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Abstract

Computational Materials Science and Engineering: Model
Development and Case Study

by
Yihan Xu

The University of Wisconsin–Milwaukee, 2020
Under the Supervision of Prof. Nidal Abu-Zahra and Prof. Deyang Qu

This study presents three tailored models for popular problems in energy storage and

biological materials which demonstrate the application of computational materials science

in material system development in these fields. The modeling methods can be extended for

solving similar practical problems and applications.

In the first application, the thermo-mechanical stress concentrated region in planar

sodium sulfur (NaS) cells with large diameter and different container materials has been

estimated as well as the shear and normal stresses in these regions have been quantified

using finite-element analysis (FEA) computation technique. It is demonstrated that the

primary failure mechanism in the planar NaS system design considered in the current work

would be the interfacial fracture between the insulating header (IH) and the upper insert

metal (IM1) due to the normal stress in cell height direction, and the necessary treatments,

including better material selection or improved bonding technology between IH and IM1,

must be involved to avoid the fractures of constituent components in the joint area.

In the second application, a full atomistic molecular dynamics (MD) computation

approach has been employed to quantify the Flory-Huggins parameters between poly(lactic

acid) (PLA), poly(glycolic acid) (PGA), and tetracycline-HCl (TC-HCl) drugs, which can

elucidate the thermodynamic stability and the interaction between drugs and

poly(lactic/glycolic acid) (PLGA) carriers polymers. Thermodynamic analysis regarding
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the miscibility and the stability of PLA, PGA, TC-HCl phases are then conducted in line

with the experimental fabrication of polymer-drug films of two different copolymer ratio

products, i.e., 50/50 (PLA/PGA ratio) and 75/25 PLGA samples. Meso-scale

computations using phase-field method (PFM) are also conducted to predict the structural

evolution of PLGA/TC-HCl systems using the calculated Flory-Huggins parameters. The

results show that the surface morphology of PLGA/TC-HCl film can be highly dependent

upon the thermodynamic interaction between the polymer and drug phases.

In the third application, full atomistic MD simulations have been performed on

tetra-sulfides and undoped conjugated polymers pernigraniline base polyaniline (PNB),

leucoemeraldine base polyaniline (LEB), poly(3,4-ethylenedioxythiophene) (PEDOT) and

polypyrrole (PPY) to investigate the binding effectiveness between polysulfides and

polymer binders. The weight ratio between sulfur and binder in lithium–sulfur cells is

considered in 1:1 v/v mixture of dioxolane/dimethoxyethane. The simulations reveal that

the end group 2 of PNB can effectively bind a lithium tetra-sulfide (i.e. Li2S4) cluster or 2

out of 43 Li2S4 molecules with the effect of solvent. However, repeat units of PNB, LEB,

PEDOT and PPY seem ineffective in binding solvated Li2S4 through non-bonded

interaction, especially when the concentration of tetra-sulfide/binder in a local domain of

the cathode is low. Therefore, polymers with this specific functional group (i.e. the end

group 2 of PNB) are suggested to be further studied as potential effective binders to inhibit

the shuttle effect of solvated lithium polysulfides. Also, since the solvent has considerable

impact on the binding effectiveness between tetra-sulfides and binder, it is suggested to

take advantage of the explicit solvation models, such as those built in this work, to predict

how other influencing factors affect binding between polysulfides and polymers.
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Chapter 1

Introduction

1.1 Computational materials science

Motivated by demands in engineering or interest in science, we’ve always been looking for new

and better materials: easier to process, more durable, lower-cost, stronger and lighter-weight,

and with less impact on the environment. Material design has been guided by experiments

and experience for centuries until the finite element method (FEM) was combined with

computer. After that, descriptions of material properties became possible by computational

methods and this has generated great impact on research and development in academia and

industry. Especially, the simulations of mechanical properties such as load-stress relation,

stability of the composite material belonged to the most advanced technologies in design of

tools, buildings and vehicles.

With the continuous development of new functional materials, such as semiconductor,

energy storage materials, biological materials, advanced membrane materials, conductive

polymers, etc., these materials no longer just take advantage of mechanical properties. More-

over, in the past few decades, the development of nanotechnology has been propelling the

research and development of nanomaterials, such as the widely known graphene. Controlling

structures and properties of materials at the atomic scale has been the frontier of materi-
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als science and engineering. Following this trend, modern computational materials science

gradually focuses on atomic scale modeling over the past decades.

Modern computational materials science is interdisciplinary. It is fueled by chemistry,

mathematics, biology and physics. In return, it can help with the development of functional

materials to meet requirements of all kinds of areas. In computational biology, massive

atomistic computer simulations are now possible to compute a system with millions of atoms

on the nanosecond time scale [1]. Statistical physical methods [2], such as molecular dynamics

(MD) provide the basis for computation of processes, such as diffusion, adsorption and crystal

growth. Theoretical chemistry uses various theoretical physics methods, especially quantum

mechanics, to explain and predict the nature of chemical phenomena. It contributes greatly

to modern computational materials science by its highly accurate computations of molecule

geometries, energy, electronic band structure, gap, transition state of chemical reactions and

spectral data (Infrared, Raman, VCD and ROA for examples). If the property of interest is

an atomic one, then theoretical chemistry is just the method to study it.

Developments of density functional theory (DFT) [3, 4] and multiscale models [5] have

been seen as the most influential to computational materials science [6]. Both methods have

been awarded the Nobel Prize in chemistry, but their impact extends beyond and affects all

disciplines of basic natural science. Among quantum chemistry methods, DFT calculation

method doesn’t provide the highest accuracy but it is highly practical: balanced between

accuracy and computation speed. The multiscale model figured out another way to achieve

the balance. In multiscale simulations, a local area of interest is processed by a method

of high-level precision. This area is embedded into a larger one, which is processed at a

lower level, and more shells can be added if needed. Therefore, the results stay meaningful

while the precision is still sufficient. But how to deal with the interfaces between shells is a

challenge.

With the computational resources getting more economical and powerful as well as com-

putational approaches getting more accurate, computational materials science will be more

2



practical in prediction of advanced functional materials before attempting synthesis and

assembly.

1.2 Scope of the present study

With the improving computational resources and computational approaches, computational

materials science will be increasingly applied to predict material structures, properties and

performance. One of the challenges is how to properly build models using the available

resources and approaches. In the present study, we tailored models for three popular issues:

� We have built a FEM model to study impacts of container materials on the thermo-

mechanical residual stress accumulation of modern planar sodium sulfur (NaS) cells

(see Chapter 2).

� Also, we have built a MD model to investigate the polymer-drug interactions and their

impact on the structural evolutions in PLGA-tetracycline films (see Chapter 3).

� And MD method has been applied to study the binding effect between binders and

polysulfide species in Li–S batteries (see Chapter 4).

Details are provided in Chapters 2, 3 and 4, respectively.
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Chapter 2

Container materials of modern planar

sodium sulfur (NaS) cells

2.1 Introduction

Sodium (Na) β/β”-alumina batteries (NBBs) have become increasingly recognized as one

of the most promising contenders for large-scale energy storage systems (ESSs) due to their

high theoretical specific energy, high energy efficiency, low cost of raw materials, and long

lifespan [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. The NBB system consists of a molten sodium

anode, a β/β”-alumina solid electrolyte (BASE), and a cathode compartment. Depending

on cathode chemistries, NBBs can be typically classified into two types, i.e., NaS and Na

metal halide (Na/NiCl2 or Na/FeCl2) cells. Because the active anode Na materials must be

maintained in their molten sate, the operating temperatures of these NBBs are relatively

high (e.g., 300-350 ◦C for NaS and 270-300 ◦C for Na metal halide chemistries, respectively).

Out of these two types of NBBs, the NaS cells utilize molten S as the cathode materials that

endow high theoretical specific energy (760 Wh kg−1), high theoretical energy density (2584

Wh l−1), and very high theoretical specific capacity (1675 Ah kg−1) [11]. The cell reaction

occurs in an NaS system is given by [18],
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xS + 2Na←→ Na2Sx (x = 5− 3) , E = 2.08 ∼ 1.78 V at 350 ◦C (2.1)

Contemporarily, this NaS cell technology is available for grid-scale applications. NGK

(NGK Insulators, Ltd.) has delivered NaS battery systems at approximately 200 sites world-

wide, accounting for a total output of 530 MW and a storage capacity of 3700 MWh since

its commercialization in 2003 [19]. In addition to the successful product-realization of NGK,

other efforts to develop advanced NaS cell systems have been continuously made in recent

years [20, 21, 22, 23, 24, 25, 26, 27].

For commercial deployment of practical NBBs, two cell shapes (i.e., tubular and planar

cells) have been commonly applied. Representative NaS cell geometries of the two shapes

are provided in Figure 2.1 (fabricated by RIST, South Korea). The distinct advantages of

the planar cell design over the tubular one may include the easiness for stacking, direct

inter-cell connection without any external connectors, lower manufacturing cost, elimination

of the orientation and gravity effects, larger active area of BASE per unit weight of the cell,

possibility of applying a thinner solid electrolyte with higher ionic conductivity, easiness for

post-analysis for cell components, and so forth [11, 28]. Moreover, it was found that the

electrochemical performance from a planar NaS cell is more stable than that from a tubular

cell [29]. With this, relatively small planar NBBs with a typical BASE disk diameter in the

range of 10-50 mm have been widely studied for various research purposes, from developing

electrode materials/structures to testing new cell chemistries [12, 13, 14, 15, 16, 17]. However,

to provide a competitive specific energy, it was suggested that the diameter of the useful

BASE in a planar NBB cell should be at least 80 mm [30]. Even though several groups

of pioneers [30, 31, 32] and the posterior industries and research institutions have delivered

insights regarding planar NBB cells for high-power energy storage, no NBB cells with a

planar design have been successfully reported for practical applications.

One of the critical issues in developing practical planar NaS cells is the thermo-mechanical

fracture in the BASE or cell joint area, which can consequently lead to a catastrophic cell
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Figure 2.1: Representative NaS cell shapes of (a) tubular and (b) planar designs.

failure upon assembly, operation or maintenance of cells. The BASE in NBBs must be

manufactured into a very thin membrane (as thin as 0.6 mm) targeting to a higher ionic

conductivity. If the embedded BASE membrane is fractured during the operation cycles, a

violent reaction will happen by directly connecting the reactive anode and cathode mate-

rials. Adding ZrO2 or Yttria-stabilized zirconia (YSZ) into the β/β”-alumina matrix is a

typical approach to improve the strength and fracture toughness of the solid electrolyte for

NBBs [33]. The sealing performance of the cell joints is also vitally important in securing

the cell safety. When the molten active materials leak from the broken area of cell joints,

a fire incident might be caused by the short circuit between adjoining cell parts in a NBB

system [34]. To build robust cell joints and to avoid undesired cell failure, advanced modern

joining techniques are generally applied, such as thermal compression bonding (TCB) for

metal-to-ceramic seals, glass sealing (GS) for ceramic-to-ceramic seals, and electron beam

welding (EBW) for metal-to-metal seals [35, 36, 37]. The fracture in the BASE or cell joint

areas is typically induced by the accumulation of thermo-mechanical residual stress during

the cell assembly, operation, and/or maintenance processes [24, 25, 34]. This residual stress

accumulation essentially originates from dissimilar coefficients of thermal expansion (CTEs)

of cell constituent materials including metals, ceramics, and glasses. Especially with increas-

ing the cell sizes, the issue of thermo-mechanical stress accumulation in the joint parts and

BASE becomes more serious in a planar NBB system because the dimensions of the cell

joints and BASE will directly increase with enlarging the cell size. Such thermo-mechanical
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failure in the cell joints and BASE areas is currently identified as the major roadblock to

develop large planar NaS cells for advanced ESSs even with the application of aforemen-

tioned TCB, GS, EBW sealing techniques and β/β”-alumina composites reinforced with

YSZ. With the limitation of bonding strength in the cell joints and the fracture strength

of BASE, in this work, we tested the impacts of cell container materials on the thermo-

mechanical residual stress accumulation of a planar NaS cell using a finite-element analysis

(FEA) computational approach. Although the cell container material types would greatly

affect the degree of thermo-mechanical stress concentration during the cell assembly, opera-

tion, and maintenance, a quantitative assessment of such cell container material impacts has

not been reported for modern planar NaS systems. In an effort to comprehensively monitor

the variations of the thermo-mechanical residual stress concentrations in various cell parts,

analyses using position-temperature-stress contour maps have been performed.

2.2 Computational method

2.2.1 Digital construction of prototype planar NaS cells

The cross-sectional structure of a prototype planar NaS cell design used in this work is

provided in Figure 2.2(a) along with the enlarged images of selected individual cell compart-

ments. The prototype planar NaS cell had a height of 34 mm and the BASE disk diameter

of 90 mm. The disc size of BASE was set to 90 mm, as it was claimed that the minimum

useful BASE diameter is 80 mm and the optimum disc size is 250 mm [30, 34]. As illustrated

in the figure, a 30 ◦C slice of the circular planar cell has been used by imposing the axisym-

metric boundary condition (BC). The figure also shows the heterogeneous joints comprised

of insert metals (IMs, Al3003) to seal metallic cell container and ceramic insulating header

(IH, α-alumina), and GS to seal BASE and IH. For convenience, the upper and lower IMs

are referred to as IM1 and IM2. The commercial hyperMesh (version 14.0, Altair Engineer-

ing Inc.) software has been used to generate the FEA meshes of fine quality as shown in
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Figure 2.2(a). The element type used for all the cell components was an 8-node linear brick,

reduced integration, hourglass control hexahedral element (C3D8R) with varying sizes that

were optimized depending on the dimensions of the related cell components. The total num-

ber of FEA elements of the 30 ◦C slice model was 206,238. After building the mesh for each

component, the digital structures were exported to ABAQUS/CAE (version 6.11-2, Simulia

Inc.) FEA software package. Due to the circular geometry of the prototype planar NaS

cell design used in the present study, a cylindrical coordinate system was adopted with an

axisymmetric BC for the computation and post-analysis. As indicated in Figure 2.2(a), the

three directions (radial: r, circumferential: θ, and height: z) in the cylindrical coordinate

system are defined as 1, 2, and 3, respectively.

2.2.2 Cell container material types

Four different material types including an aluminum alloy (Al3003), stainless steels (STS304

and STS430), and an iron-nickel-cobalt superalloy (KOVAR) were set as the candidate cell

container materials. The planar NaS cells made up of these container materials are referred

to as Al3003, STS304, STS430, and KOVAR cells, respectively. These materials have been

particularly selected as the cell container parts (i.e., collars, caps, and sodium cartridge)

taking into consideration of their good corrosion resistance, weldability, and machinability

[24, 25, 34]. In Figures 2.2(b) and (c), we show the CTE and elastic modulus variations

as functions of temperature for these four different materials. Stainless steels generally

are more expensive and has lower machinability compared with Al3003, but their CTE

values are closer to those of α- and β/β”-alumina. KOVAR is the most expensive among

the four candidates, however, it possesses a much lower CTE comparable to those of glass

or ceramics. Accordingly, KOVAR has been widely used in metal-to-ceramic or metal-to-

glass bonding in minimizing the interfacial strain/stress resulted from temperature changes

[38, 39, 40, 41, 42, 43]. The stress-strain curves at various temperatures for these four

potential cell container materials are provided in Figure 2.4, which clearly shows the large
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Figure 2.2: (a) Cross-sectional structure of a prototype planar NaS cell, and (b) CTE and
(c) elastic modulus variations with temperatures for cell container and α-, β/β”-alumina

materials.

differences in their magnitudes and temperature-dependencies.

In Tables 2.1 and 2.2, we summarized the cell constituent material types and their thermo-

mechanical material properties, respectively, used in the current work. As shown in Table

2.1, Al3003 alloy is applied for IMs because of its good stress absorption capability [24, 25].

The material properties in Table 2.2 were obtained based on the previously reported values

[24, 25, 34, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53] or measured at RIST (Research Institute

of Industrial Science and Technology, South Korea). In constructing the digital structure of

planar NaS cells, each component was assumed as homogeneous and isotropic solid materials.
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Table 2.1: Constituent material types of planar NaS cells used in this work.

Cell components Materials
Collars (top collar and bottom collar) STS430/STS304/KOVAR/Al3003
Caps (top cap and bottom cap) STS430/STS304/KOVAR/Al3003
Sodium cartridge STS430/STS304/KOVAR/Al3003
Insert metals (IM1 and IM2) Al3003
Insulating header (IH) α-Al2O3

BASE β/β”-Al2O3

Glass sealing (GS) Glass

Table 2.2: Thermo-mechanical properties of the cell materials in the temperature range of
20∼520 ◦C.

