
 

FRGS15-165-0406 - Final report 

 

Mathematical Analysis to Estimate Optimal Shunt Impedance for 

Piezoelectric Transducer to Maximize Vibration Energy Dissipation in Non-

Deterministic Sub-Systems 
 

Asan G A Muthalif *,  Azni N Wahid 

asan@iium.edu.my 

Smart Structures, Systems & Control Research Laboratory (S3 CRL) 

Department of Mechatronics Engineering, International Islamic University Malaysia, 

Jalan Gombak, 53100 Kuala Lumpur, Malaysia 

 

Engineering systems such as aircrafts, ships and automotive are built-up structures fabricated from 

many components that can be classified as deterministic substructure (DS) and non-deterministic 

substructure (Non-DS). Non-DSs are subjected to high-frequency vibration which produced 

response that cannot be described mathematically using deterministic method. This makes 

vibration energy harvesting tricky due to the combined modal response which produce no visible 

distinct peaks. Piezoelectric (PZT) transducer connected to a shunt circuit is an attractive choice 

to harvest vibration energy from a Non-DS. Using Hybrid modelling equation, the impedance of 

the circuit to be attached to the Non-DS needs to be complex conjugate of the impedance faced by 

the Non-DS at its connection point. The shunt circuit of the PZT shunt harvester is designed such 

that the impedance is complex conjugate of its inherent capacitance parallel with impedance faced 

by the host structure at the connection area. In the first part of this research, the impedance faced 

by the Non-DS at the connection area is estimated using effective line mobility of an infinite thin 

plate under moment excitation by a square PZT patch using double integration of the infinite 

mobility which resulted to a hypergeometric function. The analytical model is compared with the 

average response of a randomized finite thin plate via Monte Carlo simulation which managed to 

significantly cut computational time to ~40 times shorter compared to using the finite method. 

Using findings from this part, the implementation of the designed shunt circuit using electronic 

components is carried out. One possible circuit configuration that closely resembles the theoretical 

impedance derived is realized by application of two negative impedance converters (NICs) 

utilizing op-amps, in order to replicate the negative capacitance, C and negative RL in series.  

 
Keywords: High-frequency vibration energy harvesting, Piezoelectric shunt damper, optimal 

impedance, effective line moment mobility, the Hybrid modeling method 

  

Deterministic substructures (DS) are structures that are subjected to long wavelength deformation 

considered as low-frequency vibration while non-deterministic substructures (Non-DS) are 

structures that are subjected to short wavelength deformation termed as high-frequency vibration. 

The term ‘high’ is not simply numerical; it implies that the frequency range extends to many times 

the fundamental natural frequency of a structure under consideration [1]. In Statistical Energy 

Analysis (SEA), modal overlap factor (MOF) is used to quantify the degree of overlap in modal 

response i.e. the ratio of the half-power bandwidth to the local average interval between natural 

frequencies [2, 3].  
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where n is the modal density, 𝜂 is the modal loss factor, 𝜔 frequency in rad/s, A is the surface area 

of the structure 𝜌, ℎ and D are the density, thickness and the flexural rigidity of the structure, 

respectively. At low frequency range (MOF<1), individual modal responses are distinctly visible 

therefore response can be effectively simulated using the conventional finite element method 

(FEM). The mid frequency range (1<MOF<2) is when the modal response is beginning to overlap 

and MOF>2  is the high frequency range where: (i) the vibration response is increasingly sensitive 

to uncertainties [1, 4, 5] and (ii) no distinct resonant peaks are visible in the response since the 

modal responses are combined to be broader peaks (see Figure 1) [6]. Additionally, vibrations at 

higher frequency range has much smaller wavelength than the lower modes, which means i) higher 

number of degrees of freedom is needed to model the response that requires high computational 

time and cost, ii) the wave can efficiently propagate through smaller cracks in structures and later 

intensifies the damage.   
 

 
Figure 1: Frequency response function of a rectangular plate to show modal overlap factor, MOF 

 

 An attempt to develop active control for high frequency vibration (structural response with 

MOF>2) control has been discussed in work by Muthalif [6] where they used skyhook damper 

(equivalent to point force) to dissipate energy from a Non-DS. The optimal value for the skyhook 

damper constant is achieved by doing the first derivative of the hybrid Finite Element/SEA 

(FE/SEA) equation coined by Langley [7]. This paper will attempt to dissipate vibration energy 

from a thin plate vibrating at high-frequency range by using a piezoelectric (PZT) patch transducer 

as a passive damper by connecting a shunt circuit through its terminal, known as shunt damping 

[8, 9]. The crux of this research will be to find the optimal circuit impedance of the PZT shunt 

damper to maximize energy dissipation from the Non-DS. 

 

 In order to use a PZT shunt damper as medium of energy dissipation from a Non-DS, the 

effect of a PZT patch on a Non-DS needs to be investigated due to its different forcing distributions 

compared to a skyhook damper. The approach taken here is to model a PZT patch transducer as 

line moment exciter on a randomized thin plate and to estimate its mobility function using infinite 

mobility term. This finding will be crucial for determining the optimal electrical circuit of the shunt 

damper by utilizing hybrid (FE/SEA) modelling method which found out to be equivalent to 

impedance matching method [6, 10, 11].  
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2.0 DERIVATION OF OPTIMAL IMPEDANCE FOR NON-DS CONTROL 

 

The hybrid Finite Element/SEA (FE/SEA) modelling approach treats a complex built-up system 

as a combination of components with fully deterministic properties (DS) and substructure that have 

high degree of randomness (Non-DS) [7, 10, 12]. Consider the simplest form of built-up structure 

where a shunted PZT patch is directly acting on a randomized thin plate; the patch with its circuit 

is treated as a DS and the host substructure as a Non-DS ( 

Figure 2). The strategy for Non-DS vibration suppression is investigated by finding the optimal 

impedance of the DS when the energy loss at the DS is maximized, using the first derivative of 

hybrid (FE/SEA) method [13].  The equation used to find the Non-DS energy (SEA part of the 

hybrid method) for the system in  

Figure 2 is: 

 

(𝜔𝜂𝑑,1𝑛1 + 𝜔𝜂1𝑛1)
𝐸1

𝑛1
= 𝑃𝑖𝑛 

(2) 

 

 

