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Abstract:
In the current work, we use the (M,N)-Lucas Polynomials to introduce a new families of holomorphic and bi-Prestarlike
functions defined in the unit disk O and establish upper bounds for the second and third coefficients of the Taylor-
Maclaurin series expansions of functions belonging to these families. Also, we debate Fekete-Szegö problem for these
families. Further, we point out several certain special cases for our results.
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1 Introduction

Indicate by A the collection of functions U that are holomorphic in the unit disk O = {ξ ∈ C : |ξ| < 1} that have
the shape:

U(ξ) = ξ +

∞∑
n=2

anξ
n. (1.1)

Further, let S stands for the subfamily of the collection A consisting of functions in O satisfying (1.1) that are
univalent in O. According to "the Koebe one-quarter theorem" (see [12]), each univalent function of this kind has an
inverse U−1 that fulfills

U−1(U(ξ)) = ξ (ξ ∈ O)

and
U(U−1(ζ)) = ζ, (|ζ| < r0(U), r0(U) ≥ 1

4
),

where
U−1(ζ) = ζ − a2ζ

2 +
(
2a2

2 − a3

)
ζ3 −

(
5a3

2 − 5a2a3 + a4

)
ζ4 + · · · . (1.2)

A function U ∈ A is said to be bi-univalent inO if both U and U−1 are univalent inO, let we name by the notation E the
set of bi-univalent functions in O satisfying (1.1). In fact, Srivastava et al. [32] refreshed the study of holomorphic and bi-
univalent functions in recent years, it was followed by other works as those by Frasin and Aouf [15], Altinkaya and Yalçin
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[5], Güney et al. [16] and others (see, for example [1, 3, 8, 10, 11, 18, 21, 22, 23, 26, 27, 28, 29, 30, 31, 33, 34, 35, 38, 39, 41]).
The problem to obtain the general coefficient bounds on the Taylor-Maclaurin coefficients

|an| (n ∈ N; n ≥ 4)

for functions U ∈ E is still not completely addressed for many of the subfamilies of the bi-univalent function class E.
The Fekete-Szegö functional

∣∣a3 − µa2
2

∣∣ for U ∈ S is well known for its rich history in the field of Geometric Function
Theory. Its origin was in the disproof by Fekete and Szegö [13] of the Littlewood-Paley conjecture that the coefficients
of odd univalent functions are bounded by unity.

A function U ∈ A is named starlike of order θ (0 ≤ θ < 1), if

<
{
ξU′(ξ)

U(ξ)

}
> θ, (ξ ∈ O).

For U ∈ A given by (1.1) and J ∈ A defined by

J(ξ) = ξ +

∞∑
n=2

bnξ
n,

the "Hadamard product" of U and J is defined by

(U ∗ J)(ξ) = ξ +

∞∑
n=2

anbnξ
n, (ξ ∈ O).

Ruscheweyh [25] introduced and studied the family of "prestarlike functions" of order θ, that are the function U

such as U ∗ Iθ is a starlike function of order θ, where

Iθ(ξ) =
ξ

(1− ξ)2(1−θ) , (0 ≤ θ < 1, ξ ∈ O).

The function Iθ can be written in the form:

Iθ(ξ) = ξ +

∞∑
n=2

%n(θ)ξn,

where
%n(θ) =

∏n
i=2 (i− 2θ)

(n− 1)!
, n ≥ 2.

We note that %n(θ) is a decreasing function in θ and satisfies

lim
n→∞

%n(θ) =


∞, if θ < 1

2

1, if θ = 1
2

0, if θ > 1
2

.

With a view to remembering the principle of subordination between holomorphic functions, let the functions U and
J be holomorphic in O, we name the function U is subordinate to J, if there is a Schwarz function } holomorphic in O

with
}(0) = 0 and |}(ξ)| < 1 (ξ ∈ O)

such that
U(ξ) = J (}(ξ)) .
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This subordination is indicated by
U ≺ J or U(ξ) ≺ J(ξ) (ξ ∈ O).

