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Chapter 1

Introduction

1.1 Background

Over the last decades, productivity growth has been slowing down throughout

developed economies. Since technology1 growth is the main long-term deter-

minant of productivity growth, this has ignited a debate about how new ideas

are produced and disseminated through the economy. Differences between the

growth performance of countries are largely explained by ICT capital and mul-

tifactor productivity (van Ark et al., 2008), again pointing towards technology

as an important determinant of aggregate growth performance of the different

countries. Increasing productivity growth again is a key policy objective: ”Pro-

ductivity isn’t everything, but, in the long run, it is almost everything.”2 Slowing

technology growth directly translates into lower incomes.

The matter is complicated by the measurement problems inherent in productivity

analysis. As a ”measure of our ignorance”3, productivity is notoriously measured

with error. Since many technological advances of the last decades are offered for

free (e.g. internet services), at subsidized prices (e.g. ride sharing) or in public

sectors (e.g. new drugs), they are poorly captured in GDP figures. Nonetheless,

measurement error alone cannot explain most of the slowdown (Syverson, 2017;

Cowen, 2011; Tarullo, 2014).

1As is standard in the literature, I subsume all knowledge about how to organize produc-
tion processes under technology, i.e. better management techniques, better ways to motivate
employees etc. all fall under this definition of technology.

2Krugman 1997.
3Abramovitz 1956.
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While decelerating productivity growth is seen as a problem, the causes are hotly

debated.

Techno-pessimists maintain that new ideas naturally become harder to find as

the low hanging fruits are already picked. Since it is getting more difficult to

make new discoveries, technology growth would naturally slow down over time

(Gordon, 2016).

Another school of thought relates declining growth rates to slowing technology

diffusion. In this reading, innovation progresses steadily, but diffuses through the

economy more slowly. The ”superstar firms” at the global frontier leave many

firms behind. E.g. Autor et al. (2017); Akcigit and Ates (2019) argue that mea-

sured aggregate productivity growth is declining because fewer firms are using

latest technologies.

Changes in competition could also slow down productivity growth. Aghion et al.

(2005, 2006, 2009) show an inverted U-shape relationship between competition

and innovation: Both monopolies and highly competitive markets are less in-

novative. The endogenous growth literature argues that this is because firms

innovate to fend off competition and to increase their existing rents. Monopo-

lists have no competition and thus do not need to defend themselves through

innovation. Firms in a very competitive market have little incentive to innovate

because they have many potential imitators and cannot expect to maintain their

technology advantage for long. The optimum for innovation lies somewhere be-

tween these two points. De Loecker and Eeckhout (2017); Autor et al. (2017)

present compelling evidence that competition has declined over the last decades

and that firms’ markups throughout the developed world have risen substantially.

It might be that the global economy now has too little competition for innovation.

1.2 Research Approach and Key Findings

The papers collected in this dissertation bring microeconometric analysis to bear

on these different explanations. I study the R&D and productivity reactions of

German firms to increases in competition and the movement of inventors as a key

determinant of technology diffusion. I thus examine the importance and plausi-

bility of the suggested causes of the productivity growth decline. I also discuss
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the theoretical implications of sticky inventor firm relations on firms’ research

strategy and the equilibrium growth rate. To this end, I insert an inventor labor

market into an endogenous growth model.

Chapter 2 studies the productivity responses of German manufacturing firms

to increased foreign competition (2000-2014). We measure exogenous changes in

the competitiveness of foreign firms by looking at their countries’ market shares

in third markets. We use this to instrument for the market share foreign firms

capture in Germany. We study the effect of such changes in competition inten-

sity on a whole range of firms’ specific outcomes and find that German firms

only increase their efficiency in response to competitors from other industrialized

economies. This productivity increase is not driven by increased investment in

innovation. Instead, firms cut back on costs while maintaining physical output.

They also lower prices. In contrast, firms just shrink when confronted with com-

petition from low cost countries like China. Overall, our evidence is more in line

with firms cutting institutional fat when confronted with competition than with

firms investing their ”trapped factors” into R&D, as hypothesized by Bloom et al.

(2016).

Chapter 3 studies the matching of inventors to firms on a global scale. I esti-

mate inventors’ and firms’ contribution to patent production and analyze which

inventors go to which firms. I find an increasing tendency for assortative match-

ing, i.e. the best inventors are increasingly concentrated among the best firms.

Patents are concentrated among few firms throughout the entirety of the data

(1974-2012), but become even more concentrated during that time span. Ad-

ditionally, inventors leave the most production efficient firms at declining rates,

which might slow down technology diffusion. Inventors changing their movement

behavior is not due to changes in the patent invention function, which is quite

constant over time. Throughout the time period studied, inventor skill is more

important for patent output than firm quality.

Chapter 4 synthesizes the empirical findings of chapter 3 into an endogenous

growth model with inventor firm labor markets. Firms have to slowly build up

a stock of inventors through search on the labor market. Thus, each firm has
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specific technological capabilities and firms with a large stock of inventors are

invested into the specific technology their inventors have mastered. The most re-

search heavy firms have the largest incentive to keep innovation incremental and

the mapping of technologies to products stable. The trend towards more applied

and less scientific innovations documented by Poege et al. (2019) is detrimental

to growth, viewed through the lens of my model. The model thus suggests an

alternative potential cause of slowing technology growth.

This research has been made possible by the proliferation of detailed firm

level data sets and the computational and methodological resources to make use

of them. Specifically, the literature on estimating firm level productivity with

endogenous productivity allows to compare productivity across firms (Crepon

et al., 1998; Bloom et al., 2016; Doraszelski and Jamandreu, 2013; De Loecker

et al., 2016), while the labor market literature has developed tools to describe

the matching of persons to firms (Abowd et al., 1999; Card et al., 2013). These

techniques are central to the results reviewed above, though I have adapted and

developed them further to fit the specific use cases presented.

1.3 Connection to the Wider Literature

Throughout this dissertation, I navigate an imperfect competition framework

of firms’ decision making. The empirical results can be understood in either a

Hopenhayn (1992) type model with endogenous productivity or a quality ladder

model like Aghion and Howitt (1992); Romer (1990). In both models, firms’ con-

temporary profits depend on their current productivity and/or product quality.

Firms can also undertake actions to increase their future productivity or product

quality. Within this very general framework, several potential actions have been

studied in more detail: the decision to enter foreign markets (Melitz, 2003), the

decision to invest in R&D (Aghion, 1998), the decision to produce certain prod-

ucts (Khandelwal, 2010; Mayer et al., 2014) or the monitoring of firm managers

(Leibenstein, 1966; Stigler, 1976). Our own empirical analysis does not presup-

pose any of the specific explanations these authors offer.
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This dissertation is also closely related to the empirical literature on knowl-

edge diffusion: Numerous studies have traced technology diffusion by studying

patent data. Keller (2004) provides an overview over the different channels for

cross country technology diffusion and argues that importing, FDI and own hu-

man capital and R&D are necessary for substantial absorption of foreign tech-

nology. The FDI channel specifically has received much scrutiny: While Potterie

and Lichtenberg (2001) argue that technology mainly flows towards the FDI sub-

sidiary using aggregate data, Fosfuri et al. (2001) show that technology spillovers

arise when workers move from the foreign subsidiary to domestic firms. I will

study this inventor movement channel of technology diffusion more generally.

An example of technology diffusion that has been studied in particular detail

because of its importance to public policy is the proliferation of green technol-

ogy. Bretschger et al. (2017) build a multi-sector, multi-country model where

firms require both access to a ”knowledge pool” of green production technolo-

gies for their sector and the ”absorptive capacity” to understand the ideas flow-

ing around between professionals. Comin and Mestieri (2018) demonstrate that

technology penetration, i.e. firms’ success in adopting new technologies, is di-

verging between countries, while information technology has closed the gap for

early adopters. Aghion et al. (2016) show that previous knowledge in green vs.

dirty technology makes a firm much more successful in absorbing new inventions:

There is technology specialization and substantial path dependence. I will de-

velop the argument that much of this path dependence is because firms’ inventors

are largely technology specialists and difficult to replace.
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Chapter 2

Firms’ Productivity Reaction to

Competition

2.1 Introduction

One of the most fundamental tenets of economics is that competition promotes

efficiency. Competitive pressure threatens firms’ rents and even their existence.

To escape competition, firms in theory take costly actions to improve their pro-

ductivity (Aw et al., 2011; Aghion et al., 2005, 2004, 2009). Yet, there is only

mixed empirical evidence for this mechanism: Bloom et al. (2016) find that public

European firms increased their productivity and patenting in response to import

competition from China, while Autor et al. (2016) find the opposite for the US.

We also have little empirical evidence about how firms increase their productivity

in response to competition (De Loecker and Goldberg, 2014; Shu and Steinwen-

der, 2018).

To shed light on the effect of competition on productivity, we study if and how

German manufacturing firms increase their productivity in response to import

competition (2000-2014). To arrive at causal estimates, we exploit exogenous

shocks from the world markets in the spirit of Autor et al. (2013): When foreign

industries become more competitive in the world market, they pressure the do-

mestic German market. We find that competition from low-income countries has

no direct effect on firms’ productivity. In contrast, competition from other high-

income countries pressures German firms to improve their productivity. While

other researchers have studied plant survival (Bernard et al., 2003), employee

1
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skill upgrading (Mion and Zhu, 2013) or innovation (Bloom et al., 2016; Autor

et al., 2016), we document an effect of import competition on quantity based

TFP. However, productivity only increases if the foreign competition is from

other high-income countries. This is our main contribution.

We investigate how firms react to different competitors from around the world

to understand how and why firms improve their TFPQ (productivity measured

in physical output). Competitors from low-income countries present a different

threat to German firms than competitors from similarly high-income economies:

Low-income countries specialize in lower quality versions of goods (Khandelwal,

2010) and use more labor and less capital and technology in production (Schott,

2004; Hummels and Klenow, 2005). Our data reflects that: While we cannot ob-

serve the product quality of imports directly, we see that high-income countries

threaten German products that are produced with more capital and R&D, while

low-income countries are dominant in relatively labor intensive products. We find

that these product quality differences of competitors induce the same German

firms to react very differently to shocks from high or low-income countries.

When constructing our import competition measures and estimating TFP, we

exploit the firm-product dimension of our data: Our product data allows us to

estimate TFPQ in addition to TFPR. Since increases in competition change the

price elasticity the firm faces, competition has a direct effect on firms’ prices.

Thus, revenue TFP will mechanically react negatively to competition, indepen-

dent of productivity adjustments (De Loecker, 2011). We find that this effect

changes the estimates substantially. We also use firms’ product portfolios to cal-

culate firm-specific competition measures. Using firms’ product portfolios, we

separate the effect of import competition from the effect of intermediate product

imports and account for firms being active in several industries simultaneously.

Thus, our data allows us to be more precise than previous attempts at measuring

the effect of foreign competition on firm productivity (Autor et al., 2016; Bloom

et al., 2016).

We use an IV strategy pioneered by Autor et al. (2013) to draw causal inferences:

We can measure changes in the competitiveness of China, the US and other im-

portant German trading partners within third countries, which are independent

of Germany. We isolate instances where Germany’s trading partners become

more competitive independently from German firms. We can thus instrument
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trade flows between Germany and its trading partners with trade flows between

Germany’s trading partners and a set of third countries.

Irrespective of the source of import competition, firms experience a drop in rev-

enues and reduce their expenditures for production inputs. Firms respond to

high-income import competition by reducing output prices and largely manage

to keep their output quantities constant. Firms do not lower prices in response

to competition from low-income countries and consequently experience a fall in

sold quantities. It seems like German firms are unable to compete in terms of

prices with product market competition from low-income countries. Notably,

firms surviving competition from low-income countries invest in R&D. Firms’

adjustment strategy to low-income import competition seems to be to escape by

exploring new markets or inventing more efficient production technologies. In

contrast, firms being hit by high-income import competition even decrease their

R&D spending, presumably in an attempt to save costs. Overall, we conclude

that the productivity enhancing effects of competition we document are not a

consequence of increased R&D activities. Instead, they might result from “cut-

ting fat”, i.e. realizing existing unused potential to raise efficiency. Evidently,

prior to the new competitors, firms’ managers lived according to John Hicks:

“The best of all monopoly profits is a quiet life.”1

Firms might be inefficient either because management consumes a part of firms’

rents as leisure (Biggerstaff et al., 2016) or because of true ignorance about better

technology (Bloom and Van Reenen, 2010). Both hypotheses are consistent with

our findings: New competitors from high-income countries introduce close substi-

tutes to German firms’ products into the market. As incumbents’ demand curves

flatten, inefficiency in general becomes costlier. Firms pick up on that and reduce

their X-inefficiencies throughout the manufacturing sector. Such broad evidence

was previously lacking. We supplement studies documenting such competition

effects in narrowly defined sectors like health care (Bloom et al., 2015) or the oil

industry after large world market price shocks (Borenstein and Farrell, 2000).

This paper complements the broad theoretical literature on the effects of inter-

national trade liberalization. Yet, the trade literature focuses mostly on pro-

ductivity gains through selection (Melitz, 2003; Bernard et al., 2003; Melitz and

Redding, 2013) and not within firm productivity effects. Our study relates more

1Hicks 1935.
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closely to empirical work investigating how a relaxation of tariffs affects firm

productivity and performance (Trefler, 2004; Bernard et al., 2006; Amiti and

Konings, 2007; Khandelwal and Topalova, 2011). However, our focus is on firm-

specific import competition rather than on a reduction of industry-wide tariffs.

This allows us to clearly separate competition-based effects of international trade

from other channels.

Additionally, our article relates to theoretical work on firm productivity (Aghion

et al., 2004, 2005, 2009; Impullitti and Licandro, 2018). These models build

around the idea that a firm’s efforts to increase productivity are endogenous to

competition. Aghion et al. (2009) show that competition within a specific prod-

uct segment leads to more innovative activity when the technological distance

between competitors is small, such that a successful innovation allows follower

firms to leapfrog their competitors. In contrast, when the distance to the competi-

tor becomes larger, the expected rents from innovation decrease, until eventually

firms stop innovating. While we find that competition has productivity effects

and that these depend on the new entrants, we cannot confirm that incumbents

with different levels of technological sophistication react differently to the same

entrant. In the data, the characteristics of the entrant determine the reaction.

Our results thus better fit trade models like Khandelwal (2010), in which high

and low-income countries have different modes of production and thus compete

in different ways against each other.

However, our paper is most comparable to Autor et al. (2016) and Bloom et al.

(2016). Both use the same identification idea to study firms’ adjustment to in-

creases in foreign competition. Our paper differs from their work in three ways:

First, we paint a more complete picture of firms’ responses to competition by

considering different types of competition and including the variables through

which firms increase their competition. Second, we address the bias inherent in

estimating the effect of competition on revenue productivity. Third, we are able

to measure import competition much more precisely due to our product level

data. With these improvements, whenever we estimate comparable equations,

our results are more similar to those of Bloom et al. (2016) than to those of

Autor et al. (2016).

This paper is structured as follows: Section 2.2 introduces the data and explains

the construction of our firm-specific import competition measures. Section 2.3
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describes our procedure to recover a quantity-based firm-level productivity mea-

sure. Section 2.4 covers our econometric strategy to assess the impact of import

competition on firm productivity. Section 2.5 presents our empirical results. Sec-

tion 2.6 concludes.

2.2 Data and Measuring Import Competition

We use administrative yearly panel data on German manufacturing firms with

at least 20 employees (AFiD thereafter) for the period 2000-2014. The German

Federal Statistical Office and the Statistical Offices of the Länder jointly maintain

AFiD. AFiD contains information on firms’ production inputs and outputs, prod-

uct portfolios, R&D expenditures and energy consumption. In principle, AFiD

represents the entire universe of manufacturing firms with at least 20 employees.

Yet, to limit the administrative burden, AFiD includes some variables only for a

representative sub-sample encompassing roughly 40% of all firms. Intermediate

input expenditures and employment by full time equivalents are only available

for the sub-sample and are necessary to estimate firm TFP. As this sub-sample

is stratified by industry and size-class, which are variables that we observe for all

firms, we can construct inverse probability weights to translate all of our results

to the underlying firm population.

Notably, AFiD provides detailed information on quantities and factory gate prices

for the distinct final products produced by each firm at the nine-digit PRODCOM

classification. This information is crucial for our study for two reasons: First, it

allows us to control for firm-specific price variation when estimating firm produc-

tivity (see section 2.3). Second, it enables us to define import competition at the

firm-level. Calculating import competition at the firm rather than the industry

level accounts for firms being active in multiple industries simultaneously and

allows us to clearly separate final product competition from competition in firms’

supplier markets (i.e. intermediate input imports).

To construct a firm-specific measure for the strength of import competition, we

combine the AFiD database with the United Nations Comtrade database (Com-

trade thereafter) at the product-level. Comtrade contains the value and quantities

of products traded between any two countries. After combining this product-level

trade data with the product-level production data from AFiD, we calculate firm-
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level import competition as the revenue weighted share of imports in each firm’s

product markets:

IMP n
it =

∑
g

[
Rigt∑
g Rigt

Mn
gt

MWorld
gt +

∑
iRigt

] ∗ 100 (2.1)

where g, i, and t respectively indicate the product, firm, and time dimension.

Mn
gt is the value of all German imports of product g from a country(-group) n at

time t.
∑

iRigt denotes the total German production value of product g (from

firms with at least 20 employees), while Rigt and
∑

g Rigt are a firm’s sales of g

and total product market revenue, respectively.

We calculate our import competition measure separately for a sample of high-

income and low-income countries. Thus, we have: n=(High,Low), where we

include USA, Canada, Japan, and South Korea into the high-income group and

China, India, Russia, Brazil, South Africa, Argentina, Chile, Mexico, Malaysia,

Turkey, Thailand, Tunisia, Bangladesh, Indonesia, Philippines, Vietnam, and

Pakistan into the low-income group. We apply this separation because products

from high- and low-income countries may differ in their characteristics with re-

spect to product quality, capital intensity, level of unit costs of production, or

embedded technology (Schott, 2004; Hummels and Klenow, 2005). By splitting

import competition shocks from these two groups, we take into account that

incumbents should react differently to different competitors. Incumbents might

e.g. choose to compete over price or over quality. We discuss this further in our

results section 2.5.

2.3 Estimating Firm Productivity

To recover a quantity-based measure of firm productivity (i.e. TFPQ), we define

the following physical Cobb-Douglas production model:

Qit = Lβ
l

itK
βk

it M
βm

it ωitεit (2.2)

where Qit denotes produced quantity and Lit, Kit, and Mit respectively are the

amount of labor, capital, and intermediates used in the production of Qit. ωit

denotes Hicks-neutral total factor productivity and εit is an i.i.d. random error
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term that can represent both shocks in the real world and measurement error.

Taking logs from equation (2.2) motivates estimating the production function as

follows:

qit = βllit + βkkit + βmmit + ωit + εit, (2.3)

where smaller letters denote logs and εit now is a standard linear error term.

We aim to calculate ωit as a residual after estimating the production function in

equation (2.3). Before doing so, however, we need to address three econometric

challenges.

First, due to differences in physical reporting units across products (e.g. volume

vs. kilogram), we cannot define a quantity-based output measure for multi-

product firms. To tackle this issue, we follow Eslava et al. (2004) and purge

observed firm revenue from price variation by deflating it with a firm-specific

price index calculated from information on product prices given in our data.

Slightly abusing notation, we keep using qit for the resulting quasi-quantities.

Second, we assume that the firm has to choose investment and labor before it

learns its current productivity ωit. This is justified, given the time it takes to

install new machinery and the substantial rigidities of the German labor market

(OECD, 2019). However, treating labor as a flexible input has negligible effects on

our estimation results. Nevertheless, equation (2.3) cannot be estimated directly,

as the firm choosesmit based on the unobserved ωit, which introduces endogeneity.

Third, although we observe labor inputs directly in quantities (i.e. in full time

equivalents), capital and intermediate inputs are, by their nature, only reported

in monetary units. Hence, after deflating kit and mit with sector-s-specific price

indices, two unobserved terms capturing firm-specific deviations from industry-

level prices enter our physical production model. Formally:

qit = βllit + βk(kit+ pkit − p̄kst) + βm(mit+ pmit − p̄mst) + ωit + εit (2.4)

qit = βllit + βkk̃it + βmm̃it+ ωit + εit, (2.5)

where we define k̃it = kit + pkit − p̄kst, with the tilde indicating that the respective

variable is deflated by an industry-level deflator. pkit and pmit respectively denote

firm-level prices for capital and intermediate inputs and p̄kst and p̄mst refer to the

associated industry-level price indices. As input prices are correlated with output
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volumes, estimating the above production function without observing pkit and pmit

produces biased input coefficients (Beveren, 2012). To address this input price

bias, we follow De Loecker et al. (2016). They show that under a number of

assumptions, the price bias can be treated without observing input prices. These

assumptions are

� differences in input prices across firms emerge from quality differences

� firms who manufacture high quality outputs do so by using high quality

inputs

� complementarity in input quality, i.e. firms combine high quality labor with

high quality intermediates

� vertical differentiation model of consumer demand

As discussed in De Loecker et al. (2016), those assumptions allow us to control

for input price variation across firms using solely information on output prices.

While they are restrictive, even more restrictive assumptions are made whenever

researchers estimate production functions of multiproduct firms without explicitly

treating the price bias in this way.

We act on this result. Specifically, for every firm we construct a revenue weighted

average of the firm’s product price deviations from the industry-wide average

product prices for its various products. We denote this index by ηit and include

it as an additional control variable into our production model:

qit = βllit + βkk̃it+ βmm̃it+ γηit + ωit + εit. (2.6)

The last econometric issue we face is that ωit is unobserved but correlated with

firms’ input decisions for flexible production inputs, i.e. with firms’ input decision

for intermediates. To solve this issue, we apply a control function approach in

the spirit of Olley and Pakes (1996) and Levinsohn and Petrin (2003), where we

derive an expression for ωit from inverting firms’ demand function for energy and

raw materials (which are components of total intermediates), denoted by eit:

ωit = git(.) = git(k̃it, lit, ẽit, zit). (2.7)
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zit captures state variables of the firm, which, in addition to capital and labor,

influence firm productivity and the demand for eit. As noted by De Loecker

et al. (2016), zit should be specified as broadly as possible. Therefore, we in-

clude dummy variables for export as well as research and development activities,

dummy variables for the firm’s headquarter location and its main four-digit indus-

try, the number of products a firm produces, and firm-level import competition

into zit. Assuming that ωit follows a Markov-process, i.e. ωit = ωit−t + ξit, where

ξit denotes the innovation in productivity, and plugging equation (2.7) into (2.6)

gives:

qit = βllit + βkk̃it+ βmm̃it+ γηit + git−1(.) + ξit + εit (2.8)

which constitutes the basis of our estimation. We estimate equation (2.8) in

one step following Wooldridge (2009) and instrument m̃it and ηit with their lags

to allow for productivity shocks to affect those flexible variables. Hence, the

identifying moments are given by:

E(ξit+ εit|lit, k̃it, m̃it−1, lit−1, k̃it−1, ẽit−1, zit−1,Γit−1, ηit−1) = 0 (2.9)

where Γit collects interaction terms entering git(.). Having estimated the produc-

tion function, we can recover firm productivity by:

ωit = qit − (βllit + βkk̃it + βmm̃it + γηit).

To allow for differences in production technologies across sectors, we estimate

equation (2.9) separately for every NACE rev. 1.1 two-digit sector with at least

500 observations. Table 2.1 presents the associated results.

Overall, our estimates look reasonable with returns to scale being mostly close

to one. Output elasticities vary considerably across industries, highlighting the

importance of allowing for differences in production technologies across indus-

tries. Note that output elasticities for capital are less precisely estimated than

output elasticities for intermediates and labor, which is in line with existing work,

e.g. De Loecker et al. (2016); Dhyne et al. (2017). For industries 27, 29, and 35

we even estimate negative values for capital’s output elasticity. As such estimates

are inconsistent with our production model, we exclude those sectors from further

analysis.
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Table 2.1: Output Elasticities by Sector

# obs m l c RTS
Sector (1) (2) (3) (4) (5)

15 Food products & beverages 16,566 0.68*** 0.22*** 0.16*** 1.05
(0.02) (0.02) (0.04)

17 Textiles 3,925 0.76*** 0.25*** 0.01 1.02
(0.03) (0.04) (0.04)

18 Apparel, dressing etc. 1,367 0.77*** 0.18*** 0.04 0.99
(0.03) (0.04) (0.05)

19 Leather & leather products 778 0.75*** 0.22*** 0.12 1.08
(0.04) (0.05) (0.09)

20 Wood & wood products 2,850 0.70*** 0.25*** 0.01 0.96
(0.03) (0.04) (0.05)

21 Pulp & paper products 3,618 0.81*** 0.18*** 0.03 1.02
(0.03) (0.04) (0.02)

24 Chemical products 7,030 0.76*** 0.22*** 0.06 1.05
(0.02) (0.04) (0.04)

25 Plastic products 7,835 0.69*** 0.10 0.04 0.83
(0.03) (0.08) (0.03)

26 Non-metallic minerals 6,747 0.74*** 0.26*** 0.02 1.02
(0.02) (0.03) (0.03)

27 Basic metals 5,213 0.72*** 0.27*** -0.01 0.98
(0.03) (0.04) (0.03)

28 Fabricated metal products 12,944 0.70*** 0.27*** 0.08** 1.04
(0.02) (0.05) (0.03)

29 Machinery & equipment 14,564 0.73*** 0.13*** -0.04 0.82
(0.02) (0.04) (0.03)

30 Electronics & optics 631 0.82*** 0.21*** 0.28** 1.31
(0.09) (0.09) (0.13)

31 Electrical machinery 5,402 0.68*** 0.26*** 0.10*** 1.05
(0.03) (0.04) (0.04)

32 Television & communication 1,257 0.77*** 0.04 0.12 0.93
(0.05) (0.11) (0.12)

33 Precision instruments 3,279 0.61*** 0.23*** 0.11 0.96
(0.03) (0.05) (0.08)

34 Motor vehicles 2,881 0.81*** 0.15*** 0.04 1.00
(0.07) (0.05) (0.06)

35 Transport equipment 8,15 0.78*** 0.07 -0.35** 0.50
(0.07) (0.08) (0.11)

36 Furniture manufacturing 4,287 0.75*** 0.17*** 0.04 0.96
(0.03) (0.05) (0.04)

Notes: Results obtained from equation (2.6) per sector. Columns 1-5 report the number
of observations, the output elasticities for intermediate, labor, and capital inputs and the
returns to scale. All regressions control for time dummies and are weighted using inverse
probability weights. Clustering at the firm-level. Significance: *10 %, **5 %, ***1 %.



