

Functional Disparity of Three Pheromone-Binding Proteins to Different Sex Pheromone Components in Hyphantria cunea (Drury)

Author	Xiao-Qing Zhang, Ding-Ze Mang, Hui Liao, Jia Ye, Jia-Li Qian, Shuang-Lin Dong, Ya-Nan Zhang, Peng He, Qing-He Zhang, Endang R. Purba, Long-Wa Zhang
journal or publication title	Journal of Agricultural and Food Chemistry
volume	69
number	1
page range	55-66
year	2020-12-27
Publisher	American Chemical Society
Rights	This document is the Accepted Manuscript
	version of a Published Work that appeared in
	final form in Journal of Agricultural and Food
	Chemistry, copyright (C) American Chemical
	Society after peer review and technical
	editing by the publisher. To access the final
	edited and published work see
	https://doi.org/10.1021/acs.jafc.0c04476
Author's flag	author
URL	http://id.nii.ac.jp/1394/00001802/

doi: info:doi/10.1021/acs.jafc.0c04476

This document is confidential and is proprietary to the American Chemical Society and its authors. Do not copy or disclose without written permission. If you have received this item in error, notify the sender and delete all copies.

Functional disparity of three pheromone-binding proteins to different sex pheromone components in Hyphantria cunea (Drury)

Journal:	Journal of Agricultural and Food Chemistry
Manuscript ID	jf-2020-044769.R3
Manuscript Type:	Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Zhang, Xiao-Qing; Anhui Agricultural University; Nanjing Agricultural University Mang, Dingze; Tokyo University of Agriculture and Technology - Kaganei Campus, Liao, Hui; Nanjing Agricultural University Ye, Jia; Anhui Agricultural University Qian, Jia-Li; Anhui Agricultural University Dong, Shuang-Lin; Nanjing Agricultural University Zhang, Ya-Nan; Huaibei Normal University, He, Peng; Guizhou University, Zhang, Qing-He; Sterling International, Inc., R. Purba, Endang ; Okinawa Institute of Science and Technology Graduate University Zhang, Longwa; Anhui Agricultural University,

1 Functional disparity of three pheromone-binding proteins to different sex pheromone

2 components in *Hyphantria cunea* (Drury)

- 3 Xiao-Qing Zhang^{a,b†}, Ding-Ze Mang^{c†}, Hui Liao^{b†}, Jia Ye^a, Jia-Li Qian^a, Shuang-Lin Dong^b, Ya-Nan
- 4 Zhang^d, Peng He^e, Qing-He Zhang^f, Endang R. Purba^g, Long-Wa Zhang^a*.
- ^aAnhui Provincial Key Laboratory of Microbial Control,
- 6 Engineering Research Center of Fungal Biotechnology, Ministry of Education School of Forestry &
- 7 Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
- 8 ^b Education Ministry, Key Laboratory of Integrated Management of Crop Diseases and Pests, College
- 9 of Plant Protection, Nanjing Agricultural University, Nanjing, China
- 10 ^cGraduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and
- 11 Technology, Koganei 2-24-16, Tokyo 184-8588, Japan
- 12 ^d College of Life Sciences, Huaibei Normal University, Huaibei, China
- 13 ^e State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key
- 14 Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou
- 15 University, Huaxi District, Guiyang 550025, China
- 16 ^f Sterling International, Inc., Spokane, WA 99216, USA
- 17 ^g Structural Cellular Biology Unit, Okinawa Institute of Science and Technology Graduate University,
- 18 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
- 19[†]: These authors contributed equally to this work.
- 20 *Correspondence to: zhanglw@ahau.edu.cn
- 21 Long-Wa Zhang, School of Forestry & Landscape Architecture, Anhui Agricultural University, No.
- 22 130, Changjiang West Road, Hefei 230036, P. R. China.

23 ABSTRACT

24 Hyphantria cunea (Drury) is a destructive invasive pest species in China that uses Type-II sex 25 pheromone components. To date, however, the binding mechanisms of its sex pheromone components 26 to their respective pheromone-binding proteins (HcunPBPs 1/2/3) have not been explored. In the current 27 study, all three *HcunPBPs* were expressed in the antennae of both sexes. The prokaryotic expression 28 and ligand binding assays were employed to study the binding of the moth's four sex pheromone 29 components, including two aldehydes and two epoxides, and 24 plant volatiles to the HcunPBPs. Our 30 results showed that the abilities of these HcunPBPs to bind to the aldehydes were significantly different 31 than binding to the epoxides. These three HcunPBPs also selectively bound some of the plant volatiles 32 tested. Our molecular docking results indicated that some crucial hydrophobic residues might play a 33 role in the binding of HcunPBPs to their sex pheromone components. Three HcunPBPs have different 34 selectivities for pheromone components with both major and minor structural differences. Our study 35 provides fundamental insight into the olfactory mechanism of moths at the molecular level, especially 36 for moth species that use various Type II pheromone components.

37 KEY WORDS: *Hyphantria cunea* (Drury), pheromone binding protein, ligand binding assay, sex
38 pheromone, plant volatile.

39

40 INTRODUCTION

41 Most moths have developed a highly sophisticated olfactory sensory system to recognize various

- 42 volatile chemicals and to perceive female-produced sex pheromones. There are several types of
- 43 peripheral olfactory proteins, including odorant-binding proteins (OBPs), odorant receptors (ORs),
- 44 odorant-degrading enzymes (ODEs), ionotropic receptors (IRs), and sensory neuron membrane

45	proteins (SNMPs). These proteins have been demonstrated to be involved in the reception of odorants
46	by insects. ¹ Among these, OBPs, as highly concentrated hydrophilic proteins in the sensillum lymph
47	of moth antennae, serve as odorant carriers in the first step of the perception of various odors. ²
48	Pheromone-binding proteins (PBPs), a sub-class of OBPs, are key components in the detection of
49	insect sex pheromones. Since the first identification of PBPs in male Polyphemus moths, Antheraea
50	polyphemus, many PBPs have been identified and reported from various lepidopteran species. ^{3,4,5,6,7}
51	Traditionally, there are two major groups of moth sex pheromones: Type I and Type II pheromones,
52	classified according to their biosynthesis. ^{8,9} Type I pheromones typically contain C ₁₀ -C ₁₈ unsaturated
53	straight chains and a terminal functional group (e.g. acetate, aldehyde or alcohol) (>75% moth
54	species). In contrast, Type II pheromones are typically C_{17} - C_{23} unsaturated hydrocarbons and the
55	corresponding epoxide derivatives, typically without terminal functional groups. ^{8,9} However, a small
56	number of moth pheromones are not as easily classified. ⁸ Recently, Löfstedt et al. (2016) revised and
57	extended the known classifications of lepidopteran pheromones by defining another two pheromone
58	types, Type 0 and Type III pheromones. ¹⁶ To date, however, the characterized PBPs reported in moths
59	are mainly responsible for detection of Type I sex pheromones. ^{3,10,11} In contrast, PBPs for Type-II sex
60	pheromones have only been reported from a few species, including Ascotis selenaria cretacea,
61	Operophtera brumata and Ectropis obliqua. ^{11,12,13,14,15}
62	The fall webworm, Hyphantria cunea (Drury) (Lepidoptera: Erebidae: Arctiinae), is one of the
63	most destructive invasive pest species in China. It prefers to feed on broad-leaved ornamental trees,
64	and defoliation of these trees during larval outbreaks can cause significant damage to urban
65	landscapes and natural environments. The sex pheromone of <i>H. cunea</i> was first partially identified in
66	1982 in the USA and further identifications from different populations have been reported from

