
The Jackson Laboratory The Jackson Laboratory 

The Mouseion at the JAXlibrary The Mouseion at the JAXlibrary 

Faculty Research 2021 Faculty Research 

2-19-2021 

Ex uno, plures-From One Tissue to Many Cells: A Review of Single-Ex uno, plures-From One Tissue to Many Cells: A Review of Single-

Cell Transcriptomics in Cardiovascular Biology. Cell Transcriptomics in Cardiovascular Biology. 

Elvira Forte 

Michael A McLellan 

Daniel A Skelly 

Nadia Rosenthal 

Follow this and additional works at: https://mouseion.jax.org/stfb2021 

 Part of the Life Sciences Commons, and the Medicine and Health Sciences Commons 

https://mouseion.jax.org/
https://mouseion.jax.org/stfb2021
https://mouseion.jax.org/fac_research
https://mouseion.jax.org/stfb2021?utm_source=mouseion.jax.org%2Fstfb2021%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1016?utm_source=mouseion.jax.org%2Fstfb2021%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/648?utm_source=mouseion.jax.org%2Fstfb2021%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages


 International Journal of 

Molecular Sciences

Review

Ex uno, plures–From One Tissue to Many Cells: A Review of
Single-Cell Transcriptomics in Cardiovascular Biology

Elvira Forte 1,*,† , Micheal A. McLellan 1,2,† , Daniel A. Skelly 1 and Nadia A. Rosenthal 1,3,*

����������
�������

Citation: Forte, E.; McLellan, M.A.;

Skelly, D.A.; Rosenthal, N.A. Ex uno,

plures–From One Tissue to Many

Cells: A Review of Single-Cell

Transcriptomics in Cardiovascular

Biology. Int. J. Mol. Sci. 2021, 22, 2071.

https://doi.org/10.3390/

ijms22042071

Academic Editor: Mohsin Khan

Received: 30 January 2021

Accepted: 16 February 2021

Published: 19 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 The Jackson Laboratory, Bar Harbor, ME 04609, USA; Michael.Mclellan@jax.org (M.A.M.);
dan.skelly@jax.org (D.A.S.)

2 Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
3 National Heart and Lung Institute, Imperial College London, London W12 0NN, UK
* Correspondence: Elvira.forte@jax.org (E.F.); nadia.rosenthal@jax.org (N.A.R.)
† These authors contributed equally to this work.

Abstract: Recent technological advances have revolutionized the study of tissue biology and garnered
a greater appreciation for tissue complexity. In order to understand cardiac development, heart
tissue homeostasis, and the effects of stress and injury on the cardiovascular system, it is essential
to characterize the heart at high cellular resolution. Single-cell profiling provides a more precise
definition of tissue composition, cell differentiation trajectories, and intercellular communication,
compared to classical bulk approaches. Here, we aim to review how recent single-cell multi-omic
studies have changed our understanding of cell dynamics during cardiac development, and in the
healthy and diseased adult myocardium.

Keywords: heart; cardiac; single-cell; scRNAseq; differentiation; development; injury; regeneration

1. Introduction

The heart is our first functional organ. It starts beating very early in development,
around E8.5 in mouse or 5–6 weeks of gestation in humans, and it beats about 3 billion
times in an average human lifetime, pumping blood throughout the body to provide
oxygen and nutrients while removing waste. This hard-working fluid pump function is
achieved thanks to cardiomyocytes (CMs), which are highly specialized striated muscle
cells, as well as a network of interstitial cells from vascular, nervous, immune, and mes-
enchymal/stromal lineages. Interstitial cells are responsible for building the proper 3D
scaffold of the heart, ensuring proper CM alignment and synchronous beating. In response
to injury, interstitial cells orchestrate the reparative response, leading to the scar formation,
in order to compensate for the poor proliferative and regenerative capacity of CMs in adult
mammals [1].

Gene expression studies are an accessible and cost-effective method for querying
the molecular state of the heart during development, at homeostasis, or in response to
insult. Until recently, these studies have largely been conducted either on cell populations
enriched by cell sorting or on bulk cardiac tissue. Although both approaches have provided
extremely valuable information, each is hampered by significant drawbacks. First, the
main cellular constituents in cardiac physiology and disease have been defined based on
the expression (or the lack thereof) of a limited number of surface antigens; thus, sorted
cell populations may represent only a subset or a particular state within the cell population
of interest [1]. Second, bulk tissue transcriptomics is biased toward the most prevalent cell
types in the tissue, is confounded by compositional heterogeneity between samples, and
may not represent the full spectrum of states within a cell population.

Single-cell RNA sequencing (scRNAseq) has emerged as a high-resolution alternative
to bulk RNAseq and has gained popularity as a cardiovascular research tool (Figure 1A).
Recent advances in scRNAseq technologies have enabled the profiling of individual cells in
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an unbiased fashion. Emerging methods for the analysis of scRNAseq data typically utilize
a high-dimensional gene signature rather than any pre-selected list of canonical markers.
These techniques have revealed significant cellular heterogeneity, paracrine inter-cellular
communication among distinct cardiac cell populations, transcriptional kinships, potential
intermediate states, and putative cellular differentiation trajectories.
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The first attempts to sequence RNA from single cells were published almost 30 years
ago and involved the manual microinjection of sequencing reagents into each disassoci-
ated cell [2–4]. Initial studies were limited to the analysis of a few genes by PCR. The
development of integrated fluidic circuits (IFC) allowed for the quantification of the ex-
pression of multiple genes from the same cell, by reducing the reaction volume (Fluidigm
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Dynamic Arrays [5,6]). By optimizing cDNA library preparation, it became possible to
capture whole-transcriptomes from single cells [7]. As of today, several scRNAseq protocols
have been reported. One primary differentiating feature of these protocols is the method
of cell isolation. These include methods that use nanofluidic traps (Fluidigm C1 IFC);
the distribution of cells in wells by manual dilution, robotic dispersion, or FACS sorting
(ICell8 Takara, Smart-seq2 [8], SORT-seq [9], Microwell-Seq [10], sci-RNA-seq3 [11]); and
droplet-based systems (Drop-seq [12], sNucDrop-seq [13], InDrop [14]; Chromium Single
Cells-10xGenomics [15]). The introduction of methods for automatic cell capture, lysis, and
cDNA synthesis, together with the use of unique molecular identifiers (UMIs) [16] and
molecular-based barcoding to multiplex cDNA amplification have contributed to plum-
meting per-cell costs, as evidenced by the exponentially increasing number of analyzed
cells per study (Figure 1B). Compared to plate-based full-length sequencing [8], tag-based
methods [9–16] detect fewer genes and capture only the 3′ or 5′ end of each transcript;
however, the presence of UMIs improves gene-level quantification and mitigates biases
in cDNA amplification. Moreover, new barcoding systems are allowing researchers to
combine transcriptomic profiles with additional information from individual cells. For
example, using polyadenylated DNA barcodes conjugated to antibodies, it is possible to
estimate the abundance of specific surface antigens [17,18]. For an in-depth analysis of the
history of scRNAseq and the comparison among different methods, we refer to [19–22].

Here, we review how single-cell technologies have impacted the cardiovascular field
by allowing for high-resolution mapping of the heart at different stages of development
and in pathological conditions, providing new insights on intercellular communication,
cellular dynamic changes, and regulatory networks, as well as highlighting new potential
therapeutic targets and prognostic biomarkers for patient stratification. Finally, we address
the current limitations and future directions of the single-cell revolution.

2. Cardiac scRNAseq during Embryonic and Postnatal Development in Physiology
and Disease

In the cardiac context, developmental biology and stem cell biology were the first fields
to benefit from emerging single-cell transcriptomic techniques, which were used to define
the cell fate and lineage trajectories in the developing heart and in vitro differentiating cells
(Table 1). Two studies in 2015 adopted manual cell lysis and cDNA preparation combined
with targeted single-cell qPCR (sc-qPCR) to analyze the early stages of cardiovascular
commitment. Li et al. [23] first defined a panel of genes to distinguish all the main
cardiovascular lineages, and they applied it to compare embryo- and mouse embryonic
stem cell (mESC)-derived cardiac progenitor (CPs) and CMs at different stages; then, using
time-lapse microscopy and multiplex sc-qPCR, they showed that while mESC-derived
Nkx2-5+ CPs are bipotent and can become either CMs or smooth muscle cells (SMCs),
Nkx2-5+ CPs in the embryos include two distinct unipotent subsets that differentiate either
into endothelial cells (ECs) or CMs. Kokkinopoulos et al. [24] used a similar approach to
profile about a thousand cells obtained from microdissected heart-forming regions from
the early allontoic bud stage (EB, E6) to the early headfold stage (EHF, E8). After classifying
the single-cell cDNA preparation chronologically, based on the expression of key markers,
they selected 12 cells across four stages for deep sequencing, and the authors conclude
that in the First Heart Field (FHF), Tbx5+ CPs exist transiently in the progenitor stage
and rapidly differentiate post-activation of Nkx2-5 expression, after the EHF stage. One
year later, two landmark papers provided the first transcriptomic maps of the developing
hearts on multiple time points, using a semi-automated system, the Fluidigm C1 Integrated
fluidic circuits (IFC), which allows for the capture, lysis, and retrotranscription of up to
96 single cells simultaneously [25,26]. The first study [25] profiled an unbiased selection
of about 1200 cells from seven time points spanning from the early heart tube stage to
the post-natal heart (E9.5, E11.5, E14.5, E18.5, P0, P3, and p21). The authors used this
dataset as a reference to identify the developmental ages of mouse and human ESCs
and to investigate the effect of the heterozygous mutations in Nkx2-5 on lineage-specific
differentiation. The second study [26] focused on three time points (E8.5, E9.5, E10.5),
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carefully dissecting two, seven, and nine regions, respectively. Combining transcriptomic
and spatial information, they generated an algorithm to predict the anatomic origin of
single CMs and the distribution of SHF Isl1+ derived cells, as well as to detect blocks in
differentiation based on transcriptomic data. For example, when applied to Nkx2-5-/- CMs
from E9.5 embryos, the algorithm revealed that a persistent atrial-like phenotype underlies
the lack of ventricle development. The same technology has subsequently been used to
selectively profile αMHC+ CMs in early and late development and post-natal hearts [27].

Additional studies have used the combination of lineage tracing, tissue microdis-
section, and scRNAseq to investigate the differentiation trajectory of CPs from the FHF
and SHF [28–30]. Jia et al. [28] isolated CPs from Nkx2-5-emGFP transgenic and Isl1nGFP/+

knockin embryos at E7.5, E8.5, and E9.5 and through scRNAseq, using Fluidigm C1 IFCs,
and snATACseq (single nucleus assay for transposase-accessible chromatin with sequenc-
ing), they confirmed that Isl1+ CPs pass through an intermediate state before separating
into different fates, whereas Nkx2-5+ CPs are unidirectionally committed to CM differ-
entiation. Similarly, in a later study [30], the authors used Isl1Cre:Rosa26tdtomato/+ and
Nkx2-5Cre::Rosa26tdtomato/+ embryos to isolate cells derived from the two lineages at E8.25,
8.75, 9.25, and they performed scRNAseq by Smart-seq2 [8] on manually isolated cells.
They confirmed the previously identified pattern of differentiation of FHF and SHF CPs,
and through ligand–receptor analysis, the authors suggest the Mif –Cxcr2 pair as a possible
mediator of the SHF CPs chemotaxis guided by CMs, which is a result that was confirmed
by pharmacological inhibition and genetic knockouts of both Cxcr2/Cxcr4. Similarly, lineage
tracing combined with Smart-seq2 has been used to analyze the arterial specification in the
sinus venosus [31] and epicardial development in zebrafish [32].

Genetic knockouts, lineage tracing, and scRNAseq have been used in combination
to define the early stage of cardiovascular lineage segregation from Mesp1+ mesodermal
precursors [33], the role of the Hippo pathway [34], Pitx2 [35], and pbx4 [36] in development,
the effect of Hand2os1 lncRNA [37], and full microRNA KO [38]. The first study, similarly to
what was described earlier [39,40], showed that Mesp1+ cells commit very early to different
cardiovascular lineages, and the transcriptomic profiling at a single-cell level allowed for
the identification of early pathways, determining the commitment to different cell fates,
such as Notch1 for the endocardium. Furthermore, by comparing Mesp1 wt and null cells at
early gastrulation (E6.75), the authors showed that Mesp1 expression is required to exit the
pluripotent state.

The second study used epicardial specific conditional knockout of the kinases Lats1/2
to interrogate the role of Hippo signaling in the commitment and differentiation of
epicardial-derived cells. The authors profiled cells from wt and KO embryos at E13.5 and
14.5 before the appearance of cardiac phenotypes in the mutant using a high-throughput
droplet-based system, Drop-seq [12], and they observed that mutant cells failed to differen-
tiate in fibroblasts, maintaining an intermediate state with the expression of both epicardial
and fibroblast markers. Additional pharmacological and genetic validation confirmed that
an absence of Lats1/2 increased the nuclear localization of Yap, which inhibited fibroblast
differentiation.