For two polynomials M(x) and N(x) that have real-valued coefficients, the following recurrence relation gives the
(M,N)-Lucas Polynomials LM,N,k(x) (see [19]):

LM,N,k(x) = M(x)LM,N,k−1(x) +N(x)LM,N,k−2(x) (k ≥ 2),

with
LM,N,0(x) = 2, LM,N,1(x) = M(x) and LM,N,2(x) = M2(x) + 2N(x). (1.3)

The function that generates (M,N)-Lucas Polynomial LM,N,k(x) (see [20]) is given by

T{LM,N,k(x)}(ξ) =

∞∑
k=2

LM,N,k(x)ξk =
2−M(x)ξ

1−M(x)ξ −N(x)ξ2
.

Remark 1.1. For particular choices of M(x) and N(x), the (M,N)-Lucas Polynomial LM,N,k(x) leads to various
polynomials, among those we list following few here:
(1) Lx,1,k(x) =: Lk(x), the Lucas polynomials,

(2) L2x,1,k(x) =: Pk(x), the Pell-Lucas polynomials,
(3) L1,2x,k(x) =: Jk(x), the Jacobsthal polynomials,
(4) L3x,−2,k(x) =: Fk(x), the Fermat-Lucas polynomials,
(5) L2x,−1,k(x) =: Tk(x), the first kind Chebyshev polynomials.

We also note that the Lucas polynomials and other special polynomials plays an important role in a diversity
of disciplines in the mathematical, statistical, physical and engineering sciences. More details associated with these
polynomials can be found in [2, 17, 37, 14, 20, 40].

In recent years, the (M,N)-Lucas Polynomial was presented and investigated analogously by the various penmans
(see, for example,[2, 4, 6, 7, 9, 24, 36]).

2 Main Results

This section start with defining the families WNE(δ, λ, θ;x) and WME(τ, θ;x) as follows:

Definition 2.1. Assume that δ ≥ 0, 0 ≤ λ ≤ 1 and 0 ≤ θ < 1, a function U ∈ E is called in the family WNE(δ, λ, θ;x)

if it fulfills the subordinations:

(1− δ)
[
(1− λ)

ξ (U ∗ Iθ)′ (ξ)
(U ∗ Iθ) (ξ)

+ λ

(
1 +

ξ (U ∗ Iθ)′′ (ξ)
(U ∗ Iθ)′ (ξ)

)]
+ δ

λξ2 (U ∗ Iθ)′′ (ξ) + ξ (U ∗ Iθ)′ (ξ)
λξ (U ∗ Iθ)′ (ξ) + (1− λ) (U ∗ Iθ) (ξ)

≺ T{LM,N,k(x)}(ξ)− 1

and

(1− δ)
[
(1− λ)

ζ (J ∗ Iθ)′ (ζ)

(J ∗ Iθ) (ζ)
+ λ

(
1 +

ζ (J ∗ Iθ)′′ (ζ)

(J ∗ Iθ)′ (ζ)

)]
+ δ

λζ2 (J ∗ Iθ)′′ (ζ) + ζ (J ∗ Iθ)′ (ζ)

λζ (J ∗ Iθ)′ (ζ) + (1− λ) (J ∗ Iθ) (ζ)

≺ T{LM,N,k(x)}(ζ)− 1,

where J = U−1 is given by (1.2).
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In particular, if we choose δ = λ = 0 and θ = 1
2 in Definition 2.1, we haveWNE(0, 0, 1

2 ;x) ≡ SE(x) for the bi-starlike
functions that was given by Altinkaya [4] and satisfying the following subordinations:

ξU′(ξ)

U(ξ)
≺ T{LM,N,k(x)}(ξ)− 1

and
ζJ′(ζ)

J(ζ)
≺ T{LM,N,k(x)}(ζ)− 1.

If we choose δ = 0, λ = 1 and θ = 1
2 in Definition 2.1, we have WNE(0, 1, 1

2 ;x) ≡ CE(x) for the bi-convex functions
which which was given by Altinkaya [4] and satisfying the following subordinations:

1 +
ξU′′(ξ)

U′(ξ)
≺ T{LM,N,k(x)}(ξ)− 1

and
1 +

ζJ′′(ζ)

J′(ζ)
≺ T{LM,N,k(x)}(ζ)− 1.