67	Japan, Europe, New Zealand and China. ^{17,18,19,20,21,22} These studies reported four female-produced sex
68	pheromone components, including two straight chain aldehydes: (9Z,12Z)-octadecadienal (Z9, Z12-
69	18Ald) and (9Z,12Z,15Z)-octadecatrienal (Z9, Z12, Z15-18Ald), and two epoxides: (3Z,6Z,9S,10R)-
70	9,10-epoxy-3,6-heneicosadiene (Z3, Z6-9S, 10R-epoxy-21Hy) and (3Z,6Z,9S,10R)-9,10-epoxy-1,3,6-
71	heneicosatriene (1, Z3, Z6-9S, 10R-epoxy-21Hy). ^{19,21,22,23} Synthetic pheromone lures containing three
72	of the four components were commercialized by Nitto Denko Corp. in Japan and have been widely
73	used for monitoring and mass trapping of this invasive pest species in Japan and China. ^{24,25,26,27,28}
74	Besides functioning as passive carriers to solubilize lipophilic pheromones in the hydrophilic
75	antennal lymph, PBPs have been postulated to contribute to the exquisite specificity of insects'
76	olfactory systems. ²⁹ The binding specificity between PBPs and pheromones has been reported in
77	several previous works, mostly on Type I sex pheromone-producing lepidopteran
78	species. ^{5,30,31} Antherea polyphemus represents a typical example wherein each of the three PBPs
79	specifically binds one of the three pheromone components. ³² However, information on the
80	specificities of PBPs from moth species that use Type II or III sex pheromones is still limited. Under
81	the newly revised and extended classification by Löfstedt et al. (2016), ¹⁶ H. cunea uses Type-II sex
82	pheromone components having two different chemical functionalities (aldehydes and internal
83	epoxides) in its pheromone system, and this system provided a unique model that inspired us to
84	unravel the specificity of their PBPs in discriminating these two different types of Type II sex
85	pheromone components. Here, we hypothesized that each of the different <i>H. cunea</i> PBPs may bind to
86	different sex pheromone components. Thus, we investigated the binding properties of three recently
87	identified pheromone binding proteins (PBPs: HcunPBP1, 2 and 3) of <i>H. cunea in vitro</i> with regard to
88	its four (Type II) sex pheromone components, ¹⁵ as well as 24 host or non-host plant volatiles, by using

89	prokaryotic expressions and ligand binding assays. Subsequent structural modeling of these three
90	HcunPBPs and docking studies with the four sex pheromone components were carried out to estimate
91	their ligand affinities. Our study provided not only a better understanding of sex pheromone
92	perception of <i>H. cunea</i> at a molecular level, but also a valuable insight into the different binding
93	mechanisms of PBPs, especially for the moth species that use various Type II pheromone
94	components.
95	
96	MATERIALS AND METHODS
97	Insect rearing and tissue collection
98	Hyphantria cunea pupae were provided by Dr. Yu-Zhu Wang at the Chinese Academy of Forestry,
99	Beijing, and kept in the laboratory under a 14L/10D light cycle at 25 ± 1 °C and $65 \pm 5\%$ RH. These
100	pupae were sexed and maintained separately by sex in different cages. After emergence, the adults
101	were provided with 10% honey solution. To eliminate individual variations, different body parts such
102	as antennae, heads (without antennae), abdomens, thoraxes, legs and wings from 50 3-day old virgin
103	males and females were dissected and combined into composite samples. Three biological replicates
104	were performed as our previous report. ¹⁵ All collected tissues were immediately flash-frozen in liquid
105	nitrogen and stored separately at -80°C prior to RNA extractions.
106	
107	RNA extraction and preparation of cDNA library
108	Total RNA from the dissected body parts of 50 males or 50 females was prepared as previously
109	described. cDNA libraries were prepared with M-MLV reverse transcriptase kits (Takara, Japan). The

110 cDNA product was used directly for PCR amplification or stored at -20 °C.

1	1	1
Т	т	Т

112	Quantitative real-time PCR (RT-qPCR)
113	The RT-qPCR experiment was conducted on a CFX96 real-time fluorescence quantitative PCR
114	instrument (BioRad, USA) combined with SYBR® Premix Ex Taq II (TliRNaseH Plus) (TaKaRa,
115	Japan). Elongation factor 1 alpha (<i>EF1-</i> α) was used as a reference gene. The RT-qPCR method and
116	primers were the same as those used by Zhang et al. (2016) ¹⁵ (Table S1). The HcunPBPs mRNA
117	relative levels were calculated based on the Ct-values of target gene and reference gene EF1-a by
118	using the Q-gene method in Microsoft Excel-based software of Visual Basic. ³³
119	
120	Chemicals
121	Synthetic pheromone compounds, Z9, Z12-18Ald and Z9, Z12, Z15-18Ald were kindly provided by
122	Dr. Xin Chen (Nimord Inc., Jiangsu, China), Z3, Z6-9S, 10R-epoxy-21Hy and 1, Z3, Z6-9S, 10R-
123	epoxy-21Hy were kindly provided by Dr. Xiangbo Kong (Chinese Academy of Forestry, Beijing,
124	China) (\geq 95% purity). Plant volatiles (Table S2), and N-phenyl-1-naphthylamine (1-NPN) were all
125	≥95% pure and purchased from Sigma-Aldrich (Saint Louis, MO, USA).
126	
127	Recombinant protein production, expression, and purification
128	The SnapGene [®] 3.2.1 software was used to find out whether there were two restriction endonuclease
129	sites BamHI and XhoI on the ORF sequences of the three HcunPBPs, and then their signal peptides
130	were predicted by using the website SignalP 4.1 Server (http://www.cbs.dtu.dk/services/SignalP-4.1/).
131	HcunPBP1, 2 and 3 genes without signal peptide were amplified using specific primers (Table S3),
132	constructed from the 5' and the 3' ends towards the host genome, digested with a restriction enzyme

133	BamHI and XhoI, respectively. The cloning vector pEASY Blunt3 (TransGen, Beijing, China) was
134	used to subclone the PCR products of <i>HcunPBP1</i> , 2 and 3. The positive clones were selected and
135	sequenced to confirm their identity (GenScript Biology Company, Nanjing, China). The target gene
136	was then bound into the pET-30a (+) expression vector (Novagen, Darmstadt, Germany) which was
137	previously digested with the same enzyme, and then transformed into Escherichia coli BL21 (DE3)
138	cells for further protein expression. Because a BamHI site was present in the HcunPBP2 gene, BamHI
139	and XhoI restriction endonuclease for double digestion could not be added. The homologous arms can
140	be added on the 5' and the 3' ends of the designed PBP2 sequence, and homologous recombinant
141	enzymes (Novagen, Darmstadt, Germany) were used for ligation with pET-30a (+).
142	The protein expression method was similar to the one described previously. ³⁴ In short, all
143	HcunPBPs were transformed into BL21 (DE3) E. coli cells, formed as insoluble, inactive inclusion
144	bodies. Protein solubilization was done using lysis buffer (8 M urea, 1 mM DTT (Dithiothreitol) in 20
145	mM Tris-HCl, pH 7.4). Protein purification was conducted using Beaver Beads [™] His-tag Protein
146	Purification Kit (Enriching Biotechnology Ltd., China). Recombinant enterokinase (rEK) (GenScript
147	Biology Company, Nanjing, China) was used for His-tag removal. Untagged protein was further
148	purified and desalted by dialysis membrane (MD25, 8000-14000D) and lyophilized. The pure protein
149	was then stored at -80 °C until use.
150	
151	Fluorescence measurements
152	The binding assays were conducted using previously reported protocols on a Spectra Max M5
153	Fluorescence Spectrophotometer (Molecular Devices Co., Sunnyvale, CA, USA) with Greiner

154 Microlon 96-well plates.^{5,11} The emission spectra were recorded between 400 and 470 nm with an

155	excitation wavelength of 337 nm. The affinity of a fluorescent probe, N-phenyl-1-naphthylamine (1-
156	NPN), for PBP proteins was measured. The 2 μ M PBP solution in 50 mM Tris-HCl (pH 7.4) was
157	titrated with a 1 mM 1-NPN aliquot (dissolved in methanol) to a final concentration of 2-20 μ M, and
158	fluorescence intensity results were recorded. The binding affinity of the PBPs for each odorant was
159	measured by using 1-NPN as a fluorescent reporter. Mixtures of 250 μ L solution (50 mM Tris-HCl)
160	containing PBP (0.2 $\mu M)$ and 1-NPN (2 $\mu M)$ were titrated to final concentrations of 0.2-4 $\mu M.$ For
161	tests with plant volatiles, mixtures of 250 μ L solution (50 mM Tris-HCl) containing plant volatiles (2
162	$\mu M)$ and 1-NPN (2 $\mu M)$ were titrated to final concentrations of 2-20 $\mu M.$ Three replications were
163	done for each odorant. The binding data analysis was done using previously described methods. ^{5,11}
164	
165	Homology modeling and molecular docking
166	For protein sequence alignment, the NCBI BLAST (http://blast.ncbi.nlm.nih.gov) program was used.
167	The homology of BmorPBP1 (PDB ID: 1dqe) of Bombyx mori was used as a template for the analysis
168	of amino acid sequence homology. Homology modeling of the target protein was done by
169	MODELER version 9.19 (http://salilab.org/modeller/) software. The molecular docking and the
170	binding modes of the ligands to HcunPBP1, HcunPBP2 and HcunPBP3 were run by Autodock Vina
171	
172	version 1.1.2. ³⁵ The AutoDock Tools version 1.5.6 was used to produce the docking input files. ⁵⁶ The
1/2	detection and classification of binding pockets, and the grid points were identified by BmorPBP1. The
172	version 1.1.2. ³⁵ The AutoDock Tools version 1.5.6 was used to produce the docking input files. ³⁶ The detection and classification of binding pockets, and the grid points were identified by BmorPBP1. The Vina docking was performed using the default search parameter with exhaustiveness set to 20 to
172 173 174	version 1.1.2. ³⁵ The AutoDock Tools version 1.5.6 was used to produce the docking input files. ³⁶ The detection and classification of binding pockets, and the grid points were identified by BmorPBP1. The Vina docking was performed using the default search parameter with exhaustiveness set to 20 to secure high docking accuracy. Ranking docked confirmation was based on the Vina docking score
172 173 174 175	version 1.1.2. ³⁵ The AutoDock Tools version 1.5.6 was used to produce the docking input files. ³⁶ The detection and classification of binding pockets, and the grid points were identified by BmorPBP1. The Vina docking was performed using the default search parameter with exhaustiveness set to 20 to secure high docking accuracy. Ranking docked confirmation was based on the Vina docking score and visual analysis using PyMOL version 1.9.0 (http:// www.pymol.org/).

