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Abstract 

Motivation: Genome Architecture Mapping (GAM) was recently introduced as a digestion- and liga-

tion-free method to detect chromatin conformation. Orthogonal to existing approaches based on 

chromatin conformation capture (3C), GAM’s ability to capture both inter- and intra-chromosomal 

contacts from low amounts of input data makes it particularly well suited for allele-specific analyses in 

a clinical setting. Allele-specific analyses are powerful tools to investigate the effects of genetic vari-

ants on many cellular phenotypes including chromatin conformation, but require the haplotypes of the 

individuals under study to be known a-priori. So far however, no algorithm exists for haplotype recon-

struction and phasing of genetic variants from GAM data, hindering the allele-specific analysis of 

chromatin contact points in non-model organisms or individuals with unknown haplotypes. 

Results: We present GAMIBHEAR, a tool for accurate haplotype reconstruction from GAM data. 

GAMIBHEAR aggregates allelic co-observation frequencies from GAM data and employs a GAM-

specific probabilistic model of haplotype capture to optimise phasing accuracy. Using a hybrid mouse 

embryonic stem cell line with known haplotype structure as a benchmark dataset, we assess correct-

ness and completeness of the reconstructed haplotypes, and demonstrate the power of GAMIBHEAR 

to infer accurate genome-wide haplotypes from GAM data.  

Availability: GAMIBHEAR is available as an R package under the open source GPL-2 license at 

https://bitbucket.org/schwarzlab/gamibhear  

Maintainer: julia.markowski@mdc-berlin.de 

Supplementary information: Supplementary information is available at Bioinformatics online. 

 

1 Introduction  

Genome Architecture Mapping (GAM) is a novel digestion- and liga-

tion-free experimental technique for assessing the 3D chromatin struc-

ture from sequencing a collection of thin cryosectioned nuclear profiles 

(NuPs) (Beagrie et al., 2017). Chromatin contacts between DNA loci can 

be inferred from the frequency at which loci are captured in the same 

NuP. One advantage of GAM over competing methods, such as Hi-C 

(Lieberman-Aiden et al., 2009), is that GAM only requires several hun-

dreds of cells to obtain high-resolution contact maps (Kempfer and Pom-

bo, 2019; Beagrie et al., 2020; Fiorillo et al., 2020). This makes GAM 

particularly useful for the study of chromatin contacts in rare biological 

materials, such as human biopsies. Recently, there has been increasing 

interest in the allele-specific analysis of chromatin contacts, for which 

haplotyping, i.e. phasing of single nucleotide variants (SNVs) is key 

(Rivera-Mulia et al., 2018; Cavalli et al., 2019), but so far no algorithm 

exists for haplotype reconstruction from GAM data.  

De-novo phasing is traditionally achieved through read-based methods 

such as HapCut, WhatsHap or HapCHAT (Bansal and Bafna, 2008; 

Patterson et al., 2015; Edge et al., 2017; Beretta et al., 2018). In these. 

methods, variants of the Minimum Error Correction (MEC) problem are 

used with varying error distributions and insert lengths (Bansal and 

Bafna, 2008). MEC views the given data (a fragments by SNV sites 

matrix of observed allele states) as potentially erroneous and asks for the 

least invasive way to correct the observations to enable conflict-free 

phasing. The MEC problem is computationally hard under a variety of 
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conditions (Bafna et al., 2005; Cilibrasi et al., 2005). As a heuristic, 

HapCut converts MEC to a maximum cut problem and originally al-

lowed for only single base pair errors (Bansal and Bafna, 2008). Selvaraj 

et al. (2013) later leveraged chromosome territories (Meaburn and 

Misteli, 2007) and extended HapCut to Hi-C data by accommodating Hi-

C specific h-trans errors. H-trans errors are haplotype switch errors that 

occur when a genomic region interacts with another genomic region 

located on the other homologous chromosomal copy (in trans). HapCut2 

now includes population-based statistical phasing (Bansal, 2019) and 

implements a variety of different error models to accommodate different 

sequencing technologies (Edge et al., 2017). 

Alternative formulations to the phasing problem seek to partition the 

observed fragments (Duitama et al., 2010), or the aggregated co-

occurrence frequencies of SNVs (Tourdot and Zhang, 2019), into two 

classes corresponding to the two haplotypes by minimising a measure of 

inconsistency. To facilitate haplotype reconstruction from GAM data, we 

here also use an aggregation step and formulate the problem on co-

occurrence evidence derived from the raw GAM NuPs. This formulation 

is equivalent to finding a ground state to the well-known spin glass sys-

tem from physics, which is equivalent to a maximum cut problem 

(Tourdot and Zhang, 2019). 