Definition 2.2. Assume that 0 ≤ τ ≤ 1 and 0 ≤ θ < 1, a function f ∈ E is called in the family WME(τ, θ;x) if it
fulfills the subordinations:

τξ (U ∗ Iθ)′′ (ξ) + (2τ + 1) (U ∗ Iθ)′ (ξ)− 2τ ≺ T{LM,N,k(x)}(ξ)− 1

and
τζ (J ∗ Iθ)′′ (ζ) + (2τ + 1) (J ∗ Iθ)′ (ζ)− 2τ ≺ T{LM,N,k(x)}(ζ)− 1

where J = U−1 is given by (1.2).

In particular, if we choose τ = 0 and θ = 1
2 in Definition 2.2, we have WME(0, 1

2 ;x) ≡ WME(x) which satisfying
the following subordinations:

U′(ξ) ≺ T{LM,N,k(x)}(ξ)ξ − 1

and
J′(ζ) ≺ T{LM,N,k(x)}(ζ)− 1.

Theorem 2.1. For δ ≥ 0, 0 ≤ λ ≤ 1 and 0 ≤ θ < 1, let U ∈ A belongs to the family WNE(δ, λ, θ;x). Then

|a2| ≤
|M(x)|

√
|M(x)|√

2
∣∣∣[(1− θ)Ω(λ, δ, θ)− 2 (1− θ)2

(λ+ 1)2
]
M2(x)− 4 (1− θ)2

(λ+ 1)2N(x)
∣∣∣

and
|a3| ≤

M2(x)

4 (1− θ)2
(λ+ 1)2

+
|M(x)|

2(1− θ)(3− 2θ)(2λ+ 1)
,

where
Ω(λ, δ, θ) = 2λδ(1− θ)(1− λ) + 2θλ+ 1. (2.1)

Proof. Suppose that U ∈ WNE(δ, λ, θ;x). Then there exists two holomorphic functions φ, ψ : O −→ O given by

φ(ξ) = r1ξ + r2ξ
2 + r3ξ

3 + · · · (ξ ∈ O) (2.2)
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and
ψ(ζ) = s1ζ + s2ζ

2 + s3ζ
3 + · · · (ζ ∈ O), (2.3)

with φ(0) = ψ(0) = 0, |φ(ξ)| < 1, |ψ(ζ)| < 1, ξ, ζ ∈ O such that

(1− δ)
[
(1− λ)

ξ (U ∗ Iθ)′ (ξ)
(U ∗ Iθ) (ξ)

+ λ

(
1 +

ξ (U ∗ Iθ)′′ (ξ)
(U ∗ Iθ)′ (ξ)

)]
+ δ

λξ2 (U ∗ Iθ)′′ (ξ) + ξ (U ∗ Iθ)′ (ξ)
λξ (U ∗ Iθ)′ (ξ) + (1− λ) (U ∗ Iθ) (ξ)

= −1 + LM,N,0(x) + LM,N,1(x)φ(ξ) + LM,N,2(x)φ2(ξ) + · · · (2.4)

and

(1− δ)

[
(1− λ)

ζ (J ∗ Iθ)′ (ζ)
(J ∗ Iθ) (ζ)

+ λ

(
1 +

ζ (J ∗ Iθ)′′ (ζ)
(J ∗ Iθ)′ (ζ)

)]
+ δ

λζ2 (J ∗ Iθ)′′ (ζ) + ζ (J ∗ Iθ)′ (ζ)
λζ (J ∗ Iθ)′ (ζ) + (1− λ) (J ∗ Iθ) (ζ)

= −1 + LM,N,0(x) + LM,N,1(x)ψ(ζ) + LM,N,2(x)ψ
2(ζ) + · · · . (2.5)

Combining (2.2), (2.3), (2.4) and (2.5), yield

(1− δ)
[
(1− λ)

ξ (U ∗ Iθ)′ (ξ)
(U ∗ Iθ) (ξ)