Figure 2: A PZT patch with shunt circuit, Zsh(s) acting on a Non-DS 

 

where 𝜂1 and 𝑛1 are the loss factor and modal density of the Non-DS, 𝜂𝑑,1 is the loss factor of the 

DS (the controller), 
𝐸1

𝑛1
 is the modal energy of the subsystem and 𝑃𝑖𝑛 is the power input to the 

subsystem. If the power input to the Non-DS is fixed, then increasing the magnitude of 𝜔𝜂𝑑,1𝑛1 

will then decrease the energy of the Non-DS, 
𝐸1

𝑛1
(𝜔𝜂1𝑛1) which fulfils the control purpose. The 

first term in Eq. (2) is given by the hybrid method as: 

 

𝜔𝜂𝑑,𝑘𝑛𝑘 =
2

𝜋
∑ 𝐼𝑚(𝑫𝑑,𝑟𝑠)(𝑫𝑡𝑜𝑡

−1 𝐼𝑚{𝑫𝑑𝑖𝑟
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where 𝑫𝑑,𝑟𝑠 is the complex dynamic stiffness matrix for the DS, 𝑫𝑑𝑖𝑟
𝑘  is the complex direct 

dynamic stiffness matrix at the coupling points (line or area), 𝑫𝑡𝑜𝑡 is sum of 𝑫𝑑,𝑟𝑠 and 𝑫𝑑𝑖𝑟
𝑘 , 𝑫𝑡𝑜𝑡

−𝐻 

is the inverse of hermitian transpose for 𝑫𝑡𝑜𝑡. The relationship between complex dynamic stiffness 

to structural impedance is 𝐷𝑑,𝐷𝑆 = 𝑗𝜔𝑍𝑑 and 𝐷𝑑𝑖𝑟 = 𝑗𝜔𝑍∞  where 𝑍𝐷

 is the impedance of the DS as “seen” by the Non-DS and 𝑍∞  is the infinite plate 

driving point impedance at the connection between the DS and Non-DS. While this is 

unambiguous for a skyhook damper which is a mechanical damper with point junction, the 

impedance expression needs more fine definition for other types of controller; in this case, a PZT 
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shunt damper is an electromechanical transducer and has completely different forcing distribution 

and spatial connection with its host structure. Evidently, having the knowledge of mobility 

function of a structure can help to determine the design for an optimal controller for maximum 

energy dissipation from a Non-DS. 

 

 Consider n number of PZT shunt dampers on the Non-DS, the optimal impedance value 

for each of the DS in order to maximize the value of energy loss, 𝜂𝑑,1 is obtained by doing the first 

derivative of Eq. (3) with respect to both real part and imaginary part of 𝐷𝑑,𝑘 for the kth DS 

separately, which will lead to: 

 

𝐷𝑑𝑅,𝑘 = −𝐷𝑑𝑖𝑟𝑅,𝑘 

    𝐷𝑑𝐼,𝑘 = 𝐷𝑑𝑖𝑟𝐼,𝑘 

(4)  

(5) 

 

Eqns. (4) and (5) are the optimal impedance for a DS, or specifically the optimal impedance of the 

kth shunted PZT patch needed to minimize the Non-DS’s energy which is essentially equivalent to 

the ‘impedance matching technique’. In addition, the equations also illustrate that the optimal gain 

value for each deterministic controllers are independently-related to the direct dynamic stiffness 

of its non-deterministic host structure at their respective point/line/area connection. This finding 

will significantly simplify the controller’s design. Further investigation using the above derivation 

also reveals that the energy ratio between a bare plate and a controlled plate using optimized DS 

becomes: 

 
𝐸𝑜

𝐸𝑐
= 1 + (

𝑁

2𝜋𝜔𝜂𝑜𝑛
) 

 

(6) 

 

where N is the quantity of the optimized controller in this case it is the PZT patch with optimal 

shunt impedance. Evidently, as frequency is made higher, the energy ratio between a bare plate, 

𝐸𝑜  and a controlled plate, 𝐸𝑐 will approach to unity, 
𝐸𝑜

𝐸𝑐
≈ 1 ; which implies that control for 

a Non-DS is ineffective at very high frequency. However, the number of controllers, N can be 

increased to alleviate this drawback as shown in Figure 3. 

 

 



Figure 3: Energy uncontrolled vs. energy control of a Non-DS with different number of optimal general 

controller N as in Eq.(6) 

3.0 DYNAMIC ELECTROMECHANICAL RESPONSE OF A PIEZOELECTRIC SHUNT 

DAMPER ON A RANDOMIZED THIN PLATE 

 

To derive the equation of motion for a thin plate attached with a PZT patch shunt damper, the work 

in [14] is referred. Hagood and his co-worker showed how to use the constitutive equation for PZT 

material to obtain the general equation for a PZT in terms of the external current input and applied 

voltage. Rearranging the terms, the following is obtained:  

 

[
𝐼

𝜎𝑝𝑧𝑡
] = [

𝑌𝐸𝐿 𝑠𝐴𝑒
−𝑒𝑡𝑡𝑝

−1 𝑐𝐸 ] [
𝑉
𝑆

] 
(7) 

𝑌𝐸𝐿 = 𝑌𝑃𝑍𝑇
𝐷 + 𝑌𝑠ℎ (8) 

 

 

where I is the electric current, V is the electric voltage, A is the surface area perpendicular to the 

electrical field (diagonal matrix), 𝑡𝑝 is the thickness of the patch, 𝑌𝐸𝐿 is the electrical admittance 

and 𝑌𝑃𝑍𝑇
𝐷 = 𝑠𝐶𝑝𝑠

𝑠 . The stress expression is updated as: 

 

𝜎𝑝𝑧𝑡  = [𝑐𝐸 + 𝑒𝑡�̅�𝐸𝐿(𝜀𝑆)−1𝑒]𝑆 − [𝑒𝑡𝑡𝑝
−1𝑍𝐸𝐿]𝐼 (9) 

 And the new modulus of elasticity for a shunted PZT patch is defined as: 

 

𝑐𝑠ℎ𝑢𝑛𝑡 = [𝑐𝐸 + 𝑒𝑡�̅�𝐸𝐿(𝜀𝑆)−1𝑒] (10) 

where the matrix of non-dimensional electrical impedance is: 

 