Materials CTE (×10−6 K−1) Poisson’s ratio Modulus of
elasticity
(GPa)

References

STS304 15.9-18.5 0.3 153-192 [45, 46, 47, 48]
KOVAR 4.7-6.3 0.317 129-154 [49, 50, 51, 52, 53]
STS430 10.2-11.7 0.28 139-175 [24, 25, 34]
Al3003 22.8-27 0.33 5-62.5 [24, 25, 34]
α-Al2O3 6.3-8.8 0.23 368-395 [24, 25, 34]
β/β”-
Al2O3

5.3-7.8 0.23 368-395 [24, 25, 34]

Glass 6.9 0.22 62 [24, 25, 34]
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2.2.3 Computational conditions

The thermal loading conditions that are typically assigned to the NaS cell assembly, op-

eration, and maintenance process can be found elsewhere [24, 25, 34]: 950 ◦C (GS joining

process)→ 20 ◦C→ 520 ◦C (cell joint assembly)→ 20 ◦C (cell container assembly)→ 350 ◦C

(cell operation) → 20 ◦C (cell maintenance). The cell operation and cell maintenance recur

in cycles depending on the maintenance schedule (typically every 4 to 5 years). Considering

the rubbery nature over the glass transition temperature and the nearly elastic characteris-

tics of glass materials, it was suggested that simplified temperature profile is adequate for

the FEA thermal loading conditions [25, 34]. Therefore, the FEA computation step incor-

porated in this work is divided into 3 steps given by: (i) cell joint assembly and freeze (520

→ 20 ◦C), (ii) cell container assembly to thaw for cell operation (20→ 350 ◦C), and (iii) cell

operation to freeze for cell maintenance (350→ 20 ◦C). Here, only the first cell operation and

maintenance cycle was modeled. As a displacement BC, the vertical displacements for the

outer edge of the bottom surfaces in the assemblies (i.e. bottom collar or bottom cap) were

fixed. All the interfaces between two adjacent cell components were tied together assuming

non-sliding, high-friction conditions.

2.3 Results and discussion

In Figure 2.3(a), we first show the deformation behaviors and the von-Mises stress distri-

butions (in MPa) of cells with various cell container materials after freeze (520 → 20 ◦C)

and thaw (20 → 350 ◦C). The deformation and the von-Mises stress are represented using

the cell shapes and the color distributions in the figure. Here, the degree of deformation is

magnified by a factor of 10 for visual clarity. After the joint assembly, when the temperature

is decreased from 520 to 20 ◦C, one can clearly notice that the radial contraction degrees

of the collars are in the sequence of Al3003 > STS304 > STS430 > KOVAR cells. This

is because the general CTE values of the associated materials in most of the temperature
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ranges are decreased in the order of Al3003 > STS304 > STS430 > ceramics > KOVAR, as

shown in Figure 2.2(b). In fact, for the KOVAR cell case, the freeze (520 → 20 ◦C) process

leads to a ‘relative’ expansion of cell collars with reference to the IH position, as CTE of

KOVAR is lower than those of α- or β/β”-alumina. The deformation behaviors during freeze

can be explained by the contraction mechanism illustrated in Figure 2.3(b). Because the

CTE values of metallic components are higher than that of ceramic parts (except KOVAR),

the relative strain of metallic parts must be higher than that of ceramic parts upon cooling.

In the figure, the red arrows represent the displacement aspect of metallic parts while the

blue arrows represent the displacement aspect of ceramic parts. In a cooling process, the

planar cell would contract in the radial direction, as indicated by the arrows #1, 3, 6, 7, 8

and 10. In this situation, because the metallic components shrink more towards the center

of the cell, it gives rise to normal tensile stresses in the cell height direction, as indicated by

the arrows #2, 4, 5 and 9. Upon heating (i.e., 20→ 350 ◦C), the container expands radially,

inducing the normal compressive stresses along the cell height direction. In this case, the

displacements will take place in the opposite directions of Figure 2.3(b).

After thaw, when the cell temperature is increased from 20 to 350 ◦C, it is seen that the

Al3003 and STS304 cells still show severe deformations with a higher degree of distortions

in the cell containers. Although the deformation amount is magnified by 10-fold, these

results already indicate the benefits of applying STS430 or KOVAR alloys. In addition to

the cell shape changes after freeze and thaw, the von-Mises stress contours presented in

Figure 2.3(a) also clearly manifest the general influences of fabricating planar NaS cells with

different container materials. In the figure, red-to-blue color legends with an identical scale

for different materials are used to denote the maximum and minimum stresses, respectively,

at each temperature. The ranges of the von-Mises stress distributions are varied from 3 to

373 MPa and from nearly 0 to 171 MPa after freeze and thaw, respectively, implying that

the residual von-Mises stresses are partly recovered through the heating process. From the

stress contours, it is expected that the STS304 cells would contain the highest residual stress
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Figure 2.3: (a) Deformation behaviors (shapes) and von-Mises stress distributions (color
contour) of cells with various cell container materials after freeze (520 → 20 ◦C) and thaw

(20 → 350 ◦C), and (b) schematic to show the cell contraction aspect upon cooling. In
Figure 2.3(a), the deformation amounts are magnified by 10 times for visual clarification.

despite the CTE of Al3003 is higher than that of STS304. These results come from the lower

elastic moduli of Al3003 compared with that of STS304 (see Table 2.2 and Figures 2.4(a)

and (b)). From the figure, the general trends for the accumulation of residual stresses in the

cells are recognized as STS304 > STS430 ≈ Al3003 > KOVAR cells and STS304 > Al3003

≈ STS430 ≈ KOVAR cells for the freeze and thaw processes, respectively. As previously

addressed, the concentration of residual stress in the cell joint area is important, as the

metallic cell cap would have a much higher tolerance to the stress and corresponding plastic
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deformations. It is found that the trends for the stress accumulation in the cell joint areas

of different cell types are similar as the overall trends, i.e., STS304 > Al3003 > STS430 ≈

KOVAR cells (see cropped images in Figure 2.5).

Figure 2.4: Stress-strain curves at various temperatures for (a) Al3003, (b) STS304, (c)
STS430, and (d) KOVAR materials.

With this information, in the next sub-sections, we attempt to analyze details of the

residual stress (i.e., normal stress and shear stress) accumulations on various cell joint areas

and BASE. The areas of interest include IH outer surfaces, IH/IM interfaces, and BASE

surfaces. The residual stress on IH outer surface is of concern as the in-house experiments

often encounter the cell fracture originated from this area, as reported in Reference [34]. The

stress in the interfacial area between IH and IM need to be examined to gauge the reliability

of TCB. In addition, from Figure 2.3(a), we showed that the thin and brittle BASE may

bend during the cooling and heating cycles, which necessitates to closely track the residual

stress distribution on it. None the less the von-Mises stress concentrations in the cell collars

and caps could be comparably high after the freeze and thaw cycles, the concentration of

thermo-mechanical stress in the metallic collars is not focused on here due to relatively higher
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Figure 2.5: Cropped images from Figure 2.3(a) to show the deformation behaviors (shapes)
and the von-Mises stress distributions (in [MPa], color contour) of cells with various cell
container materials after freeze (520 → 20 ◦C) and thaw (20 → 350 ◦C) in the cell joint

areas. The deformation amounts are magnified by 10 times for visual clarification.

fracture strength and robust metal-to-metal bonding in these areas.

2.3.1 Insulating header (IH) outer surface

The normal stress accumulation along the cell height direction on the outer surface of IH

(i.e., height normal stress, σ33) is important because it is directly correlated with the mode

I-type fracture from the IH outer side during the cell assembly, operation and maintenance

processes. Figure 2.6 presents contour maps with a same legend scale showing the variations
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of the calculated σ33 on the outer surface of IH. In the left-hand side image, the area of

interest (i.e., outer surface of IH) in the prototype cell system is indicated by the pink circle

and black dashed line. In each contour map, the x- and y-axes denotes the positions on the

IH outer surface (from top to bottom) and the temperature changes of computations upon

cell assembly, operation, and maintenance. The same 2D analysis contour map style with

identical legend scale for each computational set is used in the following Figures 2.7, 2.9,

and 2.10. In the figure, the local peak positions along with their maximum and minimum

values of σ33 are also contained in each contour map. From the figure, one can clearly notice

that, for the planar NaS cell systems fabricated using Al3003, STS304 and STS430, the IH

outer surface continuously experiences accumulated tensile stresses in the freeze process after

joint assembly (520→ 20 ◦C). In the following thaw process after container assembly (20→

350 ◦C), the concentrated tensile stresses are gradually released and less severe compressive

stresses can be accumulated. Finally, when the system is cooled down for maintenance (350

→ 20 ◦C), σ33 shows a similar distribution to the one after the cell joint assembly and freeze

(520 → 20 ◦C). On the contrary, the σ33 distributions on the IH outer surface of KOVAR

cell exhibit a nearly opposite trend with the temperature changes. From 520 to 20 ◦C,

σ33 exhibits a maximum tensile value, 50 MPa, at 412.5 ◦C but then decreases to show a

maximum compression value, –100 MPa at 20 ◦C. When the cell temperature increases from

20 to 350 ◦C and decreases from 350 to 20 ◦C, calculated σ33 indicates local peak values

of 46 and –92 MPa, respectively. This opposing trend for the contours of IH outer surface

σ33 in the KOVAR cell can be attributed to the lower CTE of KOVAR relative to α- and

β/β”-alumina as discussed previously.

In addition to the general distribution of σ33 on the IH outer surface, the peak values that

the cells would experience are clearly different depending on their container material types.

For the Al3003, STS304, and STS430 cells, the peak tensile σ33 on the IH outer surface is

obtained at 20 ◦C (either at the cell container assembly temperature or the maintenance

temperature) with the peak values of 188, 231, and 166 MPa, respectively. However, for
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Figure 2.6: Height normal stress (σ33) distributions on the outer surface of IH with cell
temperature changes for four prototype planar NaS cells.

the KOVAR cell, the maximum tensile σ33 is captured at 412.5 ◦C with a value of 50 MPa,

much smaller than those of the cell systems made up of other three alloys. Here, we focused

only the tensile component for IH outer surface σ33 because the tensile strength of ceramic

materials is typically much important; the bulk tensile strength of tensile strength is ca. 200-

500 MPa while the bulk compression strength is ca. 1500-2500 MPa for typical α-alumina

materials [34]. In the Al3003 cell case, there are two peaks of tensile σ33 at 20 ◦C indicating

the most likely regions of potential thermo-mechanical fracture. The STS304 and STS430

cells show one peak of tensile σ33 located near the top position of IH outer surfaces at two

different 20 ◦C. In the KOVAR computation results, one peak of tensile σ33 is located near

the top of IH outer surfaces at 412.5 ◦C (during freeze after cell joint assembly) and at 350

◦C (during cell operation). All of these peak positions of high σ33 correspond to the regions

near the end of direct contact between IH and IM.

The critical crack size (ac) that would initiate the spontaneous crack propagation on these

IH outer surfaces can be estimated using the classical Griffith brittle fracture criterion: ac =

(KIC/fσapp )2/π , where ac, KIC , f and σapp are the critical crack length in an infinite plate,

fracture toughness, a shape parameter determined by the specimen and crack geometry,
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Table 2.3: Critical crack lengths (ac) on the outer surface of IH in the prototype planar
cells with different container materials.

Container materials ac (µm)
f=0.60 f=1.12

Al3003 225∼400 64∼114
STS304 148∼263 42∼75
STS430 288∼510 82∼147
KOVAR 3205∼5700 920∼1630

and applied tensile stress, respectively. Given that KIC = 3.0 ∼ 4.0 MPa
√

m for typical

alumina materials and the shape factor f = 0.60 ∼ 1.12 for a semi-circular crack on the

surface (f = 0.6, the largest critical crack size but the semi-circular crack has a length

of 2ac) and a through-edge crack on the IH outer surfaces (f = 1.12, the smallest critical

crack size), the estimated ranges of ac for various cell types are summarized in Table 2.3.

For cracks with other shapes, the critical lengths will fall between these two extreme case

results. Using modern techniques for synthesizing α-alumina IH, if the largest crack size is

maintained below ca. 100 µm, which corresponds to the in-house experimental observations,

then applying Al3003, STS304, and STS430 container materials will have some probabilities

for cell fracture, depending on the existing crack shapes, from the outer surface of IH at the

cell container joint temperature and the cell maintenance temperature. On the other hand,

the KOVAR cell modeled using the current prototype planar NaS design with a BASE disk

size of 90 mm will unlikely to initiate crack propagation and subsequent cell fracture from

this IH outer surface.

2.3.2 Interface between insulating header (IH) and insert metals

(IMs)

Shear stress on IH top surface

The shear stress component along the cell radial direction (radial shear stress, σ13) at the

interfaces between IH and IM is also important because it can lead to interface decohesion
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when the accumulated stress is greater than the shear bonding strength between IH and IM.

In Figure 2.7(a), we provide σ13 distributions on the IH top surface that is in contact with

the bottom surface of IM1 using contour maps for Al3003, STS304, STS430, and KOVAR

cells. The area of interest is indicated by the pink ellipse with dashed line in the left-hand

side cross-section image. The edge positions of the contacting IM1 are given by the black

dotted lines in each contour map. It is found that two peaks of σ13 are located near the

outer and inner edges of the IH/IM1 interfaces at 20 ◦C (cell container assembly temperature

and maintenance temperature), with the σ13 at the outer edge being relatively larger. The

respective maximum peak values of σ13 on the IH surfaces for the Al3003, STS304, STS430,

and KOVAR cells are 70, 84, 77, and 21 MPa. In this shear σ13 case, the magnitude is

important because the sign of σ13 merely dictates the direction of stress that can both initiate

the interfacial decohesion, negative being the inward shear and positive being the outward

shear, respectively. From these results, it is predicted that the KOVAR cell would not

initiate the interfacial decohesion along the IH/IM1 interface, as the shear bonding strength

of Al3003 IM and α-alumina IH is expected to be over ca. 100 MPa [34]. Using other three

alloys as the container materials for the prototype planar cells, however, would increase the

probability of the decohesion between IH/IM1 interface depending on the interfacial bonding

conditions to contain imperfections and/or impurities.

Normal stress on IH top surface

Now, in Figure 2.7(b), we show the normal stress distributions along the cell height direction

(height normal stress, σ33) on the top surfaces of IHs for four different cell types. As before,

the black dotted lines again represent the edge positions of IM1 in touch with IH. After

freeze at 20 ◦C (cell container assembly temperature and cell maintenance temperature), the

predicted maximum tensile σ33 on the IH top surface near the outer edge is approximated

as 165, 160, and 100 MPa for Al3003, STS304, and STS430 cells, respectively. In the

KOVAR cell case, maximum σ33 on the IH top surface is observed at the cell operation
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Figure 2.7: (a) Radial shear stress (σ13) and (b) height normal stress (σ33) distributions on
the top surface of IH with cell temperature changes for four prototype planar NaS cells.

temperature, 350 ◦C, again near the outer edge. Because the normal bonding strength of

IH/IM is measured as ca. 40-80 MPa in the in-house experiments, it is highly likely that the

interfacial failure of IH/IM for Al3003 and STS304 cells can be initiated from the IH edge

side even in the cell assembly stage. Given that the maximum tensile σ33 position is not

at the edge location, the chance of interfacial fracture for the STS430 cell would be much

smaller than those of Al3003 and STS304 cells, as the interfacial decohesion is experimentally

observed to be originated from the bonding edge area. For the KOVAR cell, the maximum
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σ33 falls in the range of ca. 30-40 MPa, which may or may not give rise to the interfacial

decohesion through the normal stress failure mechanism. Here, the compression σ33 is not

focused on, as the it would not majorly influence the interfacial decohesion through the

normal failure mechanism. From these results, it is suggested that applying the KOVAR

materials would much increase the cell safety and security by reducing the probability of

IH/IM interfacial decohesion. Note that the shear and normal stress accumulations along

the interface of IH/IM1 have been discussed here. This is because the stress distributions

with changing temperatures for σ13 and σ33 components in the IH/IM2 are lower or nearly

comparable to those in the IH/IM1 (see Figure 2.8 to show the contour maps of (a) radial

σ13 and (b) normal σ33 distributions on IH surfaces with changing temperatures along the

interfaces of IH/IM2 for the STS304 cell, as examples).

Figure 2.8: Contour maps of (a) radial shear σ13 and (b) height normal σ33 distributions on
IH surfaces with changing temperatures along the interfaces of IH/IM2 for the STS304 cell.

The black dotted lines in each map indicate the edge positions of IM2 in direct contact
with IH bottom surface.

