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Abstract:

In the current work, we use the (M,N)-Lucas Polynomials to introduce a new families of holomorphic and bi-Prestarlike
functions defined in the unit disk O and establish upper bounds for the second and third coefficients of the Taylor-
Maclaurin series expansions of functions belonging to these families. Also, we debate Fekete-Szegd problem for these

families. Further, we point out several certain special cases for our results.
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1 Introduction

Indicate by 2 the collection of functions { that are holomorphic in the unit disk O = {{ € C: |{| < 1} that have
the shape:
U =€+ ang™ (1.1)
n=2
Further, let & stands for the subfamily of the collection 2l consisting of functions in O satisfying (1.1) that are

univalent in 9. According to "the Koebe one-quarter theorem" (see [12]), each univalent function of this kind has an
inverse U1 that fulfills

U@ =¢  (€€D)

and

W) =¢, (¢l < ro(th),ro(eh) > ),

Ry

where

Q) = ¢ —aa® + (2a§ - 03) ¢® - (503 — bagaz + CL4) e (1.2)

A function Y € 2 is said to be bi-univalent in O if both { and $4~! are univalent in ), let we name by the notation & the
set of bi-univalent functions in O satisfying (1.1). In fact, Srivastava et al. [32] refreshed the study of holomorphic and bi-

univalent functions in recent years, it was followed by other works as those by Frasin and Aouf [15], Altinkaya and Yalgin
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[5], Giiney et al. [16] and others (see, for example [1, 3, 8, 10, 11, 18, 21, 22, 23, 26, 27, 28, 29, 30, 31, 33, 34, 35, 38, 39, 41]).

The problem to obtain the general coefficient bounds on the Taylor-Maclaurin coefficients
lan|  (neN;n=>4)

for functions 4 € € is still not completely addressed for many of the subfamilies of the bi-univalent function class €.
The Fekete-Szego functional ‘ag — ua%| for 4l € & is well known for its rich history in the field of Geometric Function
Theory. Its origin was in the disproof by Fekete and Szegd [13] of the Littlewood-Paley conjecture that the coefficients

of odd univalent functions are bounded by unity.

A function 4 € 2 is named starlike of order 6§ (0 < 6 < 1), if

&E{gjﬂg)} >0, (£€9).

For 4l € A given by (1.1) and J € 2 defined by
J(E) =&+ bat™,
n=2
the "Hadamard product" of 4 and J is defined by

(@) =€+ D anbns", (£€9).

Ruscheweyh [25] introduced and studied the family of "prestarlike functions" of order 6, that are the function

such as i x Iy is a starlike function of order 6, where

)= — —— (0<0<1EeD)

(-9

The function Iy can be written in the form:

Ip(€) =&+ on(0)E",

where [T, (i — 26)
. 7 —
) = ==2 2 > 2.
We note that g, () is a decreasing function in ¢ and satisfies
0, ifl< %
nli_{gan(a): 1, if0=3
0, ifo>3

With a view to remembering the principle of subordination between holomorphic functions, let the functions 4 and
J be holomorphic in O, we name the function 4 is subordinate to J, if there is a Schwarz function A holomorphic in O
with
R0)=0 and |a(§)| <1 (£€9D)
such that
UE) = J () -
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This subordination is indicated by

U=<J or UE=<3IE) (E€9).

For two polynomials M (x) and N(x) that have real-valued coefficients, the following recurrence relation gives the
(M,N)-Lucas Polynomials Ls n k() (see [19]):
LN g(w) = M(2) Ly, N g—1(2) + N(@) Ly N ge—2(z) (k> 2),
with
LM7N7O($) = 2, LM,N,I(x) = M(x) and LM,N,Q(x) = MQ(J)) + 2N(x) (13)
The function that generates (M,N)-Lucas Polynomial Ly y r(x) (see [20]) is given by

= 2 M(a)g
T{Lpg ()} (8) = ];LMW*(“%}C - 1—M(z) — N(x)€?