The third study [35] used scRNAseq in murine E10.5 and E13.5 wt and null embryos to
analyze the molecular and cellular consequences of Pitx2 disruption. Pitx2 is a homeobox
transcription factor, with pleiotropic functions during development. It is involved in OFT
and valve development, left-right specification of the atria, and its loss has been implicated
in human atrial fibrillation [41,42]. Consistent with previous work, the authors noted an
altered cardiac cell composition and transcriptional changes in SHF progenitors that could
lead to the prevalent differentiation in RA and sinoatrial node CMs.

A fourth study focused on Pbx4, a transcription factor similarly involved in SHF
specification in zebrafish [36]. Single-cell transcriptomic analysis of Pbx4-depleted SHF
progenitors showed a lack of heterogeneity and increased proliferation, which was in
line with the cardiac dilation phenotype, and supporting its crucial role in the definition
of the anterior and posterior progenitor fields that contribute to OFT and pharyngeal
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arches, respectively. In a fifth study [37], the authors showed that lncRNA Hand2os1 strictly
regulates Hand2 expression in mouse; its full knockout caused a slight increase of Hand2 in
all cell types, which was sufficient to induce changes in cell composition and cell-specific
transcriptome, leading to morphological and functional abnormalities. In a sixth study [38],
full microRNA KO in CMs was achieved by conditionally deleting the microprocessor
Dgcr8 in Mesp1+ cells. As a result, the heart appeared dilated and the CMs upregulated
vascular genes, demonstrating that microRNAs are required to suppress the angiogenesis
program and allow CM differentiation.

Unbiased profiling of microdissected regions and paired-scRNAseq by Smart-seq2
have been used to define early mesoderm patterning during gastrulation (E6.5–7) [43],
and more recently, to generate a highly time- and space-resolved profile of the mouse
anterior cardiac region from the cardiac crescent to the linear tube stage [44]. For this latter
study, the author collected samples at six time points, 12 h apart (E7.75–8.25), identified
six cardiac clusters at different levels of differentiation, and assigned them to specific
locations of the developing heart using scRNAseq data from four dissected regions of the
cardiac mesoderm as a spatial reference. Based on gene expression and localization, the
sub-populations were attributed to SHF or FHF, and differentiation trajectories, inferred
on transcriptomic statuses, were validated by lineage tracing combined with single-cell
resolution microscopy and in situ hybridization chain reaction. These analyses led to the
identification of an extra progenitor field, anterior to the cardiac crescent, which was named
the juxta-cardiac field (JFC). These Nkx2-5− Hand1+ Mab21l2+ cells are derived from Mesp1+

progenitors and contribute to both the proepicardium and the myocardium.
Microdissection and high-throughput scRNAseq, using the 10x Chromium technology,

enabled the characterization of the murine cardiac outflow tract development in early,
middle, and late stages of remodeling and septation (47-, 49-, 51- pairs of somites, E11-
12) [45], as well as of the wild-type murine conduction system (at E16.5) [46], providing
reference transcriptomic maps to compare normal and altered conditions.

A few studies have aimed to define atlases of the full cardiac embryonic development.
In the same year, one study profiled about 4000 cells from different stages of human fetal
heart development [47], and another defined a Mouse Organogenic Cell Atlas (MOCA),
analyzing over 2,000,000 total cells from murine embryos from five different stages, in-
cluding over 7000 cells of the cardiac lineage [11]. In the first study, the authors isolated
cells from various regions of fetal hearts in early (5–7 weeks), mid (9–17 weeks), and
end stage (20–25 weeks) of gestation. Cells were manually picked, lysed, and the RNA
was retrotranscribed using a modified version of STRT-Seq (Single-Cell Tagged Reverse
Transcription Sequencing) [16]. The authors identified four main cell clusters, defining
their spatial distribution and progressive transcriptomic changes during development. Fur-
thermore, the authors compared these data with previously published mouse embryonic
datasets [26,34] to identify correspondent stages and highlight the common and unique
markers of each cell type. For the second study, the authors used a different plate-based
system, sci-RNA-seq3 [48], that utilizes combinatorial indexing to profile millions of cells
in the same experiment. In this particular study, nuclei were isolated from snap-frozen
murine embryos (E9.5, 10.5, 11.5, 12.5, and 13.5 embryos), profiling enough cells to cover
3–80% of a full embryo per stage. Despite shallow sequencing allowing the detection of
only a few hundred transcripts per cell, the authors were able to identify over 500 cell
subtypes and 56 developmental trajectories, which can be publicly explored online [49].

More recently, researchers have pioneered unbiased Spatial Transcriptomics [50] and
combined it with in situ sequencing by single molecule fluorescence in situ hybridization
(smFISH), and scRNAseq to recreate organ-wide cell type/gene expression maps of the
developing human heart in three main stages: 4.5–5, 6.5–7, and 9 weeks post conception [51].
These data can be explored both in 2D and 3D on a public web platform [52].

One potential use of these publicly available atlases is to provide a baseline framework
for comparison to congenital diseases and abnormal conditions. At least three studies in the
past three years have used scRNAseq to investigate congenital heart diseases. Hu et al. [53]
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used a droplet microfluidic-based snRNA-seq method (sNucDrop-seq [13]) to unbiasedly
profile cells from post-natal hearts of wild-type (P6 and p10) and ERRα/γ knockout mice
(p10) [54], creating a model of pediatric mitochondrial cardiomyopathy. They observed
cell-specific gene expression changes, with CMs, fibroblasts, and ECs being the most
affected cell types. Most of the cells presented a downregulation of genes related to
oxidative phosphorylation, and an upregulation of fibrosis genes was observed also in
non-fibroblasts. Furthermore, single-cell transcriptomic data revealed that the expression of
Gdf15, a cardiac-produced hormone and marker of cardiac dysfunction, was regulated by
distinct cell-type-specific networks. More recently, two studies have used 10x Chromium
technologies to investigate different models of congenital heart defects [55–58]. The first
study [55] profiled the cardiogenic region of wild-type versus Hand2 null mouse embryos
over three phases of cardiac development (E7.75, E8.5, E9.25). The Hand2 deletion causes
embryonic lethality by E10.5, in the absence of right ventricle development [59]. Temporal
transcriptomic analysis revealed that RV precursors were indeed specified but failed to
properly migrate and differentiate, while OFT specification was impaired, thus providing
new insights on the cellular mechanisms of the altered development. A case of autoimmune-
mediated congenital heart block (CHB) in a 21-week-old human fetus has been analyzed by
profiling cardiac cells from the affected fetus and cells from control fetuses at 19–22 weeks
of gestation [57]. CHB affects mid-gestation normal developing fetuses that have been
exposed to maternal autoantibodies. Differential gene expression revealed an increase and
heterogenous IFN response in different cell types of the affected heart and the expression
of ECM genes, which is in line with the observed fibrosis in the AV node.

In summary, single-cell transcriptomics has facilitated advances in several areas of
developmental biology: the derivation of spatial and temporal maps of embryonic cardiac
morphogenesis, the identification of new progenitor fields without the restraints of known
marker genes, and the inference of cell–cell interactions and differentiation trajectories,
which can then be validated with classical approaches such as lineage tracing or gene
knockdown. These high-resolution road maps can be used as a reference to identify cell-
specific transcriptional changes in congenital heart diseases as well as potentially revealing
novel therapeutic targets.



Int. J. Mol. Sci. 2021, 22, 2071 7 of 43

Table 1. Cardiac Development in Physiology and Disease.

Authors
PMID Date # of Cells and/or Nuclei Isolation Method Sequencing Technology Target

Cell Types Context

Li et al. [23]
PMID: 25633351 January 2015 448 cells enzymatic digestion,

FACS

Manual cell lysis/cDNA
preparation; targeted

sc-qPCR Fluidigm
Dynamic Array IFCs [6]

CMs, ECs, CFs, SMCs

Comparison of embryo
(E10.5)- and

mESC-derived cardiac
progenitor and CM

differentiation

Kokkinopoulos et al. [24]
PMID: 26469858 October 2015 1088, 12 deep- sequenced enzymatic digestion

Manual cell lysis/cDNA
preparation; targeted

Taqman® sc-qPCR;
Illumina GA IIx

Cells from the heart
forming regions in early

mouse embryos

Profile the early FHF
cardiac progenitors.

Early EB to EHF stage
(E6-8)

DeLaughter et al. [25]
PMID: 27840107 November 2016 ≈1200 enzymatic digestion Fluidigm C1 IFCs;

Illumina HiSeq2500
embryonic and

post-natal cardiac cells

Embryonic to postnatal
development: E9.5,

E11.5, E14.5, E18.5, P0,
P3, p21 and comparison

with differentiating
mESC and hESC

Li et al. [26]
PMID: 27840109 November 2016 2233 enzymatic digestion

Fluidigm C1 IFCs,
Illumina HiSeq2000;

targeted sc-qPCR
Fluidigm 96x96 Dynamic

Array

embryonic cardiac cells

Early murine embryo
development: E8.5, E9.5,
or E10.5 hearts dissected

in multiple zones

Lescroart et al. [33]
PMID: 29371425 January 2018 672 enzymatic digestion,

FACS in lysis buffer
Smart-seq2[8]; Illumina

Hi-Seq 2500

Mouse embryonic
derived cardiac
progenitor cells

(Mesp1+)

Early stage of
cardiovascular lineage
segregation: Mesp1+

progenitor from wt and
Mesp1 null embryos

E6.75-7.25

Xiao et al. [34]
PMID: 29689192 April 2018 18,166 enzymatic digestion Drop-seq [12];

Illumina Nextseq500 embryonic cardiac cells

Role of Hippo signaling
in murine embryo
development. CTR

versus Lats1/2 CKO
E13.5 and E14.5 embryos
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Table 1. Cont.

Authors
PMID Date # of Cells and/or Nuclei Isolation Method Sequencing Technology Target

Cell Types Context

Sereti et al. [27]
PMID: 29467410 April 2018 122

mechanical and
enzymatic digestion,

FACS

Fluidigm C1 IFCs;
Illumina NextSeq 500 αMHC+ (αMHC-GFP)

CM heterogeneity in
E9.5, E12.5, and P1

mouse hearts

Su et al. [31]
PMID: 29973725 July 2018 2384

mechanical and
enzymatic digestion,

FACS

SMART-seq2, Illumina
Nextera XT, NextSeq500

ApjCreER labeled
SV-cells (E12.5–14.5), and

Coup-tf2OE- SV cells
(E14.5)

Coronary artery
specification in the SV

Chen et al. [38]
PMID: 30128894 August 2018 152

mechanical and
enzymatic digestion,

mouth pipette

Smart-seq2; Illumina
Hi-Seq 4000

ventricle from E9.5 heart
tube, wt and Mesp1Cre/+

x Dgcr8loxp/loxp

Effect of global
microRNA KO on

cardiac development

Hu et al. [53]
PMID: 30254108 September2018 ≈20,000 mechanical nuclei

isolation sNucDrop-seq [13] early post-natal cardiac
cell nuclei

Postnatal heart
development in WT (p6,

p10) and ERRα/γ
knockout mice (p10,

pediatric mitochondrial
cardiomyopathy)

Jia et al. [28]
PMID: 30451828 November 2018 421 enzymatic digestion,

FACS

Fluidigm C1 IFCs,
ICELL8™ Single-Cell
System (Wafergen);

Illumina NextSeq 500

cardiac progenitor cells
from Nkx2-5-emGFP

and Isl1nGFP/+ embryos

CPs developmentE7.5,
E8.5, and E9.5 embryos

Cui et al. [47]
PMID: 30759401 February 2019 4000 enzymatic digestion,

mouth-picking, FACS

Manual cell picking-lysis;
STRT-seq [60];

paired-end sequencing
Illumina 4000

human cardiac fetal cells
(6, 7, 13, 17 wks); ECs
22 wks, VCs 17 wks

Spatial/temporal
analysis of human

cardiac development
Comparison with mouse

data

Cao and Spielmann et al.
[11] PMID: 30787437 February 2019 7089-cardiac muscle

lineage (2,058,652 total)

Nuclei from snap frozen
embryos, no enzymatic
digestion, dispersed in

96 well plates

In plate sci-RNA-seq3;
NovaSeq (Illumina) embryonic cells

Mouse organogenic cell
atlas (MOCA) E9.5,
E10.5, E11.5, E12.5,

E13.5.
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Table 1. Cont.