Shear and normal stresses on IM1 bottom surface

Figure 2.9(a) provides the radial shear stress (σ13) distributions on the bottom surface of IM1

in the cells with four distinct container materials. As the radial dimension of IM surface

is smaller than that of IH surface, the IM edge lines shown in Figure 2.7 are not shown

here. From the computation results, when the cell container materials altered from Al3003,

STS304, STS430 to KOVAR, the maximum local σ13 on the IM1 bottom surface are identified
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as –91, –96, –86 and 48 MPa, respectively, near the outer edges of IM1. Again, considering

that the shear bonding strength of IH/IM is over ca. 100 MPa, these σ13 concentrations

in four cell types may not result in the interfacial fracture due to the concentration of

interfacial σ13. However, similar to the analysis of σ13 in the IH/IM1 interface from the IH

surface, the Al3003, STS304, and STS430 cells have a high risk of potential decohesion of

the IH/IM1 TCB, whereas the KOVAR cell is unlikely to show the bonding fracture through

the interfacial shear decohesion mechanism. In Figure 2.9(b), we now present the predicted

results of the height normal stress (σ33) distributions on the IM1 bottom surfaces in the cells.

The maximum tensile σ33 values on this IM1 surfaces are expected as 173, 130, 111, and 47

MPa for the Al3003, STS304, STS430, and KOVAR cells, respectively. As predicted from

the σ33 variations on the IH surface, the analysis of σ33 concentration on the IM1 surfaces

clearly shows that there is a high probability of interfacial decohesion initiated from the

outer bonding edge for the cells made up of Al3003 and STS304 materials. It is also noted

that, the general stress accumulation aspects and stress concentration positions coincide on

both surfaces, i.e., IH top and IM1 bottom surfaces. It is found that the degree of residual

stress concentration is by and large higher on the IM1 side probably resulted from much

higher deformation of metallic components.

2.3.3 alumina solid electrolyte (BASE) surfaces

Finally, in Figure 2.10, the calculated normal stress distributions along the cell radial direc-

tion (σ11, radial normal stress) on the top surface of BASE upon cell temperature changes

for the prototype planar NaS cells with various cell container materials are presented. In

the BASE case, the radial normal stress σ11 concentration is important because it can cause

the mode I-type fracture on the surface of BASE. From the figure, it is seen that σ11 on

the top surface of BASE mostly changes homogeneously with temperature variations, except

the outer edge regions. This is probably due to the direct contact with GS compartment,

as marked by the black dotted lines in Figure 2.10 to indicate the GS edge positions. When
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Figure 2.9: (a) Radial shear stress (σ13) and (b) height normal stress (σ33) distributions on
the bottom surface of IM1 with cell temperature changes for four prototype planar NaS

cells.

the maximum tensile σ11 on the top surfaces of BASE is compared for different systems, the

sequence is lined up as, STS304 > Al3003 > KOVAR cells with their corresponding tensile

σ11 values of 125, 43, and 16 MPa, respectively. It was calculated that, for the STS304 cell

in particular, the concentrated radial σ11 on the top surface of BASE can reach as large

as 125 MPa during the thaw process after the complete cell assembly. Although imposing

tensile stress of 125 MPa on the BASE surface would not directly lead to an electrolyte
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fracture, given that very thin disc shaped geometry of BASE can be distorted, it is thought

that applying STS304 materials as the container of cell is not feasible for the prototype

planar design considered in this work. For STS430 cell, the radial σ11 stress is predicted

to be all compressive throughout the entire temperature profile changes. For KOVAR cell,

the trend of σ11 variations with temperature changes is opposite to the trend of Al3003 and

STS304 cells because of lower CTE values of KOVAR with respect to the CTEs of α- or

β/β”-alumina. Also, note that the computation results presented in Figure 2.10 are based

on an idealized experimental condition. Therefore, any imperfections in the experimental

conditions and/or material preparations such as non-flat BASE and off-centering of BASE

may substantially increase the residual stress accumulation and subsequent cell failure. Here,

the results of radial σ11 distributions only on the top surface of BASE are discussed because

higher tensile stress is concentrated on the top surface probably due to the geometrical prox-

imity to the metallic components (i.e., top collar) of the cell. For reference, the calculated

results of radial σ11 distributions on the bottom surface of BASE for four cell systems are

given in Figure 2.11.

Figure 2.10: Radial normal stress (σ11) distributions on the top surface of BASE with cell
temperature changes for four prototype planar NaS cells.

In Figure 2.12, we summarize the predicted maximum local stress concentrations at
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Figure 2.11: Radial normal stress (σ11) distributions on the bottom surface of BASE with
cell temperature changes for the prototype planar NaS cells with various cell container

materials. The black dotted line in each map indicates the edge position of GS in direct
contact with BASE bottom surface.

various cell components for four prototype planar NaS cells. In the first set (far left-hand

side column set), the maximum von-Mises local stress in the cell for different cell types is

shown, and the rest of sets are indicated by the stress component (σ33, σ13, or σ11) with

corresponding cell parts (IH, IM1, or BASE). Some of the data in BASE are missing in

Figure 2.12 because only the tensile stress is included for the normal stress components.

From the summary figure, using Al3003 or STS304 materials are seemingly impractical; these

materials may result in a cell failure originated either from the IH outer surface or from the

bonding delamination between IH/IM. STS304 cell may contain a high probability of BASE

facture depending on the cell fabrication conditions. It is surmised that applying STS430 is

better than Al3003 and/or STS304, however, it may also possess a chance of IH/IM bonding

decohesion. On the other hand, one can readily recognize that incorporating KOVAR as the
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cell container material would exhibit high benefits to reduce the accumulated residual stresses

in nearly all of the cell compartments. It is understood that adopting relatively expensive

KOVAR materials into the cell container can present a challenge for commercialization of

cells by reducing the manufacturing cost. Nevertheless, through the current computation

modeling study, we clearly demonstrate that employing alloy systems with lower CTE values

(i.e., lower than CTE of STS430) is necessary to develop a safe and secure planar NaS cell.

Lastly, it must be again addressed that, the computation results and analyses shown in this

work are based on the prototype planar NaS cell design with a BASE disk diameter of 90

mm, which is contemporarily regarded as the largest fabricable planar NaS cell. If the cell

size is increased beyond 90 mm, the impacts of cell container materials on the residual stress

accumulation will become more critical as the deformation amount during the assembly and

cell cycles is increased.

Figure 2.12: Summary of predicted maximum local stress concentrations at various cell
components for the four prototype planar NaS cells.
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2.4 Conclusions

Based on a prototype cell design, a series of FEA computational assessments have been

performed on the thermo-mechanical residual stress accumulations in the cell joint areas and

BASE components of contemporary planar NaS cells with different container materials.

� The maximum local shear or tensile stresses in IH, IM1 and BASE of cells with different

container materials are schematically illustrated in the summary chart presented in

Figure 2.12. It can be seen that using KOVAR as the container material (presented

by the grey columns in Figure 2.12) can considerably reduce the thermo-mechanical

stresses in the joint part, thereby increasing the thermo-mechanical stability and safety

of the P90 cell.

� The height normal tension at IH/IM1 interface will cause the decohesion of the TCB

either from the IH side or the IM1 side. In other words, if a P90 NaS cell is broken,

the most possible reason is the mode I decohesion of the IH/IM1 seal. For the cell

using Al3003 as container material (presented by the pink columns in Figure 2.12),

the decohesion at IH/IM1 interface will take place at the outer edge of the interface

either from the IH side or the IM1 side during step #1. For the cell with STS304 as

container material (illustrated by the yellow columns in Figure 2.12), the decohesion

of the IH/IM1 interface will initiate at the outer edge from the side of top surface

of IH during the computation step #1. For the cell employing STS430 as container

material (presented using the blue columns in Figure 2.12), the decohesion of IH/IM1

interface will happen either from the IH side or the IM1 side during step #1 and the

decohesion position is near the outer edge of the interface. Even applying KOVAR can

greatly reduce the thermo-mechanical stresses in the P90 cell, it can still encounter

a decohesion either from the IH or the IM1 side near the inner edge of the interface

which may initiate in step #1 except the normal bonding strength can achieve beyond

47.2 MPa.
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� The BASE is relatively safe because the relatively small normal stresses accumulated

on its top and bottom surfaces. This may indicate that a thinner BASE design can be

applied in the P90 cell system.
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Chapter 3

PLGA-based drug carriers

3.1 Introduction

Over the past several decades, poly(lactic acid) (PLA), poly(glycolic acid) (PGA) and their

copolymer, poly(lactic-co-glycolic acid) (PLGA), have received rapidly increasing research

interest, from textiles and packaging industry to more sophisticated absorbable surgical fibers

and drug delivery devices because of their characteristic biodegradability and biocompati-

bility [54, 55, 56, 57]. Out of these, drug delivery device products are one of the most

important sectors for the application of PLGA-based materials. The drug release behaviors

from PLGA-based drug delivery systems can be dictated by the physicochemical properties

of PLGA copolymers, such as degradation rate, which can be adjusted by molecular weight

(Mw), monomers ratio, and monomer sequence [55, 56]. For example, it is well known that

degradation and drug release rate will be accelerated with decreasing molecular weight of

PLGA and increasing the glycolic acid (PGA) ratio of PLGA copolymers [56, 58, 59]. Other

than the properties of PLGA copolymers, there are numerous other factors including drug

type (hydrophilic or hydrophobic), drug molecule size, acidity of drugs, and device shape

that can substantially influence degradation rates and concurrent drug release behaviors of

PLGA-drug products [56].
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Among these factors, the structures of PLGA-drug materials could play an essential

role in determining the release characteristics. The most studied aspects are drug loading

and PLGA polymer matrix size, especially after recent advances that have been made for

controlling drug loading and micro-/nanosphere size during production [60, 61]. For instance,

Acharya et al. [61] have observed the faster drug release from smaller micro particle size of

PLGA-felodipine microcylinders. In addition to drug loading and polymer matrix size, the

size of drug particles embedded in the polymer matrix also can influence drug release kinetics

[62, 63]. Other microstructural features, such as micro phase-separated morphology of block

PLGA components, can also profoundly impact drug release. For example, increased drug

polymer phobicity and drug loading could lead to drug and polymer separating into compact,

drug-rich domains, within a polymer-rich matrix. Choi and coworkers [64] investigated the

release of sirolimus from PLGA matrix for the application of drug-eluting stents (DES).

Their findings proved that, in the larger drug-rich regions, the faster the drug was released

in vitro due to water absorption and swelling. It is likely that the miscibility/immiscibility

between PLGA and drug also substantially affects drug-rich domain distribution and size in

the continuous polymer phase. Since the two monomers of PLGAs, PLA and PGA, would

exhibit different thermodynamic activities, the different sequences can markedly influence

the hydrolysis and drug release kinetics from PLGA-based drug delivery systems [65].

In this part of work, we combined the multi-scale modeling (i.e., atomistic and meso-

scale computations) and experimental approaches to understand the thermodynamic inter-

actions of polymer-drug and resulting structural evolution of PLGA-tetracycline hydrochlo-

ride films. Tetracycline hydrochloride (TC-HCl, referred to as “TC” for simplicity in the

following manuscript) was used in this study because it is relatively inexpensive, safe to

handle, and broadly used in medical devices [66, 67, 68, 69]. For this, we quantified the

polymer-drug interactions using Flory-Huggins parameter (χ) that is a criterion of miscibil-

ity/immiscibility of polymeric material systems. In quantifying such interaction parameters,

an atomistic molecular dynamics (MD) computation technique has been employed in the
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present work. In general, it is known that the thermodynamic data for PLGA-drug systems

are not readily available and obtaining those material property data through experimental

techniques requires higher challenges [70]. Replacing the experimental characterizations, an

attractive alternative is to use theory and computation to establish the requisite thermo-

dynamic properties in understanding the interaction in the drug-PLGA systems. In ad-

dition, the self-diffusion coefficients (Dself ) of TC molecules in PLA and PGA polymers

were separately calculated and they were correlated with the structural evolution. Using

those material properties obtained through MD computations, meso-scale simulations were

conducted using phase-field method (PFM) to predict the surface structures of PLGA-TC

films. In conjunction with the computational simulations, two sets of PLGA-TC films having

different copolymer ratios were experimentally fabricated and their surface structures were

characterized to support the theoretical predictions.

3.2 Methodology

3.2.1 Computational section

Molecular dynamics (MD)

For atomistic MD computation to quantify the Flory-Huggins interaction parameters (χ),

the Materials Studio commercial software package (version 7.0, Accelrys Inc.) has been used.

Through a series of MD computations, the χ values for various PLA/PGA, PLA/TC, and

PGA/TC systems were calculated separately. The PLA/PGA composition ratios were varied

from 0/100 to 100/0 with a 10 wt% increment interval. In the PLA/TC and the PGA/TC

systems, the drug ratios in the binary systems were 15 and 45 wt%. Polymer chains of PLA

and PGA were firstly built with the number of the repeat monomer unit of 50, and the

charge modification and the geometry optimization were conducted for the created polymer

chains and the imported TC molecules. It is generally accepted that systems comprised of
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polymer chains of 50 monomer units can successfully represent the bulk properties [71, 72].

The structures of PLA and PGA chains and TC molecule are shown in Figure 3.1(a). In

the figure, the white, gray, red, blue, and green spheres represent the H, C, O, N, and Cl

atoms, respectively. Cubic simulation boxes were then constructed with a periodic boundary

condition. The lengths of each box were in the range of 30-35 Å. The densities of PLA, PGA,

and TC at 298.15 K were set as 1.25 g cm−3 [73], 1.53 [74, 75] g cm−3, and 1.1821 g cm−3

[76], respectively. For the PLA/PGA materials, a blend structure was constructed instead of

copolymers because χ calculations from these blend and copolymer systems showed nearly

identical results. For PGA/TC and PLA/TC systems as well, a blend structure was con-

structed containing polymer chains and TC molecules. The details for the PLA/PGA blends

of different compositions are summarized in Table 3.1 and the details for the blend systems

of PLA/TC and PGA/TC considered in the present MD simulations are summarized in

Table 3.2, respectively. When constructing the candidate blend structures, 100 independent

configurations were initially built for each composition and five of them that showed the

highest energetic stability (i.e., lowest energy values after the geometry optimization) were

selected for subsequent computations. The calculated results were obtained based on the MD

computations from these five independent molecular configurations. Figure 3.1(b) contains

some of examples of PLA/PGA, PLA/TC, and PGA/TC simulation boxes used in the work

of this part.

Then energy minimization of each computation MD box was accomplished to eliminate

the local non-equilibrium by geometry optimization. To further relax local hot-spots and

achieve equilibrium, these structures proceeded to a 3-circle thermal anneal from 300 to

800 K. 15 ps MD simulation was conducted using NVT thermodynamic ensemble at each

temperature. After the annealing, a 15 ps NVT MD simulation was conducted to render

the temperature back to 300 K with a 100 K interval, then a 1000 ps NVT MD simulation

was carried out at 298.15 K. At last, based on the 1000 ps NVT MD computations, the

cohesive energy density (CED) for each system was calculated. Trajectories were saved
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Table 3.1: PLA/PGA blend systems with various composition ratios considered in the
present MD simulations.

PLA/PGA
Compositions
(wt%)

Number of
LA units per
chain

Number of
GA units
per chain

Numbers of
chains per box

Density
(g cm−3)

Box
length
(Å)

0/100 – 50 13 PGA 1.530 34.5
10/90 50 50 1 PLA/11 PGA 1.502 34.1
20/80 50 50 2 PLA/10 PGA 1.474 34.5
30/70 50 50 3 PLA/9 PGA 1.446 34.9
40/60 50 50 4 PLA/7 PGA 1.418 34.5
50/50 50 50 5 PLA/6 PGA 1.390 34.9
60/40 50 50 5 PLA/4 PGA 1.360 33.1
70/30 50 50 6 PLA/3 PGA 1.334 33.6
80/20 50 50 7 PLA/2 PGA 1.302 34.1
90/10 50 50 7 PLA/1 PGA 1.278 33.2
100/0 50 – 8 PLA 1.250 33.8

Table 3.2: PLA/PGA blend systems with various composition ratios considered in the
present MD simulations.

