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ABSTRACT 

DATA-DRIVEN APPROACH TO DYNAMIC RESTING STATE FUNCTIONAL 
CONNECTIVITY IN POST-TRAUMATIC STRESS DISORDER 

 
by 
 

Carissa Weis 
 

The University of Wisconsin-Milwaukee, 2020 
Under the Supervision of Professor Christine L. Larson 

 

Posttraumatic stress disorder (PTSD) is a heterogenous psychological disorder that may result 

from exposure to a traumatic event. Using functional magnetic resonance imaging (fMRI), 

symptoms of PTSD have been associated with aberrations in brain networks that emerge in the 

absence of a given cognitive demand or task, called resting state networks. Most previous 

research in resting state networks and PTSD has focused on aberrations in the static functional 

connectivity among specific regions of interest (ROI) in the brain and within canonical networks 

constrained by a priori hypotheses. However, dynamic fMRI, an approach that examines 

changes in brain network characteristics over time, may provide a more sensitive measure to 

understand the network properties underlying dysfunction in PTSD. In addition, a data-driven 

analytic approach may reveal the contribution of other larger network disturbances beyond those 

revealed by hypothesis-driven examinations of ROIs or canonical networks. Therefore, the 

current study used a data-driven approach to characterize and subsequently compare brain 

network dynamics and recurrent connectivity states in a large sample of trauma exposed 

individuals (1,000+) with and without PTSD from the ENIGMA-PGC-PTSD workgroup.  Static 

functional connectivity results showed those with PTSD had lower network efficiencies than 

Controls within and between sensorimotor and visual subnetworks. Further, network dynamics 

showed increased network efficiencies through the course of the scan for both groups, except in 
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the visual subnetwork where those with PTSD showed blunted efficiencies through time. Those 

with PTSD also had fewer individual-level connectivity states, especially in the second half of 

the scan, compared to Controls suggesting a degree of stochasticity in the network over time. 

Finally, there were no group differences in dwell time or number of transitions of group-level 

connectivity states. Together, results suggest aberrancies in large-scale brain networks related to 

PTSD diagnosis beyond the most common analyzed ROIs. Unsurprisingly, in a large and 

heterogenous trauma sample, larger scale group results were not as robust compared to similar 

analyses in smaller homogenous trauma samples. Heterogeneity of PTSD, especially within 

diffuse brain networks, cannot be captured by evaluating only diagnostic groups, further work 

should be done to evaluate brain network dynamics with respect to specific symptoms and 

trauma types. 
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Data-driven approach to dynamic resting state functional connectivity  
in Post-Traumatic Stress Disorder 

Introduction 

Post-Traumatic Stress Disorder 

Post-traumatic stress disorder (PTSD) is a psychological disorder that may follow 

exposure to a traumatic event. According to the Diagnostic and Statistical Manual of Mental 

Disorders (DSM-5), a traumatic event is one in which an individual perceives that their life 

and/or safety has been threatened. The trauma may be experienced directly, witnessed, or happen 

to someone close to the individual (American Psychiatric Association, 2013). Examples of 

trauma include, war and combat, physical and/or sexual assault, terrorism, automobile accidents, 

natural or man-made disasters. Clinical presentation of the disorder is quite heterogenous and 

symptoms span several cognitive and affective domains. Symptoms often disrupt daily function 

and include re-experiencing the event through intrusive thoughts, nightmares, and flashbacks, 

avoiding trauma-related stimuli, hyperarousal, and experiencing negative thoughts or emotions 

that begin or worsen after the event (American Psychiatric Association, 2013).  

According to the DSM-5, the lifetime prevalence of PTSD is about 9.4% in the US 

(Kilpatrick et al., 2013; Miao et al., 2018; Yehuda et al., 2015). Prevalence estimates vary by 

geographic region and, based on data from the World Health Organization (WHO), the lifetime 

prevalence of PTSD for trauma exposed individuals from 24 countries is estimated to be 5.6% 

(Benjet et al., 2016; Koenen et al., 2017). Unsurprisingly, rates of PTSD are highest for those 

exposed to interpersonal violence including rape and captivity survivors, combat veterans, 

internment and genocide victims (American Psychiatric Association, 2013). In addition, women 

tend to be more affected than men due in part to the fact that women have higher rates of 

exposure to sexual and interpersonal violence (Kilpatrick et al., 2013). PTSD presentation is 
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highly comorbid with other mental health disorders including depression, bipolar, anxiety, and 

substance use disorders (American Psychiatric Association, 2013; Karam et al., 2014). These 

factors make the public health burden of PTSD substantial as affected individuals require more 

mental health resources than other standalone psychological disorders (Ivanova et al., 2011). 

Trauma exposure is prevalent. Trauma exposure rates in the United States are estimated 

at nearly 90% with a 50% likelihood of experiencing direct interpersonal violence (Kilpatrick et 

al., 2013). Globally, the WHO estimates the prevalence of trauma exposure at 70%, and 40% for 

direct interpersonal violence (Benjet et al., 2016). Although trauma exposure is quite common, 

the overwhelming majority of individuals are resilient and do not develop PTSD or other 

disorders (Bonanno, 2004; Lee et al., 2014; Thompson et al., 2013; Wolf et al., 2017; Wu et al., 

2013). However, a substantial minority do go on to develop chronic PTSD and related disorders 

(Bonanno, 2004; Foa & Riggs, 1995; Karam et al., 2014; Powers et al., 2014; Riggs et al., 1995). 

Despite the clear public health implications and degree of distress associated with PTSD, 

clinicians do not have an accurate method of predicting who is at risk of PTSD development 

after trauma (Yehuda et al., 2015). Given the heterogeneity of symptom presentation in PTSD 

and the array of possible trauma exposure, it is not surprising the understanding of PTSD in the 

brain is still unclear (Yehuda et al., 2015). However, in order to help clinicians develop more 

timely and precise interventions, it is important researchers reach a better understanding of how 

trauma exposure and PTSD disrupt the brain (Shou et al., 2017; Van Rooij et al., 2016). 

ROI-based Analyses in PTSD 

The leading theory on brain network dysfunction in PTSD suggests disruptions in an 

amygdala-hippocampal-frontal network (Clausen et al., 2017; Godsil et al., 2012; Li et al., 2014; 

Malivoire et al., 2018; Rauch et al., 2006; Shin & Liberzon, 2010; Shou et al., 2017; Spadoni et 
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al., 2018; Van Rooij et al., 2016; Zhu et al., 2017). Specifically, hyperactivation within the 

limbic regions and hypoactivation of frontal regions together seem to set PTSD apart from other 

anxiety disorders such as generalized anxiety disorder, social and/or specific phobia (Etkin & 

Wager, 2007; Godsil et al., 2012).  

The patterns of activity among regions within this network may underlie impaired 

extinction learning and/or overgeneralization of fear responses, both prevailing theoretical 

models of PTSD (Etkin & Wager, 2007; Malivoire et al., 2018; Zhu et al., 2017). Impaired 

extinction learning and overgeneralization of fear responses stem from the observation in PTSD 

that trauma survivors tend to show elevated and/or sustained fear responses to trauma-related 

cues even when not in the traumatic environment, i.e. exaggerated fear response (both 

physiological and psychological) to being in any car after experiencing a traumatic car accident, 

beyond the exact car or exact location where the accident occurred (Kaczkurkin et al., 2017; Van 

Rooij et al., 2016).  

Brain and behavioral effects related to fear extinction and generalization paradigms, in a 

wide variety of samples, have provided support for the theoretical underpinnings of the 

amygdala-hippocampal-frontal network in PTSD (Negreira & Abdallah, 2019; reviewed in 

Sehlmeyer et al., 2009). These same effects have also been observed under resting state fMRI 

(rs-fMRI) conditions, when participants are not given a specific task to complete and are simply 

lying awake in the MRI scanner (Fox & Raichle, 2007; Koch et al., 2016). Thus, the bulk of 

resting state neuroimaging has also focused on these regions wherein variability in each of the 

amygdala-hippocampal-frontal regions has been correlated with respect to major symptoms of 

the disorder (i.e. amygdala and hyperarousal; hippocampus and memory deficits; frontal cortices 

and impaired extinction learning) (Koch et al., 2016; Malivoire et al., 2018; Rauch et al., 2006; 
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Shin & Liberzon, 2010). However, this approach of region of interest (ROI) analysis ignores the 

contribution of other, larger network disturbances that may also be important for the 

pathophysiology of PTSD (Disner et al., 2018; Lei et al., 2015; Negreira & Abdallah, 2019; 

Spielberg et al., 2015). For example, in a meta-analysis of data-driven rs-fMRI studies, 

differences in neural activity between those with and without PTSD were identified in the 

inferior parietal lobule, globus pallidus, lingual gyrus, and caudate head (Disner et al., 2018). 

Network-based Analyses in PTSD 

Beyond the amygdala-hippocampal-frontal network, a growing body of literature has 

reported large-scale disruptions in resting state canonical networks in those with PTSD 

(reviewed in Akiki et al., 2017 and Menon, 2011). These canonical networks constitute 

correlated activity amongst neighboring and/or diffuse regions of the brain that robustly reoccur 

across samples (Fox & Raichle, 2007; Yeo et al., 2011). The most widely reported canonical 

networks related to PTSD dysfunction include the default mode (DMN), central executive 

(CEN), and salience networks (SN) (King et al., 2016; reviewed in Akiki et al., 2017 and Menon, 

2011).  

The DMN is a network thought to involve introspective processes of which core regions 

include the hippocampus, posterior cingulate cortex (PCC), and ventromedial prefrontal cortex 

(vmPFC) (Menon, 2011). More specifically in those with PTSD, symptom severity has been 

associated with overall weaker connectivity strength in the DMN with notably reduced vmPFC 

and PCC to hippocampus, and vmPFC to PCC connectivity (Akiki et al., 2017; Zhang et al., 

2017; Zhang et al., 2016). One study even demonstrated that those with PTSD treated with 

mindfulness-based exposure therapy showed an increase in connectivity amongst DMN regions 

after treatment (King et al., 2016). Thus, weaker connectivity within the DMN may reflect 
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poorer regulation of emotion processing and frontal networks in PTSD (Clausen et al., 2017; Ke 

et al., 2016). 