Authors
PMID Date # of Cells and/or Nuclei Isolation Method Sequencing Technology Target

Cell Types Context

Li et al. [29]
PMID: 31142541 June 2019 >10,500 enzymatic digestion

Chromium Single Cells 3’
v2 (10x Genomics);
Fluidigm C1 IFCs,

Illumina’s HiSeq 2500
and 4000

embryonic cardiac cells,
Isl1-cre/mTmG embryos

Profiling ventricular
chambers of E10.5 heart,
by dissection and lineage

tracing

Hill et al. [35]
PMID: 31201182 June 2019 77,122 mechanical and

enzymatic digestion

Chromium Single Cells 3’
v2 (10x Genomics);

Illumina NextSeq 500
embryonic cardiac cells E10.5 and E13.5, control

and Pitx2 mutant hearts

Han et al. [37]
PMID: 31273086 July 2019 3600

mechanical and
enzymatic digestion,

FACS

Chromium Single Cells 3’
v2 (10x Genomics);

Illumina HiSeq 2500 and
HiSeq X TEN

embryonic cardiac cells
wt and Hand2os1-null

Effect of the lncRNA
Hand2os1- on cardiac

development

Yvanka de Soysa et al.
[55] PMID: 31341279 July 2019 36,654 Micro-dissection and

enzymatic digestion

Chromium Single Cells 3’
v2 (10x Genomics);

Illumina NextSeq 500
and HiSeq4000

embryonic cardiac cells

Effect of congenital
mutation on cardiac

development
(Hand2-null versus wt,
E7.75, E8.25, and E9.25

embryos)

Liu et al. [45]
PMID: 31365875 July 2019 55,611 enzymatic digestion

Chromium Single Cells 3’
v2 (10x Genomics);

Illumina NovaSeq 6000

embryonic cells from the
OFT

Murine OFT
development (ps47, ps49,

ps51)

Xiong et al. [30]
PMID: 31221018 August 2019 2631

Micro-dissection and
enzymatic digestion,

FACS

Smart-seq2; Illumina
HiSeq 4000 embryonic cardiac cells

Differentiation trajectory
and interlineage

communication of
cardiac progenitor cells

from FHF and SHF
(E8.25, 8.75, 9.25)

Goodyer et al. [46]
PMID: 31284824 August 2019 >22,000 Micro-dissection and

enzymatic digestion

Chromium Single Cells 3’
v2 (10x Genomics);
Illumina HiSeq4000

embryonic cardiac cells
Cardiac conduction

system in the embryo
E16.5
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Table 1. Cont.

Authors
PMID Date # of Cells and/or Nuclei Isolation Method Sequencing Technology Target

Cell Types Context

Asp and Giacomello et al.
[51] PMID: 31835037 December 2019 3717

Mechanical and
enzymatic digestion,
FACS in 384w plates

Chromium Single Cells 3’
v2 (10x Genomics);
Illumina HiSeq2500

embryonic cardiac cells

Spatio-temporal
transcriptomic of

developing human heart
at different stages

Weinberger et al. [32]
PMID: 32084358 February 2020 at least 5000 cardiac

B-cells

mechanical and
enzymatic digestion,

FACS

Smart-seq2 and
TARGET-seq [61];

Illumina NextSeq500

fluorescent epicardial
reporters (e.g.,

tbx18:myr-eGFP)

Epicardium
heterogeneity in
zebrafish cardiac

development

Holowiecki et al. [36]
PMID: 32094112 March 2020 5300

mechanical and
enzymatic digestion,

FACS

Chromium 10x; Illumina
HiSeq2500

nkx2.5:ZsYellow+ cells at
28 hpf

pbx4 depletion and OFT
development in

zebrafish

Suryawanshi et al. [57]
PMID: 31589297 July 2020 17,747 Langendorff enzymatic

perfusion

Chromium Single Cells 3’
v2 (10x Genomics);
Illumina HiSeq2500

whole human fetal
hearts

Congenital heart block
(CHB): comparison of

healthy versus
anti-SSA/Ro-associated

CHB foetal hearts
(mid-gestation)
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3. Cardiac scRNAseq to Elucidate In Vitro Differentiation and Reprogramming

Single-cell technologies have proven to be invaluable tools for defining cellular het-
erogeneity and lineage commitment in the context of in vitro cell reprogramming and
differentiation (Table 2). At least four published studies have focused on the reprogram-
ming of cardiac fibroblasts to induced CMs (iCM). The first [62] used sc-qPCR to study
how to improve a seven-factor protocol to obtain iCMs from human fibroblasts [63]. The
authors tested the protocol on hESC-derived hCFs and observed that no additional factor
could increase the yield of iCMs; however, HAND2 or microRNA-1 could enhance the CM
phenotype, as shown by comparison with hESC-derived CM. Soon after, a separate group
adopted the Fluidigm C1 technology to profile 574 neonatal murine fibroblasts three days
post-transfection with Mef2c, Gata4, and Tbx5 viruses [64]. The authors identified four
main transcriptomic states, which were predicted to form a continuum in the transition to
iCMs, and they validated their temporal occurrence with population-based gene expression
analysis at six time points post-transfection. By differential gene expression analysis, they
observed that the acquisition of CM-specific splicing patterns was a key process in the
progressive trans-differentiation; and depletion of the splicing factor Ptbp1 could increase
reprogramming efficiency. The same group used a similar approach to profile the gene
networks and cellular states underlying the more challenging conversion of human adult
fibroblasts to iCM [65]. The authors inferred a trajectory to place cells along an axis of
pseudotime, which is a measure of how far a cell has progressed along a biological process,
which is predicted based on associations between transcriptomic states and characterized
by continuous gradients in gene expression. The pseudotemporal trajectory revealed two
branches with cells either differentiating to iCM or going back to fibroblasts, and genes
involved in the immune response-associated methylation appeared to be crucial for the
transition to iCM. Finally, a recent study combined scRNAseq, ATAC-seq, and ChIP-seq
(chromatin immunoprecipitation followed by sequencing) for an in-depth profiling of the
effect of Mef2c, Gata4, and Tbx5 expression (individual or combined) in embryonic murine
fibroblasts reprogrammed to iCM [66].

The process of hiPSCs differentiation to CM has been initially profiled at multiple
time points by two distinct studies [67,68], revealing regulators that can enhance CM
differentiation [68], and the conditions that could lead to a prevalence of atrial-like versus
ventricular-like CMs [67]. A later study selectively profiled hiPSC-derived CMs at the
mid and late stage of differentiation (d12, d40), combining RNAseq data obtained by
Fluidigm C1, with electrophysiological measurements obtained in a non-invasive way, by
transfecting cells with a construct that allows the visualization of changes in polarization
as changes in fluorescence intensity (via ArchLight) [69]. The authors concluded that gene
expression was insufficient to predict the electrophysiological state of the CMs, but by
differential expression between two stages of differentiation, they identified ion-channel
regulators that modulate the hiPSC-CM maturation. In particular, genetic ablation of one
of these regulators (FHL1) could lead to ventricular-like APs in the differentiating cells.
Finally, a more recent study used the progressive and heterogeneous differentiation of
hiPSCs to CMs to compare scRNAseq data obtained by Drop-seq versus DroNc-seq [70]. By
analyzing in parallel cells from multiple time points, they observed six distinct populations,
five of which were identified by both methods, and both datasets could be used to infer
similar pseudo-temporal trajectories.

Further, scRNAseq has been employed to analyze patient-derived hiPSC and dis-
sect the cellular basis of cardiomyopathy associated with Duchenne muscular dystrophy
(DMD) [71] and the defective cardiac development in Hypoplastic Left Heart Syndrome
(HLHS) [56] and a type of Hypoplastic Right Heart Syndrome (HRHS) [58]. DMD is the
most common form of muscular dystrophy, it is caused by mutation in the DMD gene,
and it generally leads to dilated cardiomyopathy (DCM). The scRNAseq analysis showed
that hiPSC-CM from DMD patients presented a transcriptional dysregulation similar to
what was observed in patients’ cardiac biopsies and mouse models of DMD, highlighting
their utility as a model for drug testing. HLHS is a complex, multifactorial congenital heart
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disease [56]. To study its etiology, the authors first profiled cells isolated from different
regions of a human fetal heart at 83 days of gestation and confirmed that the expression of
genes previously reported as having de novo mutations associated with HLHS was higher
in endothelial/endocardial clusters. Then, they used hiPSC-derived EC from healthy and
HLHS patients to dissect the molecular basis of endocardial abnormalities, and with the use
of in vitro functional assays, they showed that endocardial defects could lead to impaired
EndMT and angiogenesis as well as reduced CM proliferation and maturation. HRHS
is associated with pulmonary or tricuspid valve atresia, and it is prevalent in the Asian
population. To probe a class of HRHS, Pulmonary Atresia with Intact Ventricular Septum
syndrome, the authors profiled hiPSC-CM derived from three patients and three healthy
controls, cultured in three different conditions: regular cultures, anisotropic organoids,
and cardiac tissue strips [58]. The two bioengineered constructs are devised to measure
electrophysiological and contractile responses, respectively, and promote CM maturation.
The transcriptomic data on hiPSC-CM at different maturation stages revealed a down-
regulation of contractile and maturation genes in the HRHS patients and upregulation of
immature transcripts, suggesting intrinsic defects in the CMs that could explain the limited
RV growth even after interventions to establish the RV–pulmonary arterial connection.

Single-cell transcriptomics of differentiating ESCs has been used to profile the hetero-
geneity of Mesp1-induced mesodermal cells [72] and hESC-derived epicardial cells [73], to
define the steps leading to CM differentiation [74], and to assess mESC-CM maturation
post-in vivo transplantation [75]. The process of differentiation of human ESCs to CMs was
analyzed by performing scRNAseq over six different stages using the iCell8 platform. The
authors reconstructed pseudotemporal trajectory and identified putative ligand–receptor
interactions. They observed a crosstalk between cardiac progenitor cells and endocar-
dial cells at d5, leading to the activation of the transcription factor ETS1. By ChIP-Seq
and genetic depletion, they showed that ETS1, and therefore the CPs–endocardial cell
communication, is important for cardiac lineage commitment [74]. The same group used
the ICell8 platform to dissect post-natal CM differentiation [76]. Integrating previously
generated scRNAseq on LV cells at p1, p4, p7, and p14 with new data at p56, they identi-
fied fibroblasts as a crucial cell type promoting CM differentiation, which they confirmed
in vitro with the co-culture of immature CM, isolated from p1 pups, with neonatal or adult
fibroblasts. Single-cell analysis has been also used to analyze the reverse process of adult
CM reprogramming to mCPs [77] as well as assess the negative effects of nicotine on hESC
differentiating into CMs [78], proving to be a valid platform to determine embryonic toxic-
ity; and to establish the best combination of transcription factors to obtain pacemaker-like
cells from Nkx2-5+ CPs, which are derived from the transdifferentiation of adult human
adipogenic MSCs (hASMSCs) [79].

Similar timeline studies of cellular differentiation are lacking for adult stem/progenitor
cells (Table 3). Target sc-qPCR has been used to profile different subpopulations of human
cardiac Lin-Sca1+ cells are defined based on the side population phenotype, the expression
of CD31 or PDGFRa+, confirming that the Sca1+/PDGFRa+ fraction included the popu-
lation of clonogenic progenitor cells [80]. An earlier paper analyzed the inverse process
in mice, the de-differentiation of CMs to CMs-derived cardiac progenitor cells, using mi-
croarrays for single-cell transcriptomic profiling, sc-qPCR for validations, and microarrays
for bulk DNA methylation analysis [77]. One of the main applications of stem/progenitor
cells is cardiomyoplasty, involving transplantation in the infarcted myocardium to promote
regeneration. At least two studies employed single-cell transcriptomic analysis to assess the
paracrine function of progenitor cells injected in mice heart subjected to coronary ligation or
sham-operated [81,82]. The first study analyzed bone marrow-derived mesenchymal stem
cells, 10 days post-injection, the second analyzed hiPSC-derived CMs 4 days post-injection.
Both studies combined bulk transcriptomic data on laser capture microdissected samples,
with single-cell Taqman® sc-qPCR through Fluidigm Dynamic Arrays, to show the bene-
ficial factors secreted by the cells of interest, post-injection in the infarcted hearts. More
recently, three studies have focused on the controversial population of c-kit+ progenitor
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cells [83–85]. In all cases, scRNAseq analysis showed that freshly isolated c-kit+ cells are
heterogeneous and include cells with mesenchymal or endothelial features; thus, they are
unlikely to differentiate in CMs. By lineage tracing and IHC, the first study suggested a
minimal differentiation of c-kit+ cells to CM in response to trans aortic constriction (TAC),
which was relatively enhanced in response to doxorubicin-induced cardiac injury [83].
The second study revealed that cultured c-kit+ cells lose the heterogeneity and identity
markers of freshly isolated cells and include only two subclusters (expressing cell adhe-
sion and metabolism-related genes, respectively), providing a possible explanation for
the limited beneficial effect in clinics [84]. The same group highlighted another possible
source of discrepancy between preclinical and clinical studies: the presence of tetraploid
c-kit+ cells in rodents but not in pigs or humans [85]. Tetraploid cells escape the replicative
senescence, and through scRNAseq, the authors observed that 4N cells tended to express
endothelial-related genes, while 2N cells appeared more closely related to fibroblasts.

Overall, these studies show the essential role of single-cell transcriptomics in predict-
ing the function and differentiation fate of stem/progenitor cells in normal conditions
and in response to stressors such as injury stimuli, drug treatments, and genetic muta-
tions. The identification of intermediate transcriptomic states provides novel insights into
reprogramming and differentiation that are often difficult to interrogate by other means.
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Table 2. In Vitro Cardiac Cell Differentiation- Embryonic and Pluripotent Stem Cells.