177 RESULTS

178 Expression of *H. cunea* PBP genes

- 179 The expression of *HcunPBPs* gene in different body parts/tissues, including antennae, heads (without
- antennae), abdomens and legs, was determined by RT-qPCR. Specific primers were designed from
- 181 conserved cDNA sequences encoding *HcunPBPs* (Table S2). As shown in Figure 1, three *HcunPBPs*
- gene were highly (and male-biased) expressed in the antennae. *HcunPBP1* expression levels were 6.5
- times higher in the antennae of males than females, whereas *HcunPBP2* and *HcunPBP3* were
- 184 expressed 1.7 and 4.2 times higher in the antennae of males than females, respectively. These three
- 185 *HcunPBPs* gene showed undetectable or low expression levels in the other tissues tested in both

186 sexes.

187

188 Expression and purification of HcunPBP recombinants

189 To perform the binding assay experiments, HcunPBPs were expressed in a bacterial system. The

recombinant HcunPBP1, 2 and 3 were obtained in high yield in *E. coli* after induction with isopropyl

- 191 β-D-1-thiogalactopyranoside (IPTG), and all three HcunPBP proteins were found to be present in
- insoluble inclusion bodies. The protein pellets were solubilized by urea treatment and re-natured by
- extensive dialysis based on the reported protocol.^{5,11} Then the proteins were treated with enterokinase
- to remove the His-tag. The results of SDS-PAGE indicated that the recombinants of HcunPBP1, 2 and
- 195 3 were approximately 16.26 kDa, 16.43 kDa and 16.13 kDa, respectively (Figure 2). These results
- 196 were consistent with the expected molecular weights reported in our previous study.¹⁵

197

198 Ligand binding properties of the three HcunPBPs to odorants

199	As shown in Figure 3a, the dissociation constants (K_i value) of HcunPBP1, 2 and 3 were calculated as
200	$4.87\pm0.50~\mu M,5.64\pm0.80~\mu M$ and $3.95\pm0.29~\mu M,$ respectively. Next, a competitive binding assay
201	was carried out to determine the binding affinity of HcunPBPs to the four sex pheromone components
202	(Figure 3b) and selected plant volatiles (Figure 3c-g and Figure S1). Based on the criteria of binding
203	affinities for sex pheromones: high ($K_i < 2.00 \ \mu$ M), moderate ($K_i = 2.01-5.00 \ \mu$ M) and low ($K_i = 5.01-5.00 \ \mu$ M)
204	10.00 μ M), ^{34,37} all three HcunPBPs had a high binding affinity to the two aldehydes, Z9, Z12-18Ald
205	and Z9, Z12, Z15-18Ald ($K_i = 0.49-1.00 \ \mu$ M) (Figure 3b). HcunPBP1 showed a moderate binding
206	affinity ($K_i = 2.15 \mu$ M) to Z3, Z6-9S,10R-epoxy-21Hy and no detectable binding affinity to 1,Z3,Z6-
207	9S,10R-epoxy-21Hy. HcunPBP2 showed no detectable binding affinity to Z3,Z6-9S,10R-epoxy-21Hy,
208	but had an extremely high binding affinity to $1,Z3,Z6-9S,10R$ -epoxy-21Hy ($K_i = 0.26 \mu$ M) (Figure
209	3b). HcunPBP3 had a moderate binding affinity to both epoxides: $Z3,Z6-9S,10R$ -epoxy-21Hy (K_i
210	=1.24 μ M) and 1,Z3,Z6-9S,10R-epoxy-21Hy (K_i =1.84 μ M) (Figure 3b).
211	For plant volatiles, the binding affinities of HcunPBPs were measured and categorized as high,
212	moderate, and low when their K_i values fell in the following ranges: < 10.00 μ M, 10.01 - 20.00 μ M
213	and 20.01-30.01 Mm, ³⁸ respectively. Among the 24 plant volatiles tested, all three HcunPBPs had a
214	high binding affinity to palmitic acid and nerolidol ($K_i < 10 \ \mu$ M). HcunPBP2 and HcunPBP3 showed
215	high binding affinities ($K_i = 5.06 \mu$ M and 8.44 μ M, respectively) to cedrol, whereas HcunPBP1 had a
216	moderate binding affinity ($K_i = 10.75 \ \mu$ M) to it. HcunPBP1 and HcunPBP3 had a high binding
217	affinity to nonanal ($K_i < 10 \mu$ M), while HcunPBP2 and HcunPBP3 showed a high binding affinity to
218	(<i>E</i>)-2-hexenol (K_i = 4.08 µM and 5.89 µM, respectively). HcunPBP1 also expressed a very high
219	binding affinity to β -ocimene, (<i>Z</i>)-2-penten-1-ol and 2,4-dimethyl-3-pentanol ($K_i < 10 \mu$ M).
220	HcunPBP2 had a high binding affinity to 6-methyl-5-hepten-2-one, (Z)-3-hexenol and menthol ($K_i <$

221	10 μ M), and a moderate binding affinity to (<i>E</i>)-2-hexenal ($K_i = 12.91 \mu$ M). HcunPBP3 showed a high
222	binding affinity to (<i>E</i>)-2-hexenal ($K_i = 9.75 \ \mu$ M) and a moderate binding affinity to β -ocimene ($K_i =$
223	10.94 μ M) (Figure 3c-g). No binding affinities by these three HcunPBPs were found to the other 12
224	plant volatiles (Figure S1).
225	
226	Homology modeling and molecular docking
227	To determine the residues of HcunPBPs that interact with pheromone components, the 3D protein
228	structure for each of the three HcunPBPs was estimated by using a computational procedure.
229	Sequence alignments showed that the amino acid identities of HcunPBP1, HcunPBP2 and HcunPBP3
230	were 82%, 67% and 64%, respectively, in common with BmorPBP1. Because the homology values of
231	BmorPBP1 were the highest in the database, it was used as a homology template to analyze the
232	HcunPBPs. As shown in Figure 4, the results of structural comparisons demonstrated that: 1) each of
233	the three HcunPBPs possessed 6 α -helices (α 1- α 6), the same as BmorPBP1 and other moth PBPs; ^{38,39}
234	2) the internal cavity structures of these three HcunPBPs were similar to that of BmorPBP1. These
235	data suggest that all three HcunPBPs may have similar ligand binding mechanisms and that
236	BmorPBP1 could be used as a reference model.
237	Next, the binding energies between the HcunPBPs and the four pheromone components were
238	calculated (Table 1). As shown in Figs. 5-7, all the docking binding energies were shown to have
239	negative values. Moreover, the lengths of all potential interaction residues were less than 4 Å. These
240	results suggested a strong interaction between HcunPBPs and the pheromone components. In
241	addition, the binding models showed that some crucial hydrophobic residues might play a beneficial
242	role in the binding of HcunPBPs to their sex pheromone components, including 12 in HcunPBP1

243 (Phe-43	5, Phe-36, T	rp-37, Ile-52	, Val-136.	. Phe-119.	Val-13, A	Ala-9, Ile-94	. Met-55, F	Phe-12, Met-8), 9
-------------	--------------	---------------	------------	------------	-----------	---------------	-------------	---------------	------

- 244 in HcunPBP2 (Phe-94, Met-18, Phe-118, Ser-115, Met-51, Tyr-36, Phe-12, Leu-135, Thr-9) and 7 in
- 245 HcunPBP3 (Leu-94, Phe-118, Ala-115, Ile-52, Phe-12, Ile-8, Leu-61).