The CEN is a network active during tasks requiring cognitive control and consists of 

dorsolateral prefrontal cortex (dlPFC), middle frontal gyri, precuneus, and premotor cortices 

(Menon, 2011). Similar to the DMN, the CEN has also consistently shown weaker connectivity 

in those with PTSD specifically between premotor cortex and dlPFC regions (Akiki et al., 2017; 

Spadoni et al., 2018). In addition, in those with PTSD, the dlPFC has also shown to be 

hypoactive while the precuneus is hyperactive at rest (Akiki et al., 2017). These patterns of 

activity may also reflect the irregular top-down control over cognitive and emotional states 

(Akiki et al., 2017; Clausen et al., 2017; Spadoni et al., 2018). It has also been suggested that the 

collective patterns of ROI-specific activity within regions such as amygdala, insula, prefrontal 

cortex reflect an imbalance between CEN and SN, where the CEN is more suppressed and SN is 

more excited than in those without PTSD (Akiki et al., 2017; Spadoni et al., 2018). 

Finally, the SN is a network involved in the detection of stimuli and primarily consists of 

the amygdala, insula, and dorsal anterior cingulate cortex (dACC) (Menon, 2011). The SN has 

also been implicated in arbitrating between DMN and CEN depending on the current exogenous 

demands and whether cognitive resources are required or not (Akiki et al., 2017; Menon, 2011). 

Contrary to the results frequently described in the DMN and CEN, the SN in those with PTSD 

tends to show greater connectivity among regions, primarily between amygdala and insula, and 

amygdala and dACC (Akiki et al., 2017; Spadoni et al., 2018). This increased connectivity may 

indicate a state of “primed salience” which may lead to increased difficulty in top-down control 

over emotion reactivity and hyperarousal in PTSD (Akiki et al., 2017). Additionally, one study 

investigating the temporal dynamics of the SN in PTSD found decreased temporal variability in 
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anterior regions of the SN but increased temporal variability in posterior regions (Yuan et al., 

2018). This disruption in coherence within the SN may contribute to the arbitration imbalance of 

the SN and CEN, as well as abnormal emotion regulation within PTSD (Spadoni et al., 2018; 

Yuan et al., 2018).  

Although differential alterations in these networks have been associated with specific 

deficits in PTSD (Akiki et al., 2017; Clausen et al., 2017; Ke et al., 2016; King et al., 2016; 

Spadoni et al., 2018; Yuan et al., 2018; Zhang et al., 2017; Zhang et al., 2016), there are common 

regions implicated in more than one network, while many of the network “hubs” are regions 

previously identified in ROI-based approaches (e.g., hippocampus, amygdala, frontal cortex). In 

contrast, and of interest to the current study, relatively little is known about disruptions in 

spatially diffuse networks with regions outside of the amygdala-hippocampal-frontal network or 

beyond DMN, CEN, and SN canonical networks in those with PTSD (Disner et al., 2018; Ke et 

al., 2016; Lei et al., 2015; Spielberg et al., 2015). Furthermore, given the heterogenous nature of 

PTSD, it is unlikely dysfunction can be explained by a single region or even by a canonical 

network consisting of a few regions. 

Dynamic rs-fMRI 

Resting state fMRI research has yielded robust results for ROI and canonical network 

analyses even within a rather heterogeneous clinical disorder (e.g. PTSD). However, another 

potentially limiting factor in this line of research, beyond ROI-based approaches, is the use of 

static functional connectivity. Resting state fMRI scans consist of several minutes of undirected 

(i.e. task-independent) brain activity for which the most widely used analysis method is static 

functional connectivity (Fox & Raichle, 2007; Friston, 2011). The primary limitation of static rs-

fMRI is the reduction of functional connectivity metrics from the entire length of the scan down 
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to one measure. Best observed under demands of a given task, brain networks engage and 

disengage over time to meet the needs of the task (Cribben et al., 2012; Kitzbichler et al., 2011; 

Varela et al., 2001). Even at rest, brain regions show time invariant fluctuations in activity (Allen 

et al., 2014; Deco et al., 2011; Disner et al., 2018; Fornito et al., 2016; Fox & Raichle, 2007; 

Handwerker et al., 2012; Heitmann & Breakspear, 2018; Hutchison et al., 2013; Zalesky et al., 

2014). Therefore, static connectivity analyses violate basic intuitions of fluctuations in cognition 

and mental states (Cribben et al., 2012). To overcome the limitations of static rs-fMRI, the 

technique of dynamic rs-fMRI was developed.  

Dynamic rs-fMRI involves segmenting a resting state time series into smaller time bins 

using a sliding window, for example, so that ROI or network connectivity can be analyzed within 

each window and then across all windows (Damaraju et al., 2014; Fornito et al., 2016; Kaiser et 

al., 2016; Kitzbichler et al., 2011; Zalesky et al., 2014). By breaking up the duration of a longer 

rs-fMRI scan into smaller “windows” of time and examining the strength and changes of 

functional connectivity amongst brain regions within each window, the resolution of temporal 

network dynamics can be enhanced (Cribben et al., 2012; Damaraju et al., 2014; Fornito et al., 

2016; Hutchison et al., 2013; Kaiser et al., 2016; Kitzbichler et al., 2011; Yuan et al., 2018).  

Dynamic rs-fMRI and PTSD 

Relatively few studies have examined dynamic rs-fMRI in those with PTSD (Jin et al., 

2017; Lei et al., 2015; Li et al., 2014; Suo et al., 2015; Xu et al., 2018; Yuan et al., 2018; Zhang 

et al., 2015; Zhu et al., 2019). However, this method may be a more sensitive way of 

understanding network dysfunction in PTSD. For example, Yuan et al., (2018) utilized 

simultaneous electroencephalography (EEG) and fMRI to identify temporal dynamics of regions 

resembling the default mode and salience networks at rest that correlated with PTSD symptoms 
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in veterans, when compared to their combat-exposed counterparts without PTSD. Those with 

PTSD exhibited more frequent reoccurrences of default mode states indicating hyperactivity in 

regions involved in memory and self-referential thought may drive symptoms (Yuan et al., 

2018). Importantly, these temporal dynamics would not have been identifiable by examining the 

full time series of resting state data. A dynamic approach that segments the full time series into 

smaller time bins provides greater resolution to transient brain states that get averaged out when 

examining static functional connectivity. Interestingly, in a sample of earthquake survivors, 

dynamic functional connectivity of a network consisting of 190 regions was a better predictor of 

PTSD than the more “traditional” static functional connectivity of the same network (Jin et al., 

2017). Therefore, dynamic functional connectivity may be a more ecologically valid approach to 

understanding the properties of brain network dysfunction in PTSD (Fornito et al., 2016; Ross & 

Cisler, 2020; Yu et al., 2015). 

Purpose of Current Study 

The current study examined dynamic resting state functional connectivity in a data driven 

manner (independent of a priori seed or canonical network) to characterize network dynamics 

and “connectivity states”—recurrent brain states over time—in those with PTSD (Allen et al., 

2014). A data-driven approach in analyzing brain networks has the potential to identify new or 

additional regions or networks involved in the neurocircuitry underlying PTSD. In addition, the 

analysis and characterization of connectivity states, or brain network states that reoccur over 

time, may describe or explain the nuances and heterogeneity of PTSD symptomology more than 

standard analysis techniques can. To ensure an adequately powered sample for this complex 

analysis, resting state scans from the large ENIGMA PCG-PTSD Neuroimaging workgroup 

database were used (~3,000 trauma exposed participants; https://pgc-ptsd.com/). 
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Specific Aims 

Aim 1: Use data driven approach to characterize brain networks in trauma exposed 

sample to compare static and dynamic functional connectivity properties between PTSD and 

Control groups. 

Aim 2: Identify and compare dynamic functional connectivity states between PTSD and 

Control groups.  

Method 

Participants 

The current study utilized resting state fMRI scans, demographic and clinical data 

collected by the ENIGMA consortium’s PGC-PTSD workgroup. In the first wave, 2,902 trauma-

exposed participants’ data (1,175 PTSD+) from 27 sites around the world were released for 

analysis (See Table 28 in Appendix A for sample characteristics of full released dataset). Sites 

included: Academic Medical Center at the University of Amsterdam (AMC), Beijing University 

of Chinese Academy of Sciences (BEI), University of Capetown/Tygerberg Hospital (CAP), 

Columbia University (COL), Duke/Durham Veterans Affairs (DUK), Emory University- Grady 

Trauma Project (EMO), Ghent University (GHE), University of Groningen (GRO), Leiden 

University Medical Center (LEI), Masaryk University— Central European Institute of 

Technology (MAS), McLean Hospital (MCL), University of Michigan (MIC), University of 

Wisconsin-Milwaukee (MIL), Minneapolis Veterans Affairs (MIN), UK Munster (MUN), 

Nanjing University/Yixing Hospital (NAN), Stanford University (STA), University of Toledo 

(TOL), Universite de Tours (TOU), University of Minnesota (MIN), Utrecht University Medical 

Center (UTR), University of Washington (UWA), Vanderbilt University (VAN), Waco Veterans 
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Affairs (WAC), University of Western Ontario (WON), and University of Wisconsin Dr. Cisler’s 

lab (WCI) and Dr. Grupe’s lab (WGR). For general study aim information for each site, see 

Table 29 in Appendix A. Note, the 3-letter code in parentheses following each site listed above is 

used for all subsequent references to sites. 

Final Sample Reductions 

Given this consortium was organized and assembled in a post-hoc fashion, all 

contributing sites organized and conducted their respective studies in very different manners. 

This means that the submitted data were in various forms and reported/missing data across 

variables were inconsistent. Thus, numerous data quality assurance checks were conducted 

before analysis could begin. Given a dataset of this magnitude and the planned analysis strategy, 

there were a number of ways the analysis could have been executed, therefore, I have highlighted 

the decision points throughout process and provided justification for each choice. Notably, for 

reasons outlined below, over half (63%) of participants/sites were dropped from final analysis 

such that the final sample was N=1,049 (447 PTSD+). See Figure 20 in Appendix A for visual 

depiction of sample reduction process described below. 