The resulting algorithm GAMIBHEAR (GAM-Incidence Based Haplo-

type Estimation And Reconstruction) employs a graph representation of 

the co-occurence of SNV alleles in NuPs for whole-genome phasing of 

genetic variants from GAM data. GAMIBHEAR accounts for the GAM-

specific probabilities in capturing parental chromosomal segments as 

part of the random cryosectioning process. We assess the performance of 

GAMIBHEAR on the hybrid mouse embryonic stem cell line F123 with 

known haplotype structure. Despite the sparsity of GAM data, 

GAMIBHEAR allows for accurate, dense, genome-wide haplotype re-

construction. GAMIBHEAR is available as an efficient R package with 

parallel implementations of the most compute-intensive tasks and is 

available at https://bitbucket.org/schwarzlab/gamibhear. 

 

2 Methods 

2.1 Definitions, problem statement and objective 

Our goal is to reconstruct haplotypes from GAM data. A sequenced 

GAM dataset consists of reads from many nuclear profiles (NuPs). Each 

NuP is the result of random sectioning of the nucleus and captures ultra-

sparse local sequence information, where local refers to genomic loci in 

close proximity in the 3D arrangement of the genome, including but not 

limited to loci proximal in linear distance. Thus, reads from single NuPs 

cover a small proportion of the whole genome with consecutive stretches 

of genomic DNA that reflect chromatin looping in and out of a thin 

nuclear slice (illustrated in Fig. 2B). Our main assumption here is that 

alleles of any two heterozygous SNVs captured in a nuclear slice are 

likely to originate from the same parental copy, and that this likelihood 

decreases with increasing genomic distance between the two SNVs. 

We assume that the set of heterozygous SNVs is given and that the SNV 

alleles have been determined per NuP. Let   be the number of NuPs and 

  be the number of heterozygous SNVs in the genomic region of inter-

est (e.g., a chromosome or chromosome arm; sites with homozygous 

SNVs are ignored). Then the problem input is a ternary       matrix 

  with       if the reference allele is observed in NuP   at SNV site  , 

        if the alternative allele is observed, and       if there is no 

unique observation (e.g. due to lack of coverage or if both alleles are 

observed in the same NuP). 

The goal is to reconstruct the two haplotypes (allele states on the same 

parental copy). Formally, a haplotype is a vector          with 

     if the reference allele is found at site   and       for the alter-

native allele. One of the two haplotypes   determines the other one as 

  . 

The GAM input data in principle contains the information to infer  . 

Consider the relation between SNV sites   and   in NuP  . The two sites 

can be in a “flip” relation, where the alternative (alt) allele (-1) of one 

site is observed with the reference allele (+1) of the other site (product 

           ), and a “stay” relation, where both SNVs show either the 

reference or alternative allele (product          ). 

We thus compute the     evidence matrix        , which con-

tains the accumulated counts of the stay-flip relations summed over all 

NuPs, i.e.         
 
       , such that positive values indicate more 

stay observations (      : ‘stay’ between sites   and  ;            ) 

and negative values indicate more flip observations (      : ‘flip’ 

between sites   and  ). An equal number of observed stays and flips 

leads to zero entries (      ).  

The goal of the haplotype reconstruction algorithms we develop here is 

to solve   using the information contained in  : If       , then we 

should have      , and if       , then         . However, the 

information in   may be conflicting when considering transitivity: Con-

sider three sites       with                  . Thus, decisions 

need to be made on how to resolve conflicting information in the evi-

dence matrix  . 

We formulate the problem as follows: Given the     matrix  , we 

seek           to maximise                    

This formulation encourages    and    to take the same sign if       

and different signs if      . This maximization problem is equivalent 

to finding an exact ground state for a spin glass in physics and is known 

to be NP-hard in general and can be cast as a maximum cut problem on a 

graph induced by   (Tourdot and Zhang 2019). Here we propose heuris-

tic algorithms that make use of known properties of the evidence matrix 

  (potentially proximity-scaled; see below) and evaluate them against a 

dataset with a known correct solution. 

Before we state two such algorithms, let us first relax our notion of what 

we accept as a solution. Above, we defined a (fully resolved) haplotype 

as a vector          with      if the reference allele is found at site 

  and       for the alternative allele. However, the available data may 

not be sufficient to fully resolve the haplotype. Where no phasing infor-

mation is available, we allow partial solutions ("blocks") as follows. Let 

                 be a partition (disjoint union) of         into   

blocks. Then a solution of the GAM haplotype reconstruction problem 

for input matrix   with partition   is a collection of   binary vectors 

                         . Each of the   blocks is solved inde-

pendently, and no statement is made about the connection between these 

blocks. The blocks are often intervals, but may be arbitrary subsets of all 

sites, especially for GAM data. Obviously, solutions with fewer inde-

pendent blocks are more desirable. 