Remark 1.1. For particular choices of M(x) and N(z), the (M,N)-Lucas Polynomial Ly n () leads to various

polynomials, among those we list following few here:

(1) Ly 1x(z) =: L(x), the Lucas polynomials,

(2) Laz1,k()

(3) L1 22 k()

(4) Ly, —2.1(z) =: Fr(x), the Fermat-Lucas polynomials,
T

(z) =
(5) Log,—1.5(z) =:

=: Py(x), the Pell-Lucas polynomials,
=: Jx(x), the Jacobsthal polynomials,

k(x), the first kind Chebyshev polynomials.

We also note that the Lucas polynomials and other special polynomials plays an important role in a diversity
of disciplines in the mathematical, statistical, physical and engineering sciences. More details associated with these
polynomials can be found in [2, 17, 37, 14, 20, 40].

In recent years, the (M,N)-Lucas Polynomial was presented and investigated analogously by the various penmans
(see, for example,[2, 4, 6, 7, 9, 24, 36]).

2 Main Results

This section start with defining the families WA ¢(4, A, 8; x) and WM (T, 6; x) as follows:

Definition 2.1. Assume that 6 > 0,0 < A <1 and 0 <0 <1, a function 4 € € is called in the family WN (8, \, 6; x)
if it fulfills the subordinations:

D) (© e ) (©) A (8x o) (€) 4 € (U o) (&)
1-9) [(1 N 1) ©) “(” (1) (©) )]”Agw*m'(&)+<1—A><u*fe><s>
= T{LILINk(ZE)}(S) -1
and
B L@ (© C@F*1p)" (C) A (3% 19)" (O)+ (I =1) (C)
-9 {(1 NG © “(” G %10 (O ﬂ+5/\C(3*Ia)/(C)+(1—>\)(3*Ia)(0

= T (Lpg w23 (€) — 1,

where J = U~ is given by (1.2).
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In particular, if we choose 6 = A =0and § = % in Definition 2.1, we have WA ¢(0, 0, %; z) = Se(z) for the bi-starlike

functions that was given by Altinkaya [4] and satisfying the following subordinations:

ﬂl
fﬂ(g) < T Ly (a1} (€) =1

and )
C\:Jj((Cg) < T Lpr w23 (€) — 1.

If we choose § =0, A =1 and § = 1 in Definition 2.1, we have WAN¢(0,1, 3;2) = Ce(z) for the bi-convex functions
which which was given by Altinkaya [4] and satisfying the following subordinations:

ﬂ//
b il’(ég)) < TiLp w3 (§) — 1
and e
1+ \:Jj’(C) < T (@3 (©) = 1.

Definition 2.2. Assume that 0 <7 <1 and 0 <60 <1, a function f € € is called in the family WMe(,0;2) if it
fulfills the subordinations:

TE (U Ip)" (€) + (21 + 1) (U * Ip) (§) — 27 < T4y (@} (6) — 1
and
T¢I x1p)" (O + 2+ 1) (I*1p) (¢) =27 < TLy wr@3 () — 1

where J = U~ is given by (1.2).

In particular, if we choose 7 =0 and § = % in Definition 2.2, we have WM (0, %; x) = WM e(z) which satisfying
the following subordinations:
ﬂ/(f) = T{LAlNk(x)}(é-)g -1
and

3I(<) = T{LJVI,N,k(x)}(C) - L

Theorem 2.1. For 6 >0, 0<A<1and0<0 <1, let U €A belongs to the family WN ¢(5,\,0;x). Then

ol < ()] VM)

\/2 ‘ [(1 9N 8,0) —2(1—0)> (A + 1)2} M2(z) —4(1— 0)> (A + 1)2N(z)

and
M?(x) |M ()|

T1-0 O+ 17 201-6)(B3-20)2A+ 1)

las| <

where
QN 6,0) =2X0(1 —60)(1 — A\) + 20\ + 1. (2.1)

Proof. Suppose that 4 € WN (0, \,0; z). Then there exists two holomorphic functions ¢, : O — O given by

