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RESEARCH ARTICLE Open Access

Evolutionary dynamics and structural
consequences of de novo beneficial
mutations and mutant lineages arising in a
constant environment
Margie Kinnersley1†, Katja Schwartz2†, Dong-Dong Yang3, Gavin Sherlock2* and Frank Rosenzweig1,3*

Abstract

Background: Microbial evolution experiments can be used to study the tempo and dynamics of evolutionary change
in asexual populations, founded from single clones and growing into large populations with multiple clonal lineages.
High-throughput sequencing can be used to catalog de novo mutations as potential targets of selection, determine in
which lineages they arise, and track the fates of those lineages. Here, we describe a long-term experimental evolution
study to identify targets of selection and to determine when, where, and how often those targets are hit.

Results: We experimentally evolved replicate Escherichia coli populations that originated from a mutator/nonsense
suppressor ancestor under glucose limitation for between 300 and 500 generations. Whole-genome, whole-population
sequencing enabled us to catalog 3346 de novo mutations that reached > 1% frequency. We sequenced the genomes
of 96 clones from each population when allelic diversity was greatest in order to establish whether mutations were in
the same or different lineages and to depict lineage dynamics. Operon-specific mutations that enhance glucose uptake
were the first to rise to high frequency, followed by global regulatory mutations. Mutations related to energy
conservation, membrane biogenesis, and mitigating the impact of nonsense mutations, both ancestral and derived,
arose later. New alleles were confined to relatively few loci, with many instances of identical mutations arising
independently in multiple lineages, among and within replicate populations. However, most never exceeded 10% in
frequency and were at a lower frequency at the end of the experiment than at their maxima, indicating clonal
interference. Many alleles mapped to key structures within the proteins that they mutated, providing insight into their
functional consequences.

Conclusions: Overall, we find that when mutational input is increased by an ancestral defect in DNA repair, the
spectrum of high-frequency beneficial mutations in a simple, constant resource-limited environment is narrow,
resulting in extreme parallelism where many adaptive mutations arise but few ever go to fixation.
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Author summary
Microbial evolution experiments open a window on the
tempo and dynamics of evolutionary change in asexual
populations. High-throughput sequencing can be used
to catalog de novo mutations, determine in which line-
ages they arise, and assess allelic interactions by tracking
the fate of those lineages. This approach, adaptive genet-
ics, makes it possible to discover whether clonal interac-
tions are antagonistic or synergistic, and complements
genetic screens of induced deleterious/loss-of-function
mutants. Using glucose-limited chemostats, we carried
out 300–500 generation evolution experiments founded
by an Escherichia coli mutator/nonsense suppressor
strain. Whole-genome, whole-population sequencing en-
abled us to catalog 3346 de novo mutations that reached
> 1% frequency. Mutations enhancing glucose uptake
rose to high frequency first, followed by global regula-
tory changes that modulate growth rate and assimilation
of the limiting resource; later selected mutations favored
energy conservation and/or mitigated pleiotropic effects
of earlier regulatory changes. Several loci were highly
polymorphic, with identical mutations arising independ-
ently in different lineages, both between and within rep-
licate populations. When mutational input is increased
by an ancestral defect in DNA repair but mitigated by a
nonsense suppressor, the number of beneficial mutants
attributable to loss-of-function involves fewer nonsense
mutations relative to missense mutations. Under nutri-
ent limitation, selection is called upon to explore se-
quence space for changes in protein structure that favor,
for example, de-repression of genes and pathways
needed to acquire the limiting nutrient. The net result of
this process is extreme parallelism, where many adaptive
mutations arise within a relatively small set of genes, but
few of those mutations ever become fixed. The distribu-
tion of such alleles in sequence space is useful for adap-
tive genetics-driven studies of protein structure-function
relationships.

Background
Experimental microbial evolution has enlarged our un-
derstanding of the tempo and mode of adaptive change
in asexual populations, as well as how selection, drift,
and historical contingency influence their evolutionary
trajectories. Using high-throughput sequencing, we can
now identify substantial numbers of de novo beneficial
mutations in laboratory populations, determine in which
lineages they arise and the fate of those lineages, and
evaluate how different alleles interact [1–3]. This ap-
proach, adaptive genetics, based on analyzing cohorts of
spontaneous beneficial mutations to determine how
their frequencies fluctuate over time, complements trad-
itional genetic screening of induced deleterious/loss-of-
function mutants (e.g., [4, 5]). Adaptive genetics also

opens up new ways to discover constraints on protein
structure and function and to discern the architecture
and malleability of networks that regulate nutrient sens-
ing and uptake and that coordinate cell division.
Microbial populations were once thought to evolve by

the periodic selection of adaptive clones, each fitter than
its antecedent, replacing one another over successive
generations [6–9]. This model is consistent with Muller
and Haldane’s view of how beneficial mutations spread
in large asexual populations [10–12] governed by com-
petitive exclusion [13]; indeed, periodic selection has
been observed in nosocomial outbreaks [14] and epi-
demics [15], as well as in breast cancer [16] and tumor-
specific T cells [17]. But clonal populations can also ac-
cumulate and retain genetic variation, much of which is
beneficial [18–22]. In fact, whole-genome, whole-
population sequencing has shown that even under sim-
ple laboratory conditions the amount of adaptive genetic
variation arising in microbial populations can be enor-
mous, owing to their large size and to the continuous in-
put of neutral and adaptive mutations [20, 23].
When novel beneficial mutations arise in independent

lineages and these lineages have similar fitness, a ‘Battle
Royale’ ensues, producing clonal interference [18, 20,
24–26]. Clonal interference can also occur within a
broader framework of stable subpopulation structure
[27], especially if lineages come under balancing selec-
tion [28–31] or specialize to exploit niches created by
the culture conditions [29, 32, 33] or by the organisms
themselves [34–36]. Theory indicates that in a resource-
limited environment the likelihood that subpopulations
co-exist depends on the input of the primary resource,
the output of secondary resources, and the relative fit-
ness of clones that can profit from secondary resources
[37]. The ancestral genotype may also be decisive.
Glucose-limited evolution experiments carried out by
Ferenci et al. using one ancestral E. coli K12 derivative
never produced stable subpopulations [38], whereas
those carried out by Adams et al. using another often
did [36, 39]. Adams’ strain was later shown to carry non-
sense mutations in mismatch repair enzyme MutY,
housekeeping and stationary-phase transcription factors
RpoD and RpoS, as well as a tRNA nonsense suppressor.
While an ancestral defect in DNA repair would increase
the descendant population’s mutational load [34, 40], a
nonsense suppressor in that ancestor would likely miti-
gate the effect of any mutation that caused a premature
STOP codon. This genotype could be expected not only
to increase the overall number of mutations, but also the
number of mutations whose beneficial effects can be
traced back to structural changes in regulatory genes, es-
pecially those that encode repressor proteins, giving
insight into the function of those regions whose struc-
ture has been altered.
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To understand the impact that a mutator/suppressor
founder has on the spectrum and fate of new beneficial
mutations and on the dynamics of population structure,
we repeated the classic Adams et al. experiments using
the same ancestral strain and culture conditions [36].
Over the course of up to 500 generations, we monitored,
at 50-generation intervals, the incidence of mutations
that reached at least 1% frequency, identifying both
beneficial and hitchhiking mutations. To determine
which mutations co-occurred within a given lineage, we
sequenced 96 clones from each population at the time
point where we observed the greatest allelic diversity.
We uncovered no evidence for stable subpopulation
structure, but instead observed pervasive clonal interfer-
ence, with only 17 out of 3346 mutations (of which a
few hundred are likely beneficial) going to near fixation
across replicate experiments. The temporal order in
which certain mutations rose to high frequency was
largely predictable, reflecting a high degree of parallelism
among replicates. In general, mutations that enhanced
glucose assimilation arose early, followed by mutations
in global regulators and mutations that either increased
efficiency of limiting resource utilization or mitigated
the deleterious effects of certain earlier mutations. Our
results show that when replicate populations of mutator-
suppressor E. coli evolve under carbon limitation the
number of allelic variants that exceed 1% frequency may
be large, but the number of genes targeted is relatively
few. We further show that in many cases the distribution
of high-value mutations is clustered in regions essential
for gene products to exert their regulatory function.