2.2 Haplotype reconstruction algorithms 

2.2.1 Neighbour phasing 

We first consider a baseline phasing strategy that leverages the most 

reliable short-range haplotype information on neighbouring SNVs only 

("neighbour phasing"). In the above notation, we only consider the first 

off-diagonal of  , i.e.,         for        . Essentially, this resolves 

possible conflicting information by ignoring a large fraction of the avail-

able data, and only considering a single path between any two sites   

 :          . The reconstructed haplotype starts (arbitrarily) 

with the reference allele, thus     . Once    is determined, we set 

         sign(         ), i.e. we stay or flip according to the sign of 
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        . In case of a tie or when SNV j and j+1 are never co-observed in 

the same NuP (          ), we start a new independent block where 

      . Solutions produced by neighbour phasing consist of blocks 

that are intervals. The resolved blocks can be expected to be correct with 

high probability, but also short, and therefore of limited use. 

2.2.2 Graph phasing with optional proximity scaling 

We extend the local proximity of SNVs from immediate neighbours to 

larger genomic windows using a graph-based approach (Figure 1). To 

improve computational efficiency each chromosome is divided into 

windows of a fixed number   of SNV sites with half a window size 

overlap. Phasing is carried out on each window independently and re-

sults per window are subsequently reconciled (see below). To process a 

window, we restrict the     input matrix         to the window's 

sites and only consider the reduced     matrix   and the derived 

    evidence matrix        . We systematically evaluated different 

windows sizes in terms of runtime, memory usage and phasing com-

pleteness and accuracy. We settled on   = 20,000 SNVs as the default, as 

it causes only a marginal reduction in accuracy while improving com-

pleteness and drastically reducing computational demands (see Supple-

mentary Note S6). 

As we assume that the reliability of phasing information within a NuP 

decreases with genomic distance, we include an option to scale the in-

formation in   element-wise by a weight matrix        , where 

    depends on the genomic distance     between sites   and  . We use 

a simple exponential decay model, where                   for     

in a certain range            , and       for          and 

      for         . The choice of appropriate parameters   

      and             is discussed below. In the following,   

represents the proximity-scaled evidence matrix (           ). 

At this point, there are four potential reasons for      : First, sites   

and   may never co-occur in any NuP. Second, they may never be con-

sidered in the same window of   sites. Third, their genomic distance may 

be larger than     . Fourth, an equal number of observations of stay and 

flip relations may be encountered between sites  and  .  

The non-zero entries in   induce an undirected weighted graph. Its   

vertices are the sites of the current window. An edge between sites   and 

  exists with weight     if        . Two sites in the same connected 

component of this graph are typically connected by many paths. Con-

sider a single arbitrary path between sites   and  . The number of nega-

tive-weighted edges along the path determines the haplotype assignment: 

if the number is even, then        if it is odd, then         Different 

paths between the two sites can be conflicting in their haplotype assign-

ment. However, if the graph is reduced to a tree (or forest in case of 

more than one connected component), there is a unique path between 

each pair of sites (in the same connected component). Because the abso-

lute values       indicate strength of direct evidence for the relation 

between sites  and  , we compute a maximum spanning tree (MaxST) of 

each connected component based on absolute edge weights       using 

Kruskal's algorithm. Recall that the problem is solved on (potentially 

dense graphs of) windows, so the required running time is     

     for each window. The MaxST approach has the property that the 

resulting path between any two sites   and   maximises the minimum 

weight of the path's edges among all possible paths between   and   (Hu 

1961), so we construct the graph by maximising the weakest evidence 

link between each pair of sites of the window, which appears to be a 

reasonable heuristic for the given problem. The computed MaxST then 

determines the haplotypes (or set of haplotype blocks in case of a forest 

of MaxSTs) for the current window. 

To infer haplotypes across the whole chromosome, the MaxSTs of over-

lapping windows must then be joined into a chromosome-wide graph. 

For this, we join the (overlapping) MaxSTs of all windows into a new 

graph consisting of all   SNV sites as nodes and the union of edges of 

all MaxSTs. Because each node is in at most two MaxSTs, the number of 

edges in the union is bounded by       . In order to solve possible 

disagreements stemming from the results of overlapping windows in this 

sparse graph, we again determine a MaxST (if necessary, on each con-

nected component separately) in           time to obtain a unique 

path between any two connected sites. 

For the output, each connected component defines an independent block. 

The haplotype of the leftmost SNV site    (with smallest genomic coor-

dinate) in each block is arbitrarily set to       , and the other states    

are computed according to the number of negative-weighted edges on the 

unique MaxST path between the first site and  . 

Including phasing information from non-adjacent SNV pairs will im-

prove completeness and yield larger, potentially chromosome-spanning 

haplotype blocks. In the reconstructed haplotypes of the graph phasing 

approach, blocks can be nested. The inclusion of phasing information 

from more distant SNV pairs might compromise the overall accuracy of 

the results, however the proximity scaling is expected to keep the intro-

duction of misleading information to a minimum. 
Figure 1: Schematic overview of the graph phasing algorithm.  