+ λ

(
1 +

ξ (U ∗ Iθ)′′ (ξ)
(U ∗ Iθ)′ (ξ)

)]
+ δ

λξ2 (U ∗ Iθ)′′ (ξ) + ξ (U ∗ Iθ)′ (ξ)
λξ (U ∗ Iθ)′ (ξ) + (1− λ) (U ∗ Iθ) (ξ)

= 1 + LM,N,1(x)r1ξ +
[
LM,N,1(x)r2 + LM,N,2(x)r2

1

]
ξ2 + · · · (2.6)

and

(1− δ)

[
(1− λ)

ζ (J ∗ Iθ)′ (ζ)
(J ∗ Iθ) (ζ)

+ λ

(
1 +

ζ (J ∗ Iθ)′′ (ζ)
(J ∗ Iθ)′ (ζ)

)]
+ δ

λζ2 (J ∗ Iθ)′′ (ζ) + ζ (J ∗ Iθ)′ (ζ)
λζ (J ∗ Iθ)′ (ζ) + (1− λ) (J ∗ Iθ) (ζ)

= 1 + LM,N,1(x)s1ζ +
[
LM,N,1(x)s2 + LM,N,2(x)s

2
1

]
ζ2 + · · · . (2.7)

It is quite well-known that if |φ(ξ)| < 1 and |ψ(ζ)| < 1, ξ, ζ ∈ O, we get

|rj | ≤ 1 and |sj | ≤ 1 (j ∈ N). (2.8)

In the light of (2.6) and (2.7), after simplifying, we find that

2(1− θ)(λ+ 1)a2 = LM,N,1(x)r1, (2.9)

2(1− θ)(3− 2θ)(2λ+ 1)a3 − 4 (1− θ)2
(λδ(λ− 1) + 3λ+ 1) a2

2 = LM,N,1(x)r2 + LM,N,2(x)r2
1, (2.10)

− 2(1− θ)(λ+ 1)a2 = LM,N,1(x)s1 (2.11)

and

2(1− θ)(3− 2θ)(2λ+ 1)
(
2a2

2 − a3

)
− 4 (1− θ)2

(λδ(λ− 1) + 3λ+ 1) a2
2

= LM,N,1(x)s2 + LM,N,2(x)s2
1. (2.12)

It follows from (2.9) and (2.11) that
r1 = −s1 (2.13)

and
8 (1− θ)2

(λ+ 1)2a2
2 = L2

M,N,1(x)(r2
1 + s2

1). (2.14)

If we add (2.10) to (2.12), we obtain

4(1− θ) [2λδ(1− θ)(1− λ) + 2θλ+ 1] a2
2 = LM,N,1(x)(r2 + s2) + LM,N,2(x)(r2

1 + s2
1). (2.15)
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By substitute the value of r2
1 + s2

1 from (2.14) in the right hand side of (2.15), we conclude that[
4(1− θ)Ω(λ, δ, θ)− 8LM,N,2(x)

L2
M,N,1(x)

(1− θ)2
(λ+ 1)2

]
a2

2 = LM,N,1(x)(r2 + s2), (2.16)

where Ω(λ, δ, θ) is given by (2.1).
Moreover computations using (1.3), (2.8) and (2.16), we find that

|a2| ≤
|M(x)|

√
|M(x)|√

2
∣∣∣[(1− θ)Ω(λ, δ, θ)− 2 (1− θ)2

(λ+ 1)2
]
M2(x)− 4 (1− θ)2

(λ+ 1)2N(x)
∣∣∣ .

Next, if we subtract (2.12) from (2.10), we can easily see that

4(1− θ)(3− 2θ)(2λ+ 1)
(
a3 − a2

2

)
= LM,N,1(x)(r2 − s2) + LM,N,2(x)(r2

1 − s2
1). (2.17)

In view of (2.13) and (2.14), we get from (2.17)

a3 =
L2
M,N,1(x)

8 (1− θ)2
(λ+ 1)2

(r2
1 + s2

1) +
LM,N,1(x)

4(1− θ)(3− 2θ)(2λ+ 1)
(r2 − s2).