Results
Experimental design
Evolution experiments were carried out in triplicate
under continuous nutrient limitation using Davis Min-
imal Medium [36], with glucose (0.0125% w/v) as the
sole source of carbon for energy and growth. In addition
to archiving samples as − 80 °C glycerol stocks, experi-
mental populations were also monitored every 10–20
generations for culture purity by microscopy and by
plating cultures onto a lawn of multiple E. coli-specific
bacteriophage, as previously described by [41]. Chemo-
stats (300 mL working volume) were run under aerobic
conditions for 300–500 generations at constant
temperature (30 °C) and at constant dilution rate (D =
0.2 h−1). Under these conditions, steady-state population
density is ~ 108 cells mL−1 and residual glucose concen-
tration is at or below the limit of detection (Add-
itional file 1: Fig. S1). The E. coli strain used to initiate
these experiments, JA122, is distinguished from E. coli
K12 by alleles likely to influence the spectrum of muta-
tions arising during adaptive evolution (Additional file 2:
Table S1 [34];). Among these is a nonsense mutation in

MutY (Leu299*) that results in a mutation rate nearly
30-fold greater than K12 [34], nonsense mutations in
genes that encode stationary-phase sigma factor RpoS
(Gln33*) [42], and ‘housekeeping’ sigma factor RpoD
(Glu26*), as well as a suppressor mutation in the glnX
tRNA known to suppress amber, ochre, and opal muta-
tions (Additional file 2: Table S1) [43].
To identify the mutations that arose during our exper-

iments, we performed whole-genome, whole-population
sequencing every 50 generations on each of the three
chemostat populations. We generated approximately 50
million 2×100bp paired end reads per sample, yielding
coverage of up to ~ 1000x for each time point (library
insert sizes were selected to be short enough such that
forward and reverse reads overlapped, which, while re-
ducing coverage, increases quality; see the “Methods”
section). We used these data to identify mutations that
rose to an allele frequency of ~ 1% or greater. Given an
effective population size of > 1010 and 300–500 genera-
tions of selection, it is highly improbable that any allele
could reach such a frequency by drift alone [29]. We
therefore assume that every mutation we identified had
either come under positive selection or was hitchhiking
along with one that had.

Population sequencing reveals consistent mutation
patterns across independent evolution experiments
Across all samples, 3346 SNPs were detected in 2083
unique genes or intergenic regions (Additional file 3:
Table S6). The overwhelming majority (97.5%) of these
SNPs were GC➔TA transversions, as expected given the
ancestral strain’s defect in mismatch repair protein
MutY, which encodes adenine glycosylase [44]. Consist-
ent with the protein coding density of E. coli (87.8%)
[45], 85% (2854) of SNPs occurred in coding regions. On
average, 69.2% of these created a missense mutation,
23.4% resulted in a synonymous mutation, and 7.4%
caused a nonsense mutation (Additional file 1: Fig. S2).
Relative to proportions observed in mutation accumula-
tion experiments carried out using wild-type E. coli [46],
we observed more nonsynonymous and nonsense muta-
tions. Given that MA experiments deliberately avoid se-
lection pressure, through single-cell bottlenecks, while
evolution experiments typically purge highly deleterious
mutations, the greater fraction of nonsense mutations
(7.4% vs. 3% in [46]) observed in our experiment is all
the more striking. However, we note that a more appro-
priate comparison would be to compare a suppressed vs.
a non-suppressed mutator strain to determine if an ex-
cess of nonsense mutations occurs as a result of sup-
pression; this would require the existing, suppressed
mutations in the background be reverted.
Small deletions were rarely detected (one single-

nucleotide deletion in each of vessel 1 and vessel 2, and
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none detected in vessel 3), but we observed a single large
~ 150 kb duplication in vessel 2. The overall number of
mutations in each population increased linearly over
time and at approximately the same rate across repli-
cates (Additional file 1: Fig. S2), as would be expected
with a mutator phenotype.

Comparison of population-level mutations reveals clonal
interference and widespread parallelism
Despite the large number of SNPs detected across repli-
cate populations, only 17 novel alleles ever approached
fixation by exceeding 98% frequency. Moreover, the
maximum frequency of most alleles never exceeded 10%
(Additional file 1: Fig. S3A), and the vast majority of al-
leles were present at a lower frequency in the final time
point than they were at their maximum (Additional file 1:
Fig. S3B), as has been previously observed in population
sequencing data [25]. Together, the foregoing observa-
tions suggest that in each evolution experiment popula-
tion dynamics was largely driven by clonal interference
[47]. A small number of loci were recurrently mutated
above what would be expected by chance, indicating that
variants at these loci were likely beneficial (Table 1,
Additional file 2: Table S2). For example, a total of 212
mutations arose in the 10 most significantly mutated
genes identified in the population sequencing data, with
each gene receiving at least five mutations (Table 1).
Moreover, 30 and 14 distinct allelic variants were discov-
ered in just two: the genes encoding the DNA-binding
repressor GalS and the RNA-binding protein Hfq, re-
spectively (Additional file 2: Table S3). High-resolution
population sequencing also revealed that 13 SNPs not
present at the start of the experiment reached at least
1% frequency in all three vessels at various time points,
while 52 SNPs recurred in two out of three chemostats
(Additional file 2: Table S4). Thus, our data also provide
compelling evidence for substantial parallel evolution at
the genic level—indeed, with only two exceptions, genes
containing beneficial mutations (as determined from the
population sequencing) were mutated in either two or
three of the chemostats (Additional file 1: Fig. S3C).

Clonal sequencing further clarifies lineage relationships
and parallelism
To establish linkage relationships between novel alleles,
we sequenced 96 individual clones from each vessel. In
each case, the 96 clones were isolated at random from
the time point at which we detected the greatest number
of mutant alleles at ≥ 5% frequency. To assess whether
the frequency estimates from population sequencing
were reasonable, and whether the isolated clones consti-
tuted a reasonable subsample, we compared frequencies
of mutations identified in both datasets at the

corresponding time point and found that they correlated
well (Additional file 1: Fig. S4).
For each set of 96 clones, we constructed a phylogeny

to represent their putative evolutionary relationships
(Fig. 1). Inspection of the mutations and phylogenetic
trees from each vessel (i.e., each independent evolution)
revealed several instances in which exactly the same mu-
tation arose not only in different vessels, but often more
than once in the same vessel on distinct branches of a
given tree. In the most extreme case, 6 of the 11 hfq al-
leles detected via clone sequencing were identified in
clones from different vessels, indicating independent
parallel origins (Fig. 1, Additional file 4: Table S7). Fur-
thermore, 7 of the 11 appear to have arisen more than
once within the same vessel.

Clonal dynamics are shaped by relationships among de
novo alleles, hard and soft selective sweeps, and the
absence of periodic selection
Combining population allele frequency data with linkage
information inferred from clone sequencing makes it
possible to depict lineage dynamics using Muller dia-
grams (Fig. 2, Additional file 5: Fig. S9, Additional file 6:
Fig. S10, Additional file 7: File Fig. S11; NOTE: Add-
itional files 5, 6, and 7 each contain a PDF with scroll-
able panels that depict evolutionary dynamics for > 50
individual genes). In general, we observed early, hard
sweeps of highly beneficial mutations related to limiting
nutrient influx, followed by soft sweeps [48–50] and
multiple-origin soft sweeps that may fine-tune glucose
uptake or utilization later in the experiment when diver-
sity was higher [51–53]. Hard sweeps consistently in-
volved mutations in regulators (galS in chemostat 1,
transcriptional terminator rho in chemostats 1 and 3) or
regulatory regions (upstream of dnaG in chemostat 1,
upstream of mglB in chemostats 1, 2, and 3), while soft
sweeps were comprised of both regulatory and operon-
specific mutations (e.g., hfq and opgH in chemostats 1, 2,
and 3, upstream of adhE in chemostat 1, pgi in chemo-
stat 3) (Figs. 2 and 3, Additional file 5: Fig. S9, Add-
itional file 6: Fig. S10, Additional file 7: Fig. S11 [49,
54]). Here, we note that multiple-origin soft sweeps may
be especially prevalent in our experiments due to the an-
cestral mutator allele at mutY, as the likelihood of con-
current identical mutations in the same gene should
increase with mutation rate.