�̅�𝐸𝐿 = 𝑍𝐸𝐿(𝑍𝑃𝑍𝑇
𝐷 )−1 = (𝑠𝐶𝑝𝑠

𝑠 + 𝑌𝑠ℎ)−1𝑠𝐶𝑝𝑠
𝑠  

�̅�𝐸𝐿 = 1 is for open circuit condition 

 (11) 

 

The total equation of motion for a thin plate attached with a PZT patch connected to a shunt circuit, 

𝑍𝑠ℎ(𝑠) becomes: 

 

−𝜔2(𝑀𝑝𝑙𝑎𝑡𝑒 + 𝑀𝑝𝑧𝑡 + 𝑀𝑝𝑡𝑚𝑎𝑠𝑠)𝑊𝑚𝑛,𝑠 + (𝐾𝑝𝑙𝑎𝑡𝑒 + 𝐾𝑝𝑧𝑡 + 𝛤𝑇�̅�𝐸𝐿𝜀𝑆−1
𝛤) 𝑊𝑚𝑛,𝑠

= 𝛤𝑍𝐸𝐿𝐼(𝜔) + 𝜙𝑓𝐹𝑖 

 

 

 

(12) 

Solving for 𝑊𝑚𝑛,𝑠 yields 

 

𝑊𝑚𝑛,𝑠 =  ∆𝑠
−1𝛤𝑍𝐸𝐿𝐼(𝜔) + ∆𝑠

−1𝜙𝑓𝐹𝑖(𝜔) (13) 

  

where ∆𝑠(ω) is expressed as: 

 

∆𝑠(𝜔) = −𝜔2(𝑀𝑝𝑙𝑎𝑡𝑒 + 𝑀𝑝𝑧𝑡 + 𝑀𝑝𝑡𝑚𝑎𝑠𝑠) + (𝐾𝑝𝑙𝑎𝑡𝑒 + 𝐾𝑝𝑧𝑡 + 𝛤𝑇�̅�𝐸𝐿𝜀𝑆−1
𝛤) (14) 

 

Since a simply-supported plate is used, the deflection of the plate during vibration can be assumed 

as the double series: 



 

𝑤(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝑊𝑚𝑛(𝑡)

𝑛𝑚

𝜙𝑚𝑛      

𝜙𝑚𝑛 = 𝑠𝑖𝑛
𝑚𝜋𝑥

𝐿𝑥
𝑠𝑖𝑛

𝑛𝜋𝑦

𝐿𝑦
 

(15) 

 

 

(16) 

 

The finite energy model of the plate-patch system can be written as: 

 

𝐸𝑓𝑖𝑛 =
1

2
𝑊𝑚𝑛,𝑠

𝑇 𝐾𝑝𝑙𝑎𝑡𝑒𝑊𝑚𝑛,𝑠 

 

(17) 

 

By neglecting the mass and stiffness of the PZT patch shunt damper, the mechanical dynamic 

stiffness matrix of deterministic part of the system in Figure 2 can be written as: 

𝐷𝑑,𝑃𝑆𝐷 = 𝑗𝜔𝛤𝑇𝜑𝑀𝑙𝑖𝑛𝑒

−1 𝑍𝑒𝑙 𝜑
�̇�𝑙𝑖𝑛𝑒

−1 𝛤  (18) 

 

 

 

Figure 4: Physical model of a shunted PZT patch and its network analog 

 

 

The term 𝛤  is the electromechanical coupling matrix, 𝜑𝑀𝑙𝑖𝑛𝑒
 is the shape function for line moment 

along the edges of the patch for line connection, 𝜑�̇�𝑙𝑖𝑛𝑒
 is the shape function for angular velocity 

along the edges of the patch for line connection, and 𝑍𝑒𝑙 is the electrical representation of the PZT 

shunt damper on the Non-DS, that is the electrical shunt impedance parallel with inherent 

capacitance impedance of the patch, 𝑍𝑠ℎ||𝑍𝐶𝑝 or: 

 

𝑍𝑒𝑙 =
𝑍𝑠ℎ

1 + 𝑍𝑠ℎ𝐶𝑝
 

(19) 

 

 

The main interest is to design the shunt circuit impedance, 𝑍𝑠ℎ, hence, solving for 𝑍𝑠ℎ in terms of 

direct dynamic stiffness, �̅�𝑑𝑖𝑟 = �̅�𝑅𝑒𝑑𝑖𝑟 + 𝑗�̅�𝐼𝑚𝑑𝑖𝑟 and letting  𝑋𝐶𝑝 = −
1

𝜔𝐶𝑝
, the following is 

obtained: 

 

𝑍𝑠ℎ =
𝜔𝑋𝐶𝑝

2�̅�𝐼𝑚𝑑𝑖𝑟

�̅�𝐼𝑚𝑑𝑖𝑟
2

+ (−�̅�𝑅𝑒𝑑𝑖𝑟 − 𝜔𝑋𝐶𝑝)2
− 𝑗

�̅�𝐼𝑚𝑑𝑖𝑟
2

𝑋𝐶𝑝 + 𝑋𝐶𝑝�̅�𝑅𝑒𝑑𝑖𝑟(�̅�𝑅𝑒𝑑𝑖𝑟 + 𝜔𝑋𝐶𝑝)

�̅�𝐼𝑚𝑑𝑖𝑟
2

+ (−�̅�𝑅𝑒𝑑𝑖𝑟 − 𝜔𝑋𝐶𝑝)2
 

 

 

(20) 
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The bar sign in �̅�𝑑𝑖𝑟 signifies the equivalent electrical dynamic stiffness matrix, converted from 

its mechanical dynamic stiffness matrix, 𝐷𝑑𝑖𝑟 i.e.: 

 

�̅�𝑑𝑖𝑟 = 𝜑𝑀𝑙𝑖𝑛𝑒
𝛤−𝑇𝐷𝑑𝑖𝑟𝛤−1𝜑�̇�𝑙𝑖𝑛𝑒

 (21) 

 

Using conditions in Eqns. (4) and (5) to obtain maximum energy dissipation at the deterministic 

controller and substituting in terms of infinite mechanical impedance will produce the following 

expressions:  

𝑍𝑠ℎ =
𝑋𝐶𝑝

2�̅�𝑅𝑒∞

�̅�𝑅𝑒∞
2

+ (�̅�𝐼𝑚∞ + 𝑋𝐶𝑝)2
− 𝑗

�̅�𝑅𝑒∞
2

𝑋𝐶𝑝 + 𝑋𝐶𝑝�̅�𝐼𝑚∞(�̅�𝐼𝑚∞ + 𝑋𝐶𝑝)

�̅�𝑅𝑒∞
2

+ (�̅�𝐼𝑚∞ + 𝑋𝐶𝑝)2
 

 
(22) 

 

Eq. (22) is therefore the optimal impedance for shunt circuit of the PZT shunt damper on a Non-

DS in order to maximize energy dissipation which is the complex conjugate of its inherent 

capacitance, 𝑋𝐶𝑝 parallel with mechanical-converted to-electrical impedance ‘faced’ by the Non-

DS at the junction, �̅�∞. The derivation of �̅�∞ will be shown in the following subsection. 