Compositions Number
of LA
units per
chain

Number
of GA
units per
chain

Numbers of TC
molecules and
polymer chains
per box

Density
(g cm−3)

Box
length
(Å)

Pure TC – – 58 TC 1.1821 34.0
PLA/TC (15 wt%) 50 – 7 PLA/9 TC 1.2401 34.1
PGA/TC (15 wt%) – 50 10 PGA/11 TC 1.4768 33.8
PLA/TC (45 wt%) 50 – 4 PLA/25 TC 1.2192 33.1
PGA/TC (45 wt%) – 50 6 PGA/30 TC 1.3728 33.8
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Figure 3.1: (a) Structures of PLA and PGA chains and TC molecules, and (b) examples of
MD boxes to contain PLA/PGA, PLA/TC, and PGA/TC blends.

every 5 ps in the 1000 ps NVT procedure and the last 100 trajectories were applied for the

estimation of CED and average χ. Dself of TC molecules were extracted from the 1000 ps

NVT MD simulations using the mean square displacement (MSD) analysis. During the NVT

simulations, the temperature of the computation domain was controlled by the Andersen

ensemble. Throughout the MD simulations, the forcefield COMPASS II (condensed-phase

optimized molecular potentials for atomistic simulation studies II) implemented in Materials

Studio package was used for all of the computations of interatomic interactions [77, 78].

Phase-field modeling (PFM)

The phase-field method (PFM) predicated on a thermodynamic description of materials

system provides an attractive route to predict the meso-scale structural evolution during

processing/fabrication. PFM was originally developed to portray various evolution phenom-

ena such as phase separation, diffusion, crystallization, and coarsening using a small set of
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system-specific parameters in metallic systems [79]. This PFM can be applied to polymer-

drug systems to describe the structural evolution that will eventually impact delivery kinetics

of the prescribed system. PFM starts with by defining the bulk configurational free energy

density, f (ϕi) , of a molecular system [80, 81].

f (ϕi) = RT

n∑
i

ϕi

V m
i

lnϕi +
RT

V s

n∑
i

n∑
j,j>i

χijϕiϕj (3.1)

where i iterates over all phase variables (i.e., polymer, drug, and solvents), n is the total

number of phases, ϕi and ϕj are the mole fractions of the system phase i and j, V m
i is the

molar volumes of the individual phases, V s is the molar volume of solvents, χij is the Flory-

Huggins parameter between the system phases (i and j), R and T are the gas constant and

the absolute temperature, respectively. While Equation 3.1 specifies the bulk contribution

to the free energy of a system, the interfacial contribution resulted from distinct phase

boundaries must be taken into consideration. PFM includes the interfacial contribution by

introducing the gradient terms to a system by constructing the isothermal free energy, F ,

over the system volume V .

F =

∫
dV

[
f (ϕi) +

n∑
i

ε2i
2
|∇ϕi|2

]
(3.2)

where εi are the coupling parameters for the gradient terms. By adding the gradient terms in

Equation 3.2, the system will have interfacial free energy that is proportional to εi. When the

system of interest is assumed to be isothermal and incompressible, the temporal evolution

of the concentration of individual phase variables can be governed by the following Cahn-

Hilliard equation [82].

∂ϕi

∂t
= ∇ ·Mi∇

δF

δϕi

+ ζi (3.3)

where Mi is the mobility and ζi is the “noise” (i.e., Langevin fluctuation) of phase i, respec-

tively. For a given polymer-drug system, the parameters in Equations 3.1-3.3, are typically
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well-defined with the exception of χij and Mi that depend on ϕi and/or ϕj. The coupling

parameter, εi, can be a function of ϕi, however, since the interfacial properties are generally

not well-established, εi = ε (i.e., constant) is a standard assumption [83]. The mobility, Mi,

is typically represented as the product of diffusivity (Di) and thermodynamic factor (i.e.,

second derivatives of homogeneous energy density). In this work of multi-scale modeling, χij

and Di parameters were quantified using the atomistic MD computation results.

3.2.2 Experimental section

A polymer-drug solution was prepared by dissolving TC (i.e., TC-HCl, T7660, BioRe-

agent; Sigma-Aldrich, Milwaukee, WI) and a PLGA Mw -50,000 g mol−1 in tetrahydro-

furan (THF, 401757, anhydrous, inhibitor-free; Sigma-Aldrich, Milwaukee, WI). PLGA with

PLA/PGA=75/25 (P1941, PLGA75/25) and PLA/PGA=50/50 (739944, PLGA50/50) were

obtained from Sigma-Aldrich, Inc. The ratios of PLGA and drug are 85 and 15 wt% and

the final solution concentration containing a polymer and a drug of 1 % (w/v) was filtered

(0.4 µm). All solutions were stored in a cooler (ca. 5 ◦C) and used for film casting in 18

hours. Films were prepared by dropping 0.37 ml of PLGA-TC-THF solution at room tem-

perature onto a 22 × 22 mm2 microscopic cover glass. Solvent was evaporated in a petri

dish (diameter 6.5 in × height 0.75 in) with a rate of about 75 mg h−1. The petri dish

was covered by porous Al foil to control the evaporation rate [69]. Before performing the

atomic force microscopy (AFM) experiment, all films were placed under house vacuum at

room temperature for 18 hours. Surface structures of coating were obtained using an AFM

(model MFP 3D) in tapping mode with a silicone OMCL-AC240TS probe (spring constant

1-3 N m−1). Multiple sections with the scan area of 10 × 10 µm2 were used to measure the

drug particle sizes.

This experiment was done by Donghun Koo from Sigma-Aldrich Inc., Milwaukee.
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3.3 Results and discussion

3.3.1 MD computation

First, using MD simulations, we have calculated the cohesive energy densities (CED) and the

solubility parameters (δ) of pure PLA, PGA, and TC materials. CED is the energy required

to completely remove the unit volume of molecules from their amorphous bulk state to infinite

separation. δ is typically estimated by δ =
√

CEDand is one of the principal quantities for

prediction of blend miscibility [84, 85]. When the δ values of two pure substances are similar,

it is generally anticipated that the blend systems are miscible. δ values of pure PLA, PGA,

and TC at 298.15 K predicted by MD simulation are given in Table 3.3. Each δ is an average

value derived from 5 independent simulations. Table 3.4 lists the δ values of individual

polymers obtained by other methods [86, 87, 88]. The predicted δ value for the pure PLA at

298.15 K in this work is 20.51 (J cm−3)0.5, consistent with the previous data ranging from

17.64 to 21.73 (J cm−3)0.5 in Table 3.4. In general, the δ value of PLA is smaller than that of

PGA because PGA has higher attractive interactions compared to PLA, as shown in Tables

3.3 and 3.4. The δ value of PGA in the previous literatures varies from 19.24 to 27.11 (J

cm−3)0.5, and our results (26.84 (J cm−3)0.5) are closer to the high end of the prior data

set. This dictates that the current MD calculation shows a fairly consistent result for the δ

values of PLA and PGA compared with the previous findings, which manifests that the MD

procedures employed in the current work could be applied to quantify the Flory-Huggins

parameters (χ) for various compositional PLGA-TC systems within a tolerable error range.

Note that δ of TC (i.e., TC-HCl) is currently not available from previous experiments and/or

computations.

As a first approximation, if (δA − δB)2(where δA and δB are the Hildebrand solubility

parameters of polymers A and B, respectively) is smaller than 4 J/cm3, the two polymers may

be treated as miscible [85]. With this, it is thought that pure PLA (δ=20.51 (J cm−3)0.5) and

pure PGA (δ=26.84 (J cm−3)0.5) would not be miscible. This simple approximation agrees
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Table 3.3: Solubility parameter (δ) values of PLA, PGA, and TC predicted by simulation
at 298.15 K.

System Number
of repeat
unit per
polymer
chain

Number of
polymer
chains
or drug
molecules
per box

Molecular
mass (g mol−1)

Density (g cm−3) Box
length
(Å)

Solubility
parameter
(J cm−3)0.5

PLA 50 8 PLA 3621.16 1.250 [73] 33.8 20.51
PGA 50 13 PGA 2919.81 1.530 [74, 75] 34.5 26.84
TC – 58 TC 480.901 1.1821 [76] 34.0 21.61

Table 3.4: Solubility parameter (δ) values of PLA and PGA estimated using different
experimental and theoretical approaches at 298.15 K.

Polymer Method Solubility parameter
(J cm−3)0.5

Ref.

PLA Van Krevelen group contribution 17.64 [86]
Intrinsic 1D viscosity 19.16
Intrinsic 3D viscosity 19.28
Classical 3D geometric 19.53
Fedors group contribution 21.42
Optimization 21.73
Hoftyzer-van Krevelen group contribution 21.4 [87]
Hoy group contribution 21.3

PGA Van Krevelen group contribution 19.24 [86]
Fedors group contribution 23.82
Hoftyzer-van Krevelen group contribution 24.7 [87]
Hoy group contribution 24.2
Molecular simulations 27.11 [88]
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with the conclusion based upon the critical χ argument that will be discussed later. TC

has a δ value of 21.61 (J cm−3)0.5, similar to the value of PLA compared with that of PGA.

However, it would not be accurate to conclude that PLA and TC are more miscible because

the above criterion of miscibility regarding Hildebrand solubility parameter is only useful for

judging nonpolar and slightly polar systems without hydrogen bonding [84, 89]; although

PLA is nonpolar, PGA and TC are polar [90, 91]. In addition, the above criterion does not

include the impacts of compositional variations in the blends or copolymer systems. Rather,

the Flory-Huggins lattice theory is a widely accepted approach to quantify the interactions

and subsequent mixing behavior of polymeric systems [80, 81, 91, 92, 93]. Such Flory-

Huggins lattice theory has been documented and considered as an excellent starting point

to understand and describe not only the mixing between a large Mw component and a small

Mw component, but also the mixing between two types of polymers. The Flory-Huggins

parameter, χ, is commonly used as a criterion of miscibility. For a binary mixture, χ can be

evaluated by [84],

χ =

(
∆Emix

RT

)
Vmono (3.4)

where Vmono is the average molar volume of the repeat units of PLA and PGA for PLA/PGA

blends. If one of the two components represents a drug, then Vmono can be approximated as

the molar volume of the drug molecule because the molar volume of drug is typically much

smaller than the molar volume of entire polymer chains [94, 95]. When A and B phases are

mixed, the energy of mixing, ∆Emix, of the mixed system can be estimated by [84, 96],

∆Emix = φA

(
Ecoh

V

)
A

+ φB

(
Ecoh

V

)
B

−
(
Ecoh

V

)
mix

(3.5)

where φA and φB are the volume fractions of polymers A and B, respectively, therefore,

φA +φB = 1. Here,
(
Ecoh

V

)
A

,
(
Ecoh

V

)
B
, and

(
Ecoh

V

)
mix

denote the CEDs for pure A, pure B and

mixture, respectively. CED (or
(
Ecoh

V

)
) characterizes the strength of attractive interactions.
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Table 3.5: χ values of PLA/PGA blend systems with various composition ratios considered
in the present MD simulations.

PLA/PGA
Compositions

CEDPLA (J cm−3) CEDPGA(J cm−3) CEDmix(J cm−3) Average
χ

0/100 – 720.3618294 – –
10/90 420.6942980 720.3618294 688.2377408 0.1151047
20/80 420.6942980 720.3618294 654.9688151 0.2606612
30/70 420.6942980 720.3618294 624.0830464 0.3762202
40/60 420.6942980 720.3618294 589.4487977 0.4078942
50/50 420.6942980 720.3618294 563.3699066 0.4016148
60/40 420.6942980 720.3618294 533.0482740 0.4191711
70/30 420.6942980 720.3618294 506.0738416 0.3040633
80/20 420.6942980 720.3618294 472.7963386 0.3151782
90/10 420.6942980 720.3618294 446.8240800 0.2539610
100/0 420.6942980 – – –

By combining δ =
√

CED and Eqs. 3.4 and 3.5, ∆Emix and χ for a mixture can be calculated

as long as the CED values for constituent phases are known.

Table 3.5 summarizes the calculated χ values for the PLA/PGA systems with various

composition ratios. All of the calculated χvalues are the positive values indicating that the

blending of PLA and PGA polymers would not follow the ideal mixing behavior. Rather, it is

expected that the PLA and PGA molecules would exhibit repulsive interactions to a certain

degree. These computational results are also displayed in Figure 3.1(a) using black square

symbols. In the figure, the error bar represents the standard deviations from 5 independent

simulations. For a mixture of two polymer components, the critical Flory-Huggins parameter

(χcritical) can be generally estimated by [84],

χcritical =
1

2

(
1
√
nA

+
1
√
nB

)2

(3.6)

where nA and nB represent the number of repeat units of A and B polymer chains, respec-

tively. If B represents a drug, then nA and nB represent the number of chain segments of the

polymer molecules and the number of the drug molecules, respectively, as a chain segment

should have the identical volume as a drug molecule according to the Flory-Huggins lattice
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theory.

Figure 3.2: Plots to show the calculated χ values in the blend systems of (a) PLA/PGA
and (b) PLA/TC and PGA/TC. In Figure 3.2(b), numerical suffixes indicate the weight %

of TC in the blend.

Polymer blends are miscible if χAB < χcritical where χAB is the Flory-Huggins parameter

of A and B polymers; if χAB is considerably greater than the critical value, then blends

are immiscible. If χAB is somewhat greater than χcritical, the blends are partially miscible

[84, 92]. For the PLA/PGA systems considered in this work, nPLA = nPGA = 50 and(
χPLA/PGA

)
critical

= 0.04. It is indicated as the red dashed line in Figure 3.2(a). As shown

in Figure 3.2(a), average χ values for PLA/PGA systems of entire compositions are all

larger than
(
χPLA/PGA

)
critical

, thus PLA and PGA are thought to be immiscible or partially

miscible. PLA/PGA 10/90 exhibits the best compatibility while PLA/PGA 60/40 possesses

the lowest compatibility. As the proportion of PLA increases from PLA/PGA 10/90 to

PLA/PGA 40/60 in the blends, average χincreases gradually, and, as the proportion of

PLA increases from PLA/PGA 60/40 to PLA/PGA 90/10 in the blends, average χdecreases

gradually. The average χ of PLA/PGA 50/50 is slightly lower than those of PLA/PGA

40/60 and PLA/PGA 60/40 with a relatively larger standard deviation, but it is still higher

than those of other compositions.

In Figures 3.3 and 3.4, we show the radial distribution function (RDF), g(r), of carbon

atoms of PLA and PGA polymers, respectively, in the pure and blend systems. For statistical

relevancy, these data were obtained from the averages of 3 independent MD simulation sets.
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Figure 3.3: Plots to show the calculated RDF values of (a) intramolecular carbon atoms,
(b) first peaks of intramolecular carbon atoms, and (c) intermolecular carbon atoms of

PLA in pure PLA and PLA/PGA blend systems.

This RDF represents the probability of finding a pair of atoms at a given distance (r) with

reference to bulk materials with random distribution. Therefore, the analysis of g(r) will

quantitatively capture the atomistic interactions of the given polymer chains. Figure 3.3(a)

and (c) provide g(r) of the intra- and intermolecular carbon atoms, respectively, of PLA.

From Figure 3.3(a), it is clear that the highest peak of intramolecular g(r) at ca. 1.54 Å

that comes from the single bond connectivity decreases as the PLA/PGA ratio increases.

This is because, although the overall density of PLGA blends decreases, the bulk density

of PLA itself in the blends increases with increasing PLA/PGA ratio; the peak values are

approximately inversely proportional to the PLA/PGA ratio. For clarity, Figure 3.3(b)

presents an enlarged view for these intramolecular g(r) profiles of the highest peak with

varying PLA/PGA ratios. On the other hand, g(r) plots of intermolecular carbon atoms of

PLA in Figure 3.3(c) show that the interactions of different PLA polymer chains increase

with increasing PLA/PGA ratio, as the bulk density of PLA itself in the blends increases
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Figure 3.4: Plots to show the calculated RDF values of (a) intramolecular carbon atoms,
(b) first peaks of intramolecular carbon atoms, and (c) intermolecular carbon atoms of

PGA in pure PGA and PLA/PGA blend systems.

with adding more PLA chains. These intermolecular RDF profiles asymptotically approach

to 1, as the intermolecular C–C interactions would exhibit the behavior of random structure

with increasing the r values. The g(r) profiles from PGA polymers presented in Figure

3.4 show the same trend for the intra- and intermolecular carbon atom distributions; as

the PLA/PGA ratio increases, the intra- and intermolecular interactions are increased and

decreased, respectively.

Table 3.6 lists the calculated χ values of PLA/TC and PGA/TC blend systems considered

in the present MD simulations. The χ values of PGA/TC are negative for the 15 and 45

TC wt% compositions, therefore, it is thought that PGA would have a good miscibility with

TC. On the other hand, the χ values of PLA/TC are both positive implying that PLA has

a relatively poor miscibility with TC. The reason for this is probably the hydrophobicity

difference [89]. TC is a hydrophilic drug and it is more miscible with PGA than PLA
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Table 3.6: χ values of PLA/TC and PGA/TC blend systems considered in the present MD
simulations. The unit of CED is J cm−3.