Early sweeps occur in genes that regulate influx of the
limiting nutrient glucose
For specific growth rates between ~μ = 0.1 h−1 and
μ = 0.9 h−1, glucose is most efficiently transported using
a combination of the maltoporin LamB and the galactose
transporter MglBAC, and glucose limitation tends to se-
lect for mutations that increase expression of these
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proteins [52, 55–63]. Accordingly, 7 of the top 10 fre-
quently mutated genes/gene regions we observed (galS,
upstream mglB, malT, malK, hfq, rho, and upstream
dnaG) play a role in transcriptional regulation of LamB
or MglBAC, either directly or through their interactions
with global regulators (Table 1, Fig. 4).

Functional attributes and evolutionary dynamics of
mutations in operon-specific regulators galS and mglB
When E. coli is cultured under glucose limitation, the
chief route by which limiting substrate enters the

cytoplasm is via the D-galactose/methyl-β-D-galactoside
transporter MglBAC (Fig. 4 [62]). GalS is a negative regu-
lator of mglBAC transcription, and in the absence of D-gal-
actose, GalS binds the mgl operator to prevent open
complex formation [64]. Loss-of-function mutations in
galS or mutations upstream of mglB in the GalS repressor
binding site (bp 2,238,647 C➔A) and/or the CRP activator
site (bp 2,238,630 C➔A) have been previously observed in
the early stages of a daptation to limiting glucose [40, 58,
65, 66]. In our experiments, we observed 33 mutations in
galS, far exceeding what would be expected by chance.

Table 1 Characteristics of frequently mutated genes

Rank Gene GO biological process Observed
mutations

Unique
alleles

Expected
mutations

Uncorrected p
value

FDR

Population sequencing

1 galS*** Regulation of transcription 38 30 0.78 6.55E−50 4.42E
−45

2 hfq******** Regulation of Translation 24 14 0.23 6.91E−40 2.33E
−35

3 pgi******** Glycolytic process 35 24 1.23 4.54E−38 1.02E
−33

4 opgH** Response to osmotic stress 31 29 1.90 8.74E−27 1.48E
−22

5 malT********* Regulation of transcription 30 19 2.02 8.10E−25 1.09E
−20

6 malK******* Carbohydrate transport 22 14 0.83 7.47E−24 8.40E
−20

7 upstream
mglB**

Transcription regulatory
region

7 4 0.21 2.91E−09 2.81E
−05

8 rho** Transcription termination 11 9 0.94 5.49E−09 4.64E
−05

9 upstream dnaG Transcription regulatory
region

5 5 0.08 3.06E−08 2.30E
−04

10 fimH*** Cell adhesion/biofilm
formation

9 5 0.68 4.38E−08 2.96E
−04

Clonal sequencing

1 hfq******* Regulation of translation 26 0.1020 3.79E−53 3.68E
−48

2 pgi**** Glycolytic process 17 0.5448 5.52E−20 2.68E
−15

3 opgH*** Response to osmotic stress 17 0.8400 6.57E−17 2.13E
−12

4 upstream
mglB**

Transcription regulatory
region

8 0.0925 1.22E−13 2.96E
−09

5 fimH**** Cell adhesion/biofilm
formation

10 0.2982 1.17E−12 2.26E
−08

6 ompR*** Regulation of transcription 8 0.2377 2.05E−10 3.31E
−06

7 upstream adhE* Transcription regulatory
region

6 0.1575 1.85E−08 0.000257

8 malT*** Regulation of transcription 10 0.8935 3.98E−08 0.000482

9 proQ* Posttranscriptional regulation 6 0.2308 1.72E−07 0.001858

10 pfkA** Glucose catabolic process 6 0.3180 1.09E−06 0.010612

Each asterisk indicates an allele that arose more than once independently, either within or between vessels
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When all 33 galS mutations are mapped onto the pri-
mary protein sequence, many occur in both the helix-
turn-helix portion of the DNA-binding domain (aa 4-23,
gray shading in Fig. 5a) and in two distinct regions of
the C-terminus (aa 211-252, stipple in Fig. 5a). Although
no crystal structure is available for GalS, a homology
model based on the PurR repressor shows that the
spatial distribution of these three groups of mutations is
consistent with their placement in the DNA-binding re-
gion, dimer stabilization region, and intramolecular
signaling region, respectively (Fig. 5b) [67]. Moreover,
the highest frequency mutation from chemostat 1
(Arg146Leu, also detected in chemostats 2 and 3) oc-
curred in a conserved residue near or in the presumptive
galactose-binding site (Fig. 5b) [68]. All are expected to
result in loss of GalS function and consequently to en-
hance transcription of mglBAC.

Despite their early increase in frequency, few galS mu-
tations persisted beyond generation 50 or attained a fre-
quency greater than 5%. Instead, the majority of galS
mutants was rapidly displaced by clones carrying highly
beneficial mutations in the mgl operator sequence up-
stream of mglB (Figs. 2, 3, and 5a). The most successful
mutation upstream of mglB (bp 2,238,647 C➔A) oc-
curred in every vessel and increased in frequency to >
90% (Table S2, Additional file 5: Fig. S9, Additional file 6:
Fig. S10, Additional file 7: Fig. S11). Exactly the same
mutation has been observed in previous E. coli chemo-
stat evolution experiments, demonstrating the enormous
benefit this allele confers under glucose limitation, re-
gardless of nuances afforded by chemostat setup, dilu-
tion rate, or strain [40, 52, 58]. Over the remainder of
the experiment, only three other mutations upstream of
mglB reached the threshold for detection: two were

Fig. 1 Clone phylogenies. Phylogenies depicting relationships among sequenced clones isolated from chemostats when allelic diversity attained
its maximum; a chemostat 1, b chemostat 2, c chemostat 3. Distributions of different malK, malT, fimH, hfq, and opgH alleles are indicated by
colored bars. For each gene, all alleles observed in the dataset are numbered (see Additional file 3: Table S6 for details of which number
corresponds to which allele for each gene). Underlined numbers denote alleles independently observed in more than one chemostat, while
numbers marked with an asterisk appear to have arisen more than once within the same vessel. Gray shading delineates clades comprised of
clones that have not acquired the standard mutations related to enhanced glucose uptake and instead carry variant fimH alleles that contribute
to biofilm formation. Bracketed clones in chemostat 3 exhibited mutations expected to revert the ancestral nonsense mutations in the
housekeeping gene encoding sigma factor RpoD
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within 2 base pairs of the first mutation and did not
rise to high frequency, while the third (chemostat 1,
2,238,630 C➔A), located in the CRP activator binding
site, co-occurred with 2,238,647 C➔A and increased
to ca. 80% frequency by generation 500 (Figs. 2
and 3a, Additional file 4: Table S7). These findings
suggest additional mutations that affect GalS repres-
sor binding are not of great benefit after the preferred
allele has swept the population, whereas mutations
that modulate the activity of other regulators (i.e.,
CRP) can act synergistically.

Functional attributes and evolutionary dynamics of
mutations in genes that directly regulate LamB expression:
malT and malK
Increased expression of the gene encoding outer mem-
brane glycoporin LamB is another hallmark feature of E.
coli adapted to glucose-limited chemostat growth [40,
52, 57, 59, 60, 69]. Previous experiments have shown
that under glucose limitation, LamB overexpression can
result from any one of the following: constitutive activa-
tion of transcriptional regulator MalT, disruption of the
MalT inhibitor MalK, mutation of the RNA chaperone

Fig. 2 Muller diagrams. Evolutionary dynamics of adaptive lineages, deduced from combining whole-population whole-genome sequence data
and whole-genome sequence data of individual clones isolated from each chemostat at the time point where allelic diversity reached its
maximum value. Select genes are indicated in the plots. See Fig. 4 for further details. Also note, most mutations that went extinct by the
sampling time point are not shown. See Additional file 3: Table S6 for their relative frequencies. Additional file 5: Fig. S9, Additional file 6: Fig. S10,
and Additional file 7: Fig. S11 each contain a PDF with scrollable panels that depict evolutionary dynamics for > 50 individual genes in
chemostats 1, 2, and 3, respectively
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Hfq, alteration of sigma factor dynamics (σS/σD ratio), or
mutation of the malT repressor Mlc (Fig. 4) [40, 52, 57–
60, 69, 70]. Across replicate experiments, we observed
19 unique malT alleles and 14 unique malK alleles
(Fig. 6, Additional file 1: Fig. S5, Additional file 2: Table
S3). Over half of the malT mutations (10 out of 19) are
known either to cause MalT to become constitutively
active, or to occur in amino acids involved in MalT/
MalK interaction (Fig. 6a) [52, 71, 72]. Likewise, the ma-
jority of MalK substitutions (10 out of 14 different al-
leles, Fig. 6a) occurred within or just outside of the
MalK/MalT interaction domain and are predicted to
weaken MalT inhibition [73, 74].
The diversity of malT mutations reflects the diversity