 

 

3.0 DERIVATION OF EFFECTIVE LINE MOMENT MOBILITY ON INFINITE THIN 

PLATE 

 

3.1 Introduction 

 

The concept of surface mobilities have been introduced and derived throughout the years to better 

approximate power transmission between contact region of source and receiver. In classical 

studies, the connection between the isolator and host structure is assumed to be point-like with 

assumption that the excitation area are less than approximately one-tenth of a wavelength [15, 16]. 

For obvious reason, this assumption is not accurate for PZT patch transducers in which the 

connection area generally has dimensions comparable to the governing wavelength.  Hammer and 

Petersson in [17] introduced the concept of strip mobility to investigate power transmission to a 

thin plate excited by transverse strip excitation. Later, Norwood et al. [15] have developed the 

concept of surface mobility on circular contact area using time-averaged input power and effective 

mobility. The work was extended to square-shaped contact area by Li et al. [18] and Dai et al. [19] 

using a discretized model to find the effective point mobility and corresponding surface mobility. 

 

3.2 Infinite mobilities model 

  

In this paper, a multi-point connection model is employed through integration method in order to 

determine effective line mobility of an infinite thin plate excited by line moments induced by a 

PZT patch actuator termed as effective line moment mobility. The PZT patch is assumed to generate 

purely line moments at each of its edges. To acquire the effective line moment mobility, we must 

first derive the effective point moment mobility; that is the resulting angular velocity at one point 

on the plate by excitation moments from all connection points. Work by Ljunggeren in [20] had 

derived effective point mobility from expressions for point-excited fields where a source in the 

form of a force applied along infinite line can be regarded as infinite number of point forces. 

Reasonably, one can acquire effective point moment mobility generated by a finite line moment 



on an infinite thin plate by following the same principle i.e. doing a definite integration of the 

angular displacement due to a point moment along the length of the line moment.  

  

 The angular displacement at position (r,α), in response to a couple of point moment  

with orientation u which acts on a rigid indenter fixed to the plate is given by [16] as: 

 

𝜃𝑢
′(𝑟, 𝛼) = (

𝑀𝑢

𝑗𝜔
)

𝜔

8𝐷
{𝑠𝑖𝑛(𝛼 − 𝛽𝑝) 𝑠𝑖𝑛(𝛼 − 𝛽) [(𝐻0

(2)(𝑘𝐵𝑟) − 𝑗
2

𝜋
𝐾0(𝑘𝐵𝑟))

−
1

𝑘𝐵𝑟
(𝐻1

(2)(𝑘𝐵𝑟) − 𝑗
2

𝜋
𝐾1(𝑘𝐵𝑟))]

+
𝑐𝑜𝑠(𝛼 − 𝛽𝑝) 𝑐𝑜𝑠(𝛼 − 𝛽)

𝑘𝐵𝑟
(𝐻1

(2)(𝑘𝐵𝑟) − 𝑗
2

𝜋
𝐾1(𝑘𝐵𝑟))} 

 

 

 

 

 

(23) 

 

 

where 𝐻𝑖
(2)(𝑘𝐵𝑟) is the second kind of Hankel function of the ith order, 𝐾𝑖(𝑘𝐵𝑟) is the second kind 

of modified Bessel function of the ith order, 𝑘𝐵 = √
𝜔2𝜌ℎ

𝐷

4
  is the bending wavenumber, r is distance 

between force applied and velocity measured, 𝛽 is the angle between x-axis and moment arm, 𝑀𝑢 

and 𝛼 is the angle between x-axis and the radius line that connects point (𝑥1, 𝑦1) and (𝑥2, 𝑦2). The 

angular displacement at a point resulting from line moment excitation with length b-a can be taken 

as: 

𝜃𝑢 = ∫ 𝜃𝑢
′(𝑟)𝑑𝑟

𝑏

𝑎

 
 
(24) 

 

where a and b are finite numbers which accounts for the length of the line moment and r is the 

distance between the response point and the moment excitation along the line. 

 

𝑟 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 (25) 

 

Since angular velocity is taken at one fixed point (𝑥2, 𝑦2), then the coordinate of the point 

moment will be the variable to be integrated. 

 

 
Figure 5: Sign conventions for resulting angular velocity at point (x2, y2) subjected by a point moment 

excitation at (x1, y1) 

 

 

The effective point moment mobility, 𝑌𝑖
𝑒 for the infinite thin plate at point i on the line moment is 

therefore: 



𝑌𝑖
𝑒,∞ =

𝑗𝜔𝜃𝑖
𝑢

𝑀𝑖
𝑢 =

𝑗𝜔

𝑀𝑖
𝑢 ∫ 𝜃𝑢

′(𝑟)𝑑𝑟
𝑏

𝑎

     
 

(26) 

 

where 𝑀𝑖
𝑢, is the excitation moment at ith connection point. Extending the same method to an 

infinite plate attached with a PZT patch actuator and considering pure line moments are induced 

at the edges as depicted in Figure 6, the effective point moment mobility at point (𝑥θ̇x1
, 𝑦θ̇x1

) can 

be evaluated by considering the line moments of the PZT patch separately. 