First, since PTSD status was the critical grouping variable of interest, I removed any 

participants who were missing current PTSD diagnostic status (Dx; N=10). Both current and 

lifetime PTSD Dx could have been reported by site, however the focus in the current study was 

in evaluating current PTSD. Participants designated as “Trauma Exposed Control” (N=174, 3 

sites), “Healthy Control” (N=24, 1 site), “Control” (N=1,498, 23 sites) or “Subthreshold” (N=21, 

2 sites) were all grouped together to comprise the “Control” group (N=1,717). Trauma-exposed 
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or not, the individuals in the Control group still comprise a group that does not meet criteria for 

PTSD and for this reason were compared to those who did meet diagnostic criteria.  

Next, there were 20 subjects in the released dataset who had imaging data with no 

corresponding clinical/demographic data and were excluded from analysis (N’s excluded by site: 

AMC=2, CAP=7, COL=1, GHE=1, MAS=1, MCL=4, MIL=1, MIN=1, STA=2). An 

examination of the resting state fMRI metadata revealed 14 subjects had repetition time (TR) 

counts inconsistent with the rest of their respective samples and were therefore excluded. This 

could be the result of scans cut short during acquisition or corruption of the 4-D files in the 

reconstruction or analysis pipeline (N’s excluded by site: MCL=1, MIL=1, MIN=3, VAN=3, 

WAC=5). Exclusions thus far leave a sample of N=2,858.  

The MRI and fMRI acquisition parameters were quite variable across sites. Of particular 

concern was the variability in TR length by site (TRs ranged from 1-3 seconds). There were 2 

options I considered when evaluating this concern.  

Option 1: retain sites with the same TR length (TR=2sec). Choosing this option would 

yield a sample of 1,234 participants (403 PTSD+) from 11 sites. 

Option 2: retain sites that have enough time points to yield at least 200-time windows for 

the dynamic resting state analysis. Note: Though 200 is an arbitrary number I believe it 

would be a sufficient amount of data to appropriately evaluate brain network temporal 

dynamics. In addition, 200 windows is greater than or equal to the amount of windows 

evaluated in previous work with similar methods (Allen et al., 2014; Damaraju et al., 

2014; Yu et al., 2015). Choosing this option yields a sample of 1,302 participants (496 

PTSD+) from 12 sites. 
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Decision/Rationale: While combining datasets with variable TRs muddles standard fMRI 

analysis techniques, I did not believe this would impact the current analysis pipeline. 

First, a TR of 1 second (minimum) or 3 second (maximum) still sufficiently samples the 

hemodynamic response function (HRF) as it’s typically thought to span 6-10sec 

(Constable & Spencer, 2001; Soares et al., 2016). Second, the group ICA step (arguably 

the most critical step in the analysis pipeline) does not require and is not impacted by 

variable TRs (Allen et al., 2012; Biswal et al., 2010). Therefore, I chose option 2 to retain 

sites with enough TRs to generate 200-time windows for the dynamic resting state 

analysis which also yields a slightly larger sample size than option 1. Exclusions up this 

point yield a sample of 1,302 participants (496 PTSD+) from 12 sites (AMC, CAP, COL, 

MIC, MIL, MIN, NAN, STA, TOL, UMN, UTR, WCI).  

With 1,302 participants, only 496 PTSD+ (38% of sample) yields a rather imbalanced sample 

when comparing PTSD and Control groups. Therefore, I reviewed the site inclusion/exclusion 

criteria and demographic data more closely to identify imbalances in groups within site. In doing 

this, I found the Capetown site (CAP) consisted of a sample of pregnant women only with very 

few PTSD+ subjects (169 total, 9 PTSD+). Since this sample represented a very specific subset 

of individuals that may not fit in well with the rest of the sites’ inclusion/exclusion criteria (Table 

30 in Appendix A), and had a very clear imbalance of Dx groups, I decided to exclude the site to 

aid the balance of PTSD vs. Control group numbers. Therefore, 11 sites of the original 27 were 

retained (1,133 subjects, 487 PTSD+; see Table 31 in Appendix A for scan acquisition 

parameters for the 12 retained sites). Finally, I visually inspected each scan for all participants to 

ensure scan quality. Due to poor alignment in standard space and/or overall data corruption, 52 

participants were dropped due to poor scan quality (N’s by site: AMC=1, COL=1, MIL=1, 
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STA=34, TOL=1, UMN=1, UTR=13). (Note: the PGC data release consisted of only the final 

preprocessed 4D images from fmirprep meaning I did not have access to intermediate files with 

which to trouble shoot preprocessing or data quality issues). After all of these data quality 

assurance steps and various reasons for exclusion, the final sample size was 1,049 subjects (447 

PTSD+ and 602 Control). See Table 1 for sample characteristics by site and Table 2 for sample 

characteristics by PTSD Dx group. 

 Compared to the 2,892 subjects originally released by the PGC, who had a PTSD Dx, the 

final sample analyzed was significantly older (MEXCLUDED=36.28, MINCLUDED=37.95, t(2,294) = -

2.93, p < 0.01), had fewer females and more males (χ2(1) = 81.75, p < 0.001), but did not differ 

in rates of PTSD Dx (χ2(1) = 2.51, p = 0.11). 
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Table 1. Final Sample Characteristics by Site (N=1,049) 

Site (n) 
PTSD Dx 

(Clinical Tool) Sex 
Age 

Mean (SD) Depression Dx 
Childhood 
Trauma  

(Z-scored) 
Trauma Type 

AMC (73) 
37+ /36- 
CAPS-V 33F / 40M 40.06 (10.31) 8+ / 65- 

MINI/SCID 
0.42 
ETI Police officers 

COL (78) 
26+ / 52 – 
CAPS-IV 33F / 45M 36.10 (12.52) 18+ / 60- 

SCID 
-0.29 
CTQ 

Civilian childhood 
trauma survivors 

MIC (56) 
38+ / 18- 
PCL-V 56M 30.83 (7.47) 

23+ / 15- /  
18 missing 

MINI 
-- OEF/OIF Veterans 

MIL (95) 24+ / 71- 51F / 44M 32.58 (10.04) 8+ / 86- / 1 missing 
DASS 

-0.17 
CTQ Mixed civilian 

MIN (108) 
26+ / 82-  

MINI 4F / 104M 32.34 (7.14) 42+ / 66- 
SCID -- Veterans 

NAN (138) 
48+ / 90- 
CAPS-V 74F / 64M 57.46 (5.79) 16+ / 122- 

SCID -- Civilians who lost 
only child 

STA (166) 
92+ / 74- 

CAPS-V, SCID-IV 
99F / 65M  
2 missing  35.24 (10.61) 166 missing 0.19 

CTQ 
OEF/OIF Veterans 

And Civilians 

TOL (78) 
14+ / 64- 
CAPS-IV 35F / 43M 35.12 (11.32) 

27+ / 46- / 5 
missing 

CESD/DASS 

0.04  
CTQ 

MVC Survivors 
And OEF/OIF 

Veterans 

UMN (59) 
11+ / 48- 

PCL-5 5F / 54M 42.89 (9.55) 5+ / 54- 
BDI -- Veterans 

UTR (92) 
46+ / 46- 
CAPS-IV 92M 35.44 (9.76) 27+ / 65- 

SCID 
-0.36 
ETI Veterans  

WCI (106) 
85+ / 21- 

PSS 106F 32.77 (8.15) 22+ / 84- 
SCID 

0.23 
CTQ 

Civilian 
interpersonal 

violence 

Total (1,049) 
447+ (42%) 

602- 
440 F (42%) 

607 M 
37.43 (11.81) 

196+ (22%) 
663-  

*of 860 
  

Note: PTSD Dx, posttraumatic stress disorder diagnosis; SD, standard deviation; F, female; M, male; NA, not available/missing; Dx, diagnosis; 
n, sample size. 
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Table 2. Final sample characteristics by diagnostic group (N=1049) 
 PTSD+ (N=447) Control (N=602) 

Sex 222 F / 223 M 218 F / 384 M 
Age 37.43 (11.81) 38.32 (12.71) 
Race   

Asian 57 111 
Black/African American 47 87 
European American 35 14 
Hispanic 2 4 
Multi-racial 22 21 
NA 46 46 
Pacific Islander 1 1 
Unknown 3 2 
White 160 269 

Depression Dx (N=860) 196 - / 158 + 387 - / 119 + 
Childhood Trauma  

(Z-scored; N=547) 
0.34 (1.08) -0.31 (0.78) 

Note: F, female; M, male; NA, not available/missing; Dx, diagnosis; N, sample size. 
 

Covariates of interest 

With the final sample established, further organizational steps were conducted to 

harmonize variable naming conventions and variable codes across sites. Missing data was also 

assessed to evaluate what covariates could be reasonably included in analysis. The proposed (and 

ideal) covariates of interest to the study were scanner site, PTSD Dx, age, sex, childhood and/or 

adult trauma exposure, comorbid psychopathology (especially major depressive disorder and 

anxiety disorders), and substance or medication use.  

Rather than including it as a categorical covariate in the group statistics, scanner site was 

accounted for directly in the analysis pipeline as part of the fMRI data harmonization step (see 

section “ComBat Site Harmonization” below). Sex (coded as Male or Female) and age were 

fairly consistently reported with only 2 and 127 missing data points, respectively. 
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PTSD Diagnostic Status 

As is a common problem in multi-site datasets, the clinical data in the current study were 

assessed using different clinical measures. In the final sample, current PTSD diagnoses were 

determined using 5 different clinical tools—Clinician Administered PTSD Scale (CAPS; 

Weathers et al., 2013), PTSD Checklist (PCL; Blanchard et al., 1996), Mini-International 

Neuropsychiatric Interview (MINI; Sheehan et al., 1998), Structured Clinical Interview for DSM 

(SCID; First & Gibbon, 2004), and the PTSD Symptom Scale (PSS; Foa et al., 2016). Diagnoses 

were determined within each clinical measure respectively. 