Authors
PMID Date # of Cells and/or Nuclei Isolation Method Sequencing Technology Target

Cell Types Context

Chan et al. [72]
PMID: 27131741 April 2016 94 enzymatic digestion, FACS

(live cells)
Fluidigm C1 IFCs; Illumina

HiSeq2500
Mesp1-induced embryoid

bodies
Heterogeneity of the

Mesp1+ mesoderm cells

Cho et al. [75]
PMID: 28076798 January 2017 24 mechanical and enzymatic

digestion, FACS
custom plate-based;

Illumina NextSeq 500
mESCs-derived CMs and
adult CMs (αMHC-GFP)

Comparison mESC-derived
CMs differentiation, in vitro

or post- implantation

Bektik et al. [62]
PMID: 28796841 August 2017 Does not specify enzymatic digestion from

culture, FACS
Fluidigm C1 IFCs; multiplex

TaqMan® sc-qPCR

hESC-derived hCMs, hCFs
and hiCMs

(αMHC-mCherry+)

hESC-derived fibroblast
differentiation hiCM

Liu et al. [64]
PMID: 29072293 October 2017 454 enzymatic digestion, FACS Fluidigm C1 IFCs; Illumina

HiSeq2500
cultured CMs and

fibroblasts
fibroblasts to iCM
reprogramming

Friedman and Nguyen et al.
[68] PMID: 29072293 October 2018 43,168 enzymatic digestion from

culture

Chromium Single Cells 3’
v1(10x Genomics); NextSeq

500 (Illumina).
Fluidigm C1 IFCs,

Illumina’s HiSeq 2000

hiPSC-derived CMs

Multiple time stages of
hiPSC differentiation to CM
(day 0, 2, 5, 15, 30). Identify

HOPX, signal to enhance
CM differentiation

Churko et al.
[67] PMID: 30464173 November 2018 10,427 enzymatic digestion from

culture

Chromium Single Cells 3’
v2 (10x Genomics); NextSeq

500 (Illumina).
hiPSC-derived CMs

hiPSC cardiac
differentiation. Multiple
time points (day 0, 5, 14,

and day 45)

Biendarra-Tiegs et al. [69]
PMID : 30892143 April 2019 85 enzymatic digestion Fluidigm C1 IFCs,

Illumina’s HiSeq 2500
hiPSC-derived CM (d12-d40

of differentiation)

hiPSC-derived CM
maturation

(Electrophysiological vs.
transcriptomic profiling)

Zhou et al. [65]
PMID: 31230860 June 2019 704 enzymatic digestion, FACS

live cells
Fluidigm C1 IFCs, Illumina

HiSeq 2500 hCF-induced CMs
Time course of hCF to hiCM
reprogramming (d0, d3, d5,

d7, d9 post-infection)

Stone et al. [66]
PMID: 31271750 July 2019 29,718 enzymatic digestion, FACS

Chromium Single Cells 3’
v2 (10x Genomics); Illumina

HiSeq4000

stimulated embryonic CMs
and fibroblasts

Time course of mCF to
miCM reprogramming (d-1,

0, 1, 7, 14 post-infection)

Raghunathan et al. [79]
PMID: 31678351 October 2019 560 enzymatic digestion from

culture

Chromium Single Cells 3’
v2 (10x Genomics); NextSeq

500 (Illumina).

Induced cardiac
pacemaker-like cells

Human CPs (derived from
hASMSC) differentiation to

pacemaker-like cells
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Table 2. Cont.

Authors
PMID Date # of Cells and/or Nuclei Isolation Method Sequencing Technology Target

Cell Types Context

Ruan et al. [74]
PMID: 31722692 November 2019 6879

enzymatic
digestion;image-based
selection of live cells

Icell8 platform (Takara);
Illumina NextSeq500 embryonic cardiac cells

Human ESCs to CM
differentiation (d0, 2, 5, 9,

14, and 60)

Gambardella et al. [73]
PMID: 31767620 December 2019 362 enzymatic from culture Smart-seq2; Illumina

Nextera XT
hESC-derived epicardial

cells
Characterization of

epicardial cell heterogeneity

Selewa et al. [70]
PMID: 32001747 January 2020 ≈50,000

enzymatic digestion from
culture, mechanical

isolation; Nuclei EZ Prep
isolation kit (Sigma)

Drop-seq [12], DroNc-seq
[13]; Illumina NextSeq500

hiPSC-derived CM, human
cardiac nuclei

ScRNAseq versus
snRNAseq on: iPSC to CM
differentiation (d0, 1, 3, 7,
15), human heart tissue

Kamdar et al.[71]
PMID: 32164890 March 2020 264 enzymatic from culture does not specify; Illumina

MiSeq hiPSC-derived CMs
CMs derived from control

and DMD patients
(d30-d60)

He et al. [78]
PMID: 32276728 April 2020 11,772 enzymatic digestion from

culture

Chromium Single Cells 3’
v2 (10x Genomics); Illumina

HiSeq2000
hESC-derived cardiac cells Effect of nicotine on cardiac

differentiation from hESCs

Wang et al. [76]
PMID: 32444791 May 2020 2497

enzymatic digestion;
image-based selection of

live cells

Icell8 platform (Takara);
Illumina NextSeq500

murine heart LV;
CM-fibroblasts co-cultures

Murine postnatal CM
maturation: p1, 4, 7, 14, 56
hearts (LV); in vitro imCM

with neonatal or adult
fibroblasts

Miao et al. [56]
PMID: 32810435 August 2020 32,901 human fetal heart

cells (35,284 total)

Dissection, mechanical and
enzymatical digestion,

MACS

Chromium Single Cells 3’
v2 (10x Genomics); Illumina

HiSeq4000

Human fetal heart cell,
enrichment for CD144+

endo cells; hiPSC-ECs

Hypoplastic left heart
syndrome (HLHS): human

fetal heart tissue,
hiPSC-derived
endocardium

Lam et al. [58]
PMID: 33059525 October 2020 25,079 Enzymatic digestion

Chromium Single Cells 3’
v2 (10x Genomics); Illumina

HiSeq4000

hiPSC-CMs and hiPSC-CMs
in anisotropic sheets or

cardiac strips

Pulmonary Atresia with
Intact Ventricular Septum, a

form of HRHS
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Table 3. Adult Cardiac Progenitor Cells.

Authors
PMID Date # of Cells and/or Nuclei Isolation Method Sequencing Technology Target

Cell Types Context

Noseda et al. [80]
PMID: 25980517 May 2015 128 enzymatic digestion, FACS Manual RNA extraction;

targeted Taqman® sc-qPCR
Adult cardiac progenitor

cells
Cardiac cell lineage

commitment

Yao et al. [81]
PMID: 26043119 June 2015 48 enzymatic digestion, FACS Fluidigm Dynamic Array

IFCs targeted sc-qPCR [6] Transplanted BM- MSC
Paracrine function of

injected cells. Analysis 10
days post-ligation

Ong et al. [82]
PMID: 26304668 August 2015 does not specify Langendorff enzymatic

digestion, FACS
Fluidigm Dynamic Array
IFCs targeted sc-qPCR [6] Transplanted hiPSC-CM

Paracrine function of
injected cells. Analysis 4

days post-ligation

Chen et al. [77]
PMID: 27622691 September 2016 6 enzymatic digestion

Custom microfluidic chip
[86];

Targeted sc- qPCR and
MG430 2.0 Affimetrix

single-cell transcriptome

CMs, CM-derived
progenitor cells (mCPCs) CM de-differentiation

Chen et al. [83]
PMID: 29021323 October 2017 405 mechanical and enzymatic

digestion, MACS
Fluidigm C1 IFCs; Illumina

HiSeq2500 Cardiac CD45−c-kit+ cells
Profiling the heterogeneity
of c-kit+ CPs, from p1 and

adult hearts

Kim et al. [84]
PMID: 30104715 August 2018 2465 (10x Chromium); 1126

(Smart-seq2)
mechanical and enzymatic

digestion, MACS

10x 3’ v2 (10x Genomics),
Smart-seq2; Illumina

HiSeq2500, NextSeq500.

c-Kit+/Lin− CPs freshly
isolated and after 5
passages in culture

Comparison of freshly
isolated and cultured CPs

Broughton et al. [85]
PMID: 31231694 June 2019 1664 mechanical and enzymatic

digestion, FACS
10x 3’ v2 (10x Genomics);

Illumina HiSeq 2500
c-kit+ interstitial
non-myocytes

Ploidy in cardiac c-kit+
interstitial non-CMs
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4. Profiling Injury Models in Regenerative Heart

The main animal models used to study cardiac regeneration are neonatal mice, within
the first week of age [87], and more ancient vertebrates such as zebrafish, which can
undergo cardiac regeneration throughout life [88,89] (Table 4). The first pioneering study,
presenting single-cell transcriptomic analysis in zebrafish, used the Fluidigm C1 platform
to profile about 30 genetically labeled epicardial cells. The epicardial layer had been
previously reported to have an essential role in zebrafish heart regeneration. This study
highlighted the heterogeneity within this population and revealed a new pan-epicardial
marker important for regeneration and injury-induced CM proliferation [90]. Later, CMs
from regenerating zebrafish hearts were profiled by SORT-Seq, 7 days post-cryoinjury [91].
The authors observed that CMs in the border zone had a different profile than those in
the remote area, resembling embryonic cells, and they presented a metabolic switch to
glycolysis promoting proliferation, which was induced by the ErbB2 signaling. Recently,
a larger scRNAseq analysis of all ventricular cells has been used to understand the role
of Runx1 loss of function mutation in zebrafish cardiac regeneration three days post-
cryoinjury [92]. Runx1 appeared to affect the function of different cell types, and the mutant
showed less myofibroblast-like cells, less collagen deposition, increased fibrinolysis, and
overall enhanced regeneration.

As for cardiac regeneration in neonatal mice, the same group has profiled both CM
nuclei [93] and interstitial cells [94], in regenerative (p1) and non-regenerative (p7) mice,
sham-operated or 1, 3 days post-MI. The first study identified two factors expressed by
proliferating CM in regenerative hearts that could confer protection if overexpressed in
non-regenerative adult murine hearts. The second provided both transcriptomic and
chromatin-accessibility profiles of all the interstitial cells involved in the regeneration,
identifying pro-regenerative factors secreted by the epicardium and by macrophages for
the reconstruction of cell-specific gene regulatory networks. Transcription factors such as
YAP [95] and PITX2 [96] regulate regeneration in neonatal hearts, partly by modulating
antioxidant scavengers’ gene expression, thus protecting the injured myocardium from
ROS. Neonatal hearts from a CM-specific Pitx2 conditional gene knockout presented
persistent large scars two months post-MI and adipose infiltrates derived from non-CM
cells [97]. Three weeks post-MI, snRNAseq showed a relative increase in a subset of CMs
expressing genes associated with oxidative stress response, confirming elevated oxidative
stress in Pitx2-deficient hearts [97]. Finally, a separate group used scRNAseq to specifically
profile CD45+CD3+ T cell response in regenerative mice [98,99]. In the first study [98], the
authors compared naïve T cells isolated from the spleen with activated T cells isolated
from the hearts of p3 mice 7 days post-cryoinjury and reported reduced proliferation and
an increase in chemotactic factors that could recruit innate immune cells. In the second
study, they used the same injury model to compare activated T cells in regenerative p3
hearts (versus non-regenerative p8 heart) and observed elevated fibrotic CD4+ T cells and
more Th1 Th17 cells in p8 hearts [99]. By CD4+ cell depletion, they were able to restore
regeneration in juvenile p8 mice, but not in adult mice, suggesting the acquisition of a
distinct loss of function with development.

In summary, scRNAseq has been used to identify cell-specific transcriptomic differ-
ences in regenerative versus non-regenerative hearts. This analysis has highlighted cellular
functions that are specific to cardiac regeneration, which present notable future targets for
pharmacologic efforts to improve cardiac repair.
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Table 4. Cardiac Injury in Regenerative Models.

Authors
PMID Date # of Cells and/or Nuclei Isolation Method Sequencing Technology Target

Cell Types Context

Cao et al. [90]
PMID: 26657776 December 2015 31 enzymatic digestion,

FACS
Fluidigm C1 platform,
Illumina HiSeq 2000

tcf21- nucEGFP+

epicardial cells
Zebrafish cardiac

regeneration

Li and Tao et al. [97]
PMID: 30143541 September 2018 7849 mechanical nuclei

isolation

Chromium Single Cells 3’
v2 (10x Genomics);

Illumina Nextseq 500
adult cardiac nuclei

Analysis of Pitx2
conditional-KO with

P2-MI 60 days
post-sham or injury

Li et al. [98]
PMID: 31285764 June 2019 581 CD3+ heart T cells

(1850 from spleen)

mechanical and
enzymatic digestion,

FACS

Chromium Single Cells 3’
v2 (10x Genomics);

Illumina HiSeq 2500
CD3+ T-cells

Comparison of naïve
T-cells (liver) and Treg

(heart) d7 after
cryoinjury in P3 mice

hearts

Honkoop and de Bakker
et al. [91]

PMID: 31868166
December 2019 768 mechanical and

enzymatic digestion
SORT-seq [9],
plate-based

embryonic, adult
zebrafish cardiac cells

Comparison of
embryonic (2dpf) and
regenerating CMs (7d

cryoinjury)

Cui et al. [93]
PMID: 32220304 March 2020 21,737

mechanical and
enzymatic digestion,

nuclei isolation, FACS

Chromium Single Cells 3’
v2 (10x Genomics);

Illumina Nextseq 500
CM nuclei

Neonatal and postnatal
regenerative capacity:

CM from P1 or P8 mice
sham, d1, d3 post-MI

Koth et al. [92]
PMID: 32341028 April 2020 15,415

mechanical and
enzymatic digestion,

FACS

Chromium Single Cells 3’
v2 (10x Genomics);

Illumina HiSeq 4000

adult zebrafish cardiac
cells

Runx1 KO zebrafish
cardiac regeneration

Li et al. [99]
PMID: 32724455 June 2020 2431

mechanical and
enzymatic digestion,

FACS

Chromium Single Cells 3’
v2 (10x Genomics);

Illumina HiSeq 2500

cardiac and splenic
T-cells

Neonatal cardiac
regeneration after apical

resection and
cryoinfraction

Wang et al. [94]
PMID: 33296652 December 2020 17,320 mechanical and

enzymatic digestion

Chromium Single Cells 3’
v2 (10x Genomics);

Illumina Nextseq 500
Interstitial cells

Neonatal and postnatal
regenerative capacity:

interstitial cells from P1
or P8 mice sham, d1, d3

post-MI
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5. Profiling Cardiac Diseases and Injury Models in Non-Regenerative Hearts

One of the classical applications of transcriptomic analysis is the comparison of healthy
versus diseased tissues. Single-cell analysis allows for the characterization of transcriptomic
changes during disease within individual cells, but also within entire cell populations that
comprise a tissue (Table 5).