 

 Assuming the moment excitation is uniform along the line, the effective line moment 

mobility, 𝑌∞
𝑒𝑓𝑓

 can be obtained as summation of 𝑌𝑖
𝑒 for all connection points. In this case, the 

connection point is assumed to be along the length of the edges of the PZT patch or can be simply 

put as integration along the patch length in x and y direction: 

 

𝑌∞
𝑒𝑓𝑓

= ∫ 𝑌𝑖
𝑒

𝑢

𝑑𝑢 = ∫
𝑗𝜔𝜃𝑖

𝑢

𝑀𝑖
𝑢

𝑢

𝑑𝑢 
 
(27) 

 

Essentially, 𝑌∞
𝑒𝑓𝑓

is the inverse of mechanical impedance as seen by the Non-DS by the line 

moments of the patch, 𝑍∞. Since the average mobility of a randomized thin plate can be well-

approximated to be the mobility of an infinite thin plate, the solutions for Eq. (27) are obtained 

numerically using computational software and will be compared with its finite model for 

verification. 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 6: Induced line moments and resulting angular velocity, θ̇x1 on the PZT patch 

 

 

  

 

 

 
 

 

 

 

 

Figure 7: Illustration of effective point moment mobility at one point on line x1 (LEFT), effective line 

moment mobility of the infinite thin plate (RIGHT)  
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3.3 Finite mobilities model 
 

The finite model for effective line moment mobility on a randomized thin plate can be written as: 

 

𝑌𝑓𝑖𝑛
𝑒𝑓𝑓

= ∫ 𝑌𝑖
𝑒,𝑓𝑖𝑛

𝑢

𝑑𝑢 = ∫
�̇�𝑢

𝑖

𝑀𝑝𝑧𝑡,𝑢
𝑖

𝑢

𝑑𝑢 

= ∫ [(𝑌�̇�𝑢
𝑖 ,𝑀𝑝𝑧𝑡,𝑥1

∗ 𝑀𝑝𝑧𝑡,𝑥1 − 𝑌�̇�𝑢
𝑖 ,𝑀𝑝𝑧𝑡,𝑥2

∗ 𝑀𝑝𝑧𝑡,𝑥2)
𝑢

 

+(𝑌�̇�𝑢
𝑖 ,𝑀𝑝𝑧𝑡,𝑦1

∗ 𝑀𝑝𝑧𝑡,𝑦1 − 𝑌�̇�𝑢
𝑖 ,𝑀𝑝𝑧𝑡,𝑦2

∗ 𝑀𝑝𝑧𝑡,𝑦2)]𝑑𝑢/𝑀𝑝𝑧𝑡,𝑢
𝑖  

 

 

 

 

 

(28) 

Assuming the moment magnitude is uniform along the line, Eq. (28) is simplified to be: 

𝑌𝑓𝑖𝑛
𝑒𝑓𝑓

= ∫ (𝑌�̇�𝑢
𝑖 ,𝑀𝑝𝑧𝑡,𝑥1

𝑥𝑝2

𝑥𝑝1

+ 𝑌�̇�𝑢
𝑖 𝑀𝑝𝑧𝑡,𝑥2

)𝑑𝑥 + ∫ (𝑌�̇�𝑢
𝑖 ,𝑀𝑝𝑧𝑡,𝑦1

𝑦𝑝2

𝑦𝑝1

+ 𝑌�̇�𝑢
𝑖 ,𝑀𝑝𝑧𝑡,𝑦2

)𝑑𝑦 
 
(29) 

where, 
 

𝑌�̇�𝑥,𝑦𝑀𝑝𝑧𝑡,𝑥1
=

�̇�𝑥,𝑦

𝑀𝑝𝑧𝑡,𝑥1

= 𝑗𝜔 ∑ ∑
 𝛹𝑚𝑛

𝑥,𝑦
𝜗𝑚,𝑛

𝑥1,𝑦

−𝜔2𝑀𝑚𝑛 + 𝐾𝐶,𝑚𝑛

∞

𝑛=1

∞

𝑚=1

 
 

(30) 

𝑌�̇�𝑥,𝑦𝑀𝑝𝑧𝑡,𝑥2
=

�̇�𝑥,𝑦

𝑀𝑝𝑧𝑡,𝑥2

= 𝑗𝜔 ∑ ∑
 𝛹𝑚𝑛

𝑥,𝑦
𝜗𝑚,𝑛

𝑥2,𝑦

−𝜔2𝑀𝑚𝑛 + 𝐾𝐶,𝑚𝑛

∞

𝑛=1

∞

𝑚=1

 
 

(31) 

𝑌�̇�𝑥,𝑦𝑀𝑝𝑧𝑡,𝑦1
=

�̇�𝑥,𝑦

𝑀𝑝𝑧𝑡,𝑦1

= 𝑗𝜔 ∑ ∑
 𝛹𝑚𝑛

𝑥,𝑦
𝜗𝑚,𝑛

𝑥,𝑦1

−𝜔2𝑀𝑚𝑛 + 𝐾𝐶,𝑚𝑛

∞

𝑛=1

∞

𝑚=1

 
 

(32) 

𝑌�̇�𝑥,𝑦𝑀𝑝𝑧𝑡,𝑦1
=

�̇�𝑥,𝑦

𝑀𝑝𝑧𝑡,𝑦2

= 𝑗𝜔 ∑ ∑
 𝛹𝑚𝑛

𝑥,𝑦
𝜗𝑚,𝑛

𝑥,𝑦2

−𝜔2𝑀𝑚𝑛 + 𝐾𝐶,𝑚𝑛

∞

𝑛=1

∞

𝑚=1

 
 

(33) 

 

The term 𝛹𝑚𝑛
𝑥,𝑦

 is the first derivative of 𝜙𝑚𝑛 with reference to x and y respectively i.e. the shape 

function for angular displacement: 

𝛹𝑚𝑛
𝑥,𝑦

= − 𝑠𝑖𝑛(𝛽𝑝)
𝜕𝜙𝑚𝑛(𝑥, 𝑦)

𝜕𝑥
+ 𝑐𝑜𝑠(𝛽𝑝)

𝜕𝜙𝑚𝑛(𝑥, 𝑦)

𝜕𝑦
 

 
(34) 

  

𝛽𝑝 is the orientation angle of the angular displacement on the plate. The terms 𝜗𝑚,𝑛
𝑥1,𝑦

, 𝜗𝑚,𝑛
𝑥2,𝑦

, 𝜗𝑚,𝑛
𝑥,𝑦1

 

and 𝜗𝑚,𝑛
𝑥,𝑦2

are the shape functions for line moments at each of the edge of the patch which can be 

combined by taking 𝜗𝑚,𝑛
𝑥,𝑦

 as the total shape function of the line moment at each of the PZT edges 

thru the following relationship: 

 