Childhood Trauma Exposure 

Fortuitously in the final sample, only two distinct clinical measures of childhood trauma 

were used to assess childhood trauma severity—the Childhood Trauma Questionnaire (CTQ; 

Bernstein et al., 1994) and the Early Trauma Inventory (ETI; Bremner et al., 2000; Bremner et 

al., 2007). Childhood trauma severity data was complete for 547 participants (N=502 missing), 

with 389 assessed using the CTQ and 158 assessed using the ETI. These 2 questionnaires were 

similar enough that the two measures were combined across the sample. To combine measures, 

scores were Fisher-z transformed within their respective clinical measures (i.e. all scores from 

the CTQ, regardless of site, were normalized together). See Table 3 for mean childhood trauma 

severity scores for each site after z-score normalization as well as the clinical measure used for 

each site. 142 of 547 individuals (25%) with childhood trauma severity data had comorbid PTSD 

Dx and above average childhood trauma severity scores.  
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Table 3. Mean childhood trauma severity (z-scored) by site (N=547) 

Site Mean Z Childhood 
Trauma Severity # Missing Clinical Measure 

AMC 0.42 0 ETI 
COL -0.29 0 CTQ 
MIC  56  
MIL -0.17 7 CTQ 
MIN  108  

NAN  138  
STA 0.19 109 CTQ 
TOL 0.04 18 CTQ 
UMN  59  

UTR -0.36 7 ETI 
WCI 0.23 0 CTQ 

Note: ETI, Early Trauma Inventory; CTQ, Childhood Trauma Questionnaire. 
 

Depression Diagnostic Status 

Similar to the childhood trauma covariate, depression diagnosis and severity were 

measured using several clinical tools. For depression diagnosis, 6 diagnostic tools were used—

MINI (Sheehan et al., 1998), SCID (First & Gibbon, 2004), Depression, Anxiety and Stress 

Scales (DASS; Lovibond & Lovibond, 1995), Center for Epidemiological Studies—Depression 

(CESD; Radloff, 1977), and the Beck Depression Inventory (BDI; Beck et al., 1988). Where 6 

tools were used to determine depression diagnosis, 8 tools were used to assess depression 

symptom severity. With these many measures, each assessing depression symptoms in a slightly 

different way, I decided to forgo using depression severity scores as a covariate and instead use 

only depression diagnosis. Diagnostic criteria were already established within each clinical tool, 

offering a more parsimonious option that didn’t require further score normalization or 

manipulation. See Table 4 for diagnostic frequencies and clinical measure used by site. 158 of 

860 individuals (18%) with depression Dx data had comorbid PTSD and Depression (Table 2).  
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Table 4. Depression diagnosis frequencies by site (N=860) 
Site Dx+ Dx- # Missing Clinical Measure 
AMC 8 65 0 MINI/SCID 
COL 18 60 0 SCID 
MIC 23 15 18 MINI 
MIL 8 86 1 DASS 
MIN 42 66 0 SCID 
NAN 16 122 0 SCID 
STA   166  

TOL 27 46 5 CESD/DASS 
UMN 5 54 0 BDI 
UTR 27 65 0 SCID 
WCI 22 84 0 SCID 

Note. MINI, Mini-International Neuropsychiatric Interview; SCID, 
Structured Clinical Interview for DSM; DASS, Depression, Anxiety and 
Stress Scales; CESD, Center for Epidemiological Studies—Depression; 
BDI, Beck Depression Inventory. 

 

Excluded Covariates 

Unfortunately, the remaining ideal covariates of interest—adult lifetime trauma exposure, 

comorbid anxiety disorders, and substance or medication use—could not be adequately assessed 

in the current dataset. Adult trauma exposure data reporting was sparse. Similarly, anxiety 

disorders, were too inconsistently reported across sites and thus were difficult to harmonize. 

Finally, substance or medication use, though frequently reported by sites were not reported in a 

consistent way. For example, some sites reported only alcohol use or only marijuana/smoking 

use, where others reported only prescription drug use. The immense variability by site in 

reporting this information made harmonizing this variable near impossible to the point that even 

binary variables (e.g. yes/no alcohol use, or yes/no smoking) could not be assessed across the 
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final sample. Therefore, substance use and/or medication use were not included as covariates in 

the group analyses. 

Inclusion of Covariates for Group Analysis 

As stated previously, a substantial number of subjects in the final sample were missing 

data for proposed covariates of interest. Moreover, not all subjects in the final sample were 

missing covariates in a uniform way. For example, including all covariates of interest (age, sex, 

depression Dx, childhood trauma severity) results in a final sample of 442 (204 PTSD+). 

Similarly, including all covariates except for childhood trauma severity yields a final sample of 

779 (325 PTSD+). Given the substantial loss in sample size when including all covariates and 

keeping in mind the importance of including covariates, especially depression and childhood 

trauma in an analysis of PTSD, all group-level analyses are presented three ways: 1) without 

covariates (N=1,049), 2) with all covariates (age, sex, depression Dx, childhood trauma severity, 

N=442), and with a reduced set of covariates (all covariates excluding childhood trauma severity, 

N=779). See Table 32 and 33 in Appendix B for demographics of the reduced sample with all 

covariates and the sample with reduced covariates, respectively. 

Correction for Multiple Comparisons 

For all group-level analyses a false discovery rate (FDR) correction (a=0.05; Benjamini 

& Hochberg, 1995) was used to correct for multiple comparisons. Correction was not applied 

across the multiple iterations of samples (3 samples: whole, all covariates, reduced covariates) 

used because presumably only one sample’s set of results would constitute the final results. 
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Rather, corrections were applied within a given sample’s set of results for the multiple 

comparisons done across component pairs, graph metrics, connectivity state metrics, etc.  

MRI Preprocessing 

For consistency across resting state analyses within the PGC-PTSD work group, and to 

conserve computational resources, I used the resting state data that underwent preprocessing 

using a standardized pipeline called HALFpipe (https://github.com/mindandbrain/Halfpipe). 

Some key details within this pipeline were, no slice timing correction, temporal filtering (high 

pass width of 125) and spatial smoothing (5mm full-width half-max (FWHM) kernel), 

standardization to a normalized template (2 x 2 x 2mm resolution), and nuisance regressors for 

the first level models included 6 motion parameters, and the time courses of white matter, 

cerebrospinal fluid, and the global mean.  

Given the decision point explained previously to retain only sites that had enough time 

points to yield at least 200 time windows in the dynamic functional connectivity analysis, all 

retained subjects had scans with at least 220 TRs (to accommodate the 20TR sliding window 

width). While subjects had at least 220 TRs some had more than 220, so in order to simplify the 

dynamic functional connectivity analysis down the line, I truncated all scans to include only the 

first 220 TRs for each subject. For scan acquisition parameters by site see Table 31 in Appendix 

A.  

Analytic Strategy Overview 

 The current analysis was rather complex and involved many steps, so first a general 

overview of the analysis procedure is described followed by more detailed explanations in the 
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following sections (Figure 1). Generally, the analysis pipeline followed analytic approaches of 

Allen et al., (2011, 2014), Damaraju et al., (2014) and Yu et al., (2015). First, the data-driven 

approach to brain network identification utilized a group independent component analysis (ICA) 

to identify spatial regions within the brain across the whole sample that constitute the resting 

state brain network to be analyzed. Static and dynamic functional connectivity of the identified 

network were analyzed and compared across PTSD and Control groups. Though the primary 

focus of the analysis was dynamic functional connectivity and connectivity states, static 

functional connectivity was still assessed as a point of comparison to the dynamic connectivity 

results in the current study, and to the static functional connectivity results of previous work, 

outlined in the introduction. As a supplement to the traditional correlational analyses, graph 

theory metrics were also computed to provide additional insight into the static and dynamic 

characteristics of the network. Dynamic functional connectivity of the network was assessed by 

applying a sliding window to segment the full resting state time series into smaller time 

windows. Network properties were then tracked over time through the course of the resting state 

scan. Finally, connectivity states, defined as reoccurring network states through time, at both the 

individual and group level were identified for quantitative and qualitative comparison across 

groups. 
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Figure 1. General overview of analysis strategy 

 

Group ICA—Network Identification 

Following the analysis example of Yu et al., (2015) and Allen et al., (2011), first, group 

independent components analysis (ICA) were performed across the whole sample on the now 

truncated resting state time series (first 220 TRs) to identify temporally coherent networks by 

filtering the mixed fMRI signals into maximally independent spatial components using the GIFT 

v4.0 toolbox (http://mialab.mrn.org/software/gift/) (Calhoun et al., 2001; Erhardt et al., 2011). 

See Appendix C for the GIFT batch processing script used in this analysis. 

Given the final sample contained resting state scans with variable TR lengths, subject-

specific TRs were specified to GIFT so that time course power-spectra could be evaluated in the 

component selection process with each subject’s respective timing information. Note, neither the 

principal component analysis (PCA) nor ICA estimation depends on information about TR to 

estimate signal sources (Allen et al., 2011). Default preprocessing in GIFT removes the mean per 

time point for all scans ahead of data reduction to improve conditioning of the covariance matrix 

Group ICA to identify network nodes 

Pairwise correlations among nodes for  
full time series 

Graph theory to compare groups 

Static functional connectivity 
Sliding window to segment full time series 

Graph theory in each time window to 
compare changes through time across 

groups 

Identify connectivity states for each 
individual and across whole group 

Dynamic functional connectivity  
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(Allen et al., 2011). A two-step data reduction process using PCA was performed first at the 

individual subject level then at the group level. Subject-specific principal components (PC) were 

chosen whereby standard economy-size decomposition retained 99% of variance in the data in 

120 components (Erhardt et al., 2011). Next, subject-specific PCs were decomposed further into 

100 aggregate components. Given the very large sample size and dataset, both PCA steps were 

completed using the multi-power iteration (MPOWIT) method implemented in GIFT which 

optimizes PCA subspace calculation and convergence while considerably reducing memory 

requirements and data loads (Rachakonda et al., 2016). Note: Regarding the choices of quantities 

of components during data-reduction, the high number of subject-level (120) components were 

chosen to stabilize back-reconstruction (Erhardt et al., 2011), and the high number of group-level 

(100) components were chosen to yield more refined components that have been shown to 

correspond to established anatomical and functional segmentations (Allen et al., 2011, 2012; 

Erhardt et al., 2011; Yu et al., 2015).  