Initial cardiac scRNAseq studies on disease models were mainly focused on a specific
selected/enriched population of cells. The first attempt to profile the CM response in
failing hearts was done on a model of pressure-overload induced through TAC, using the
Fluidigm C1 platform [100]. Nuclei were isolated from murine hearts, 8 weeks post-TAC,
and from biopsies of patients at the late stage of DCM [100]. Despite the limited number
of sequenced cells, the depth of paired-end sequencing and the single-cell resolution
led to the identification of two long non-coding intragenic RNAs (lincRNA) that could
regulate CM cell cycle re-entry and de-differentiation [100]. A comparable number of
full CMs was sequenced, after manual isolation and lysis, with the SmartSeq2 protocol,
from sham- and TAC-operated mouse hearts at multiple time points post-surgery (3 days,
1, 2, 4, 8 weeks) [101]. This study identified activated pathways and reconstituted the
transcriptional trajectory of remodeling CMs, which showed two distinct fates: adaptation
and failing. The same group has later combined scRNAseq by SmartSeq2, with sc-qPCR
and smFISH, to obtain spatial information on the heterogenous CM response to pressure
overload. They observed that the middle myocardium layer was more affected, with re-
expression of the fetal gene Myh7 [102]. More recently, they have used a similar approach
to sequence additional CM from sham and TAC-operated mice, and human patients with
severe heart failure (HF) [103], and they have showed that the dopamine receptor 1 is the
only catecholamine receptor significantly upregulated in failing hearts and contributes
to the ventricular arrhythmia observed in chronic HF patients treated with dopamine. A
separate group used an image-based platform to isolate, sequence, and compare mono-
and pluri-nucleated CM in homeostasis and 8 weeks post-TAC [104], and they concluded
that the differences in ploidy do not correspond to significant transcriptional differences in
homeostasis, as well as that the heterogeneity observed post-injury is mainly attributable
to the non-homogeneous oxygen distribution.

Two studies have used the SORT-Seq method [9] to profile both CM and non-CM
after FACS, sorting them in 384-well plates [105,106]. The first study [105] analyzed
the infarct area and border zone region, 3 days post-ischemia/reperfusion (I/R), and
the correspondent LV area in control mice, reporting Cfk4 as a new marker of activated
fibroblasts. The second study [106] combined scRNAseq of about 2000 cells, and lineage
tracing using a Ki67 knock-in reporter mouse, to investigate proliferating cells in different
conditions: adult and neonatal hearts, sham, I/R or MI hearts (scar and distal area) 3-,
7-, and 14-days post-ligation. They found no evidence of quiescent cardiac stem cells or
proliferating CM in the adult heart, but the result could be affected by the limited number
of cells sampled in each condition. They observed that proliferating adult fibroblasts
prevent cardiac rupture post-damage and acquire a neonatal phenotype post-injury with
the expression of follistatin-like protein 1 (Flst1).

Given their large size and fragile structure, the isolation of CMs by FACS could lead
to the capture of damaged cells or cell fragments, especially if the cell sorting is only
aimed to remove DAPI+ dead cells [107]. As we describe below, manual or automatic cell
dispersion combined with imaging selection, as well as single nuclei isolation, are still
considered the most reliable ways to isolate CM for sequencing. The first approach allows
for the acquisition of morphological and phenotypic information on the sequenced CMs,
including the ploidy level; the second can be applied both on live and frozen tissues, and it
is advantageous for a high-throughput sampling of a large number of cells.

The image-based system ICell8 CellSelect (Takara) has been used in two studies [108,109]
to automatically select single live nucleated CM and non-CM distributed in nanowells. The first
study [108] focused on analyzing CM and non-CM from the atria and ventricle of human healthy,
failing, and partially recovering heart post-LVAD (left ventricular assist device) treatment,
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providing a resource to investigate inter- and intra- compartmental heterogeneity in response to
stress. The second [109] analyzed the progression toward HF, profiling hearts of mice exposed
to TAC at different stages (0, 2, 5, 8, 11 weeks), and showed changes in cell–cell communications,
subtype switching in fibroblasts, and activation of pro-inflammatory macrophages in the mid-
stage of HF progression that can be targeted to preserve cardiac function. Similar transcriptomic
changes were observed in human samples of HF and hypertrophy.

Other studies have used snRNAseq to sample CMs, and they either used total snR-
NAseq [110] or a combination of snRNAseq and scRNAseq [111] to sequence interstitial
cells and CMs in pathological contexts. The first study [110] sequenced nuclei from all
cardiac cell types isolated from sham or MI murine hearts 5 days post-surgery. The authors
used a tri-transgenic mouse line to differentiate between pre-existing, de novo differ-
entiated, and de-differentiated CM. They observed no de novo CM differentiation from
interstitial cells, but a small population of differentiated CM appeared to re-enter the cell
cycle. The second study [111] analyzed CM nuclei and interstitial cells in a murine model
of hypertension, which was induced with 2-weeks AngII infusion, comparing control and
treated mice of both sexes. The analysis revealed the transcriptomic signature of activated
fibroblasts responsible for the perivascular and interstitial fibrosis as well as gene expres-
sion differences based on biological sex evident in almost all cell types, particularly in
fibroblasts. A recent study [112] has used published snRNAseq [100] and scRNAseq [101]
on mouse CMs post-TAC and human hearts with DCM [101], with newly generated scR-
NAseq data of mouse interstitial cells 7 days post-MI, to prioritize possible biomarkers
identified through patient plasma proteomic analysis.

Many studies have selectively focused on the non-CM component of the heart us-
ing the high throughput 10x Chromium technology. One early study [113] profiled both
primary fibroblasts response to TGFß and the interstitial cells of a genetic mouse model
of fibrosis (carrying a mutation in phospholamban PLNR9C/+), showing that Il11 is a pri-
mary downstream effector of TGFß in fibroblasts: its overexpression causes heart and
kidney fibrosis, the downregulation protects from fibrosis and organ failure. Two addi-
tional studies profiled the interstitial cell response to MI in an unbiased fashion. One
analyzed the response of the main cell populations, 3- and 7-days post-ligation, using
Pdgfra-GFP mice for the lineage tracing of potential progenitor-like cells [114]. The second
profiled seven-time points across the three main phases of cardiac repair: homeostasis
(d0), inflammatory (d1), proliferative (d3-d5-d7), and maturation (d14-d28) phase, using a
reporter mouse to discriminate epicardial from endocardial-derived fibroblasts (Wt1Cre
x ZsGreen mice); and they focused on the different fibroblast types/states prevalent in
each phase [115]. Additionally, the authors compared genetically diverse inbred mouse
strains characterized by different reparative outcomes to highlight the cell composition
and transcriptomic features associated with a higher frequency of cardiac rupture in the
transition between the inflammatory and proliferative phases. Three studies selectively
profiled the fibroblast component of the heart [116–118]. The first early study [116] used the
Fluidigm C1 platform to profile several hundred CD31-CD45 cells isolated from the scar
area of inducible reporter mice for Tcf21 or Postn, 7 days post-MI. Based on the expression
of known markers, the authors confirmed that Postn-traced cells accounted for most of
the myofibroblasts in the scar and were derived from Tcf21+ fibroblasts. The other two
studies adopted the high-throughput 10x Chromium technology. One study [117] analyzed
cells labeled for Pdgfra and Hic1 expression, in homeostasis and 7 days post-MI, and it
showed that the quiescence gene Hic1 is expressed by Sca1+ Pdgfra+ cells, which act as
progenitors for Sca1 fibrogenic cells post-injury and contribute to pathogenesis rather
than regeneration, in contrast to the equivalent cells in skeletal muscle [119]. The second
study [118] analyzed Col1a1-GFP+ fibroblasts in homeostasis and 7, 14, and 30 days post-
MI. The authors identified Cd200 as a marker of infarct repair fibroblasts and proved that
Cthrc1 expression (previously reported as a marker of myofibroblasts/activated fibroblasts)
is essential, since the KO increases the frequency of cardiac rupture, which is a finding
confirmed by bulk RNAseq on swine hearts and patients with MI and DCM. The response
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of endothelial cells to MI was analyzed in detail, combining clonal lineage tracing with
an inducible reporter mouse (Pdgfb-iCreERT2-R26R-Brainbow2.1) and scRNAseq on sorted
ECs, in homeostasis and 7 days post-ligation [120]. As a result, resident ECs appeared to be
the main contributors to new vessels through clonal expansion, and Plvap was identified
as a marker of activated/proliferating ECs, which is also expressed in human samples,
and it is potentially targetable to improve neovascularization. A recent study has shown
that the expression of VEGF-B in CM can stimulate neoangiogenesis and limit the cardiac
damage post-MI in adult murine heart [121]. Combining lineage tracing and scRNAseq
data, the authors observed that the new vessels were mostly derived from sub-endocardial
ECs [121].

Leukocytes have been selectively enriched and profiled in response to MI [122] in
a model of pressure–volume overload [123] and experimental myocarditis [124]. The
comparison of leukocytes from infarcted and non-infarcted murine hearts 4 days post-
surgery has contributed to identifying a subset of interferon-inducible macrophages and
an IRF3–interferon axis that could be targeted to reduce inflammation and improve cardiac
function [122]. More recently, the same authors have analyzed myeloid cells in the serum
of human patients 28 h post-NSTEMI and in mice serum and hearts 1, 2, and 4 days
post-MI [125]. They have shown that the expression of interferon-stimulated genes (ISG)
starts in the bone marrow and in circulating neutrophils and monocytes (controlled by
the transcription factors Tet2 and Irf3), while within the heart, Nrf2 negatively regulates
ISG expression in resident Ccr2- macrophages. They proposed the use of the ISG score,
from blood single-cell analysis, as a prognostic tool to stratify patients who may benefit
from anti-inflammatory therapies. CD45+ leukocytes have also been profiled in a model of
pressure-overload induced through TAC, where differences between control hearts and
early and late stages of remodeling (1–4 weeks post-surgery) revealed dynamic changes
in cells from both the innate and adaptive immune system [123]. Similarly, CD45+ cells
were isolated and sequenced from murine hearts exposed to an experimental autoimmune
model (EAM) at different stages: acute, subacute, myopathy phases, and controls [124].
The authors observed a prevalence of macrophages in every stage; neutrophils appeared in
the early stage, and T cells mostly appeared in the subacute phase. Both pro-inflammatory
macrophages and Th17 cells showed an upregulation of Hif1a, which correlated with the
extent of inflammation. Hif1a inhibitor could reduce inflammation in all the stages of EAM,
and it could be potentially targeted for treatment, as it was expressed at a higher level in
patients with acute myocarditis compared to DCM and controls.

The myeloid cell response to MI has been characterized in depth by first profiling
sorted resident macrophages and dendritic cells and then sequencing randomly isolated
mononuclear cells from adult hearts control at 2, 11, and 28 days post-MI [126]. This
study showed that resident embryonic-derived CCR2- macrophages have a non-redundant
cardioprotective function that cannot be compensated by the highly similar monocyte-
derived TIMD4-CCR2- macrophages post-MI. In human, peripheral CD31+ monocytes were
profiled in patients with HF with reduced ejection fraction (HFrEF) and healthy individuals,
revealing profound phenotypic differences, which were validated with different techniques
that could be used as a prognostic tool [127].

Recent advances in single-cell technologies are presenting new opportunities to cap-
ture increasing amounts and types of information simultaneously from the same cell.
For example, cellular indexing of transcriptomes and epitopes by sequencing (CITEseq)
quantifies the expression of surface antigen using DNA-barcoded antibodies, while paired
full-length sequencing of T or B cell receptors reveals the specific clonotype of adaptive
immune cells.