𝜗𝑚𝑛
𝑥,𝑦

= (𝜗𝑚,𝑛
𝑥1,𝑦

− 𝜗𝑚,𝑛
𝑥2,𝑦

) + (𝜗𝑚,𝑛
𝑥,𝑦1

− 𝜗𝑚,𝑛
𝑥,𝑦2

) 

= [
𝑛

𝑚

𝐿𝑥

𝐿𝑦

+
𝑚

𝑛

𝐿𝑦

𝐿𝑥

] ∗ [𝑐𝑜𝑠 (
𝑚𝜋𝑥𝑐1

𝐿𝑥

) − 𝑐𝑜𝑠 (
𝑚𝜋𝑥𝑐2

𝐿𝑥

)] [𝑐𝑜𝑠 (
𝑛𝜋𝑦𝑐1

𝐿𝑦

) − 𝑐𝑜𝑠 (
𝑛𝜋𝑦𝑐2

𝐿𝑦

)] 
 
(35) 

 

where 𝑥𝑐1, 𝑥𝑐2, 𝑦𝑐1 and 𝑦𝑐2 are the coordinates of the corner of the patch on the thin plate. The 

conversion terms mentioned in Eq. (21) can now be defined. The term 𝜑𝑀𝑙𝑖𝑛𝑒
 is essentially Eq. 



(34) and the shape function for angular velocity along the edges of the patch for line 

connection, 𝜑
�̇�𝑙𝑖𝑛𝑒

 is: 

 

𝜑�̇�𝑙𝑖𝑛𝑒,𝑘
= 𝜑�̇�𝑥1,𝑎𝑙𝑜𝑛𝑔 𝑝𝑦1

+ 𝜑�̇�𝑥2,𝑎𝑙𝑜𝑛𝑔 𝑝𝑦2
+ 𝜑�̇�𝑦1,𝑎𝑙𝑜𝑛𝑔 𝑝𝑥1

+ 𝜑�̇�𝑦2,𝑎𝑙𝑜𝑛𝑔 𝑝𝑥2
 

= ∫ (𝛹𝑚𝑛
𝑥,𝑦=𝑝𝑦1

𝑝𝑥2

𝑝𝑥1

+ 𝛹𝑚𝑛
𝑥,𝑦=𝑝𝑦2

)𝑑𝑥 + ∫ (𝛹𝑚𝑛
𝑥=𝑝𝑥1,𝑦

𝑝𝑦2

𝑝𝑦1

+ 𝛹𝑚𝑛
𝑥=𝑝𝑥2,𝑦

)𝑑𝑦 

(36) 

 

(37) 

 

The theoretical shunt impedance  𝑍𝑠ℎ,𝑘 in Eq. (22) can be solved accordingly. 

 

3.2 Simulation results 

 

Figure 8 showed the comparison between ensemble average of finite model and the estimation of 

effective line moment mobility, 𝑌∞
𝑒𝑓𝑓

. The estimation curves (dashed black) showed good 

agreement with the average responses for each case. It is important to note that the randomized 

finite plate still exhibit distinct modes at frequency range where MOF<2, therefore the response is 

still strongly-dependent on the location of measurement and boundary conditions of the structure. 

At MOF>2 range, broader peaks can be seen, signifying high modal overlapping of the response. 

At this range, the response is highly sensitive to uncertainties, however boundary condition will 

have no effect and the average response will appear the same regardless of where measurement is 

taken [4] [21]. A smoother average response for the randomized plate can be achieved at this range 

by taking higher number of ensemble for Monte Carlo simulation. 

 

 
Figure 8: Real values (left) and imaginary values (right) of effective line moment mobility of the randomized thin 

plate (grey, 50 ensembles) and its average (solid black) Eq. (29), and the effective line moment mobility for infinite 

thin plate as in Eq. (27) (dashed black) 

 

 From this study, it is shown that the effective line moment mobility of a non-deterministic 

thin plate can be estimated using double integration of the infinite point moment mobility; i.e. 

integrating point moment mobility to get effective point moment mobility, and integrating the 

effective point moment mobility to get effective line moment mobility. It is also essential to 



mention that the analytical model managed to significantly cut computational time to ~40 times 

shorter compared to using the finite method via Monte Carlo simulation which requires high 

number of degrees of freedom for modal summation, and large number of ensembles in order to 

completely model the response for high frequency range. 

 

4.0 IMPLEMENTATION OF ELECTRICAL SHUNT CIRCUIT FOR MAXIMUM 

ENERGY DISSIPATION FROM A NON-DS 

 

4.1 Introduction 

 

This section will discuss the methods used to design and implement the electrical shunt circuit, 𝑍𝑠ℎ 

for maximum power dissipation from a non-deterministic thin plate as derived previously. The 

goal here is to design a realizable PZT shunt damper circuit using the RLC analog circuitry 

components and to show the energy harvesting from fhe non-deterministic thin plate accordingly. 

A benchmark model consists of a randomized thin plate attached with six evenly distributed PZT 

shunt dampers with their optimal shunt circuits is taken for this study. The equivalent circuit is 

designed using MULTISIM 12.0 software and integrated into COMSOL 4.4 using SPICE netlist 

for validation thru virtual experiment.  

 

4.2 Possible circuit design 

 

Intuitively, the number of possible RLC circuit configurations that can resemble both real and 

imaginary parts of impedance  𝑍𝑠ℎ,𝑘 is infinite. For this study, only one is needed for 

implementation purpose. Through heuristic method, one of the simplest circuit configuration found 

is in the following form:   

 

   
Figure 9: One of possible configuration for equivalent circuit to recreate impedance in Eq. (22) 

 

 

𝑍𝑠ℎ,𝑘 =
1

𝑗𝜔𝐶𝑛
|| (

𝑗𝜔𝑅𝑜𝐿𝑜,1

𝑗𝜔𝐿𝑜,1 + 𝑅𝑜
+

1

𝑗𝜔𝐶𝑜
+ 𝑗𝜔𝐿𝑜,2) 

 

(38) 

  

  

𝑍𝑠ℎ, 𝑉𝑠ℎ 

+ 

− 

𝑐𝑜𝑛𝑗(�̅�∞) 

𝑅𝑜 𝐿𝑜,1 

𝐿𝑜,2 

𝐶𝑜 



 

 

 

 

 

 

 

 

 

 
 

 

Figure 10: Illustration of six equally-distributed PZT patches with individual electrical shunt circuits on a non-

deterministic thin plate 

 

 

The circuit configuration in Figure 9 is acquired by keeping in mind that expression 