Thus applying (1.3), we conclude that

|a3| ≤
M2(x)

4 (1− θ)2
(λ+ 1)2

+
|M(x)|

2(1− θ)(3− 2θ)(2λ+ 1)
.

Putting δ = λ = 0 and θ = 1
2 in Theorem 2.1, we deduce the next outcome:

Corollary 2.1. [4] If U belongs to the family SE(x), then

|a2| ≤ |M(x)|

√∣∣∣∣M(x)

2N(x)

∣∣∣∣
and

|a3| ≤M2(x) +
|M(x)|

2
.

Putting δ = 0, λ = 1 and θ = 1
2 in Theorem 2.1, we deduce the next outcome:

Corollary 2.2. [4] If U belongs to the family CE(x), then

|a2| ≤
|M(x)|

√
|M(x)|√

2 |M2(x) + 4N(x)|

and
|a3| ≤

M2(x)

4
+
|M(x)|

6
.

Theorem 2.2. For 0 ≤ τ ≤ 1 and 0 ≤ θ < 1, let U ∈ A belongs to the family WME(τ, θ;x). Then

|a2| ≤
|M(x)|

√
|M(x)|√∣∣∣[3(1− θ)(3− 2θ)(4τ + 1)− 4 (1− θ)2

(7τ + 3)2
]
M2(x)− 8 (1− θ)2

(7τ + 3)2N(x)
∣∣∣

and
|a3| ≤

M2(x)

4 (1− θ)2
(7τ + 3)2

+
|M(x)|

3(1− θ)(3− 2θ)(4τ + 1)
.

126



Journal of Advances in Mathematics Vol 20 (2021) ISSN: 2347-1921 https://rajpub.com/index.php/jam

Proof. Suppose that U ∈ WME(τ, θ;x). Then there exists two holomorphic functions φ, ψ : O −→ O such that

τξ (U ∗ Iθ)′′ (ξ) + (2τ + 1) (U ∗ Iθ)′ (ξ)− 2τ

= −1 + LM,N,0(x) + LM,N,1(x)φ(ξ) + LM,N,2(x)φ2(ξ) + · · · (2.18)

and

τζ (J ∗ Iθ)′′ (ζ) + (2τ + 1) (J ∗ Iθ)′ (ζ)− 2τ

= −1 + LM,N,0(x) + LM,N,1(x)ψ(ζ) + LM,N,2(x)ψ2(ζ) + · · · , (2.19)

where φ and ψ have the forms (2.2) and (2.3). Combining (2.18) and (2.19), yield

τξ (U ∗ Iθ)′′ (ξ) + (2τ + 1) (U ∗ Iθ)′ (ξ)− 2τ

= 1 + LM,N,1(x)r1ξ +
[
LM,N,1(x)r2 + LM,N,2(x)r2

1

]
ξ2 + · · · (2.20)

and

τζ (J ∗ Iθ)′′ (ζ) + (2τ + 1) (J ∗ Iθ)′ (ζ)− 2τ

= 1 + LM,N,1(x)s1ζ +
[
LM,N,1(x)s2 + LM,N,2(x)s2

1

]
ζ2 + · · · . (2.21)

In the light of (2.20) and (2.21), after simplifying, we find that

2(1− θ)(7τ + 3)a2 = LM,N,1(x)r1, (2.22)

3(1− θ)(3− 2θ)(4τ + 1)a3 = LM,N,1(x)r2 + LM,N,2(x)r2
1, (2.23)

− 2(1− θ)(7τ + 3)a2 = LM,N,1(x)s1 (2.24)

and
3(1− θ)(3− 2θ)(4τ + 1)

(
2a2

2 − a3

)
= LM,N,1(x)s2 + LM,N,2(x)s2

1. (2.25)

It follows from (2.22) and (2.24) that
r1 = −s1 (2.26)

and
8 (1− θ)2

(7τ + 3)2a2
2 = L2

M,N,1(x)(r2
1 + s2

1). (2.27)