Next, the INFOMAX ICA algorithm (Bell & Sejnowski, 1995; Lee et al., 1999) was 

repeated 10 times in the ICASSO package (Himberg et al., 2003), to ensure reliability of the 

group component estimation. INFOMAX is a commonly used and reliable ICA algorithm when 

applied to MRI data due to its ability to maximize separation of gaussian sources of interest from 

artifacts that are super- or sub-gaussian (Allen et al., 2011). Then, based on the group PCs, 

subject specific component spatial maps and time courses for group components were back 

reconstructed using the GICA3 algorithm. GICA3 is the recommended back reconstruction 

method over other algorithms as it has been shown to produce the most robust and accurate 

estimations of component spatial maps and time courses (Erhardt et al., 2011). Component 

results were scaled to Z-scores and spatial maps were thresholded using voxel-wise z-maps (z > 
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4.0) to subset the voxels most representative of each component. Through visual inspection, final 

components were chosen based on the basic criteria that 1) peak activations were in grey matter 

with little to no overlap in ventricles and vasculature, and 2) component time courses consisted 

of predominantly low-frequency fluctuations, evaluated using power spectral analysis (Allen et 

al., 2011).  

Finally, for ease of interpretation, particularly for the connectivity states analysis, final 

network components were broadly grouped into domains according to anatomical and functional 

properties i.e., cerebellar (CB), attention/cognitive control (COG), default-mode network 

(DMN), language and audition (L/A), sensorimotor (SM), subcortical (SC), and visual (VIS) 

(Allen et al., 2011, 2012; Damaraju et al., 2014; Yao et al., 2019; Yu et al., 2015). Domain 

assignments were made with reference to previous work of similar methods (Allen et al., 2011, 

2012; Damaraju et al., 2014; Yu et al., 2015) in conjunction with submitting peak coordinates for 

each component to NeuroSynth (https://neurosynth.org/) for reference with previous fMRI 

metanalytic studies. Domain grouping did not change the specific components derived from the 

group ICA step, but rather allowed for interpretation of how derived components may relate to 

one another functionally within domains/subnetworks. 

The group mean component map (representing the average spatial location of 

components derived from the ICA across the entire sample) was used to extract mean component 

time series for each individual. Voxel time series within each group component mask were 

averaged to yield a single time series for each component (42 final components, 220 TRs = one 

42 x 220 matrix per subject representing the mean time series for each component in the final 

network). 
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ComBat Site Harmonization 

Many previous studies have shown systematic bias and nonbiological variability in 

several neuroimaging metrics attributed to use of different imaging parameters and locations 

(Dansereau et al., 2017; Feis et al., 2015; Fortin et al., 2017, 2018; Friedman et al., 2008; Rath et 

al., 2016; Yan et al., 2013; Yu et al., 2018). Given the current analysis utilized fMRI datasets 

from 11 different scan sites with use of many different scan acquisition parameters, it was 

imperative to reduce potential biases induced by the various sites and scanners used. ComBat 

harmonization is a common batch-effect correction tool used formerly in genomics (Johnson et 

al., 2007) that has been adapted for neuroimaging and can be implemented in MATLAB, R, or 

Python (https://github.com/Jfortin1/ComBatHarmonization). I used the package neuroCombat in 

R which applied multivariate linear mixed effects regression to estimate biological (scan data 

and relevant covariates) and nonbiological (site/scanner) terms and algebraically removes the 

estimated effects (additive and multiplicative) of site (Fortin et al., 2017, 2018; Johnson et al., 

2007).  

The ComBat model requires the input data-to-harmonize to be in matrix format with rows 

as features and columns as participants. For the current analysis, I compressed the mean time 

series across all components into one dimension for each subject (42 components x 220 TRs = 

9,240 component features per subject) and concatenated all subjects together (9,240 component 

features x 1,049 subjects), to comprise the dataset to be harmonized. Though there were 11 

contributing sites that made up the final dataset in the analysis, it was clear from the released 

metadata that some contributing sites submitted data from several studies conducted at that site 

(number of studies by site: MIC=3, TOL=2, WCI=3). Therefore, 16 site codes were designated 

where appropriate within the ComBat model. Finally, PTSD Dx was included as a biological 
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covariate in the model to preserve the effects associated with this variable when removing the 

effects of site/scanner. (Note: additional covariates of age, sex, depression Dx, and childhood 

trauma severity were also considered for inclusion, however there was too much missing data 

across those variables for ComBat to run effectively). The harmonized mean time series for all 

components for each subject (output from ComBat) was then carried forward for the remaining 

analyses. 

Static Functional Connectivity 

First, to evaluate static functional connectivity (FC) amongst network components, 

pairwise correlations from the whole harmonized resting state timeseries for all components were 

calculated (Figure 2). To characterize the identified network as a whole, graph theory metrics 

(see next section for details) were computed using the Brain Connectivity Toolbox 

(http://www.brain- connectivity-toolbox.net/) (Rubinov & Sporns, 2010; Telesford et al., 2013). 

The pairwise correlations of static FC amongst components comprised a connectivity matrix 

from which graph metrics were calculated. However, calculation of graph metrics required the 

input connectivity matrices to contain only positive values. Therefore, before graph metrics were 

calculated the correlation coefficients in the static connectivity matrices were converted to signed 

similarity measures, (equation 1 in Yu et al., 2015), which were used to distinguish between 

positive and negative correlations (r= -1 has a similarity of s= 0, r= 0 has a similarity of s= 0.5; 

and r= 1 has a similarity of s= 1). Conversion to signed similarity measures also served to 

standardize correlation variance across components (a practice commonly recommended in 

group ICA/temporal analyses of brain networks though occasionally performed using Fisher-Z 

transformations rather than signed similarity conversion) (Mumford et al., 2010; Yu et al., 2015; 
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Yu et al., 2012). Graph metrics of static connectivity were then compared across groups with 

independent samples t-tests for the whole sample and analysis of covariance (ANCOVA) with 

available covariates for reduced samples. (Note: all statistics presented in the results were 

evaluated in R version 4.0.2 (R Core Team, 2020), t-tests were run using t.test and ANCOVAs 

were run using lm). 

Next, to identify which static FC correlations differed by group, independent samples t-

tests were used to compare each pairwise similarity measure in the network without covariates. 

Similarly, ANCOVA were used to compare groups while accounting for covariates of interest. 

FDR was used to correct for multiple comparisons (a=0.05). 
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Figure 2. Schematic with simulated data of static functional connectivity analysis. 1) Network is 
identified through group independent components analysis (ICA), 2) Mean full time series for 
each node in the network are extracted, 2.5) Mean component time series are harmonized using 
ComBat to remove effects of scan site. 3) Pairwise correlations of full scan harmonized time 
series for every node were calculated, so static functional connectivity across the length of the 
resting state scan can be compared across groups. 
 

Graph Theory Metrics 

The implementation of graph theory in neuroimaging has been a useful tool in 

understanding brain networks (Bullmore & Sporns, 2009; Lei et al., 2015; Reijneveld et al., 

2007; Spielberg et al., 2015). Dating back to Euler in the 18th century, graph theory is a branch of 

mathematics that studies graphs- sets of vertices (nodes) connected by lines (edges) (Fornito et 
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al., 2016; Rubinov & Sporns, 2010). Graph theory can be easily implemented in the realm of 

neuroscience and neuroimaging to understand complex network connectivity amongst brain 

regions, designating different brain regions as nodes, and connections between regions 

(structural or functional) as edges. Edges are defined in a number of ways by simply designating 

whether two nodes are connected (binary) or describing the strength of connections between 

nodes (weighted). Graphs also consist of directed or undirected edges that describe the direction 

of connectivity between nodes (Bullmore & Sporns, 2009; Rubinov & Sporns, 2010; Stam & 

Reijneveld, 2007). Note: the terms node and components are used interchangeably. 

Once the nodes and edges of a graph are determined, a variety of metrics can be 

calculated to describe the network and relationships among nodes.  Let the set of nodes in a 

network be N where n is the number of nodes. Edges can be designated as (i, j) or the connection 

between nodes i and j. In a weighted graph the strength of (i, j) can be designated as wij, usually 

normalized in such a way that 0£ wij £1. The current study will utilize weighted graphs, where 

weights wij represent the correlations of time series between nodes/components i and j. The 

metrics of interest to the current study include global and local efficiency, clustering coefficient, 

connectivity strength, and characteristic path length as these measures have been demonstrated 

as highly reproducible (Telesford et al., 2013).  

Global efficiency is a measure of how functionally integrated a network is and the direct 

interactions among all nodes in a network (Eq. 1). In a fully connected network, every single pair 

of nodes are connected by one edge making the efficiency maximal, whereas in a fully 

disconnected network the distance between nodes would be infinite and thus efficiency would be 

essentially zero.  

(1) 
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Local efficiency is similar to global efficiency except that efficiency is evaluated at the 

extent of an individual node and its immediate neighbors (Eq. 2). Efficiency is calculated as if a 

particular node of interest were removed from the network to see how the network would 

perform. 

 

(2) 

 

Clustering coefficient is a measure of the degree to which a node’s neighbors are 

neighbors of each other, or the fraction of connections (out of all possible) that connect the 

neighbors of a given node (Eq. 3). Higher values indicate greater clustering of a given node and 

greater connectedness amongst a neighborhood of nodes. 

(3) 

 

Connectivity strength is the sum of weights of all nodes in a weighted graph (Eq. 4). 

Higher connectivity strength indicates greater connectedness amongst all nodes in the network. 

 

(4) 

Characteristic path length is the smallest sum of distances between all node pairs (Eq. 5). 

The smaller the path length the more efficient the connection as information has less “distance” 
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to travel. Path length is also inversely related to efficiency i.e., as path length increases efficiency 

decreases. 

