≤
f −1(k)] ⇔ [k ≤ f (m) and n = f (m) ≤ k]. As a result, f (m) ∼= k and hence f (m)

is an i-open subobject of Y . Therefore, by Proposition 4.3(b), f is i-open.

��

123



Codenseness and Openness with Respect to an Interior Operator 243

Remark 4.11 Let m, n ∈ M, f ∈ O(i) and the following commute.

M
u

m

N

n

X
f

Y

(a) [6,7]There is a uniquely determinedmorphismw: iX [M] → iX [N ]making the diagram

iX [M] w

jm

iX [N ]
jn

M
u

m

N

n

X
f

Y

commutative, that is: the preservation property of i holds if and only if f ∈ O(i).
(b) If n is i-open subobject, then there is a uniquely determined morphism

s: iX [M] → N with s = 1N ◦ s = u ◦ jm and n ◦ s = f ◦ iX (m).
(c) If m is i-codense subobject, then there is a uniquely determined morphism t : OM →

iX [N ] with u ◦ 0M = jm ◦ t and f ◦ 0X = iX (m).
(d) Ifm is i-codense subobject and n is i-open subobject, then there is a uniquely determined

morphism d : OM → N with u ◦ 0M = d and n ◦ d = f ◦ 0X .

Indeed, (b), (c) and (d) are direct consequences of (a).

For the remainder of this section we assume that the class E is stable under pullback
alongM-morphisms and for any C-morphism f : X → Y , f −1(−) commutes with the joins
of subobjects.

Definition 4.12 [2,3,20] Let i be an interior operator on C. A C-morphism f : X → Y is
called

(a) i-initial if iX (m) ∼= f −1(iY ( f∗(m))) for all m ∈ subX ;
(b) i-final if f∗(iX ( f −1(n))) ∼= iY (n) for all n ∈ subY .

Now one can easily prove the following connection of i-open morphisms with i-initial
and i-final morphisms.

Proposition 4.13 Let i be an interior operator on C. Then:

(a) An i-open M-morphism is i-initial;
(b) An i-open E-morphism is i-final;
(c) An i-initial E-morphism is i-open;
(d) An i-final M-morphism is i-open.

5 Quasi-openness

We now want to introduce a notion of quasi-open morphisms with respect to an interior
operator i on an arbitrary category C and discuss some of their properties. In particular, it
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244 F. S. Assfaw, D. Holgate

is shown that the quasi i-open morphisms of C are characterized as the morphisms which
reflect i-codensity. To this end, we begin with the following definition and proposition which
motivate the notion of quasi i-open morphisms.

Definition 5.1 A morphism f : X → Y is said to reflect i-codensity if f −1(−) maps i-
codense subobjects of Y to i-codense subobjects of X .

Consequently,

Proposition 5.2 Suppose f : X → Y ∈ O(i) reflects the least subobject. Then f reflects
i-codensity.

Proof Let n be an i-codense subobject of Y . Then, iY (n) ∼= 0Y . Consequently, iX ( f −1(n)) ∼=
f −1(iY (n)) ∼= f −1(0Y ) ∼= 0X since f is an i-open morphism and reflects 0Y . ��
Note that in any category in which the preimage functor for any givenmorphism preserves

arbitrary joins (in particular, in topological categories C over Set), each morphism reflects
the least subobject. Consequently, with the above proposition one has:

Proposition 5.3 Assume that the class E is stable under pullback along M-morphisms and
for any C-morphism f : X → Y , f −1(−) commutes with the joins of subobjects. Let i be a
hereditary interior operator on C. Then i-open morphisms are stable under pullback along
M-morphisms (see [2,3]) and reflect i-codensity.

Remark 5.4 (a) Let subX be a Boolean algebra for every C-object X and suppose comple-
ments are preserved by preimages. Let c be a closure operator and i c be the induced
interior operator from c given by i cX (m) = cX (m) for all m ∈ subX , where m denotes
the complement of m. Then an M-subobject r : R → X is i c-codense in X if and only
if r is c-dense in X . Consequently, a C-morphism f reflects i c-codensity if and only if
it reflects c-density.

(b) Amorphismwhich reflects i-codensity need not be i-open. Indeed, inTop the embedding
r : [0, 1] ↪→ � reflects codensity with respect to the Kuratowski interior operator kin

induced by the Euclidean topology but r is not kin-open map.

While any i-open morphism which reflects the least subobject reflects i-codensity, a
morphism which reflects i-codensity may not be i-open by Remark 5.4(b). This motivates
the following:

Definition 5.5 A morphism f : X → Y is said to be quasi i-open if the interior of each
subobject of X is the least subobject of X whenever the interior of its image under f is the
least subobject of Y , that is: (∀m ∈ subX) (iY ( f (m)) ∼= 0Y ⇒ iX (m) ∼= 0X ).

In Top, the quasi open morphisms with respect to the Kuratowski interior operator kin are
precisely the quasi open maps studied in [18,19,21]. Such maps are also called semi-open in
[16].