of signals integrated by MalT. All were missense substi-
tutions, and all fell roughly into four clusters that corres-
pond to a nucleotide-binding domain (aa cluster 4-60), a
linker region/winged-helix domain (aa clusters 236-358
and 311-319), and a small patch of the maltotriose sen-
sor domain (aa cluster 634-637). Mutations in the
nucleotide-binding domain and winged-helix domain al-
most precisely delineate regions of the primary sequence
previously identified by Schlegel et al. [75] as associated
with a mal constitutive phenotype (Fig. 6a, red shading)
[52, 71, 72]. The fourth cluster of mutations in the sen-
sor domain (Arg634Ser/Arg634Leu/Asn637Lys) is on
the surface of MalT in a 7 amino acid stretch of DT3
that serves as a point of contact between MalT and
MalK (Fig. 6b) [71]. Mutations in this region eliminate
MalK inhibition, thereby increasing transcription of mal
genes. We recovered no mutations in the DNA-binding
domain of MalT (effector domain), consistent with the

expectation that our adaptive variants retain the ability
to activate MalT-responsive promoters [71, 76, 77].
Ten of 14 substitutions in MalK occurred in the C-

terminal 2/5 of the protein and were primarily located in
or underneath predicted MalT binding sites (Fig. 6c)
[73, 74]. Mutations in this region affect MalT inhibition
and promote the expression of mal genes, but do not
generally affect maltose transport, reflecting the dual
role and two-domain nature of MalK [73, 78]. Compara-
tively few mutations (4 out of 14 alleles) occurred in the
N-terminal nucleotide-binding domain. However, amino
acid 51 was mutated three times over during the course
of the experiment and is situated adjacent to proline 72,
modification of which has also been shown to decrease
MalK regulatory activity (Fig. 6d) [73, 74].
The dynamics of malT/malK allele frequency differs

among experimental populations. In chemostat 1, MalK
Ala296Asp rapidly sweeps to fixation, whereas in
chemostat 3, early mutations in MalK (yellow) are dis-
placed by later mutations in MalT (purple) (Fig. 3a, c).
In chemostat 2, clones with either malK or malT muta-
tions co-exist through all 500 generations (Additional
file 1: Fig. S5). The reason for this contrast in dynamics
cannot be attributed to emergence of a single “most fit”
allele, as the majority types from chemostats 1 and 3
arose independently in chemostat 2, but did not sweep.
Despite the fact that MalT and MalK are high-value tar-
gets of selection during adaptation to glucose limitation,
other advantageous mutations (upstream mglB, rho, and
hfq, discussed below) may have ultimately carried “win-
ning” mal alleles in chemostats 1 and 3 to higher fre-
quency, purging allelic diversity at this locus.

Fig. 3 Population-level dynamics of mutations in 10 frequently hit genes show consistent patterns. For each panel, a chemostat 1, b chemostat
2, and c chemostat 3, the elapsed number of generations is depicted on the x-axis; the height of each gray box within each panel represents a
frequency of 100%. Cumulative frequencies for all alleles of a given gene present in the population at each time point were calculated and are
represented as colored plots
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Interestingly, although we observed 30 malT and 22
malK mutations in the population sequencing data
(Table 1), with mutations being observed in 117 and 116
of the sequenced clones respectively, in only 5 out of the
288 sequenced clones do mutant alleles of these two
genes co-occur, suggesting that there may be little or no
additional advantage or even some disadvantage (due to
reciprocal sign epistasis [79]) to having both. A lack of
co-occurrence of malT and malK mutations has also
been observed in previous evolution experiments [36], in
which the primary resource (glucose) specialist carries a
mutation in MalK and the secondary resource specialists
share a mutation in MalT [40].

Functional attributes and evolutionary dynamics of
mutations in global regulators that enhance glucose
assimilation: Hfq, rho, and the t1 terminator
Hfq is a global regulatory protein that facilitates transla-
tion and/or RNA degradation by mediating ncRNA-

mRNA interactions. It participates in a wide range of
cellular processes including nutrient uptake, motility,
and metabolism and is also a general regulator of stress
response via interactions with mRNAs that encode
sigma factors σS, σE, and σH [80, 81]. hfq mutations iden-
tified in other glucose-limited evolutions were found to
be pleiotropic, increasing translation of LamB glyco-
porin, reducing levels of stationary-phase transcription
factor RpoS, inhibiting cellular aggregation, and enhan-
cing glucose transport via PtsG [70, 82].
Hfq is one of the most frequently mutated genes in

our experiments: 24 hfq-independent mutations were re-
covered by population sequencing, comprising 14 unique
hfq alleles; when the experiments were terminated, >
50% of cells in each population carried an hfq mutation
(Additional file 2: Table S3; Table 1). Two of these al-
leles arose independently in all three vessels (same nu-
cleotide position, same SNP), and six additional alleles
were observed in two of three vessels (Additional file 2:

Fig. 4 Overview of pathways relating some of the most frequently mutated genes to glucose transport and metabolism. Numbers in parentheses
next to protein/gene names denote the number of mutant alleles found in each chemostat population over the course of 300–500 generations
(also see Additional file 1: Table S3)
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Table S4). The frequency of and parallelism exhibited
among hfq mutations is particularly striking in the con-
text of experiments by Maharjan et al. where hfq muta-
tions also arose, but remained at low frequency, being
subject to negative frequency-dependent selection and
epistatic interaction with rpoS mutations [38, 56, 69, 70].
Rho is a global regulator required for termination of

nearly half of all E. coli transcripts. Like hfq, rho muta-
tions can also be pleiotropic, resulting in either reduced
or enhanced termination [83–88]. rho mutants have
been recovered in E. coli populations adapted to high
temperature [89, 90], ethanol stress [84, 85], and carbon
source variation/limitation [29, 34, 91]. Mutagenesis and

ChIP-chip analyses have shown that Rho-dependent ter-
minators occur within genes that come under selection
during glucose limitation, notably lamB, mglA, and mglC
and downstream of malT and mglC [92, 93] and defect-
ive LamB expression in MalT activator mutants can be
restored by compensatory mutations in rho [94].
Rho typically functions as a hexamer and termination

requires binding of the RNA transcript as well as ATP
hydrolysis. The primary RNA-binding domain is in the
N-terminal half of the protein (aa 22-116) and the C-
terminal half contains one ATP-hydrolysis domain (P-
loop, aa 179-183) and two secondary RNA-binding do-
mains (the Q-loop aa 278-290 and R-loop aa 322-326)

Fig. 5 Recurrent mutations at galS and CRP-binding sites upstream of mglB. a Location and frequency of galS mutations on the primary structure.
Circles represent alleles from chemostat 1, triangles represent alleles from chemostat 2, and squares represent alleles from chemostat 3.
Synonymous mutations are colored green, missense mutations yellow, nonsense mutations red, and frameshift mutations blue. Scale bar (0–100)
indicates frequency attained by a particular mutant in an experimental population. Gray shading indicates the GalS helix-turn-helix DNA-binding
motif and stipple indicates the GalS ligand-binding domain. CRP-binding site mutations are not colored as they only alter DNA sequences. b Left:
Ribbon diagram of dimeric E. coli purine repressor PurR bound to dsDNA. Three main functional regions of the protein are indicated: the N-
terminal DNA-binding domain (orange), the C-terminal sub-domain involved in intramolecular signaling (blue), and the C-terminal sub-domain
involved in dimer stabilization (green). The PurR ligand guanine is shown in gray cartoon style (PDBID 1WET) [67]. Middle: SWISSMODEL
representation of the GalS repressor based on the structure of PurR (PDBID 1JFS, 32.53% sequence identity). Mutations grouped in the N-terminal
DNA-binding domain are shown as orange spheres, while the two groups of C-terminal mutations indicated in a are shown in green and blue.
Right: GalS model with conserved and repeatedly mutated residue Arg146 colored cyan and the remaining mutations that occurred in the
middle portion of the protein colored purple
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(Fig. 7) (as reviewed in [83]). Overall, we observed 11
mutations at 8 residues in Rho, 5 of which are associated
with RNA-binding domains (aa 37, 87, 88, 278, and 293)
and 4 of which interact with their neighboring subunit
in the hexameric protein (aa 87, 88, 218, and 278)
(Fig. 7a). Primary RNA-binding domain mutations at

residues 87-88 formed a cluster both in the amino acid
sequence as well as the 3D structure (Table 1, Fig. 7). In
addition, two high-frequency mutations (chemostat 1
Val278Phe, 93% by generation 100; chemostat 3 Ala293-
Ser, 68% by generation 50) occurred on either side of
the Q-loop secondary RNA-binding domain (Fig. 7c, d)