2.3. ESTIMATING FIRM PRODUCTIVITY 11

Table 2.2: Firm Productivity with and without Price Variation

TFPQ TFPR
Mean SD Mean SD

Sector (1) (2) (3) (4)
15 Food products and beverages 2.20 0.23 2.83 0.16
17 Textiles 2.97 0.21 3.22 0.14
18 Apparel, dressing, and dyeing of fur 2.62 0.18 2.54 0.13
19 Leather and leather products 1.73 0.19 2.50 0.12
20 Wood and wood products 3.98 0.22 3.24 0.12
21 Pulp, paper, and paper products 2.18 0.20 2.99 0.12
24 Chemicals and chemical products 2.41 0.24 2.50 0.15
25 Rubber and plastic products 4.38 0.32 3.73 0.13
26 Other non-metallic mineral products 3.25 0.23 3.41 0.14
28 Fabricated metal products 2.83 0.26 3.25 0.14
30 Electrical and optical equipment -1.91 0.54 0.74 0.42
31 Electrical machinery and apparatus 2.71 0.27 2.67 0.17
32 Radio, television, and communication 2.29 0.31 2.37 0.23
33 Medical and precision instruments 3.83 0.27 5.83 0.29
34 Motor vehicles and trailers 2.07 0.21 3.27 0.15
36 Furniture manufacturing 3.06 0.24 2.66 0.16

Notes: This table reports estimates of firm productivity. Columns 1 and 2 refer to
quantity-based TFP measures, whereas columns 3 and 4 report statistics for TFP
when ignoring firm-level price variation when estimating the production function.
Columns 1 and 3 report means. Columns 2 and 4 report standard deviations.

Table 2.2 shows estimates of our quantity-based productivity measure, to

which we refer as TFPQ, next to a productivity measure that ignores price vari-

ation across firms within industries, which we call TFPR. To estimate TFPR,

we deflate firm revenues with a sector-level deflator and omit ηit from equations

(2.6)-(2.9). While we find only minor differences between our TFPQ and TFPR

measures in some sectors (e.g. industries 18, 24, and 31), other industries display

huge discrepancies between both productivity measures (e.g. sector 30, 33, and

34). Note that the dispersion in TFPR is smaller than in TFPQ, which is in line

with findings in Foster et al. (2008).
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2.4 Identifying the Productivity Effects of Im-

port Competition

To assess the effect of import competition on firm productivity, we estimate a

fixed effects model:

ωit = βHighIMPHigh
it−1 + βLowIMPLow

it−1 + C
′

it−1γ + θt + θis (2.10)

where C
′
it−1 is a vector of control variables capturing firms’ export intensity

and number of products. θt and θis are time and interacted firm-sector fixed

effects, respectively. Controlling for firm-sector fixed effects eliminates the po-

tential for statistical jumps in firm productivity due to changes in firms’ sector

classification (as the parameters of the production function are estimated sepa-

rately for individual industries). We thus identify our coefficients using within-

firm-within-sector variation. In essence, our regression model is similar to a first

difference model but avoids a disproportional loss of observations when working

with a rotating panel (as in our case). We weight all observations using inverse

probability weights to achieve a representative estimate and lag our import com-

petition variables to allow for a time span of adjustment that is consistent with

our production model.

However, there are valid endogeneity concerns when estimating equation (2.10)

by OLS, which prohibit any causal interpretation of our results. There are two

main concerns:

1. Foreign competitors might specifically target unproductive firms and sec-

tors, which causes reverse causality.

2. Domestic German governments might protect specific sectors and firms from

foreign competition, most likely especially uncompetitive sectors.

To solve this endogeneity problem, we apply an instrumental variable strategy

following Autor et al. (2013) and Dauth et al. (2014). Specially, we exploit that an

increase in the competitiveness of a country-group n induces supply shocks also

for other countries besides Germany. Using trade flows between German com-

petitors and third countries therefore allows us to isolate changes in a country’s

competitiveness that are unrelated to German policy changes or the particular
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weakness of German firms. To implement the IV strategy, we instrument our

import competition measures with the share of country-group n’s imports in to-

tal imports of product g observed in third countries. Hence, we define firm-level

instruments for country-group n’s import competition as:

ISn→thirdit =
∑
g

[
Rigt∑
g Rigt

Mn→third
gt

MWorld→third
gt

] ∗ 100 (2.11)

whereMn→third
gt is the value of product g imports flowing from n to third countries.

As for our endogenous import competition measure, we aggregate product-level

trade flows for our instruments to the firm-level by using revenue weights.

A crucial point for our IV strategy to work is that there are no other unobserved

confounding factors that are correlated between Germany and countries included

in the instrument country-group (e.g. correlated demand and supply shocks or

monetary policy within the European Monetary Union). This would violate our

exclusion restriction. Besides that, our instruments must be relevant enough to

avoid a weak instrument problem. Therefore, we follow Dauth et al. (2014) and

include countries with an income level similar to Germany in our instrument

country-group, except for all direct neighbors of Germany and members of the

European Monetary Union. Ultimately, our third country-group consists of Nor-

way, New Zealand, Israel, Australia, Great Britain, Sweden, and Singapore.

Note that the weighting scheme we use to aggregate product-level trade flows to

the firm-level might introduce another endogeneity problem when firms adjust

their product-mix in anticipation of import competition. In a robustness check,

we therefore use a more rigorous specification where we base our aggregation of

product trade flows for our instruments on constant weights using firms’ first

observed product portfolio (the product-level data already starts in 1995, 5 years

before the start of our TFP series). This eliminates the potential for any endoge-

nous product mix adjustment by firms.
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2.5 Results

2.5.1 Import Competition and Firm TFP

Table 2.3 shows results from estimating equation (2.10) by OLS and IV. Given

that OLS suffers from the multiple endogeneity problems discussed above, we

only interpret the IV results. For a first overview, we pool import competition

from all countries. We find that a one percentage point increase in total import

competition causes an increase in firm productivity by 0.2%.

Table 2.3: Firm Productivity and Import
Competition

OLS IV
ωit ωit
(1) (2)

IMPHigh+Low
it−1 -0.0001 0.0018***

(0.0004) (0.0001)
Firm Controls YES YES
Firm * sector FE YES YES
Time FE YES YES
Observations 78,414 78,414
R-squared 0.986 0.986
First-stage F-test - 142.00
Number of firms 16,925 16,925

Notes: This table reports results from es-
timating equation (2.10) by OLS (column
1) and IV (column 2) when pooling import
competition from high- and low-income coun-
tries. All regressions are weighted using in-
verse probability weights and include con-
trols for firms’ export intensity and number
of products. Standard errors are clustered at
the firm-level. Significance: *10 percent, **5
percent, ***1 percent.

In several theoretical frameworks, a firm’s reaction to new competition de-

pends on the type of the competitor: In a quality ladder model in the vein of

Romer (1990); Aghion and Howitt (1992), the technological distance between in-
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cumbent and new competitor determines both the size and sign of the response.

Since competition might force firms to innovate in order to escape their com-

petitors, but also erode the rents which finance innovation, the substitutability

between the incumbent’s and the entrant’s product is also a key determinant

of the response (Khandelwal, 2010; Aghion et al., 2006; Aw et al., 2011). Both

arguments can be applied in our setup: Goods from low-income countries are

typically characterized by lower unit costs of production and lower quality levels

(Schott, 2004; Hummels and Klenow, 2005) than German goods. The quality

of imported goods is not observed directly, but we can show that imports from

high-income countries disproportionally go to sectors of the German economy

that use comparatively little labor, but more capital and R&D. The reverse is

true for low-income countries (Appendix A). We thus are comfortable to sug-

gest that holding the product code constant, there are substantial differences

in product quality and technological sophistication between products from high-

and low-income countries. Thus, from a German firm’s point of view, import

competition from a low-wage country (as China) may pose a completely different

threat than import competition from a high-wage country (as the US). Table

2.4 separates total import competition into import competition from high- and

low-income countries (as described by equation (2.10)).
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Table 2.4: Firm Productivity and Import Competition

OLS IV IV IV IV
ωit ωit ωit ωit ωit

IMPHigh
(it−1) 0.0004 0.0112*** 0.0222*** 0.0206**

(0.0009) (0.0037) (0.00713) (0.0104)
IMPLow

(it−1) -0.0003 -0.0005 -0.0008 0.0001

(0.0005) (0.0010) (0.00148) (0.0018)

IMPHigh
(it−1) (only core) 0.0165*

(0.0100)
IMPLow

(it−1) (only core) -0.0093

(0.0068)

IMPHigh
(it−1) (non-core) -0.0053

(0.0074)
IMPLow

(it−1) (non-core) 0.0080

(0.0071)
Firm * sector FE YES YES YES YES YES
Time FE YES YES YES YES YES
First portfolios NO NO YES NO YES
Single-product firms NO NO NO YES NO
Observations 78,414 78,414 73,212 22,729 45,559
R-squared 0.986 0.985 0.984 0.982 0.983
First-stage F-test - 36.89 13.13 12.09 3.38
Number of firms 16,925 16,925 15,853 5,467 9,690

Notes: Table 2.4 reports results from estimating equation (2.10) by OLS and IV when
separating import competition into high- and low-income country import competition.
Columns 1 and 2 respectively show OLS and IV results from our baseline specification
using all available firms. Column 3 uses firms’ first observed product mix to aggregate
product-level trade flows to the firm-level for the instrument variables. Column 4
runs our baseline specification exclusively for single-product firms. All regressions
are weighted using inverse probability weights and include controls for firms’ export
intensity and number of products. Standard errors are clustered at the firm-level.
Significance: *10 percent, **5 percent, ***1 percent.

The OLS estimator is again inconclusive (column 1). Using our IV specifica-

tion, we find that the positive productivity effect of import competition is solely

driven by high-income countries (column 2). This strong result implies that firms

only become more productive in response to threats from comparable competi-

tors, while ignoring low-income competition.

There are two threats to the IV identification used in column 2. The first threat
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is that firms anticipate changes in competition and adjust their product portfolio

before the shock. Thus, firms might self-select into treatment by dropping or en-

tering exposed markets. As discussed in section 2.4, we construct our instrument

using firms’ first observed product portfolio to alleviate this concern. Column

3 shows that the measured effects are even stronger when accounting for this

potential problem. This suggests that if at all, firms move away from attacked

products and our baseline methodology is thus biased downwards.

The second threat is that different countries attack different parts of firms’ prod-

uct portfolio. If low-income countries only attack firms’ peripheral products, we

might not measure a response because firms do not care about these products,

independent of who competes with them. We gauge the scope of this problem

by estimating equation (2.10) for single-product firms only (column 4) and by

estimating two coefficients for import competition in core and non-core products

(column 5). We still find that high-income countries are solely responsible for

productivity gains.

As accounting for both potential identification problems leads to higher point

estimates, we view our main specification as a conservative baseline.

Still, there are three different interpretations:

1. First, high- and low-income countries compete with different German firms

and these different German firms react differently.

2. Second, high- and low-income countries enter different sectors of the Ger-

man economy and competition in these different markets works differently.

3. Third, high- and low-income countries might produce different versions of

the same product, which leads to different responses by German firms.

Both interpretation (1) and (2) require that high- and low-income countries

target different firms. Table A.2 in appendix A shows that low-income coun-

tries indeed target products with lower capital and R&D intensity. However,

only a minority of firms (15%-20%) are overwhelmingly exposed to either one

type of competition. Most firms are affected by comparable levels of threat from

both high- and low-income countries. I.e., most markets are characterized by

the simultaneous existence of alternatives from low-income countries, domestic

German firms and high-income countries. We thus conclude that the most likely
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driver of the estimated effect differences is (3): Goods from high- and low-income

countries are viewed as different products by consumers and thus domestic Ger-

man firms react differently to their introduction.

To confirm this interpretation, we split the firms into groups according to

whether they primarily faced competition from low-income countries and accord-

ing to their lagged productivity. This allows us to check whether firms with

different characteristics exhibit the same response. To conduct this analysis, we

interact import competition with an indicator variable for each group. Table

(2.5) reports the results from this regression.



2.5. RESULTS 19

Table 2.5: Productivity Effects in Different Groups of Firms

Firms Exposed to Productive Firms
Low-Income Competition

OLS IV OLS IV
ωit ωit ωit ωit

IMPHigh
(it−1) 0.0039** 0.0209*** -0.0006 0.0098*

(0.0020) (0.0059) (0.0012) (0.0050)
IMPLow

(it−1) -0.0004 -0.0005 0.0000 -0.0002

(0.0006) (0.0010) (0.0006) (0.0011)

IMPHigh
(it−1) ∗D(it−1)(medium) -0.0039* -0.0097* 0.000146 0.0000

(0.0020) (0.0054) (0.000822) (0.0013)
IMPLow

(it−1) ∗D(it−1)(medium) 0.0011 0.0001 0.0002 -0.0002

(0.0011) (0.0029) (0.0003) (0.0004)

IMPHigh
(it−1) ∗D(it−1)(negligible) -0.0038* -0.0083 0.0009 0.0012

(0.0022) (0.0068) (0.00111) (0.00173)
IMPLow

(it−1) ∗D(it−1)(negligible) -0.0035 -0.0202 -0.000312 -0.0008

(0.0056) 0.0173 (0.000456) (0.0006)
Firm * sector FE YES YES YES YES
Time FE YES YES YES YES
D(it−1)(group) YES YES YES YES
Observations 78,353 78,353 68,982 68,982
R-squared 0.986 0.985 0.987 0.986
First-stage F-test - 4.938 - 8.429
Number of firms 16,911 16,911 14,493 14,493

Notes: Table 2.5 reports results from estimating equation (2.10) by OLS and IV when
separating import competition into high- and low-income country import competition. To
rule out that our effects are only driven by high- and low-income competition hitting dif-
ferent firms, this table presents results after splitting firms along their relative exposure to
low-income trade and productivity. Highly exposed firms or highly productive firms form
the baseline. Firms that experienced at least three times as much low-income import com-
petition as high-income competition are coded as highly exposed. The medium category
contains firms with roughly equal levels of exposure or a foreign market share lower than
5%. Firms with negligible low-income competition exposure are firms that have at least
three times as much high-income competition than low-income competition. For productiv-
ity, firms are grouped into tertiles according to last year’s productivity. The results show
that firms react very similarly and firms exposed to low-income competition are, if at all,
more sensitive to shocks. Thus, our results cannot be driven by which firms were shocked.
All regressions are weighted using inverse probability weights and include controls for firms’
export intensity and number of products and interaction terms of these variables with the
group dummies. Standard errors are clustered at the firm-level. Significance: *10 percent,
**5 percent, ***1 percent.
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Firms mostly attacked from low-income countries form the baseline category

in column 2 of Table 2.5. Such firms are actually the most sensitive to competi-

tion pressure of all types, as is evident from the negative interaction terms. Thus,

while firms exposed primarily to low-income competition do not encounter high-

income country competitors often, if they do, they actually react about twice

as sensitive as the average firm. They are also the only firms to react at least

somewhat to competition from low-income countries, increasing their productiv-

ity by about 0.4% per percentage point rise in the market share of low-income

competitors. However, because of how few firms are exposed to only one type of

competition, the differences between the three groups are barely significant.

The most productive third of firms forms the baseline category in column 4 of

Table 2.5. However, these firms do not act differently than their less productive

counterparts. This is in contradiction to quality ladder models, where the most

productive firms act differently than other incumbents, especially to technologi-

cally advanced entrants. This result also holds when splitting firms by research

intensity (share of R&D in total costs).

2.5.2 Import Competition and Firm Adjustments

Of course, firms cannot directly choose their productivity levels. To better un-

derstand the strikingly different effects of competition from different countries,

we study the adjustment strategies of firms. Specifically, we analyze the effects of

import competition on firms’ sales, quantities, prices, input decisions, and R&D

expenditures. Table 2.6 reports the associated results, where r̃it, Pit, qit, lit, wit,

k̃it, m̃it, and log(R&Dit) respectively refer to the firms’ revenue, output price in-

dex, quasi-quantities, full-time equivalents, wage bill, capital stock, intermediate

expenditures, and logged R&D expenditures. Again, smaller letters denote logs.

Note that we focus on the intensive margin of R&D spending by using logged

R&D expenditures as dependent variable.

Regardless of its origin, we find that foreign competition affects firm sales

negatively (column 1 of Table 2.6). This assures us that firms are adversely

affected by our competition measures. In case of high-income import competi-

tion, the reduction in sales is driven by a fall in output prices, whereas firms
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being hit by low-income import competition reduce their produced quantities.

Evidently, firms join into a fierce price competition over market shares with com-

petitors from high-income countries, while they simply resign market shares to

low-income competitors.

Next, we analyze how firms adjust their input decisions (columns 4, 5, 6, and 7 of

Table 2.6). Low-income import competition causes firms to reduce their employ-

ment and input expenditures. Although firms exposed to high-income import

competition also decrease their input expenditures, they do not reduce their em-

ployment levels. This discrepancy between wage and employment adjustments

can be a consequence of firms passing through adverse effects of competition to

their employees by lowering wages and/or of firms reorganizing their workforce

(i.e. churning).

Firms have a completely different long-term strategy in response to the distinct

types of competition: We find that surviving firms faced with competition from

low-income countries increase their R&D spending, presumably in an attempt to

upscale their products or to discover a different market. Although we do not find

any direct positive effects of low-income import competition on firm productivity,

this increase in R&D activities suggests a potential for future productivity gains

that are not yet realized one year after an import competition shock. This find-

ing is in line with Bloom et al. (2016), but we cannot corroborate their positive

effect of competition from China on productivity. In contrast, R&D spending in

firms facing competition from high-income countries seems to be victimized by

the same cost saving impulses as other expenditures.

An important implication of this latter finding is that R&D investments cannot

explain the increase in productivity from high-income import competition. In-

stead, high-income import competition increases firm productivity by forcing a

more efficient use of production inputs that translates into a reduction in total

input expenditures while keeping output quantities constant. This is likely as-

sociated with a reduction in so-called X-inefficiencies within firms (Leibenstein,

1966; Stigler, 1976).

Such X-inefficiencies are often seen as a form of rent consumption by non-shareholders

(Biggerstaff et al., 2016). If this is true, then fiercer competition increases the

price of this consumption. Theoretically, as demand curves become flatter, small

differences in productivity can lead to hugely different profit outcomes. Conse-
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quently, tighter competition will force firms to monitor their production processes

(and employees) more strictly. Since high-income competition erodes the firms’

(monopoly) rents, we interpret our findings as cross-industry causal evidence for

this behavior, something that was previously lacking, though a number of spe-

cialized studies exist (Borenstein and Farrell, 2000; Bloom et al., 2015).

Table 2.6: Firm Adjustment and Import Competition

r̃it qit Pit lit
IMPHigh

it−1 -0.0129* 0.0010 -0.0065* -0.0052
(0.0068) (0.0067) (0.0036) (0.0041)

IMPLow
it−1 -0.0060*** -0.0059*** 0.0008 -0.0031**

(0.0021) (0.0023) (0.0011) (0.0014)
Firm * sector FE YES YES YES YES
Time FE YES YES YES YES
Observations 78,414 78,414 78,414 78,414
R-squared 0.987 0.985 0.836 0.985
First-stage F-test 36.89 36.89 36.89 36.89
Number of firms 16,925 16,925 16,925 16,925

wit k̃it m̃it log(R&Dit)
-0.0097** -0.0099* -0.0131* -0.0870***
(0.0047) (0.0060) (0.0073) (0.0317)

-0.0035** -0.0029** -0.0062*** 0.0314**
(0.0014) (0.0015) (0.0022) (0.0154)

Firm * sector FE YES YES YES YES
Time FE YES YES YES YES
Observations 78,414 78,414 78,414 26,544
R-squared 0.989 0.992 0.986 0.909
First-stage F-test 36.89 36.89 36.89 17.55
Number of firms 16,925 16,925 16,925 5,305

Notes: This table reports results from estimating equation (2.10) by IV. The
dependent variable in columns 1-8 is respectively a firm’s logged revenue,
logged produced quasi-quantity, output price index, logged full time equiv-
alents, logged wage bill, logged capital stock, logged intermediate input ex-
penditures, and logged R&D expenditures. All regressions are weighted using
inverse probability weights and include controls for firms’ export intensity and
number of products. Standard errors are clustered at the firm-level. Signifi-
cance: *10 percent, **5 percent, ***1 percent.
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2.6 Conclusion

This study analyzes how import competition affects firm productivity. To ad-

dress our research questions, we rely on a comprehensive administrative data set

on German manufacturing sector firms containing price and quantity information

on firms’ final products. Based on that data, we derive a quantity-based produc-

tivity measure that isolates changes in firms’ technical efficiency from changes in

firms’ output prices, which is necessary since competition has a direct effect on

prices.

We split import competition according to country of origin and find that firms

react differently to competition from high- and low-income countries. The posi-

tive effect of competition on German firms’ productivity is solely driven by com-

petition from high-income countries: Faced with competition from low-income

countries, the same firms do not improve their productivity.

To better understand our main result, we also document how firms achieve the

productivity improvements that we find. Import competition from high-income

countries leads to strong reductions in inputs (employment, wages, intermediate

inputs and capital), but to essentially no decline in physical output. Instead, firms

facing competition from high-income countries lower their prices. Firms facing

competition from low-income countries do not lower their prices and lose more

market share. Their TFPQ thus does not increase, they just become smaller.

However, firms increase their R&D in response to competition from low-income

countries. This increase in R&D expenditures might translate into long-run pro-

ductivity improvements that we do not capture in our empirical specification.

We argue that the documented productivity gains can only be explained if

firms are not operating at their maximum efficiency level. There is compelling

evidence that firms exhibit sizeable slack, which explains a large part of the ob-

served productivity dispersion between firms (Bloom et al., 2012). For instance,

firms’ managers might consume a part of their firms’ profits as leisure (Biggerstaff

et al., 2016). Theoretically, competition should exert pressure towards efficiency.

Empirically, this has so far only been shown in highly specific cases for select

industries (Borenstein and Farrell, 2000; Bloom et al., 2015). Our study provides
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the first empirical cross-industry evidence that firms have potential for additional

productivity gains. Whether or not they use this potential depends on the type

of competition they face.

We arrive at causal results by isolating exogenous increases of competitiveness

of German trading partners through markets in third countries, following Autor

et al. (2013). However, since we determine competition not at the sector-level,

but at the product-level, we can measure it much more precisely and isolate the

effect of competition from the effects of cheaper intermediate inputs.

Our results on innovation confirm the findings of Bloom et al. (2016), who

showed that European firms innovated in response to trade competition from

China. They are contrary to Autor et al. (2016), who demonstrated that US

firms reduced their R&D efforts. Our findings best fit a model in the vein of

Khandelwal (2010), where new competitors from similar countries pose a stronger

threat to domestic incumbents because they produce products of similar quality

and technological sophistication. Quality ladder type endogenous growth models

predict that higher productivity or more research intensive firms should react

differently to competition, which we cannot find in the data.



Chapter 3

Firms’ and Inventors’ Matching

Behavior

3.1 Introduction

I analyze a potential cause of the productivity growth slowdown in advanced

economies, namely a change in the patterns of allocation of research talent across

firms. Using the PATSTAT patent data base, I find evidence of an increasing

tendency for assortative matching from 1974-2012 on a global scale: Good in-

ventors increasingly match with firms with high quality research departments.

These companies hoard inventive talent.

The gains from this assortative matching have been small: Average patent

arrival rates have been largely stable throughout this period. The estimated

patent arrival rate of inventor-firm pairs puts less weight on the firm: Marginally

increasing firm quality increases the patent arrival rate by half as much as in-

creasing inventor skill. The patent invention function is largely stable over time

and thus cannot explain the changed matching behavior.

To analyze whether inventor mobility is a potential channel of technology dif-

fusion, I link patents to firm level data (AMADEUS 2000-2010) and find that

the share of inventors leaving high productivity firms for low productivity firms

declines. Firms’ own patents and an inflow of inventors from other firms increase

productivity and boost profits. These findings suggest that increased assortative

25
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matching of inventors to firms is a plausible driver of the slowdown in technol-

ogy diffusion. Conversely, since any match a firm secures with the inventors of

new technologies is sticky, matches serve as natural imitation protection: Firms

themselves report that staff retention and technological lead are their most im-

portant strategies for securing the profits from their inventions. Comparatively,

patents only play a minor role (Harhoff, 1997). Yet, while some work exists on

which inventors match with which firms (Pearce, 2019a), matching between skill

levels is understudied: To my knowledge, I present the first application of labor

market matching estimators that can recover inventor skill and firm quality to

inventor-firm relations. In other settings, however, the literature on labor market

matching has already documented increased assortative matching (Abowd et al.,

1999; Card et al., 2013; Andrews et al., 2008; Hagedorn et al., 2017).