Compositions CEDpolymer CEDTC CEDmix Average χ Standard
deviation
of χ

Pure TC – 467.0002786 – – –
PLA/TC (15 wt%) 420.6942980 467.0002786 422.5442044 0.8587370 0.3194255
PGA/TC (15 wt%) 720.3618294 467.0002786 680.4904683 -1.3549031 0.4417830
PLA/TC (45 wt%) 420.6942980 467.0002786 428.7448620 2.2310665 0.3521467
PGA/TC (45 wt%) 720.3618294 467.0002786 601.3487279 -1.9211784 0.3901504

because PGA is relatively more hydrophilic than PLA due to lack of asymmetrical methyl

groups (i.e., hydrophobicity: TC < PGA < PLA) [58, 97]. These results are illustrated

using a scatter plot in Figure 3.2(b). As shown in Figure 3.2(b), PLA/TC (45 wt%) has

a higher χ value than PLA/TC (15 wt%). Hence, increasing PLA content in the blend

would decrease the miscibility of TC, whereas for PGA/TC, increasing PGA content in the

blend system would decrease the miscibility of TC; the results provided in Figure 3.2(b)

show the sequence of χ values, i.e., PLA/TC 45 > PLA/TC 15 > PGA/TC 15 > PGA/TC

45. In Figure 3.5, we show g(r) of (a) intramolecular and (b) intermolecular carbon atoms

from PLA (red) and PGA (blue) materials with 15 % (square symbols) and 45 % (circular

symbols) TC, respectively. Here, the g(r) functions were obtained from the PLA or PGA

chains in the MD computation domain. The general trend found in the PLA/PGA systems

is again observed in the PLA/TC and PGA/TC materials. When g(r) profiles from PLA

and PGA are compared for the intramolecular interactions, the peak positions are nearly

identical, located at ca. 1.54 Å, however, the peak values from PLA are much higher than

those from PGA because of higher bulk density of PGA. In addition, it is clear that, as

the relative polymer contents are decreased, the peak value of g(r) is increased, which can

be again explained by the relative density change argument. From Figure 3.5(b), it is also

clearly seen that the degrees of intermolecular interactions between different PLA and PGA

chains are decreased by adding more TC molecules in the blend system.

In Figure 3.6, we summarize the results of calculated self-diffusivity, Dself , of TC molecules

44



Figure 3.5: Plots to show the calculated RDF values of (a) intramolecular carbon atoms
and (b) intermolecular carbon atoms of polymers in the TC/polymer blend systems.

in the PLA and PGA polymers. Dself was estimated based on the mean square displacement

(MSD) analysis as a function of MD computation time. The data reported in Figure 3.6

are averages of at least 50 TC molecules from MD simulation box. In the figure, the error

bars represent the standard deviations. From the results, it is seen that Dself of TC in

PLA are approximately one order higher with larger standard deviations than those of TC

in PGA because of lower affinity between TC molecules and PLA chains. Therefore, under

absence of solvents, it is expected that the transport of TC molecules would be easier in the

PLA system. However, for an adequate thermodynamic/kinetic description for the evolu-

tion of microstructures for a polymer-drug-solvent system, ternary diffusivities over entire

composition ranges are required, which presents a formidable challenge.

3.3.2 Experimental film surface characterization

In Figure 3.7(a) and (b), the examples of the surface morphologies obtained from AFM

scans (10 × 10 µm2) for 50/50 and 75/25 (PLA/PGA) PLGA films are provided. The

TC contents was 15 wt% for these specimens. As expected from the χ value calculation

results for the PLA/TC and PGA/TC materials, the surface morphology clearly portrays

a phase-separated structure consists of drug particles (bright contrast) and PLGA matrix

(dark contrast). The fraction of TC drugs on the film surface is much higher than its actual

wt% (ca. 15 wt%) because the nucleation of drug particles will be initiated near the surface
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Figure 3.6: Plot of self-diffusivities (Dself ) of TC in PLA/TC and PGA/TC systems.

of the sample as the solvent evaporation proceeds. Also, it is evident from the figures that

the drug particle size in 50/50 PLGA film is much larger than that in 75/25 film. To more

quantitatively elucidate the composition ratio effect on the drug size distribution, the average

radii of the drug particles were evaluated by measuring the major- and minor-axis of the

drug particles for each section. Here, we assumed that the drug particles take the form of

ellipsoids. The average radii of the particle were obtained by equating the areas of a perfect

circle with the average radius and ellipsoids with measured major- and minor-axis. Based

on the analysis of more than ca. 60 drug particles from each film, the average drug particle

radii were calculated as 1.05±0.17 µm and 0.68±0.10 µm for the 50/50 and 75/25 samples,

respectively. In Figure 3.7(c) and (d), the histograms to show the normalized frequency of

the drug particle radius are displayed. From the figures, it is seen that about 30 % and

35 % of the total population are in the ranges of 1.0-1.1 µm and 0.6-0.7 µm for the PLGA

50/50 and the PLGA 75/25 coatings, respectively. Such drug particle size in the polymer

matrix can impact the drug release kinetics [64]. It is generally accepted that the drugs with
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smaller particles are relatively easier to dissolve while the drugs with larger particle sizes

will dissolve less readily.

Figure 3.7: Examples of AFM scans from (a) PLGA50/50-TC and (b) PLGA75/25-TC
films, and drug size distributions from (c) PLGA50/50-TC and (d) PLGA75/25-TC films.

3.3.3 Free energy density calculation and meso-scale simulation

To further examine the mixing behaviors of PLGA-TC, the free energy of change of mixing

for these materials was analytically evaluated. As introduced in the previous ‘Phase-field

modeling (PFM)’ section, in the Flory-Huggins solution model, the bulk homogeneous free

energy density (f) for a system with arbitrary number (n) of constituent components can be

described by Equation 3.1 [80, 81]. When the interfacial energies between the polymer and

drug phases are relatively smaller than the bulk energies, f could be a direct measure for

the spontaneity of mixing. To quantify the bulk free energy densities, we assumed that the

PLA, PGA, and TC molecules are completely dissolvable in the THF solvent, and the molar

volumes of PLA, PGA, TC, and THF are 40000, 32680, 407, and 81 cm3 mol−1, respectively;
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we used Mw ca. 50,000 g mol−1 for PLA and PGA materials and molecular mass of 480.901

g mol−1 for TC based on the MD calculations. Because we assumed that the polymers and

TC drugs are completely miscible in the THF solvent, the Flory-Huggins parameters, χ,

between the solute (i.e., PLA, PGA, or TC) and the solvent (i.e., THF) can be estimated

by,

χ =
V s(δsolute − δsolvent)2

RT
(3.7)

where δsolute and δsolvent are the Hildebrand solubility parameters of the solute and solvent,

respectively, and V s is the molar volume of the solvent. With this, Figure 3.8 shows the

free energy density variations for the PLA/TC and PGA/TC systems of different solvent

fractions. From the figure, it is seen that when THF solvents start to evaporate, the free

energy density of PGA/TC is rather higher than that of PLA/TC primarily due to the large

difference between the χ values of PGA and TC. However, in the final stage of film casting

when the solvent fraction decreases by evaporation, the free energy density of mixing in

PLA and TC phases becomes much higher than those in PGA and TC phases, which will

thermodynamically prevent the mixing of PLA and TC materials. In particular, when the

TC wt% is large (i.e., 45 wt%, green symbols in Figure 3.8), it is predicted that the free

energy density of PLA and TC would show a high positive value. The drug morphologies

shown in Figure 3.7 can also be explained by the results of the free energy density plot in

Figure 3.8. As the THF solvents evaporate, the diffusion of drug molecules in the higher

PLA composition would be easier, which can retard the nucleation of TC drug particles. If

the nucleation of TC drug is slowed down, the actual drug precipitates will be formed later

in the evaporation process, and the number and the size of drug particles will be larger and

smaller, respectively, as shown in the surface morphology of PLGA 75/25 film samples in

Figure 3.7(b). However, it should be noted that, the nucleation and the growth kinetics of

these TC particles will also be influenced by the interface energies of PLA/TC and PGA/TC

and the diffusion rates of TC molecules through the polymers/solvents. Further, the diffusion
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of TC molecules would be highly dependent on the evaporation rates of the THF solvents.

Generally, when the solvent evaporation rate is fast, the drug particle morphology of the

film surface will be similar to the one shown in Figure 3.7(b), i.e., smaller in size and larger

in the number of particles.

Figure 3.8: Plot of free energy densities using the Flory-Huggins solution model for
PLA/TC and PGA/TC systems.

For meso-scale simulations for the structural evolution of polymer-drug coatings, we

tested the two different systems shown in Figure 3.7, i.e., PLGA50/50-TC and PLGA75/25-

TC. As the structural evolution simulation requires inclusion of the solvent materials, i.e.,

THF, in the computational domain, a quaternary system consists of PLA, PGA, TC, and

THF should be considered. In the current work, however, for simplicity, we treated single

polymer phase with different material properties for PLGA50/50 and PLGA75/25 materials.

The corresponding material properties of PLGA were weight-averaged by their correspond-

ing PLA/PGA ratios. The molar volumes of PLGA50/50 and PLGA75/25 were 36340 and

38170 cm3 mol−1, and the χ values of PLGA50/50 and PLGA75/25 were 0.4016 and 0.3096,
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respectively. The χ values for each phase were assigned using the concurrent MD simulation

results presented in Table 3.6 and Figure 3.2. The interfacial energies were set to 15, 5,

10 mJ m−2 for PLGA-TC, TC-THF, and PLGA-THF interfaces, respectively [83, 98]. The

mobility, Mi, in Equation 3.3 is typically represented as the product of diffusivity (Di) and

thermodynamic factor (second derivatives of homogeneous energy density). Diffusivities for

PLGA and TC were set to 1 × 10−12 and 5 × 10−7 cm2 s−1 for the characteristic system

considered here. The diffusivity of TC molecule is based on the MD computation results

given in Figure 3.6. The diffusivity of Note that, for a film-based (i.e., coating) drug de-

livery system processed using casting, the diffusivities of polymer and drug molecules are

majorly determined by the contents of solvents [64, 70, 83, 98]. To incorporate the effect

of local amount of solvent on the diffusivities, they were incrementally reduced to 10−3 and

10−1 of original diffusivity value for PLGA and TC phases, respectively, as the local solvent

concentration decreases from 20 vol% to 0 vol% [70, 98]. The thermal fluctuation term of

Equation 3.3, ζi, was ignored because all of the constituent phases are amorphous. With

these material properties, all simulations were started by a homogeneous initial system that

is composed of solvent (70 vol% solvent) with dissolved drug and polymer. Here, we assumed

that no significant structural evolution would occur in the solvent concentration range of 70

to 99 vol%. As mentioned, two distinct homogeneous systems with different copolymer ra-

tios (i.e., PLGA50/50 and PLGA 75/25) with polymer/drug ratio of 80/20 were initiated.

Although the polymer/drug ratio of 85/15 w/v was used in the experimental fabrication

of PLGA-TC coatings, 80/20 v/v PLGA/TC was used in the PFM simulation to capture

the high propensity of drug particle formation and/or segregation near the evaporating sur-

face, as explained before. The meso-scale PFM computations were conducted on a 2D 500

× 100 rectangular grid space with no flux boundary conditions, and final microstructure

was obtained when 1 vol% solvent remained in the system. In this rectangular grid space,

the solvent was intentionally removed from the surface of coating so that the volume frac-

tion of solvent continuously decreases with processing time. The rate of solvent removal
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(evaporation) is assumed to be proportional to the average solvent concentration of surface.

Figure 3.9: Microstructural evolution predicted using phase-field method for (a)
PLGA50/50-TC and (b) PLGA75/25-TC systems. ϕs represents the solvent volume

fraction.

In Figure 3.9, we show the microstructural evolution of PLGA-TC surfaces predicted

from PFM computations for (a) PLGA50/50 and (b) PLGA75/25. In the figure, ϕs repre-

sents the THF solvent volume fraction. The ternary triangular legend was used to indicate

the individual concentrations of PLGA (red), TC (blue), and THF (green) phases. With ad-

equate scaling, the dimension of the computational domain was calculated as approximately

50 × 10 µm2. As clearly depicted in the structural morphologies in Figure 3.9, changing the

PLA/PGA composition ratios can have a strong impact on the development of coating mi-

crostructures, which is qualitatively consistent with the experimental observations shown in

Figure 3.7. The final drug particle size is much larger and the drug particle number is smaller

in PLGA50/50-TC compared with those in PLGA75/25-TC. Also, it is seen that the onset

of drug particle formation occurs after more solvent has been removed when PLA/PGA ratio
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is higher. The differences in the structural development during coating fabrication majorly

comes from the Flory-Huggins parameters between PLA-TC and PGA-TC. Note that, as

mentioned earlier, the final structure of these films could be influenced by other factors such

as the solvent evaporation rates, contents of additives, etc. However, it is thought that the

quantitative understanding between the Flory-Huggins parameters and the resultant under-

lying structures of PLGA-TC coatings obtained in this work can be usefully applied for the

design of drug delivery systems.

3.4 Conclusions

A series of MD computations has been performed to evaluate the Flory-Huggins parameters

(χ) between TC drugs and PLA/PGA polymers. By quantifying χ values between PLA

and PGA blend systems, it is shown that mixing of PLA and PGA polymers is not ther-

modynamically favorable throughout the entire composition range of 10/90 to 90/10 wt%

PLA/PGA. The χ parameters between PLA and/or PGA polymers and TC drugs were

estimated for the TC compositions of 15 and 45 wt%. Based on the thermodynamics consid-

erations using the Flory-Huggins solution model, the free energy densities for these PLA/TC

and PGA/TC systems were correlated to the surface structural morphology of PLGA/TC

films. The meso-scale modeling based on PFM method using the material properties ob-

tained through MD computations revealed that the overall size distributions of drug particles

embedded in PLGA matrices with different PLA/PGA copolymer ratios are comparable to

the experimental observations. Such variations of drug particle sizes can directly influence

the drug release kinetics from PLGA-TC coatings.
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Chapter 4

Polymeric binders: a case for Li–S

batteries

4.1 Introduction

4.1.1 General introduction to Li–S batteries

Countries around the world are working on mitigating the profound negative impacts of gas

and diesel automobiles on the sustainability of our environment, resources and economy [99].

This marks a crescendo of demand for batteries with large capacity in favor of electric or

hybrid vehicles (EVs or HVs). The state-of-art lithium–ion (Li–ion) technology has certainly

attracted great attention in this field due to its high energy densities (110∼700 Wh L−1) and

high specific power (up to 300 W kg−1) [100, 101]. Specifically, Li–ion batteries have been

successfully applied to power modern commercial Tesla Model S [102] and Model X [103] as

well as Nissan LEAF [104] EVs, and the two models of Tesla allow a mile range of 348∼402

and 305∼351, respectively, which are almost the highest in EV market. While the Li–ion

technology is getting mature, it slowly reaches the performance limits, which are ca. 830

Wh L−1 and ca. 330 Wh kg−1 in terms of energy density and specific energy, respectively

[100].
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As a promising candidate battery system to be applied in EVs and HVs, rapidly growing

attention has been paid to lithium–sulfur (Li–S) batteries since last decade. Due to the nature

of the active materials of the electrodes, Li–S batteries have been expected to succeed Li–

ion cells in terms of larger specific energy at a reduced cost [105], which realistically means

an extended mile range at a cheaper price for EVs. Unlike the Li–ion batteries using Li-

intercalation compounds (e.g. transition metal oxides) as anode materials, typical Li–S cells

employ metallic lithium as the active material in anode, which means that more energy can

be provided per unit weight of its anode. Together with a sulfur cathode partner, a Li–S

cell can discharge at the voltage of ca. 2.15 V [106], relatively lower than the ca. 3.7 V

[107] of Li–ion batteries. But the theoretical specific energy of Li–S battery systems is ca.

2700 Wh kg−1, which is nearly five times higher than that of Li–ion batteries (see Table

4.1 [100, 108, 109, 110, 111, 112]). This is because sulfur can provide very high theoretical

specific capacity of 1675 mAh g−1 based on its moderate molecular weight and the fact that

each sulfur atom can accept two electrons when being reduced thoroughly. Moreover, the

abundance, extremely low cost and non-toxicity of sulfur are favorable to drastically decrease

the final cost of Li–S batteries. The price of Li–S battery packs could be less than 150 USD

kWh−1, while that of Li–ion battery packs could be 600 USD kWh−1 [108]. Although the

increasing market of EVs and HVs seems to be the strongest motivation for developing Li–S

technology, note that this technology is also expected to be applied in aircrafts, large-scale

energy storages and other fields which need large amount of energy and to fulfill light weight

meanwhile.