       

(5) 

 

The network components established from the group ICA comprise a network with 

weighted and undirected edges as defined by pairwise correlations amongst nodes. While the 

aforementioned graph theory metrics are all correlated with one another they each characterize 

slightly different information about a given network and thus all 5 metrics were calculated and 

compared across diagnostic groups. 

Dynamic Functional Connectivity 

To see how the dynamics of nodes within the network change over time, a sliding 

window was used to segment the full time series (Li et al., 2014; Shirer et al., 2012). Previous 

work has shown cognitive states can be identified in the range of 30-60 seconds (Leonardi & 

Van De Ville, 2015; Li et al., 2014; Shirer et al., 2012; Thompson et al., 2013), so the current 

study used a sliding window of 20 TRs (20-60 seconds depending on site TR length). 

Correlations between pairs of nodes were calculated for each time window (Figure 3). Like in the 

static FC analysis, correlation coefficients were converted to a signed similarity measure, 

(Equation 1 in Yu et al., 2015), which was used to distinguish between positive and negative 

correlations (r=-1 has a similarity of s=0, r=0 has a similarity of s=0.5), before graph metrics 

were calculated.  
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Using the Brain Connectivity Toolbox (http://www.brain- connectivity-toolbox.net/) 

graph metrics of interest (discussed previously) were calculated and averaged within each time 

window so they can be examined across time windows and compared across groups for whole 

and reduced samples with covariates (Rubinov & Sporns, 2010; Telesford et al., 2013).  

 

Figure 3. Schematic with simulated data of dynamic functional connectivity analysis. 1) For 
each subject a sliding window was applied to the harmonized time courses of nodes within the 
network. Pairwise correlations for each node were calculated for each time window. 2) Graph 
theory metrics were calculated for each time window which can be plotted over time and 
compared across groups. 

Connectivity States Analysis 

Connectivity states can be described as functional connectivity patterns that reoccur over 

time within subjects (Damaraju et al., 2014; Yu et al., 2015). Time windows that show higher 



 33 

correlations of functional connectivity are considered modular as they may reflect structured 

patterns of activity that ebb and flow over time (Yu et al., 2015). See Figure 4. 

Connectivity state identification followed the procedure outlined in Yu et al., (2015). To 

identify individual-level connectivity states, modularity was assessed across all time windows for 

each subject. First, connectivity strengths (CS: sum of weights of all nodes in a weighted graph) 

for each component in each time window were calculated to get a matrix for each subject CS(42 

x 201) (42 components, 201 time windows). Next, similarity indices (S) were calculated between 

pairs of time windows, columns of CS(42 x 201), which generated a new similarity matrix S(201 

x 201). Modularity was then assessed within S(201 x 201) wherein identified modules indicated 

time windows that “grouped together” according to the pattern of component connectivity 

strengths. Modules thus represent connectivity states for each individual. The number of modules 

for each subject were counted so that quantities of connectivity states between groups could be 

compared.  

However, these individual-level connectivity states cannot be quantitatively compared 

across the sample as different connectivity states may have been identified for each individual 

(i.e. Module 1 for Subject 1 may not reflect the same connectivity state as designated by Module 

1 for Subject 2). This method simply allows for a quantification of the number of states an 

individual had over the course of their resting state scan and allows for the comparison whether 

those with PTSD have more connectivity states than Controls. An independent samples t-test was 

used to compare quantities of individual-level connectivity states by group for the full sample 

and ANCOVA with covariates of interest was used for reduced samples. 

In order to compare the connectivity states at the group level, the previously identified 

modules (individual-level connectivity states) for each subject were entered into a k-means 
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clustering algorithm (Forgy, 1965; Hartigan & Wong, 1979; Lloyd, 1982), based on the analysis 

strategy used in Allen et al., (2014) and Damaraju et al., (2014). The decision to enter only 

modules (individual-level connectivity states) into the clustering algorithm, rather than all time 

windows for each subject, was made to reduce computational demands (Allen et al., 2014). The 

elbow criterion was used to estimate the optimal number of clusters from k-means clustering 

(Ketchen & Shook, 1996). This method examines the percentage of variance explained in the 

data as a function of the number clusters. For instance, the first few clusters tend to explain a lot 

of variance, but at some point, adding more clusters only yields marginal gain in the percent 

variance explained. The optimal number of clusters was chosen at the point at which the amount 

of variance explained plateaued with the addition of another cluster.  

Upon choosing the desired number of clusters, the resultant cluster centroids output from 

the k-means solution reflect “group-level connectivity states”. Group level connectivity states 

can be qualitatively described using the same domain organization of network components and 

graph metrics, described previously. It is important to note that this method may yield a scenario 

in which not every subject has all of the identified group level connectivity states (i.e. Subject 1 

has connectivity states 1 and 2 while Subject 2 has only connectivity state 2). 

To further understand the temporal dynamics of the group-level connectivity states, the 

cluster centroids were used as reference points to back-sort all of the time windows for all of the 

subjects, such that time windows that were closest to a centroid (based on Euclidean distance) 

were assigned membership to that centroid’s cluster (Aggarwal et al., 2001; Allen et al., 2014). 

This results in a time course (across time windows) of group-level connectivity states for each 

subject from which dwell time and transitions between states across the length of the scan can be 

examined at the group level. Dwell time was calculated as the sum total of time windows 
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assigned to each group-level connectivity state. Dwell time in each group-level connectivity state 

was compared across groups in separate independent samples t-tests for the whole sample, and in 

ANCOVAs with covariates of interest in reduced samples. 

Transitions were quantified by tallying the number of instances group-level connectivity 

state membership changed between consecutive time windows (1-back) across the whole time 

series. Transition counts were compared across groups using independent samples t-tests for the 

whole sample and using ANCOVAs with covariates of interest in reduced samples. 
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Figure 4. Schematic of connectivity states analysis with simulated data for 2 subjects. 1) For 
each subject a sliding window was applied to the harmonized time courses of nodes within the 
network. Pairwise correlations for each node were calculated for each time window. 2) The 
modularity of time windows for each subject were assessed such that time windows that had high 
nodal correlations were considered modular. Time windows belonging to the same module were 
then averaged to create a new correlation matrix representing the module state. 3) All modules 
from all subjects were then entered into a clustering algorithm. 4) Cluster centroids were then be 
used to back sort the original time window correlation matrices for each subject. The windows 
across subjects that were closest to each centroid were then assigned to that centroid and 
constituted a group level connectivity state. These connectivity states were then compared across 
groups.  
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Results 

 Below, results are presented in order of analysis: 1) group ICA, 2) static functional 

connectivity, 3) dynamic functional connectivity, and 4) connectivity states. Results for each of 

the three samples used (whole, all covariates, reduced covariates) are presented within each 

analysis. At the end of the Results section, brief summaries of results are presented by sample 

used for additional organization along with a table summarizing all significant effects (Table 27). 

Group Differences in Covariates 

 Covariates of interest (age, sex, depression Dx, and childhood trauma severity) were 

compared across PTSD and Control groups. Chi-square (χ2) goodness of fit tests (chisq.test in R) 

were used to assess group differences in sex and depression Dx rates and two sample t-tests were 

used to assess group differences in age and childhood trauma severity scores. 

There was no significant difference in age (N=922) between PTSD and Control groups 

t(851.2)=1.08, p=0.27. Chi-square goodness of fit test of sex differences (N=1,047) by group 

indicated there were significantly more females and less males with PTSD χ2(1)= 19.08, 

p<0.001.  

A significant Chi-square goodness of fit test of depression diagnosis (N=859) by group 

(χ2(1)= 19.08, p<0.001) revealed there were more depression negative subjects in the Control 

group and less depression negative in the PTSD group. With six different tools for diagnosis, I 

wanted to verify if there were any differences in any of the depression diagnosis measures with 

respect to diagnosis rates. A significant chi-square goodness-of-fit of diagnostic tool and 

diagnosis rates revealed the CES-D and MINI yielded greater depression positive rates than other 
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measures χ2(5)=63.99, p<0.001. Though this result does not rule out the possibility of higher true 

depression rates within the sites who used those measures. 

Finally, those in the PTSD group had greater childhood trauma severity scores (N=547) 

(Fisher z-transformed within clinical measure used for assessment) than the Control group 

(t(471.95)=-8.07, p<0.001, MPTSD=0.34, MControl= -0.31). 

Group ICA 

 The 100 components output from the group ICA (INFOMAX) were visually inspected by 

myself and a colleague (JMF). Mutual agreement for component retention resulted in 42 

components that comprised the final network carried forward in all analyses. Results of the 

ICASSO reliability estimation (stability indices, Iq ; average intra-cluster similarity over 10 runs 

of INFOMAX) indicated all 42 final components chosen were stable and reliable (all Iq > 0.94, 

Table 5). Final components were then grouped into broad domains: cerebellar (CB), 

attention/cognitive control (COG), default-mode network (DMN), language and audition (L/A), 

sensorimotor (SM), subcortical (SC), and visual (VIS). See Table 5 for brain regions, peak 

coordinates (RAI orientation), number of voxels, and stability indices for each of the final 

components organized by domain. See Figure 5 for a composite map of all components colored 

by domain. (See Figure 17 in Appendix D for maps of each component separately organized by 

domain). 
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Table 5. Brain regions, peak activations, and quality indices of final 42 components 
   Peak Coordinates (RAI)   
Domain # Brain Region X Y Z k Iq 