Rising assortative matching of skilled inventors to high quality firms and

slowing technology diffusion might explain a substantial part of the productiv-

ity growth slowdown of the last decades: The literature on the economy during

the productivity growth slowdown has documented declining labor shares (Au-

tor et al., 2017), increased profit shares (Barkai, 2017) and increased markups

(De Loecker and Eeckhout, 2017). Rising market concentration is often seen

as a result of technological leadership by superstar firms (Autor et al., 2017).

Theoretically, slowing technology diffusion can explain productivity growth de-

creases and increased concentration simultaneously (Helpman and Trajtenberg,

1998; Bresnahan and Trajtenberg, 1995). Empirically, diffusion slowdowns have

indeed been linked to productivity growth declines with diverse empirical strate-

gies (Gal, 2017; Comin and Mestieri, 2010). Akcigit and Ates (2019) combine the

two approaches and calibrate a standard endogenous growth model to show that

declining technology diffusion can fit slowing productivity growth, rising markups

and other trends in the US economy in the past decades.

To arrive at the empirical results, I adapt a state of the art labor market

matching estimator (Hagedorn et al., 2017) to be usable for linked inventor-firm

patent data. I make two methodological contributions: First, I can show how one

can substitute wages used in the original estimator with patenting performance.

Second, I develop a technique to deal with the fact that inventor-firm matches
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are not observed in years without patent applications. Specifically, I recover the

underlying unobserved joint distribution of employment tenure and patent arrival

rate through maximum likelihood estimation and use it to estimate the duration

and productivity of each match.

Both Hagedorn et al. (2017) and my adaptation draw from the theoretical

literature on matching in the labor market, reaching back to Mortensen and Pis-

sarides (1994). We both use this theory to inform the empirical literature con-

cerned with the matching of workers of different ability to heterogeneous firms,

following Abowd et al. (1999). The empirical literature has found that high

ability workers tend to sort to successful firms and finds a trend towards this

assortative matching (Mendes et al., 2010; Card et al., 2013).

I adapt Hagedorn et al. (2017) instead of other estimators intended for the

same purpose: Lamadon et al. (2015); Bonhomme et al. (2017); Lentz et al. (2018)

have less theoretical foundation and higher data requirements. This is because

they rely on grouping similar firms (or workers) based on additional variables.

Unfortunately, PATSTAT contains little information on both inventors and firms

besides their patents, so it is difficult to group similar workers and firms with

accuracy.

I use the PATSTAT data base provided by the EPO because of its global

coverage.1 PATSTAT contains inventor and firm names and rich information on

the content of the patent, up to the original document. PATSTAT can be used as

a matched employer-employee data set after extensive data treatment, for which

I improve upon Magerman et al. (2006) and Peeters et al. (2010). The final data

contains information on the output of each inventor-firm pair in each year. How-

ever, only pairs contributing to at least one patent are observed. I account for

this truncation by estimating the Poisson rate of patenting for each employment

spell via maximum likelihood estimation. This yields the probability to observe

any given employment spell and get an unbiased estimate of its duration and

expected number of patents per year.

1I exclude communist countries before 1988 since both the function and size of firms are not
comparable to market economies.
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The remainder of the paper is structured as follows: Section 3.2 will describe

the data and my treatment of it. Section 3.3 will present the estimation proce-

dure. Section 3.4 will present and discuss the results. Section 3.5 concludes.

3.2 Data

3.2.1 The PATSTAT Data

Patent data from across the world gathered in the PATSTAT database forms the

basis of my empirical strategy. This data contains the filing date of any patent

application, a description of the technology and the names of firms and inventors

involved. For some participating countries, the data starts in 1850, however, cov-

erage pre-WW2 is generally low. Patents from some countries are only available

from a later date onwards: E.g., Japan enters the database in the mid-seventies.

Around the same time, coverage rates improve in general and the data can give

a reliable picture of worldwide patent activity.

The following graph shows the number of patents over time for selected countries.

Note that the stable or shrinking number of national patents for EU countries is

offset by a large increase in EU-wide EPO applications.

Figure 3.1: Patent applications per patenting authority; DE = Germany; EP =
European Patent Office; ES = Spain; FR = France; GB = Great Britain; IT =
Italy; JP = Japan; KR = Republic of Korea; TW = Taiwan; US = USA. Source:
PATSTAT
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Peruzzi et al. (2014) provide a PATSTAT-AMADEUS link, which I use to

relate my inventor labor market data to actual economic outcomes like profits or

firm TFPR. Apart from string matching firm names, they use the other variables

in AMADEUS to predict which firms are more likely active in PATSTAT. Their

technique allows to merge around 140.000 companies to the PATSTAT database.

Using PATSTAT as an employer-employee data set entails challenges as well

as advantages over commonly used social security data. The following gives a

brief overview over the main opportunities and problems when using this data,

compared to standard social security employer-employee data sets. A detailed

description of the necessary data treatment steps can be found in Appendix E.

The first advantage of PATSTAT is that it is much richer than social security

data regarding the type of work that inventors do: Patent applications contain

descriptions of the technology and a list of co-inventors. In employer-employee

settings, all workers are usually treated as perfect substitutes, only differentiated

by the skill with which they produce. I improve upon this treatment by using the

IPC 4-digit technology codes assigned to every patent: I contract the technology

space into 56 technology clusters, comprised of IPC classes that often appear

jointly on patent applications. I use the clustering algorithm of Pons and Latapy

(2005). Throughout the rest of the paper, technological clusters will differentiate

inventors horizontally, i.e. there will be separate labor markets and rankings in

each technology cluster. Inventors are assigned to their main technology cluster.

Inventors’ patent portfolios are largely within one technology cluster: The most

important technology cluster of an inventor covers 88% of his patents on average

and 56% of inventors only patent within one cluster.

Second, PATSTAT’s patents are a direct measure of the output of a match be-

tween firm and inventor, which is usually not available from employer-employee

data. Since this data is normally derived from social security declarations, out-

put is approximated using wage information. However, the wage also contains

the bargaining position of both parties, which makes it difficult to extract match

production.

Third, most workers, including inventors, work in teams. Such worker teams

are not observable in standard matched employer-employee data sets. However,

PATSTAT’s patent applications contain the names of all contributing inventors.
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I will discuss in section 3.2.2 which assumptions create an incentive to form teams

and how such teams affect the matching rationale of firms and inventors. I will

also provide some evidence on which assumption is supported by the data.

However, PATSTAT data is not originally intended as an employer-employee

data set and using it this way also entails some challenges. Importantly, PAT-

STAT does not contain unique firm or person identifiers. Instead, it contains the

names as written into the fields ”inventor” and ”applicant” on the patent. Thus,

an important step whenever using PATSTAT is to identify individuals and firms,

for which I improve upon earlier works (Peeters et al., 2010; Magerman et al.,

2006) with a multi-step procedure.

This leaves the problem of one name representing multiple inventors. So far, there

is little systematic treatment of this possibility. I use name frequency tables, IPC

class portfolios of the alleged inventors and the longevity of alleged inventors to

find names likely representing more than one inventor and drop them from the

data.

After these cleaning procedures, which I detail in Appendix E, I feel confident

when interpreting the remaining data as an employer-employee data set which

contains both the inventors and the firms involved in any patent.

3.2.2 Patent Contents and Inventor Teams

PATSTAT contains information about the actual content of inventions through

patents’ technology classes. I use patents’ technology classes to extract informa-

tion about which inventors do similar research and could in principle be substi-

tuted. This defines the size of inventors’ labor markets. While current search and

matching labor market papers treat the whole labor market as one, I split the

labor market for inventors into different markets for different technology clusters

and propose an algorithm which can be transferred to a more standard setting,

should more data on workers’ occupation become available. Intuitively, the al-

gorithm clusters technologies between which inventors switch frequently, because

this indicates that these inventors are substitutable. Appendix F details the pro-

posed algorithm, which treats each category combination as a potential distinct
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cluster and then connects such clusters where possible.

PATSTAT also contains information about the team structure in the form of

co-signers on patent applications. Inventor teams offer a fundamental challenge:

There is neither a theoretical model nor a readily available estimator for a situ-

ation where workers are hired and then assigned to teams. The current state of

the art estimators treat the output of a worker as a function of his skill and the

firm’s quality only, assuming that all workers work independently from each other.

In the larger literature, there are two different ways to explain why inventor

teams form.

Akcigit et al. (2018) exemplify the first way. Inventor teams create patents ac-

cording to a Cobb-Douglas production function in the team leader’s skill and the

number of inventors: λ = (xi)
ζn(1−ζ). Only the skill of the team leader mat-

ters, so mediocre inventors can make a meaningful contribution if they are paired

with an excellent inventor. Beyond this one example, this first way of modeling

assumes that inventors are in principle substitutable, but that grouping them

increases the arrival rate of patents.

The opposite approach is to maintain that inventors are complements: Each

inventor possesses unique knowledge. Inventors work together because some re-

search projects require knowledge in multiple areas and one inventor cannot mas-

ter them all. E.g. Pearce (2019b) studies how inventor teams form and how the

returns of more depth (teams with deeper expertise of one area) and width (teams

with expertise in different fields) have changed over time, relative to inventors

performing research alone.

Even before ranking inventors, the raw data can offer some guidance as to

which modeling approach is more appropriate for this particular data set.

First, the size of inventor teams is largely independent of firm size: Inventors are

organized in teams of 2-4 inventors, no matter how large the firm is (figure 3.2).

Second, inventors with a high patenting output work in teams with other

inventors with many patents. Sorting all inventors by the number of patent

families they partook in is of course an imperfect measure of skill, since it ignores

the contribution of firms. However, the correlation is strikingly high (figure 3.3).
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Figure 3.2: Boxplot of the team size per patent family, sorted by the number of
inventors working for the same firm. Firms of basically all sizes opt for teams of
2-4 inventors. Larger firms do not generally assemble larger teams. Even firms
too small to form teams of three inventors often do so by cooperating with other
firms.

Figure 3.3: The graph shows the quality of the two inventors in a team. Both
axes rank all inventors by the number of patent families they contributed to.
100 is the inventor who participated in most patent families. The x-axis denotes
the rank of the less prolific inventor in any two person team, while the y-axis
denotes the rank of the better inventor. The density of matches is highest along
the diagonal. If the better inventor is in the 100% percentile, his co-inventor is
likely to also be in the top percentile. The same holds true across all percentiles:
Prolific inventors match with good co-inventors, unproductive inventors match
with unproductive co-inventors. Matching a star inventor to a helper seems to
be less common.

Third, patent families created by large teams span more patent classes and

teams with more than three inventors span more than two technology clusters
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on average. One explanation for this pattern is that larger teams form to tackle

projects with a broader scope than what any one inventor could cover (Figure 3.4).

Figure 3.4: The left graph reports box plots for the number of full length IPC
classes (70.000 different classes) per patent family in relation to how many dif-
ferent inventors contributed to the patents of the family. Smaller inventor teams
produce patent families with fewer IPC classes. The right graph reports the same
statistic, but for technology clusters. Inventors are assigned to one technology
cluster, but larger teams produce patents with IPC classes from two or more
technology clusters.

These data points are more compatible with some models than with others.

First, the fact that firms of all sizes form teams of the same size is not com-

patible with significant within-firm matching: If firms searched for compatible

inventors to form teams with, larger firms would use their larger pool to find

better matches and build larger teams. Instead, marginal productivity seems to

decline with team size, just as in Akcigit et al. (2018).

Second, teams consisting of two frequently patenting inventors are not rationaliz-

able with the specific patent invention function of Akcigit et al. (2018): With their

production function, high-skilled inventors should form teams with low-skilled

helpers. Instead, inventor skill levels within a team seem to be complements, not

substitutes.

Third, larger inventor teams produce patent families which span more IPC classes

and technology clusters. This is in line with a model in which inventors with dif-

ferent knowledge band together to tackle projects that span multiple areas of

expertise.

Overhauling the whole labor market matching theory to include collabora-

tive projects is outside the scope of this paper. However, the theoretical model
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presented in the next chapter will at least loosen the assumption that inventors’

output is strictly independent from each other without losing tractability. This

opens up the possibility that future work can tackle team formation in a search

and matching context. In addition, the empirical section will discuss how match-

ing complementary inventors affects standard estimators.

3.2.3 Estimating the Duration of Matches

An additional challenge when using patent data is that inventors are missing from

the data if they do not patent in any given year. The data is thus truncated,

since any combinations of inventor and firm not patenting in a certain year are

not observed. Even very productive inventors are only observed with a probabil-

ity of roughly 50-70%.2 Thus, match productivity and the time the match existed

have to be estimated.

Estimating an arrival rate for events when the underlying population is not

observed is a problem that goes beyond this particular paper. Other use cases

are e.g. publications, complaints at government agencies, legal cases at court

and trademarks. In all of these applications, only ”active” units of observation

show up in the data. The arrival rate could be learned from the untruncated

data, but this might not exist or be unavailable due to confidentiality issues. The

methodological contribution of this part of the paper is to demonstrate how to

solve the truncation problem present in such data with weak assumptions.

In the patent literature, some studies try to link patent and census data, which

faces its own problems and is not always even theoretically possible. Other stud-

ies make the ad hoc assumption that inventors work for the same firm between

observations. This in itself does not allow to consistently estimate the arrival

rate of patents, since the years before the first and after the last patent are still

missing.

The estimation I propose requires two assumptions:

2Estimated patent arrival rates are between 0.2 and 1 (see Appendix G).
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1. Inventors continue to work at the same firm between observations.

2. The arrival rate of patenting events is constant for a given match between

firm and inventor.

These assumptions are enough to recover all parameters of interest. Any po-

tential estimator to recover firm and worker ability makes assumption 2 anyway

(Hagedorn et al., 2017). Extensions where the arrival rate evolves over time ac-

cording to a known function follow naturally from the approach presented, but

are unnecessary for this specific paper. The weak assumptions necessary to cor-

rect for truncations facilitate the transfer of this correction technique to other

settings.

The central approach of the estimation is to understand the original, untruncated

data as a mixture distribution of different types of employment spells, charac-

terized by their length and the arrival rate of patenting events. This underlying

distribution creates a distribution of observable outcomes, like an observed spell

of a patent followed by two years of non-patenting, followed by another patent

(1001). The estimated underlying distribution of spell types is the one that pro-

duces a distribution of observable outcomes close to the one in the data. Given

this estimate, it is easy to estimate patent arrival rate and length for every ob-

served spell. The details of how to derive this estimate are described in Appendix

G.

Figure (3.5) shows the results of the correction. It shows the difference be-

tween a ”naive” treatment of the data, where the truncation issue is just ignored,

and the corrected data. Each arrow shows how observed spells were moved in

the productivity-length plane: In the bottom left corner, I estimate that spells

where only one patent in one year was observed have on average an underlying

productivity of just 0.15 patents per year and last roughly 8 years. If one does

not take into account the missing zeros, one would overestimate the productivity

in these employment spells. For extremely long spells (15 years or more), the

estimator even increases the productivity of some spells compared to the naive

baseline. This is because it takes into account that long spells with a mediocre

productivity would in some cases show up as unproductive. While this is an in-

teresting implication, these estimates do not matter much quantitatively, because
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Figure 3.5: Adjustment of observed employment spell productivity and length.
The starting point of each arrow is the productivity and length observed in the
data without the correction routine. The end point of each arrow gives the new
estimated arrival rate of patents after the routine has concluded. Red highlights
spells where the observed productivity was adjusted downwards, blue highlights
spells where the observed productivity was adjusted upwards.

few spells are actually that long.

As is intuitive, the GMM routine estimates that productivity is much lower

than a naive reading of the data might suggest. This is because it includes

completely unsuccessful years in the productivity estimate. Additionally, the

GMM graph is much flatter: The routine concludes that while inventors in longer

spells are generally more productive, the difference is much less pronounced. This

is because the truncation correction takes into account that long matches with

low productivity often generate only one or two patents and thus look just like

short spells in the data. Long and short employment spells are less different than

one would conclude at first glance.

After this correction technique, the data can be treated as an employer-

employee data set which for each match contains

� the estimated length

� the estimated start and end date

� the number of patent families the match participated in

� the estimated arrival rate of patenting events
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� the number of co-inventors for each realized patenting event

� expected match output λx,y as arrival rate times the inverse of the expected

number of co-inventors

While I have to adapt standard labor market matching techniques, they are trans-

ferable to this new setting.

3.3 Estimation Framework

This section details the framework within which I estimate firm quality and in-

ventor skills. The central assumption in the labor market matching literature is

that output is produced by matches of workers and firms. In the context of this

paper, inventors invent in conjunction with the firm they work for. The arrival

rate of new inventions is a function of the inventor’s skill and the quality of the

firm’s research environment, or firm quality for short. Firms’ quality y and in-

ventors’ skill x are unknown to the econometrician but known to some actors in

the economy, as is the patent invention function λ(x, y). The goal of the econo-

metrician is to estimate these objects.

There are two main challenges when transferring standard labor market estima-

tors to this setting. The first challenge is that standard estimators expect a

continuous wage variable, measured with reasonable precision. Instead, patent

data contains the discrete number of patents an inventor has applied for. Even

taking citations into account, the outcome variable is measured with non-normal

error. The second challenge is showing that an estimation procedure accurately

ranks inventors and firms when given patent-per-year instead of wages. Specifi-

cally, I demonstrate that my estimator yields unbiased inventor and firm rankings

even if the patent invention function λ(x, y) changes over time or the production

function is not logarithmic.
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3.3.1 Ranking with Large, Non-Normal Measurement Er-

ror

The problem resulting from large measurement error becomes apparent when

looking at an example: Consider four inventors A, B, C and D. They work for

two different firms, X and Z. Figure 3.6 shows the matching between inventors

and firms and the resulting patent invention rates. C and D have the same patent

invention rate of 50% a year. However, they will likely not have the same outcome

in the data: If the firm produces the expected number of patents, only one of

them will be successful. Thus, a naive ranking according to their outcome would

produce much higher skill diversion within the firm than is actually the case.

Figure 3.6: Example of inventor-firm matching. Inventors A and B have both
matched with firm X and both produce 0.2 patents per year. Hence, they both
have the same skill. Inventors C and D have both matched with firm Z and both
produce 0.5 patents per year. This is due to both inventors having higher skill
than A and B and firm Z being of higher quality than firm X.

Importantly, even ideal data would not alleviate measurement error in the

rate of patent inventions. Ideal data would contain the employment biographies

of inventors, a designation that marks when they are assigned to research activi-

ties and the patenting outcomes. However, even such data would only imperfectly

measure the patenting productivity of inventors: Patenting is a rare event and

even perfect data will contain enough measurement error to make rankings sus-

pect. Any study of the patent invention function has to solve this problem,

regardless of estimation technique and data sources.
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Measurement error in spell productivity will affect the results in two main ways.

First, it will bias the estimate for assortative matching towards 0: Even if a high

quality firm only works with high quality inventors, some matches will be unlucky

and look unproductive. Likewise, unproductive matches of low quality firms with

low quality inventors will sometimes seem really productive.

Second, measurement error will make inventor skill look more important than

it really is: Because inventors usually have few spells, their patent arrival rate

is measured with even more error than the average arrival rate of (large) firms.

Thus, any estimator will pick up on the fact that inventors at the same firm have

widely different outcomes and conclude that inventor skill is an important driver

of patenting.

The size of the bias can be substantial: In the simulation exercise described in

Appendix H with an unadjusted (Hagedorn et al., 2017) estimator, measurement

error in λ reduced estimated assortative matching by half (0.4 instead of 0.8)

and twisted the production function from λyf ,xi = yf ∗ xi to λyf ,xi ≈ xi, i.e. the

estimator was unable to detect any significant effect of firm quality.

In the example of the four inventors above, consider a potential observed outcome

for the matches in figure 3.7. On average, half of the inventors in both firms will

produce more and half will produce less patents than expected. The econometri-

cian observes these λ̂ and would conclude that assortative matching is weak and

inventors’ skills are an important driver of match productivity differences.

I use a Maximum Likelihood argument to correct for this problem: I search

for the distribution of match productivities that is most likely to produce the

observed data. To compute this probability, one needs the global joint distribu-

tion of employment length and patenting probabilities, i.e. how many spells of

which type there are in the data set. I estimate this distribution anyway, in order

to correct for the truncation problem of only patenting matches being observed

3.2.3, but the reasoning is flexible enough to incorporate any estimation technique

that yields this joint distribution. In the best case, with untruncated data, the

econometrician can just observe this distribution. In the example, the truncation

correction procedure would conclude that two employment spells had a patent

arrival rate of 0.2 and two spells had a patent arrival rate of 0.5. With this ad-

ditional information, there are two possible scenarios that could have produced
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Figure 3.7: Example of inventor-firm matching. The econometrician does not ob-
serve the original patent arrival rate λ, but λ̂, which is measured with error. Half
of the inventors in both firms produced more patents than expected, the other
half produced less. If taken at face value, the econometrician would overestimate
the difference between the inventors in both firms and underestimate the degree
of sorting.

the observed distribution (Figure 3.8).

Figure 3.8: Two different scenarios that both conform to the overall distribution
of spells (two with 0.2 and two with 0.5), but have drastically different impli-
cations for the estimated production function and assortative matching. The
likelihood of the observed data is lower if the right scenario is correct, so it is
discarded. If the right scenario was correct, all four matches had to draw exactly
the productivities observed. In contrast, in the left case, either match at one of
the two firms could have over- or underperformed and the result would have been
indistinguishable from the observed data.

Between these two possibilities, the left scenario in Figure 3.8 is much more

likely: In it, each firm has on average the expected number of patents. In the

other case, one firm consistently overperformed and the other firm consistently
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underperformed. Ideally, I would like to compute the Maximum Likelihood for

every possible distribution of ”true” productivities among the observed spells in

this way. However, with millions of spells, this is not feasible. Instead, I use a

pruning algorithm that randomly draws possible true productivities for each spell

and then consecutively eliminates the most unlikely draws.

To check the performance and robustness of my empirical findings, I undertook

a simulation exercise described in more detail in Appendix H. This exercise cor-

roborates that the algorithm is able to identify the correct distribution of match

productivity and the correlation between firm and inventor skill. However, the

estimate for any individual inventor is still subject to substantial error, espe-

cially if they match only with few firms. In the above example, the Maximum

Likelihood technique would conclude that both firms matched with inventors of

the same skill level and could thus provide a correct estimate for every inven-

tor. However, if firms match with inventors with different skill levels who do not

move to other firms, the individual skill estimates are subject to substantial error.

3.3.2 Potential Estimators

If the measurement error is taken care of, the problem of how to extract rankings

from the observed inventor-firm pairings remains. Abowd et al. (1999) proposed

a two way fixed effects estimator to capture firms’ and inventors’ contribution to

wages. Transferred to patent data, they propose to estimate

ln(λx,y) = yf + xi + ut (3.1)

where ln(λx,y) is the natural logarithm of the number of patents per year, yf is a

firm fixed effect and xi is an inventor fixed effect. This estimates firm quality and

inventor skills, but also assumes a specific, constant patent invention function.

Using this estimator and substituting patent production for wages is problematic:

A long strand of techno-pessimist literature maintains that ideas are becoming

harder to find over time (Gordon, 2016), which would imply a changing patent-

ing invention function. Additionally, the framework makes it difficult to analyze

which inventors are matching with which firms: A low estimate for a firm’s quality

will automatically increase the skill estimate for all of its workers, since both have
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to add up to the (log) expected number of patents in equation (3.1). Correct-

ing for this estimation error is nontrivial and existing methods (Andrews et al.,

2012; Gaure, 2014) cannot account for the non-symmetric error introduced by

the truncation of the data. Transferring the estimator to the patent production

function at least eliminates the implication of irrational wage bargaining that

is inherent in the above specification (Hagedorn et al., 2017). Nonetheless, this

does not offset the disadvantages above.

Lamadon et al. (2015); Bonhomme et al. (2017); Lentz et al. (2018) all build on

Abowd et al. (1999). They allow for more complex relationships between output

and inventor skills by additionally estimating the probability of inventors moving

from one firm to the next. However, these approaches require enough additional

variables to plausibly proxy the attractiveness of firms and inventors for each

other. Such information is not available in my setting. Their applicability also

suffers from the fact that I cannot definitively determine the start of an inventor’s

working life in the patent data.

Another strand of the literature has a more structural approach: Since search

and matching labor markets are well understood in theory following the seminal

work by Mortensen and Pissarides (1994), one can use theoretical results in the

estimation. This of course assumes that the theoretical model is a reasonable

approximation of reality. Hagedorn et al. (2017) propose that agents behave ac-

cording to a quite general search and matching model of the labor market. The

implications of optimal behavior in this class of models allow them to identify

workers’ and firms’ types independently and before estimating the production

function. I adapt the HLM approach to my quite different data and aims.

An important difference between PATSTAT and the employer-employee data

used by Hagedorn et al. (2017) is that they observe wages while PATSTAT con-

tains direct information on output. In addition, I allow for a changing search

technology and patent invention function.

3.3.3 Ranking Inventors within a Dynamic Search and

Matching Labor Market

I recover a skill ranking of all inventors from their theoretically optimal behavior.

In standard matching models, firms create vacancies and look for workers, while
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workers search for jobs. The rate at which matches are formed depends on the

number of firms and workers searching. Whenever a firm and a worker meet, they

reveal their types, decide whether to match or keep searching, and Nash bargain

over the wage. A match is formed whenever there is a match surplus, i.e. the

production of the match is high enough to pay both parties at least their outside

option, which is to continue searching. The decision which partners to accept for

a match is the central decision in the model.