If we add (2.23) to (2.25), we obtain

6(1− θ)(3− 2θ)(4τ + 1)a2
2 = LM,N,1(x)(r2 + s2) + LM,N,2(x)(r2

1 + s2
1). (2.28)

By substitute the value of r2
1 + s2

1 from (2.27) in the right hand side of (2.28), we conclude that[
6(1− θ)(3− 2θ)(4τ + 1)− 8LM,N,2(x)

L2
M,N,1(x)

(1− θ)2
(7τ + 3)2

]
a2

2 = LM,N,1(x)(r2 + s2), (2.29)

Moreover computations using (1.3), (2.8) and (2.29), we find that

|a2| ≤
|M(x)|

√
|M(x)|√∣∣∣[3(1− θ)(3− 2θ)(4τ + 1)− 4 (1− θ)2

(7τ + 3)2
]
M2(x)− 8 (1− θ)2

(7τ + 3)2N(x)
∣∣∣ .
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Next, if we subtract (2.25) from (2.23), we can easily see that

6(1− θ)(3− 2θ)(4τ + 1)
(
a3 − a2

2

)
= LM,N,1(x)(r2 − s2) + LM,N,2(x)(r2

1 − s2
1). (2.30)

In view of (2.26) and (2.27), we get from (2.30)

a3 =
L2
M,N,1(x)

8 (1− θ)2
(7τ + 3)2

(r2
1 + s2

1) +
LM,N,1(x)

6(1− θ)(3− 2θ)(4τ + 1)
(r2 − s2).

Thus applying (1.3), we conclude that

|a3| ≤
M2(x)

4 (1− θ)2
(7τ + 3)2

+
|M(x)|

3(1− θ)(3− 2θ)(4τ + 1)
.

Putting τ = 0 and θ = 1
2 in Theorem 2.2, we deduce the next outcome:

Corollary 2.3. If U belongs to the family WME(x), then

|a2| ≤
|M(x)|

√
|M(x)|√

6 |M2(x) + 3N(x)|

and
|a3| ≤

M2(x)

9
+
|M(x)|

3
.

In the following theorems, we introduce the Fekete-Szegö Problem of the familiesWNE(δ, λ, θ;x) andWME(τ, θ;x).

Theorem 2.3. For δ ≥ 0, 0 ≤ λ ≤ 1, 0 ≤ θ < 1 and ρ ∈ R, let U ∈ A belongs to the family WNE(δ, λ, θ;x). Then

∣∣a3 − ρa2
2

∣∣ ≤



|M(x)|
2(1−θ)(3−2θ)(2λ+1) ;

for |ρ− 1| ≤

∣∣∣∣(1−θ)Ω(λ,δ,θ)−2(1−θ)2(λ+1)2− 4(1−θ)2(λ+1)2N(x)

M2(x)

∣∣∣∣
(1−θ)(3−2θ)(2λ+1) ,

|M(x)|3|ρ−1|
2|[(1−θ)Ω(λ,δ,θ)−2(1−θ)2(λ+1)2]M2(x)−4(1−θ)2(λ+1)2N(x)| ;

for |ρ− 1| ≥

∣∣∣∣(1−θ)Ω(λ,δ,θ)−2(1−θ)2(λ+1)2− 4(1−θ)2(λ+1)2N(x)

M2(x)

∣∣∣∣
(1−θ)(3−2θ)(2λ+1) ,

where Ω(λ, δ, θ) is given by (2.1).

Proof. By making use of (2.16) and (2.17), we conclude that

a3 − ρa2
2 =

L3
M,N,1(x)(r2 + s2) (1− ρ)

4
[
L2
M,N,1(x)(1− θ)Ω(λ, δ, θ)− 2LM,N,2(x) (1− θ)2

(λ+ 1)
2
]

+
LM,N,1(x)(r2 − s2)

4(1− θ)(3− 2θ)(2λ+ 1)

=
LM,N,1(x)

4

[(
ϕ(ρ;x) +

1

(1− θ)(3− 2θ)(2λ+ 1)

)
r2

+

(
ϕ(ρ;x)− 1

(1− θ)(3− 2θ)(2λ+ 1)

)
s2

]
,
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where

ϕ(ρ;x) =
L2
M,N,1(x)(1− ρ)

L2
M,N,1(x)(1− θ)Ω(λ, δ, θ)− 2LM,N,2(x) (1− θ)2

(λ+ 1)
2 .