Table 4.1: Comparison of specific energy and energy density between Li–S and Li–ion
batteries.

Battery type Specific energy (Wh kg−1) Energy density (Wh L−1)
Li–S Theoretical 2700 2600

Today 90∼471 90∼300
Target for 2020 500 550

Li–ion Theoretical 580 1800
Today 50∼300 110∼700
Practical limits 330 830
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A significant progress has been made for Li–S technology during last decade (see Table

4.1). Currently the Li–S battery company OXIS Energy in UK offers the Li–S pouch cells

with specific energies up to 425 Wh kg−1 for aerospace and automotive, significantly better

than most Li–ion batteries, which are in the range of 150 to 250 Wh kg−1, and a stunning

500 Wh kg−1 is on target by the end of 2020. For the near future, practical specific energy

values on the order of 600 Wh kg−1 are expected with solid state lithium–sulfur technology.

However, the Li–S technology still suffers from several unresolved issues, which induces

a gap between expectation and reality, and impede complete transfer of this technology to

commercial market. Next subsection briefly presents the basic working mechanism of Li–S

batteries, along with its sulfur cathode issues.

4.1.2 Working mechanism and cathode issues of Li–S batteries

A conventional Li–S battery consists of a sulfur-based cathode and a metallic lithium anode,

which are separated by a polymeric separator soaked with a liquid organic electrolyte. As

it is shown in Figure 4.1 [113], the cathode has sulfur as its active material. However, bare

sulfur has a low conductivity of ca. 10−16 S cm−1 at room temperature [113]. Therefore,

the discharge/charge rate of Li–S batteries has been limited. To improve the conductivity

of cathode, a conductive carbon additive, such as carbon black, is always mixed with sulfur

powder. To keep the integrity of the composite and provide enough contact between the

composite and the current collector, poly(vinylidene difluoride) (PVDF) or poly(ethylene

oxide) (PEO) is typically added in the cathode as a binder. As a result of the additive and

the binder, the battery capacity dependent on the load of sulfur is sacrificed. Usually, the

weight ratio of sulfur, carbon additive and binder are 70∼80 wt%, 10∼15 wt% and 10∼15

wt%, respectively, as illustrated in Figure 4.1.

Besides the above-mentioned two limitations, the so-called “shuttle effect” [114] is one of

the main problems of Li–S battery systems, which is caused by a phenomenon that active

materials (i.e., the intermediates of the electrochemical reaction, polysulfide species, such as
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Figure 4.1: Schematic of a conventional Li–S battery and its cathode composition.

polysulfide dianions (PSs)) diffuse back and forward between the two electrodes. This needs

to be explained along with the electrochemical processes of Li–S batteries.

At fully charged state, sulfur exists as solid, whose atoms form cyclic octatomic molecules

with a chemical formula S8. During discharge, metallic lithium is getting oxidized at the

anode and produces Li+ cations and electrons:

Li
discharge−−−−−→ Li+ + e− (4.1)

Li+ cations move to the cathode through the separator/electrolyte, while electrons go through

external electrical circuit (see Figure 4.1). Sulfur is gradually reduced into PSs (S2−
n (n=3,

4, . . . , 8)) by accepting electrons in the cathode:

S8 + e−
discharge−−−−−→ S2−

3 + S2−
4 + S2−

5 + S2−
6 + S2−

7 + S2−
8 (4.2)

At fully discharged state, the final product of the electrochemical reaction of sulfur with

Li+ cations and electrons is solid lithium sulfide (Li2S). During charge, the process takes an

opposite way.
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Figure 4.2: Products and intermediates of electrochemical reactions of sulfur species in
cathode.

As illustrated in Figure 4.2, the PSs are easily soluble in the organic electrolyte and

shuttle between the cathode and anode due to the concentration gradients, thereby causing

prolonged charge process, capacity degradation, shortened battery life and other side effects

to the performance of the batteries. Particularly, the PSs with longer chain are more soluble.

While the most stable PSs in the electrolyte are S2−
4 and S2−

5 according to the previous

research [115].

Although the original purpose of adding a conventional polymer binder, such as PVDF

and PEO, is to maintain the integrity of cathode materials and affix the composite onto

the current collector when assembling a cell, functional polymer binders have been designed

and tested for effective capturing of polysulfide intermediates to enhance the electrochemical

performance of Li–S batteries [116, 117, 118, 119, 120, 121, 122]. Next subsection will

introduce polymeric binders in terms of properties, structures and the influence on Li–S

battery performance.

57



4.1.3 Polymeric binders: properties, structures and influence on

the battery performance

A type of polymeric binder is generally dissolved in a solvent and then added into the

composite of carbon additive and sulfur powder, and mixed well with them to be able to

maintain the integrity after drying the mixture. Due to the complexity of a Li–S battery

system, an effective binder should fulfill multiple requirements, which has shrunk the range

of choices from available binders. First of all, the basic properties that a binder should have

are the chemical and the electrochemical stabilities. Then, binders need to provide enough

binding strength with the cathode materials through interfacial forces (intermolecular forces

and chemical bonds) or/and by acting as a physical barrier. Besides those properties, a binder

should have proper or good mechanical strength/flexibility to cushion the effect caused by

volume change of the active materials during discharge/charge. Also, binders with proper

or high ionic conductivity and electric conductivity are always favorable for getting fast

charge rate. Currently, PVDF and PEO are commonly used in Li–S batteries. However,

researches have never been stopped on developing new binders because both of PVDF and

PEO exist some problems. The PVDF may limit the performances of the cell because of

poor electronic and ionic conductivities. Also, the toxic organic solvent that PVDF used

is difficult to evaporate from the prepared electrodes [106]. PEO is poorly-adhesive to the

current collector which may induced by its swelling in some ether-based electrolytes (e.g.

TEGDME), and it has low ionic conductivity at room temperature [123].

From the point view of materials science and engineering, material properties are decided

by structures. As for binders, the properties depend on their functional groups, polymeric

architectures, shapes and so forth, from atomic scale to large scale structures. Seh et al.

[124] used Li–S· radical as an approximation to stand for long-chain lithium polysulfides

(i.e., Li2Sn or LiPSs) to study the binding strength between LiPSs and different functional

groups of polymeric binders. They found that the heteroatoms with lone electron pairs,

such as oxygen, nitrogen, and fluorine atoms on the functional groups were able to bind
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with the lithium atom in LiS· radical, consequently providing a strong interaction with

LiPSs. They also concluded that easter, amide and ketone groups are the top three in

binding strength among the model functional groups. It is worthy to note that conductive

polymers can play a role of a bifunctional binder which is able to trap the PSs meanwhile

improve the conductivity of the cathode. Research groups of Liu and Yang [120, 121, 122]

designed a multifunctional binder consisted of fluorenone to optimize electronic conductivity,

polyfluorene with octyl side chains to enhance processability, fluorene with triethyleneoxide

monomethyl ether side chains to uptake electrolyte and provide mechanical flexibility, and

methyl benzoate easter to offer mechanical flexibility as well. In short, synthesis of the

multifunctional binder allows enhancement of adhesion, ductility and electrolyte uptake to

the levels of those available only in nonconductive binders before, without detrimental effect

on electronic conductivity by the modifications of side chains. What’s more, even linear

polymeric binders are the majority, some branched and network polymeric binders have

also been developed due to their mechanical flexibility and strength [125, 126]. In addition,

polymers can be manufactured as a coat on sulfur nanospheres [127], nanotubes [128], or a

layer of film between cathode and separator to work as a binder and physical barrier to trap

polysulfide species [129].

Li–S batteries using different binders show different performance. Ai et al. [120] reported

that cells with different binders show different cycling stability and self-discharge prevention

ability; i.e. PVDF < poly(3,4-ethylenedioxythiophene) (PEDOT) < poly(vinylpyrrolidone)

(PVP) < poly(9,9-dioctylfluorene-co-fluorenone-co-methylbenzoic ester) (PFM). The best

performance of PFM was explained by both its highest electronic conductivity and highest

binding strength between carbonyl groups and lithium polysulfides. The binding strength

had an effect on inhibiting the shuttle effect. Researchers also benefited from the physical

confinement of dissolved polysulfides by polymer binders. For instance, Li et al. [127] coated

S nanospheres with three types of conductive polymers. The chemical interaction between the

heteroatoms of the polymers and lithium polysulfides, in addition to the physical confinement
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of lithium polysulfides within the polymer shells, improved the cycling performance of Li–S

batteries.

In conclusion, dissolution of PSs in the electrolyte is one of the main problems in Li–S

batteries, and binders can be used to trap the dissolved intermediates. The binding strength

has an effect on inhibiting the shuttle effect. Moreover, conductive binders can be applied to

speed up the charge/discharge rate so that the cycle period of electrochemical experiment and

charge time of a real product can be shortened. Accordingly, the electrochemical performance

of Li–S cells is able to be improved. Binding strength can be quantified by calculating binding

energy. Precious density functional theory (DFT) models computing binding energies will

be discussed in the following subsection.

4.1.4 Binding energy between binder and dissolved polysulfides

DFT simulation studies, delving into the mechanism of binding between lithium polysulfides

and polymer binders in vacuum, have been well documented for identifying promising binders

to effectively tether polysulfide species in Li–S batteries. The binding energies between

lithium polysulfides and binders are typically calculated as:

∆Ebind = Ebinder−LiPS − (Ebinder + ELiPS) (4.3)

where the Ebinder−LiPS , Ebinder and ELiPS are the calculated energies of the complex, the

binder and the lithium polysulfides, respectively. The calculated energies equal to the sum

of electron energy and repulsive energy between nuclei:

E = Eele + VNN = (Tele + Vele) + VNN (4.4)

where the subscript ele means electrons, T is kinetic energy, V means potential energy, NN
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donates repulsion between two nuclei. Higher binding strength is expected at higher negative

binding energies. In addition, heteroatoms with lone pair(s), such as oxygen, nitrogen,

and fluorine atoms, in the functional groups of binders are able to bind with Li in lithium

polysulfides; consequently, providing strong interaction with lithium polysulfides [124, 127,

130, 131, 132]. The interaction between Li and heteroatoms with lone pair(s) dominates

the electrostatic attraction [133, 131], while the interaction between S and binder mainly

contributes to the dispersion attraction [119, 133]. Previous studies [119, 124, 127] showed

that the binding energy between an atom of a polymer binder and an atom of lithium

polysulfide species was typically less than ca. 1.5 ev, which is a weak interaction.

In 2013, Cui’s research group published two literatures [124, 127] in which binding energies

between polymeric binders and LiPSs were calculated using DFT method and projector aug-

mented wave/Perdew-Burke-Ernzerhof functional (PAW/PBE) [134, 135] level. Regarding

LiS· radicals as an approximation to stand for long-chain LiPSs, Seh et al. [124] systemati-

cally investigated the binding energies between LiS· radicals and different functional groups

on polyvinyl backbones using the Vinna ab Initio Simulation package (VASP) [136, 137].

Through the same DFT method, Li et al. [127] studied binding energies between three of

the most well-known conductive polymers and LiS· radicals. In general, the heteroatoms

with lone electron pairs (such as oxygen, nitrogen, and fluorine atoms) were able to bind

with the lithium atom in LiS· radical. Their model provides a meaningful reference to com-

pare binding strengths between LiS· radicals and a series of functional groups. More than

that, their experimental results proved the computed binding strength relationship that

Li2S-PVP > Li2S-PVDF. However, a long-chain LiPS is a ring-like structure and has much

larger spatial volume and dispersion interaction (also called dispersion forces) with binders

or anchoring materials than the radical [138, 133]. In addition, the contribution of sulfur

atoms to binding energy could be underestimated. This may be one of the reasons why their

experimental results regarding binding strengths of PANI and PPY were inconsistent with

the computational results, as mentioned in last subsection.
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In 2015, Cui’s research group [133] modified the model using a vdW-DF2 functional

[139, 140] to consider the effect of dispersion interaction, and lithium (poly)sulfide molecules

(Li2S8, Li2S6, Li2S4, Li2S2, and Li2S as well as S8) but not the radicals were modeled to

study their binding energies with two-dimensional (2-D) layered materials (oxides, sulfides,

and chlorides) and graphene. In agreement with our expectation, their results showed that

the dispersion interaction is very important. They found that the chemical interaction

mainly comes from the Li atoms, whereas the dispersion interaction is largely contributed

by S atoms. For graphene, Li2S8 among the LiPSs owned the highest binding energy; while

for 2-D layered materials, Li2S was possessed of the highest binding energy. The ratio of

dispersion interaction in the case of S8 for all tested materials was more than 90% while that

of Li2S was in the range of ca. 5∼70 %, computed by:

R = (EbindD − EbindnoD
)/EbindD (4.5)

where R, E bindD and E bindnoD
represent ratio of dispersion interaction, binding energies cal-

culated with and without dispersion interaction, respectively. They pointed out a concept for

the anchoring material (AM) design that suitable electron donating group should be used:

not too strong to facilitate Li+ ion diffusion and not too weak to trap the lithium polysulfides.

For the graphene case, the amorphous structure was found to be able to improve the binding

effect than the crystal structure. These two conclusions could be helpful for binder design.

The effect of dispersion interaction on conformation has been visualized. The distance be-

tween a S8 molecule and the TiS2 surface decreased, and lying-in-plane configuration was

favorable for Li2S8 and Li2S6 because of the relatively long sulfur chains. As for Li2S4, Li2S2

and Li2S, the adsorption configurations were almost not influenced. In 2018, Cui’s group

made a progress for the binding interactions of PVDF-LiPS and ammonium polyphosphate

(APP)-LiPS [119] with the same dispersion correction (i.e., vdW-DF2 functional) as their

previous model [133]. The PVDF-Li2S interaction was 0.72 eV [124] after considering the
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dispersion correction, which was different with the previous value of 0.64 eV [119]. The

interactions of PVDF-LiPS were 0.59, 0.61 and 0.74 eV for PVDF-Li2S8, PVDF-Li2S4 and

PVDF-Li2S2, respectively [119]. Consider the variation of values, they were not suitable to

be represented by the PVDF-LiS· interaction which was 0.83 eV [124].

Recently, more and more DFT modeling has been performed in literatures to elucidate

why PS species can be or cannot be adhered strongly on various types of binders or anchoring

materials. Xu et al. [130] studied the adsorption of Li2S and LiS· on polyacrylic acid (PAA)

by PAW/PBE level. They concluded that Li atom of LiPSs formed Li-O bond with PAA

and interacted with the coterminous oxygen in PAA, and possessed a higher binding energy

with LiPSs compared with PVDF. As a result, the Li–S battery based on PAA offered better

cycling performance than that based on PVDF. Ji et al. [131] assembled four types of the

constituent deoxynucleotides (DNs) of DNA to model the anchoring environment for PSs, and

calculated the binding energies of Li2Sn (n=3, 4, 6, 8) with the assembly of DNs. Consider

the fact that Li2S8 had the largest solubility in the electrolyte [124, 141], which meant LiPSs

species could be confined as long as Li2S8 could be trapped, Ji et al. simplified the model by

selecting Li2S8 to investigate the anchoring behaviors of LiPSs in DMol3 package [142] and

demonstrated that the sulfur atoms would interact with the positively charged portion of

DNs via H-bonds, which had enhanced the adsorption strength. Deng et al. [132] calculated

binding energies between Li2Sn (n=1, 4, 6 or 8) and polydopamine (PDA). They got the

similar conclusion as Seh et al. [124] and Li et al. [127] that the N and O atoms with lone

electron pairs would promote the strong interactions between PDA and LiPSs. Note that

the software, method and calculation level were VASP, DFT and PAW/PBE in these three

researches [124, 127, 132].

Theoretical modeling and analysis of the interaction between LiPSs and nitrogen-doped

graphene (N-G) can also shed light on binder innovation for Li–S batteries. Yin et al.