In the inventor-firm setup, the match output are patents. Thus, firms value

matched inventors as a stream of future patents, which will entitle them to a

stream of future profits. In continuous time, the value of a match for the firm

can be expressed as

r∗Vy(x, y) = [V (p)λ(x, y)−r(Vu(x)+Vv(y))](1−α)−δ ∗Vy(x, y)+(1−δ)V̇y(x, y)

(3.2)

The first term denotes the surplus value of the match: The output of the match

(value of a patent V (p) times its patent arrival rate λ(x, y)) minus the payout

streams from an empty vacancy for the firm (r ∗ Vv(y)) and unemployment for

the inventor (r ∗ Vu(x)). The two sides match whenever the output of the match

is more valuable than if both parties just continued searching. The second term

denotes the threat that the match is severed exogenously (e.g. because the in-

ventor has to move or dies). In this case, the firm loses the match but gains the

value of an empty vacancy Vv(y, t). The last term denotes the value change of

the match due to changing surroundings, given that the match survives. This

term is treated as zero, since the economy is assumed to be in steady state.

In order to make this direct transfer more suitable for a patent setting, I assume

that

1. the patent invention function is dependent on the year the match was

formed λ(x, y, tstart). This allows for inventions becoming harder to find

or cross fertilized by the technology level in other fields.

2. the search technology is dependent on the year, so that the probability of

finding a new match is ρt.
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This changes the above equation to

r ∗ Vy(x, y, t) = (V (p)λ(x, y, tstart)− (r ∗ Vu(x, t) + r ∗ Vv(y, t)))(1− α)

− δ ∗ (Vy(x, y, t)− Vv(y, t)) + (1− δ)V̇y(x, y, t) (3.3)

Note that the value of unemployment, a vacancy and a match are now time de-

pendent. The value of vacancies is time dependent since both the probability

of finding potential matches and the productivity of any accepted match change

over time.

Despite these complications, within firm and time, employees can be ranked ac-

cording to their output. This is a direct consequence of assuming that all workers

have a cardinal ability: Workers with a higher ability can expect to perform bet-

ter than their colleagues at any firm, even if the difference might be smaller or

larger at different firms. Mathematically, ∂λ(x,y,tstart)
∂x

> 0 by assumption. There-

fore, among all matches starting at the same time at the same firm, more skilled

inventors have a higher expected output. Conversely, ranking inventors by their

realized output within each firm is also ranking them according to their skill (al-

beit with noise, since realized and expected output are not the same). This yields

numerous inventor rankings (one within each firm in each time period), which

might be partially in disagreement with each other.

Assuming only vertical differentiation is of course problematic, but this assump-

tion is made throughout the literature (Hagedorn et al., 2017; Abowd et al.,

1999; Andrews et al., 2012). Compared to these studies, I relax this assumption

significantly. I split the whole inventor labor market into smaller markets concen-

trated on specific technology clusters and assume solely vertical differentiation

only within each sub-market. Using 56 technology clusters constructed from the

co-assignments of IPC classes to patents (Appendix E), I allow for much more

horizontal differentiation than usual in studies of this kind.

Yet, the rankings within firms are possibly not enough to define a global ranking:

Consider a situation where inventors only move within two groups of firms, but

never across. In this case, within firm rankings would not be informative about

which of these two groups of inventors is more skilled than the other: Since they

are never at the same firm, the two groups of inventors cannot be compared.

Just like a double fixed effects estimator, the within firm ranking based method
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requires connected sets.

The theoretical framework offers additional avenues to rank inventors and con-

nect the sets of within firm rankings. First, the value of unemployment at any

point in time is rising in inventor skill for the same reason it is rising in the

original model: A more skilled inventor can always exactly replicate the search

and matching strategy of a less skilled one, but produce more output and receive

a higher wage. A symmetrical argument can be made from the viewpoint of the

firm, so the value of a vacancy behaves similarly (∂Vu(x,t)
∂x

= ∂Vv(y,t)
∂y

> 0). While

Vu(x, t) and Vv(y, t) are of course unobserved, they are by definition equivalent

to the expected discounted lifetime earnings of a worker.

However, from this it does not necessarily follow that the inventor’s skill is in-

creasing in lifetime productivity. If the patent invention function is not super

modular, an inventor might earn more by matching with low quality firms, be-

cause good inventors can extract high wages in these matches. This introduces a

negative relationship between high output and high wages and might cause the

expected patent output to be falling in inventor quality. Thus, the derivation will

only work if the production does not exhibit strongly negative supermodularity.

Labor market matching seems to be assortative across very different estimation

techniques, data sets and applications (Abowd et al., 1999; Andrews et al., 2008;

Borovičková and Shimer, 2017; Card et al., 2013; Kantenga, 2016; Gaure, 2014;

Lentz et al., 2018). Assuming assortative matching is equivalent to assuming

that the inventor production function is (weakly) supermodular. Thus, exclud-

ing strongly disassortative matching seems an unproblematic assumption made

necessary by the fact that I observe production and not wages.

3.3.4 Aggregating Conflicting Rankings

From the above, one can get global rankings of workers (according to their life-

time patent output and productivity). There are also multiple shorter rankings

comparing worker productivity within each firm. While they should theoretically

all be in agreement, they are not, due to the noise in the data.

Hagedorn et al. (2017) propose to aggregate these rankings by finding the rank-

ing that has the fewest disagreements with the data. Specifically, they count

disagreements using the Kendall score, i.e. whenever a candidate ranking ranks
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Table 3.1: Firms’ Voting Power in Kendall rank aggregation

Firm X Firm X Firm Y Firm Y
ranking yearly patents ranking yearly patents

Inventor A 1 0.3 2 0.3
Inventor B 2 0.2 3 0.2
Inventor C 2 0.2 - -
Inventor D 3 0.1 1 0.4

Nr. of Ranked Inventors 4 3
Nr. of Relations 6 3

Voting power of firms in Kendall rank aggregation. The two firms disagree about the
ranking of inventor A and D. However, since firm X has ranked more inventors, the
aggregate ranking will reflect its preferences: Currently, the inventors are ranked A, B,
C, D, following the preferences of firm X. The issue is whether to put inventor D in first
place, following the preferences of firm Y. Yet, moving D to the top generates three
disagreements with firm X. Leaving D at the bottom generates only two disagreements
with firm Y.

worker x1 higher than worker x2, they count how many rankings of individual

firms have it the other way around and weight this result with the noise inher-

ent in the observations. Unfortunately, this ranking problem is NP hard, i.e. it

cannot be solved exactly with current computers. Hagedorn et al. (2017) show

that assuming that the ranking distance function has only one local (and global)

minimum yields accurate rankings, even for relatively noisy data.

While this strategy demonstrably yields good approximations of reality when

used with typical employer-employee data, this rank aggregation has some prop-

erties that are not desirable (Yoo et al., 2019). Specifically, the scheme gives

more voting power to complete rankings. To see this, consider table 3.1. The

aggregate ranking only reflects the ranking of firm X, even though firm Y ranks

inventors exactly the opposite way. This is because firm X has ranked an addi-

tional inventor, so it generated quadratically more relations of the form ”inventor

A is better than inventor B”.

Moreno-Centeno and Escobedo (2016) propose to solve this issue by down-

weighting each firm’s ranking with the number of relations submitted. While

this might be a valid response to malicious actors submitting inconsequential

rankings to increase their voting power, this is not the problem at hand: Firms
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presumably have no interest in submitting as many inventor rankings as possible

to this data set. With down-weighting, the ranking of the smaller firm would

always prevail in any specific disagreement, while the big firms get to rank more

inventors. However, I would argue that this is not desirable. Instead, the weight

that any firm ranking contributes to ranking A above D should be independent of

how many inventors are ranked in between: The productivity of A and B are two

cardinal numbers measured with error, and the probability of one being above the

other is independent of how many other inventors with productivities between

the two are observed.

In the above example, assume that the yearly patents of inventors A, B, C and

D are measured without error and that both firms are of equal quality. So,

in the Hagedorn et al. (2017) framework, the only explanation for the different

rankings is the measurement error in D’s productivity: 0.1 and 0.4 are only

measurements of the underlying productivity, which, if known, would produce

the same ranking of inventors in all firms. If the true productivity is between 0

and 0.2, D should be ranked last. If productivity is above 0.3, D should be ranked

first. The fact that firm X has worked with two inventors with productivity 0.2

is not informative about which of these cases is true. This extreme example

illustrates the general point that some relationships expressed by the firms are

highly correlated according to the underlying model, which a simple Kendall

distance approach ignores.

Unfortunately, the correct distance measure according to the underlying model

is infeasible: Distance should be measured as the ”unlikeliness” of observing the

ranking in the data, given that the candidate ranking is true. This requires

an involved likelihood computation, which has to be redone for every different

proposed ranking. Instead, I propose a simplification in the spirit of Hagedorn

et al. (2017): Each inventor contributes the productivity difference necessary to

move them to the proposed slot in the ranking, weighted by the precision with

which this inventor’s probability is measured. In the above example, inventor D

would have to have 0.21 less patents per year to be ranked last, as the current

ranking suggests. Unlike the Hagedorn et al. (2017) estimator, this distance

measure is independent of how many inventors are ranked in between.

Yet, using a new estimator on a new data set in a new context would make any

comparison of the results to the previous literature difficult. Hence, I report
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results for the HLM estimator throughout the paper, in order to stay compatible

with the literature.

3.3.5 Ranking Firms within the Model

To rank firms, I will aggregate inventors of similar skill estimates into 100 blocks,

following Hagedorn et al. (2017). Within each of these blocks, better firms will

produce more with the given inventors. Thus, one can construct 100 firm rank-

ings within each inventor skill level. Aggregating these rankings into one Kendall

ranking is less problematic than aggregating rankings within individual firms,

because each inventor skill class contains roughly the same number of statements.

Using a theoretical search and matching model for identification also has

some limitations: In this model, firms do not take into account that employees

are potential channels of knowledge diffusion. Introducing knowledge diffusion

into such a model is beyond the current theoretical literature (Hagedorn et al.,

2017). This is because such mechanics make match surplus contingent on firms’

productivity, the productivity of their competitors, the knowledge each inventor

holds and the matching strategies of all other firms and inventors. The effect on

matching strategies depends on multiple parameters: on whether individual in-

ventor skill is important to transfer technologies, on whether technology diffusion

affects a firm’s research quality and on whether the diffusion is permanent after

that inventor leaves the firm again. This introduces enough complexity to make

the model intractable.

While my model-reliant approach cannot fully cover these mechanics, neither

could an approach based on inventor movements (Lamadon et al., 2015; Bon-

homme et al., 2017; Lentz et al., 2018) or double fixed effects estimation (Abowd

et al., 1999): If inventors move from good to bad firms to not produce but diffuse

knowledge, inventors’ job ladders do not always lead them to higher quality firms.

Likewise, if inventors strategically move between firms, the double fixed effects

assumption that worker movements between firms are random is violated. Thus,

neither approach in the literature can fully tackle knowledge diffusion through

workers, which is problematic in most settings in which these types of estimators

are currently used.

However, worker rankings derived from differing patent arrival rates within firms
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are relatively robust to these concerns. Assume that workers produce patents

as described above, but provide additional value depending on how efficient the

production of their last employer was. In this case, there is an incentive to poach

inventors from high productivity firms, but given that inventors work in the same

firm, their patent productivity is still a valid differentiator within. The ranking

I use becomes problematic only if patent production at the current firm becomes

itself a function of the last firm’s productivity. In this sense, my estimator is

robust to most simple technology diffusion mechanisms.

Allowing firm quality to change over time also alleviates concerns that peer ef-

fects or agglomeration effects might bias the estimation. Moretti (2019) shows

that holding both inventor and firm constant, denser agglomeration of matches

can increase output by up to 25%. However, this does not have a large impact

on the inventor rankings because most good inventors are in highly agglomerated

regions: In the US data of Moretti (2019), ten cities account for between 60 and

75% of all patents in the top technology clusters. Thus, most productive inven-

tors are on equal footing in terms of knowledge spillovers. This carries over to

PATSTAT, the data basis for this analysis: While detailed geographical informa-

tion is only available in PATSTAT from 2000 onwards, the available data shows

that many patents come from the NUTS2 region with the most patents in each

country. Therefore, agglomeration effects do not significantly change the ranking

of inventors and will largely be soaked up in the firm quality measure, which cap-

tures both the ”pure” research skill of the firm and the knowledge spillovers from

other nearby firms. The number of firms with significant research departments

in more than two NUTS2 regions per country is small.

To account for changes in cluster size and the possibility that firms’ innate quality

changes over time non-parametrically, I estimate firm quality for every five years

separately. I.e., I effectively treat the same firm after five years as a separate firm

and rank it again.

3.3.6 Patents and Productivity

To relate the patent data to economic outcomes, I follow the approach of Do-

raszelski and Jamandreu (2013). They jointly estimate firm level productivity

and the effect of endogenously chosen R&D investment on productivity. For
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R&D investment, I substitute the observed size of the firm’s research department,

patenting outcomes and the firm’s estimated quality. This has both econometric

and theoretical advantages. Doraszelski and Jamandreu (2013) themselves note

that it is unclear how much of the time variation of R&D investment is due to

accounting practices and how much is economically relevant. Additionally, there

is presumably a time lag of unclear length between investment in R&D and actual

productivity improvement. Thus, I use the measured quality adjusted size of the

research department as an endogenous choice variable. I use realized patenting

counts to narrow down when the investments into research paid off.

Specifically, I assume that (log) revenue is a function of (log) inputs and (log)

productivity

yit = β0 + βk ∗ kit + βm ∗mit + βl ∗ lit + ωit (3.4)

where k denotes the log of capital in the books, m denotes the log of intermediate

inputs and l denotes the log of employees. I also assume that productivity follows

a Markov process of the form

ωit = g(ωit−1; pit−1; Λit−1) + uit−1 (3.5)

where pit−1 denotes the number of patents a firm has filed in the last year, Λit−1

denotes the quality weighted size of the firm’s research department and ωit−1 is

lagged productivity. As is common in the productivity estimation literature, I

will approximate the function g(.) by a third order polynomial of all its terms.

Including both the researchers of the firm and their output allows for a posi-

tive effect of this highly skilled personnel even before they produce patentable

research.

The equations are identified by the timing assumptions prevalent in this liter-

ature: It is assumed that the firm has to decide on investment and thus k at

the end of the previous year, before knowing its productivity. Thus, capital is

by assumption uncorrelated with ωit in equation (3.4). In contrast, l and m are

optimally chosen, given the productivity the firm expects. The law of motion

yields that productivity is predicted by ωit−1,pit−1 and Λit−1. Thus, l and m are

exogenous when controlling for the productivity the firm could expect. Thus, I
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estimate

ωit = β0 + βk ∗ kit + βm ∗mit + βl ∗ lit + g(ωit−1; pit−1; Λit−1) + uit−1 (3.6)

which yields unbiased estimates of βk, βl&βm. For a detailed and general dis-

cussion of this control function approach to production function estimation, see

De Loecker et al. (2016). Since I cannot control for prices with the data at hand,

I follow Loecker and Warzynski (2012) to compute the markups implied by firm

behavior: In static equilibrium, firms will equate revenue productivity of a flex-

ible factor with this factor’s costs. This can be used to back out the markup

implied by that firm’s input choice.

3.4 Results and Stylized Facts

This section presents the results from the above estimation and distills it into

stylized facts. I explore staples of employer-employee matching estimation (as-

sortative matching, patent invention), but also the concentration of technological

capabilities in firms. Ultimately, the empirical analysis alone cannot decide on the

welfare implications of the observed changes. A model or additional information

is needed to differentiate between welfare enhancing and decreasing developments.

3.4.1 Matching of Inventors and Firms

Firms and inventors generally match assortatively, i.e. good inventors move to

good firms. To present the results from all patenting authorities and technol-

ogy clusters succinctly, figure 3.9 pools technology clusters and time periods and

shows how often the respective combination of firm and inventor quality is ob-

served.
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Figure 3.9: This graph shows the matching of inventors to firms, pooling all time
periods (1974-2012) and technology clusters. Red areas are densely populated
with spells, while blue areas are largely empty. Matching is assortative, i.e.
better inventors go to better firms. Grey areas of the plane have fewer than 50
matches.

Evidently, in general, highly skilled inventors seek out high quality firms. In-

ventors seem to be less picky than firms, so the matching area is curved upwards:

An inventor in the 50% skill percentile will only match with firms in the 25%

percentile of quality. In general, the core matching area is quite narrow, with the

rest of all matches dispersed relatively evenly across the plane.

Figure 3.9 does not take into account the different lengths of employment spells.

However, there is no strong pattern regarding the duration of matches: Matches

within every cell of the plane are estimated to last between 7 and 10 years on

average. Hence, the number of expended hours in every cell largely follows the

number of matches.
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Figure 3.10: This graph shows the labor input provided by matches of inventors
of a certain skill and firms of a certain quality, pooling all time periods and
communities. Matching is assortative, i.e. better inventors go to better firms.

Assortative matching not only differs between technology clusters, but also

evolves over time. Thus, the correlation of inventor skill and firm quality changes

over time. The correlation captures linear relationships, yet the pattern in figure

3.9 is still close enough to linear to be captured this way. Figure 3.11 documents

the development of the correlation over time for the five biggest technology clus-

ters and the three largest patenting authorities.

Figure 3.11: Evolution of the correlation between inventor skill and firm quality
within matches for the biggest technology clusters in the largest patenting au-
thorities. Assortative matching increases in most technology clusters and over
all.

The correlation is increasing over time and in most communities. The overall
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increase from 1974 to 2010 in the US is from 0.45 to 0.6, or 33% (top panel).

This amounts to about 0.004 per year. The rise is not monotone: Assortative

matching peaked between 1985 and 2000 at around 0.65. It has been decreasing

slightly from since then.

The outlier with respect to the overall trend towards assortative matching is

computing: After 1985, assortative matching is continuously sliding downwards.

Combustion maintains its high level of assortative matching, while chemistry,

foodstuffs and semiconducturs are rising.

More mature technologies in concentrated industries seem to experience rising as-

sortative matching. Semiconductors is a prime example of a technology focused

solely on a specific technological problem: increasing the number of transistors in

integrated circuits. Bloom et al. (2017) cite semiconductors as one of their prime

examples for decreasing technology growth, as it becomes harder and harder to

double transistor numbers.

To determine whether patenting rates decline in semiconductors and the economy

overall, one has to turn to the patent invention function λ. Overall productivity

will be determined by how many inventor years are invested in each cell and how

the productivity of these cells changes over time.

3.4.2 Patent Invention Function

The estimated patent invention functions are highly stable over time and put

more weight on inventor rather than firm quality. I estimate the patent invention

function non-parametrically on the same grid as assortative matching: I group

workers and firms into 100 percentiles according to their ranking and estimate

the labor input weighted average within each combination.
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Figure 3.12: Pooled Patent Invention Function: Expected number of patent au-
thor shares as a function of firm quality and inventor skill. Matches of highly
skilled inventors with high quality firms have much higher patent arrival rates.
Inventor skill is more important than firm quality.

Inventor skill and firm quality are both important drivers of patent inventions,

however, inventor skill is slightly more important: E.g. an inventor in the top

1% matched with a firm in the middle of the distribution will create more than

one patent per year, while the reverse combination is less productive.

A large debate in the literature is whether inventions have become harder to

find, i.e. whether the rate of patenting λ has slowed down. More inventions can

conceptually be the result of more efficient matching of inventors and firms, of

matches of a given quality becoming more productive, or of more inventors.
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Figure 3.13: Average productivity of matches over time. The blue line gives the
average estimated productivity of all matches formed in any one year. The blue
line gives the same, but using the patent invention function of 2005-2010 for the
whole data set. If matches could have used the patent invention function of 2005-
2010, they would have produced more patents than they did. The only exception
is at the very beginning of the data set (1975-1908), which is also the production
function estimated with the lowest precision due to relatively few observations in
many cells.

In general, the patent invention rate changes very little. However, if there is

a trend at all, patents were slightly easier to produce with the patent invention

function of 2005-2010 than they were before (figure 3.13). The patent invention

rate of matches started between 1974-1979 is the highest overall, but it is the least

precisely estimated rate, due to few matches in many of the bin combinations.

3.4.3 Concentration of Technological Competences

Patenting is a highly concentrated activity, even among those few firms who

patent at all (Figure 3.1). Within patenting authorities and technology clusters,

patents are still highly concentrated among the top 5% of firms (figure 3.14).

Patenting at all major patenting authorities is also becoming more concentrated

over time (figure 3.15). Patenting by small firms is declining the fastest.

Figure 3.16 shows that large technology clusters (with many patents) are more

concentrated than smaller ones. Technology clusters where more inventions are

patented each year have a higher share of innovative contributions by the top

5% of firms. The fitted relationship is positive even though the largest and most
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Figure 3.14: Concentration in the
largest technology clusters over time.
Concentration is measured as the
share of inventions made by inven-
tors working with the top 5% of firms
(by patent output). If two inventors
from different firms are listed under
the same invention, both firms re-
ceive half an invention.

Figure 3.15: Cumulative distribu-
tion of patents per firm. Every firm
is assigned its share of patents in
each technology cluster and time.
Concentration is continuously rising
in the US and Korea & Taiwan, ris-
ing slowly in Europe and rising and
then slightly falling in Japan.
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concentrated technology clusters are beyond the right edge of the graph. Because

concentrated fields are larger, the overall concentration is even higher than the

average concentration within fields or IPC classes.

Figure 3.16: Concentration as a function of the number of inventions within a
sector. Each observation marks a different technology cluster at one point in
time. The x axis denotes how many patents were filed in one year, the y axis
gives the share of the top 5% of firms. There is a positive correlation between
the two: The bigger the technology cluster, the larger is the share of patenting
done by the top 5% of firms.

All in all, innovation has been highly concentrated among few firms through-

out the time period. Active technology clusters are also the more concentrated

ones. Outside the absolute top, well established firms (with more than 50 patents

every year) produce a large share of all patents. These firms are a tiny minority of

all firms in the economy. The ability to regularly produce more than 50 patents

represents a sizable investment from the firm, one that most other firms seem un-

able to make. Additionally, good inventors are overwhelmingly concentrated in

large established firms, a trend that has increased over the time covered. Chapter

4 will explore potential causal forces behind this correlation.
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3.4.4 Knowledge Production and Profits

I find that patenting increases profits faster than productivity. This is troubling

in itself, since patents are granted to incentivize firms to produce public goods,

not help them appropriate private profits. The results hold in a simple setting

with an exogenous production function and when using a combination of the Do-

raszelski and Jamandreu (2013) and the Loecker and Warzynski (2012) estimator

to jointly estimate markups and the law of motion of productivity.

Table 3.2: Knowledge Production and Profits

(1) (2) (3) (4) (5)
ln(EBIT ) ln(ωsimple) ln(ω) µ ln(EBIT )

log(number of patents) 0.0536*** 0.0046 0.0030 -0.0284 0.0566
(0.0081) (0.0042) (0.0026) (0.1269) (0.0327)

Inflow Movers - - 0.0048* -0.0007 0.1986***
(0.0036) (0.0602) (0.0454)

Rank Firm - - -0.0004 0.0024 -0.0031
(0.0002) (0.0046) (0.0023)

Control Function NO NO YES YES YES
Firm Fixed Effects YES YES YES YES YES

Observations 27332 27332 14771 14771 14771

ln(ωsimple), ω & ln(EBIT ) denote log productivity with a 2
3 ; 1

3 production function, log
productivity with an estimated production function and profits. µ denotes firms’ markups.
Production function as in De Loecker & Warzynski 2012; effect of patents as in Doraszelski
& Jaumandreu 2013. Bootstrapped Standard Errors (n=500) in parentheses.

Table 3.2 reports the results of my estimation. Columns 1 and 2 report sim-

ple FE estimates, to alleviate concerns about the validity of production function

estimation. According to these results, a firm can expect to increase profits by

about 5% when they double their patenting output.

Columns 3 - 5 report the results from a joint semiparametric estimation of the

production function and the law of motion of productivity. In the semiparametric

estimation, I include the inflow of inventors moving to firms and the rank of the

firm in the research quality rating as potential variables into the law of motion.

This tests the hypotheses that moving inventors bring technological knowledge
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with them or that a firm’s research quality proxies for its absorptive capacities.

Given the patents a firm is already applying for, research quality does not offer

additional benefits. The number of inventors that move to the firm does however

increase both productivity and profits. This further supports the hypothesis that

moving inventors diffuse technology.

3.4.5 Inventor Mobility and Technology Diffusion

I find that between 2000 and 2010, inventors who are leaving top firms increas-

ingly move to other top firms, instead of transferring their knowledge to less

productive firms. Since technology personnel movement is an important driver

of technology diffusion, this might explain the increasing gap between ”The Best

and the Rest” in a large number of countries (Andrews et al., 2016; Gal, 2017).

This dispersion might also hurt overall productivity growth (Akcigit and Ates,

2019). Firms themselves rank retaining knowledgeable employees as one of their

most important strategies for protecting intellectual property (Harhoff, 1997). To

measure technology diffusion through moving inventors, I turn to the sample of

patent data matched with firm productivity estimates and rank all firms within

a region and five year time period. Splitting the resulting ranking into 50 pro-

ductivity classes, I count movements of inventors from the top 10% of firms to

the rest. I analyze the top 10% of firms to synchronize with the productivity dis-

persion literature, which considers the top 10% of firms ”frontier firms” worthy

of special attention. The matched sample between PATSTAT and AMADEUS is

only large enough between 2000 and 2010. During this time frame, the trend of

moving only between top firms is stable and persistent.



3.4. RESULTS AND STYLIZED FACTS 61

Figure 3.17: The graph shows the subsequent employers of inventors who have
left a firm in the top 10% productivity decile. Firms are ranked according to
their productivity and grouped into 50 different skill classes, 50 designating the
most productive 2% of firms.

Figure 3.17 shows which firms inventors move to after having worked for a

top firm. Movements from top firms to laggard firms are becoming less frequent

over time. This decline is not simply driven by overall rising concentration, as

the output share of the top firms has only increased moderately. Instead, the

matching behavior of productive and unproductive firms is driving this change.