- **247 DISCUSSION**
- 248 Multiple studies have demonstrated the binding specificity of some PBPs to their pheromone
- 249 components, for example in A. polyphemus, Antheraea pernyi, Lymantria dispar and Agrotis
- 250 *ipsilon*.^{32,40} However, contradictory results were reported in other species, including *B. mori, Plutella*
- 251 *xyllostella*, *Helicoverpa armigera*, *H. assulta*, *Spodoptera exigua* and *S. litura*, ^{29,41,42,43} which did not
- show any clear PBP binding discrimination for their own sex pheromone components. In the current
- study, we first investigated the expression of the three *HcunPBPs* in antennae and other tissues of *H*.
- 254 *cunea* adults using RT-qPCR. Consistent with our previous report,¹⁵ these *HcunPBPs* were expressed
- essentially only in the antennae of both sexes. Interestingly, these three *HcunPBPs* were expressed at
- 256 much higher levels in the antennae of males than females, corroborating a significant function in
- 257 detecting the female-produced sex pheromone components in *H. cunea*. Similar antennae-
- 258 predominant and male-biased PBPs were also reported in other moth species, such as A. selenaria
- 259 *cretacea*, *E. oblique* and *S. litura*.^{5,13,14,44} As earlier reported for *S. exigua*, *S. litura*, *H. armigera*, *H.*
- 260 *assulta*, *A. ipsilon*, *S. inferens* and *Carposina sasakii*,^{6,41,44} the relatively low (but significant)
- 261 expression levels of *HcunPBPs* in the antennae of females suggests that females may perceive their
- 262 own pheromone components as well.
- Although the sequences of these HcunPBPs were conserved with a low homology (HcunPBP1
 had 43.2% homology with HcunPBP2 and 38.07% with HcunPBP3, while HcunPBP2 showed

265	42.05% with HcunPBP3), a phylogenetic analysis showed that they were more closely related to PBPs
266	from other species than to each other (Figure S2 and S3). Moreover, these three HcunPBPs were
267	classified into three separate groups. HcunPBP2 and HcunPBP3 showed a high homology with
268	MsexPBP2, HarmPBP3 and HassPBP3 (from Type I pheromone-producing species), respectively
269	(Figure S4). Surprisingly, HcunPBP1 showed a low homology with PBPs from the Type II
270	pheromone-releasing species (e.g. <i>E. grisescens</i> and <i>A. selenaria cretacea</i>), ^{13,45} but shared a high level
271	of homology with LdisPBP1 from a recently classified Type III pheromone-producing species, L.
272	dispar (Figure S5). ¹⁶ These results suggested that the HcunPBPs gene coexisted among lepidopteran
273	species over evolutionary time, and the gene duplication events potentially leading to the three
274	HcunPBPs in <i>H. cunea</i> must have occurred before the lepidopteran radiation. On the other hand, PBPs
275	among moth species in general show a limited diversity. Phylogenetic analyses showed that Type II
276	PBPs clustered together but the clade was not separated from other PBPs (Figure S3). In addition, as
277	mentioned above, the three HcunPBPs showed a low homology with each other. These data suggest
278	that the PBPs of Lepidoptera shared a common ancestor; in evolution, however, they formed the
279	different function-specific clades. In agreement with a recent study on pheromone receptors (PRs) of
280	the Type II sex pheromone in <i>Operophtera brumata</i> , ⁴⁶ our results also suggest that moths did not
281	evolve a new type of PBPs, but recruited existing PBPs as carriers of novel Type II components.
282	Our competitive fluorescence binding assays clearly showed that the binding patterns and
283	abilities of the three HcunPBPs to the two aldehydes were significantly different from those to the two
284	epoxides, indicating a strong binding disparity towards the two chemically different sex pheromone
285	component groups. All three of the HcunPBPs strongly bound to Z9, Z12-18Ald and Z9, Z12, Z15-
286	18Ald, whereas HcunPBP1 had a moderate binding affinity to Z3, Z6-9S, 10R-epoxy-21Hy and no

ACS Paragon Plus Environment

287	detectable binding to 1,Z3, Z6-9S, 10R-epoxy-21Hy. In contrast, HcunPBP2 showed a highly
288	preferential binding affinity for 1,Z3, Z6-9S,10R-epoxy-21Hy, but no detectable binding affinity for
289	Z3, Z6-9S,10R-epoxy-21Hy. Interestingly, HcunPBP3 exhibited a moderate binding affinity to both
290	Z3, Z6-9S,10R-epoxy-21Hy and 1,Z3, Z6-9S,10R-epoxy-21Hy. Consistent with previous studies on A.
291	polyphemus, L. dispar and Plutella xylostella, ^{31,32,47} our results provide further support for the
292	hypothesis that PBPs act as an additional layer of selectivity and participate in pheromone
293	discrimination. ³⁰ The two aldehydes in the <i>H. cunea</i> sex pheromone system are structurally somewhat
294	similar to many Type I pheromone components (<i>i.e.</i> C ₁₀ -C ₁₈ unsaturated straight chain acetates,
295	aldehydes or alcohols) and markedly different from most other Type II sex pheromones, which lack a
296	terminal functional group. However, they were recently classified as non-typical structures of the
297	extended Type II pheromones from a biosynthetic perspective. ¹⁶ That is, these aldehydes share the
298	same biosynthetic origins as the typical Type II epoxides and unsaturated hydrocarbons, <i>i.e.</i> , they are
299	derived from linoleic or linolenic acid precursors that must be obtained from the diet, and their
300	unsaturated hydrocarbon skeletons are biosynthesized in the oenocytes and then transported to the
301	pheromone gland for release. In contrast, Type I pheromones are biosynthesized de novo from acetate
302	in the pheromone gland. ¹⁶ The pheromones of Ascotis selenaria cretacea, Operophtera brumata and
303	Ectropis obliqua consist of typical Type II sex pheromone components with either long chain
304	unsaturated hydrocarbons alone or unsaturated hydrocarbons plus their corresponding epoxide
305	derivatives. However, the PBPs identified and reported from these species so far did not show any
306	significant disparities in binding affinity to their different Type II pheromone components. ^{11,12,13,14} In
307	contrast, the three HcunPBPs of <i>H. cunea</i> in the current study were not only able to clearly distinguish
308	the differences between the aldehyde and epoxide groups of these four Type II sex pheromone

309 components, but also showed different binding affinity patterns to the minor structural variations310 between the two epoxide compounds.

311	According to the results of <i>in vitro</i> ligand binding assays and evidence from <i>in vivo</i> studies of
312	PBPs in several other lepidopteran species, multiple PBP genes in one species may have different
313	importance or roles in the perception of sex pheromone components. ^{4,43,48,49} For example, the
314	HarmPBP1 in <i>H. armigera</i> , with the highest male-bias in antennal expression, bound strongly to the
315	two major sex pheromone components, while two other HarmPBPs showed weak affinities for all
316	three pheromone components. ³⁹ In S. inferens, SinfPBP1 showed high and similar binding affinities to
317	the 3 sex pheromone components: Z-11-hexadecenyl acetate (Z11-16:Ac), Z-11-hexadecenol (Z11-
318	16:OH) and Z-11-hexadecenal (Z11-16:Ald); SinfPBP3, however, exhibited no apparent binding
319	affinities to sex pheromone components. ⁵⁰ These results suggested that these two PBPs, HarmPBP1
320	and SinfPBP1, might play a more important role in the reception of female-produced sex pheromones
321	than other HarmPBPs and SinfPBPs. Moreover, compared to CsupPBP2 and CasuPBP4 in Chilo
322	suppressalis, CsupPBP1 and CsupPBP3 showed higher affinities to the tested components in ligand
323	binding assays. ³ In vivo functional studies further verified that CsupPBP1 played a more important
324	role than CsupPBP3 in sex pheromone perception. ⁴ In the current study, <i>HcunPBP1</i> had the highest
325	expression (9.67 fold to <i>HcunPBP2</i> and 4.02 fold to <i>HcunPBP3</i>) in antennae of males, and displayed
326	a high binding affinity to Z9,Z12,Z15-18Ald and Z3,Z6-9S,10R-epoxy-21Hy (the two dominant sex
327	pheromone components in <i>H. cunea</i>), followed by HcunPBP3 and HcunPBP2. This suggests that
328	among the three HcunPBPs, HcunPBP1 may have a more important function/role in pheromone
329	perception than the other two HcunPBPs.