Fig. 6 Recurrent mutations in lamB regulators malT and malK. a Location and frequency of malT mutations on the primary structure. Circles
represent alleles from chemostat 1, triangles represent alleles from chemostat 2, and squares represent alleles from chemostat 3. Scale bar (0–100)
indicates frequency attained by a particular mutant in an experimental population. The MalT protein consists of four structural domains (DT1–4)
that function in nucleotide binding, effector sensing, and interaction with MalK (see text for details). b Crystal structure of MalT DT3 with residues
identified by Richet et al. [71] as important for MalT/MalK interaction are colored. Asn637 and Arg634 were mutated in our data set and are
colored green and blue, respectively. Residues that are part of the MalK contact site but were not mutated are colored yellow. c Location and
frequency of malK mutations on the primary structure. The N-terminal nucleotide-binding domain is colored white, and the C-terminal regulatory
domain is shown in stipple. d Location of mutations on the 3D structure of a single MalK monomer. The C-terminal regulatory domain is colored
light gray, and the N-terminal nucleotide-binding domain is colored dark gray. Observed nonsense mutations (blue, aa 339, 352), missense
mutations observed here and reported to cause constitutive mal expression (purple, aa 267 and 297), missense mutations observed here but not
reported elsewhere (cyan, aa 51, 225, 231, 253, 286, 296, 298, 349), and missense mutations reported to cause increased mal expression but not
seen in this study (orange, aa 72, 248, 250, 251, 262, 268, 291, 346, 350) all occur in the same region of the C-terminal regulatory domain. e View
of a MalK monomer with domains and mutations as in b rotated 180° along the y-axis
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[95, 96]. We hypothesize that these high-frequency rho
mutations enhance cells’ capacity to scavenge limiting
glucose by contributing to increased expression of both
glycoporin LamB and inner membrane transporter
MglBAC [92, 93, 97].
rho mutations in chemostats 1 and 3 fixed or nearly

fixed early and did so in concert with mutations in MalK
(chemostat 1 Ala296Asp) and mutations upstream of
mglB (chemostats 1 and 3, bp 2,238,647) (Figs. 2 and 3;
Additional file 2: Table S3 and Table S5; Additional file 5:
Files S3; Additional file 7: File S5). By contrast, rho al-
leles detected in chemostat 2 never exceeded 6% fre-
quency (Figs. 2, 3, and 7b; Additional file 2: Table S3).
Competition between sigma factors RpoD (σD) and

RpoS (σS) for binding to core RNA polymerase directs
transcription of genes sensitive to both sigma factors
[98, 99]. Because many genes important for nutrient
scavenging are downregulated when σS is abundant,
loss-of-function mutations in rpoS are frequently favored
during glucose-limited chemostat growth [100–102].
Our ancestral strain contains nonsense mutations in
both rpoS (Gln33*) and rpoD (Glu26*) but with limited
read-through of both transcripts enabled by the supE44
suppressor [34].
rpoD transcript abundance is partly controlled by tran-

scriptional termination at a highly conserved 31-nt rho-
independent terminator (T1) between rpsU and dnaG
(Additional file 1: Fig. S8) [103]. T1 mutations predicted
to decrease terminator stability were found early in
chemostat 1 (bp 3,209,075 C➔A, 92% frequency by

generation 50) and later in chemostat 2 (bp 3,209,076
C➔A and 3,209,082 G➔T); one of these also occurred in
the Helling et al. experiments (bp 3,209,075 C➔A), sug-
gesting it is beneficial under glucose limitation [36, 40].
We also cataloged a duplication in chemostat 2 that in-
creases rpoD copy number. Although no duplications or
SNPs in T1 were observed in chemostat 3, in this chemo-
stat, a lineage carrying an intragenic suppressor mutation
in RpoD (*26Tyr) expanded to 4.7% of the population by
generation 350. Overexpression of RpoD enabled by T1

read-though, duplication, or intragenic suppression may
ultimately increase transcription of operons positively
controlled by σ70 (e.g., mglBAC and malK-lamB-malM),
counteracting any residual σS stress response made pos-
sible by the supE44 suppressor.

Mutations that impact energy conservation, membrane
biogenesis, and transcriptional run-through are later-
arising targets of selection
Phosphoglucoseisomerase (Pgi)
Pgi is an abundantly expressed glycolytic enzyme that
catalyzes the isomerization of hexose phosphates,
thereby acting in both glycolysis and gluconeogenesis,
and modulating pentose phosphate pathway (PPP) flux.
While pgi is not essential in E. coli, pgi knockout mu-
tants grow slowly on glucose, accumulate cAMP, re-
route glucose-6-phosphate through the PPP, experience
redox stress due to accumulation of NADPH, and utilize
the glyoxylate shunt rather than the full TCA cycle
[104–108]. Deletion of pgi has also been shown to favor

Fig. 7 Recurrent mutations in global regulator rho. a Location and frequency of mutations along the primary structure. Circles represent alleles
from chemostat 1, triangles represent alleles from chemostat 2, and squares represent alleles from chemostat 3. Scale bar (0–100) indicates
frequency attained by a particular mutant in an experimental population. The N-terminal primary RNA-binding domain (aa 22-116) is shown in
stipple. P-loop (aa 179-183), Q-loop (aa 278-290), and R-loop (aa 322-326) residues are indicated with corresponding letters. b Rho allele
frequencies over time for chemostats 1, 2, and 3. c Crystal structure of E. coli Rho (PDB ID 1PVO) showing the location of high-frequency
mutations in panel b. Subunits A–F are depicted counterclockwise from the upper right. Val278 is shown in green, Ala293 in cyan, Arg87 in red,
and Q-loop residues in yellow stick representation. d Detail view ribbon representation of a single Rho subunit (PDB ID 2HT1) with Val278, Ala293,
Arg87, and Q-loop residues colored as in panel c
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increased mglBAC and lamB transcription via CRP-
cAMP and targeted degradation of ptsG [104, 109]. In
most species, including E. coli, functional Pgi exists as a
dimer and mutation of residues across the interface be-
tween monomers has been hypothesized to alter subunit
interactions and catalytic center geometry [110, 111].
Over the course of three replicate evolution experi-

ments, we detected a total of 35 pgi alleles, 24 of which
were unique (Additional file 2: Table S3, Fig. 8a. The
large number of different variants suggests there must
be some adaptive benefit to mutation of pgi and that the
benefit is more likely due to reduced rather than en-
hanced Pgi function. When mapped onto the protein’s
3D structure, many of the mutations localize to the
dimerization interface (or just below it) and to the area
near active site residues Glu355, His386, and Lys514
(Fig. 8b). Amino acid changes in either of these areas
could be expected to inhibit Pgi activity.
Few pgi mutations rose to appreciable frequency be-

fore generation 200 (Fig. 3), suggesting their benefit may
be contingent on other mutations or on some aspect of
the chemostat environment that changed after this time
point. Pgi alleles were least successful in chemostat 1,
which was also the only replicate in which a large frac-
tion of clones (79% by generation 500) acquired a sec-
ond mutation upstream of mglB. This observation
suggests that pgi mutations and mutations in the CRP-
binding site of the mglBAC promoter may be function-
ally redundant.

Membrane glycosyltransferase
OPGH is involved in the synthesis of periplasmic glucans,
highly branched oligosaccharides made from β-linked

glucose monomers. While no opgH mutations are ob-
served before generation 100, once they do appear, they
rapidly increase in frequency, usually either just before
or just after hfq mutations (Fig. 2, Additional file 1: Fig.
S6, Additional file 5: Fig. S9, Additional file 6: Fig. S10,
Additional file 7: Fig. S11). Novel opgH alleles, especially
the nonsense mutations that we frequently observe
(Additional file 1: Fig. S7), may constrain glucan produc-
tion and serve as a glucose conservation measure. Also,
a “moonlighting” function has recently been reported for
OpgH: the glucosyltransferase interacts with the tubulin-
like cell division protein FtsZ to delay cell division when
levels of UDP-glucose are low [112]. Thus, OpgH muta-
tions may augment the rate of cell division and thereby
provide a fitness advantage under slow-growth chemo-
stat conditions. The only opg operon mutation identified
among strains in previous Adams et al. experiments oc-
curred in opgG of the glucose scavenger, CV103 (E487*)
[34]; we also observed 5 mutations in opgG.