Documenting inventor rankings between firms is in the spirit of a branch of en-

dogenous growth models focused on technology diffusion (Arkolakis et al., 2018).

These models focus less on firms’ R&D decisions and more on the random meet-

ings of inventor-entrepreneurs and the resulting exchange of ideas. In these mod-

els, equilibrium productivity growth is determined both by how many new ideas

are created and how fast these diffuse. While fast diffusion leads to faster growth,

it also diminishes the incentives to invent new technologies, since the associated

technological edge is lost quickly.

3.4.6 Summary of Empirical Findings

A major result of the paper is that inventors and firms have matched assorta-

tively since 1974 and that this has increased over time. With the only notable

exception of computing, most technology clusters exhibit this trend. Throughout

the time period, the higher quality firms increased their quality weighted share
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of researchers.

The estimated patent invention functions are largely stable over time and put

more weight on inventor rather than firm quality. Because the contributions of

firms to patenting probability are not large, rematching inventors and firms can

only lead to small increases in production. In this, the paper comes to a similar

conclusion as Hagedorn et al. (2017), although the method has been altered sub-

stantially and the context is different.

The stability of the patent invention function seems to contradict popular ex-

planations of technology stagnation: It does not seem like inventions are getting

harder to find. However, the arrival rate of patent families is also influenced by

which projects firms decide to undertake in the first place: There is strong evi-

dence that firms attempt more incremental and applied research projects (Arora

et al., 2019), while patents with more scientific content are more valuable (Poege

et al., 2019). If firms are racing each other to the same ideas more often, firms

start smaller projects in equilibrium (Silipo, 2005).

3.5 Conclusion

I analyze the matching of firms and inventors and the productivity of the result-

ing matches as a potential driver of slowing technology growth. I document which

matches are formed and how much each party contributes to patent invention.

To answer these questions, I transfer empirical strategies used in the search and

matching labor market literature to the PATSTAT patent data from 1974-2010,

which I use as an employer-employee data set.

Assortative matching has risen over time in nearly all technology clusters.

Highly skilled inventors increasingly match with firms with a high research qual-

ity. High quality firms produce more patents and are larger on average. De-

creasing movement of inventors might cause a decrease in knowledge diffusion

documented by Akcigit and Ates (2019); Andrews et al. (2016); Gal (2017). I

merge conventional firm production productivity estimates to my data and find

that less and less inventors move from top productivity firms to firms with lower

productivity. I find that such movements are – when they still happen – as-
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sociated with productivity and size increases for the receiving firm. The same

pattern holds true for newly invented patents between 2000 and 2010 (there is

no matched data for earlier years).

It is often hypothesized that ideas are getting harder to find. This would

mean that matches between inventors and firms of a given quality produce less

patents today than they did previously. Yet, matches’ estimated productivity

is not declining: If matches from the 80s or 90s had used the patent invention

function of 2005-2010, they would have produced slightly more patents, not less.

These results open up interesting avenues for future research: First, narrow-

ing the scope of my analysis to a specific country with high quality firm data

would allow to assign specific product lines to specific technologies and measure

markups with a higher degree of certainty. More complete data could be used

to more precisely measure the contribution of assortative matching to productiv-

ity dispersion, markups and profits using state of the art markup estimators. I

committed to a global scope for this paper to understand patenting behaviour

across the developed world, since most contributions on the technology growth

slowdown also assume that it is a global phenomenon. However, diving deeper

into specific countries with a higher quality data set could enhance our under-

standing of firm level responses.

Second, the welfare implications of the trends documented also hinge on the

type of innovation that patents represent. To better understand these welfare

results, chapter 4 develops an endogenous growth model containing an inventor-

firm matching labor market. Firms hire highly skilled inventors for two reasons:

either to pursue more difficult, disruptive inventions or to prevent these inven-

tors from being disruptive. Firms fear disruptive inventions because disruption

changes the technology underlying their product and makes firms’ traditional in-

ventors obsolete. In this model, assortative matching can be beneficial if it means

that highly skilled inventors go to firms engaged in difficult, disruptive research.

Assortative matching can be detrimental if it means that good, large firms poach

their competition. Despite declining growth, this is rational behavior from the

viewpoint of the firms: The correlation between patents and profits is substantial
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in the model and in the data.



Chapter 4

An Endogenous Growth Model

with an Inventor Labor Market

4.1 Introduction

Expanding on the empirical analysis in chapter 3, I develop an endogenous growth

model in which growth slows down because successful firms inhibit disruptive in-

novation. This model can reconcile a set of seemingly contradictory findings:

TFP growth and scientific output per researcher seem to decline, while firms hire

an increasing number of researchers for non-decreasing wages (Cowen and South-

wood, 2019; Bloom et al., 2017). Likewise, the scientific content of patents is

declining (Arora et al., 2019), despite patents with more scientific content being

more valuable (Poege et al., 2019). The model explains these trends as outcomes

of firms’ optimal research strategies: Large firms’ profits depend on the fate of

their specialty technology. Thus, they cling to incremental innovation and un-

dertake defensive measures to prevent disruption.

The actions of two types of firms drive the fate of the model economy: First,

there are disruptive firms. Disruptors do not sell any products, but try to invent

a fundamentally different technology. Bill Gates and Paul Allen working in a

garage to revolutionize home computing were an archetypical disruptive firm. If

disruptive inventors are successful, they create a new producing firm with better

production technology than that of any currently existing producer. Producing

firms, the second firm type, actually earn revenue in the consumer market by sell-

65
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ing a product. Producers take an underlying technology invented by disruptive

firms and develop it into a product. Producing firms improve their technology

incrementally in order to produce a product of higher quality. Steady technologi-

cal progress requires a mixture of both types of inventions: Disruptive inventions

alone never create a consumer product, only ever more advanced production

technologies. Incremental inventions alone lead to a slowing rate of technology

growth: As incremental inventors strain against the limits of the underlying pro-

duction technology, the rate of technology growth within each technology declines

over time. Every disruptive invention allows incremental inventors to work with a

more advanced basic technology and thus increases the value of future incremental

improvements by the factor ω. This tension between disruption and incremental

growth is the central tradeoff in the model and how well the market economy

handles it determines economic growth.

Neither disruptive nor producing firms can conduct research on their own:

Firms need inventors to make inventions for them. Firms of both types hire in-

cremental or disruptive inventors on a search and matching labor market. Disrup-

tive and incremental inventors enter the economy and match with firms at fixed

rates. The value of each firm is partly determined by the stock of inventors it has

hired and those it can hire in the future. Incremental inventors are specialized

in their current technology and cannot contribute to other technologies. Thus,

whenever a firm switches the technology underlying its products, it effectively

loses all incremental inventors it has hired so far. Inserting this labor market into

an endogenous growth model is the primary new assumption compared to the lit-

erature. This new assumption drives the new findings: Firms try to protect their

assets (incremental inventors) from being made obsolete by disruptive innovation.

Successful producing firms can slow down technology disruption by hiring

the inventors that disruptive firms would need to innovate. Thus, some firms in

the economy actively resist technology growth. Technological progress depends

not only on investment in R&D, but also on overcoming this resistance. This

is the main mechanism that follows from the introduced assumptions and sets

this paper apart from the rest of the endogenous growth literature, which views

innovation as the result of investment only.
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The model can recreate the empirical trends documented in chapter 3:

� Patent invention rates are a function of both inventor skill and firm research

quality.

� Highly skilled inventors strongly sort to high quality research firms (corre-

lation 0.5-0.8).

� Assortative matching increases within technology clusters.

� Patents are highly concentrated within technology clusters.

� Aggregate productivity growth decelerates.

The model can reproduce an economy with similar developments: If producing

firms with a high research quality successfully poach all highly skilled inventors,

assortative matching is high. The bulk of inventions will be small and incremental

with a low productivity effect. However, the model also supports another equi-

librium with high assortative matching. In this second equilibrium, high quality

inventors work at disruptive firms and frequent disruptive inventions keep produc-

ers small and technology growth high. This equilibrium does not fit the observed

trends.

A fictitious social planner has to chose between these two equilibria. Which

of the two he would pick crucially depends on the weight that the social planner

puts on future generations: A disruptive invention will increase economic growth

long-term, but the benefits will accrue to future inventors and future firms. In

contrast, the current incremental inventors and producing firms unambiguously

lose after a disruptive invention. If the current agents die before the growth

increase from a disruptive innovation creates value, the social planner cannot

compensate them and the low-growth equilibrium with incremental innovations

is Pareto-optimal, even though it does not maximize GDP. If people in the model

live long enough, the social planner could use the additional GDP to compensate

the losers from a disruptive innovation.

A large literature is concerned with the growing dispersion of firm level pro-

ductivity (Gal et al., 2016) and declining aggregate productivity growth (Gordon,
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2016) throughout the developed world. The literature discusses several different

explanations for these phenomena:

Akcigit and Ates (2019) argue that slowing technology diffusion is itself the

most likely source of slowing technology growth. Lucking et al. (2019) argue

that technology diffusion is still about as fast as it was in the 1980s. However,

they do find that technology diffusion was faster during the growth acceleration

associated with IT in the 1990s. In my model, growth is driven by disruptive

innovation, while incremental inventions (and their diffusion) influence the level

of economic activity. However, the model I present also features an inventor-firm

labor market, which can serve as micro-foundation for technology diffusion in the

endogenous growth model.

Another school of thought argues that ideas are getting harder to find and

technology growth thus slows down endogenously. Gordon (2016) makes this

point. Bloom et al. (2017) showed that more and more researchers are neces-

sary to double e.g. computing power or crop yields per acre. My paper takes

this finding seriously, but offers an alternative interpretation: The very fact that

firms invest so many resources in solving the same problems using the same tech-

nologies indicates that they are engaged in incremental innovation. Thus, the

findings of Bloom et al. (2017) are troublesome because they show a misalloca-

tion of inventive talent to incremental innovation with declining returns. Yet,

this does not necessarily mean that disruptive ideas are becoming harder to find.

My model is built on the framework of Akcigit and Kerr (2018), who assume

that firms are proficient in specific technology clusters. I understand technology

clusters as more than just one new product, they denote distinct technologies

behind multiple individual products, like ”telegraphy” or ”internal combustion

engine”. Incremental inventions within these clusters generate higher quality

products. In departure from Akcigit and Kerr (2018), firms cannot invent on

their own and have to hire inventors specialized in a technology cluster on a

search and matching labor market. The labor market for inventors in each clus-

ter corresponds to the results presented in the empirical chapter in section 3.4.

Specifically, I develop how innovation affects firms’ technology ∂q
∂p

and how firms’
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technology determines profits ∂π∗

∂q
. Together, these factors determine the value of

an invention V (p) in equation (3.3).

My paper also speaks to a larger theoretical literature on market failures that

misdirect innovation. Firms under-invest in research that unlocks follow-up in-

ventions, because they cannot profit from the inventions other firms will make, as

in Hopenhayn et al. (2006); Denicolò (2000); Scotchmer (1991). In general, firms

can only appropriate a share of the overall welfare increases that result from their

inventions. Since this share is not constant across inventions, firms over-invest

in inventions where they can appropriate a high share of the returns (Bryan and

Lemus, 2017). In the model presented here, producing firms can only appropriate

the returns from incremental innovation, which drives aggregate behavior.

In a larger context, the paper relates to literature on the efficacy of the current

system to reward innovative firms. The theoretical and experimental literature

suggests that patents are not able to optimally steer the direction of innovation

in general: If only a finite number of research direction is available, firms race

each other to the most lucrative patents and incur wasteful parallel investment

(Zizzo, 2002; Silipo, 2005; Breitmoser et al., 2010). Both in the US (Jaffe, 2000)

and Japan (Sakakibara and Branstetter, 2001), firms do not react conclusively

to substantial changes in patenting protection. Nevertheless, in my model, the

market failure can be corrected by policy interventions. Since technology monop-

olists are misdirecting innovation, policy should break up existing monopolies and

prevent mergers and buy-outs of start-ups. Likewise, any policy that increases

the transferability of inventor skills makes technology markets larger and thus

harder to monopolize.

Beyond the theoretical literature, there is substantial empirical support for

the monopolization of research fields, which is conceptually adjacent to the pro-

posed model: Thompson and Kuhn (2017) use patent races between firms to

compare the first and second research team and thus patent holders and follow-

ers. They find that patents preclude competitors from follow-up innovation and

make the winner of patent races more dominant in the associated technology

field. In the semiconductor industry, increased patent protection seems to have
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led to defensive patenting instead of innovation (Hall and Ziedonis, 2001). Across

industries, the correlation between patent protection and innovation is negative,

which Bessen and Maskin (2009) explain by the negative effect of patents on se-

quential inventions. This study extends the principal insights of this literature to

a context of inventor-firm labor market matching in an endogenous growth model.

This paper also links into the literature around the documented rise of firm

profits and markups (Barkai, 2017; De Loecker and Eeckhout, 2017). The model

predicts that firms with high market power engage in qualitatively different R&D.

Only small, competitive firms invest in disruptive technology to – if successful –

themselves become large firms linked to a technology. After that, their research

portfolio will become much more incremental. These predictions could be tested

with firm level patent data.

The remainder of the paper is structured as follows: Section 4.2 lays out the

assumptions and mechanisms of the model. The section also discusses various

possibilities for extensions of the model and their implications. Section 4.3 dis-

cusses the policy implications of the model and the strategy of a social planner.

Section 4.4 concludes the analysis.

4.2 Model

4.2.1 Research

The inventors who drive technological progress are at the heart of this endoge-

nous growth model. Inventors choose the firm they work with and the type of

innovation they pursue. Producing firms poach inventors from disruptive firms

to protect their technologies from disruption.

Technology is differentiated into broad fields or disciplines like ”telecommu-

nications” or ”electricity generation”. Within each of these fields, technology

clusters (following the terminology of Akcigit and Kerr, 2018) denote distinct

areas of knowledge like the clusters ”telegraphy” or ”satellite communications”

in the field ”telecommunications”. These clusters are areas of expertise for indi-
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vidual inventors, who cannot be experts in whole fields or even all sciences.

Firms cannot conduct research on their own and have to hire inventors. The

majority of inventors are specialists who studied one specific technology cluster

and are dedicated to improving it further. Every invention these incremental

inventors make increases the product quality of their firm, but does not change

the general technology structure. An example of incremental inventors are the

engineers who improve the internal combustion engine. Incremental inventors

cannot contribute to the economy if this technology becomes obsolete. Because

of this restriction, technology clusters play a large role in inventors’ and firms’

calculations. Throughout the rest of the paper, I will use the words cluster and

technology cluster interchangeably.

Occasionally, major breakthroughs in a technology field create an entirely

new, better technology cluster within the same field. An example are current

efforts to use gas, hydrogen or electric energy to power cars. If successful, elec-

tric cars would then form another technology cluster within the broader field of

”vehicle construction”. Disruptive inventions are proofs of concepts for better

technologies: The first telegraph, the first power line or the first electrical train

were not viable consumer products, but demonstrated the feasibility of the tech-

nology. Subsequent incremental innovations then create actual products that can

enter the market. Each cluster is better than the last one in the sense that it

enables more impactful incremental follow-up innovation.

Within each technology field, there exists a group of disruptive firms who aim

to create such breakthroughs. These firms do not sell any products, but employ

disruptive inventors to generate prototypes of future production technologies.

Whenever these firms are successful, a new technology cluster is born and the

old cluster becomes obsolete. Old incremental inventors can no longer contribute

to products based on the new technology, but disruptive inventors and firms can

immediately work on disrupting the new technology again. The disrupting firm

also founds a new producing firm which will use the newly created technology.

Clusters are indexed by their field and a running number c. Taking the field
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of telecommunication as an example, the telegraph might be c = 1, the tele-

phone might be c = 2 and so forth. Slightly abusing notation, I will drop the

index field for now, since all fields in the model are symmetrical and follow the

same logic. Thus, the index is only relevant when aggregating over the whole

economy. In the following, capitalized variables denote aggregate variables (like

the probability for disruption in a technology field Λdis) and lower case letters

describe microeconomic variables (like the number of patents for firm p nrpatentsp ).

Parameter notations follow precedents in the literature whenever possible.

The only point of disruptive inventions is to enable incremental follow-up

improvements. The quality that these incremental inventions generate rises the

higher the cluster. The quality improvement from one incremental invention is

∆q(c) = ωc (4.1)

where c denotes the number of the cluster. In the above example, an incremental

invention that improves the telegraph would generate ω1 additional quality for

the inventing firm. An incremental improvement of the telephone would create

ω2. Thus, parameter ω > 1 determines how substantial the gains from disruptive

inventions are: If ω = 1.20, a telephone improvement would generate 20% more

quality than a telegraph refinement.

4.2.2 Poaching Disruptive Inventors

There are two different types of inventors, who pursue different types of inven-

tions: First, there are incremental inventors who make improvements to the

existing technology of their employers. Second, there are disruptive inventors,

who generate the next technology cluster and found a producing firm with the

new technology.

The central conflict of the model is between producing and disruptive firms:

Producing firms fear technology disruptions and can poach disruptive inventors

to prevent disruption. While this behavior slows down technology growth, it also

protects the assets of producing firms: The value of an incremental firm comes
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from its patents, its current stock of inventors and the value of its future hires

Vp = nrpatentsp ∗V patent+V inventors
p (V patent, λinvp , r, δ,Λdis)+V hires

p (V patent, λinvp , r, δ,Λdis)

The first term denotes the stream of future profits that producing firm p can

derive from its incremental patents (nrpatentsp ). The assumptions about consumer

demand ensure that every patent has the same constant value V patent. Alter-

natively, one could also assume that patents are tradeable without costs, which

means that each patent must have the same value in equilibrium, no matter which

firm invented it. Patents do not expire and the product improvements they allow

carry over to the next technology cluster (as in Akcigit and Kerr, 2018), which

keeps the optimization problem of the producers simple. This assumption works

against the mechanism I propose in this paper: If patents were also invalidated

by disruption, producing firms would have even more reason to fear and prevent it.

The second term describes the value of the inventors that the firm currently

employs. It is a function of the value of a single patent V patent and the rate

at which the inventors of producing firm p create patents λinvp . This stream of

future patents is discounted with the interest rate r, the rate at which inventors

leave the economy δ and the rate at which disruptive inventions occur Λdis, since

disruptive inventions will make the stock of incremental inventors obsolete. The

specific functional form of the discount factor is determined by the equilibrium

evolution of Λdis.

The third term denotes the value a firm derives from the inventors it will

hire in the future. New producing firms can enter the economy at any point

by paying the entry fee fe and draw a research quality yp. Hence, the ex ante

expected value of hiring inventors in the future has to be fe. The ex post value

might be different, because firms know which research quality they have drawn

and high quality firms might profit more from hiring inventors. In this case, high

quality firms would have an additional incentive to prevent disruption. I take

the conservative approach and assume that hiring costs increase in quality, too.

This reduces the incentive for high quality firms to poach disruptive inventors



74 CHAPTER 4. INVENTOR LABOR MARKET & GROWTH

and thus works against the central mechanism of the model. It also simplifies the

following calculations.

The rate of disruptive innovation affects the value of producing firm p through

the value of its inventor stock: Disruptive inventions do not affect the value of

patents (which do not become obsolete whenever a disruptive invention hits) and

they do not affect the value of inventors hired in the future (because even if the

value of future hires goes up, new firms will enter the market to take advantage,

reducing the stream of inventors that go to any one firm).

To protect their valuable stock of inventors, producing firms interfere in the

labor market for disruptive inventors. Each disruptive inventor that a producing

firm can secure will decrease the likelihood of disruption. Whenever one of the

poached disruptive inventors of firm p would have made a disruptive invention,

the firm has effectively saved its entire stock of incremental inventors. The motive

for poaching disruptive inventors thus is stronger the larger the producing firm

is. To be able to poach, the value of preventing disruptive inventions for the pro-

ducing firm must be higher than the value of the disruptive inventions themselves.

V Dis
p = λdisi

∂V inventors
p (V patent, λinvp , r, δ,Λdis)

∂Λdis
∗ f(λinvp , η) ≥ λdisi ∗ V dis

i (4.2)

The value of hindering disruptive inventions is a product of three terms. The

first term is the rate at which the inventor would have caused disruptions (λdisi ).

However, since more productive inventors would also create more inventions, λdisi

appears on both sides of the equation and does not affect the calculation of

whether or not to hire any specific inventor.

The second term denotes the amount by which the firms’ incremental inventors

increase in value if ΛDis falls: A lower probability of disruption does not increase

the number of patents that incremental inventors produce, but it increases the

expected time during which they can produce. This increases the value of each

inventor.

The third term f(.) captures the size of the firms’ research department measured

by the firms’ patent arrival rate λinvp and the possibility that it will grow in the
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future due to the rate of new hires η.

A poached disruptive inventor not only directly reduces the rate of disruptive

inventions today, but also has some option value: First, the rate of disruptive

inventions in the future might change, which would change how valuable the

inventor is. Second, firms might hire more incremental inventors and thus he

would be able to protect more assets from disruption. The functional form of

f(.) and even the proposition that V Dis
p can neatly be separated into a product

of the three terms depend on the evolution of Λdis and the size of a firm’s research

department over time.

This value of shutting down a disruptive inventor is related to the problem of

the social planner: The destruction of all incremental inventors is a social cost of

any disruptive invention. However, the social planner weighs it quite differently:

The social planner does

� not take into account the quality of any specific firm f(y): The social

planner will take into account the value of all obsolete inventors and thus

calculate with the average firm quality. Yet, even if this value is low, the

highest quality firms might already have incentives to hinder disruption.

� not take into account the loss of the stream of future inventors η. These

inventors are not lost to the economy, only to the no longer existing obsolete

firms.

� instead take into account the fact that future inventors are able to start in

a better technology cluster as a positive of disruption. However, already

existing firms are wedded to already existing technologies and cannot profit

from the future higher rate of technological progress.

To find the specific functional form of equation (4.2) and determine which

firms will poach how many disruptive inventors, I will now discuss the inventor

labor markets for incremental and disruptive inventors.

4.2.3 Labor Markets for Incremental Inventors

I model inventor labor markets as slightly simplified versions of standard search

and matching labor markets. Standard versions are not tractable outside of the
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steady state. Yet, it is a central feature of the model that disruptive inventions

upset the steady state and thus it is imperative that the value of inventors and

the equilibrium strategies remain manageable on the path towards a new steady

state. Thus, I make a few simplifying assumptions. I demonstrate that the qual-

itative results do not hinge on these assumptions whenever I introduce them.

The labor markets for incremental inventors bring together producing firms

who want to improve the quality of their product with fresh graduates from uni-

versity within each technology field.

New producing firms can be founded at any time in any frontier technology

cluster by paying the entry fee feω
c. Firms draw a research quality yp from a

uniform distribution. These firms then participate in the labor market for in-

cremental inventors for that cluster. The expected value of the stream of future

inventors net of the cost of vacancies will thus always equal feω
c, or additional

firms will enter.

Prospective incremental inventors leave university and enter the labor market

for each technology field at rate η. These graduates draw an ability xi and then

choose a technology cluster to specialize in. It is clearly optimal to choose the

most advanced technology cluster within each field: Even if there was a mar-

ket for improving obsolete technology, patents in more advanced clusters enable

larger productivity gains, boosting profits and wages.

Since graduates have to fit the research projects firms hire them for, they

cannot just start at any firm. Instead, graduates search for firms’ open vacan-

cies. In the standard search and matching labor market, η graduates enter the

economy at any point in time and become unemployed inventors. This builds

up a mass of unemployed inventors which slowly matches with firms or exits the

market again. If the economy is in steady state, the masses of graduating, un-

employed and employed inventors are constant. However, if the cluster was only

just created through a disruptive invention, this creates a complicated path to

the steady state (see e.g. Rogerson et al. (2005) or Hagedorn et al. (2017) for an

overview over popular modeling approaches).
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To simplify the equilibrium path outside of the eventual steady state, I as-

sume that graduates enter the labor market and immediately find a match among

the available vacancies. Unmatched inventors have to leave the economy because

they lose their connection to recent developments. The research avenues that are

represented by vacancies also become superseded by new approaches if they do

not match. This reduces the complexity of the labor market, because the mass

of unemployed inventors does not matter for the equilibrium anymore, since they

cannot contribute to the economy. This leads to the same steady state outcome,

but the path towards that steady state is much more tractable. Figure (4.1) de-

scribes the path towards labor market equilibrium after a disruptive innovation

for both specifications.

Figure 4.1: The graph shows the evolution of the number of incremental inventors
in a technology cluster after its foundation. Over time, more and more inventors
enter the cluster, until the steady state level is reached. The baseline specification
of the model is presented in black. The grey lines depict the stock of employed
and unemployed inventors in a more standard model for comparison. Such a
model has slightly less employed inventors early on, because inventors enter into
unemployment and leave it over time. However, not only do both models give
the same kind of path qualitatively, the two paths are also quantitatively close.
Assuming that inventors cannot be unemployed increases tractability without
greatly changing even the quantitative results.

How many vacancies firms will create in this setting depends on the value

of obtaining an additional inventor. This value is determined by the number of

patents the new inventor will produce and by how much of it the firm has to pay
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to the inventor.

Matched pairs of inventors and firms produce patents with probability λf ;i =

xi ∗ yf . A pair’s patenting probability is the product of inventor skill and firm re-

search quality, so matching good inventors and firms generates additional patents.

Inventors leave the economy at the exogenous rate δ.

Each incremental inventor represents a stream of future patents up until he

either becomes obsolete because of disruption or leaves the economy. These risks

affect all incremental inventors in the same way, regardless of their patent arrival

rate.