The location of alternative alleles of heterozygous SNVs on the two parental chromo-

somes describes the true haplotypes (top). NuPs 1 - 4 are sparse local samples of the true 

haplotype structure. At heterozygous SNV positions either the alternative (red) or refer-

ence allele (blue) can be observed. In overlapping windows, graphs of co-observed SNVs 

are built over all NuPs. Edges are of either stay (orange) or flip (black) type and edge 

weights correspond to the co-observation frequency (line width) and are optionally 

proximity-scaled. A set of SNVs that is itself not co-observed with other SNVs in the 

same window forms its own connected component in the graph (e.g. SNV 4 and SNV 5 in 

NuP 3, window 1). MaxSTs (forests in case of multiple connected components) are 

calculated per window and combined to yield a sparse but chromosome-spanning graph. 

The MaxST of this sparse graph is used to assign alternative alleles to the final recon-

structed haplotypes (bottom). Connected components in the final MaxST form separate, 

possibly nested haplotype blocks (red/pink). As the leftmost SNV of each separate haplo-

type block is assigned to haplotype 1, SNVs 4 and 5 are correctly phased relative to each 

other (stay relation), but assigned to the wrong haplotype. 

2.3 Performance measures 

To assess the quality of the reconstructed haplotypes we compare 

GAMIBHEAR estimates with the haplotypes of the F123 mouse embry-

onic stem cell (mESC) line obtained from whole-genome sequencing of 

the parental mouse strains (see Supplementary Note S1). The overall 

quality of reconstructed haplotypes depends on both the completeness of 

the reconstructed haplotype blocks as well as the phasing accuracy of the 

SNVs contained. 
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In terms of completeness, we report the total proportion of phased heter-

ozygous SNVs next to the standard S50 (Lo et al., 2011), N50 (Lander et 

al., 2001) and adjusted N50 (AN50; Lo et al., 2011) metrics which give 

an impression of the median size (in SNVs) and span (in bp) of the re-

constructed haplotype blocks. To enable comparisons with previous 

phasing approaches of the F123 cell line (Selvaraj et al., 2013) we report 

the metrics in percent of the phasable variants (number of input variants) 

and phasable genome (range between leftmost SNV and rightmost SNV 

per chromosome, 97.58% of the genome), respectively. 

To evaluate accuracy, we report the Switch Error Rate (SER), defined as 

the proportion of adjacent variant pairs that were phased incorrectly out 

of all phased variant pairs. We also report the adjusted Switch Error Rate 

(adjusted SER) to account for incomplete or fragmented phasing results, 

by penalising unresolved transitions between adjacent variant pairs with 

0.5 switch errors, to account for, on average, a 50% chance of assigning 

the wrong phase. Fragmented phasing occurs when the phasing graph is 

composed of many small components with phasing information within 

but not between components. Additionally, the global haplotype agree-

ment is reported, calculated by direct comparison of the reconstructed 

and true haplotypes (i.e. alt-ref configurations). To be able to relate the 

results to the size of the GAM dataset, we also report the quality of hap-

lotypes reconstructed from incrementally increasing subsets of 100 NuPs 

chosen at random in ten iterations (Figure 3). All performance measures 

are given in averages across all 19 chromosomes. For a more detailed 

description and motivation of the individual metrics please see Supple-

mentary Note S4.  

2.4 GAMIBHEAR implementation 

The presented haplotype reconstruction algorithms are implemented in 

the R package GAMIBHEAR. GAMIBHEAR is open source and freely 

available under the GPL-2 license at  

https://bitbucket.org/schwarzlab/gamibhear.  

3 Results 

3.1 Benchmark dataset  

The F123 mouse embryonic stem cell line was derived from a hybrid F1 

mouse resulting from the cross of the two inbred, homozygous mouse 

strains CAST (Mus musculus castaneus) and J129 (Mus musculus 

domesticus J129). The F1 generation is thus heterozygous at all loci for 

which their parents have different alleles. As the parental mouse strains 

are both fully sequenced, the haplotypes of the F123 cell line were de-

rived from SNV sets called on the parental strains (see Supplementary 

Note S1). Its known haplotype makes the F123 cell line an ideal model 

for benchmarking phasing algorithms. 

Using the novel GAM method, 1281 single NuPs were generated from 

the F123 mESC cell line (available at 4D Nucleome Consortium data 

portal accession number 4DNBSTO156AZ), out of which 1123 passed 

quality control(unique 4DN identifiers provided in Supplementary Data). 