HE) =riE+ € 334+ (£€D) (2.2)
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and
V() =s51C+ 52 +s3 +--- ((€9),
with ¢(0) = ¥(0) =0, [p(&)| < 1, [¢(¢)] < 1, §,¢ € O such that

M) (© €W 1) (©) AE2 (805 Ip)" (€) + € (U Ip)' (€)
-9 [“ N0 1) (@) “(H (W 1) (©) )]+6A€(ﬂ*fe)/(€)+(1—A)(M*Ie)(é)

=1+ Lyno(@) + Larn1(2)p(€) + L w2 () (&) + - -

and

T BRI () C@*1)" (©) MG D)" () +¢ @+ To) (O)
=9 [(1 N G710 © “(” G100 >]”Acw*ze)'(m(1—A)<3*10><<>

= 1+ Lano(x) + L (2)0(C) + Larn2 () () + -+

Combining (2.2), (2.3), (2.4) and (2.5), yield

f(u*le)’(f)H(l £ (WUxIp)" (&) )] A2 uu@"(gng(uu@’(g)
(L= Ig) (£) (U Ip) (€) XE (8 Ig) (€) + (1= N) (8L Ip) (€)

=1+ Lyn1(2)ri€+ [Lani(@)rs + Lo v (2)ri] € + -+

(-9 [a-x

and

oL L@ © CG* 1) (©) A (3% 10) (O) + €3 % o) (©)
=9 [“ V25T O “(” G100 )]+6/\C(3*fe)/(C)+(1*)\)(3*Ie)(g)

= 14 Larna (@)s1¢ + [Larn (2)s2 + Larna()s3] 4 -
It is quite well-known that if |#(€)| < 1 and [(¢)] < 1, &,¢ € O, we get
|rjl <1 and |s;] <1(j€N).

In the light of (2.6) and (2.7), after simplifying, we find that

2(1 = 0)(A+1)ag = Ly,n,1 ()1,

2(1—60)(3 —20)(2A + 1)asg — 4 (1 — 0)> (A0(A — 1) + 3\ + 1) a2 = Layn.1(2)r2 + Lasno(x)r?,

—2(1—=60)(A+1)ag = Ly, na(z)s1

and
2(1—0)(3 —20)(2A + 1) (243 — az) —4 (1 — 0)* (A6(A — 1) + 3\ + 1) a3
= Ly na(z)sg + L no(w)st.

It follows from (2.9) and (2.11) that

rH = —81

and
8(1L—0)* (A +1)%a3 = L3, n 1 (2)(r] + 7).

If we add (2.10) to (2.12), we obtain

41— 0)[2A6(1 — 0)(1 — \) + 20\ + 1] a3 = Ly v (x)(ro + s2) + Larn2(2)(r + s7).
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By substitute the value of 72 + s2 from (2.14) in the right hand side of (2.15), we conclude that

8LM’N72({£)

— 2 2
2, na(2) (1-6)"(A+1)

l4(1 —0)Q(N,9,0) — a3 = Lar,na(2)(r2 + s2), (2.16)

where (A, 6,0) is given by (2.1).
Moreover computations using (1.3), (2.8) and (2.16), we find that

] < |M ()| /[ M ()]

\/2 ’ [(1 — )2, 6,0) —2(1— 0> (A + 1)2} M2(z) —4(1—0)> (A +1)2N(x) .

Next, if we subtract (2.12) from (2.10), we can easily see that
4(1 — 9)(3 — 29)(2)\ + 1) (ag — a%) = L]\/[)NJ(ZU)(TQ — 82) + LM7N,2(37)(7”% — S%) (2.17)
In view of (2.13) and (2.14), we get from (2.17)

Ly,na(z)

Lisna (@)
D ) IS0 w1 )

7“2—1—32
8(1—9)2(>\+1)2( e

az =

Thus applying (1.3), we conclude that

M) [M(2)

las| < 11—02(A+1)2 20-0)(B-20)2A+ 1)