[143] implemented DFT computation using PAW/PBE in VASP [137] and incorporated

dispersion interactions by the optB88 exchange functional [144, 145]. Through calculating
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binding energies between lithium (poly)sulfides and N-G with different doping configurations,

this systematic study provided a fundamental understanding on the interactions. It was

found that only N-G doped with clustered pyridinic N (pN) could bind soluble LiPSs much

more strongly than the electrolyte solvents (1,3-dioxolane and 1,2-dimethoxyethane) did,

implying clustered pN-dopants in N-G were the intrinsic reason for the effective suppression

of LiPS shuttling by N-G. Hou et al. [146] took pN as a typical example to investigate the

nature of Li bond between Li and pN. Geometry optimizations were performed at a B3LYP

(Becke’s three-parameter hybrid method using the Lee-Yang-Parr correlation functional)/6-

311++G(2d,p) level [147] in Gaussian 09 [148]. The binding energy of a model molecule,

pyridine (PD) with Li2S8 was examined by DFT in DMol3 package [142]. Finally, the nature

of Li bond was identified as an electrostatic dipole-dipole interaction rather than a typical

chemical bond where charge transfer occurs, considering the large dipole of Li2S8–PD cluster

with minor charge transfer between Li2S8 and PD cluster. Its bond strength was probed to

mainly rely on the dipole of Li2S8–PD cluster along with extra conjugative and inductive

effects. Concretely, π-electrons in the conjugated system of PD were obviously attracted to

the Li···pN bond. Simultaneously, the Wiberg bond order of N–C bond changed from 1.423 to

1.385 after PD binding to Li2S8, and the bond order of Li···pN bond was 0.108. The authors

also theoretically predicted 7Li NMR spectroscopy which was in good accordance with the

experimental one, suggesting the chemical shift in 7Li NMR spectroscopy as a quantitative

descriptor of Li bond strength. Sun et al. [149] followed their previous modeling method

[143] and found that Li2S6 had a binding energy of 1.07 eV with pN-G, much smaller than

that with vanadium nitride (VN) (3.75 eV). This has been attributed mainly to the much

weaker polar-polar interactions between Li2S6 and pN-G than those between Li2S6 and VN.

Despite extensive DFT simulation studies on binding strength of lithium polysulfide

species and binder chains in vacuum environment, reliable molecular dynamics (MD) model-

ing of the binding effectiveness is very limited. In the framework of MD, important atomistic

details with respect to polymer binders can be studied. In the present work in the chapter,
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explicit solvation models are built using MD modeling in order to consider the effect of sol-

vent molecules on the binding effectiveness between binders and polysulfides. Not only the

interaction energies between polysulfides and polymers are calculated, but also the move-

ments of polysulfides and polymers in the solvent over time are predicted. Furthermore, the

binding effectiveness is also studied when considering the real weight ratio between sulfur

and binder.

4.2 Full-atomistic MD simulation

4.2.1 Model species and the relevant partial atomic charges

It is well known that polysulfide species with a longer chain are more soluble in electrolytes

[124, 141] while being relatively easier to be physically captured in a porous matrix, a protec-

tive interlayer or other porous structures in the cathode, or by the separator. Furthermore,

according to the previous research [115], S2−
n species with n ≤ 5 are more stable with lithium

metal than the long-chain S2−
n species with n ≥ 6. Therefore, as a relatively stable and

soluble polysulfide species in the electrolyte, tetra-sulfide (S2−
4 ) was selected to represent

polysulfide species in this work. Although early studies have reported the formation of

sulfur radical species during discharge [150, 151, 152, 153], this work focuses on polysul-

fide dianions. The following conductive polymers were selected as model binders: PEDOT,

polypyrrole (PPY), and polyaniline (PANI) due to their electrochemical stability in Li–S

batteries [127], commercial availability and popularity in research studies on Li–S batteries

[120, 127, 129, 154, 155, 156, 157, 158]. And we applied the previous concept of simplicity

[127] that choosing the undoped form of each polymer.

The partial atomic charges of the relevant molecules and ions are shown in Figure 4.3,

which were derived by first optimizing the geometry in a polarizable continuum model using

the integral equation formalism variant (IEFPCM) [159, 160, 161] (dielectric constant ε=7.1)

[162]) based on B3LYP-D3(BJ)/def2-TZVP level [147, 163, 164, 165] of calculation using
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Gaussian 16, Revision B.01 [166] and then fitting the electrostatic potential surface using

restrained electrostatic potential (RESP) method [167] by employing Multiwfn package [168].

The IEFPCM model [159, 160, 161] treated solvent effects approximately with the ε=7.1 to

describe the polarity of the surrounding 1:1 v/v DOL:DME environment. As for the dielectric

constant ε=7.1, it was calculated based on the volume fractions of DOL and DME according

to an approach which has long been recognized [169]: ε = εDOLÖ50 vol% + εDMEÖ50

vol%, where εDOL=7.0 and εDME=7.2 [162]. All of the optimized geometries were verified

as minima by frequency computations (zero imaginary frequencies). Figure 4.3 was drawn

using GaussView 6.0 [170].

4.2.2 Establishing MD box

The side length of a box should be large enough to give at least a distance of 20 Å between

polymer and its own mirror image in a periodic system in order to avoid undesirable in-

teractions during MD simulations. Additionally, the length of a polymer chain needs to be

confined to prevent such interactions. If a polymer chain coils during MD simulation thus

avoiding such interactions, then a chain length longer than the side length of the box is ac-

ceptable for the polymer. Otherwise, the chain length of a stiff polymer chain such as PPY

or PEDOT needs to be shorter than the side length of a MD box. Based on current compu-

tational resources, a side length of a cubic box as large as approximately 10 nm was used in

the present work. Then length of polymer chains was limited to this range, considering the

stiffness of PPY and PEDOT chains, namely the hardness to coil in MD box. In addition,

PEDOT, PPY, PNB and LEB chains were designed to have similar molecular weight in the

simulations. As a result, their molecular weights were 1123.29, 1108.26, 1083.25 and 1095.34,

for polymer chains consisting of 8, 17, 6 and 6 repeat units (Figure 4.3), and the lengths of

their straight chains were approximately 32 Å, 63 Å, 68 Å and 68 Å, respectively. The ends

of polymer chains were terminated with hydrogen atoms.

In a typical sulfur electrode of Li–S batteries, the weight percentage of polymer binder
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is no more than 10 wt%, and the weight percentage of sulfur is no less than 50 wt% [120,

157, 171, 172]. Using a weight ratio of 50 wt% sulfur to 10 wt% binder in his work, the

weight ratio of S2−
4 to binder, which was assumed as 5:1, is equal to the weight ratio of 43

S2−
4 dianions to 1 polymer chain. The number of Li+ ions added to a system was twice the

number of S2−
4 dianions in order to maintain electric neutrality of the system.

The initial structures of five types of simulations were built using Packmol [173]: (1) one

polymer chain, one S2−
4 dianion and two Li+ ions (Figure 4.4(a)); (2) one polymer chain,

43 S2−
4 dianions and 86 Li+ ions (Figure 4.5(a)); (3) one polymer chain, one S2−

4 dianion

and two Li+ ions dissolved in the solvent mixture (Figure 4.4(c)); (4) one polymer chain,

43 S2−
4 dianions and 86 Li+ ions surrounded by the solvent mixture (Figure 4.5(c)); and (5)

randomly packed 1 polymer/43 S2−
4 /86 Li+ and solvent molecules.

The initial structures of the first two types of simulations were established by randomly

packing the species. For the third and the fourth types of explicit solvation models, the

assembled polymer, S2−
4 and Li+ ions were placed at the center of a cubic box periodic in

XYZ direction. Then the free volume in the box was filled with the organic solvent mixture

of 1:1 v/v dioxolane/dimethoxyethane (DOL/DME). According to the reported densities of

DOL (1.05862 g cm−3) and DME (0.86109 g cm−3) [174, 175] at 298.15 K, the ratio of the

number of DOL molecules to the number of DME molecules was approximately 300:200 in

such a solvent mixture. For the last type of explicit solvation model, the numbers of DOL

and DME molecules were the same for each polymer system for comparison purposes. The

numbers of molecules and ions in this type of model were 1 polymer+43 S2−
4 +86 Li++4500

DOL+3000 DME.

4.2.3 MD simulation

Full atomistic MD simulations on S2−
4 , Li+ and polymer binder in 1:1 v/v DOL/DME were

performed using GROMACS version 2018.4 [176, 177, 178, 179, 180, 181, 182] with the

general AMBER force field (GAFF) [183]. The classical non-polarizable force field could
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significantly underestimate or overestimate some important parameters such as diffusion co-

efficient and viscosity of a system with high ionic concentration due to the polarization effect

[184]. But according to a previous work which also used the GAFF to run MD simulations

for systems of Li(TFSI) and Li2Sx (x = 4, 6, 8) in DOL:DME [162] and compared properties

such as diffusion coefficients of Li+, TFSI−, DOL as well as DME in Li(TFSI)/DOL:DME at

different ionic concentrations with experimental counterparts, it is acceptable to use GAFF

for the systems in the present work since their ionic concentrations are no larger than 0.068

M (represented by concentration of S2−
4 in the solvent mixture). The van der Waals (vdW)

parameters of Li+ was from the AMBER99 force field [185]. The acpype.py script [186, 187]

was executed to employ Antechamber module [188] of AmberTools 18 [189] to create topology

files of the species and subsequently convert the topology files to the GROMACS format.

The procedures for the first four types of MD simulations are summarized in Figures 4.4

and 4.5, in which the structures regarding PPY are shown as examples. Unless mentioned

otherwise, the snapshots of structures in this work were presented using VMD [190]. The

structures of molecular fragments are presented in Figure 4.3.

At the beginning of each simulation for systems without the consideration of the solvent

mixture, single-S2−
4 systems went through a MD step of 4 ns while multiple-S2−

4 systems went

through a longer MD step of 14 ns. In order to accelerate the calculations, the lengths of

bonds involving hydrogen atoms were converted to constraints using the LINCS algorithm

[191], and the time step for integration was 2 fs. Temperature was controlled at constant

298.15 K using velocity-rescale thermostat [192] with a time constant of 0.2 ps. The cut-off

treatment scheme was group. For both electrostatic and vdW interactions, the interaction

types were plain cut-off with pair list radius, vdW cut-off and Coulomb cut-off equal to 0

thereby interactions between all particles were able to be calculated. The neighbor list was

only constructed once at the beginning and never updated.

For each system with the solvent mixture, the initial structure (Figure 4.4(c) or 4.5(c))

was constructed by using the assembly with the lowest interaction energy between Li2S4 and
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polymer (Figure 4.4(b) or 4.5(b)), which was derived from the corresponding simulation in

vacuum. The energy minimization (EM) for each system was conducted with the conjugate

gradient algorithm with a tolerance of 100.0 kJ mol−1 nm−1 and position restraints imposed

on S2−
4 , Li+ and polymer chain in XYZ direction. For some cases, a steepest descent step

was done while doing every two steps of conjugate gradient energy minimization. Then

the solvents were equilibrated through a 1 ns MD process which was implemented with

position restraints imposed on S2−
4 , Li+ and polymer chain in XYZ direction. During the

process, the temperature of the system was gradually increased from 0 K to 298.15 K in

the first 100 ps and then maintained at 298.15 K, which was controlled by the velocity-

rescale thermostat [192] with a time constant of 0.2 ps; and the pressure was maintained at

1 bar with a time constant of 0.5 ps using the isotropic Berendsen barostat [193]. Finally,

a MD step of 20 ns was run for the single-S2−
4 system, while a MD step of 50 ns was run

for the multiple-S2−
4 system. In this step, the pressure and temperature were controlled by

the isotropic Parrinello-Rahman barostat [194] with a time constant of 3.0 ps and by the

velocity-rescale method [192] with a time constant of 0.2 ps; respectively. For the MD and

position-restrained MD steps, the cut-off scheme was Verlet. The Smooth Particle-Mesh

Ewald method [195] was used to account for long range electrostatic interactions. The short

range vdW interactions were calculated by a cut-off method. The distance was set as 1.0 nm

for both the short-range electrostatic interactions in real space and the vdW interactions.

Long range dispersion corrections for energy and pressure were applied. The time step for

integration was 2 fs while the lengths of bonds with H-atoms being constrained using the

LINCS algorithm [191].

As for the simulations of randomly packed polymers, S2−
4 , Li+ and solvent molecules,

the procedures and parameters were the same as those mentioned above except with no

position restraints on species. Additionally, the equilibrium stage and production stage were

respectively run for 6∼8 ns and 200∼300 ns for systems with 1 polymer chain.

To validate the accuracy of the force field parameterization for the pure solvents, the
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densities of DOL and DME were calculated by a procedure of three successive steps EM + 4

ns MD equilibrium run + 4 ns MD production run, then extracted from the MD production

runs based on a cubic box of pure solvent with side length of approximate 5.5 nm, and

finally compared with data reported in literature [174, 175]. The calculated density of DOL

(0.97744 g cm–3) is slightly underestimated by 8% while that of DME (0.88909 g cm–3) is

slightly overestimated by 3% with respect to the corresponding values in literature (1.05862

g cm–3 and 0.86109 g cm–3 at 298.15 K); differences below 10% are usually considered as

acceptable [196].

4.2.4 Calculation of interaction energy

In MD, the non-bonded interaction energy between two groups of particles is contributed

by vdW and electrostatic interaction energies which are respectively computed by Lennard-

Jones (LJ) and Coulomb (Coul) terms in GAFF, as shown below:

Enonbond =
∑
A>B

(EvdW
AB + Eele

AB) =
∑
A>B

(ELJ
AB(rAB) + ECoul

AB (rAB)) (4.6)

where the sum operator means the summation of interactions between each pair of atoms,

and rAB indicates the distance between atom A and atom B. For model systems without

consideration of the solvent, the interactions between all particles are calculated for both

electrostatic and vdW interactions. But in explicit solvation models, both the electrostatic

interactions and the vdW interactions are calculated by cut-off method within a cut-off

distance of 3.0 nm.
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4.3 Results and discussion

4.3.1 Single polymer chain and single lithium tetra-sulfide in vac-

uum

Three replicas of each simulation of the polymer systems were run and the frame with the

strongest Li2S4-polymer attractive interaction was selected for analysis. In the case of LEB,

the frame with a straight chain segment, as shown in Figures 4.6(b) and (f), was selected

for comparison with previously published results [127]. Note that an LEB chain can form a

coiled conformation in vacuum due to its interaction with Li2S4 (Figure 4.7), which has a

higher Li2S4-LEB attractive interaction. Figure 4.6 illustrates the structures for these frames,

(a)-(h), and the interaction energies of S2−
4 -polymer and Li2S4-polymer. To investigate which

atoms are major contributors to the components of the interaction energy (i.e. vdW and

electrostatic interaction energies), an energy decomposition analysis based on molecular force

field (EDA-FF) [197, 198] was performed based on GAFF using Multiwfn package [168], as

presented in Figure 4.8. The vdW interaction energy, which is described by LJ potential, is

divided into an exchange repulsion term and a dispersion term. Also, Figure 4.8 shows that

Li2S4 mainly interacts with three adjacent units of the polymer in each case. Therefore, the

polymer lengths applied in the work should be long enough for calculating the interactions

between the polymers and the ions.

The S2−
4 dianion attracts Li+ ions while the two Li+ ions repulse each other. As a

result, the favorable configuration of a S2−
4 dianion and two Li+ ions is a sandwich-like Li2S4

assembly. The electrostatic interaction between the Li+ and polymer contributes to the

attraction between Li2S4 and polymer, significantly. This is illustrated in Figure 4.8 and the

comparison between the S2−
4 -polymer interaction energy, Figure 4.6(i), and the Li2S4-polymer

interaction energy, Figure 4.6(j), for each polymer system. The vdW interactions between

the Li+ and the polymers PNB, LEB and PPY are repulsive due to the larger contribution

of exchange repulsion (Figure 4.8(e), 4.8(f) and 4.8(h)) than that of the dispersion (Figures
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4.8(i), 4.8(j) and 4.8(l)). This explains why the vdW interaction energy components in

the cases of PNB, LEB and PPY in Figure 4.6(j) are smaller than those in Figure 4.6(i).

However, the decrease in vdW attraction is low compared to the boost in the electrostatic

attraction between polymer and Li2S4 caused by the Li+.

In summary, polymer and Li2S4 attract each other predominantly through electrostatic

interaction contributed by Li+, and slightly through vdW interaction contributed by S2−
4 .

The order of the total interaction strength in these polymer systems is: PNB-Li2S4>PEDOT-

Li2S4>LEB-Li2S4>PPY-Li2S4 with a ratio of 2.91 : 1.06 : 1.03 : 1. The reason why PNB has

the largest total or electrostatic interaction strength with Li2S4 is attributed to both Li+ ions

interacting with three N atoms of the polymer chain, as illustrated in Figure 4.8(a). Compar-

atively, the order achieved in this work is similar to previous published work (PEDOT-Li2S

(104.2 kJ mol–1)>LEB-Li2S (56.9 kJ mol–1)>PPY-Li2S (48.2 kJ mol–1), PEDOT-LiS· (117.7

kJ mol–1)>LEB-LiS· (64.6 kJ mol–1)>PPY-LiS· (61.8 kJ mol–1)) [127]. The quantitative dif-

ference is likely attributed to two main reasons: (a) the representative lithium (poly)sulfides

used in previous simulations (Li2S and LiS·) were different than the Li2S4 used in this work.