CITEseq has been used to profile the dynamic changes of neutrophils in response to
MI. CD11b+ live cells were sorted from murine hearts and blood 1, 3, and 5 days post-MI.
DNA barcoded antibodies for LY6G, CD64, and LY6C were used to distinguish between
neutrophils and monocytes/macrophages [128]. Heart-infiltrating neutrophils appeared to
acquire a distinct signature (SiglecFhi), while circulating ones underwent aging by d3-d5.
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Paired single-cell TCR- and 5′ gene expression sequencing has been recently applied
to profile the clonotype of CD4+ T cells isolated from the heart and spleen of mice 7 days
post-MI. Interestingly, the authors observed that Treg cells are mostly recruited to the heart
from the circulating pool, and that they acquire unique features in the tissue, proliferate
locally by clonal expansion, and contribute to collagen deposition and repair [129].

Overall, single-cell transcriptomic approaches have been widely employed to study
cardiovascular disease, either with a targeted approach, to profile cell-specific changes in
response to injury or in an unbiased fashion. The latter studies have been used to address
a wide variety of questions, including defining organ-wide changes in cell composition
and cell–cell communications, as well as pinpointing how these processes may differ based
on biological sex or genetic background. Together, these data provide valuable insights on
possible therapeutic targets. As the technology becomes more accessible, compositional
shifts and transcriptomic patterns associated with disease could also be used for diagnostic
and prognostic screenings.
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Table 5. Cardiac Injury in Non-Regenerative Models.

Authors
PMID Date # of Cells and/or Nuclei Isolation Method Sequencing Technology Target

Cell Types Context

Kanisicak et al. [116]
PMID: 27447449 July 2016 185 mechanical and enzymatic

digestion, FACS
Fluidigm C1 IFCs; Illumina

HiSeq2500 CD31-CD45- cardiac cells
Tcf21 lineage tracing during

adult MI, TAC and/or
AngII infusion

See et al. [100]
PMID: 28790305 August 2017 359 mechanical nuclei isolation Fluidigm C1 IFCs; Illumina

HiSeq2500
Adult human and murine

CMs

CM response to heart
failure: Human DCM,
mouse TAC (8 weeks)

King et al. [122]
PMID: 29106401 November 2017 4215 enzymatic digestion InDrop [14]; Illumina

HiSeq2500 leucocytes IFNr in leucocytes, CTR and
d4 post-MI

Schafer et al. [113]
PMID: 29160304 November 2017 4548 enzymatic digestion

Chromium Single Cells 3’
v2 (10x Genomics); NextSeq

500 (Illumina)
adult cardiac non-myocyte

wt versus PlnR9C/+ mouse
(cardiac fibrosis phenotype).
Il11 mediator of fibroblast

activation via TGFb

Gladka, M.M. et al. [105]
PMID: 29386203 January 2018 932

enzymatic digestion,
FACS (DAPI, scatter

properties)

plate-based, SORT-seq;
Illumina NextSeq

adult CMs, endothelial cells,
fibroblasts, and
macrophages

Uninjured LV versus
ischemic area 3d post-IR.

Cfk4 regulator of fibroblast
activation post-injury

Nomura et al. [101]
PMID: 30375404 October 2018 482 Langendorff perfusion,

manual pipette

Manual CM lysis,
cDNASmart-seq2; Illumina

HiSeq 2500
adult murine CMs

CMs response to
pressure-overload.

Sham, 3d and 1, 2, 4, 8 wks
post-TAC

Kretzschmar and Post et al.
[106] PMID: 30530645 December 2018 1939

Mechanical and enzymatic
digestion,FACS (DAPI,

MitoTracker)

CEL-Seq2 and TruSeq
library preparation for

NextSeq500

All murine adult ventricular
cells

Ki67-RFP mouse model to
assay proliferation during

murine cardiac injury

Dick et al. [126]
PMID: 30538339 December 2018 8283

enzymatic digestion, Ig
based FACS on beads

enriched CD45+ population

Chromium Single Cells 3’
v2 (10x Genomics); Illumina

HiSeq2500

adult mononuclear
phagocytes (CD45+

CD64Dim–Hi CD11b+)

Profiling macrophages
post-murine MI (CTR, d2,

d11, d28)

Satoh et al. [102]
PMID: 30611794 January 2019 219 Langendorff perfusion,

manual pipette

Manual cell picking,
SMART-seq2, HiSeq 2500

System
adult CMs

Spatial and temporal CMs
response to

pressure-overload. (sham, 1,
2, 8 wks post-TAC)

Farbehi et al. [114]
PMID: 30912746 March 2019 30,118 enzymatic digestion, FACS

Chromium Single Cells 3’
v2 (10x Genomics);
Fluidigm C1 IFCs,

Illumina’s HiSeq 2500

TIP cells and adult cardiac
non-myocytes Murine MI (Sham, d3, d7)
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Table 5. Cont.

Authors
PMID Date # of Cells and/or Nuclei Isolation Method Sequencing Technology Target

Cell Types Context

Zhang et al. [110]
PMID: 31231540 June 2019 31,542

mechanical isolation and
lysis from fresh frozen

tissue

10x Chromium Single Cell 5’
kit (10x Genomics); Illumina

HiSeq2500
adult cardiac nuclei

Murine MI (control and d5),
tri-transgenic mouse line for

CM lineage tracing

Li et al. [120]
PMID: 31162546 August 2019 ≈28,000 enzymatic digestion, FACS

Chromium Single Cells 3’
v2 (10x Genomics); Illumina

HiSeq4000

adult cardiac endothelial
cells

Murine MI (control and d7),
reporter mouse for

clonogenic tracing of ECs

Yekelchyk et al. [104]
PMID: 31399804 August 2019 1,301 Langendorff enzymatic

perfusion
ICell8 platform (Takara);

Illumina Nextera XT
adult CMs mono- and

multi-nucleated
CM profiling in CTR hearts

and 8-weeks post-TAC

Martini et al. [123]
PMID: 31661975 October 2019 17,853 mechanical and enzymatic

digestion, FACS

Chromium Single Cells 3’
v2 (10x Genomics); Illumina

NextSeq500
Adult cardiac leukocytes

Murine pressure-overload
model (1- and 4-weeks

post-sham, TAC operation)

Wang et al. [108]
PMID: 31915373 January 2020 21,422

mechanical and enzymatic
digestion, image based live
cell selection in 384w plates

ICell8 CellSelect (Takara),
plate-based lysis and cDNA

synthesis SMARTScribe;
Illumina NextSeq500

adult human CMs and
non-CMs from LA/ LV, RV

Human heart failure:
healthy donors, HF caused
by coronary disease, partial
recovery (LVAD treatment)

Soliman et al. [117]
PMID: 31978365 February 2020 32,313 enzymatic digestion, FACS 10x 3’ v2 (10x Genomics),

Illumina NextSeq500

Pdgfra-eGFP/ Hic1+ cells in
homeostasis; Pdgfra-eGFP

cells post-MI

Cardiac stromal progenitor
response to injury (apical

area d0, d7, d14, d28
post-MI)

Ren et al. [109]
PMID: 32098504 February 2020 11,492 mechanical and enzymatic

digestion
ICell8 CellSelect (Takara),

MSND Wafergen
Murine and human heart

CMs and non-CMs

Murine pressure-overload
model (0, 2, 5, 8, 11 weeks);

human heart failure

Forte et al. [115]
PMID: 32130914 March 2020 36,847

mechanical and enzymatic
digestion, FACS live cells

[130]

Chromium Single Cells 3’
v2 (10x Genomics); Illumina

HiSeq Xten

Adult murine heart
non-myocytes

Murine MI (d0, d1, d3, d5,
d7, d14, d28), epicardial

lineage tracing, and mouse
diversity

Abplanalp et al. [127]
PMID: 32311026 April 2020 181,712 MACS magnetic sorting

Chromium Single Cells 3’
v2 (10x Genomics); Illumina

HiSeq4000

Human circulating
monocytes (CD31+)

Effect of heart failure on
circulating monocytes:
Healthy versus HFrEF

patients

Hua et al. [124]
PMID: 32431172 May 2020 34,665 mechanical and enzymatic

digestion, FACS live cells

Chromium Single Cells 5’
v2 (10x Genomics); Illumina

HiSeq4000
CD45+ immune cells

Experimental autoimmune
myocarditis: d0, d14, d21,

d60 post-induction in
Balb/c mice



Int. J. Mol. Sci. 2021, 22, 2071 25 of 43

Table 5. Cont.

Authors
PMID Date # of Cells and/or Nuclei Isolation Method Sequencing Technology Target

Cell Types Context

McLellan et al. [111]
PMID: 32795101 July 2020 29,558 perfusion-based enzymatic

digestion, FACS

Chromium Single Cells 3’
v2 (10x Genomics); Illumina

HiSeq4000

adult cardiac non-myocyte
cells and CM nuclei

Murine hypertension
(Sham, AngII- 2wks

post-treatment), male and
female comparison

Vafadarnejad et al. [128]
PMID: 32811295 August 2020 1334

mechanical and enzymatic
digestion,

FACS (CD11b+ live cells)

CITE-seq, Chromium Single
Cells 3’ v2 and v3 (10x
Genomics); Illumina

NovaSeq6000

adult
cardiac neutrophils

Neutrophils dynamics
post-murine MI (d1, d3, d5)

Yamaguchi et al. [103]
PMID: 32868781 August 2020 280 murine CMs and 514

human CMs

Langendorff enzymatic
perfusion,

manual pipette

Smart-seq2,
Illumina HiSeq2500

Adult murine and human
CMs

Interrogation of cardiac
dopamine receptor
expression during

arrhythmia in mice and
heart failure in humans

Chan et al. [112]
PMID: 32885678 September 2020

830 mouse non-myocyte
cells (additionally utilized

publicly available data
[100,101])

mechanical and
perfusion-based enzymatic

digestion, FACS

SMART-Seq2, Illumina
HiSeq2000

LV interstitial cells 7 days
post-MI, CM nuclei 8 weeks

post-TAC

Identify HF biomarkers
combining plasma

proteomic analysis and
scRNAseq

Ruiz-Villalba et al. [118]
PMID: 32972203 September 2020 36,858

mechanical and enzymatic
digestion,

FACS (Col1a1-GFP, CD31,
CD45)

10x Genomics 3’ v2;
Illumina NextSeq500

Adult cardiac fibroblasts,
endothelial, immune cells

Murine MI (d0, d7, d30),
Cthrc1-KO MI (d7), swine

MI (d7)

Calcagno and Ng et al.
[125] PMID: 32978242 Sept 2020 10,666 murine hearts

(~145,000 total)

mechanical and enzymatic
digestion,

FACS
(DAPI-, Ter119−)

inDrop [14] and 10x
Genomics; Illumina

HiSeq2500 and HiSeq4000

Myeloid cells (neutrophils,
monocytes, resident

macrophages)

IFNr in leucocytes: human
serum 28h post-NSTEMI,

mouse heart d1, d2, d4
post-MI

Xia and Lu et al. [129]
PMID: 32985264 September 2020 20,755 heart T-cells (and

23,741 spleen T-cells)
mechanical and enzymatic
digestion, FACS live cells

Chromium Single Cells 3’
v2 and v3 (10x Genomics);

Illumina NovaSeq6000

murine cardiac and splenic
CD4+ T cell TCR

sequencing

Profiling Treg in the heart,
after MI, I/R, cryoinjury

Räsänen et al. [121]
PMID: 33203221 November 2020 does not specify mechanical and enzymatic

digestion, FACS

Chromium Single Cells 3’
v3 (10x Genomics); Illumina

NovaSeq6000

cardiac endothelial cells
(CD31+ CD45- Ter119-

CD140a- DAPI-)

ECs from CTR and
—V—VEGF-B transduced

adult hearts
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6. Cardiac scRNAseq Cell Atlases

Single-cell transcriptomic analysis deepens our understanding of tissue complexity
as well as the dynamic nature of tissue composition and provides a baseline reference for
comparison with diseased states. Numerous healthy single-cell atlases have already been
developed using the mouse as a model system, although their scope ranges from studies of
a specific cell type (e.g., all endothelial cells, from multiple organs) or organ (e.g., all cells
present in the heart), to sampling of almost every tissue type within an organism (Table 6).