Mutations that impact cell adhesion persist at low levels
throughout our experiments
Fimbrial protein genes (fim)
Genes associated with production/function of type 1
fimbriae, particularly fimH (fimbrial adhesion), were an
unexpected and frequent target of mutation in all three
chemostats (Table 1, Figs. 1 and 3; Additional file 2:
Table S3; Additional file 5: Fig. S9, Additional file 6: Fig.
S10, Additional file 7: Fig. S11). Though novel fim alleles
were transient in vessels 2 and 3, in chemostat 1, a FimH
Asn54Lys (corresponding to Asn33Lys in the mature
protein) variant rose to a frequency of 70% by generation
150, temporarily displacing high-fitness alleles in rho,

Fig. 8 Recurrent missense mutations in pgi. a Location and frequency of mutations along the primary structure. Circles represent alleles from
chemostat 1, triangles represent alleles from chemostat 2, and squares represent alleles from chemostat 3. Scale bar (0–100) indicates frequency
attained by a particular mutant in an experimental population. b Surface representation of a single Pgi monomer with mutations observed in two
or more chemostats colored cyan, those that occurred in only one chemostat colored purple, and active site residues Glu355, His386, and Lys514
colored yellow. c Crystal structure of the Pgi dimer. Colors are as in b with the second subunit shown in translucent dark gray to highlight
mutations that occur at the interface between the two subunits
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malK, and upstream mglB (Additional file 5: Fig. S9).
FimH mutants sometimes show an increased capacity
for biofilm formation [113], a recurrent issue in chemo-
stat experiments. However, as we failed to observe fimH
mutant lineages acquire mutations expected to enhance
glucose metabolism, the selection of fimH mutations
here was more likely related to bacterial persistence than
to competition for the limiting resource.

Discussion and conclusions
History matters: ancestry influences evolutionary
trajectory
The evolutionary trajectory taken by a clonal population
depends on its genetic point of departure. Our departure
point was an ancestor carrying nonsense mutations in
mismatch repair and in housekeeping and stationary-
phase sigma factors, RpoD and RpoS, respectively. How-
ever, the ancestor also carried an amber/ochre/opal non-
sense tRNA suppressor. Populations descending from
such an ancestor carry an increased mutational load, but
also have a built-in mechanism to lighten that load, spe-
cifically suppressing the burden of nonsense mutations
that would otherwise result in loss-of-function (LOF).
Laboratory evolution studies support the notion that
LOF mutations can help drive adaptation [25, 114–116].
After all, metabolic networks can be reconfigured more
easily by abolishing existing function(s) than by evolving
altogether new ones [115]; thus, nonsense mutations or
deletions sometimes confer greater fitness benefit than
missense mutations affecting the same gene [116]. How-
ever, LOF may reduce metabolic flexibility by limiting
the capacity of LOF mutants to compete in alternative
environments [25].
Because our genetic “point of departure” was an rpoS

nonsense mutant, it might be viewed as being pre-
adapted to life under glucose limitation. After all, rpoS
has repeatedly been shown to be a high-value target of
selection under nutrient limitation (e.g., [38, 117, 118]);
RpoS normally outcompetes housekeeping sigma factor
RpoD for binding to RNA polymerase, repressing genes
required for growth and cell division and activating
those required to enter stationary phase [102, 119]. rpoS
mutants with impaired function therefore continue to
divide under conditions where wild-type cells arrest.
However, the combined phenotypic effect of ancestral
rpoS and rpoD nonsense mutations in a suppressor
background is murky and begs the question: Is this par-
ticular combination of mutations favorable under glu-
cose limitation, merely tolerated, or detrimental?
Further, while many of the genetic changes we observed
(e.g., those in galS, upstream mglB, hfq) enhance glucose
assimilation, occur repeatedly, and go to high frequency,
we also recovered clones that carry none of these muta-
tions. Instead, these clones carry either intragenic

suppressors of the ancestral rpoD nonsense mutation
(*26➔Asp and *26➔Gln, chemostat 3 (Fig. 1)) or a du-
plication that increases rpoD copy number. Even when
adaptation to one selective pressure is facilitated by
LOF, and loss makes it difficult to adapt to another se-
lective pressure, nonsense mutations have a distinct ad-
vantage over indels, because reversion or suppression of
nonsense mutations is possible should environmental
conditions change [25].
Another ancestral allele having the potential to influ-

ence evolutionary trajectory was the A➔T CRP-binding
site mutation 224 bp upstream of the low-Km acetate-
scavenging enzyme, acs (acetyl-CoA synthetase). This
mutation alters the regulation of the acs-pta operon
such that the ancestor poorly assimilates low levels of
the overflow metabolite acetate. In previous evolution
experiments, this allele sometimes selectively favored
semi-constitutive acs mutants capable of assimilating
overflow acetate and attenuating its growth-inhibitory
effects [35, 36, 39]. While we uncovered no evidence for
this outcome, our failure to do so was not unanticipated:
cross-feeding arose in only half the experiments founded
by this ancestor or its close relatives [39]. A recent
model [37] defining the boundary conditions for cross-
feeding to evolve in a chemostat showed that the process
is sensitive to variation in dilution rate as well as to the
relative fitness of mutants that gain access to secondary
metabolites. Subtle differences in either of these parame-
ters may account for the apparent absence of the inter-
action. It is noteworthy that we detected no mutations
at any of the loci previously implicated in cross-feeding
evolution, e.g., acs, lpd, and ptsI [34, 120].
A large body of evidence points to acetyl-CoA synthe-

tase being the route by which E. coli scavenge low levels
of acetate from the extracellular environment [121, 122].
Indeed, to the best of our knowledge, this is the only
route, though in principle a large decrease in the Km for
acetate kinase (ack) might open another. However, we
observed no mutations in ack. We also cannot rule out
the possibility that multiple, different acs-mutant line-
ages co-exist, each below our detection limit, but to-
gether summing to > 1%. However, we believe this is
unlikely to have occurred in three independent repli-
cates. Finally, we cannot exclude the possibility that a
low-frequency acetate-scavenging contaminant arose
and persisted in each of the three experiments, repeat-
edly escaping detection by our sensitive phage cocktail
assay (see the “Methods” section).
A more plausible explanation lies in this: continuous

glucose limitation selects not only for glucose scaven-
ging, but also for efficiency of resource use [123, 124].
Because the latter places a premium on conserving the
limiting carbon, we suggest that yet-to-be explored mu-
tations among those we observed have the effect of
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restricting acetate overflow, which would confer a select-
ive advantage. Consistent with this interpretation are ob-
servations that not all experimental populations which
evolve glucose scavengers evolve acetate scavengers [39].
Adaptive lineages in the experiments reported here ap-
parently found ways other than cross-feeding to con-
sume all available carbon. As expected, throughout each
evolution experiment, steady-state population size
remained constant and residual glucose was at or below
the limit of detection. Residual acetate (~ 45–90 μM)
was observed early in each experiment (Additional file 1:
Fig. S1), presumably owing to the ancestral acs regula-
tory mutation, but then fell below detection limit after
generation 200. One possible mechanism for increased
efficiency of glucose utilization lies in the proliferation
of pgi mutants: generation 200 coincides with the emer-
gence of novel pgi alleles in all three populations. Yao
et al. reported that when pgi deletion mutants were
grown in glucose-limited chemostats, glucose uptake
rate dropped slightly compared to wild-type, but no
overflow acetate was produced and biomass yield
remained unchanged [125].