As mentioned above, S mainly contributes to vdW interaction, therefore it is inferred that

Li2S4 may contribute more vdW interaction than Li2S and LiS·; and Li2S4 has different spa-

tial structure than Li2S and LiS·, namely the distance between atoms of the (poly)sulfides

and the polymers are different, thus the interactions are influenced. (b) In the present

work, the atomic charges of Li+ and S2−
4 were set as +1 and –2, respectively; and the atomic

charges of other species were calculated using the solvation model. In other words, the atomic

charges in this work are different than previous work therefore the electrostatic interactions

are different.
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4.3.2 Single polymer chain and single lithium tetra-sulfide in sol-

vent

In the presence of a solvent in the polymer systems, the attractive interactions between

polymers and Li2S4 decrease, as illustrated by the green lines in Figure 4.9. In Figure 4.9(a),

the Li2S4-PNB distance remains around 2.1 Å. The conformations at different times show

that the PNB chain gradually uncoils with the effect of solvent and its end group 2 (see Figure

4.3e) always attaches Li2S4. This indicates that the end group 1 and the repeat unit (Figures

4.3c and 4.3d) of PNB cannot effectively bind Li2S4 while its end group 2 can maintain the

attachment over time. However, a distinguished interaction strength between the end group

2 of LEB (Figure 4.3h) and Li2S4, or between the end group 1 or the repeat unit of LEB

(Figures 4.3f and 4.3g) and Li2S4 is not observed and the Li2S4 gradually detaches from

the LEB chain. Detaching phenomena between polymer and Li2S4 also happen in the cases

of PEDOT and PPY, as indicated by the magenta lines in Figures 4.9(c) and 4.9(d). The

examples of detached conformations are presented in Figure 4.10.

4.3.3 Polymer binders and lithium tetra-sulfides (1:5 w/w poly-

mer/tetra-sulfide) in vacuum

The previous simulations consider how polymer chains interact with only one Li2S4. Typ-

ically, the weight ratio between sulfur and binder is no less than 5 in Li–S batteries which

means that each polymer chain matches 43 tetra-sulfide dianions when using tetra-sulfide di-

anions to represent the sulfur species. In order to analyze the binding ability of each polymer

chain with 43 tetra-sulfide dianions and 86 Li+ ions, three replicas of each simulation were

carried out in vacuum for the polymer systems. The frame with the strongest Li2S4-polymer

interaction was selected for analysis and to be used for constructing initial structures of the

explicit solvation models for each polymer system.

Figures 4.11(a)-(h) show the structures of the simulation frames. It can be observed
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that Li+ and S2−
4 form a cluster in each system, and the interaction between the cluster

and each polymer results in a twisted and/or bended conformation of the polymer chain.

Figures 4.11(i) and 4.11(j) show the S2−
4 -polymer and Li2S4-polymer interaction energies;

respectively. The Li+ in the clusters contributes to the attractive interaction mainly through

electrostatic interaction, while S2−
4 makes the contribution mainly by the vdW interaction,

which agrees with the conclusion derived from the single-S2−
4 systems. The strength order of

total interactions of polymer-Li2S4 is: PPY-Li2S4>PNB-Li2S4>LEB-Li2S4>PEDOT-Li2S4,

which is different than the single-S2−
4 systems. As for PEDOT, the interaction with Li2S4 is

the weakest possibly due to its number of units is the smallest among the binders. On the

other hand, PPY has the largest number of units thus possessing the strongest interaction

with Li2S4. Figure 4.11(e) shows that an end of the PNB chain is dangling, indicating that the

end of PNB has weaker binding effect with Li2S4. The LEB chain doesn’t have dangling parts

(Figures 4.11(b) and 4.11(f)) since its end groups and repeat units have similar interaction

strengths with Li2S4, but its binding effect with Li2S4 is still weaker than that of the PNB.

The other noteworthy point is that the ratios of the vdW interaction components in the

total Li2S4-polymer interactions become larger.

4.3.4 Polymer binders and lithium tetra-sulfides (1:5 w/w poly-

mer/tetra-sulfide) in solvent

In the absence of a solvent in the polymer system, the ends of the polymer chains bend and

twist to attach to as much of the surfaces of Li2S4 clusters as possible, as shown in Figures

4.11(a)-(h). However, with the presence of a solvent in the system, the polymer chains tend

to detach from the surfaces of Li2S4 clusters, except for PNB, as shown in Figures 4.12(a)-

(d). This implies that the attractions of LEB, PEDOT and PPY with the Li2S4 clusters are

not large enough to hold the Li2S4 clusters. Compared with the results in Figure 4.11(j),

the Li2S4-polymer interaction energies in Figures 4.12(e)-(h) increase due to the effect of

solvent. And the ratios of vdW interaction to electrostatic interaction change slightly except
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in the cases of LEB and PEDOT in which the vdW interactions become larger than the

electrostatic interactions. The end group 2 of PNB always attaches on the surface of the

cluster (Figure 4.12(a)), which renders PNB having the highest interaction strength with the

Li2S4 cluster among the binders. Since most units of the chains have access to the solvent

(Figures 4.12(b) and (d)), LEB and PPY have the weakest interaction with the Li2S4 cluster.

Although the binding strength is not enough for the polymer to trap the Li2S4 cluster

firmly in each system, the assembly of the Li2S4 cluster and the polymer chain still exists

over time because the structure of the cluster is maintained during the MD process and

restricts the move of the polymer chain. In addition, the position of each cluster with

respect to the polymer is stable during the simulation. The calculated interaction strengths

between polymers and clusters represent the upper limit of interaction strengths between

the polymer chains and 43 Li2S4. When each polymer chain, 43 S2−
4 ions and 86 Li+ ions

were distributed randomly in the solvent mixture at the beginning of modeling process, the

ions form electroneutral clusters with various sizes (Figure 4.13) rather than forming only

one large cluster, which agrees with the simulation results of previous work [162]. Based

on these results, it could be inferred that the interactions between these clusters and the

polymer chains would not be strong enough to endure the attachments, thus the clusters

would approach and then interact with the polymer chains only by chance.

The simulation results shown in Figure 4.14 confirms this inference, which displays the

numbers of Li2S4 attached by binders at different time points during the last 20 ns of the

MD simulations. Only PNB maintains attraction with Li2S4 due to the end group 2. And

it illustrates that one end group 2 of PNB could stably maintains attraction with 2 out of

43 Li2S4 molecules while the repeat units of PNB, LEB, PEDOT and PPY seem ineffective

in adsorbing Li2S4. However, this doesn’t mean PNB can effectively bind Li2S4 because

the polymerization degree of PNB will be much larger, hence the ratio of the end group

2 relative to the repeat units is quite small. Therefore, undoped conjugated PNB, LEB,

PEDOT and PPY seem to have ineffective performance in binding polysulfides through
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non-bonded interaction, especially when the concentration of polysulfide/binder in a local

domain of the cathode is as low as that in the simulations.

4.4 Conclusions

Full-atomistic MD simulations have been performed to unravel the binding effectiveness

between tetra-sulfides and polymer binders PNB, LEB, PEDOT and PPY with the effect

of a 1:1 (v/v) mixture of DOL/DME when considering the ratio between sulfur and binder

in a real Li–S cell. The simulations in solvent demonstrate that the end group 2 of PNB

can effectively bind one Li2S4 cluster or 2 out of 43 Li2S4 molecules with the effect of the

solvent mixture through non-bonded interaction. However, the chain length of PNB used

in this work is limited by the computing resources available. In a real case, the ratio of

the end group 2 relative to the repeat units is quite small thus the group 2 will not play

an important role in attracting Li2S4. Therefore, PNB, LEB, PEDOT and PPY seem to

be ineffective in binding polysulfides through non-bonded interaction, especially when the

concentration of polysulfide/binder in a local domain of the cathode is as low as that in the

simulations. Based on that, polymers with the functional group (i.e. end group 2 of PNB)

are suggested to be further studied in order to get effective binders.

The constructed MD models have a potential to be extended to study binding effective-

ness between polysulfides and polymers under other influencing factors, such as side groups

of polymer binders and doped states of conductive binders. Since the solvent environment

has considerable impact on the binding effectiveness between tetra-sulfides and binder, it

is suggested to use the explicit solvation models, similar to the ones built in this work, to

predict how other influencing factors affect binding effectiveness between polysulfides and

polymers, which will contribute to the existing demand for guiding binder design and ra-

tional experiments for Li–S technology as well as propel the advancement of MD modeling

methodology for understanding properties and performance of polymer materials in energy
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storage systems.
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(a) PEDOT.

(b) PPY.

Figure 4.3: RESP charges of species.
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(c) End group 1 of pernigraniline base PANI (PNB).

(d) Repeat unit of PNB.

(e) End group 2 of PNB.

Figure 4.3: RESP charges of species (cont.).
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(f) End group 1 of leucoemeraldine base PANI (LEB).

(g) Repeat unit of LEB.

(h) End group 2 of LEB.

Figure 4.3: RESP charges of species (cont.).
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(i) S2−4 .

(j) DOL.

(k) DME.

Figure 4.3: RESP charges of species (cont.).
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Figure 4.4: Flow diagram of MD simulations and examples of structures of (a) randomly
packed PPY, Li+ and S2−

4 , (b) assembled PPY, Li+ and S2−
4 , (c) assembly of PPY, Li+ and

S2−
4 surrounded by the DOL/DME solvent mixture, (d) detached Li2S4 and PPY in the

DOL/DME solvent mixture after running MD simulations. For clarity, the structures of
PPY, Li+ and S2−

4 are drawn by ball and stick, while the structures of solvent molecules
are represented by fine lines and only some of them are shown. The H, Li, C, N, O and S

atoms are colored by white, pink, cyan, blue, red and yellow, respectively.
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Figure 4.5: Flow diagram of MD simulations and examples of structures of (a) randomly
packed PPY, Li+ and S2−

4 , (b) assembled PPY, Li+ and S2−
4 , (c) assembly of PPY, Li+ and

S2−
4 surrounded by the DOL/DME solvent mixture, (d) assembly of Li2S4 cluster and

slightly bended PPY chain in the DOL/DME solvent mixture after running MD
simulations. The color scheme of atoms and the drawing method of molecular structures

are the same as that in Figure 4.4.
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Figure 4.6: (a)-(h) Structure, (i) polymer-S2−
4 interaction energy, and (j) polymer-Li2S4

interaction energy of the self-assembled single S2−
4 dianion, Li+ ions and single polymer

chain. The color scheme of atoms is the same as that in Figure 4.4. Columns with heights
equal to the value of the interaction energy components are stacked up, where the
summation is the total interaction energy corresponding to each polymer system.
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Figure 4.7: Structure of LEB and Li2S4 with the strongest Li2S4-LEB interaction. The
color scheme of atoms is the same as that in Figure 4.4.
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Figure 4.8: Energy decomposition for systems of self-assembled single S2−
4 dianion, Li+ ions

and single polymer chain. The atoms are colored by BWR method according to their
contributions to each component of Li2S4-polymer interaction energy, where bluer atoms

have more negative contribution (i.e. more contribution to attraction), redder atoms have
more positive contribution (i.e. more contribution to repulsion), and whiter atoms have

less contribution. The color scales of electrostatic, exchange repulsion and dispersion
interactions are noted in each subfigure and the unit is kJ mol−1. The exchange repulsion

is noted as “Repulsion” in subfigures (e)-(h).
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Figure 4.9: Total interaction energy and distance of (a) Li2S4-PNB, (b) Li2S4-LEB, (c)
Li2S4-PEDOT, and (d) Li2S4-PPY with the effect of the solvent mixture over time.
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(a) LEB and Li2S4.

(b) PPY and Li2S4.

Figure 4.10: Detached polymer binder and Li2S4 with the effect of the solvent mixture. For
clarity, the solvent mixture is drawn as the blue background using QuickSurf method

provided in VMD.
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(c) PEDOT and Li2S4.

Figure 4.10: Detached polymer binder and Li2S4 with the effect of the solvent (cont.). For
clarity, the solvent mixture is drawn as the blue background using QuickSurf method

provided in VMD.
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Figure 4.11: (a)-(h) Structure, (i) polymer-S2−
4 interaction energy, and (j) polymer-Li2S4

interaction energy of the self-assembled multiple S2−
4 , Li+ and single polymer chain. The

color scheme of atoms is the same as that in Figure 4.4. Columns with heights equal to the
value of the interaction energy components are stacked up, where the summation is the

total interaction energy corresponding to each polymer.
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Figure 4.12: Structure of (a) PNB, (b) LEB, (c) PEDOT, and (d) PPY and cluster of Li2S4

with the effect of the solvent mixture after running the MD of 50 ns. For clarity, the solvent
mixture is drawn as the blue background using QuickSurf method provided in VMD.

(e)-(h) Interaction energies of polymer-Li2S4 over the last 30 ns of the MD simulations.
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Figure 4.13: Representative simulation snapshot of PPY and randomly distributed Li2S4

clusters in the DOL/DME solvent mixture. Solvents are not shown. The color scheme of
atoms is the same as that in Figure 4.4.
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Figure 4.14: Numbers of Li2S4 within 5 Å of binders at different time points during the last
20 ns of the MD simulations.
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Chapter 5

Conclusion

Due to the current advances in computational resources and techniques, computational ma-

terials science is increasingly applied to predict the relationship between material structures,

properties and performance. One of the challenges is how to properly build models using

the available resources and approaches.

In one application, NaS batteries with large diameter are desired for commercialization.

But the seals in the joint region and the BASE component of the cell are relatively vulnerable

and serious thermo-mechanical stress accumulation can be induced by increasing the NaS

cell diameter during the cell assembly, operation and maintenance, which may result in the

fracture of the cell and the following serious safety issues. Different container materials with

different CTEs and other thermo-mechanical properties have been selected and conceived for

circumventing the problem of thermo-mechanical stress accumulation. In the present study,

the thermo-mechanical stress concentrated region in different cells with different container

materials have been estimated and the shear and normal stresses in these regions have been

quantified using the FEA computation technique. It is demonstrated that the primary failure

mechanism in the planar NaS system design considered in the current work would be the

interfacial fracture between the insulating header (IH) and the upper insert metal (IM1) due

to the normal stress in cell height direction, and the necessary treatments, including better
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material selection or improved bonding technology between IH and IM1, must be involved

to avoid the fractures of constituent components in the joint area.

In another application, a series of MD computations was conducted to evaluate the

Flory-Huggins parameters (χ) between TC drugs and PLA/PGA polymers. By quantifying

χ values between PLA and PGA blend systems, it is shown that the mixing of PLA and

PGA polymers is not thermodynamically favorable throughout the entire composition range

of 10/90 to 90/10 wt% PLA/PGA. Then the χ parameters between PLA and/or PGA poly-

mers and TC drugs are estimated for the TC compositions of 15 and 45 wt%. Based on

the thermodynamics considerations using the Flory-Huggins solution model, the free energy

densities for these PLA/TC and PGA/TC systems are studied and they are correlated to

the surface structural morphology of PLGA/TC films. The meso-scale modeling based on

PFM method using the material properties obtained through MD computations was then

conducted, and it is found that the overall size distributions of drug particles embedded in

PLGA matrices with different PLA/PGA copolymer ratios are comparable to the experi-

mental observations. It is thought that such variations of drug particle sizes can directly

influence the drug release kinetics from PLGA-TC coatings.

Finally, full atomistic MD simulations have been performed on tetra-sulfides and undoped

conjugated polymers PNB, LEB, PEDOT and PPY to investigate the binding effectiveness

between polysulfides and polymer binders. The weight ratio between sulfur and binder in

lithium–sulfur cells is considered in 1:1 v/v mixture of dioxolane/dimethoxyethane. The

simulations reveal that the end group 2 of PNB can effectively bind a lithium tetra-sulfide

(i.e. Li2S4) cluster or 2 out of 43 Li2S4 molecules with the effect of solvent. However,

repeat units of PNB, LEB, PEDOT and PPY seem ineffective in binding solvated Li2S4

through non-bonded interaction, especially when the concentration of tetra-sulfide/binder

in a local domain of the cathode is low. Therefore, polymers with this specific functional

group (i.e. the end group 2 of PNB) are suggested to be further studied as potential effective

binders to inhibit the shuttle effect of solvated lithium polysulfides. Also, since the solvent
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has considerable impact on the binding effectiveness between tetra-sulfides and binder, it is

suggested to take advantage of the explicit solvation models, such as those built in this work,

to predict how other influencing factors affect binding between polysulfides and polymers.

The presented simulation models demonstrate the application of computational materials

science in material system development in energy storage material and biological materials.

The modeling methods can be employed and extended for solving similar practical problems,

including material design and performance analysis.
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