According to (1.3), we find that

∣∣a3 − ρa2
2

∣∣ ≤


|M(x)|
2(1−θ)(3−2θ)(2λ+1) , 0 ≤ |ϕ(ρ;x)| ≤ 1

(1−θ)(3−2θ)(2λ+1) ,

1
2 |M(x)| |ϕ(ρ;x)| , |ϕ(ρ;x)| ≥ 1

(1−θ)(3−2θ)(2λ+1) .

After some computations, we obtain

∣∣a3 − ρa2
2

∣∣ ≤



|M(x)|
2(1−θ)(3−2θ)(2λ+1) ;

for |ρ− 1| ≤

∣∣∣∣(1−θ)Ω(λ,δ,θ)−2(1−θ)2(λ+1)2− 4(1−θ)2(λ+1)2N(x)

M2(x)

∣∣∣∣
(1−θ)(3−2θ)(2λ+1) ,

|M(x)|3|ρ−1|
2|[(1−θ)Ω(λ,δ,θ)−2(1−θ)2(λ+1)2]M2(x)−4(1−θ)2(λ+1)2N(x)| ;

for |ρ− 1| ≥

∣∣∣∣(1−θ)Ω(λ,δ,θ)−2(1−θ)2(λ+1)2− 4(1−θ)2(λ+1)2N(x)

M2(x)

∣∣∣∣
(1−θ)(3−2θ)(2λ+1) .

Putting δ = λ = 0 and θ = 1
2 in Theorem 2.3, we deduce the next outcome:

Corollary 2.4. [4] If U belongs to the family SE(x), then

∣∣a3 − ρa2
2

∣∣ ≤

|M(x)|

2 ; for |ρ− 1| ≤ |N(x)|
M2(x) ,

|M(x)|3|ρ−1|
2|N(x)| ; for |ρ− 1| ≥ |N(x)|

M2(x) .

Putting δ = λ = 0 and θ = 1
2 in Theorem 2.3, we deduce the next outcome:

Corollary 2.5. [4] If U belongs to the family CE(x), then

∣∣a3 − ρa2
2

∣∣ ≤

|M(x)|

6 ; for |ρ− 1| ≤ |M
2(x)+4N(x)|
3M2(x) ,

|M(x)|3|ρ−1|
2|M2(x)+4N(x)| ; for |ρ− 1| ≥ |M

2(x)+4N(x)|
3M2(x) .

Putting ρ = 1 in Theorem 2.3, we deduce the next outcome:

Corollary 2.6. If U belongs to the family WNE(δ, λ, θ;x), then

∣∣a3 − a2
2

∣∣ ≤ |M(x)|
2(1− θ)(3− 2θ)(2λ+ 1)

.

Putting ρ = 1 in Corollary 2.4, we deduce the next outcome:
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Corollary 2.7. [4] If U belongs to the family SE(x), then

∣∣a3 − a2
2

∣∣ ≤ |M(x)|
2

.

Putting ρ = 1 in Corollary 2.5, we deduce the next outcome:

Corollary 2.8. [4] If U belongs to the family CE(x), then

∣∣a3 − a2
2

∣∣ ≤ |M(x)|
6

.