V inc
i =

∫
yfxiV

Patent ∗ e−rttmax(i)
dt = yfxiV

inc(1, 1) (4.3)

where tmax(i) is the time the inventor becomes obsolete or leaves the economy,

whichever happens first. An inventor with a higher productivity has the same

risk, so the constant yfxiV
Patent can be factored out. Thus, the value of any

incremental inventor is a linear function of his patenting probability yfxiV
inc(1, 1)

and the value of an inventor with skill 1 working at a firm of quality 1. I will use

V inc(1, 1) as a reference throughout the model until the equilibrium value of an

inventor is solved for.

Since neither unemployed inventors nor unfilled vacancies can exist, neither

side has an outside option once an inventor has drawn a specific vacancy. Thus,

neither side of a match can credibly threaten the other to discard the match.

Thus, the match surplus of any potential match is

Sinc(yf , xi) = yfxi ∗ V inc(1, 1) (4.4)

While they are matched, the pair expects to produce yfxi patents. Each patent

within a technology cluster c can improve firm quality and profits by the same

amount, so all patents have the same value. The matched pair of firm and inventor

discounts this stream of patents with the probability that the inventor leaves the

economy δ, the time preference r and the probability that a disruptive invention

ends the entire cluster. After matching, the pair Nash-bargains over this surplus

and divides it so that firms receive share α and inventors receive (1−α) as wages.
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The value of the additional incremental inventor i for producing firm p is

V i
p (yp, xi) = αypxi ∗ V inc(1, 1) (4.5)

The patent invention function is supermodular, so a highly skilled inventor is

even more valuable for a high quality firm. Conversely, matching with a high

quality firm yields more utility for a high quality inventor.

Firms create vacancies to attract inventors and gain an additional stream

of patents (eq. 4.5). Just like in the standard model, firms face a congestion

externality when creating their vacancies: A firm that creates another vacancy

increases the number of inventors it can expect to attract and decreases the

number of hires its competitors can secure. The aggregate number of new hires

is fixed, because every graduate draws one random vacancy. A producing firm p

gains η
N inc
v

hires for every vacancy and pays fixed cost 1
2
∗ cv ∗ v2

p ∗ yp for all its

vacancies. Firms will create additional vacancies in an effort to get a larger share

of the available graduates until they have driven the value of creating vacancies

down to the costs:

cv ∗ vp ∗ yp = α ∗ yp
1

2
Sinc(1; 1) ∗ η

N inc
v

(4.6)

I.e. expected value of a new inventor for the firm E(V (yp;xi)) times the probabil-

ity of obtaining an additional inventor when creating an additional vacancy η
N inc
v

must equal the marginal costs of creating an additional vacancy cv ∗ vp ∗ yp. The

value of an additional inventor drives how many vacancies firms actually create,

but does not influence the number of matches, since all graduates are guaranteed

to draw a vacancy. The value of future hires and the number of hired inventors

is independent of yp, which is on both sides of the equation and cancels out.

Note that equation (4.6) stipulates that the number of vacancies is linear in

yp. This means that higher quality firms will create more vacancies and thus

also obtain linearly more inventors at every point in time. Integrate equation

(4.6) over yp to get the average number of vacancies per firm, which yields the
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equilibrium number of vacancies as:

N inc
v = (α ∗ 1

2
V inc(1; 1) ∗ η

cv
N inc
p )

1
2 (4.7)

The number of vacancies will rise the higher the share of profits that go to firms,

the higher the surplus from acquiring an additional inventor and the higher the

number of firms. However, none of these factors drive up the number of vacan-

cies linearly: Additional vacancies become less and less valuable for firms as each

vacancy competes against all already existing vacancies for inventors.

The aggregate number of inventors and the rate of incremental inventions

do not depend on the number of vacancies created: All inventors draw an open

vacancy and will accept it. All firms create the same number of vacancies and thus

receive the same number of new inventors yp
N inc
f

. The aggregate rate of incremental

inventions will be

Λinc(tc) = N inc
i (tc) ∗

∫ 1

0

∫ 1

0

yp ∗ xi dyp dxi =
η

δ
(1− e−δtc)1

4
(4.8)

where the first term describes the number of inventors at time tc (counting time

from the point in time the cluster was created through a disruptive invention).

Since η inventors enter the economy at each point in time and a share δ of the

existing inventors leave, this amounts to η
δ
(1 − e−δtc). The integrals describe

the average productivity of the inventors of the cluster, spread evenly across

firms. The distribution of inventors to firm does not change over time. More

involved labor markets are certainly possible, but would not change anything

fundamental about the model: A labor market such as the one described in

chapter 3 would complicate the formulas, but would in the end create a similar

equation to equation (4.8).

The inventor portfolio of the technology cluster grows fastest right after a

disruptive invention has created the technology cluster. At this point, η matches

are formed with new graduates from university, and no old matches are dissolved

because none exist. All old inventors belong to the previous, now outdated tech-

nology cluster. The inventor portfolio grows more slowly over time, because more

and more matches exist and the inventors in these matches leave the economy at

rate δ. This dampens net growth. At N inc
i (tc) = η

δ
, the number of leaving and
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the number of entering inventors is equal. The technology cluster will reach this

steady state equilibrium after an infinite time – provided no disruptive invention

destroys it.

The value of all incremental inventors of firm p is defined by the aggregate

rate of inventions in its technology cluster Λinc(tc), the share of these inventions

that firm p participates in and the value of these inventions.

V inv
p = Λinc(tc) ∗

2yp
N inc
p

∗ α ∗ V inc(1; 1) (4.9)

The value of producing firms is increasing in Λinc(tc): As the aggregate stock of

inventors increases over time, producing firms will become more valuable. The

higher the number of competitors N inc
p , the lower the share of the overall in-

cremental inventions made by firm p. Since yp makes the firm’s inventors more

productive, it increases the share of patents that go to firm p. Higher quality

firms thus have a higher stake in the incremental inventor labor market and also

have a higher incentive to hinder disruptive inventions.

Since a firm with research quality 0 does not produce any patents, it will have

no incentive to dampen disruptive inventions. At any point in time, there will

be a marginal firm with quality ys which is just not interested in matching with

disruptive inventors and poaching them: The value gain from slowing down dis-

ruptive inventions for this firm equals the wage the firm has to pay the disruptive

inventor. All firms with a research quality above this sclerosis threshold ys will

be interested in poaching disruptive inventors, while all firms with lower research

quality will see poaching as a money losing proposition.

4.2.4 Labor Markets for Disruptive Inventors

Producing firms can inhibit disruptive innovation on the labor market for dis-

ruptive inventors. This is the central feature that sets my model apart from the

literature. E.g., incumbent firms in Akcigit and Kerr (2018) have a portfolio of

patents that is at risk from disruptions, but they have no way to prevent dis-

ruption. Labor markets provide a plausible way through which firms can hinder
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their competitors’ innovation.

In every technology field, a stock of disruptive inventors creates disruptive

inventions at rate Λdis(0). This stock of inventors is poached by the producing

firms over time and stops creating disruptive inventions. If the technology field

experiences a disruption, producing firms are destroyed; disruptive inventors are

freed and start disrupting again. When a disruptive inventor leaves the economy

(at rate δ), a member of the same household succeeds him and matches with the

last firm the leaving inventor was working for. Disruptive inventors in the each

found their own disruptive firm. This reduces the complexity of the labor market

for disruptive inventors without any impact on the poaching efforts of producing

firms, which drive the behavior of the model.

Each disruptive inventor draws his own λdisi from a uniform distribution be-

tween 0 and 1. Whenever a disruptive inventor is successful, he will create a new

producing firm. This firm will be in the previously unavailable cluster c+ 1 and

thus be worth ωc+1fe: New clusters feature more valuable incremental inventions.

The firm will not be a monopolist, since other firms can now enter the new cluster

freely. Nonetheless, the successful disruptive inventor will effectively have gained

the entry fee into the unavailable cluster.

The incentive to poach inventors on the disruptive labor markets is governed

by

� the value of the portfolio of incremental inventors (eq. 4.9)

� the costs of poaching inventors

� and whether poaching causes new disruptive inventors to enter the economy

(e.g. because wages for disruptive inventors increase).

To capture these three mechanisms in a simple labor market, I apply a reduced

form approach. A firm that wants to poach inventors has to create vacancies.

The costs of creating such vacancies rise because the different poaching firms

sometimes meet on the market and because they attract additional disruptive

inventors if they offer high wages to them. The cost of creating a vacancy that
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actually leads to a decline in Λdis thus is:

cv = feω
cyp ∗ 1/ys ∗ (

V (1, 1)

feωc
)2 (4.10)

The first term equals the costs of creating a vacancy similar to section 4.2.3.

Costs rise with the returns from disruptive inventions fe ∗ ωc and the research

quality of the firm yp. Hence, low and higher quality firms will again create the

same number of vacancies, all else being equal.

The second term represents the congestion externality if there are many disrup-

tive firms trying to poach inventors: With probability ys, a producing firm will

not poach on the disruptive market. The fewer producing firms actually poach,

the easier it is for the remaining producing firms. E.g. if ys = 0.5, half of all

producing firms in the economy poach and costs double because disruptive firms

will have to effectively create two vacancies to still match with the same number

of disruptive inventors.

The third term represents the offer that poaching firms have to make: Producing

firms have to match the wage that disruptive inventors can earn themselves in

order to poach them. However, if producing firms make generous offers to dis-

ruptive inventors, it becomes more attractive to become a disruptive inventor.

Additional vacancies become necessary to decrease the number of disruptive in-

ventors as the ratio between the discounted earnings of disruptive inventors in

producing firms and the current wage of disruptive inventors increases.

This setup for the careers of disruptive inventors contains two non-standard

assumptions: First, that new disruptive inventors ”inherit” the spot of a leaving

”mentor”-inventor. As long as no producing firms interfere in the labor market,

this is equivalent to the more standard ”randomly drawn firm” assumption. If

producing firms do interfere, this assumption does not affect the qualitative dis-

tribution of inventors, but makes the model more tractable: Since new inventors

enter firms according to the currently existing distribution and not a random

draw, the distribution changes slightly faster and it is not necessary to keep track

of the deviation between the current distribution of disruptive inventors and a

random allocation. Second, the reduced form assumptions about the labor mar-

kets for disruptive inventors are non-standard, but they make it harder for firms

to poach inventors and thus work against the model mechanism. They condense
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the forces working against the main mechanism into an easy formula and allow

me to include them into the model without it becoming intractable. This way

avoids fully fleshing out a whole other labor market for inventors that are on the

fence about becoming disruptive inventors or not.

To actually solve the model, I will use the guess-and-verify method of solving

intertemporal optimization problems. I guess that the equilibrium path of the

rate of disruptive inventions Λdis is

Λ̇dis = −(r + δ +
1

2
Λdis) ∗ Λ (4.11)

So the rate of technology disruption goes down faster as Λdis is still high,

i.e. right after a disruptive invention. As Λdis approaches zero and the risk goes

down, Λ̇dis converges towards 0 from above. (r + δ + 1
2
Λdis) can be read as the

rate contraction of the arrival rate of disruptive inventions.

Inserting the rate of contraction of Λdis into the value of an incremental in-

ventor (equation 4.3) yields a value for the incremental inventor of V patentypxi
(r+δ+ 1

2
Λdis)

.

Thus, the value of a disruptive inventor for a producing firm becomes

V dis
i (λdisi , yp) = λdisi

V patentyp
1
2

(r + δ + 1
2
Λdis)2

∗ [

η
N inc
p

+ λincp (δ + r)

(2δ + r)(δ + r)
] (4.12)

I.e. the value of an incremental inventor lies in how many disruptive inven-

tions he would have made (λdisi ) times the value gain of an incremental inventor

if the rate of disruption declines (first fraction) times a weighted average of the

inflow of future inventors η
N inc
p

and the current stock of incremental inventors.

To arrive at the sclerosis threshold ys, compare this to the expected value of

getting the returns from disruptive inventions. This yields

ys =
1

V dis
i (1, 1)

ωfe
(r + δ + 1

2
Λdis)

(4.13)

To see how much firms poach in equilibrium, insert equation (4.13) into equa-

tion (4.10) and compare these costs to the gains from poaching an inventor. This
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yields the equilibrium rate of poaching for producing firms:

ρv =
1

(r + δ + 1
2
Λdis)

(4.14)

Producing firms will create additional vacancies until the probability that a

vacancy leads to a successful poaching attempt is down to 1
(r+δ+ 1

2
Λdis)

. Given the

standard match production function (m = (Λdis ∗ v)
1
2 ), the rate of poaching that

disruptive inventors experience is the inverse, i.e. ρΛ = (r + δ + 1
2
Λdis), which

confirms the guess.

Since the rate of contraction for Λdis contains Λdis, this is a first order differ-

ential equation. Solving it yields Λdis as a function of time:

Λdis(t) = Λdis(0) ∗
1− 1

2
e(r+δ)c

e(r+δ)t − 1
2
e(r+δ)c)

(4.15)

The equilibrium arrival rate starts at Λdis(0) and declines over time as the de-

nominator gets larger. In infinite time, the arrival rate will be 0. c is a constant

that is fully determined by Λdis(0).

4.2.5 Consumer Demand, Patent Value and Static Profits

Throughout the previous discussion, I assumed that patents yield a steady stream

of profits equal to a constant π times the quality increase that each patent rep-

resents.

This assumption can be microfounded in a number of ways, most notably

as in Akcigit and Kerr (2018). In their model, firms sell their products to a

love-of-variety final goods sector and profits only depend on product quality and

exogenous demand & cost parameters. As is standard in these settings, firms

compete against the (appropriately weighted) average product in the market and

not any specific firms. For the baseline specification of this paper, I present a

close derivative of this model where I increase the role of technology clusters and

introduce technology fields.
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I also present an alternative specification of consumer demand that also leads

to profits linear in quality. This is to emphasize that the specifics of demand do

not drive my conclusions and labor markets are tractable enough so that they

can be inserted in different GE-models. This alternative justification of linear

profits is based on a Salop circle demand framework. In this framework, every

firm competes against specific firms (its neighbors on the circle), which opens up

the possibility to extend the model for strategic interactions between different

firms.

Baseline specification

Consumers are part of a representative household and derive logarithmic utility

from consuming a final good (Y ) in continuous time. This final good is the

numeraire good.

U =

∫ ∞
0

e−rt ln(Y (t))dt

Consumers are impatient (r). They neither face a tradeoff between leisure and

consumption, nor do they experience inequality. Households evenly share income

from all sources between their members.

A final goods industry produces the consumption good from labor and a

variety of intermediate inputs and sells it to consumers. The industry produces

according to

Y (t) =
1

1− β
Lβc (t)

∫ 1

0

qβj z
1−β
j dj (4.16)

where qj is the quality of good j, zj is its quantity and Lc(t) is the labor expended

in final goods production. If all product qualities are fixed, the production func-

tion exhibits constant returns to scale in labor and intermediate inputs. With

increasing product qualities qj, the production function exhibits increasing re-

turns to scale.

Each product j corresponds to a technology field. To become a producing

firm for product j, firms enter the current frontier technology cluster in that field

and hire inventors.
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The economy contains a mass 1 of production workers which I will call tech-

nicians. Technicians have undergone vocational training and cannot become in-

ventors. However, they can contribute to the production of any good, regardless

of the specific technology. Since all technicians are perfect substitutes and firms’

research quality does not matter for production, no matching is necessary. There

is a perfectly competitive spot market for technicians’ labor without search costs.

The final goods industry is a price taker, consisting of a multitude of small

competing firms. Hence, its inverse demand for any one intermediate good is

pj = Lβc (t) ∗ qβj ∗ z
−β
j

The price that the final goods industry is willing to accept for variety j of the

intermediate good increases as more technicians work in the final goods industry

Lc(t) and the quality of the variety becomes higher. If the final goods industry

buys a higher quantity zj, the acceptable price declines.

In each of these intermediate goods sectors j, producing firms compete to

satisfy this demand. They produce intermediate goods using labor:

zfj = lfj ∗ q̄

Firms use one unit of labor to produce one unit of an intermediate good of aver-

age quality.

As is standard in the literature, these firms compete in a two-stage Bertrand

game: In stage one, every firm decides whether it wants to incur an arbitrarily

small set-up cost ε to be able to produce. In stage two, all remaining firms engage

in Bertrand competition. Since the result of Bertrand competition will be that

only the firm with the highest quality produces, only this firm will incur the cost

ε and it will be the monopolist in the second stage of the game.

A single monopolist with a given product quality will set the profit maximizing



88 CHAPTER 4. INVENTOR LABOR MARKET & GROWTH

price and produce quantity

z∗j = qj ∗ Lc(t)(
(1− β)q̄

w
)

1
β (4.17)

Importantly, demand for the monopolist’s products depends on the amount of

labor employed in the final goods industry since production workers process the

intermediate inputs.

The mass of small firms in the final goods sector will optimize their labor and

intermediate goods intake and through this set the wage rate. Optimizing equa-

tion (4.16) with respect to labor and inserting the equilibrium on the intermediate

goods market (equation 4.17) gives the optimal wage as

w = ββ(1− β)1−2β ∗ q̄ (4.18)

i.e. the final goods industry will adjust its labor demand to achieve a wage rate

as a multiple of the average quality q̄ in the economy. The precise multiple is

dictated by labor’s output elasticity β. This behavior is optimal because the

supply of intermediate varieties is itself a function of Lc(t) (equation 4.17).

Producing firms make the important decisions in the model, since their deci-

sions about hiring inventors will determine technological progress and dynamic

equilibrium. However, their downstream decisions have no dynamic component:

Labor input, quantity sold and price can be adjusted at any point in time. Taking

into account that the final goods industry will always fix the wage rate (equation

4.18), the optimal quantity decision for a producing firm gives equilibrium profits

as

π∗mon = qj ∗ Lc(t) ∗ (1− β) ∗ ββ(1− β)1−2β (4.19)

Thus, a monopolist’s profits are a linear function of quality and (from the view-

point of the firm) an exogenous factor called π throughout the rest of the paper.

So far, this framework is deviating from the setup in Akcigit and Kerr (2018)

in two ways: First, I introduce technology fields, equate them with products and

prohibit producing firms from creating disruptive inventions. Together, these

changes mean that producing firms no longer face a general threat of disruption
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from firms throughout the whole economy. Instead, only a distinct set of disrup-

tive inventors within their own technology field pose a threat to producing firms.

Second, there are now multiple producing firms within one technology cluster.

As in Akcigit and Kerr (2018), incremental inventions increase product quality,

but I now have to make some assumptions about how producing firms split the

revenues and how this is affected by new inventions. To keep the model tractable,

I will assume that incremental inventions are unique, non-substitutable and ad-

ditive. Hence, a producing firm that makes an incremental invention will not

necessarily displace the current best product as in most ladder models, but just

gain ωc product quality. I assume that all producing firms within a technology

cluster then pool all their patents to create the best possible product and split

the revenues from selling that product according to the quality contribution that

each firm was able to make with its patents. Since all inventions are unique and

non-substitutable, market power lies with whoever holds each individual patent,

who can make a take-it-or-leave-it offer to the pool of the other firms. Thus, each

producing firm can extract the value of its patents, no matter which firm will

actually produce.

Using the HJB, the value of the firm’s patent portfolio is:

V (∆qf ) =
∆qfπ

r
(4.20)

The value of the patent portfolio of a firm thus only depends on the impatience

to consume r and ∆qf , the quality improvement that this patent portfolio makes

possible. For simplicity, patents do not expire. Importantly, the value of a patent

portfolio is independent of the number of researchers in any firm.

This assumption is unusual insofar as the typical quality ladder model would

assume that a successful incremental invention creates a product one step above

the currently existing one. Instead, in my model, an invention represents an qual-

ity improvement that any firm in the cluster could in principle use to improve

their product. If the firm is not currently producing, it can license the invention

to the currently producing firm to increase the quality of their product further.
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Possible Alternative: Salop Circle

This section describes a completely different demand system that nevertheless

gives the same result of profits being a linear function of quality. The purpose of

this section is to demonstrate the flexibility of the inventor labor market setup

and to showcase a setup in which firms have direct competitors which could be

used for model extensions with strategic interactions between firms. To avoid

confusion with the baseline specification, I will index firms f and consumers con

in this section.

Consumers derive utility from a generic numeraire good a that represents

consumer goods with low research content. In addition, they derive utility from

satisfying a continuum of their needs located on a Salop circle of circumference

1. The needs on this circle are more advanced and can only be fulfilled with

research intensive products. Needs that are located closer to each other are more

substitutable. E.g., a section of the circle might represent different modes of

transportation, while another section might signify entertainment. In the trans-

portation section, one point might represent short distance trips for one person,

another point might represent longer commutes and a more distant point might

be intercontinental travel. Crucially, these are general needs and not existing

products.

The utility function of consumer con is

Ucon =
∏
n

xβn ∗
qf

dn→f(n)

∗ a1−β
con (4.21)

Utility comes from the amount of goods purchased (xn) for each need, from the

quality of the products (qf ) for each need and from the distance between this need

and the product that the consumer actually bought (dn→f(n)). Since each point

on the circle represents a need and not a product, consumers have to search for

the best product to meet any specific need. The Cobb-Douglas utility function

implies that consumers spend a fixed share of their income on research intensive

goods, spread equally over their continuum of needs. In effect, consumers assign

a constant budget to any of their needs n on the circle.

There is only a finite number of firms, each of which produces exactly one prod-

uct. Firms and thus also products will be indexed with f . Firms have to position
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themselves on the circle and will attract customers intent on satisfying their needs

in the vicinity. E.g. a firm might decide to rent out bicycles suited for short dis-

tance trips. However, this firm’s product might also be the best option for longer

commutes if the bike has a high quality (e.g. an electric engine), if there are no

competing products in the vicinity (e.g. because the only other transportation

firm is an airline), or if the firm is charging a comparatively low price.

Consumers will buy a firm’s product multiple times: They will search for the best

offer for any one of their needs. E.g., consumers will search for the best firm for

short trips and then again search for the best firm for commutes. The success

of a firm f depends on for how many of these different needs it can make the

best offer. Consumers are indifferent to a product of double the quality which is

twice as far away from the desired variety. The quality and quantity of variety v

are complements and the consumer derives utility from their joint consumption.

Thus, the lower the price of the research intensive good, the more the consumer

can buy, which again makes the quality of the research intensive good more useful

to him.

From the viewpoint of firms, each need n is a separate winner-takes-all market

of equal size I ∗β. How many of these markets a firm wins determines its revenue

and size. Firms will always be able to control the markets closest to them because

quality is divided by the distance of the firm to the market
qf

dn→n . Thus, any firm

can offer infinite utility in the market at its location. Demand for the product

of firm f is determined by the marginal market nm;f ;f+1, i.e. the market where

consumers are just indifferent between product f and f + 1 of the neighboring

firm.

qf
dnm;f ;f+1→f

∗ (
1

pf
)β =

qf+1

dnm;f ;f+1→f+1

∗ (
1

pf+1

)β (4.22)

Additionally, product f competes with product f − 1 on the other side of f . The

number of markets that firm f can capture depends on the quality of its product

(qf ) and the pricing and location decisions of its competitors.

In static equilibrium, firm f has to take the quality of its product as given.

It first sets prices and then positions itself on the circle, considering the fixed

quality of its competitors. Firm f will have to take the quality of all firms into
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account when setting prices, anticipating that the prices it sets will affect where

its competitors position themselves.

E.g., consider a bicycle, a car and a train company all competing for markets

in the transportation sector. The car company has to do research to increase

the quality of the cars it can produce, set a price and then decide whether it

would like to compete for short-distance inner-city trips with bicycles or for long-

distance traveling with trains. Setting a low, competitive price will induce both

the bicycle and the train competitor to move more into their specific niches, as

will having a high quality product.

Thus, every firm owner has to position the firm taking all other variables as

given. Solving equation (4.22) for the number of markets firm f captures to its

left (against firm f − 1) and to its right (against firm f + 1) yields the profits the

owner of firm f can reap:

πf = I ∗ β qf
pβf

[
pβf−1dnm;f−1;f→f−1

qf−1

+
pβf−1dnm;f−1;f→f−1

qf−1

](1− mc

pf
) (4.23)

Given that the firm owner has already set prices, maximizing profits now comes

down to maximizing the number of markets that the firm can capture: The

markup
pf
mc

is given. Note that the firm owner conceptually could influence

dnm;f−1;f
by moving firm f closer to firm f − 1 and taking its markets.

The markets that f and f + 1 capture between them have to sum up to the

distance between the two firms, so the profits of firm f can be expressed only in

exogenous variables and the strategy choices of its competitors:

πf = I ∗ β[df→f+1

qf

pβf
qf

pβf
+

qf+1

pβf+1

+ df→f−1

qf

pβf
qf

pβf
+

qf−1

pβf−1

](1− mc

pf
) (4.24)

where the term in brackets denotes the markets won by firm f : df→f+1 is the

distance between firm f and its competitor f + 1. The two firms split the mar-

kets between them according to the ratio of the attractiveness of their products
qf

p
β
f

qf

p
β
f

+
qf+1

p
β
f+1

. In the same way, firm f and firm f−1 share the markets between them.



4.2. MODEL 93

From equation (4.24), it is clear that there is no Nash equilibrium if firm f − 1

and firm f +1 have different qualities and prices: Firm f will always move to the

firm that offers the stronger product. However, Salop circles do not have Nash

equilibria in general. An equilibrium is only possible if firms take the location

reaction of their competitors into account.

Consider the reactions of firm f+1 to the actions of firm f . Because firm f+1

can freely move on the circle, its profits must be independent of f . Otherwise,

the firm will costlessly move to a different part of the circle. Firm f +1 will react

to any price and quality changes of f to restore this indifference.