330	A previous study on <i>P. xylostella</i> has demonstrated that five mutants of PxylGOBP2 with only
331	one or two amino acid substitutions can completely abolish binding to the pheromone, and shift the
332	affinity to plant-derived compounds.54 Liu et al. (2019) reported that Apolygus lucorum OBP
333	(AlucOBP22) mutants of five hydrophobic residues Leu5, Ile40, Met41, Val44 and Met45
334	significantly decreased or completely abolished binding affinities to the ligands.55 In addition, site-
335	directed mutagenesis Ectropis oblique PBP2 (EoblPBP2) indicated that different components of Type
336	II sex pheromone play different binding characters under specific conditions in the physicochemical
337	behavior such as pH, temperature and amino acid mutations under specific conditions. ⁵⁶ In our
338	current study, the binding energies and the lengths of all potential interaction residues suggested a
339	strong interaction between HcunPBPs and the pheromone components (Figure 5, 6 and 7). These
340	findings allowed us to speculate that these hydrophobic residues and their hydrophobic interactions
341	were crucial for the binding of HcunPBPs to their sex pheromone components. These HcunPBPs may
342	serve similar functions as those of PxylGOBP2, AlucOBP22 and EoblPBP2. Further in vivo
343	functional studies, such as RNAi or CRISPR/Cas9 technique, combined with electrophysiological and
344	behavioral assays, will be needed to validate these assumptions.
345	Previous studies demonstrated that Z9,Z12,Z15-18Ald, Z3,Z6-9S,10R-epoxy-21Hy and 1,Z3,
346	Z6-9S,10R-epoxy-21Hy were the three essential components for significant attraction of H. cunea
347	males in the field. ^{24,25,27,28} Further field tests with the four synthetic sex pheromone components
348	showed that all individual components were inactive alone, but their quaternary blend was highly
349	attractive to <i>H. cunea</i> males. ²¹ The minor epoxide component 1, <i>Z</i> 3, <i>Z</i> 6-9 <i>S</i> ,10 <i>R</i> -epoxy-21Hy, which
350	was specifically bound by HcunPBP2, seems to be a critical part of the <i>H. cunea</i> sex pheromone
351	system. These findings allowed us to speculate that although there was a strong disparity in the

352	affinities and expression of these three HcunPBPs, all HcunPBPs may act cooperatively to ensure the
353	effective perception of sex pheromones in <i>H. cunea</i> . Indeed, in nature, the full activation of males of
354	many moth species occurs only when the full pheromone blend of their own species is presented. ³⁰ In
355	tests of a panel of plant volatiles, all three HcunPBPs showed a relatively higher binding ability to
356	fatty acid derivatives and 6-carbon alcohols and aldehydes in the competitive fluorescence binding
357	assays. In addition, HcunPBP1 and HcunPBP2 exhibited an obvious binding affinity to two other
358	plant volatiles (HIPVs), β -ocimene and (Z)-2-penten-1-ol. (Z)-2-Penten-1-ol is released by intact and
359	mechanically-damaged leaves, whereas β -ocimene is released only by herbivore-damaged leaves. ⁵¹
360	Moreover, the attraction of <i>H. cunea</i> males to a sex pheromone lure was increased by β -ocimene but
361	reduced by (Z)-2-penten-1-ol. ^{51,52} Based on our binding data, Tang et al.'s results and previous reports
362	on <i>E. oblique</i> , ¹¹ and <i>C. sasakii</i> , ⁶ we suspect β -ocimene and (<i>Z</i>)-2-penten-1-ol are potential HIPVs for
363	H. cunea. In addition, LdisPBPs in L. dispar females were found to have a primary function in
364	recognizing plant volatiles and its own sex pheromone. ⁵³ Thus, based on our results and those of
365	others, we believe that HcunPBPs also participate in the perception and discrimination of host-plant
366	kairomones in H. cunea.
367	The molecular docking results appear to provide further evidence that these HcunPBPs might
368	contribute to the perception and discrimination of not only the sex pheromones but also host-plant
369	kairomones in <i>H. cunea</i> , although with much stronger binding to the four sex pheromone components
370	than to the plant volatiles (Figure 3). Furthermore, we also found that some crucial hydrophobic
371	residues may play a role in the binding of HcunPBPs to their sex pheromone components (Figure 4-
372	7). Therefore, these residues could serve as potential targets for future mechanistic studies of

- HcunPBP ligand binding, by integrating various omics techniques, such as the CRISPR/Cas9 editing
 system or site-directed mutagenesis methods.
- 375 In summary, we studied the functionality of three HcunPBPs in *H. cunea*, a moth species that 376 uses Type II sex pheromone components from two different chemical classes (aldehyde and epoxide) 377 in its pheromone system. Different HcunPBPs might have different selectivities for pheromone 378 components with both major and minor structural differences. The results of the molecular docking 379 studies demonstrated that some key amino acids may play an important role in the ligand binding of 380 HcunPBPs. These residues, therefore, could serve as potential targets for future mechanistic studies of 381 HcunPBPs' ligand binding. Our study provided not only a better understanding of sex pheromone 382 perception of *H. cunea* at a molecular level, but also a valuable insight into the different binding 383 mechanisms of PBPs, especially for moth species that use various Type II pheromone components.
- 384

385 SUPPORTING INFORMATION

386 Binding affinities of 12 plant volatiles to HcunPBP1, HcunPBP2 and HcunPBP3; comparison of 387 the amino acid sequences of HcunPBP1, HcunPBP2 and HcunPBP3; molecular phylogeny 388 comparing HcunPBPs with PBPs from twenty-seven insect species; comparison of the amino acid 389 sequences of HcunPBP2 and HcunPBP3 with pheromone-binding proteins from Type I pheromone 390 releasing species; comparison of the amino acid sequences of HcunPBP1 with pheromone-binding 391 proteins from different species of Lepidoptera; pheromone-binding proteins from Type II 392 pheromone releasing species and Type III pheromone releasing species; primers of H. cunea PBP 393 genes used for RT-qPCR; plant volatiles used in the binding assays of HcunPBPs; and primers of 394 *H. cunea* PBP genes used for prokaryotic expression (PE).

396	FUNDING
-----	---------

- 397 This project was funded by the National Natural Science Foundation of China (31870640), National
- 398 Key Research and Development Program (2018YFC1200400), Natural Science Foundation of Anhui
- 399 province, China (1508085SMC216).

400

401 ACKNOWLEDGMENTS

- 402 We would like to thank Professor Jocelyn Millar (University of California, Riverside) for his critical
- 403 comments on this manuscript. Dr. Xiangbo Kong (Chinese Academy of Forestry, Beijing, China) and
- 404 Dr. Xin Chen (Nimord Inc., Jiangsu, China) kindly provided the tested pheromones. We also thank
- 405 Dr. Hong Huat Hoh (OIST Graduate University, Japan) for editing the manuscript; Dr. Naiyong Liu
- 406 (Southwest Forestry University), Dr. Zhaoqun Li (Tea Research Institute, Chinese Academy of
- 407 Agricultural Sciences), and Dr. Le-tian Xu (Hubei University, China) for their assistance in data

408 processing.

409

410 CONFLICTS OF INTEREST

- 411 The authors declare no conflict of interest.
- 412

413 AUTHOR CONTRIBUTION

- LZ conceived and designed experiments. XZ, LH, JY and JQ performed experiments. XZ, LZ, DM,
- 415 YZ and HP analyzed data. SD, YZ and PH contributed, materials. XZ, LZ, DM, QHZ and EP wrote
- 416 the paper. All authors read and approved the manuscript.