Putting d = A =0 and § = % in Theorem 2.1, we deduce the next outcome:

Corollary 2.1. [4] If 4 belongs to the family Se(x), then

ool < M)y | 5
and o

Putting d =0, A=1and § = % in Theorem 2.1, we deduce the next outcome:

Corollary 2.2. [j] If 1 belongs to the family Ce(z), then

[ M ()| /| M ()]

las| <
V2|M?(z) + 4N (2)]

e M2(z) | [M()]
X X
las| < 1 + 6

Theorem 2.2. For0 <7 <1 and0<0 <1, let sk € A belongs to the family WMe(1,0;x). Then

[ M ()| /| M ()]

lag| <
\/‘ [3(1 —9)(3—20)(4r +1) —4(1—8)> (Tr + 3)2} M2(z) — 8 (1 — 6)2 (77 + 3)2N(x)
and

M?(x) |M ()|
4(1—6)°(Tr+3)2  3(1-0)(3-20)(d7 +1)

las| <
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Proof. Suppose that { € WMe(7,0; ). Then there exists two holomorphic functions ¢, : 9 — O such that

TEWxIp)" (&) + (27 +1) (8 1) (§) — 27
= —1+ Ly,no(x) + Lan1 (2)9(€) + Lar,n2(2)6%(€) + -+ (2.18)

and

T¢I *1p)" () + 2+ 1) (I*1y) (¢) — 27
= =1+ Lano(@) + Larna (@)9(C) + Ly v 2 ()0 () + -+ (2.19)

where ¢ and 9 have the forms (2.2) and (2.3). Combining (2.18) and (2.19), yield

TE (U Ip)" (&) + (27 + 1) (U Ip) () — 27
=1+ LM’N’l(m)T1f + [LM,NJ((E)’FQ + LM’N’Q(J;)T%] 52 + - (2.20)

and

T¢I Io)" (O + 2r+1) (T Ip) (¢) — 27
=1+ Lana(2)s1¢ + [Lar,na(2)s2 + Lagn2(2)st] ¢+ (2.21)

In the light of (2.20) and (2.21), after simplifying, we find that

2(1 = 0)(77 4+ 3)ag = Las N1 (2)r1, (2.22)
3(1—0)(3 —20)(47 + 1)az = Ly na(w)re + Las v 2(2)ri, (2.23)
—2(1 —0)(71 +3)az = Larn1(2)s1 (2.24)
and
3(1—60)(3—20)(47 + 1) (2a3 — a3) = La,n1(2)s2 + Lar,n,2(2)s. (2.25)
It follows from (2.22) and (2.24) that
r = —81 (226)
and
8(1—0)% (77 +3)%a3 = L3, v (x)(r} + ). (2.27)
If we add (2.23) to (2.25), we obtain
6(1 —0)(3 —20)(47 + 1)a3 = Lasna(z)(r2 + s2) + Lasna(z) (1] + s7). (2.28)

By substitute the value of 72 + s3 from (2.27) in the right hand side of (2.28), we conclude that

8LM7N,2 (:c)

— 2 T 2
L%\/I,N,l(x) (1-0)" (77 +3)

lG(l —0)(3—20)(47 +1) — a3 = Ly na(x)(re + s2), (2.29)

Moreover computations using (1.3), (2.8) and (2.29), we find that
|M ()| /| M(2)]

|a2| S .
\/’ [3(1 —0)(3—20)(4r +1) —4(1—0) (Tr + 3)2} M2(z) — 8 (1 — 6)% (7r + 3)2N(z)
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Next, if we subtract (2.25) from (2.23), we can easily see that
6(1—0)(3—20)(4r + 1) (a3 — a3) = Laz,n,1(x)(r2 — 82) + Lar, v 2(z) (r] — 7). (2.30)

In view of (2.26) and (2.27), we get from (2.30)

L3y na(2) 2, 2 Lyrna()
as = S r{+sy)+ — To — S2).
Y T A U ) T ST [ e L)
Thus applying (1.3), we conclude that
M?(z) | M ()]

|ag| < L(1—02(Tr+3)2 301-0)(3—-20)(4r+1)

Putting 7 =0 and 6 = % in Theorem 2.2, we deduce the next outcome:

Corollary 2.3. If i belongs to the family WMe(x), then

) VIM

laz |_\/6|M2 +3N( )|

and
M) M@

<
las| < —5 3

In the following theorems, we introduce the Fekete-Szegd Problem of the families WN ¢ (8, A, 0; ) and WM (7, 6; ).