The following is a handy characterization of quasi i-open morphisms in terms of i-
codensity.

Proposition 5.6 For a morphism f : X → Y in C, the following are equivalent:

(a) f is quasi i-open;
(b) each subobject of X is i-codense in X whenever its image under f is i-codense in Y ,

that is: (∀m ∈ subX)( f (m) is i -codense in Y ⇒ m is i-codense in X);
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(c) f reflects i-codensity, that is: if n is i-codense in Y then f −1(n) is i -codense in X.

Proof (a) ⇒ (b) follows immediately from the definitions.
(b) ⇒ (c) Let n be a i-codense in Y . Since f ( f −1(n)) ≤ n, one has f ( f −1(n)) is
i-codense in Y by Remark 3.8(c). Consequently, f −1(n) is i-codense in X .
(c) ⇒ (a) Let m ∈ subX such that iY ( f (m)) ∼= 0Y . Then f (m) is i-codense in Y ,
hence f −1( f (m)) is i-codense in X by hypothesis. Consequently, by Remark 3.8(c), m
is i-codense in X since m ≤ f −1( f (m)). Therefore, iX (m) ∼= 0X .

��
The above proposition states that the quasi i-open morphisms of C are precisely the

morphisms which reflect i-codensity. Consequently, with Proposition 5.2, quasi i-open mor-
phisms are a generalization of i-open morphisms.

As a consequence of Propositions 3.11 and 5.6 the following corollaries are now evident.

Corollary 5.7 The following statements are equivalent for an M-morphism f : X → Y :

(a) f is quasi i-open;
(b) (∀m ∈ subX) ( f (m) is i -codense in Y ⇔ mis i-codense in X)

Corollary 5.8 Let E be stable under pullback alongM-morphisms. Then the following state-
ments are equivalent for an E-morphism f : X → Y :

(a) f is quasi i-open;
(b) (∀n ∈ subY )

(
f −1(n) is i -codense in X ⇔ n is i-codense in Y

)

Proposition 5.9 Every i-open morphism in the class M is quasi i-open.

Proof This follows from Propositions 5.2 and 5.6 since each subobject morphism reflects the
least subobject. ��

We use QO(i) to denote the class of quasi i-open morphisms, and Ci the i-codense
M-subobjects.

Proposition 5.10 (a) Ci is stable under pullback along QO(i)-morphisms.
(b) Ci is left-cancellable with respect to the class of i-open morphisms in M.
(c) CD(i) is left-cancellable with respect toQO(i), that is: if g◦ f ∈ CD(i) and g ∈ QO(i)

then f ∈ CD(i).

Proof (b) Indeed, for s, t ∈ M such that s ◦ t ∈ Ci and s ∈ O(i), one has the pullback
diagram

· 1

t

·
s◦t

· s ·

with s ∈ QO(i) by Remark 5.9. Consequently, by (a), t ∈ Ci since t is a pullback of
s ◦ t ∈ Ci along s ∈ QO(i).

(c) Let f : X → Y be any morphism in C and g: Y → Z ∈ QO(i) such that g ◦ f ∈ CD(i).
Then g( f (1X )) ∼= (g◦ f )(1X ) is an i-codense subobject of Z . Hence, by Proposition 5.6,
g−1(g( f (1X ))) is an i-codense subobject of Y . Consequently, by Remark 3.8(c), f (1X )

is an i-codense subobject of Y since f (1X ) ≤ g−1(g( f (1X ))) (see Remark 2.1(a)).
Therefore, f ∈ CD(i). ��
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The following property of an i-open subobject will be employed sometimes.

Proposition 5.11 [2,3] Assume that for any C-morphism f : X → Y , f −1(−) commutes
with the joins of subobjects. Let i be an additive and hereditary interior operator on C. If
s: S → X is an i-open subobject of X ∈ C then it is an i-open morphism.

Now we are ready to conclude:

Corollary 5.12 Assume that for any C-morphism f : X → Y , f −1(−) commutes with the
joins of subobjects. Let i be an additive and hereditary interior operator C. Then the class
of i-codenseM-subobjects is left-cancellable with respect to the class of i-open subobjects.

Proposition 5.13 Every quasi i-open morphism reflects the least subobject.

Proof Let f : X → Y ∈ QO(i). Since 0Y is both i-open and i-codense, one has f −1(0Y )

is both i-open in X (see Remark 3.5) and i-codense (see Proposition 5.6). Hence, by
Remark 3.8(a), f −1(0Y ) is the least subobject of X , that is f −1(0Y ) ∼= 0X . Therefore,
f reflects the least subobject. ��
The above proposition, in turn, implies that the kernel of a quasi i-open morphism in the
category Grp (Rng, resp.) is the trivial subgroup (subring, resp.). Consequently, a quasi i-
open morphism inGrp (Rng, resp.) must be an injective group (ring, resp.) homomorphism.