We extracted on average 305,377 reads from 1123 NuPs, covering 

0.171% (± 0.167) of the 18,150,228 heterozygous SNVs per nuclear slice 

(Figure 2A); exemplary data of genomic regions captured in a single 

NuP is shown in Figure 2B. Out of all F123 SNVs, 11,741,055 (64.69%) 

were observed at least once, 7,605,321 SNVs (41.9%) were observed at 

least twice (Figure 2C).  

For more details on F123, the generation of the benchmark haplotypes 

and the data preprocessing see Supplementary Notes S1 - S3. 

 

Figure 2: GAM captures local phasing information:  

A) Histogram of the number of observed SNVs per NuP in the F123 dataset (fraction of all SNVs at top, mean = 0.171%, red line). B) Example of read counts 

supporting the CAST (orange, downwards) and J129 (red, upwards) alleles in a single NuP on chromosome 19, visualising the sparsity of GAM data. Inset de-

picts physical capturing of respective genomic regions in a slice (grey area) by cryosectioning in a GAM experiment. C) Cumulative fraction of SNV observation 

frequencies. 64.69% of SNVs are observed at least once, 41.9% of SNVs are observed at least twice across all NuPs. D) The fraction of correct phasing informa-
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tion decreases exponentially with increasing genomic distance of observed SNV pairs. The fit of the exponential curve to the fraction of correct phasing informa-
tion of SNV pairs with genomic distance between 1 bp and 10 Mb is shown in red. The inset shows the decrease of correct phasing information on a logarithmic 

scale. 

3.2 Exponential proximity scaling 

Our method includes the option of exponentially downweighting evi-

dence information     with increasing genomic distance (see Section 

2.2.2). To validate this assumption and to choose optimal decay parame-

ters, we examined the empirical probability   of two alleles coming from 

the same haplotype in the F123 data based on their genomic distance   

and fit an exponential function                  using non-linear 

least squares. For this model we only considered pairs of sites within the 

interval            = [1 bp, 10 Mb], where the decay in phasing infor-

mation is most pronounced (Figure 2D). The distance can be individually 

assigned by the user and probabilities 1 and 0 are assumed below 

    and above      respectively. Parameter     then describes the 

co-observation probability at a genomic distance of 1 bp with an expo-

nential decay parameter of               . The simple exponential 

dependency well describes the empirical distribution (Figure 2D) and 

thus appears to be a good model for the reliability of the raw evidence as 

a function of genomic distance. In the following, we evaluate our graph 

phasing approach with and without proximity scaling. 

3.3 Performance of GAMIBHEAR  

3.3.1 High quality haplotype reconstruction from GAM data  

We evaluated the quality of the haplotypes reconstructed with 

GAMIBHEAR in terms of completeness and accuracy by comparing 

results to the true haplotypes of the F123 cell line (Table 1). 

Neighbour phasing performance. The neighbour phasing algorithm 

was built to exploit the most reliable short-range haplotype information 

of neighbouring co-observed SNVs, at the expense of completeness. This 

conservative algorithm shows the lowest switch error rate (SER) of the 

reconstructed haplotypes (0.76%, Figure 3A), demonstrating strong local 

phasing information in GAM data. However, although over 95% of input 

SNVs were phased into adjacent haplotype blocks of at least size 2, the 

number of independent blocks is high (on average 79,965 blocks per 

chromosome), their size is small (Figure 3C) and thus only 83% of pos-

sible transitions between neighbouring SNVs could be phased (Figure 

3D). Median haplotype blocks connect less than 11 SNVs (S50, 

0.00188% of the phasable SNVs) and span less than 742 bp (N50, 

0.00063% of the phasable chromosome), showing drastically low com-

 

Figure 3: Quality of reconstructed haplotypes after neighbour phasing (orange), basic graph phasing (light blue) and proximity-scaled graph phasing (blue) for 

an increasing number of NuPs. Lines show the median value, shaded areas indicate the interquartile range of results across all chromosomes. A) Local accuracy 

(SER): In graph phasing, SER decreases with an increasing number of NuPs as more information becomes available. Neighbour phasing in contrast shows a low 

SER independent of sample size (dashed orange line) due to a small number of phased transitions which are accurate. Adjusted SER penalises unphased transi-

tions and shows this difference: neighbour phasing performance (solid orange line) is substantially lower, graph phasing performance is unchanged (SER and 
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adjusted SER lines overlap). Proximity-scaled graph phasing shows lowest adjusted SER overall. B) Global Accuracy (haplotype agreement) improves with 

increasing sample size and proximity scaling further improves performance. C) Completeness (AN50): Graph phasing reconstructs dense, nested chromosome-

spanning blocks even for low sample sizes (top), independent of proximity scaling. Neighbour phasing yields a large amount of small unconnected adjacent 

blocks, which are never nested, thus N50=AN50 (bottom). D) Completeness (% transitions phased): Percentage of transitions phased relative to all known 
SNVs (red) and all SNVs observed at least once in the full dataset (black, see Figure 2C). The number of observed SNVs and thus phasable transitions increases 

with increasing number of NuPs (dashed black line). Graph phasing predicts 99.96%, neighbour phasing predicts 83.02% of observed transitions. 

pleteness. This low completeness is evident in the stark contrast between 

SER (0.76%) and adjusted SER (6.61%), confirming that neighbour-

phasing yields small locally constrained but accurate phasing blocks 

(Figure 3A). These locally accurate haplotypes confirm the presence of a 

strong local phasing signal in GAM data, but do not yield accurate phas-

ing genome-wide. This algorithm shows the lowest global haplotype 

accuracy of 85.87%.  