𝑐𝑜𝑛𝑗(�̅�∞,𝑗||𝑍𝐶𝑝,𝑗) from Eq. (22) is also equivalent to 𝑐𝑜𝑛𝑗(�̅�∞,𝑗)||𝑐𝑜𝑛𝑗(𝑍𝐶𝑝,𝑗). Hence, the capacitor 

𝐶𝑛 is designed individually in one branch to specifically cancel out the inherent capacitance of the 

PZT patch by making it as the complex conjugate of 𝐶𝑝. By doing this, only the value of 𝐶𝑛 needs 

to be modified when different PZT patch is used without having to change the values of the other 

circuit components 𝑅𝑜, 𝐿𝑜,1, 𝐶𝑜 and 𝐿𝑜,2, to recreate 𝑐𝑜𝑛𝑗(�̅�∞). The value of 𝐶𝑛 needs to be negative 

for it to be complex conjugate of 𝐶𝑝, therefore negative capacitance method will be employed. 

According to work by Moheimani and his co-workers, a negative capacitance 2-5% greater than 

the PZT capacitance will provide good damping performance with acceptable robustness to small 

changes in environmental temperature, and also to ensure stability [8]. Therefore, the impedance 

of 𝐶𝑛 is taken to be 2% larger than the PZT capacitance i.e. 𝑍𝐶𝑛 = −1/(𝑗𝜔 ∗ 1.02 ∗ 𝐶𝑝). 

 

 The focus now is to design the circuit branch for 𝑐𝑜𝑛𝑗(�̅�∞,𝑘). By utilizing the MATLAB 

function lsqnonlin for optimization routine, the values for 𝑅𝑜, 𝐿𝑜,1, 𝐶𝑜 and 𝐿𝑜,2 arranged in circuit 

shown in Figure 9 can be determined in order to get the best curve that resembles 𝑐𝑜𝑛𝑗(�̅�∞). Since 

the interest of this research is at frequencies where MOF>2, the curve optimization is performed 

starting from frequency 190Hz and above. Table 1 shows the values for circuit components for all 

six PZT shunt dampers resulting from the optimization, assuming identical patches are used. 

 

 
Table 1: Values of electronic components for shunt circuit in Figure 10 

 P1 P2 P3 P4 P5 P6 

𝐑𝐨 (kΩ) 2.755 4.512 2.795 4.584 2.755 4.419 

𝐋𝐨,𝟏 (H) 3.215 4.784 3.122 4.490 3.225 4.902 

𝐂𝐨 (nF) -98.02 -61.11 -97.39 -60.69 -97.96 -60.69 

𝐋𝐨,𝟐 (H) -0.1645 -0.2695 -0.1669 -0.2752 -0.1645 -0.2645 

𝐂𝐧 (nF) -92.68 

 

Figure 11 illustrates the total circuit impedance built using the components tabulated in Table 1 

versus the theoretical impedance shown in Eq. (22). 
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Figure 11: Comparison of real and imaginary values of shunt circuit impedance; theoretical using Eq. (22) (dashed), 

designed using configuration in Figure 9 and component values from Table 1 (solid)  
 

 

From Table 1, negative values for capacitor 𝐶𝑜  and inductor 𝐿𝑜,2  are needed and since passive 

electronic components cannot realize negative values, the concept of negative impedance 

converter will be employed. Negative impedance converter is a one-port non-inverting op-amp 

circuit using at least three electronic components to produce a negative impedance 𝑍𝑖𝑛 as seen by 

the source: 

 



 
Figure 12: A negative impedance converter employing non-inverting op-amp 

 

The op-amp output voltage is:  

𝑉𝑜𝑝 = 𝑉𝑆 (1 +
𝑅2

𝑅1
) 

 

(39) 

 

The current going from the op-amp output through component with impedance 𝑍𝑛 toward the 

source 𝑉𝑆 is −𝐼𝑆: 

−𝐼𝑆 =
𝑉𝑜𝑝 − 𝑉𝑆

𝑍𝑛
= 𝑉𝑆

𝑅2
𝑅1

𝑍𝑛
 

 

(40) 
 

Therefore, the NIC serves its purpose where the impedance as seen by the source can be written 

as: 

𝑍𝑖𝑛 =
𝑉𝑆

−𝐼𝑆
= −𝑍𝑛

𝑅1

𝑅2
 

 

(41) 
 

The negative impedance 𝑍𝑛can be resistors, capacitors, inductors or any impedance network of 

interest. Here, 𝑅1 and 𝑅2 act as the multiplier to  −𝑍𝑛 so that the impedance value can be adjusted 

accordingly. Implementing NIC, the circuit configuration in Figure 9 can be further refined to be 

in the form of op-amp networks as follows: 

 

 

 
 

Figure 13: Refined circuit from Figure 9 employing NIC using op-amp network 

 

𝑍𝑛 



 

The term 𝑍𝑖𝑛 in Figure 13 is the total impedance of the circuit network which is the same as shunt 

impedance, 𝑍𝑠ℎ. Op-amp networks labelled as U1 and U2 in the figure are NICs producing the 

following impedances: 

 

𝑍𝑈1 = −(
1

𝑗𝜔𝐶2
+ 𝑗𝜔𝐿1) 

 

 

(42) 

 

𝑍𝑈2 = −
1

𝑗𝜔𝐶1
 

 

(43) 

 

For implementation of electrical circuit in COMSOL 4.4, the op-amps in NIC networks in Figure 

13 needs to be redefined into more primitive circuitry components. Figure 14 shows the schematic 

of the total shunt circuit impedance for the first patch, P1 only, by using the SUBCIRCUIT 

definition to replicate the op-amp. Since the circuit for each PZT shunt dampers on the thin plate 

are independently connected, the other circuits: 𝑍𝑠ℎ2, 𝑍𝑠ℎ3, 𝑍𝑠ℎ4, 𝑍𝑠ℎ5, and 𝑍𝑠ℎ6 are created in 

similar manner by using the circuit components for respective patch, as tabulated in Table 1. The 

shunt circuit for the six PZT shunt dampers can now be implemented into COMSOL 4.4 in terms 

of SPICE netlists for demonstration of Non-DS energy suppression. 