Theorem 2.3. For 6 >0,0<A<1,0<0<1 and p € R, let s € A belongs to the family WN ¢(8, X, 0;x). Then

[M ()]
2(1—0)(3—20)(2A+1)’

(1—6)Q(7,5,0)—2(1—0)% (A+1)2— %ﬁ;f““

for |p—1| < ‘ T=0)3-20)2771) ;

az — pa3| <
|M (2)|°|p—1]
2|[(1-0)2(1,8,0)—2(1—0)2(A+1)2| M2 (z) —4(1—6)2 ()\+1)2N(3c)|

‘(1 0)Q(N,6,0)—2(1—0)% (A+1)% — %@”2”“)

for [p—1] > A=0)(3=20)(2 1) :

where Q(\, 0, 0) is given by (2.1).

Proof. By making use of (2.16) and (2.17), we conclude that
Ly na(@)(r2 +52) (1= p)
4131 s (@) (1 = OQ(A8,0) = 2Lasva() (1 - 0)° (A +1)%]

Ly na(z)(re — s2)
21— 6)(3—20)(2r + 1)

_ LM7N,1(£ZJ) 1

4 K*D(p;xH (1—9)(3—29)(2)\+1))T2
* (‘P(“ S e —129)(2)\ n 1)) 52] ’

2
as — pas =

+
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where

o(pz) = L%\J,N,l(x)(l - p)
’ Lirna (@) (1= 0)N,8,0) — 2Lp 2 (2) (1 - 0)> (A +1)*

According to (1.3), we find that

| M ()|

. 1
2(1—0)(3—20)(2x+1) 0 < lp(p;x)| < T=0)(3-20)2 +1)°
|a3 — pa%’ <
3 1M ()] le(p; )|, lo(p; )| > m-
After some computations, we obtain
| M ()]
2(1-0)(3—20)(27+1)°
’(1—0)(1(/\,6,0)—2(1 0)?(A1)?— 2= DN ()
for [p—1] < A=013=20)2 D) ,
ag — paj| <
|M (2)|*|p—1]
2|[(1-0)2(1,6,0)—2(1—6)2 (A+1)2| M2 () —4(1—6)> (A+1)2 N ( x)|
’(170)9(”’6)72(170)2(AH)L—4(1_@;(;:;1))%(@
for lp—1 = (1-0)(3—20) (2 +1)
Putting 6 = X =

=0andf = % in Theorem 2.3, we deduce the next outcome:

Corollary 2.4. [}] If \l belongs to the family Se(x), then

M(x N(z
lag — pad| <
|M(2)|®|p=1] [N (z)|
o for I =12 iegy-

Putting § =A=0and 0 = % in Theorem 2.3, we deduce the next outcome:

Corollary 2.5. [4] If il belongs to the family Ce(x), then

M(z M?(x)+4N ()
| é)|§ for |P_1|§| 3MZ(z) ‘,
|as — pa3| <
|M(2)[}[p—1] . |M? (2)+4N ()|
s Jor lp=12> Sy —

3M?(x)

Putting p = 1 in Theorem 2.3, we deduce the next outcome:

Corollary 2.6. If il belongs to the family WN ¢(6, A, 0; ), then

|M ()]
21— 6)(3 - 20)2A + 1)

|a3 —a2|

Putting p = 1 in Corollary 2.4, we deduce the next outcome:
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Corollary 2.7. [4] If i belongs to the family S¢(x), then