Cerebellum 
11 bilateral cerebellar cortex 

14 30 -46 128 
0.9846 

 -15 32 -44 55 

Cognitive 
Control 

22 left superior frontal gyrus 32 -61 7 60 0.9812 

26 left middle orbital gyrus 48 -47 -8 230 0.9783 

 35 right middle orbital gyrus -41 -53 -10 219 0.9731 

 36 left precuneus 0 64 39 261 0.9735 

 37 right precuneus -7 80 53 76 0.9717 

 40 right angular gyrus -49 72 35 23 0.9511 

 42 left angular gyrus 54 72 31 38 0.8709 

Default Mode 3 medial prefrontal cortex 2 -47 -18 242 0.9787 

 
14 bilateral lingual gyrus 

12 55 -2 108 
0.9846 

 -11 46 -2 57 

 15 anterior prefrontal cortex 2 -59 -16 264 0.9782 

 18 cingulate 1 -31 11 271 0.9842 

 
23 bilateral precuneus 

12 74 31 94 
0.9796 

 -13 68 31 67 

 27 superior prefrontal cortex 1 -53 -1 108 0.9798 

 34 left calcarine gyrus 12 62 15 27 0.9804 

 38 superior medial frontal gyrus 2 -55 21 67 0.9526 

 41 left precuneus 1 64 29 11 0.9491 

Language/ 
Audition 

1 left inferior frontal gyrus 52 -21 -6 28 0.987 

12 left temporal gyrus/insula 34 -11 -29 274 0.9809 

 
28 bilateral superior temporal gyrus 

-43 -3 -14 272 
0.9796 

 42 -9 -22 34 

 
29 bilateral parainsular cortex 

-37 -9 -24 265 
0.9804 

 -30 -7 -22 13 

 30 parainsular cortex 44 -5 -20 291 0.9872 

 
31 left superior temporal gyrus 

56 22 7 33 
0.9804 

 -57 14 5 11 

 32 right temporal pole -29 -11 -28 252 0.9852 

 39 left superior temporal gyrus 58 -9 -2 21 0.9533 
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Sensorimotor 
2 bilateral postcentral gyrus 

64 6 19 302 
0.992 

 -63 4 17 283 

 
6 right precentral gyrus 

-39 20 51 144 
0.9817 

 -53 24 55 17 

 
8 left precentral gyrus 

42 24 53 161 
0.987 

 56 26 53 56 

 13 primary motor cortex 1 32 61 158 0.9873 

Subcortical 
4 caudate 

-25 -3 -10 67 
0.985 

 26 -9 -4 21 

 5 thalamus 1 22 11 25 0.984 

 
17 bilateral hippocampus 

20 24 -16 45 
0.9774 

 -19 23 -16 35 

Visual 
7 bilateral occipital pole 

-25 98 -10 193 
0.9866 

 26 100 -10 73 

 9 cuneus -2 96 3 269 0.9859 

 
10 bilateral calcarine gyrus 

-9 84 8 63 0.9778 

 10 84 7 52  

 16 left lingual gyrus 4 74 -4 74 0.981 

 
19 superior cuneus 

-2 82 33 58 
0.974 

 -2 98 9 27 

 20 right middle temporal gyrus -51 72 -1 13 0.9773 

 21 inferior occipital pole -15 92 -20 190 0.979 

 24 bilateral calcarine gyrus -9 96 -10 177 0.9771 

 25 left superior occipital gyrus 18 102 9 14 0.9782 

 33 bilateral calcarine gyrus 26 92 -20 101 0.983 
 -9 100 -2 43 
Note. #, component number; k, number of voxels; Iq, quality index. Peak coordinates of components in standard MNI 
space reported are listed in RAI-orientation. 
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Figure 5. Composite map of final 42 components grouped into seven domains. CB, cerebellum; COG, cognitive control; DMN, 
default mode; L/A, language and audition; SM, sensorimotor; SC, subcortical; VIS, visual. 
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Static Functional Connectivity 

 Static FC between network components—organized according to seven broad cognitive 

domains—for each group are shown as heat maps of correlation coefficients in Figure 6. Since 

group differences were not immediately apparent upon visual comparison of these group 

matrices, Figure 7 was added to highlight the differences in pairwise correlations (static FC) 

between groups (PTSD - Controls). 
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Figure 6. Heat map of correlation coefficients of static functional connectivity for all pairwise components in the identified network 
averaged cross participants in the PTSD (left) and Control group (right). Black horizontal and vertical lines indicate organization of 
components into broad cognitive domains: CB=cerebellar, COG=attention/cognitive control, DMN=default mode network, 
L/A=language/audition, SM=sensorimotor, SC=subcortical, VIS=visual. 
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Figure 7. Heat map of differences between PTSD and Control groups in correlation of static 
functional connectivity for all pairwise components in the identified network. Cool colors 
indicate component pairs for which the Control group had greater static FC, as measured by 
magnitude of correlation, than the PTSD group. Warm colors indicated component pairs for 
which the PTSD group had greater static FC than the Control group. White/light grey colors 
indicate no difference between groups. Black horizontal and vertical lines indicate organization 
of components into broad cognitive domains: CB=cerebellar, COG=attention/cognitive control, 
DMN=default mode network, L/A=language/audition, SM=sensorimotor, SC=subcortical, 
VIS=visual.  
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First, to understand group differences in static FC across the whole network, graph 

metrics (global efficiency, local efficiency, clustering coefficient, connectivity strength, and 

characteristic path length) were calculated. Metrics were calculated for the whole static FC 

matrix (weighted graph) yielding a single metric for each subject. Metrics were then averaged 

across subjects within diagnostic group and compared using t-tests for the whole sample (Table 

6), and ANCOVAs for reduced samples (Tables 7 and 8). An FDR correction (Benjamini & 

Hochberg, 1995) was applied to correct for multiple comparisons (a=0.05). 

In the whole sample, those with PTSD had significantly lower global efficiency, local 

efficiency, clustering coefficient, and connectivity strength than Controls after FDR correction 

(Table 6). There were no group differences in characteristic path length. 

In the reduced sample with all covariates (age, sex, depression Dx, childhood trauma 

severity; N=442), the same differences in global efficiency and connectivity strength held after 

FDR correction (Table 7). 

In the reduced set of covariates (age, sex, depression Dx; N=779), the same group 

differences in global efficiency and connectivity strength survived correction. Males also had 

significantly higher global and local efficiency, clustering coefficient, and connectivity strength, 

and lower characteristic path length than females that survived correction. Finally, there was a 

significant negative relationship with age and global and local efficiency, clustering coefficient, 

and connectivity strength, and a significant positive relationship with characteristic path length 

that survived correction (Table 8). 
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Table 6. Static functional connectivity graph metric t-test comparisons by group (N=1,049) 

Graph Theory Metric Mean PTSD Mean Control t p-value 95% CI 

Global Efficiency 0.61 0.62 3.18 0.001* (0.003, 0.015) 

Local Efficiency 0.61 0.62 2.53 0.001* (0.001, 0.01) 

Clustering Coefficient 0.63 0.64 2.53 0.01* (0.001, 0.01) 

Connectivity Strength 26.3 26.6 2.99 0.002* (0.13, 0.63) 

Path Length 1.69 1.68 -1.60 0.11 (-0.03, 0.003) 

Note. CI, confidence interval. t, t-statistic. p-values presented are uncorrected, * indicates those that 
survived FDR correction (a=0.05). 
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Table 7. Static functional connectivity graph metric comparisons by group  
ANCOVAs with all covariates (N=442) 

Graph Metric Model Terms B ß t p Model 

R
2 

Global 

Efficiency 

(Intercept) 0.63 0.15 79.05 <0.001* 0.02 
Age -0.00 -0.08 -1.59 0.112  

 Sex [Male] -0.00 -0.01 -0.10 0.921  
 Dep Dx [Yes] -0.00 -0.09 -0.73 0.467  
 Child Trauma 0.00 0.07 1.32 0.188  
 Group [PTSD] -0.01 -0.28 -2.72 0.007*  

Local 

Efficiency 

(Intercept) 0.62 0.12 73.64 <0.001* 0.01 
Age -0.00 -0.04 -0.88 0.380  

 Sex [Male] -0.00 -0.02 -0.19 0.848  
 Dep Dx [Yes] -0.01 -0.11 -0.88 0.382  
 Child Trauma 0.00 0.06 1.24 0.217  
 Group [PTSD] -0.01 -0.20 -1.90 0.058  

Clustering 

Coefficient 

(Intercept) 0.64 0.12 74.40 <0.001* 0.01 
Age -0.00 -0.04 -0.88 0.378  

 Sex [Male] -0.00 -0.02 -0.19 0.849  
 Dep Dx [Yes] -0.01 -0.11 -0.88 0.382  
 Child Trauma 0.00 0.06 1.24 0.217  
 Group [PTSD] -0.01 -0.20 -1.91 0.057  

Connectivity 

Strength 

(Intercept) 26.83 0.14 80.34 <0.001* 0.08 
Age -0.01 -0.07 -1.37 0.171  

 Sex [Male] -0.03 -0.01 -0.15 0.883  
 Dep Dx [Yes] -0.19 -0.10 -0.76 0.449  
 Child Trauma 0.13 0.06 1.29 0.199  
 Group [PTSD] -0.50 -0.26 -2.46 0.014*  

Characteristic 

Path Length 

(Intercept) 1.71 -0.08 67.63 <0.001 0.008 
Age -0.00 -0.01 -0.20 0.843  

 Sex [Male] 0.00 0.01 0.12 0.907  
 Dep Dx [Yes] 0.02 0.14 1.09 0.275  
 Child Trauma -0.01 -0.06 -1.15 0.253  
 Group [PTSD] 0.01 0.09 0.87 0.384  

Note. B, unstandardized beta; ß, standardized beta; t, t-statistic, p, p-value; Dep Dx, depression 
diagnosis; Child Trauma, z-scored childhood trauma severity score. p-values presented are uncorrected, 
* indicates those that survived FDR correction (a=0.05). #p <0.05, uncorrected. 
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Table 8. Static functional connectivity graph metric comparisons by group  
ANCOVAs with reduced covariates (N=779) 

Graph Metric Model Terms B ß t p Model 

R
2 

Global 

Efficiency 

(Intercept) 0.64 -0.10 99.42 <0.001* 0.05 
Age -0.00 -0.14 -3.95 <0.001*  

 Sex [Male] 0.02 0.31 4.26 <0.001*  
 Dep Dx [Yes] -0.00 -0.06 -0.68 0.496  
 Group [PTSD] -0.01 -0.17 -2.22 0.026*  

Local 

Efficiency 

(Intercept) 0.63 -0.13 94.94 <0.001* 0.04 
Age -0.00 -0.12 -3.28 0.001*  

 Sex [Male] 0.02 0.32 4.41 <0.001*  
 Dep Dx [Yes] -0.00 -0.05 -0.60 0.548  
 Group [PTSD] -0.01 -0.12 -1.59 0.112  

Clustering 

Coefficient 

(Intercept) 0.65 -0.13 95.90 <0.001* 0.04 
Age -0.00 -0.12 -3.28 0.001*  

 Sex [Male] 0.02 0.32 4.41 <0.001*  
 Dep Dx [Yes] -0.00 -0.05 -0.60 0.548  
 Group [PTSD] -0.01 -0.12 -1.59 0.112  

Connectivity 

Strength 

(Intercept) 27.02 -0.11 101.70 <0.001* 0.18 
Age -0.02 -0.13 -3.71 <0.001*  

 Sex [Male] 0.65 0.31 4.29 <0.001*  
 Dep Dx [Yes] -0.12 -0.06 -0.65 0.513  
 Group [PTSD] -0.32 -0.15 -2.04 0.042*  
Characteristic 

Path Length 

(Intercept) 1.68 0.18 89.74 <0.001* 0.03 
Age 0.00 0.08 2.27 0.024*  

 Sex [Male] -0.05 -0.34 -4.72 <0.001*  
 Dep Dx [Yes] 0.00 0.03 0.35 0.727  

 Group [PTSD] 0.01 0.06 0.77 0.440  
Note. ANCOVA, analysis of covariance; B, unstandardized beta; ß, standardized beta; t, t-statistic, 
p, p-value; Dep Dx, depression diagnosis; Child Trauma, z-scored childhood trauma severity score. 
p-values presented are uncorrected, * indicates those that survived FDR correction (a=0.05). #p 
<0.05, uncorrected. 