 

 

 
 

Figure 14:  MULTISIM schematic for shunt circuit network for patch 1, 𝑍𝑠ℎ1 using Op-amp subcircuit  

 

 

Figure 15 shows the ratio between open-circuit energy and closed-circuit (with optimal shunt 

circuit) energy of the plate model in COMSOL 4.4. The open-circuit and closed-circuit conditions 

of the plate is achieved by letting current, Q=0 and connecting the terminal of the circuit to the 

SPICE netlist, respectively. From the simulation result, good agreement between the theoretical 

energy curve derived in Eq. (6) with the ensemble average response can be seen especially at range 

MOF>2.  

 



 
Figure 15: Energy ratio 𝐸0/𝐸𝑐𝑜𝑛𝑡 obtained via virtual experiment using COMSOL for 20 ensembles 

 

Therefore, the energy reduction (harvesting) ratio curve (Eq. (6)) can be treated as the maximum 

energy harvesting achievable of a Non-DS when directly connected with optimal controllers.   

 

 

Conclusions 

For conclusions, it is found out that in order to maximize energy dissipation from a Non-DS using 

a PZT shunt damper, the shunt circuit impedance needs to be the complex conjugate of its inherent 

capacitance parallel with electrical-equivalent impedance of its non-deterministic host structure at 

their respective line connection. The impedance is found using the inverse of effective line moment 

mobility of an infinite thin plate, 𝑌∞
𝑒𝑓𝑓

 acquired using double integration of the driving point 

moment mobility of an infinite thin plate. The theoretical estimation managed to significantly cut 

computational time and resource to model mobility of a Non-DS. This work also showed one 

realizable shunt circuit to imitate the theoretical impedance using RLC components which later 

implemented into COMSOL using SPICE netlist to for virtual experiment. The results showed 

good agreement between the ensemble averages with theoretical curve which serves as an envelope 

for the highest energy dissipation attainable from a Non-DS when directly attached with optimal 

controllers. Analysis also showed that by using more PZT shunt dampers, better energy harvesting 

can be achieved however more weight and stiffness is added to the structure which is not usually 

favorable. Therefore, the number of optimal PZT shunt damper used (or generally, number of 

controllers used) and the desired control effect on the Non-DS needs to be compensated.   

 

 

Acknowledgement 

This work was supported by Fundamental Research Grant Scheme (FRGS15-165-0406) from the 

Ministry of Higher Education Malaysia. 
 

 

 

 

Ensemble 
Ensemble average 

Theoretical 

MOF=2 



References  
[1] F. J. Fahy, "Statistical energy analysis: a critical overview," Philosophical Transactions of the Royal Society 

of London. Series A: Physical and Engineering Sciences, vol. 346, pp. 431-447, 1994. 

[2] F. J. Fahy and P. Gardonio, Sound and structural vibration: radiation, transmission and response: Academic 

press, 2007. 

[3] R. S. Langley and A. N. Bercin, "Wave intensity analysis of high frequency vibrations," Philosophical 

Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences, vol. 346, pp. 489-

499, 1994. 

[4] C. Manohar and A. Keane, "Statistics of energy flows in spring-coupled one-dimensional subsystems," 

Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences, 

vol. 346, pp. 525-542, 1994. 

[5] R. S. Langley, "Mid and high-frequency vibration analysis of structures with uncertain properties," in 11th 

International Congress on Sound and Vibration St. Petersburg, Russia, 2004. 

[6] A. G. Muthalif and R. S. Langley, "Active control of high-frequency vibration: Optimisation using the hybrid 

modelling method," Journal of Sound and Vibration, vol. 331, pp. 2969-2983, 2012. 

[7] R. Langley and P. Bremner, "A hybrid method for the vibration analysis of complex structural-acoustic 

systems," The Journal of the Acoustical Society of America, vol. 105, p. 1657, 1999. 

[8] S. R. Moheimani and A. J. Fleming, Piezoelectric transducers for vibration control and damping: Springer, 

2006. 

[9] S. Behrens, A. Fleming, and S. Moheimani, "A broadband controller for shunt piezoelectric damping of 

structural vibration," Smart Materials and Structures, vol. 12, p. 18, 2003. 

[10] P. J. Shorter and R. S. Langley, "On the reciprocity relationship between direct field radiation and diffuse 

reverberant loading," The Journal of the Acoustical Society of America, vol. 117, pp. 85-95, 2005. 

[11] J. Liang and W.-H. Liao, "Impedance modeling and analysis for piezoelectric energy harvesting systems," 

IEEE/ASME Transactions on Mechatronics, vol. 17, pp. 1145-1157, 2012. 

[12] A. Cicirello and R. S. Langley, "Efficient parametric uncertainty analysis within the hybrid Finite 

Element/Statistical Energy Analysis method," Journal of Sound and Vibration, vol. 333, pp. 1698-1717, 

2014. 

[13] L. Benassi and S. Elliott, "The equivalent impedance of power-minimising vibration controllers on plates," 

Journal of Sound and Vibration, vol. 283, pp. 47-67, 2005. 

[14] N. W. Hagood and A. von Flotow, "Damping of structural vibrations with piezoelectric materials and passive 

electrical networks," Journal of Sound and Vibration, vol. 146, pp. 243-268, 1991. 

[15] C. Norwood, H. Williamson, and J. Zhao, "Surface mobility of a circular contact area on an infinite plate," 

Journal of Sound and vibration, vol. 202, pp. 95-108, 1997. 

[16] L. Cremer, M. Heckl, and B. A. Petersson, Structure-borne sound: structural vibrations and sound radiation 

at audio frequencies: Springer, 2005. 

[17] P. Hammer and B. Petersson, "Strip excitation, part I: strip mobility," Journal of Sound and Vibration, vol. 

129, pp. 119-132, 1989. 

[18] Y. Li and J. Lai, "Prediction of surface mobility of a finite plate with uniform force excitation by structural 

intensity," Applied Acoustics, vol. 60, pp. 371-383, 2000. 

[19] J. Dai, J. Lai, Y. Li, and H. Williamson, "Surface mobility over a square contact area of an infinite plate: 

experimental measurements and numerical prediction," Applied Acoustics, vol. 60, pp. 81-93, 2000. 

[20] S. Ljunggren, "Line mobilities of infinite plates," The Journal of the Acoustical Society of America, vol. 86, 

pp. 1419-1431, 1989. 

[21] R. H. Lyon, Statistical energy analysis of dynamical systems: theory and applications: MIT press Cambridge, 

MA, 1975. 

 