Graph phasing performance. The additional higher-order phasing 

information considered by the graph phasing algorithm substantially 

improves the completeness of the reconstructed haplotypes independent 

of proximity scaling (Figure 3C). Over 99.9% of input SNVs were 

phased into haplotype blocks, over 99.9% of them into one main haplo-

type block (S50), spanning more than 99.99% of the phasable genome 

(N50) and phasing 99.96% of transitions (Figure 3D). Adjusting the span 

of the largest block by the fraction of SNVs phased within yields an 

AN50 value of over 99.9% (Figure 3C). The graph phasing algorithm 

thus reconstructs dense chromosome-spanning haplotypes. 

Considering larger SNV windows increases the risk of integrating incor-

rect phasing information from co-observed SNV pairs located on homol-

ogous chromosome copies. Consequently, the accuracy of reconstructed 

haplotypes is lower compared to strict neighbour phasing. The basic 

graph phasing approach yielded results with ~5% SER (Figure 3A) and 

over 95% global accuracy (Figure 3B). To improve accuracy while 

maintaining completeness we introduced proximity scaling and success-

fully reduced SER to ~ 2% and increased global accuracy to ~ 98% 

(Figure 3 A and B) with the exception of a few outliers (Supplementary 

Figure 2). Those outliers are caused by a single switch error occurring 

within a haplotype block, which inverts the assignment of subsequent 

alleles, formally reducing global accuracy while maintaining SER and 

high, reliable local accuracy. Since the graph phasing resulted in highly 

complete haplotypes with a very low number of haplotypes blocks (on 

average 76 blocks per chromosome), the SER adjusted for unphased 

transitions only showed negligible changes compared to the unadjusted 

SER (adjusted SER: unscaled: 5.43%, scaled: 2.10%). 

In conclusion, proximity-scaled graph phasing shows best performance 

overall and reconstructs accurate, chromosome-spanning haplotypes. 

 

Table 1.  Comparison of quality measures for the neighbour phasing algo-

rithm, basic and proximity-scaled graph phasing algorithm for the full dataset. 

The mean of per-chromosome values is reported, standard deviation in brack-

ets. Percent phased SNVs and transitions are reported in relation to observed 

SNVs. For a per chromosome report of accuracy results see Supplementary 

Note S5. 
 

 Neighbour phasing Graph phasing  

(basic) 

Graph phasing  

(proximity-scaled) 

% phased SNVs  95.94% (± 0.25) 99.97% (± 0.004) 

% phased transitions  83.02% (± 0.575) 99.96% (± 0.00602) 

S50 absolute 10.84 SNVs (± 0.5) 617,561.5 SNVs (± 149,018) 

S50 percent 0.00188% (± 0.00062) 99.94% (± 0.010) 

N50 absolute 741.74 bp (± 40.54) 126,454,374 bp (± 32,645,641) 

N50 percent 0.00063% (± 0.00021) > 99.99% (± 0.00003) 

AN50 absolute 741.74 bp (± 40.54) 126,374,367 bp (± 32,623,080) 

AN50 percent 0.00063% (± 0.00021) 99.94% (± 0.010) 

Global accuracy 85.87% (± 3.53) 95.13% (±0.57) 94.28% (±8.45) 

SER 0.76% (±0.13) 5.42% (±0.50) 2.09% (±0.26) 

Adjusted SER 6.608% (±0.18) 5.43% (±0.50) 2.10% (±0.26) 
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3.3.2 Performance at lower SNV density 

To show the effect of SNV density on the quality of haplotype recon-

structions, we subsampled the F123 SNV set ( ~ 8 SNVs per 1kb) to 

resemble human SNV density (~ 1-1.5 SNVs per 1kb, (1000 Genomes 

Project Consortium et al., 2015)) and evaluated the resulting haplotypes 

reconstructed using the best-performing proximity-scaled graph phasing 

algorithm (see Supplementary Note S7). 