Theorem 2.4. For 0 ≤ τ ≤ 1, 0 ≤ θ < 1 and ρ ∈ R, let U ∈ A belongs to the family WME(τ, θ;x). Then

∣∣a3 − ρa2
2

∣∣ ≤



|M(x)|
3(1−θ)(3−2θ)(4τ+1) ;

for |ρ− 1| ≤

∣∣∣∣∣∣1−
4
3

[
(1−θ)2(7τ+3)2+

2(1−θ)2(7τ+3)2N(x)

M2(x)

]
(1−θ)(3−2θ)(4τ+1)

∣∣∣∣∣∣ ,
|M(x)|3|ρ−1|

|[3(1−θ)(3−2θ)(4τ+1)−4(1−θ)2(7τ+3)2]M2(x)−8(1−θ)2(7τ+3)2N(x)| ;

for |ρ− 1| ≥

∣∣∣∣∣∣1−
4
3

[
(1−θ)2(7τ+3)2+

2(1−θ)2(7τ+3)2N(x)

M2(x)

]
(1−θ)(3−2θ)(4τ+1)

∣∣∣∣∣∣ .
Proof. By making use of (2.29) and (2.30), we conclude that

a3 − ρa2
2 =

L3
M,N,1(x)(r2 + s2) (1− ρ)

2
[
3L2

M,N,1(x)(1− θ)(3− 2θ)(4τ + 1)− 4LM,N,2(x) (1− θ)2
(7τ + 3)

2
]

+
LM,N,1(x)(r2 − s2)

6(1− θ)(3− 2θ)(4τ + 1)

=
LM,N,1(x)

2

[(
ψ(ρ;x) +

1

3(1− θ)(3− 2θ)(4τ + 1)

)
r2

+

(
ψ(ρ;x)− 1

3(1− θ)(3− 2θ)(4τ + 1)

)
s2

]
,

where

ψ(ρ;x) =
L2
M,N,1(x)(1− ρ)

3L2
M,N,1(x)(1− θ)(3− 2θ)(4τ + 1)− 4LM,N,2(x) (1− θ)2

(7τ + 3)
2 .

According to (1.3), we find that

∣∣a3 − ρa2
2

∣∣ ≤


|M(x)|
3(1−θ)(3−2θ)(4τ+1) , 0 ≤ |ψ(ρ;x)| ≤ 1

3(1−θ)(3−2θ)(4τ+1) ,

|M(x)| |ψ(ρ;x)| , |ψ(ρ;x)| ≥ 1
3(1−θ)(3−2θ)(4τ+1) .
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After some computations, we obtain

∣∣a3 − ρa2
2

∣∣ ≤



|M(x)|
3(1−θ)(3−2θ)(4τ+1) ;

for |ρ− 1| ≤

∣∣∣∣∣∣1−
4
3

[
(1−θ)2(7τ+3)2+

2(1−θ)2(7τ+3)2N(x)

M2(x)

]
(1−θ)(3−2θ)(4τ+1)

∣∣∣∣∣∣ ,
|M(x)|3|ρ−1|

|[3(1−θ)(3−2θ)(4τ+1)−4(1−θ)2(7τ+3)2]M2(x)−8(1−θ)2(7τ+3)2N(x)| ;

for |ρ− 1| ≥

∣∣∣∣∣∣1−
4
3

[
(1−θ)2(7τ+3)2+

2(1−θ)2(7τ+3)2N(x)

M2(x)

]
(1−θ)(3−2θ)(4τ+1)

∣∣∣∣∣∣ .

Putting τ = 0 and θ = 1
2 in Theorem 2.4, we deduce the next outcome:

Corollary 2.9. If U belongs to the family WME(x), then

∣∣a3 − ρa2
2

∣∣ ≤

|M(x)|

3 ; for |ρ− 1| ≤ 2
∣∣∣1 + 3 N(x)

M2(x)

∣∣∣ ,
|M(x)|3|ρ−1|

6|M2(x)+3N(x)| ; for |ρ− 1| ≥ 2
∣∣∣1 + 3 N(x)

M2(x)

∣∣∣ .
Putting ρ = 1 in Theorem 2.4, we deduce the next outcome:

Corollary 2.10. If U belongs to the family WME(τ, θ;x), then

∣∣a3 − a2
2

∣∣ ≤ |M(x)|
3(1− θ)(3− 2θ)(4τ + 1)

.

Putting ρ = 1 in Corollary 2.9, we deduce the next outcome:

Corollary 2.11. If U belongs to the family WME(x), then

∣∣a3 − a2
2

∣∣ ≤ |M(x)|
3

.
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