Putting p = 1 in Corollary 2.5, we deduce the next outcome:
Corollary 2.8. [4] If i belongs to the family Ce(x), then

M
jay a3 < 2L

Theorem 2.4. For0<7<1,0<60<1 and p € R, let i € A belongs to the family WMe(T,60;x). Then

[M ()] .
3(1-0)(3-20)(4r+1)°

2(1-0)2(77+3)3N (=
%[(179)2(7T+3)2+—( Ve (’)]

for lp =11 <11 - (1-0)(3—20)(4r+1) ,

as —Pa§| <

|M ()| p—1] .
[[3(1—6)(3—260)(47+1)—4(1—-0)2(T7+3)2| M2 (z)—8(1—0)*(77+3)2 N (z)|’

V2 (714312 N (x
g[(179)2(7r+3)2+—2“ e )]

for |p—1]> 11— 1=0)3=20)(ar+1)

Proof. By making use of (2.29) and (2.30), we conclude that

L3y v (@) (ra +52) (1 - p)
2 {3L§LN’1($)(1 —0)(3 - 20)(47 + 1) — ALrsn2(z) (1 — 0)% (77 + 3)2]

Larn,i(x)(ra — s2)
6(1—6)(3—20)(47 + 1)

_ Lyna(z) 1

5 K“”; ST S o) 1)> r2

* <¢’(”;“”) T31-0)3 —129)(47 n 1)) 32] !

2
as — pas =

+

where
_ L3y () (1~ p)
L3, v (2)(1 = 0)(3 = 20)(47 + 1) — 4Lps n 2() (1 — 0)° (Tr + 3)*

According to (1.3), we find that

Y(p;x)

M (z) . 1
3(170)23720;(47#1)’ 0< |¢(p7 x)| < 3(1—0)(3—20)(47+1)°
|a3 - Pa§| <
| M ()] [¢(p; )|, [V(p; )| > 3(1_9)(3_129)(4T+1)-
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After some computations, we obtain

[ M ()| .
3(1-0)(3—20)(dr+1)°

2(1-0)2(774+3)2N (=
% (14)%7#3)%%}

for lp=1f < |1~ 1-0)(3—20)(d7+1) ’

ag — pa3| <
|M (2)|?|p—1] .
[[3(1—0)(3—20)(47+1)—4(1-0)2(77+3)2| M2 (z)—8(1—0)*(77+3)2N ()|’

—0)2(7r43)2 N (=
3 a0y (rray 20050 st |

for |p—11> 11— A-0)(3-20)(ar+1)

Putting 7 = 0 and 6 = % in Theorem 2.4, we deduce the next outcome:
Corollary 2.9. If i belongs to the family WMe(z), then

N (z)
M?(z)

7

7|M?()m)‘; for |p71\§2‘1+3

’a3 - Pa§| <

|M(x)|®|p—1] . N(z)
SN for lp—11>2 ‘1 + 3320 |-

Putting p = 1 in Theorem 2.4, we deduce the next outcome:

Corollary 2.10. If $l belongs to the family WMe(T,6;x), then

’a _GQ‘ < |M ()|
P = 31 -0)(3-20)(dr + 1)

Putting p = 1 in Corollary 2.9, we deduce the next outcome:

Corollary 2.11. If {l belongs to the family WMe(x), then

M
jay 2] < 211

References
[1] C. Abirami, N. Magesh and J. Yamini, Initial bounds for certain classes of bi-univalent functions defined by
Horadam polynomials, Abstr. Appl. Anal., 2020, Art. ID 7391058, (2020), 1-8.

[2] A. Akgiil, (P,Q)-Lucas polynomial coefficient inequalities of the bi-univalent function class, Turkish Journal of
Mathematics, 43(2019), 2170-2176.

[3] A. G. Al-Amoush, Certain subclasses of bi-univalent functions involving the Poisson distribution associated with
Horadam polynomials, Malaya J. Mat., 7(2019), 618-624.