418 **REFERENCES**

- 419 1. Leal, W. S. Odorant reception in insects: roles of receptors, binding proteins, and Degrading
- 420 Enzymes. Annu. Rev. Entomol. 2013, 58 (1), 373-391.
- 421 2. Leal, W. S. Pheromone reception. *Top. Curr. Chem.*2004, 240, 341-360.
- 422 3. Chang, H. T.; Liu, Y.; Yang, T.; Pelosi, P.; Dong, S. L.; Wang, G. R. Pheromone binding
- 423 proteins enhance the sensitivity of olfactory receptors to sex pheromones in *Chilo suppressalis*.
- 424 *Sci Rep.* **2015**, *5* (1), 13093.
- 425 4. Dong, X. T.; Liao, H.; Zhu, G. H.; Khuhro, S. A.; Ye, Z. F.; Yan, Q.; Dong, S. L. CRISPR/Cas9-
- 426 mediated PBP1 and PBP3 mutagenesis induced significant reduction in electrophysiological
- 427 response to sex pheromones in male *Chilo suppressalis*. *Insect Sci.* **2017**, *26* (3), 388-399.
- 428 5. Liu, N. Y.; Liu, C. C.; Dong, S. L. Functional differentiation of pheromone-binding proteins in
- 429 the common cutworm *Spodoptera litura*. *Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol.*
- **2013**, *165* (2), 254-262.
- 431 6. Tian, Z. Q.; Qiu, G. S.; Li, Y. Y.; Zhang, H. J.; Yan, W. T.; Yue, Q.; Sun, L. Molecular
- 432 characterization and functional analysis of pheromone binding proteins and general odorant
- 433 binding proteins from *Carposina sasakii* Matsumura (Lepidoptera: Carposinidae). *Pest Manag*
- 434 *Sci.* **2019**, *75*, 234-245.
- Zhang, T. T.; Sun, Y. Q.; Wanner, K. W.; Coates, B. S.; He, K. L.; Wang, Z. Y. Binding affinity
 of five PBPs to *Ostrinia* sex pheromones. *BMC Mol. Biol.* 2017, *18* (1), 4.
- 437 8. Ando, T.; Inomata, S.; Yamamoto, M. Lepidopteran sex pheromones. *Topics Curr. Chem.* 2004,
- 438 *239*, 51-96.

- 439 9. Millar, J. G. Polyene hydrocarbons and epoxides: A second major class of lepidopteran sex
- 440 attractant pheromones. *Annu. Rev. Entomol.* **2000**, *45* (1), 575-604.
- 441 10. Liu, N. Y.; He, P.; Dong, S. L. Binding properties of pheromone-binding protein 1 from the
- 442 common cutworm Spodoptera litura. Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol.
- **2012**, *161* (4), 295-302.
- 444 11. Sun L.; Wang Q.; Zhang YX.; Tu XH.; Yan YT.; Wang Q.; Dong K.; Zhang YJ.; Xiao Q. The
- sensilla trichodea-biased EoblPBP1 binds sex pheromones and green leaf volatiles in *Ectropis*
- 446 *obliqua* Prout, a geometrid moth pest that uses Type-II sex pheromones. J. Insect Physiol. 2019,
- 447 *116*, 17-24.
- 448 12. Watanabe, H.; Tabunoki, H.; Miura, N.; Matsui, A.; Sato, R.; Ando, T. Identification of a new
- pheromone-binding protein in the antennae of a geometrid species and preparation of its antibody
- 450 to analyze the antennal proteins of moths secreting type II sex pheromone components. *Biosci.*
- 451 *Biotechnol. Biochem.* **2009**, *73* (6), 1443-1446.
- 452 13. Watanabe, H.; Tabunoki, H.; Miura, N.; Sato, R.; Ando, T. Analysis of odorant-binding proteins
- 453 in antennae of a geometrid species, *Ascotis selenaria cretacea*, which produces lepidopteran
- 454 Type II sex pheromone components. *Invert. Neurosci.* **2007**, *7* (2),109-118.

455 14. Yan, Y. T.; Zhang, Y. X.; Tu, X. H.; Wang, Q.; Li, Y. J.; Li, H. Y.; Wang, Q.; Zhang, Y. J.; Sun,

- 456 L. Functional characterization of a binding protein for Type-II sex pheromones in the tea
- 457 geometrid moth *Ectropis obliqua* Prout. *Pestic. Biochem. Physiol.* **2020**, *165*, 104542.
- 458 15. Zhang, L. W.; Kang, K.; Jiang, S. C.; Zhang, Y. N.; Wang, T. T.; Zhang, J.; Sun, L.; Yang, Y.
- 459 Q.; Huang, C. C.; Jiang, L. Y.; Ding, D. G. Analysis of the antennal transcriptome and insights
- 460 into olfactory genes in *Hyphantri acunea* (Drury). PLoS One. **2016**, *11* (10), e0164729.

461	16.	Löfstedt, C.; Wahlberg, N.; Millar, J. G. Evolutionary patterns of pheromone diversity in
462		Lepidoptera. In: allison JD and Cardé R (ed) pheromone communication in moths. University of
463		California Press, Oakland. 2016, 43-78.
464	17.	Che, C.; Zhang, Z. N. Concise total synthesis of (3Z,6Z,9S,10R)-9,10-Epoxy-1,3,6-
465		heneicosatriene, sex pheromone component of Hyphantri acunea. Tetrahedron. 2005, 61 (8),
466		2187-2193.
467	18.	Che, C.; Zhang, Z. N.; A facile synthetic method for (3Z,6Z,9S,10R)-9,10-Epoxy-3,6-
468		heneicosadiene, sex pheromone component of Hyphantri acunea (Drug). Chin. Chem. Lett. 2005,
469		16, 420-421.
470	19.	El-Sayed, A. M.; Gibb, A. R.; Suckling, D. M. Chemistry of the sex pheromone gland of the fall
471		webworm, Hyphantri acunea, discovered in New Zealand. New Zealand Plant Protection. 2005,
472		58, 31-36.
473	20.	Hill, A. S.; Kovalev, B. G.; Nikolaeva, L. N.; Roelofs, W. L. Sex pheromone of the fall
474		webworm moth, Hyphantri acunea. J. Chem. Ecol. 1982, 8 (2), 383-396.
475	21.	Su, M. W.; Fang, Y. L.; Tao, W. Q.; Yan, G. Z.; Ma, W.; Zhang, Z. N. Identification and field
476		evaluation of the sex pheromone of an invasive pest, the fall webworm Hyphantri acunea in
477		China. Chin. Sci. Bull. 2008, 53 (4), 555-560.
478	22.	Toth, M.; Buser, H. R.; Pena, A.; Arn, H.; Mori, K.; Takeuchi, T.; Nikolaeva, L. N.; Kovalev, B.
479		G. Identification of (3Z,6Z)-1,3,6-9,10-epoxyheneicosatriene and (3Z,6Z)-1,3,6-9,10-
480		epoxyeicosatriene in the sex pheromone of Hyphantri acunea. Tetrahedron Lett. 1989, 30 (26),
481		3405-3408.
		22

ACS Paragon Plus Environment

- 482 23. Rong, Y.; Fujii, T.; Katsuma, S.; Yamamoto, M.; Ando, T.; Ishikawa, Y. CYP341B14: a
- 483 cytochrome P450 involved in the specific epoxidation of pheromone precursors in the fall
- 484 webworm *Hyphantri acunea*. Insect Biochem. Mol. Biol. 2014, 54, 122-128.
- 485 24. Senda, S.; Saika, T.; Furumori, K. Pheromone control of the fall webworm, *Hyphantri acunea*.
- 486 Bull Nitto Denko Corp. **1993**, *31*, 97-102.
- 487 25. Zhang, Q. H.; Chu, D.; Zhu, L. H.; Qi, K.; Han, G. S.; Ninomiya, Y.; Liu, X.; Xing, J. G. Study
- 488 on the applied techniques of *Hyphantri acunea* synthetic sex-pheromone. *Plant Quarantine*.
- **489 1998**, *12*, 65-69.
- 490 26. Zhang, Q. H.; Schlyter, F.; Chu, D.; Ma, X. Y.; Ninomiya, Y. Female calling behaviour and male
- 491 response to synthetic pheromone and virgin females in spring and summer generations of
- 492 *Hyphantri acunea* in Northeastern China. J. Appl. Entomol. **1996**, 120, 467-476.
- 493 27. Zhang, Q. H.; Schlyter, F.; Chu, D.; Ma, X.Y.; Ninomiya, Y. Diurnal and seasonal flight activity
- 494 of males and population dynamics of *Hyphantri acunea* monitored by pheromone traps. J. Appl.
- 495 *Entomol.* **1998**, *122*, 523-532.
- 496 28. Zhang, Q. H.; Schlyter, F. High recaptures and long sampling range of pheromone traps for fall
- web worm moth *Hyphantri acunea* (Lepidoptera: Arctiidae) males. *J. Chem. Ecol.* 1996, 22 (10),
 1783-1796.
- 499 29. Grater, F.; Xu, W.; Leal, W. S.; Grubmuller, H. Pheromone discrimination by the pheromone-
- 500 binding protein of *Bombyx mori*. *Structure*. **2006**, *14* (10), 1577-1586.
- 501 30. Charlier, L.; Antonczak, S.; Jacquin-Joly, E.; Cabrol-Bass, D.; Golebiowski, J. Deciphering the
- 502 selectivity of *Bombyx mori* pheromone binding Protein for bombykol over bombykal:
- 503 atheoretical approach. *ChemPhyschem.* **2008**, *9* (18), 2785-2793.