GAMIBHEAR reconstructed accurate, dense, chromosome-spanning 

haplotypes: 99.96% of input SNVs were phased, of which 99.95% are 

within the main, chromosome-spanning haplotype block. This block 

spans 100% of the phasable genome (97.56% of the full genome). The 

median global accuracy of 96.64% and the switch error rate of 4.84% 

show that the quality of the reconstructed haplotypes in a subsampled 

dataset is only slightly lower compared to the haplotypes reconstructed 

from the full dataset, indicating that the algorithmic approach is largely 

independent of SNV density and thus applicable to human data. 

GAMIBHEAR thereby showed greatly improved resolution at a slightly 

reduced global accuracy compared to HaploSeq on comparably 

downsampled data (~32% of input SNVs phased; 98.9% global accura-

cy) (Selvaraj et al., 2013) (Supplementary Note S9). 

3.3.3 Time and Memory usage 

Phasing 11,741,055 heterozygous variants from the full 1123 NuP GAM 

dataset took approximately 1.5 hours and 16 GB (largest chromosome 1: 

~ 14 min, 0.9 GB) using the neighbour phasing algorithm, ~ 5 h and 30 

GB using the basic / proximity-scaled graph phasing algorithm (largest 

chromosome 1: ~ 27 min, 26 GB) with default settings on a desktop PC 

with 64GB of RAM without parallelisation. However, computation can 

be carried out in parallel on multiple chromosomes for a further speed 

increase using the “cores” option. Reconstructing haplotypes from the 

dataset subsampled to human SNV density using the best performing 

proximity-scaled graph phasing algorithm took ~ 38 min and 20 GB for 

the whole genome (largest chromosome 1: ~ 3 min, 12 GB). For more 

details see Supplementary Note S6. 

3.4 Comparison with existing methods 

We compare GAMIBHEAR to the haplotype assembly methods 

WhatsHap (wMEC solver) (Patterson et al., 2015) and HapCHAT (k-

constrained MEC solver) (Beretta et al., 2018), both designed for recon-

structing haplotypes from long reads. For this we converted GAM NuPs 

into pseudo-long reads by adapting the ternary input matrix   (see sec-

tion 2.2 and Supplementary Note S8). WhatsHap has a maximum cover-

age threshold of 23 reads which is exceeded in the F123 GAM data on a 

small number (0.0073%) of SNVs. This resulted in the read selection 

heuristic of WhatsHap to select only 69 of 1087 pseudo long reads 

(6.35%), thereby retaining only 11,039 SNVs (1.17% of input SNVs). In 

conclusion, coverage constraints in WhatsHap prevent its direct applica-

tion to GAM data. Recently, HapCHAT was introduced to address this 

shortcoming by merging reads that are likely to originate from the same 

chromosome copy before read selection. In HapCHAT 1087 pseudo long 

reads were thus merged into 691 reads, 63 of which were selected for 

subsequent phasing, covering 604,358 SNVs (64.18% of input SNVs). 

From these, HapCHAT reconstructed a chromosome spanning haplotype 

block, with a global accuracy of 81.36% and an SER of 11.38% (com-

pared to a global accuracy of 98.03% and SER of 1.98% using 

GAMIBHEAR). The MEC cost was reported as 307,734. This shows 

that in addition to the differences in coverage, the unique properties of 

GAM data prevent direct application of long read MEC solvers for phas-

ing. For details see Supplementary Note S8. 

4 Discussion 

The phasing problem has been extensively studied and approaches to 

solve it are typically specific to and optimised for certain experimental 

designs and datatypes, such as Hi-C (Edge et al., 2017) and long reads 

(Patterson et al., 2015, Beretta et al., 2018). Although both GAM and 

Hi-C capture the spatial proximity of SNVs in the nucleus, the coverage 

and error distributions of the GAM cryosectioning process are sufficient-

ly different from those of Hi-C that existing MEC solvers are not directly 

applicable. In Hi-C, phasing information is contained in ligated chimeric 

reads of genomic loci harboring at least two SNVs, which can be very 

distant in linear genomic space but typically from the same chromosomal 

haplotype. In contrast, in GAM, phasing information is contained in 

NuPs, which yield individual short reads of both haplotypes and only 

maintain haplotype fidelity locally. Thus, in contrast to Hi-C, where h-

trans errors remain rare, GAM NuPs frequently switch haplotypes. A Hi-

C dataset furthermore consists of millions of reads, of which only a small 

percentage is useful for phasing as they rarely cover two SNVs or more 

(Giorgetti et al., 2016). In contrast, a GAM experiment has in the order 

of 103 NuPs, but a GAM NuP covers many SNVs (Figure 2B). A single 

NuP therefore contains many long stretches of haplotype-resolved SNVs 

that allow “neighbour phasing”, which is not available with Hi-C and 

which shows that phasing with Hi-C and GAM data are two distinct 

computational problems. 