Population and clone sequencing open up a detailed
view of the full spectrum of beneficial mutations and how
that spectrum changes over time
High-coverage, whole-genome, whole-population se-
quencing makes it possible to discover every new allele
reaching > 1% frequency in a population of > 1010 cells.
Because alleles are unlikely to reach such frequencies by
drift, all were either transiently beneficial or hitchhiking
with alleles that were. This depth of analysis opens up a
richly detailed view of the spectrum of beneficial muta-
tions arising in E. coli under constant resource limita-
tion. Periodic whole-population sequencing allows
patterns to be discerned as to how these spectra change
over time, while clone sequencing makes it possible to
establish linkage relations among novel alleles and repre-
sent their collective fate as evolving lineages.
Five general patterns emerge from these analyses. First,

new alleles accumulate in replicate populations at similar
rates, and the proportion of alleles that are missense,
nonsense, synonymous, or noncoding remains fairly con-
stant. Second, the distribution of new mutations across
the genome is skewed with regard to their targets, with
only a few dozen of the more than 1000 mutated genes
being mutated more frequently than would be expected
by chance alone; yet even among those most frequently
mutated genes, few de novo mutations fix over the
course of these experiments. Third, by clonal sequen-
cing, we are able to establish that many, independent
lineages co-exist and compete within the continuous
cultures. Thus, evolutionary dynamics in these popula-
tions is governed by clonal interference and not by

clonal replacement or clonal reinforcement. This conclu-
sion is reinforced by lack of evidence for mutations that
support interactions which give cross-feeding consortia
higher fitness and productivity than any consortium
member by itself [120]. The dynamics of galS replace-
ment illustrates the effect that clonal interference can have
on the fate of different alleles. In chemostat 1, clones car-
rying GalS Arg146Leu rapidly dropped in frequency when
lineages emerged with a mutation upstream of mglB (pos-
ition 2,238,647); however, they were not completely dis-
placed until generation 400 and even enjoyed brief periods
of expansion. In chemostat 2, clones with the same muta-
tion upstream of mglB were present by generation 50, but
did not surpass a 90% threshold for another 250 genera-
tions due to competition from 22 different galS lineages
and a lineage carrying a different upstream of mglB allele
(2,238,648 G➔T) (Figs. 2 and 3b, Additional file 4: Table
S7). By contrast, in chemostat 3, a lineage with the up-
stream mglB mutation (2,238,647) experienced little com-
petition and was nearly fixed by generation 150
(Additional file 2: Table S5).
A fourth pattern to emerge is widespread parallelism

in regulatory evolution. Both across and within popula-
tions, the same genes are mutated again and again, often
at exactly the same nucleotide position in independent
replicates, and sometimes in independent lineages co-
evolving within the same vessel. Many of these genes
(galS, malT, malK, upstream mglB, hfq, rho) act in pro-
cesses related to the transport and assimilation of the
limiting nutrient, glucose. However, in most cases, the
mutations recovered alter regulation of these processes,
and not the structural proteins that carry them out. This
finding is consistent with a number of recent experimen-
tal evolution studies using E. coli, where the genetic
basis for adaptive change could be traced back to muta-
tions in regulatory elements or regulatory loci, e.g.,
[126–129] and references therein.
A fifth pattern relates to the order of beneficial muta-

tions and the influence that order has on evolutionary
dynamics. Consistent with previous reports, mutations
that increase glucose flux across the inner membrane
(galS, upstream mglB) occur early and precede those
that increase flux across the outer membrane (malK/
malT, hfq, rho). In both cases, mutations in binding
partners (GalS/upstream mglB and MalT/MalK) rarely
occur in the same clone, and the order in which they
occur can lead to either a sweep (upstream mglB clones
quickly displace galS clones) or to clonal interference
(malT and malK clones can co-exist). Other alleles
emerge later and nearly always together: clones with
existing mutations in the mal operon acquire subse-
quent mutations in hfq and opgH, regardless of which
gene is altered first or which alleles are already present
in the population. These patterns are reminiscent of
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genotypes described by Kinnersley et al. [22] in which
glucose scavenger CV103 has mutations in malK, opgG,
and hfq while acetate specialist CV101 only carries a
mutation in malT.
With regard to periodic selection, rather than favor-

able alleles arising within a set of lineages that succes-
sively replace one another over time, we observe groups
or cohorts of mutations co-evolving, with widespread
clonal interference among lineages that carry different
beneficial mutations [130]. For example, in chemostat 1,
a spreading lineage with a cohort of mutations upstream
of mglB/lptA/opgH (pink) is impeded by the emergence
of lineages carrying mutations in hfq (green) (Additional
file 5: Fig. S9). All of these phenomena—hard and soft
sweeps, cohorts of mutations that increase or decrease
in frequency together, and clonal interference—have
been observed in yeast [18, 24, 131] and E. coli [29] pop-
ulations evolving in the laboratory, as well as in Pseudo-
monas aeruginosa evolving in the cystic fibrosis lung
[132].
Similar experiments carried out by Maharjan et al.

[38] using E. coli BW2952 showed that population-level
phenotypic changes in glucose-limited chemostats are
often the result of multiple soft sweeps by combinations
of beneficial mutations. While we did not assay clone
phenotypes, multiple alleles of galS, hfq, and opgH ap-
pear to sweep our populations in concert suggesting a
similar pattern in which a phenotypic effect (reduced ex-
pression of a particular gene) is favored, but has different
genetic bases in co-existing lineages. At the clone level,
BW2952 exhibits sign epistasis between mutations in
rpoS/hfq and galS/malT [38, 56]. In our experiments, we
found no evidence of sign epistasis between the ancestral
rpoS allele and hfq: by generation 250, over 50% of
clones in populations 1 and 3 carry mutations in both
genes. Maharjan et al. have suggested that fitness deficits
in rpoS/hfq double mutants may arise from altered cell
division [69, 133], specifically, hfq mutations that en-
hance glucose uptake during slow growth, may diminish
viability when cells divide rapidly. Hfq deletion mutants
exhibit cell division anomalies due to elevated expression
of cell division proteins, including FtsZ [134, 135]. Inter-
estingly, during fast growth, OpgH (which in our experi-
ments is nearly always mutated alongside hfq) binds
FtsZ to postpone cell division [112]. Thus, it may be that
in our experiments the negative fitness effects associated
with hfq-rpoS double mutants are mitigated by muta-
tions in opgH. We should also note that cells in the
Maharjan et al. evolution experiments were subject to a
dilution rate of D = 0.1 h−1, whereas those in experi-
ments performed by Adams et al. were dividing twice as
fast (D = 0.2 h−1). Thus, this discrepancy may be a mani-
festation of trade-offs between glucose uptake and cell
viability. Finally, some mutations occur repeatedly and

are therefore likely adaptive, yet their dynamics are un-
predictable: for example, beneficial mutations in tran-
scriptional terminator rho sweep when they co-occur
with beneficial mutations upstream of mglB, but other-
wise remain at low frequency (Fig. 3, Additional file 2:
Table S3). This dependence on genetic context, or
“quasi-hitchhiking,” of beneficial mutations was previ-
ously observed by Lang et al. in yeast and may be a fea-
ture that only becomes evident when experimental
populations are sequenced to high depth of coverage
and at sufficient temporal resolution [18].
Classic studies by Adams and colleagues showed that

populations originating from the same ancestor used in
our experiments could evolve into consortia consisting
of ecotypes that co-exist via cross-feeding [35, 36] and
relief from product inhibition [37]. Recent data have
shown that such consortia can be more fit and are more
productive than either their ancestor or clones repre-
senting each ecotype [120]. By contrast, in the popula-
tions described here, neither the observed spectrum of
mutations nor the structure of clone phylogenies suggest
trophic interactions that could be construed as clonal
reinforcement. This finding is consistent with Treves
et al. [39] who found that cross-feeding arose in only 6
of 12 replicate E. coli populations evolved under condi-
tions identical to those we used and founded by closely
related ancestors. In each of these populations, acetate
scavenging was driven by regulatory mutations that re-
sulted in semi-constitutive overexpression of acetyl-CoA
synthetase (acs) [39]. These mutants were supported by
glucose-scavenging small colony variants that were evi-
dent on plates between generations 88 and 381, depend-
ing on replicate. In our experiments, acs mutants never
arose, or if they did, their frequency never exceeded our
1% level of detection. Likewise, mutations thought to
contribute to the acetate excretion phenotype [34] were
not observed either in our population sequencing or
clone sequencing data. Thus, as was the case for half the
populations examined by Treves et al. [39], the molecu-
lar mechanisms to support acetate cross-feeding were
not established over the time course of our experiments.