∂πf+1

∂lf
= 0 = −

qf+1

pβf+1

qf

pβf
+

qf+1

pβf+1

+
∂lf
∂lf+1

qf+1

pβf+1

qf

pβf
+

qf+1

pβf+1

−∂lf+1

∂lf

qf+1

pβf+1

qf+1

pβf+1

+
qf+2

pβf+2

+
∂lf+2

∂lf+1

qf+1

pβf+1

qf+1

pβf+1

+
qf+2

pβf+2

(4.25)

which yields
∂lf+1

∂lf
=

∂lf+2

∂lf+1
= 1 as the solution: If firm f moves 0.1 units closer to

firm f + 1, f + 1 will also move 0.1 units towards f + 2. Firm f + 1 can do this

because it expects firm f + 2 (and f + 3, f + 4,...) to do the same, restoring the

original positioning.

Now consider the case where firm f has set a higher price. Again, firm f + 1

cannot profit from that, since otherwise firms from other parts of the circle would

move to the spot of firm f + 1:
∂πf+1

∂pf
= 0. Thus,

∂df→f+1

∂pf
= −βp−βf ∗

qf

pβf
qf

pβf
+

qf+1

pβf+1

(4.26)

I.e., by increasing its price, firm f captures a slightly smaller share of the mar-

kets between f and f + 1. f + 1 then moves closer so as to exactly maintain the

number of markets it captures itself. Two firms share the markets between them

according to the ratio of the attractiveness of their products. So when f becomes

less attractive because of price increases, firm f + 1 has to move closer to shorten

the distance between the two firms. If the price of product f was already high,

f only has a tiny share of the contested markets and additional price increases

only require small changes in location. Even though this movement lowers its
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profits, firm f + 1 has to do this to protect itself against other firms moving into

the resulting gap.

Equations (4.25) and (4.26) imply that the utility of the marginal consumer

between two firms is constant across the economy. Intuitively, this follows more

or less directly from the free movement condition: Since the profits of firm f

depend directly on its own quality, its price and the utility of the marginal con-

sumers it can still capture (4.23), it stands to reason that one spot on the circle

cannot have marginal consumers with higher utility, since firms would otherwise

move there. Thus, I denote the sum of the utility of the two marginal consumers

of each firm as C. C is a competition parameter describing how low firms have

to set prices to stave off competing firms. It rises with how many firms of a given

quality are in the economy.

Mathematically, inserting C into equation (4.23), firm profits are

πf = IβDf − IβD
(1+ 1

β
)

f [C]
1
β q
−1
β

f

mc

β
(4.27)

where Df denotes the number of captured markets, i.e. the number of markets

for which the product of f is the best product. Firms earn Iβ per captured

market, but the costs of servicing these markets increase non-linearly, because

lowering prices forces a firm to serve its already captured markets with more

produce or leave revenue on the table. Equation (4.27) takes into account that

firm f expects its neighboring firms to keep their profits and thus the fractions in

equation (4.23) constant. Thus, if f increases its price, f expects the other firms

to move closer, tightening competition compared to equation (4.24). Likewise, if

firm f decreases its price, it expects to cater to additional markets partly because

its direct competitors move away and partly because its products become more

attractive.

Maximizing equation (4.27) yields

pf = (1 +
1

β
)mc (4.28)

for the optimal price: Firms charge a fixed markup over marginal costs depend-
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ing on the demand parameter β, which denotes how long additional quantity still

generates value for the customers for any given variety. If additional quantity

does not lead to much additional utility, firms cannot gain many customers by

lowering prices and charge a high markup.

Given this pricing behavior, customers search for the best product for each

different variety. This yields the number of varieties serviced by each firm as

Df = qfβ[
1

(1 + β)mc
]β[C] (4.29)

Serviced markets are a linear function of a firm’s quality, given that every firm

charges the same price, regardless of its quantity. The number of markets served

reacts more strongly to quality if the marginal costs are small, so that the costs

of serving additional markets do not matter so much. The effect of the demand

parameter β is more ambiguous, because a high β raises the costs of servicing a

new market (because consumers demand more goods), but also means that con-

sumers spend more in each market. Firms leverage their quality to service more

markets, not to raise their prices. Since the circumference of the Salop circle is

finite, this is a predatory strategy: High quality firms push out their competitors.

Since only the number of served markets rises with quality, profits are also

linear in quality:

πf = Df ∗ Iβ ∗
1

1 + β
= qf [

β

(1 + β)mc
]β[C]Iβ

1

(1 + β)
(4.30)

Every firm faces the same marginal costs and charges the same price, thus prof-

its in every market are the same (Iβ ∗ 1
1+β

). Profits per market are higher if β

increases, because consumers allot a higher budget to each need. This is partly

counteracted because a higher β also means that consumers draw more utility

from the quantity that firms produce, which harms firms: Since consumers value

lower prices, firms try to steal each others’ markets by lowering prices. Yet, the

higher overall spending for the research intensive good prevails.

Equilibrium requires that the whole circle is serviced, i.e.
∑
Df = 1. This
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allows to solve for the equilibrium value of competition strength [C] = 1∑
qf f

(1 +

β)βmcβ. The strength of equilibrium competition is rising in the sum of all

qualities of active firms: Since every firm captures markets on the Salop circle

in relation to their quality, if there are more high quality firms, every firm has

to receive a smaller number of markets. Marginal costs lower the competition

each firm feels, because higher marginal costs decrease the incentive for each

firm to spread out over multiple markets. Given the level of competition, firms

can cater to qf ∗
∑
qf
−1
f markets. Consequently, every firm makes profits of

qf ∗
∑
qf
−1
f Iβ(1 + β)−1.

The economy is closed by the labor market and the market for the numeraire

good. The economy produces the numeraire good with the fixed amount of labor

L with the technology of all firms
∑
qf . Thus, the research intensive sector

increases the productivity of the numeraire sector. Since the numeraire sector is

competitive, its whole revenue is earned by its laborers. Thus, the equilibrium

income in the economy is

I =
∑

qfL(1 + β) (4.31)

i.e., the labor income from the numeraire sector plus the profits from the firms

in the research intensive sector. Labor income increases the higher the produc-

tivity of the economy and the more labor L households supply. The higher β,

the higher the profit share of the economy, as well as nominal income for a given

productivity level. However, a higher β would also lead to higher prices for the

research intensive good, so real income is not rising.

Given this nominal income level, the profit of any given firm is

πf = qf ∗ β (4.32)

and thus is only a function of a firm’s product quality qf and the constant param-

eter β. However, potential entrants do not only care about current conditions,

but are motivated by potential future profits. Thus, the number of firms in

equilibrium is determined by future prospects for quality improvements through

research.
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Within a cluster currently at the technology frontier, i.e. a cluster that is the

best in its field, patents improve the product quality of firms and thus represent

a steady stream of profits for the firm that holds them. The value of a patent

V (pc) = ωc ∗ β
r

(4.33)

is a function of parameters of the model and thus fixed. It rises with c, as

patents in more advanced clusters create more quality (parameter ω determines

the strength of this effect). The value of a patent also rises in β, which governs

the markups of firms and the amount of money consumers spend on the research

intensive good.

Given this value of patents, the value of an inventor is the stream of patents

he represents. The value of the inventor portfolio of all firms with a given quality

yf is thus

Vf (N
c
i (yf , xi, t

e
c)) =

∫ 1

0

(V (pc)yfxi(1− e−t
e
c)

2η

δr
dxi = yfVf (N

c
i (yf = 1, tec))

(4.34)

I.e. the value of the patent portfolio of firms is increasing in yf because high

quality firms produce more patents with the inventors they have. The value of a

firm’s patent portfolio increases as long as the current technology cluster is still

on the edge and additional inventors are still entering the cluster.

A potential entrant does not have an inventor portfolio, but expects to hire

inventors in the future. The value of this stream is dependent on the research

quality yf the entrant will draw.

Vf (yf ) =
1

Nf (y)

∫ 1

0

(ηxi ∗ Vf (yf ;xi) dxi
1

r + Λdis

= yfVf (yf = 1) (4.35)

The stream of inventors matched with firms of quality y is shared between all

firms of that quality 1
Nf (y)

. Again, the value of the stream of hires is increasing in

yf because a higher quality firm gets more patents out of each hire. If the value

of a patent in the technology cluster V (pc) is higher, firms value the stream of in-

ventors they will hire more. The share of profits flowing to the firm makes future

inventors more valuable, too. The likelihood of disruptive inventions decreases
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the value of future inventors: If a disruptive invention occurs, new inventors will

not enter the now obsolete cluster of the firm. The stream of hires will dry up.

Whenever a new technology cluster is created (and only then), new firms

can enter. New firms entering the economy do not yet have inventors or patents.

However, entrants gain access to the inventor labor market and will hire inventors

and produce patents in the future. Firms pay an entry fee fe to become experts

in a technology cluster proportional to ωc: The more disruptive inventions were

necessary to form the cluster, the more sophisticated the technology is and the

more setup is necessary. In equilibrium, the ex ante expected value of future

hired inventors must equal this setup cost. Thus,

Nf = η
2

9
fe
β

r

α

r + δ

1

r + Λdis

(4.36)

Since entrants draw a quality yf randomly from a uniform distribution between 0

and 1, there is an equal mass of entrants (and firms) at every quality Nf (y). The

expected value of entry declines as more firms enter, because a higher number of

entrants compete for a fixed number of graduates. However, the value of entry

is independent of patents or the inventors already in the cluster. Hence, firms

will enter as soon as the disruptive invention creates the cluster and drive the

expected returns from entering down to the entry fee fe.

Some firms will ex post regret entering: They draw a bad research quality and

do not make enough profits to recoup their entry costs. Using equation (4.35),

ex post profits are 3yffe. Thus, all firms that draw a quality of 1√
3

= 0.58 or

worse will not recoup fe. These firms will not exist, since there is no continuous

cost of operation apart from inventor wages. Thus, such firms will participate in

the search for inventors and hire those with which they can recover at least some

part of their entry fee.

4.2.6 Technological Progress

Technological progress in the economy is twofold: Incremental inventions improve

the average quality of the products in the economy and ultimatively increase the
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utility of consumers. Disruptive progress increases the value of future incremental

progress. In equilibrium, disruptive innovation declines from the maximum to 0,

while the number of incremental inventions converges from 0 to the maximum.

In equilibrium, the economy still grows as new incremental inventions increase

quality, but economic growth as a percentage of GDP declines because incremen-

tal inventions can only create linear growth.

Each frontier technology cluster in each technology field faces a chance of dis-

ruption Λdis, upon which a new, more valuable technology cluster emerges. The

rate of disruptive inventions is declining as more and more disruptive inventors

get poached by producing firms (4.15). For any specific technology field, this

creates a saw blade like graph of the rate of disruption (Figure 4.2).

Figure 4.2: Example of the path of two technology fields or sectors of the econ-
omy. Sector A experienced several disruptive inventions which create a saw blade
pattern: After every disruptive invention, all producing firms close down and
poached disruptive inventors become active again. The probability for further
disruptive inventions goes up to the maximum rate again. Then producing firms
start poaching inventors again to decrease this rate. Sector B did not make a
disruptive invention at the beginning and the chances decreased as time went on,
because most disruptive inventors were already poached. In the end, the sector
did not experience any disruptive inventions before it arrived at the no-disruption
equilibrium.

The whole economy consists of many such sectors and is thus not subject

to the randomness of any one sector. The expected change in Λdis for any one
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technology field or sector is

E(∆Λdis) = Λdis(Λdis(0)− Λdis)− Λdis(r + δ +
1

2
Λdis) (4.37)

The first term describes that with probability Λdis, a disruptive invention will

occur and set Λdis to Λdis(0). The second term encapsulates the poaching ef-

forts of producing firms, which will decrease the rate of disruptive inventions by

Λdis(r + δ + 1
2
Λdis). Note that the rate of disruptive inventions is clearly declin-

ing for every value of Λdis as long as Λdis(0) < r + δ. This restriction will hold

in most real world applications: Hobijn and Şahin (2009) estimate a separation

rate of around 1.5% for the average OECD country, which together with a real

interest rate of a conservative 2% would imply that the average sector of the econ-

omy stays undisrupted for 18 years or more. Even if this parameter restriction

is violated, the qualitative result remains, but it becomes much harder to show

analytically. Appendix I details the results of the empirical simulation.

The exact parameters notwithstanding, it is clear from equation (4.37) that

the only possible equilibrium for any one sector is that the rate of disruptive

inventions is zero: It is the only point where both the expected change and the

change in case of no disruptive inventions are zero, so the technology field will

never leave this point. Any technology field will thus eventually experience the de-

cline of disruptive inventions to zero, even if Λdis(0) is very high. More and more

technology fields will be stuck in this equilibrium, until eventually all of them are.

Nevertheless, incremental inventors will add to the product quality of pro-

ducing firms at each point in time. How much quality they add to the economy

depends on the technology cluster they are in: Technology fields with large in-

ventor portfolios and more disruptive inventions in the past will contribute more

quality increases (equation 4.8). Technological progress through incremental in-

vention in one technology field then is

∆qc(t
e
c) =

η

δ
(1− e−tec)1

6
∗ ωc (4.38)

I.e., progress is a function of the number of inventors in that cluster and the

quality increase that an incremental invention in the frontier cluster of the field
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creates.

Technological progress in a field changes as additional inventors enter the field,

old inventors leave and disruptive inventions make the whole stock of inventors

obsolete:

E( ˙∆qc(tec)) = ωc ∗ η1

6
− δ∆qc(tec)− Λdis∆qc(t

e
c) (4.39)

If no disruptive invention happens, the frontier cluster will eventually absorb all

inventors in the field. At this point, technological progress will be linear, as each

inventor produces a set amount of inventions, each of which adds a fixed amount

of quality ωc. This is the steady state outcome: The rate of disruption will even-

tually decline to 0 and after that, all inventors will eventually work in that cluster

as (tec)→∞.

Figure 4.3: The path towards the steady state of the economy. The solid black line
denotes the number of disruptive inventions at each point in time for a simulated
economy with 2000 sectors. The dotted line denotes the theoretically expected
number. Evidently, while there is still some randomness, the actual number of
inventions tracks the predicted line quite closely. The rate of disruptive inventions
decreases as more and more disruptive inventors get poached by producing firms.
As that happens, the aggregate rate of quality growth in the economy slows down
until linear growth is reached in the steady state.
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4.3 Description of Equilibrium and Policy Im-

plications

The economy presented in the baseline specification has several major decision

points, only some of which the market economy handles efficiently.

First, there is the demand of the final goods sector for intermediate products

to turn into the final consumer product. The economy has a fixed number of

products defined by how many technology fields there are and all of them are

produced in equilibrium. However, the quantity produced is smaller than in the

optimum because of the monopoly power of intermediate goods producers. This

inefficiency depresses output by a fixed share, but has no impact on equilibrium

growth rates.

Second, intermediate goods producers have to hire incremental inventors to im-

prove their product. Producers hire all incremental inventors by assumption

(because new graduates are guaranteed to draw a job). So, there is no ineffi-

ciency in this dimension.

Third, disruptive inventors work on disrupting the economy and get poached

by producing firms to prevent this. The market economy weighs the costs of

disruptive inventions against the entry costs for producing firms: A successful

disruptive inventor is not able to appropriate all the benefits from his invention

as profits because other entrepreneurs can enter the new technology cluster that

he has created. Producing firms bear all costs from disruption and receive none

of the benefits, thus they have a strong incentive to prevent disruption. A social

planner that maximizes the utility of representative households makes a very dif-

ferent calculation: He weighs the value of getting graduates empowered by the

disruptive invention in the future against the costs of losing all current inventors:∫
1

4
ηV inc

i (t)e−rt dt ≥ V patentΛinc(t)

(r + δ + 1
2
Λdis)

(4.40)

Firms do not make this calculation since the value of the future inventors that

other firms will get does not factor into their profits. It is apparent that a social

planner might even arrive at the same conclusion as the market economy if the

discount rate is sufficiently high: Empowering future graduates takes longer to

pay off than current incremental inventions.
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This highlights an important point about the tradeoffs involved in the decision

about which type of research to pursue: Increasing long run economic growth in

this model requires unambiguously hurting the current generation. The currently

living incremental inventors and firms have a vested interest in slowing economic

growth. Fast productivity growth through disruption does not benefit them, but

the inventors and firms who will enter the newly created cluster. A social plan-

ner might want to solve this via transfers, but even that might not work: The

current stock of incremental inventors is made obsolete, temporarily decreasing

GDP. While it will eventually be rebuilt and growth will increase, many incre-

mental inventors and firm owners that were hurt by the disruption will already

have left the economy. Effectively, the current generations prefer to increase the

level of economic activity through incremental inventions at the cost of economic

growth. Of course, the linear technological progress of incremental improvements

is still progress, but it means that the growth rate of the economy will continu-

ously decline.

If the social planner wants to preserve the arrival rate of disruptive inventions

in the economy, he has to slow down the rate at which producing firms poach

disruptive inventors. There are in principle two ways to achieve this: One is

to decrease the value of the stock of incremental inventors, which decreases the

incentive to poach. Increasing the separation rate of inventors and firms or de-

creasing the market power that firms enjoy on the goods market would both work

in this direction. However, these are large interventions into the markets. The

second route is to decrease the ability of large producing firms to poach disruptive

inventors. An easy step in this direction would be to restrict startup acquisitions

significantly. There is an active literature on the questions of whether startup

acquisitions are welfare enhancing (Cabral, 2018; Piazza and Zheng, 2019). My

paper offers an additional argument for prohibiting such acquisitions.

Income in the economy is derived from the wages of technicians, the profits

of firms and the wages of incremental and disruptive inventors. As in the base

model of Akcigit and Kerr (2018), the revenue of producing firms within each

technology field/product is constant. Of that revenue, a fixed share goes to tech-
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nicians pay for labor input into production. The remainder pays the rents of

firms and their investments into inventors.

Firms pay out a fixed share α of the quality increases that incremental inven-

tions produce to their incremental inventors. If firms hire disruptive inventors,

they pay them out of their share 1− α. This reduces their stream of profits, but

increases the expected duration of this stream. Poaching disruptive inventors is

only profitable if the expected profits of disruptive inventors (Λdisωcfe) are smaller

than what firms can earn from incremental inventions ((1−α)ΛincV Patent). Oth-

erwise, equation (4.13) will yield a sclerosis threshold larger than 1 and no firms

will actually poach inventors.

4.4 Conclusion

As productivity growth is declining across frontier economies, it is urgent to un-

derstand firm innovation as a determinant of productivity development. This

study offers a general equilibrium framework to analyze how inventors and firms

match and which research avenues firms pursue. In a search and matching la-

bor market, firms have to acquire expertise in a technology and then build and

protect a portfolio of specialized inventors to do research. Thus, producing firms

are invested in existing technologies and resist disruptive inventions that might

make their own technology obsolete. Firms can impede disruptive technology

growth either by outright buying disruptive firms or by poaching the inventors

disruptive startups need. Firms focus on incremental improvements that increase

the quality of their product, but do not change the general technology structure.

The model describes the situation found in empirical work well: Section 3.4

documents that technology clusters are dominated by very few firms. The model

predicts that firms that impede disruptive innovation hire more inventors and

pursue smaller, more incremental inventions. Thus, patent counts rise and pro-

ductivity growth falls. Poege et al. (2019) and Akcigit and Kerr (2018) have

grouped patents into incremental improvements and more radical innovation us-

ing the quality of scientific literature linked to the patent and the citations from
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other firms. Both have found that more ambitious patents are more valuable

to the applicant. Despite that, firms’ research has become more incremental

(Arora et al., 2019). Firms produce more and more patents with an increasing

number of researchers, whose productivity is falling, yet whose wages do not de-

crease (Cowen and Southwood, 2019; Bloom et al., 2017). My model offers a

reinterpretation of this finding: Firms might decide to only look for incremental

improvements as a strategy to protect their rents. However, creating exponential

growth with incremental improvements is indeed getting harder and harder. As

a result, there might be a troublesome misallocation of inventive talent to incre-

mental innovation with declining returns.

The model implies several levers for policy intervention: One example is ban-

ning the acquisition of startups. Such regulation, while difficult to codify and

enforce, would prohibit large firms from monopolizing research talent and inhibit-

ing technology disruption. This is equivalent to making it more difficult to poach

disruptive inventors in my model. Extending merger controls to labor markets

has been suggested e.g. by Naidu et al. (2018), but for different reasons than the

ones presented here. However, there have also been arguments in favor of startup

buyouts. Among others, Cabral (2018) argues that allowing incumbents to buy

startups can increase the incentive to innovate: Potential entrepreneurs should

start more innovative firms because they expect to sell to big corporations. This

argument need not even hold in traditional endogenous growth models, where

the amount of research alone determines growth (Piazza and Zheng, 2019). If

different types of innovation exist, the argument breaks down: Large firms can

also acquire startups to suppress disruptive innovation and redirect R&D into

incremental research.

My model’s implications for inventor mobility are less clear cut: Since the

production function is supermodular, sorting all inventors to the best firm yields

more incremental patents. In this sense, e.g. improving the search technology is

beneficial. Hence, strong assortative matching increases short-run growth. How-

ever, strong assortative matching also implies large monopoly profits for high

quality producing firms, who will then oppose disruptive inventions. The exact

effect depends on which actions these firms can take, but long-run growth will
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decline. Optimal policy could target the search technology to disperse inventors

more widely among firms or levy taxes that increase with a firm’s share of patents

in any technology cluster.

Apart from these results, the paper also makes a technical contribution by

demonstrating how an elementary search and matching labor market can be in-

serted into a general equilibrium model without greatly increasing its complexity.

Given that the equilibria in search and matching models are most often found

through numerical simulation (Rogerson et al., 2005; Hagedorn et al., 2017), this

represents a significant step in its own right.



Chapter 5

Summary

My dissertation consists of three studies, all viewing aggregate productivity as

driven by the individual decisions of firms and the inventors that work for them.

I use microeconometric analysis to study why firms innovate and economic theory

to link these decisions to macroeconomic outcomes.

The first paper in this dissertation studies how German manufacturing firms

adjust their productivity in response to an increase in competition from foreign

markets. German firms only increase their productivity if their new competi-

tors come from other industrialized economies. This productivity increase is not

driven by innovation. Instead, firms cut input expenses and prices while main-

taining their output.

The second paper traces the matching decisions of firms and inventors on the

labor markets of developed economies. It adapts empirical techniques used in

labor economics to this special segment of the labor market and shows that as-

sortative matching has been increasing from 1974 to 2012: High quality inventors

go to high quality firms more often than was the case in previous decades. This

cannot be explained by changes in the patent invention function: The produc-

tivity of a match between a firm and an inventor of constant quality remains

roughly unchanged.

The third paper develops an endogenous growth model with inventor labor

markets and two types of innovation: disruptive inventions that change the under-

107
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lying technology of firms’ products and incremental improvements over existing

products. Firms acquire expertise in certain technologies by hiring the inventors

who are experts in these fields. This gives them a strong incentive to prevent

disruptive inventions: If the underlying technology changes, their investment

in these inventors becomes worthless. Large firms inhibit aggregate growth by

poaching inventors from firms engaged in disruptive innovation.
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Appendix A

Summary Statistics for German

Manufacturing Firms

Table A.1 displays summary statistics for our sample of firms entering our final

estimation of the effect of import competition on within firm productivity.
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Table A.1: Summary Statistics for Sample Firms

Mean SD P25 Median P75 Obs.
Variable (1) (2) (3) (4) (5) (6)
Firm productivity 2.82 0.85 2.26 2.72 3.21 78,414
Deflated Revenue (1000 e) 97,600 1,21,000 5,443 14,200 44,200 78,414
Labor (FTEs) 351.10 2773.90 47 98 244 78,414
Deflated capital stock (1000 e) 61,000 613,000 2,662 8,220 28,200 78,414
Deflated intermediate inputs (1000 e) 70,700 973,000 3,088 8,734 28,800 78,414
Deflated capital per FTE (1000 e) 118.25 130.15 43.57 81.28 145.77 78,414
% of revenue from exports 23.86 25.16 0.54 16.46 40.31 78,414
Export status dummy 0.78 0.42 1 1 1 78,414
R&D status dummy 0.35 0.48 0 0 1 78,414
pf

avg.pg
3.19 11.40 0.90 1.26 2.23 78,414

Number of products 4.04 8.53 1 2 4 78,414
Total import competition 5.45 10.53 0.04 0.97 5.74 78,117
High-income import competition 1.70 4.20 0 0.15 1.42 78,117
Low-income import competition 3.75 9.02 0.02 0.40 2.97 78,117

Notes: Table A.1 reports summary statistics for sample firms. All statistics are based on the sample
of firms entering the estimation. Since firms without contemporaneous import competition measures
can enter the estimation, N is slightly lower for these variables.
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Table A.2: Comparison of Firms with Competition from High vs. Low Income Countries

Firms predominantly exposed Firms predominantly exposed
to import competition from to import competition from

high-income countries low-/middle-income countries
(mean / median) (mean / median)

ICHigh−Income 13.44 / 10.63 1.29 / 0.63
ICLow−Income 1.79 / 1.30 20.22 / 13.41
K/L (e/ fte) 123,185 / 83,251 92,076 / 68,846
R&D Ex / L (e/ fte) 5,926 / 1,683 1,340 / 0
R&D Ex / Sales (%) 3.05 / 1.06 0.76 / 0

Note: Firms are exposed predominantly to import competition from high-/low-income countries
if competition from high-/low-income countries is at least three times larger than competition
from low-/high-income countries. Import competition from high-income countries and from
middle- and low-income countries as in equation (2.1), unweighted mean / median, 2000-2014.
Import competition is the share (in domestic production of German manufacturing firms) of im-

ports from a certain group of countries. The group of high-income countries (for ICHigh−Incomeit−1 )
includes USA, Canada, Japan, and South Korea. The group of low-income countries (for
ICLow−Incomeit−1 ) includes China, India, Russia, Brazil, South Africa, Argentina, Chile, Mexico,
Malaysia, Turkey, Thailand, Tunisia, Bangladesh, Indonesia, Philippines, Vietnam and Pak-
istan (see 2.2 for a discussion on country selection). Capital to labor ratio, K/L, is measured in
euro per employee (in full time equivalents, fte), unweighted mean / median, 2000-2014. R&D
Ex / L is R&D expenditures in euro per employee (in full time equivalents, fte), unweighted
mean / median, 2000-2014. R&D Ex / Sales is R&D expenditures in euro over total sales in
euro (in %), unweighted mean / median, 2000-2014.
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Appendix B

Firm-Specific Price Indices

We construct a firm-specific price index to purge firm revenues from price varia-

tion. The calculation of this price index closely follows Eslava et al. (2004). In

particular, we construct a firm-specific Tornqvist index for the firms’ composite

revenue from its various products:

Pit =
n∏
g=1

[
pigt
pigt−1

]
1
2

(sigt+sigt−1)Pit−1 (B.1)

where pigt is the price of good g and sigt is the corresponding share of this

good in the production at firm i in period t. Thus, the growth of the index value

is the product of the individual products’ price growths, each weighted with the

average revenue share of that product over this year and the last. We use the

first year available in the data as our base year, i.e. we set Pt=2000 = 100. For

firms entering after 2000, we use an industry average of our firm price indices

as a starting value. Similarly, we follow Eslava et al. (2004) and impute missing

product price growth information in other cases with an average of product price

changes within the same industry (for some products, firms do not have to report

quantities, because they would not be meaningful).
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Appendix C

Construction of Capital Stock

from Investment

We construct capital stocks at the firm level using a perpetual inventory method.