A quasi i-openmorphism generally fails to be i-open (see Proposition 5.6, Remark 5.4(b)).
This motivates the following result.

Proposition 5.14 A morphism which is both i-codense and quasi i-open is i-open.

Proof Let f : X → Y ∈ CD(i)∩QO(i). Since f is an i-codense morphism, then by Propo-
sition 3.14, f (m) is i-codense in Y , that is iY ( f (m)) ∼= 0Y for all m ∈ subX . Consequently,
since f is a quasi i-open morphism, m is i-codense in X , that is iX (m) ∼= 0X for all m ∈
subX (see Proposition 5.6). Hence, f (iX (m)) ∼= f (0X ) ∼= 0Y ∼= iY ( f (m)) for allm ∈ subX .
Therefore, f is an i-open morphism by Definition 4.1. ��

The class QO(i) of quasi i-open morphisms satisfies properties similar to the class O(i)
of i-open morphims given in [6]:

Proposition 5.15 The class QO(i)

(a) contains all the isomorphisms and is closed under composition,
(b) is left-cancellable with respect to M and
(c) is right-cancellable with respect to E if E is stable under pullback alongM-morphisms.

Proof Consider the morphisms f : X → Y and g: Y → Z in C.

(a) Suppose f , g ∈ QO(i). Let m ∈ subX such that (g ◦ f )(m) is i-codense in Z .
Then g( f (m)) is i-codense in Z since (g ◦ f )(m) ∼= g( f (m)). Consequently, by
Proposition 5.6, f (m) is i-codense in Y . This in turn implies m is i-codense in X by
Proposition 5.6. Therefore, g ◦ f ∈ QO(i).

(b) Suppose g ◦ f ∈ QO(i) and g ∈ M. Let m ∈ subX such that f (m) is i-
codense in Y . Then by Proposition 3.11(a) g( f (m)) is i-codense in Z . Hence, (g ◦
f )(m) is i-codense in Z since (g ◦ f )(m) ∼= g( f (m)). Thus, by Proposition 5.6,
m is i-codense in X . Therefore, f ∈ QO(i).

123



Codenseness and Openness with Respect to an Interior Operator 247

(c) Suppose g ◦ f ∈ QO(i) and f ∈ E . Let n ∈ subY such that g(n) is i-codense in z. Since
f ∈ E , one has (g ◦ f )( f −1(n)) ∼= g( f ( f −1(n))) ∼= g(n) is i-codense in z. Conse-
quently, by Proposition 5.6, f −1(n) is i-codense in X . Hence, by Proposition 3.11(b),
n is i-codense inY . Therefore, g ∈ QO(i).

��
As an immediate consequence of the above proposition, one has:

Corollary 5.16 Let f = m ◦ e with m ∈ M and e ∈ E and E stable under pullback along
M-morphisms. f ∈ QO(i) if and only if m, e ∈ QO(i).

Corollary 5.17 Assume that for any C-morphism f : X → Y , f −1(−) commutes with the
joins of subobjects. Let i be an additive and hereditary interior operator on C and let
f : X → Y ∈ QO(i). If m: M → X is an i-open subobject of X then f ◦ m ∈ QO(i).

One can drop the additivity and heredity conditions in the above proposition if i is standard
and m is an i-open morphism (see [6]).

From Proposition 5.15 and properties of pullbacks, the class QO(i)∗ of stably quasi i-
openmorphisms satisfies the following fundamental stability properties. Note that by a stably
quasi i-open morphism we mean that every pullback of the morphism is quasi i-open.

Proposition 5.18 The class QO(i)∗

(a) contains all the isomorphisms and is closed under composition,
(b) is left-cancellable with respect to M, that is: if g ◦ f ∈ QO(i) and g ∈ M then

f ∈ QO(i) and
(c) is right-cancellablewith respect toE ifE is stable under pullback, that is: if g◦ f ∈ QO(i)

and f ∈ E then g ∈ QO(i).

As an application of Propositions 5.2, 5.6, Remark 5.9 and Proposition 5.13, we obtain:

Example 5.19 (a) In Top:

(i) Every map which preserves open (closed, clopen, resp.) subspaces is quasi kin (k∗in,
q in)-open;

(ii) Every proper (= stably-closed) map is quasi k∗in-open;
(iii) [0, 1] ↪→ R is quasi kin-open but Q ↪→ R is not quasi kin-open.

(b) Each i-open morphism in any category in which preimages preserve arbitrary joins (in
particular, in topological categories C over Set) is quasi i-open.

(c) Every i-open M-morphism in an arbitrary category C is quasi i-open. In particular:

(i) Any injective group homomorphism that preserves normal subgroups is quasi-open
with respect to the normal interior operator on Grp.

(ii) Any injective ring homomorphism that preserves ideals is quasi-open with respect
to the ideal interior operator on Rng.

(d) Any injective group homomorphism f : S → G, where S is a simple group and G is a
group with f (S) containing a proper normal subgroup of G is quasi-open with respect
to the normal interior operator n on Grp.
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