Methods
Strains, media, and culture conditions
Escherichia coli JA122, population samples and clones
were maintained as permanent frozen stocks and stored
at − 80 °C in 20% glycerol. Davis minimal medium was
used for all liquid cultures with 0.025% glucose added
for batch cultures and 0.0125% for chemostats, as previ-
ously described [40]. Chemostat cultures were initiated
using independent colonies picked from a Tryptone
Agar (TA) plate inoculated with JA122, then outgrown
in Davis minimal batch medium overnight. Consistent
with previous evolution experiments founded by this
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ancestor, chemostats were maintained at 30 °C with a di-
lution rate of ≈ 0.2 h−1 for 300–500 generations. Every
other day, population samples were archived in duplicate
at − 80 °C; culture density and purity were assessed by
measuring absorbance at A550 and by plating serial dilu-
tions on TA and examining colony-forming units (CFU)
following 24-h incubation at 30 °C. When necessary,
chemostats were re-started from frozen stocks (chemo-
stat 1: generation 217; chemostat 2: generation 410;
chemostat 3 generation 251). At each sequencing time
point, 50 mL of culture was pelleted then stored at −
80 °C for DNA extraction. For clone sequencing, entire
colonies were picked from TA plates inoculated from
glycerol stocks and re-archived in 96-well plate format.

Phage cocktail assay of culture purity
To assay chemostat cultures for contamination, lysates
of bacteriophages T2, T5, and a T6 mutant were pre-
pared using the ancestral strain JA122 as a host, follow-
ing procedures first described by [41]. Lysates were
filtered through a 0.2-μM filter to remove cell debris and
concentrated with a 10-kDa MWCO filter to bring the
concentration of each phage to 2.5 × 1012 mL−1. Every
10–20 generations, 200 μL of phage cocktail was applied
to the surface of a TA agar plate, dried, and used to
screen 100 μL of chemostat culture for non-E. coli
contaminants.

Metabolite assays
Ten milliliters of sterile, cell-free chemostat filtrate was
concentrated 20-fold by lyophilization (Labconco
4.5 Liter Freeze Dry System), then re-suspended in
0.5 mL sterile Millipore water. Residual glucose and re-
sidual acetate concentrations were determined on concen-
trated filtrate. Glucose was assayed enzymatically using
the High Sensitivity Glucose Assay Kit (Sigma-Aldrich,
Cat# MAK181), while acetate concentration was de-
termined using the Acetate Colorimetric Assay Kit
(Sigma-Aldrich, Cat# MAK086). Results presented in
Additional file 1: Fig. S1 represent means ± SEM of
duplicate assays.

Population sequencing
Bacterial DNA was prepared using the DNeasy Blood
and Tissue Kit (Qiagen, cat. 69504) following the manu-
facturer’s guidelines. For population sequencing, 5 × 1010

cells, collected from every 50 generations in three
chemostat vessels (up to 500 generations in vessels 1
and 2, and up to 300 generations in vessel 3, 29 samples
total) and frozen as pellets, yielded 10–20 μg of DNA.
Following Proteinase K treatment, RNaseA treatment
was used (20 μL 10mg/mL RNAse A, 2 min at room
temperature) to avoid degraded RNA from visually ob-
scuring size selection during library preparation.

Samples were split into two columns to avoid overload-
ing. Bacterial DNA was sheared to a 150–200-bp frag-
ment size using a Covaris S2 series sonicator (6 min,
duty = 5%, intensity = 3, cycles/burst = 200) and was then
ligated to barcoded adapters as described [136], except
that 200-bp fragments were size selected after adapter
ligation (to maximize the fidelity of sequencing, by read-
ing each fragment in both directions). Six barcoded li-
braries were combined and sequenced on each lane of
HiSeq 2000 Illumina Sequencer.

Variant calling from population sequencing with CLC
Genomics Workbench 7.5
Illumina reads were trimmed (removing adapters on
both ends) and stringently mapped (mismatch cost 2, in-
sertion cost 3, deletion cost 3, length fraction 1.0, simi-
larity fraction 0.97) to the reference sequence (WIS_
MG1655_m56). Variants were called with the following
parameters: minimum frequency 1%, minimal coverage
100, minimum count 2, and base quality filtering (neigh-
borhood radius 5, minimum central quality 15, and
minimum neighborhood quality 20). Sequencing data
uncovered low-level contamination of whole population
samples with Serratia liquifaciensis. We therefore first
determined the proportion of contaminating reads by
mapping population sequencing to S. liquifaciensis gen-
ome and then removed SNPs with frequency closely
tracking the percentage of contamination (between 1
and 5%) that matched S. liquifaciensis sequence.

Selection of clones for sequencing
Allele frequencies for each chemostat were examined at
each time point, and the time point at which there was
the largest number of alleles present at 5% or greater
frequency was chosen for the isolation of clones for
whole-genome sequencing. The rationale for this was
that it would afford us the greatest opportunity to phase
as many high-frequency alleles as possible.

Clonal DNA preparation
A colony was re-suspended in 300 μL of sterile ddH20
with 17% glycerol and stored in three aliquots at − 80 °C.
One hundred microliters of glycerol stock was used for
DNA preparation. After removing glycerol (using Multi-
Screen High Volume Filter Plates with 0.45 μm Dura-
pore membrane, Millipore MVHVN4525), cells were re-
suspended in 500 μL LB and grown overnight at 30 °C
without shaking in deep well plates. Cells were collected
again using filter plates and subjected to DNeasy 96
Blood and Tissue Kit (Qiagen 69581) (yielding 4–15 μg
per strain).
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Clonal library preparation and sequencing
Multiplexed sequencing libraries from clones were pre-
pared using the Nextera kit (Illumina catalog # FC-121-
1031 and # FC-121-1012) as described in [137], starting
with 1–4 ng of genomic DNA. Resulting libraries from
each 96-well plate were pooled at an equal volume. Result-
ing pooled libraries were analyzed on the Qubit and Bioa-
nalyzer platforms and sequenced on HiSeq 2000 (one lane
per 96 clone pool). All raw sequencing data are available
from the SRA under BioProject ID PRJNA517527.

Variant calling from clonal sequencing with CLC
Genomics Workbench 7.5
Short reads with adapters removed were mapped to the ref-
erence with the same parameters as above, except the length
fraction was set to 0.5, and the similarity fraction to 0.8. Vari-
ants were called with a minimum frequency 80%, minimum
count 2, and the same base quality filtering as above.

Generation of phylogenies
For each chemostat, SNP and indel events for all 96
clones and the ancestor JA122 were concatenated and
re-coded as binary characters (i.e., presence/absence
with the ancestral state composed of all zeroes) and as-
sembled into character matrices. PAUP ver. 4.0a149 was
used to generate Camin-Sokal parsimony trees using the
ancestor as the outgroup under the assumption that re-
versions were extremely unlikely due to the extreme
transversion bias [138, 139]. Tree files (.tre) were loaded
into the Interactive Tree of Life (iTOL) web service for
character mapping and figure generation [140].

Determining genes with an excess of mutations
To identify genes with an excess of mutations, we first
determined the overall density of mutations as:
ρ = M/L, where M is the total number of mutations

and L is the length of the genome.
The probability of a given mutation landing in a seg-

ment of length l is:
λ = ρ × l
To calculate the p value of n mutations landing in a seg-

ment of length l, we assume a Poisson sampling process
of a mutation landing in a given segment and thus use:

p ¼
X∞

i¼n

λi x e − λ

i!

though, in practice, we capped i arbitrarily at 50, as con-
tinually summing at i > 50 does not appreciably affect
the calculated p value. For a given segment, we calcu-
lated the number of segments that would be expected to
have p value as good or better, as the number of tested
segments multiplied by the p value. From this, we also
determined a false positive rate.

Generation of Muller diagrams
Based on both the clonal sequencing, we were able to
determine which mutations were in which lineages to-
gether, and from both the clonal and population sequen-
cing an approximate order of those mutations (though
this was not exhaustive for all mutations). Using these
data, we developed a lineage file format that described
which mutations occurred in which lineages, and which
lineages descended from one another, and used a cus-
tom Perl script that combined this information with the
allele frequencies over time from the population sequen-
cing to generate a graphical representation of the evolu-
tionary dynamics, often referred to as a Muller diagram.
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represented in main Fig. 1.

Additional file 5 Fig. S9. Muller diagrams for novel alleles arising in
chemostat 1, showing details for each lineage.

Additional file 6 Fig. S10. Muller diagrams for novel alleles arising in
chemostat 2, showing details for each lineage.

Additional file 7 Fig. S11. Muller diagrams for novel alleles arising in
chemostat 3, showing details for each lineage.

Additional file 8 Fig. S12. Locations of mutations in genes that were
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