To estimate the first capital stock of every series, we combine information on the

value of yearly depreciations of firms τit included in the AFiD-data, with informa-

tion on the average lifetime of capital goods, Dt(Θ), where Θ=(equipment,buildings)

highlights that this information exists separately for building and equipment cap-

ital (this information is provided by the Federal Statistical Office). For now, let

us abstract from the different capital good types. Note that the lifetime of capital

goods contains information about their real depreciation rate.1 As is standard

in the literature, we assume that capital depreciates at a constant rate and that

it is fully destroyed (depreciated) at the end of its lifetime. Let us define the

amount of capital which depreciated during the production process in industry j

and period t as:

φjt = δj0Kjt

where δj0 is the depreciation rate of capital purchased at time t = 0. The

average lifetime of a capital stock purchased in year t = 0 then equals:

Dj0 =
1

Kj0

∞∑
0

φjtt =
1

Kj0

∞∑
0

δj0Kjtt (C.1)

1Ultimately, we augment an approach based on Mueller (2008) by backing out the implied
depreciation rate in a way that is consistent with a constant depreciation rate, the prevailing
assumption in the literature.
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With a little algebra, one can show that assuming a standard capital depreciation

of the form Kjt = Kj0(1− δj0)t, and substituting it into (C.1) gives:

Dj0 =
δj0

ln (1− δj0) ln (1− δj0)

As Djt(Θ) is known, we can recover δjt by solving this expression numerically for

each year and each capital type, Θ=(equipment,buildings). This generates two

depreciation rates for each point in time. We then define a single industry-specific

depreciation rate by using the shares of the industry-wide stocks of equipment

and building capital at time t as weights. Finally, we simplify by assuming

that the depreciation rate for the entire capital stock in each period equals the

depreciation rate of newly purchased capital, i.e. δj0 = δjt. Having calculated

δjt, we can recover a starting capital stock for every firm by using information on

the value of yearly deprecations, DEPRit, from the AFiD-database:

Kit =
DEPRit)

δjt

Now we can compute our capital series by:

Kit = Kit−1(1− δjt−1) + Iit−1.

where Iit denotes firm-specific investment. As our capital stocks are based on

information on the lifetime of capital goods, they are a closer approximation of

the capital actually used in firms’ production activities than capital stocks based

on book values. This is because firms might buy and sell their capital goods

not to market prices and have incentives to depreciate their accounting capital

excessively (House and Shapiro, 2008).



Appendix D

First Stage Regressions:

Predicting German Competition

with Competition Abroad

In the following we present the first stage regressions belonging to our baseline

results presented in the main text. As we always use the same instruments for

the same endogenous variables, our first stage regressions are identical for all

regressions using the same set of firms. Hence, we only show two sets of first

stage regressions: one for the full sample firms and one for the sample of firms

engaging in R&D activities. Those first stage regressions are respectively reported

in the following D.1 and D.2.
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Table D.1: First Stage Regression Results
Full Sample

IMPHigh+Low
it−1 IMPHigh

it−1 IMPLow
it−1

(1) (2) (3)

ISHigh+Low→third
it−1 0.235*** - -

(0.0197) - -

ISHigh→thirdit−1 - -0.0995*** 0.0314***
- (0.0117) (0.0111)

ISLow→thirdit−1 - 0.0156*** 0.279***
- (0.0051) (0.0224)

Firm x Industry FE YES YES YES
Time FE YES YES YES
Firm-level controls YES YES YES
Observations 78,414 78,414 78,414
R-squared 0.950 0.927 0.946
Number of firms 16,925 16,925 16,925

Notes: This table reports results from the first stage regressions
when estimating equation (2.10) by IV using the full sample of firms.
The dependent variable in columns 1, 2, and 3 respectively is the
lagged total import competition measure, the lagged high-income im-
port competition measure, and the lagged low-income import compe-
tition measure. All regressions include time and industry times firm
fixed effects and controls for firms’ number of products and export in-
tensity. Standard errors are clustered at the firm-level. Significance:
*10 percent, **5 percent, ***1 percent.
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Table D.2: First Stage Regression Results
Only R&D-Firms

IMPHigh
it−1 IMPLow

it−1

(1) (2)

ISHigh→thirdit−1 0.118*** 0.0210
(0.0205) (0.0176)

ISLow→thirdit−1 0.0308*** 0.228***
(0.0109) (0.0299)

Firm x Industry FE YES
Time FE FE YES
Firm-level controls FE YES
Observations 26,544 26,544
R-squared 0.928 0.952
Number of firms 5305 5305

Notes: This table reports results from the
first stage regressions when estimating equation
(2.10) by IV using the sample of firms that en-
gage in R&D activities. The dependent variable
in columns 1 and 2 respectively is the lagged
high-income import competition measure and
the lagged low-income import competition mea-
sure. All regressions include time and industry
times firm fixed effects and controls for firms’
number of products and export intensity. Stan-
dard errors are clustered at the firm-level. Sig-
nificance: *10 percent, **5 percent, ***1 per-
cent.
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Appendix E

Using Patent Data as an

Employer-Employee Data Set

Since PATSTAT does not contain IDs, only string names, I consolidate spelling

mistakes and disambiguate entities with the same name before using the data.

This appendix describes the procedure.

First, Magerman et al. (2006) have already constructed consolidated identi-

fiers by correcting spelling mistakes, omitting titles and reading out abbreviations

like ”Ltd.”. They have also constructed a sector variable, which assigns names in

the database to categories like ”company”, ”individual”, ”university” etc. After

fusing such different spellings of the same name, they find an additional 30% of

patents for the top 450 applicants, compared to the raw HAN identifiers provided

by PATSTAT.

Second, Peeters et al. (2010) have manually checked the record of the top 450

applicants and searched for additional possible variants in the data. They can

assign another 30% of patents to these applicants. However, since some of these

applicants have over 100.000 patents in different countries, different spellings and

mistakes play a much larger role than in the general population.

To disambiguate additional names both on the inventor and firm side, I clean

names similarly to Magerman et al. (2006) and then sort all words alphabetically.

This equates reversed spellings of names like ”Erik van Houten” and ”van Houten,

Erik”. This reduces the number of unique inventor identifiers by another 25%.
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I additionally clean firm names of addresses that are sporadically entered in the

field ”name”, e.g. ”Intel Corporation, Santa Clara, CA”. This fuses around 3%

of the remaining firm identifiers.

To gauge the quality of the resulting ID, I draw a list of prominent inventors

from Wikipedia and link them to our data. Just as Peeters et al. (2010) for the

firm side, I find that these highly active individuals are split over multiple IDs

due to spelling mistakes, different name formats etc. However, the automated

correction of Magerman et al. (2006) already does a decent job of aggregating

them: After manual search, I e.g. link 38 PATSTAT person IDs to the most

prolific inventor in the world (Dr. Shunpai Yamazaki). Magerman et al. (2006)

already linked the most important 30, so I can only marginally improve upon

their results. My 38 IDs participate in 5585 patent families across the world

while the 30 IDs of Magerman et al. (2006) participate in 5581. The newly dis-

covered name variants are clearly errors that only show up once. In addition,

such spelling variants often show up within a patent family where the inventor

is also cited on other patents. The patent family is the relevant unit of observa-

tion. Thus, even if undetected spelling variants exist, they are largely irrelevant

to my productivity measures. I thus have confidence that the IDs provided by

Magerman et al. (2006) capture the large majority of an inventor’s patents.

However, this still leaves the problem that some names might belong to more

than one inventor. Combining such inventors into one person would create the

impression of a prolific inventor frequently moving between firms.

First, I collect the frequency with which words occur in the inventor names

submitted on patents in each country. I then eliminate inventor names that do

not contain two infrequent words: E.g., ”Erik van Houten” contains two words

common in Dutch names (”Erik” and ”van”) and only one uncommon word

”Houten”. Thus, I will not consider this inventor in the sample.

Second, PATSTAT contains the IPC classes associated with each inventor’s

patents. Inventors will typically not master a variety of technical fields and thus

names with more diverse portfolios are more likely to stand for more than one in-

ventor. Specifically, I exclude workers whose most common IPC 4-digit category
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accounts for 20% or less of their patents, whose top technology field accounts for

50% or less of their patents and whose top two technology fields account for 80%

or less of their patents. I check these numbers against the statistics for inventors

crosschecked with Wikipedia to guarantee that these criteria are not too strict.

Third, I exclude inventors from the sample who were active for more than 40

years, on the basis that these are likely overlapping inventors of the same name.

The observed time span, the diversity of IPC classes and technology com-

munities and the number of distinct names are conceptually different criteria.

Nonetheless, they are reasonably correlated (0.15-0.6), which suggests that the

criteria identify suspect inventors reliably.
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Appendix F

Constructing Technology

Clusters from IPC Classes

This appendix details how I extract sub-labor markets from the IPC classes of

inventors’ patents. Each patent is assigned to one or more IPC classes that de-

scribe its technological contents. Not all inventors are interchangeable. Not all

inventors can work on all research projects. I.e., there is horizontal as well as

vertical differentiation between inventors. To sort all inventors into one ranking

would thus be misguided. The goal of the algorithm below is to separate inven-

tors into groups: These groups have to be so small that every inventor in the

group can contribute to the work of the other members of the group. However,

they have to be so large as to include every inventor who could substitute for the

members of the group.

I reduce the sample to all patents with only one inventor, so that the assig-

nation of IPC classes to inventors is unambiguous. I observe the succession of

combinations of IPC 4-digit classes every inventor patents in, sorting IPC classes

from the same patent or from patents in the same year in a random order. From

this I compute the conditional probability of an inventor whose last patent was in

one combination to move to another one. E.g.: If only one inventor ever applies

for a patent with the IPC class ”A01P” and then patents in the class ”B06P”, I

would conclude that the two combinations are very similar, since 100% of inven-

tors moved from one to the other.
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I find that even IPC 8-digit classes form a network that is only sparsely

connected by moving inventors: Most inventors only patent in very few classes

and mobility between classes is rare.

Figure F.1: The figure shows the distribution of movement probabilities between
IPC class combinations. The top figure shows the distribution for common IPC
classes (with more than 100 patents). The bottom figure shows the same dis-
tribution for the less common classes. Evidently, less frequent classes are often
strongly connected. In contrast, the frequent classes stand more alone. Red,
green and blue describe the movement probabilities to the nearest, nearest two
and nearest three other classes.

This sparseness of the network also determines my strategy for defining clus-

ters: Since the network has many nodes, few strong edges and the number of

final clusters and their geometrical forms are unknown, density based clustering

will efficiently yield the network structure.

First, I assign every IPC class with less than 1% of patents to the nearest

class with more than 1%, to avoid many small clusters with few inventors. I then

use density clustering among the large IPC classes to determine which classes to

combine into clusters. The ”knee” in the 3-nearest neighbor cdf is at roughly
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0.11, which I take as the ε for density based clustering: All connections with a

movement probability of 11% or higher are selected into the same cluster.

Figure F.2: knn distance plot of inventor movement probabilities. Distance is
defined as 1- movement probability. Note the uptake of the cdf for big clusters
at roughly 0.11. I will take this as the ε parameter in density based clustering.
Thus, most small IPC class combinations will be fused into clusters.

The result of this procedure is a stable assignment of IPC classes to technology

clusters. Around 20% of patents are part of the largest cluster. Figure F.3

shows the technology field assignment of the biggest IPC groups and the strength

of their relations with each other. For comparison, figure F.4 also reports the

community assignments of an alternative community finding algorithm for large

data sets (Pons and Latapy, 2005). It results in significantly larger communities

because small nodes with connections to two large communities often are enough

to connect the two large communities. This happens even though these small

notes represent a negligible amount of patents. Hence, the algorithm is highly

sensible to which small nodes and weak edges are considered. If neither are

included, the largest community contains roughly 50% of all patents, which is

not plausible as a sub-labor market: Mobility within this large community is low.
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Figure F.3: Technology fields of
and connections between the largest
IPC classes. Classes were grouped
into fields using a density based
algorithm that groups together all
classes connected through an in-
ventor movement probability above
11%. Thicker and darker arrows
denote more movements of inven-
tors from one technology class to the
other. The size of the classes denotes
the number of patents assigned to
each class.

Figure F.4: Technology fields of
and connections between the largest
IPC classes. Classes were grouped
into fields using the walktrap algo-
rithm of Pons and Latapy (2005).
Thicker and darker arrows denote
more movements of inventors from
one technology class to the other.
The size of the classes denotes the
number of patents assigned to each
class.



Appendix G

Truncation Correction

In this framework, the expected number of patents per year λyx is constant within

one match. Specifically, I treat λyx as the Poisson arrival rate of new patents,

given x and y. Each match exists for a given number of years (ltrue). Let type

j denote all employment spells with the same ltrue and λtrue. I understand the

untruncated data as generated by a mixture distribution of different types of

employment spells. I define sl;λ as the share of type l;λ in the overall mix of

types. E.g., all employment spells lasting 5 years and producing 0.3 patents per

year would be considered a type, with s5;0.3 giving the share of such employment

spells in all spells.

s, the vector of the individual type’s population shares, has to be recovered from

the observed minimum length of employment spells lob (the time between the first

and the last patent) and the distribution of patents during these years. The only

additional assumption necessary is that workers do not leave a firm between two

observed patents, so that I can recover a minimum length of each spell from the

data. I will recover ŝ and from this construct unbiased estimates λ̂yx and l̂yx for

each observation from the estimated distribution of true types.

This procedure is necessary since the estimates λ̂yx and l̂ given Pob & lob cannot

be computed for each match in isolation: Consider a match for which I observe

one patent in one year. This observation could either be an unproductive match

that lasted for a long time or a productive, but short lived one. The one data

point itself is not informative on the matter. However, if unproductive and long

matches were common in the data, I would also observe some of them. Thus,

the whole observed distribution informs my estimate for one specific observation.
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Therefore, it is necessary to analyze the whole distribution jointly.

Given that the above setup already assumes a Poisson distribution for patents,

a maximum likelihood estimator does not require additional assumptions, but is

more efficient. Unfortunately, it requires the optimization of a non-linear log like-

lihood function over several 1000 parameters, so it is only feasible when making

additional simplifying assumptions. Therefore, I estimate the spell distribution

using GMM.

Given the above mixture distribution

Nob =
J∑
j

p(ob|j) ∗N(j) (G.1)

Nob denotes the expected number of times a specific outcome (like 2 patents in-

terrupted by a year of inactivity) is observed. It equals the sum of the expected

number of occurrences given each of the specific types. p(ob|j) is a constant

number: E.g. the chance to observe the above two patents interrupted by one

year of silence for type 5; 0.3 is about 2%. Treating N(j) as the coefficients to

be estimated, one has a data set with several million different possible outcomes

and how often they have occured in the data, which one can use to estimate the

several thousand N(j)s. Note that since N(j) has to be greater than 0, this is not

strictly linear. However, it is still computable in a very reasonable time frame:

Because of the positivity constraint on all coefficients, there is no analytical solu-

tion and several possible numerical techniques exist. Aside from estimating the

whole system of equations jointly, splitting the data is a possibility, too: Since

observations with e.g. 20 observed years can only be created by spells of at least

length 20, one could estimate longer employment lengths first and then ”cas-

cade” down the spell lengths. Additionally, it is numerically hard to recover the

distribution for very short spells because there are comparatively few different

observable outcomes. I test specifications where I restrict the underlying true

employment spells to be either at least 2 or at least 4 years long. I either use

the whole distribution in the estimation (including the very short outcomes), or

exclude the shortest observed outcomes from the estimation as well. This leads

to 8 different numerical techniques.

Since their qualitative results are very similar and additional assumptions do not

seem to yield more stable results, I opt to estimate using all available data and as-
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suming that no employment spell is shorter than 4 years. While this method leads

to a slightly better fit, all different strategies yield very comparable estimates:

Figure G.1: Adjustment of observed employment spell productivity and length.
The starting point of each arrow is the productivity and length observed in the
data without the correction routine. The end point of each arrow gives the new
estimated arrival rate of patents after the routine has concluded. Red highlights
spells where the observed productivity was adjusted downward, blue highlights
spells where the observed productivity was adjusted upwards. Each panel is
the result of a slightly different numerical technique. The left table contains
results when imputing for each spell length separately, the right table contains
the results when fitting to the whole data at once. Within each table, the top
two panels report the result when assuming that employment spells last at least
4 or 2 years respectively. The lower two panels report results when making the
same assumption, but also only targeting the part of the data that contains at
least 4 or 2 consecutive years. All methods come to broadly similar conclusions.
Estimating for each spell length separately is less efficient, but much faster.

The Poisson distribution underlies all of the above estimations. This distribu-

tion is used both in theoretical models (Akcigit and Kerr, 2018) and in empirical

applications throughout a vast range of scenarios, even including sport scores

(Karlis, 2003). The central assumption of the Poisson distribution is that the

arrival rate of events is constant, which seems suspect in many circumstances in-

cluding patents: It seems reasonable that after a successfully completed project,

the arrival rate of success falls and then rises again after some time has passed.

However, in practice, it seems that inventors work on different projects simul-

taneously so that a constant arrival rate is a good fit for the data. The only

systematic forecasting error of the Poisson model is for very successful spells:
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The model assumes that inventors with multiple patents per year can uphold

their performance, which seems to not always be the case. However, this con-

cerns a negligible number of inventors. G.2 reports systematic mismatch of the

Poisson model of patent invention for each numerical technique. Evidently, the

fit is very good for all outcomes except rare and high productivity outcomes.

Figure G.2: The ratio of the predicted times each outcome should occur and
the actual number of occurrences. The fit is very good for results occurring more
often, there is a slight upward bias for very rare and very productive spells, whose
frequency of occurrences is overestimated. Each panel is the result of a slightly
different numerical technique. The left table contains results when imputing for
each spell length separately, the right table contains the results when fitting to
the whole data at once. Within each table, the top two panels report the result
when assuming that employment spells last at least 4 or 2 years respectively. The
lower two panels report results when making the same assumption, but also only
targeting the part of the data that contains at least 4 or 2 consecutive years. All
methods come to broadly similar conclusions. Estimating for each spell length
separately is less efficient, but much faster.

Once I have estimated a distribution of λfi and (l) with either GMM or ML,

I compute the implied shares of all types, given any realization of Pob & lob. I

can thus derive my final estimates p̂ & l̂ for any observation. Based on the same

technique, I can also obtain an estimate of how likely it is to observe the under-

lying spell at all.



Appendix H

Simulation: Description and

Results

While the Hagedorn et al. (2017) method is a consistent estimator, its perfor-

mance in the actual data is more unclear: Since there are usually only a few

observations for every inventor, a consistent estimator might not perform well in

practice. A Monte Carlo simulation will reveal the estimator’s performance in

more realistic samples.

The simulated data covers a 40 year stretch of a technology cluster, just like

the actual data. Every year, inventors enter the technology cluster. However,

not all matches produce a patent and thus not all matches are observed. With

around 50.000 observed inventors the simulated data is as large as the smallest

actual technology cluster.

Inventors have a constant chance ρ to match with a firm. They then com-

pare the firm’s quality to the quality of their current firms and decide whether to

switch or not. Whenever inventors have to decide between two firms, they will

pick the one with the higher quality: Since the higher quality firm will produce

more patents, it can offer a higher wage and secure the inventor.

In the main specification, the parameters of the model are as follows:

� The patent invention function is λxi,yf = xi ∗ yf
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� Inventors match with a new random firm with a 5% probability every year

� Inventors leave the economy with a 10% probability every year

� Inventors and firms will reject any matches that do not at least produce
skill2+quality2

2.05

The algorithm to recover the estimates contains four steps:

First, using the estimated overall distribution of employment spells (appendix

G), the algorithm computes the unconditional distribution of potential types for

every observed spell: It computes that e.g. 5% of all observed spells with one

patent are produced by employment spells with a patent arrival rate of 0.5 and

a length of 7.

Second, using this underlying distribution, the algorithm draws 20 potential un-

derlying productivities for every observed spell. These serve as hypotheses about

the actual ”true” productivity that led to the observed patent outcome.

Third, the algorithm prunes these hypotheses: It computes how many observed

spells of a certain type we expect to see, given the drawn productivities. In the

case of a firm with 100 employees, all of which have only one patent, it would e.g.

conclude that a patent arrival rate of 0.5 and a length of 7 is an unreasonable

hypothesis for these spells: The firm would also have to have more successful

inventors. The ”only one patent”-outcome is overrepresented in the data. The

algorithm sequentially prunes these hypotheses, recomputing the expected distri-

bution after each discarded draw. The algorithm stops after only 5 hypotheses

are remaining.

Lastly, the algorithm runs the whole ranking estimator five times, once for each

set of drawn productivities. This allows to estimate how sensitive an estimated

rank is to plausible variations in productivities and thus how large the estimation

error for each ranking is.
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Figure H.1: The left graph reports the patent invention function using the true
parameters of the model: Combinations of inventors and firms with higher skill
produce more patents according to λxi,yf = xi ∗ yf . Grey areas of the matching
plane have no matches in them, so the patent arrival rate is not reported for
these.

Just using global rankings, the estimator recovers these parameters reliably:

Figure H.1 compares the estimated and the true production function, which are

by and large identical. Figure H.2 shows the number of matches for each skill

and quality level. The estimator also recovers the core region with match support

reliably. Only some single matches are estimated to be in actually empty regions

of the matching plane.

Figure H.2: The left graph shows the matching behavior of inventors and firms,
using their true skill and quality bins. The grey area has no matches, because in-
ventors and firms reject matches that do not produce a positive matching surplus.
The right panel shows the estimated distribution of matches. Apart from some
single matches in the empty regions, the estimate recovers the true distribution
well.
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Appendix I

Numerical Simulation of the

Model Economy

This appendix details the result of a simulation of the model economy where Λdis

is much higher than the sum of the interest rate r and the separation rate δ. For

this purpose, Λdis(0) is set to 50%, the interest rate to 5% and the separation

rate to 5%. 50% is clearly to high for the rate of disruptive technology change, as

it would imply that every second sector of the economy is disrupted every year,

making incremental inventors obsolete. Nonetheless, even under these extreme

conditions, the qualitative results of the model hold:

Figure I.1: The graph shows the average rate of disruptive inventions throughout
the whole economy for δ = r = 0.05; Λdis(0) = 0.5.

While the economy converges to the non-disruptive equilibrium much slower

(100 is the simulated time in the main paper), the qualitative path is very similar
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to that of the economy where the parameter restriction holds.

A closer look at the expected change in the disruptive rate makes clear why

this is the case (figure I.2): Even with these extreme assumptions, the expected

change in the rate of disruption is only positive when the risk of a disruptive

invention in the technology field is already very low, only to converge to 0 from

above.

Figure I.2: The expected change in the arrival rate of disruptive inventions for a
sector. The rate is expected to go down when it is high and to slightly increase
when it is already very low. However, if no disruption happen, the expected
change approaches 0 as the rate of disruption becomes zero itself.

Clearly, an equilibrium where technology fields with increasing and decreasing

rates of disruption cancel each other out in the aggregate is not achievable for all

plausible values of Λdis(0).



Appendix J

Abbreviations

AFiD Amtliche Firmendaten in Deutschland: Firm panel of the

German statistical Offices

AMADEUS Firm panel compiled by the Bureau van Dijk

CDF Cumulative Distribution Function

EPO European Patent Office

FDI Foreign Direct Investment

FE Fixed Effects

FTE Full Time Equivalent

GML Generalized Maximum Likelihood

GMM Generalized Method of Moments

ICT Information and Communication Technology

IO Industrial Organization

IPC International Patent Classification: System of codes that

designate the technology areas of patent applications

IT Information Technology

IV Instrumental Variable
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knn k-nearest-neighbors

ML Maximum Likelihood

M and A Mergers and Aquisitions

NP-hard non-deterministic polynomial-time hard: A problem that cannot

be solved in polynomial time

NUTS Nomenclature des Unités Territoriales Statistiques:

internationally standardized subdivisions of countries

OLS Ordinary Least Squares

PATSTAT Global patent data set compiled by the European Patent Office

PRODCOM Products of the European Community: 8-digit product codes of

the European Union

R and D Research and Development

TFP Total Factor Productivity: Productivity residual of a multifactor

production function

TFPQ Total Factor Productivity, Quantity based: Productivity residual

of a multifactor quantity production function

TFPR Total Factor Productivity, Revenue based: Productivity residual

of a multifactor revenue production function
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