131



Journal of Advances in Mathematics Vol 20 (2021) ISSN: 2347-1921 https://rajpub.com/index.php/jam

4]

[5]

[6]

7]

18]

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

S. Altinkaya, Inclusion properties of Lucas polynomials for bi-univalent functions introduced through the g-analogue
of the Noor integral operator, Turkish J. Math., 43(2019), 620-629.

S. Altinkaya and S. Yalgin, Coefficient estimates for two new subclasses of bi-univalent functions with respect to
symmetric points, J. Funct. Spaces, 2015, Art. ID 145242, (2015), 1-5.

S. Altinkaya and S. Yalgin, On the (p,q)-Lucas polynomial coefficient bounds of the bi-univalent function class o,
Boletinde la Sociedad Matemadtica Mexicana, 25(2019), 567-575.

S. Altinkaya and S. Yalgin, (p,q)-Lucas polynomials and their applications to bi-univalent functions, Proyecciones,
39(5)(2019), 1093-1105.

A. Amourah, Initial bounds for analytic and bi-univalent functions by means of (p,q)-Chebyshev polynomials
defined by differential operator, General Letters in Mathematics, 7 (2019), 45-51.

A. Amourah, B. A. Frasin, G. Murugusundaramoorthy and T. Al-Hawary, Bi-Bazilevi¢ functions of order ¢ + i
associated with (p,q)-Lucas polynomials, AIMS Mathematics, 6(5)(2021), 4296-4305.

S. Bulut, Faber polynomial coefficient estimates for a subclass of analytic bi-univalent functions, Filomat, 30(2016),
1567-1575.

M. Caglar, E. Deniz and H. M. Srivastava, Second Hankel determinant for certain subclasses of bi-univalent
functions, Turkish J. Math., 41(2017), 694-706.

P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer Verlag,
New York, Berlin, Heidelberg and Tokyo, 1983.

M. Fekete and G. Szegd, Eine bemerkung uber ungerade schlichte funktionen, J. London Math. Soc., 2(1933),
85-89.

P. Filipponi and AF. Horadam, Derivative sequences of Fibonacci and Lucas polynomials, Applications of Fibonacci
Numbers, 4(1991), 99-108.

B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24(2011), 1569-1573.

H. O. Giiney, G. Murugusundaramoorthy and J. Sokot, Subclasses of bi-univalent functions related to shell-like
curves connected with Fibonacci numbers, Acta Univ. Sapient. Math., 10(2018), 70-84.

A. F. Horadam and J. M. Mahon, Pell and Pell-Lucas polynomials, The Fibonacci Quarterly, 23(1985), 7-20.

S. Joshi, S. Joshi and H. Pawar, On some subclasses of bi-univalent functions associated with pseudo-starlike
functions, J. Egyptian Math. Soc., 24(2016), 522-525.

GY. Lee and M. Asci, Some properties of the (p,q)-Fibonacci and (p,q)-Lucas polynomials, J. Appl. Math.,
2012(2012), 1-18.

A. Lupas, A guide of Fibonacci and Lucas polynomials, Octagon Math. Mag., 7(1999), 2-12.

N. Magesh and S. Bulut, Chebyshev polynomial coefficient estimates for a class of analytic bi-univalent functions
related to pseudo-starlike functions, Afr. Mat., 29(2018), 203-209.

132



Journal of Advances in Mathematics Vol 20 (2021) ISSN: 2347-1921 https://rajpub.com/index.php/jam

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

E. P. Mazi and T. O. Opoola, On some subclasses of bi-univalent functions associating pseudo-starlike functions
with Sakaguchi type functions, General Mathematics, 25(2017), 85-95.

G. Murugusundaramoorthy and S. Yalgin, On the A-Psedo-bi-starlike functions related to (p,q)-Lucas polynomial,
Libertas Mathematica (newseries), 39(2019), 79-88.