In 2018, two groups published the first multi-organ compendia of mouse single-cell
data, together comprising 500,000 cells from over 50 different organ or tissue types [10,131].
The first, the Mouse Cell Atlas (MCA) [10], simultaneously described Microwell-Seq, which
is a novel scRNAseq method utilizing well-based single-cell capture in agarose. The initial
MCA contained ≈5000 neonatal heart cells which made up <5% of the total dataset. The
website developed in conjunction with this paper has subsequently been updated to MCA
2.0 with additional scRNAseq data from fetal to aged (24 months of age) murine cardiac
tissue, totaling over 60,000 heart cells (>800,000 total cells), providing a valuable resource
to investigate cardiovascular aging (http://bis.zju.edu.cn/MCA/index.html (accessed
on 17 February 2021)). In the second study, the Tabula Muris [131], the authors profiled
100,000 cells from 20 murine tissues using two methods: FACS sorting in plates, combined
with Smart-seq2 [8] for sequencing of full transcripts; and microfluidic droplet-based cell
isolation, for higher throughput 3′-end short-read sequencing. About 4000 cardiac cells
were analyzed with the first method and a few hundred were analyzed with the second one
(https://tabula-muris.ds.czbiohub.org/ (accessed on 17 February 2021)). Later, the same
consortium used a similar approach to profile 23 organs in male and female mice at six age
points with the droplet-based system and three time points using the FACS-based method,
ranging from 1 to 30 months [132]. This large dataset, with over 350,000 cells, constitutes the
Tabula Muris Senis and includes about 18,282 cardiac cells [132,133]. Transcriptomic changes
occurring with age have been also specifically analyzed in the heart, using murine [134]
and non-human primate [135] models. The first study [134] profiled 12-week-old and 18-
month-old C57BL/6JRj mice, revealing significant changes in fibroblasts, with upregulation
of pro-inflammatory, anti-angiogenic, and osteogenic genes. The second [135] utilized
scRNAseq to produce a single-cell compendium of cardiovascular aging in cynomolgus
monkeys and reported an increase in inflammatory genes both in immune and non-immune
cardiac cells.

The broad scope of studies such as MCA and Tabula Muris enable the interrogation
of cell identity and tissue-specific aspects of common cell types such as endothelial cells,
fibroblasts, and immune cells. An alternative approach to large, multi-organ total cell atlas
studies is to narrow the scope of the investigation to a specific cell type. The murine en-
dothelial cell atlas [136,137] consists of more than 32,000 endothelial cells from 11 different
mouse tissues. The analysis of this dataset revealed transcriptomic similarity between
tissue pairs, and the marker genes of common, tissue-specific, and new EC subtypes
(i.e., IFN-responsive and angiogenic ECs). Cardiac endothelial cells appeared transcrip-
tionally similar to skeletal muscle endothelial cells and enriched for genes involved in
membrane transport and redox homeostasis. A database of fibroblasts and vascular mural
cells has been obtained by sequencing cells isolated from four muscular tissues, including
the heart [138,139]. This study revealed lists of genes that can be used to discriminate
between these two mesenchyme-derived cell types. Furthermore, the authors observed a
higher degree of heterogeneity among fibroblasts from different organs, compared to mural
cells, which was mostly ascribable to differences in the ECM genes and that fibroblast
subtypes tend to localize in distinct anatomical positions. In the heart, similarly to other
studies [10,113,135], they identified two main fibroblast sub-populations. The smaller
sub-population, expressing relatively higher levels of Wif1 and Dkk3, was transcriptionally
similar to fibroblasts located in the perimysium, which is the connective tissue surround-
ing a group of myofibers in the skeletal muscle. In the cardiac context, these cells were
mostly localized in the valve and atrioventricular space [138], and they seem to resemble

http://bis.zju.edu.cn/MCA/index.html
https://tabula-muris.ds.czbiohub.org/
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interstitial valve fibroblasts [140] and endocardial derived fibroblasts [115] described in
separate studies. B cells have been profiled in adult heart [141] and compared across
multiple tissues [142] (heart, liver, lung, and blood) in order to identify specific gene expres-
sion patterns. These data revealed that the naïve organ-associated B-cells share features
that distinguish them from circulating B cells, but they also display tissue-specific gene
expression patterns of unclear function [142]. Transcriptional changes in cardiac B cells
during development reflect an unexpected constant dynamic equilibrium within the B cells
from primary lymphoid organs, such as the spleen, even in the absence of injuries [142].
Single-cell analyses such as these facilitate the development of cell-specific atlases and
provide insight into cellular identity and organ-specific functions of common cell types.

An alternative to cell type-specific scRNAseq (i.e., all B cells) is an organ-specific
approach. One of the first cardiac-specific single-cell atlases reported was by Skelly et al.
in 2018 [143]. This study identified cell type diversity within cardiac ventricular tissue
from C57BL/6J mice, tested intercellular paracrine support between cardiac fibroblasts and
macrophages, and described distinct gene expression profiles between male and female
cardiac cells [143]. The study was limited by the cell isolation method, which required an
artificial down-sampling of the endothelial cells and excluded CMs and atria. A later series
of studies [144–146] used snRNAseq to unbiasedly profile the heart of outbred Fzt:DU
mice [144] and compare it to inbred C57BL/6NRj mice heart [145] as well as to previously
published Tabula Muris cardiac data [146]. The authors noted significant differences in
cardiac tissue composition between strains, namely twice as many total endothelial cells in
Fzt:DU cardiac tissue [145], a cluster of “endothelial like CMs” [144], and a small population
of possibly cycling CMs [146]; these interesting observations are still awaiting validation
and further interrogation.

Additional cardiac scRNAseq studies further narrow the scope to focus on the analysis
of organ sub-structures [147] or specific cell-types during uncharacterized processes such
as CMs in culture [148,149]. A detailed analysis of the murine sinus node has been recently
obtained by combining quantitative proteomic data of nodal and non-nodal atrial tissue,
with snRNAseq transcriptomic data [147]. Using this approach, the authors identified
enriched ion channel proteins and assigned them to specific cell types, thus shedding light
on the molecular basis of the pacemaking activity in nodal CMs. Single-cell analysis of
CMs is also useful to study CM behavior in culture. One study profiled the transcriptomic
response of primary rat cardiac cells adapting to a 3D culture environment [148], while
another analyzed the effect of the structural geometry present during culture on primary
neonatal rat CMs gene expression [149]. The authors noted that CMs that were forced to
adopt a square shape (as opposed to the endogenous rectangle shape) upregulated markers
of cell death and downregulated essential cardiac signaling pathways such as oxidative
phosphorylation. Regardless of scope, single-cell atlases are a valuable resource for murine
cardiac biology.

Human cardiovascular biology is also aided by the development of healthy single-cell
atlases. One of the first reported human heart single-cell atlases included >280,000 nuclei
from all four heart chambers from male and female donors [150]. The authors showed sig-
nificant (and expected) transcriptional differences between atrial and ventricular CMs, as
well as a surprising amount of variation in non-myocyte gene expression based on anatom-
ical location such as a unique atrial fibroblast subtype. Additionally, the authors integrated
snRNAseq data with Genome-Wide Association Studies (GWAS) cardiometabolic traits
and the Druggable Genome [151] to link disease-relevant SNPs and druggable gene targets
to specific cell types [152]. The data can be explored from the Broad Institute Single Cell
Portal [153]. A more recent human cardiac single-cell atlas comprised nearly 500,000 cells
and nuclei from the four chamber walls, as well as the septum and apex [154]. The authors
carefully defined the heterogeneous composition of all the main cardiac cell populations
and validated the spatial distribution of selected clusters by smFISH. Additionally, they
identified the cell types enriched for genes associated with cardiovascular phenotypes
and SARS-CoV-2 infection (atrial fibrillation, PR interval, QRS duration, coronary artery
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disease, and hypertension diseases) from 12 GWAS studies [155]. The data can be explored
at [156].

In summary, scRNAseq of the uninjured heart is a useful tool to better define cardiac
cellular identity and tissue composition. Single-cell transcriptomic analysis enables the
generation of high-resolution cell atlases to delineate a map of the heart, providing insights
into the composition of a healthy heart so as to detect deviations into pathogenesis.
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Table 6. Adult heart single-cell atlases.

Authors
PMID Date # of Cells and/or Nuclei Isolation Method Sequencing Technology Target

Cell Types Context

Skelly et al. [143]
PMID: 29346760 January 2018 10,519 enzymatic digestion, FACS

Chromium Single Cells 3’
v2 (10x Genomics); Illumina

HiSeq 4000
adult cardiac non-myocyte

homeostatic murine adult
cardiac tissue. Male and

female comparison

Han et al. [10]
PMID: 29474909 February 2018 5075 heart cells (Over

400,000 total) enzymatic digestion Microwell-Seq;
Illumina HiSeq neonatal cardiac cells Mouse Cell Atlas

Tabula Muris Consortium
[131] PMID: 30283141 October 2018 4635 heart cells (over

100,000 total)
enzymatic digestion, FACS,

manual pipette

GemCode Single-Cell 3’ v2
(10x Genomics) &

FACS-based full length
transcriptomic; Illumina

NovaSeq 6000

adult cardiac non-myocytes,
CM

Homeostatic cell profiling
of 20 murine adult organs

Hulin et al.
[140] PMID: 30796046 March 2019 2840 mechanical and enzymatic

digestion Dropseq heart valve cells Aortic valve and mitral
valve at P7 and P30

Linscheid et al.
[147] PMID: 31253831 June 2019 5357 Mechanical nuclei isolation

Chromium Single Cells 3’
v3 (10x Genomics); Illumina

NovaSeq 6000
sinus node nuclei Murine sinus node cell atlas

Wang et al. [148]
PMID: 31455969 August 2019 12,865 mechanical and enzymatic

digestion, FACS
10x 3’ v2 (10x Genomics);

Illumina HiSeq PE150 3D-cultured primary cells
Engineered cardiac tissues
(derived from rat primary

cells)

Vidal et al.
[134] PMID: 31723062 September 2019 27,808 Mechanical nuclei isolation

Chromium Single Cells 3’
v3 (10x Genomics); Illumina

Hiseq4000

adult CM and non-myocyte
nuclei

Young and aged
C57BL/6JRj mice

Haftbaradaran Esfahani
et al. [149]

PMID: 31872302
December 2019 435

Enzymatic from culture and
semi-automatic cell picking

[157]

Smart-Seq2; Illumina HiSeq
2500

cultured primary p2 rat
CMs

Profiling of CMs with
defined morphotypes

through custom geometry
culture chips [158]

Adamo et al. [141]
PMID: 31945014 January 2020 5571 mechanical and enzymatic

digestion, FACS

Chromium Single Cells 3’
v3 and 5’ V(D)J enriched
library (10x Genomics);
Illumina NovaSeq6000

CD45+Aqua–CD19+ B-cells
B-cells from the heart and

blood of 10-week-old
C57BL/6J mice

Wolfien et al. [144]
PMID: 32013057 January 2020 8635

mechanical and enzymatic
digestion, Nuclei PURE

Prep isolation kit (Sigma)

Chromium Single Cells 3’
v3 (10x Genomics); Illumina

NovaSeq6000

adult CM and non-myocyte
nuclei

snRNAseq whole murine
heart (Fzt:DU outbred mice)

Kalucka et al. [136]
PMID: 32059779 Feb 2020 4612 heart endothelial cells

(32,567 total cells)
mechanical and enzymatic

digestion, FACS

Chromium Single Cells 3’
v2 (10x Genomics); Illumina

Hiseq 4000

Adult murine heart
endothelial cells

Murine endothelial cell
atlas from 11 tissues
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Table 6. Cont.

Authors
PMID Date # of Cells and/or Nuclei Isolation Method Sequencing Technology Target

Cell Types Context

Wolfien, Galow, and Müller
et al. [145] PMID: 32243511 April 2020

3464 nuclei (additionally
integrated with previously

published data [144])

mechanical and enzymatic
digestion, Nuclei PURE

Prep isolation kit (Sigma)

Chromium Single Cells 3’v3
(10x Genomics); Illumina

NovaSeq6000

adult CM and non-myocyte
nuclei

snRNAseq whole murine
heart (Fzt:DU outbred vs.

C57BL/6NRj mice)

Tucker and Chaffin et al.,
[150] PMID: 32403949 May 2020 287, 269 mechanical and enzymatic

digestion, nuclei isolation
Chromium Single Cells 3’

v2 (10x Genomics) all human heart cell types
Healthy human adult

cardiac tissue: biopsies from
four chambers

Rocha-Resende et al. [142]
PMID: 32663200 July 2020 1004 mechanical and enzymatic

digestion, FACS

Chromium 10x 3’ v3 and 5’
(10x Genomics); Illumina

NovaSeq 6000
CD45+Aqua–CD19+ B-cells

B-cells from postnatal
(2 wks) and adult hearts

(8 wks); comparison with
other tissues (10 wks)

Tabula Muris Consortium
[132] PMID: 32669714 July 2020

18,282 heart cells over
350,000 total

(9,669 cells long-reads; 8,613
short-reads)

enzymatic digestion, FACS,
manual pipette

GemCode Single-Cell 3’ v2
(10x Genomics) &

FACS-based full length
transcriptomic; Illumina

NovaSeq 6000

adult cardiac non-myocytes,
CM from all four chambers

Profiling of 23 murine adult
organs over six age stages
(1 to 30 months), male and

female C57BL/6J.