504	31.	Yu, Y. X.; Ma, F.; Cao, Y. X.; Zhang, J. H.; Zhang, Y. G.; Duan, S. N.; Wei, Y. D.; Zhu, S. F.;
505		Chen, N. Z. Structural and functional difference of pheromone binding proteins in discriminating
506		chemicals in the Gypsy moth, Lymantria Dispar. Int. J. Biol. Sci. 2012, 8 (7), 979-991.
507	32.	Maida, R.; Ziegelberger, G.; Kaissling, K. Ligand binding to six recombinant pheromone-binding
508		proteins of Antheraea polyphemus and Antheraea pernyi. J Comp Physiol B. 2003, 173 (7), 565-
509		573.
510	33.	Simon, P. Q-Gene: processing quantitative real-time RT-PCR data. <i>Bioinformatics</i> . 2003, 11 (19),
511		1439-1440.
512	34.	Khuhro, S. A.; Liao, H.; Zhu, G. H.; Li, S. M.; Ye, Z. F.; Dong, S. L. Tissue distribution and
513		functional characterization of odorant binding proteins in Chilo suppressalis (Lepidoptera:
514		Pyralidae). J. Asia-Pac. Entomol. 2017, 20, 1104-1111.
515	35.	Trott, O.; Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new
516		scoring function, efficient optimization and multithreading. J. Comput. Chem. 2009, 31 (2), 455-
517		461.
518	36.	Morris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M. F.; Belew, R. K.; Goodsell, D. S.; Olson, A.
519		J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J.
520		Comput. Chem. 2009, 30 (16), 2785-2791.
521	37.	Venthur, H.; Machuca, J.; Godoy, R.; Palmamillanao, R.; Zhou, J. J.; Larama, G.; Bardehle, L.;
522		Quiroz, A.; Ceballos, R.; Mutis, A. Structural investigation of selective binding dynamics for the
523		pheromone-binding protein 1 of the grapevine moth, Lobesia botrana. Arch. Insect Biochem.
524		Physiol. 2019, 101 (3), e21557.

- 525 38. Zhang, X. Q.; Yan, Q.; Li, L. L.; Xu, J. W.; Mang, D. Z.; Wang, X. L.; Hoh, H. H.; Ye, J.; Ju, Q.;
- 526 Ma, Y.; Liang, M.; Zhang, Y. Y.; Zhu, X. Y.; Zhang, F.; Dong, S. L.; Zhang, Y. N.; Zhang, L.
- 527 W. Different binding properties of two general-odorant binding proteins in *Athetis lepigone* with
- 528 sex pheromones, host plant volatiles and insecticides. *Pestic. Biochem. Phys.* 2020, *164*, 173-
- 529 182.
- 530 39. Zhang, T. T.; Mei, X. D.; Feng, J. N.; Berg, B. G.; Zhang, Y. J.; Guo, Y. Y. Characterization of
- 531 three pheromone-binding proteins (PBPs) of *Helicoverpa armigera* (Hübner) and their binding
- 532 properties. J. Insect. Physiol. 2012, 58 (7), 941-948.
- 533 40. Plettner, E.; Lazar, J.; Prestwich, E. G.; Prestwich, G. D. Discrimination of pheromone
- enantiomers by two pheromone binding proteins from the gypsy moth *Lymantria dispar*.
- 535 *Biochemistry*. **2000**, *39* (30), 8953-8962.
- 41. Guo, H.; Huang, L. Q.; Pelosi, P.; Wang, C. Z. Three pheromone-binding proteins help
- 537 segregation between two *Helicoverpa* species utilizing the same pheromone components. *Insect*
- 538 Biochem. Mol. Biol. 2012, 42 (9), 708-716.
- 539 42. Liu, N. Y.; Yang, F.; Yang, K.; He, P.; Niu, X. H.; Xu, W.; Anderson, A.; Dong, S. L. Two
- 540 subclasses of odorant-binding proteins in *Spodoptera exigua* display structural conservation and
- 541 functional divergence. *Insect Mol. Biol.* **2015**, *24* (2), 167-182.
- 542 43. Zhu, G. H.; Zheng, M. Y.; Sun, J. B.; Khuhro, S. A.; Yan, Q.; Huang, Y. P.; Syed, Z.; Dong, S.
- L. CRISPR/Cas9 mediated gene knockout reveals a more important role of PBP1 than PBP2 in
- the perception of female sex pheromone components in *Spodoptera litura*. *Insect Biochem*. *Mol*.
- 545 *Biol.* **2019**, *115*, 103244.

546	44.	Xiu, W. M.; Zhou, Y. Z.; Dong, S. L. Molecular characterization and expression pattern of two
547		pheromone-binding proteins from Spodoptera litura (Fabricius). J. Chem. Ecol. 2008, 34 (4),
548		487-498.
549	45.	Li, Z. Q.; Cai, X. M.; Luo, Z. X.; Bian, L.; Xin, Z. J.; Chu, B.; Liu, Y.; Chen, Z. M. Comparison
550		of olfactory genes in two ectropis species: emphasis on candidates involved in the detection of
551		Type-II sex pheromones. Front. Physiol. 2018, 9.
552	46.	Zhang, D. D.; Wang, H. L.; Schultze, A.; Fross, H.; Francke, W.; Krieger, J.; Lofstedt, C.
553		Receptor for detection of a Type II sex pheromone in the winter moth Operophtera brumata. Sci
554		<i>Rep.</i> 2016 , <i>6</i> (1).
555	47.	Shen, J. M.; Hu, L. M.; Dai, J. Q.; Chen, B. H.; Zhong, G. H.; Zhou, X. H. Mutations in
556		pheromone-binding protein3 contribute to pheromone response variations in <i>Plutella xylostella</i>
557		(L.) (Lepidoptera: Plutellidae). Pest Manag. Sci. 2019.
558	48.	Ye, Z. F.; Liu, X. L.; Han, Q.; Liao, H.; Dong, X. T.; Zhu, G. H.; Dong, S. L. Functional
559		characterization of PBP1 gene in Helicoverpa armigera (Lepidoptera: Noctuidae) by using the
560		CRISPR/Cas9 system. Sci Rep. 2017, 7 (1), 8470.
561	49.	Zhang, Y. N.; Li, Z. Q.; Zhu, X. Y.; Qian, J. L.; Dong, Z. P.; Xu, L.; He, P. Identification and
562		tissue distribution of carboxylesterase (CXE) genes in Athetis lepigone (Lepidoptera: Noctuidae)
563		by RNA-seq. J. Asia Pac. Entomol. 2017, 20 (4), 1150-1155.
564	50.	Jin, J. Y.; Li, Z. Q.; Zhang, Y. N.; Liu, N. Y.; Dong, S. L. Different roles suggested by sex-
565		biased expression and pheromone binding affinity among three pheromone binding proteins in
566		the pink rice borer, Sesamia inferens (Walker) (Lepidoptera: Noctuidae). J. Insect Physiol. 2014,
567		66, 71-79.
		26
		ACS Paragon Plus Environment