H. Orhan and H. Arikan, (P,Q)-Lucas polynomial coefficient inequalities of bi-univalent functions defined by the
combination of both operators of Al-Aboudi and Ruscheweyh, Afr. Mat. (2020). https://doi.org/10.1007/s13370-
020-00847-5

S. Ruscheweyh, Linear operators between classes of prestarlike functions, Comment. Math. Helv., 52(4), (1977),
497-509.

H. M. Srivastava and D. Bansal, Coefficient estimates for a subclass of analytic and bi-univalent functions, J.
Egyptian Math. Soc., 23(2015), 242-246.

H. M. Srivastava, S. Bulut, M. Caglar and N. Yagmur, Coeflicient estimates for a general subclass of analytic and
bi-univalent functions, Filomat, 27(5)(2013), 831-842.

H. M. Srivastava, S. S. Eker and R. M. Ali, Coefficient bounds for a certain class of analytic and bi-univalent
functions, Filomat, 29(2015), 1839-1845.

H. M. Srivastava, S. S. Eker, S. G. Hamidi and J. M. Jahangiri, Faber polynomial coefficient estimates for
bi-univalent functions defined by the Tremblay fractional derivative operator, Bull. Iranian Math. Soc., 44(1)(2018),
149-157.

H. M. Srivastava, S. Gaboury and F. Ghanim, Coeflicient estimates for some general subclasses of analytic and
bi-univalent functions, Afr. Mat., 28(2017), 693-706.

H. M. Srivastava, S. Gaboury and F. Ghanim, Coeflicient estimates for a general subclass of analytic and bi-
univalent functions of the Ma-Minda type, Rev. Real Acad. Cienc. Exactas Fis. Natur. Ser. A Mat. (RACSAM),
112(2018), 1157-1168.

H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl.
Math. Lett., 23(2010), 1188-1192.

H. M. Srivastava, A. Motamednezhad and E. A. Adegani, Faber polynomial coefficient estimates for bi-univalent
functions defined by using differential subordination and a certain fractional derivative operator, Mathematics,
8(2020), Art. ID 172, 1-12.

H. M. Srivastava, N. Raza, E. S. A. AbuJarad, G. Srivastava and M. H. AbuJarad, Fekete-Szeg6 inequality
for classes of (p, q)-starlike and (p, ¢)-convex functions, Rev. Real Acad. Cienc. Exactas Fis. Natur. Ser. A Mat.
(RACSAM), 113(2019), 3563-3584.

H. M. Srivastava and A. K. Wanas, Initial Maclaurin coefficient bounds for new subclasses of analytic and m-fold

symmetric bi-univalent functions defined by a linear combination, Kyungpook Math. J., 59(3)(2019), 493-503.

S. R. Swamy, A. K. Wanas and Y. Sailaja, Some special families of holomorphic and Saldgean type bi-univalent
functions associated with (m,n)-Lucas polynomials, Communications in Mathematics and Applications, 11(4)(2020),
563-574.

133



Journal of Advances in Mathematics Vol 20 (2021) ISSN: 2347-1921 https://rajpub.com/index.php/jam

[37] P. Vellucci and AM. Bersani, The class of Lucas-Lehmer polynomials, Rend Math. Appl., 37(2016), 43-62.

[38] F. Yousef, T. Al-Hawary and G. Murugusundaramoorthy, Fekete-Szegt functional problems for some subclasses of
bi-univalent functions defined by Frasin differential operator, Afr. Mat., 30(2019), 495-503.

[39] F. Yousef, B. Frasin and T. Al-Hawary, Fekete-Szego inequality for analytic and bi-univalent functions subordinate
to Chebyshev polynomials, Filomat, 32(2018), 3229-3236.

[40] T. Wang and W. Zhang, Some identities involving Fibonacci, Lucas polynomials and their applications, Bull Math.
Soc. Sci. Math. Roum., 55(2012), 95-103.

[41] A. Zireh, E. Analouei Adegani and S. Bulut, Faber polynomial coefficient estimates for a comprehensive subclass of
analytic bi-univalent functions defined by subordination, Bull. Belg. Math. Soc. Simon Stevin, 23(2016), 487-504.

134



	Introduction
	Main Results