Muhl et al.
[138] PMID: 32769974 August 2020 1,279 heart cells (6158 total) mechanical and enzymatic

digestion, FACS
Smart-Seq2; Illumina HiSeq

3000
PDGFRa+, PDGFRb+,

CD31-;

Comparison of fibroblasts
and mural cells from four

different organs

Ma et al. [135]
PMID: 32913304 September 2020 42,053 (109,609 additional

lung nuclei)
mechanical nuclei isolation

and FACS

Chromium Single Cells 3’
v3 (10x Genomics); Illumina

NovaSeq6000

young and aged primate
cardiac nuclei

Lung and heart from young
and aged cynomolgus

monkeys

Litviňuková et al. [154]
PMID: 32971526 September 2020 487,106

mechanical and enzymatic
digestion, FACS, nuclei

isolation

Chromium Single Cells 3’
v2 or v3 (10x Genomics);
Illumina NextSeq 500 or

Hiseq 4000

adult human CM and
non-myocyte nuclei (with
selected upsampled whole

cells)

Healthy human adult
cardiac tissue: biopsies from
four chambers plus septum

and apex
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7. Single-Cell Analysis and Implications for COVID-19

The global pandemic caused by SARS-CoV-2 has significantly impacted the quality of
life for billions of people. The cardiovascular implications of the associated coronavirus
disease 2019 (COVID-19) are threefold, as reviewed in [159–162]. First, although viral
pneumonia is the most common clinical manifestation of COVID-19, the disease can
instigate cardiac injury in diverse forms, including fulminant myocarditis [163–165], MI
due to blood-clotting [166], and arrhythmia [167,168]. Additionally, the disease progression
appears to be worse in elderly patients with pre-conditions such as diabetes, hypertension,
and cardiac diseases [159]. Finally, SARS-CoV-2 utilizes the angiotensin-converting enzyme
2 (ACE2) as the primary entry receptor [169]. ACE2 is an essential component in the renin–
angiotensin system (RAS) and is integral in proper blood pressure regulation. It limits the
production of the vasoconstrictive AngII by cleaving Angiotensinogen to form Angiotensin
1–7 [170]. Circulating ACE2 is upregulated in different pathological conditions [171], and
ACE2 activity seems to be increased in the heart upon treatment with commonly used
angiotensin-converting enzyme inhibitors (ACEi) and angiotensin II receptor blockers
(ARB) [172]. Given the potential for these anti-hypertensive therapies to increase entry
receptors for the virus, their safety was initially questioned [170]. Fortunately, these
concerns have been dissipated by clinical trials that showed no significant correlation
between the use of these drugs and either the probability of contracting the virus or the
severity of the disease [173].

Virus-associated pathologies are the result of complex host–pathogen interactions.
scRNAseq could potentially be used to highlight cell-specific responses to viral infection in
different tissues. To date, only one preprint manuscript reports the use of scRNAseq on
infected human cells from the airway epithelium [174]. Bulk RNAseq has been adopted
to profile hiPSC-CMs exposed to SARS-CoV-2 [175]. This study proved that CMs can be
directly infected; upregulate genes related to immune response (cytokines such as CXCL2,
antiviral genes such as OAS3) and apoptosis; and downregulate genes involved in oxidative
phosphorylation, troponins, and the entry receptor ACE2 (similar to previous observations
in SARS-CoV-infected myocardium [176]). To our knowledge, no study has yet reported the
transcriptomic changes occurring at a single cell level in infected cardiac organoid or tissue
biopsies from infected or recovered patients. However, publicly available [177–179] and
newly generated [135,154,180–182] single-cell datasets have been interrogated to identify
the expression patterns of the entry receptor ACE2 and the proteases necessary for the
priming of the viral S-protein (Table 7). These studies showed that hACE2 expression
is highest in cardiac pericytes, followed by fibroblast and CMs. The expression of the
TMPRRS2 protease is negligible in the heart, but other proteases such as CTSB, CTSL, and
FURIN, all of which are expressed at a low level in nearly all cardiac cell types, could
act in its place to facilitate virus uptake. The expression of ACE2 is upregulated with
aging in non-human primates both in CMs and arterial ECs [135]. It is also upregulated in
CMs from patients with heart failure, although there is debate on whether this increased
ACE2 expression is restricted to CMs: one study showed a global upregulation of ACE2 in
failing hearts at both the RNA and protein level [180], while two others showed that the
increase in expression in CMs is compensated by a relative decrease in pericytes and other
interstitial cell types [181,182]. In response to ACEi treatment, another study showed a sig-
nificant upregulation of ACE2 in CMs [181], while a second reported increased expression
in all cardiac cell types [182]. Finally, scRNAseq on circulating immune cells in patients
with heart failure has shown an increase in monocyte/T cell ratio and dramatic transcrip-
tional changes in the monocyte populations, indicating an enhanced pro-inflammatory
state [127].
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Table 7. Cardiac Single-cell and COVID-19.

Authors
PMID Date # of Cells and/or Nuclei Isolation Method Sequencing Technology Target

Cell Types Context

Chen et al. [180]
PMID: 32227090 March 2020 does not specify enzymatic digestion,

nuclei isolation

Chromium Single Cells 3’
v3 (10x Genomics);

Illumina Hi-seq Xten

all human heart cell
types

hACE2 expression in
healthy and failing

human hearts

Nicin et al. [181]
PMID: 32293672 April 2020 57,601 enzymatic digestion,

nuclei isolation does not specify all human heart cell
types

hACE2 expression in
healthy and failing

human hearts (1 healthy,
5 aortic stenosis,

2 HFrEF patients)

Tucker and Chaffin et al.
[182]

PMID: 32795091
June 2020 677,785

mechanical and
enzymatic digestion,

nuclei isolation

Chromium Single Cells 3’
v3 (10x Genomics) All human LV cell types

Healthy (n = 11) and
failing adult human

heart (11 dilated-,
15 hypertrophic-
cardiomyopathy)
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Overall, these data provide insight into cardiovascular susceptibility to SARS-CoV-2
infection. They suggest that pericytes may be the first port of entry for the virus in healthy
hearts, leading to vascular damage and thrombosis, followed by entry via fibroblasts,
which could contribute to worsening diastolic dysfunction. The susceptibility of elderly
patients and patients with comorbidities to more severe myocardial injury may be due in
part to elevated ACE2 expression and immune system dysregulations.

8. Current Challenges and Future Prospective

As single-cell analyses permeate both public and private research in single-cell analy-
sis, the rapid advancement of novel experimental techniques and algorithmic innovations
promises to lead to increasingly precise and efficient tools for genetics and cell biology.
Innovation in scRNAseq technology is occurring at an unprecedented rate; multiple scR-
NAseq methods have already been developed [22], and the number of cells analyzed in
cardiac scRNAseq studies is increasing exponentially (Figure 1B). The development of
antibody-based cell hashing is enabling multiplexing by indexing samples, which can
drive down costs and allow for more complex experimental designs [183]. As single-cell
technology advances, it is poised to both become a more accessible tool for researchers and
to provide highly resolved portraits of cardiac tissue functional state at homeostasis or in
pathological contexts.

A limitation of high-throughput scRNAseq methods is that the data are sparse, with
a large fraction of the gene counts equal to zero. Zero counts in scRNAseq can result
from technical factors (mRNA is not captured) or can be biological in origin (the gene is
not expressed in a particular cell) [184,185]. Several new approaches hold promise for
partially ameliorating these limitations. The simultaneous detection of RNA and protein
at the single-cell level [17,18] could reveal the presence of stable proteins with few or no
cognate transcripts currently present in the cell. This method is particularly useful for
precisely defining several immune cell subtypes that are traditionally classified using the
expression of surface antigens. Quantitative readouts of chromatin accessibility using
snATAC-seq can further support single-cell transcriptomic data [28,64,91]. To maximize
the transcriptomic coverage for differential gene expression analysis, a recent study has
combined cell-type information from scRNAseq with bulk RNAseq data from the same
tissue using a deconvolution method [94].

Commonly used scRNAseq methods generate libraries that are amenable to high-
throughput short-read sequencing by capturing the 3′ or 5′ end of each transcript, combined
with a tag including the cellular barcode and a unique molecular identifier [8–15]. Short-
read sequencing of end-primed transcripts hampers the detection of transcript isoforms,
although some scRNAseq methods provide full-length transcript information [186,187].
Methods are currently being developed to combine short-read and long-read sequencing
from barcoded cells to identify cell-type specific isoforms through barcode deconvolu-
tion [188].

A great advantage of scRNAseq is the ability to observe cells as they progress along
a continuum of development, differentiation, or disease. Nevertheless, typical pseudo-
temporal trajectories inferred from transcriptomic data lack directionality and may not
reflect a real biological hierarchy. One novel algorithmic approach to this problem is
RNA velocity [189], which harnesses reads derived from introns to assess transcriptional
activity at present versus in the past (e.g., unprocessed compared to processed transcript
abundances). Moreover, new experimental methods are allowing investigators to combine
scRNAseq with clonal lineage tracing by introducing a DNA barcode [190] or CRISPR–
Cas9-induced genetic modifications [191,192] in the parental cell.

A continual challenge in single cell biology is the confounding effect of cell isola-
tion, which may introduce changes in gene expression. To compensate for this problem,
transcriptomic tools are currently being optimized to enable the preservation of spatial
information during RNA capture. There are already multiple platforms for in situ RNAseq,
which can be broadly classified as either targeted or unbiased approaches, as reviewed



Int. J. Mol. Sci. 2021, 22, 2071 34 of 43

in [193]. Targeted methods allow for the detection of a limited number of pre-defined
targets at high resolution, while unbiased methods can in principle detect the full tran-
scriptome but with limited resolution. One of the first unbiased methods was Spatial
Transcriptomics [50], which has been acquired by 10X Genomics and is presently marketed
under the Visium tradename. In this approach, tissue sections are placed on glass slides
pre-printed with clusters of barcoded primers. The RNA is captured and retrotranscribed
in situ, and the RNA–DNA complexes are collected for amplification and sequencing ex
situ. The distance between the clusters of primers limits the resolution to regions, currently
about 30um in size, that may include multiple cells. Currently, this approach has been
used in two cardiovascular studies, which have sought to bypass limits on resolution by
combining spatial transcriptomic data with scRNAseq through computational deconvolu-
tion methods in order to reconstitute detailed spatial transcriptomic maps [51,194]. In this
fast-developing field, we consider it likely that imaginative new advances will eventually
allow unbiased RNA and protein detection on the same tissue section with increasing
resolution and sensitivity.

In light of the deluge of recent advances in single cell analysis, it is becoming essential
to develop and optimize methods for the integration of data of different types and from dif-
ferent sources [195]. Single-cell isolation methods may vary dramatically between research
groups, and this may introduce confounding variables for single-cell study integration. Re-
cently, a series of guidelines on how to report scRNAseq experiments have been published
to ensure reproducibility [196]. The standardization of public scRNAseq data submission
will facilitate the future integration of many disparate single-cell datasets, which will be a
valuable resource for hypothesis generation in cardiovascular biology.

9. Conclusions

Although relatively new, single-cell transcriptomics has already revealed numerous
insights in cardiovascular biology. Single-cell analysis of cardiac development has devel-
oped our understanding of established key early cardiac transcription factors (Table 1).
Single-cell computational trajectories have provided insight into the lineage commitment
and differentiation of CPs in vitro (Tables 2 and 3). Numerous cardiac single-cell atlases
have been developed in multiple organisms and in multiple contexts including genetic vari-
ation, biological sex, and cardiac injury, all of which will provide useful resources for future
work (Table 6). Characterizing injury responses in both regenerative and non-regenerative
contexts has revealed previously undescribed intermediate cells as well as mechanisms of
paracrine signaling, which contribute to regeneration and scar formation (Tables 4 and 5).
Disease-related cell-specific transcriptomic signatures can be used as diagnostic and prog-
nostic tools. Most recently, single-cell analysis has provided useful information regarding
the cardiac consequences of SARS-CoV-2 infection as multiple groups characterized the
expression of the entry receptor hACE2 among cardiac cells (Table 7).

Taken together, single-cell analysis of the heart has revealed previously underappreci-
ated cellular heterogeneity and the importance of paracrine intercellular communication.
This diversity of cardiac cell types (and cell subtypes) acting in concert likely contributes
to the homeostatic maintenance of cardiac tissue and is integral in the complex biological
processes that govern progenitor cell differentiation, cardiovascular development, disease,
and regeneration. The use of single-cell analytics will enable the definition of a healthy
cardiac cell system and thereby better equip therapeutic pursuit toward the maintenance
of this healthy cell system during physiological stress.
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Abbreviations

AP Action potential
CFs Cardiac fibroblasts
CMs Cardiomyocytes
CPs Cardiac progenitors
DCM Dilated cardiomyopathy
E Embryonic day
EB Early allontoic bud stage
ECM Extracellular matrix
ECs Endothelial cells
EHF Early headfold stage
ESCs Embryonic stem cells
FHF First heart field
HF Heart failure
HFrEF Heart failure with reduced ejection fraction
HLHS Hypoplastic left heart syndrome
hpf Hours post fertilization
I/R Ischemia/reperfusion
iCM Induced cardiomyocytes
IFC Integrated fluidic circuits
imCM Immature CM (p1 hearts)
iPSCs Induced pluripotent stem cells
KO Knock-out
LRHS Hypoplastic right heart syndrome
LV Left ventricle
MACS Magnetic activated cell sorting
MI Myocardial Infarction.
MSC Mesenchymal stem cells
NSTEMI Non-ST segment elevation myocardial infarction
OFT Outflow tract
p Postnatal day
ps Pairs of somites
RNAseq Ribonucleic acid sequencing
ROS Reactive oxygen species
RV Right ventricle
SHF Second heart field
SMCs Smooth muscle cells
SV Sinus venosus
TAC Trans aortic constriction
UMI Unique molecular identifier
wt Wild type
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