In addition, SNV coverage in GAM data varies greatly and non-

uniformly, which interferes with MEC solvers for long read data that are 

fixed parameter tractable in the coverage and thus require the maximum 

coverage per SNV to be low (Patterson et al., 2015). To ascertain these 

differences, we tested GAM data on the long-read MEC solvers What-

sHap and HapCHAT. HapCHAT only yielded SERs > 10%, owing to 

differences in the underlying technologies: long reads are not affected by 

haplotype switches but will frequently include single-nucleotide se-

quencing errors; GAM data, however, shows frequent switches in ob-

served haplotypes, affecting all following SNVs. Due to these fundamen-

tally different data characteristics MEC solvers designed for haplotype 

assembly from long reads yield unsatisfying results when employed on 

GAM data. We did not attempt to transform GAM data for use with 

HapCut2, as it has been well known and stated by the authors that the 

performance of HapCut2 strongly depends on the correct error model 

being used and no such model exists for GAM data (Edge et al., 2017). 

The closest comparable dataset was provided by Selvaraj et al. (2013), 

who reconstructed F123 haplotypes using HaploSeq, combining Hi-C 

data with the HapCUT phasing algorithm. The largest chromosome-

spanning blocks from GAMIBHEAR and HaploSeq both span over 

99.99% of the phasable genome. The largest block from GAMIBHEAR 

includes >99.9% of observed variants compared to about 95% of ob-

served variants using HaploSeq, a slight improvement due to the large 

genomic span covered by GAM NuPs. When downsampling the F123 

SNV set to human SNV density, HaploSeq and GAMIBHEAR are still 

able to generate chromosome-spanning, accurate haplotype blocks, how-

ever, only 32% of SNVs are phased in the largest block by HaploSeq, 

while 99.95% of phased SNVs are contained in the largest haplotype 

block by GAMIBHEAR (Supplementary Note S9).  

Although GAMIBHEAR shows high completeness given its input data 

even at low coverage, the sparsity of the GAM data itself hinders overall 

completeness. While in the Hi-C data of Selvaraj et al. (2013) 99.6% of 

variants were covered by at least one read, in the GAM data set only 

64.69 % of variants are captured. While the sparsity of GAM data does 

not challenge the generation of accurate 3D chromatin contact maps 

(Beagrie et al., 2017), advances in the GAM experimental protocol 
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might overcome this drawback in the future to improve phasing results. 

Additionally, incorporation of statistical phasing could expand the recon-

structed haplotypes to uncovered SNVs.  

Our proximity scaling model improves the haplotype reconstruction 

accuracy by taking genomic distances between SNVs into account. The 

observed decline in phasing information with increasing distance be-

tween SNVs is likely due to the formation of highly interacting genomic 

regions and organisational chromatin structures such as self-interacting 

TADs (Mb scale) and higher order metaTADs (Razin et al., 2016; Fraser 

et al., 2015; Ulianov et al., 2016). The MaxST obtained through this 

proximity-scaled weighted graph discards potential noise and assigns 

more importance to more likely co-observations of SNVs within neigh-

bouring genomic regions. This runs the theoretical risk of breaking phas-

ing blocks in situations where the only connecting variants were distant 

in genomic coordinates. In our analysis, no phasing blocks were broken 

due to proximity scaling of edge weights.  

In summary, GAMIBHEAR enables accurate phasing of GAM data with 

average SERs (~2%) comparable to those obtained with Hi-C (~1.4%) 

(Selvaraj et al., 2013; Chaisson et al., 2019). While dedicated experi-

mental techniques such as StrandSeq can yield dramatically lower SERs 

(Chaisson et al., 2019), application of additional experimental techniques 

to resolve haplotypes more accurately is often not warranted or not fea-

sible due to limited material or costs involved. While GAMIBHEAR is 

ultimately intended to be used on human data, no GAM dataset of suffi-

cient size is yet available on human samples. In the meantime, the F123 

cell line is well-suited to accurately measure phasing performance due to 

its known haplotype structure before adapting the algorithm to the char-

acteristics of human genomes. Application of our proximity-scaled graph 

phasing algorithm on F123 GAM data downsampled to human SNV 

density suggests that the reconstruction of haplotypes is suitable and well 

applicable for the use in human data as well. 

5 Conclusion 

Understanding the effect of genetic variation on chromatin conformation 

and gene regulation is a key question in genomics research. Large con-

sortia, such as the 4D Nucleome project (Dekker et al., 2017), are now 

bundling resources to address open questions in this field and thus allele-

specific analyses of chromatin conformation and other sources of ge-

nomic variation are moving increasingly into the spotlight (Cavalli et al., 

2019). The recently established GAM method (Beagrie et al., 2017) 

offers a unique opportunity towards high-resolution allele-specific analy-

ses of chromatin contacts in humans, and GAMIBHEAR provides the 

necessary algorithmic advances towards generating highly accurate, 

chromosome-spanning haplotypes from GAM data on human samples in 

the future. 
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