- 568 51. Tang, R.; Zhang, J. P.; Zhang, Z. N. Electrophysiological and behavioral responses of male fall
- 569 webworm moths (*Hyphantri acunea*) to Herbivory-induced mulberry (*Morus alba*) leaf volatiles.
- 570 *PLoS One.* 2012, 7 (11), e49256.
- 571 52. Tang, R.; Zhang, F.; Zhang, Z. N. Electrophysiological responses and reproductive behavior of
- fall webworm moths (*Hyphantri acunea* Drury) are influenced by volatile compounds from its
- 573 mulberry host (Morus alba L.). *Insects.* **2016**, 7 (2), 19.
- 574 53. Yu, Y. X.; Zhou, P.; Zhang, J. H.; Zheng, C.; Zhang, J.; Chen, N. Z. Pheromone-binding proteins
- 575 in the Asian gypsy moth females, *Lymantria dispar*, recognizing the sex pheromone and plant
- 576 volatiles. Arch. Insect Biochem. Physiol. 2018, 99, e21477.
- 577 54. Zhu, J.; Ban, L. P.; Song, L. M.; Liu, Y.; Pelosi, P.; Wang, G. R. General odorant-binding proteins
- and sex pheromone guide larvae of *Plutella xylostella* to better food. *Insect Biochem. Mol. Biol.*2016, 72, 10-19.
- 55. Liu, H. W.; Duan, H. X.; Wang, Q.; Xiao, Y.; Wang, Q.; Xiao, Q.; Sun, L.; Zhang, Y. J. The key
- amino residues determining binding activities of the odorant binding protein AlucOBP22 to two
- host plant terpenoids of *Apolygus lucorum*. J. Agric. Food Chem. 2019, 67, 5949-5956.
- 56. Fu, X. B.; Zhang, Y. L.; Qiu, Y. L.; Song, X. M.; Wu, F.; Feng, Y. L.; Zhang, J. Y.; Li, H. L.
- 584 Physicochemical basis and comparison of two type II sex pheromone components binding with
- 585 pheromone-binding protein 2 from tea geometrid, *Ectropis oblique*. J. Agric. Food Chem. 2018,
- **586** *66* (50), 13084-13095.
- 587
- 588
- 589

590 Figures and figure legends

591

592 Figure 1. Relative mRNA expression of *HcunPBPs* in *H. cunea* tissues. F, female; M, male; A,

antennae; H, heads (without antennae); Ab, abdomens; L, legs. The relative mRNA levels were

normalized to those of the EF1-a gene and analyzed using the Q-gene method. All values are shown

595 as the mean \pm SEM normalized. The data were analyzed by the least significant difference (LSD) test

after one-way analysis of variance (ANOVA). Different letters (a-e) indicate significant differences

599 Figure 2. Expression and purification of recombinant HcunPBP1 (a), HcunPBP2 (b) and HcunPBP3

600 (c) by SDS-PAGE analysis. Lane 1 and 2, crude bacterial extracts after induction with IPTG,

- 601 following by supernatant (lane 1) and bacterial pellet (lane 2). Lane 3 and 4, purified pET/HcunPBPs
- 602 protein with and without His-tags, respectively.
- 603

- **Figure 3.** Binding of selected ligands to HcunPBPs. (a) Binding curves and Scatchard plots (insert) of
- the fluorescence probe 1-NPN to HcunPBP1, HcunPBP2 and HcunPBP3. The binding curves and the
- for relative Scatchard plots indicate the binding constants of HcunPBPs/1-NPN complex: 4.87 ± 0.50
- μ M, 5.64 ± 0.80 μ M and 3.95 ± 0.29 μ M for HcunPBP1, HcunPBP2 and HcunPBP3, respectively. (b-
- g) Comparison of binding properties of the three HcunPBPs to four sex pheromone components (b)
- 610 and 12 plant volatiles: alkenes (c), acids (d), alcohols (e), aldehydes (f) and ketones (g).
- 611
- 612
- 613

Figure 4. Structural modeling of HcunPBPs. (a) Superposition of the four PBPs from the matching

- panels B-E in the same orientation. (b) BmorPBP1 (PDB ID: 1dqe). (c) HcunPBP1. (d) HcunPBP2.
- 617 (e) HcunPBP3.
- 618
- 619
- 620
- 621
- 622

624 **Figure 5.** Binding modes and key residues of HcunPBP1 to the four sex pheromone components.

- 625 Z9,Z12-18Ald (orange), Z9,Z12,Z15-18Ald (blue), Z3,Z6-9S,10R-epoxy-21Hy (green) and 1,Z3,Z6-
- 626 9*S*,10*R*-epoxy-21Hy (rose) in the putative binding pocket of chain A of HcunPBP1. The key residues
- 627 of the different ligands that interact with HcunPBP1 are shown. The residues within 4 Å of the ligands
- 628 are highlighted in red.
- 629
- 630
- 631
- 632
- 633
- 634

636 Figure 6. Binding modes and key residues of HcunPBP2 to the four sex pheromone components.

637 Z9,Z12-18Ald (rose), Z9,Z12,Z15-18Ald (orange), Z3,Z6-9S,10R-epoxy-21Hy (green) and 1,Z3,Z6-

638 9*S*,10*R*-epoxy-21Hy (blue) in the putative binding pocket of chain A of HcunPBP2. The key residues

- 639 of the different ligands that interact with HcunPBP2 are shown. The residues within 4 Å of the ligands
- 640 are highlighted in red.
- 641
- 642
- 643
- 644
- 645
- 646

- 649 18Ald (rose), Z9,Z12,Z15-18Ald (orange), Z3,Z6-9S,10R-epoxy-21Hy (green) and 1,Z3,Z6-9S,10R-
- 650 epoxy-21Hy (pink) in the putative binding pocket of chain A of HcunPBP3. The key residues of the
- different ligands that interact with HcunPBP3 are shown. The residues within 4 Å of the ligands are
- highlighted in red.
- 653
- 654
- 655
- 656
- 657
- 658
- 659

Table 1 Binding data of different ligands to HcunPBPs and molecular docking									
	PBP1			PBP2			PBP3		
Ligand name	IC50(µM)	Ki(µM)	Free binding energy (kcal mol–1)	IC50(µM)	Ki(µM)	Free binding energy (kcal mol–1)	IC50(µM)	Ki(µM)	Free binding energy (kcal mol–1)
Type II Sex pheromones									
Srain chain aldehydes									
Z3,Z6-9S,10R-epoxy-21Hy	>4	-	-8.2	>4	-	-8	1.1±0.1	0.76 ± 0.07	-7.5
1,Z3,Z6-9S,10R-epoxy-21Hy	>4	-	-8	0.36 ± 0.04	0.27 ± 0.03	-7.9	$2.48{\pm}0.73$	1.73±0.51	-7.5
Epoxides									
Z9,Z12-18Ald	1.2 ± 0.03	0.89 ± 0.03	-7.1	$0.72{\pm}0.01$	0.55 ± 0.01	-7.2	1.06 ± 0.07	$0.74{\pm}0.05$	-6.8
Z9,Z12,Z15-18Ald	1.02 ± 0.05	0.76 ± 0.04	-7.8	0.45 ± 0.04	0.35 ± 0.03	-7.5	1.0±0.03	$0.70{\pm}0.02$	-7
Green leaf volatiles								-	
β-Ocimene	7.59±1.4	5.74±1.01	-6.9	>20	-	-6.2	>20	-	-6.3
Palmitic acid	4.82±0.59	3.6±0.43	-6.7	3.36 ± 0.54	2.59±0.41	-6.9	4.78±0.19	3.43±0.13	-6.5
E2-Hexenol	>20	-	-4.9	4.55±0.32	3.51±0.25	-4.5	7.26 ± 0.80	4.82 ± 0.53	-4.3
Z3-Hexenol	>20	-	-4.8	8.07±1.47	6.21±1.13	-4.6	>20	-	-4.3
Z2-Penten-1-ol	9.7±0.37	7.3±0.28	-4.4	>20	-	-4.1	>20	-	-4
2,4-dimethyl-3-pentanol	9.57±0.66	7.24±0.51	-5.3	>20	-	-5.2	>20	-	-5
(+)-Cedrol	>20	-	-9.7	6.36 ± 0.20	4.90±0.16	-9.8	$10.56{\pm}1.0$	7.53 ± 0.70	-9.3
Nerolidol	9.75±1.98	7.26±1.47	-8.1	$6.80{\pm}0.62$	5.23 ± 0.48	-7.7	9.43±0.32	6.73±0.25	-7.9
(-)-Menthol	>20	-	-7.1	7.30 ± 0.36	5.63 ± 0.28	-7.2	>20	-	-6.6
E2-hexanal	>20	-	-4.9	>20	-	-4.2	>20	-	-4.3
Nonanal	7.26±0.34	5.396±0.25	-5.6	>20	-	-5	6.85±0.10	4.76 ± 0.07	-4.9
6-methyl-5-hepten-2-one	>20	-	-5.8	6.04 ± 0.30	4.64±0.23	-5.5	>20	-	-5.5

3 In fluorescence competitive binding assays, dissociation constants (K_i) were calculated from the corresponding IC₅₀ values (the concentrations of ligands

4 halving the fluorescence of 1-NPN, the IC₅₀ values of ligands without binding ability or weak binding ability cannot be obtained in the experiment and were

5 presented as ">4 (sex pheromone) or >20 (non sex pheromone) ", so the dissociation constant K_i of these ligands cannot be calculated and was presented as

6 "-".