 

 Second, with significant group differences across the network in graph theory metrics 

(with and without covariates), I wanted to identify where in the network these differences might 

occur; therefore, I repeated the t-tests for the whole sample and ANCOVAs for reduced samples, 

this time using the average similarity index for each pair of sFC components in the network as 

the metric of interest. With 42 components in the network, there were 861 unique component 

pairs to compare. To correct for multiple comparisons, an FDR (a=0.05) correction was applied. 

Results are presented by plotting the sign of the t-statistic with the log of the p-value (sign(t)*-
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log(p)) for the Group term in the model to simultaneously indicate the strength and direction of 

the group effect for each comparison (Allen et al., 2011; Damaraju et al., 2014). See Figure 8 for 

results of the t-tests for the whole sample and Figure 9 and 10 for results of the ANCOVAs for 

reduced samples. 

 Results of this analysis indicated group differences mainly within components of the 

sensorimotor (SM) and visual (VIS) networks. Group differences were also apparent in sFC 

between the visual network and all other networks except subcortical (SC) and cerebellar (CB). 

Similarly, differences were apparent in sFC between the SM network and language/audition 

(L/A), SM and VIS, and VIS and cognitive control (COG) subnetworks. In all cases, the PTSD 

group showed significantly lower sFC than Controls. This pattern of results held even after for 

controlling for covariates in the ANCOVAs. 
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Figure 8. Heat map of group differences between PTSD and Control of static functional 
connectivity correlations for all pairwise components in the identified network for the full 
sample (N=1,049). Values are plotted as sign(t)*-log(p) where t and p values were obtained from 
the group diagnosis term of the t-test model. Asterisks indicate pairwise components that 
survived the FDR threshold (a<0.05). Black horizontal and vertical lines indicate organization of 
components into broad cognitive domains: CB=cerebellar, COG=attention/cognitive control, 
DMN=default mode network, L/A=language/audition, SM=sensorimotor, SC=subcortical, 
VIS=visual.  
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Figure 9. Heat map of group differences between PTSD and Control of static functional 
connectivity correlations for all pairwise components in the identified network for the sample 
with all covariates (N=442). Values are plotted as sign(t)*-log(p) where t and p values were 
obtained from the group diagnosis term of the ANCOVA model with age, sex, depression 
diagnosis, and z-scored childhood trauma severity scores as covariates. Asterisks indicate 
pairwise components that survived the FDR threshold (a<0.05). Black horizontal and vertical 
lines indicate organization of components into broad cognitive domains: CB=cerebellar, 
COG=attention/cognitive control, DMN=default mode network, L/A=language/audition, 
SM=sensorimotor, SC=subcortical, VIS=visual.  
  



 52 

 
Figure 10. Heat map of group differences between PTSD and Control of static functional 
connectivity correlations for all pairwise components in the identified network for the sample 
with reduced covariates (N=779). Values are plotted as sign(t)*-log(p) where t and p values were 
obtained from the group diagnosis term of the ANCOVA model with age, sex, depression 
diagnosis as covariates. Asterisks indicate pairwise components that survived the FDR threshold 
(a<0.05). Black horizontal and vertical lines indicate organization of components into broad 
cognitive domains: CB=cerebellar, COG=attention/cognitive control, DMN=default mode 
network, L/A=language/audition, SM=sensorimotor, SC=subcortical, VIS=visual. 
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Dynamic Functional Connectivity 

To evaluate dynamics of the network over time, a sliding window was used to segment 

the full resting state time series (220 TRs) into 201 time windows (window width=20TRs or 20-

60 seconds depending on site TR length, slid in steps of 1 TR). Pearson correlations between 

pairs of components were calculated for each time window and converted to a signed similarity 

measure, as done in the static FC analysis. Using the Brain Connectivity Toolbox, the graph 

theory metrics of interest (global efficiency, local efficiency, clustering coefficient, and 

connectivity strength, and characteristic path length) were calculated for each time window 

across the whole network and averaged across participants by group (Figure 11). Qualitatively, 

the pattern of graph dynamics over time between groups appeared to be indistinguishable 

through the first half of the scan (first 100 time windows), whereas the second half of the scan 

(last 100 time windows) showed different patterns of metrics between groups.  
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Figure 11. Graph metrics averaged across the whole network plotted over 201-time windows for 
each group. Red lines represent the PTSD group, and teal lines represent the Control group. The 
smoothed time series with error bands depict a fitted gamma function with 95% confidence 
interval (N=1,049). 
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To quantitatively assess the observed difference of graph metrics between scan halves 

across the whole network, linear mixed effects (LME) models (lmer function in lme4 package in 

R; Bates et al., 2015) were fitted to compare average graph metrics by group between the first 

and second halves of the scan in the full and reduced samples. As depicted in Figures 11, 12, and 

13 dynamic graph metrics are fit with a gamma function. While a gamma function fits these data 

well, linear models are slightly more parsimonious in this context with regard to interpretation 

and thus linear mixed effects models were chosen as the final method to compare graph trends 

between groups. (Note: I also ran all sets of analyses comparing scan halves using a general 

mixed effects model glmer with a gamma fit (Bates et al., 2015), and results did not change.)  

Results of the LME models for the whole sample (N=1,049) showed a significant main 

effect of scan half such that all graph theory metrics were higher in the second half of the scan 

than the first half after FDR correction (Table 9).  

Similarly, in the reduced sample with all covariates (N=442), there was the same main 

effect of scan half that survived correction (Table 10). 

Finally, in the sample with a reduced set of covariates (N=779), there was again a 

significant main effect of scan half across all metrics and a significant main effect of sex such 

that males had higher global and local efficiency, clustering coefficient, and connectivity 

strength, and lower characteristic path length than females (Table 11). To further query this 

pattern of network temporal dynamics, analyses of the first and second half of the scan were 

carried through to the connectivity states analysis to supplement analysis of the whole scan. 

In addition to group comparisons of average graph metrics, I also evaluated LME models 

comparing variances of graph metrics over time. Results showed no effects by group or scan half 

of graph metric variances even before FDR correction, and thus are not presented in the results 
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below. However, with no significant effects of graph variances any effects of graph metrics over 

time can be attributed to changes in average values as opposed to changes in variability. 
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Table 9. Scan halves comparison of graph metrics across the whole network by group (LME, whole 
sample, N=1,049) 
Graph Metric Model Terms Estimate CI p 
Global Efficiency (Intercept) 0.60 0.60 – 0.61 <0.001* 

ScanHalf [2nd] 0.01 0.01 – 0.01 <0.001* 
 Group [PTSD] -0.00 -0.01 – 0.01 0.813 
 ScanHalf [2nd] *Group[PTSD] -0.00 -0.01 – 0.00 0.074 

Local Efficiency (Intercept) 0.59 0.59 – 0.59 <0.001* 

ScanHalf [2nd] 0.01 0.01 – 0.01 <0.001* 
 Group [PTSD] 0.00 -0.01 – 0.01 0.875 
 ScanHalf [2nd] *Group[PTSD] -0.00 -0.01 – 0.00 0.098 

Clustering 

Coefficient 

(Intercept) 0.61 0.60 – 0.61 <0.001* 

ScanHalf [2nd] 0.01 0.01 – 0.01 <0.001* 
 Group [PTSD] 0.00 -0.01 – 0.01 0.874 
 ScanHalf [2nd] *Group[PTSD] -0.00 -0.01 – 0.00 0.097 

Connectivity 

Strength 

(Intercept) 25.58 25.43 – 25.74 <0.001* 

ScanHalf [2nd] 0.37 0.27 – 0.47 <0.001* 
 Group [PTSD] -0.01 -0.25 – 0.23 0.943 
 ScanHalf [2nd] *Group[PTSD] -0.13 -0.28 – 0.02 0.085 
Characteristic  

Path Length 

(Intercept) 1.81 1.80 – 1.82 <0.001* 

ScanHalf [2nd] -0.02 -0.03 – -0.02 <0.001* 
 Group [PTSD] -0.01 -0.02 – 0.01 0.523 
 ScanHalf [2nd] *Group[PTSD] 0.01 -0.00 – 0.02 0.065 
Note. LME, linear mixed effects model; CI, confidence interval. p-values presented are uncorrected, 
* indicates those that survived FDR correction (a=0.05). 

  



 58 

Table 10. Scan halves comparison of graph metrics across the whole network by group (LME, all 
covariates, N=442) 
Graph Metric Model Terms Estimate CI p 
Global Efficiency (Intercept) 0.59 0.58 – 0.61 <0.001* 

Age -0.00 -0.00 – 0.00 0.334 
 Sex [Male] 0.01 -0.00 – 0.02 0.057 
 Dep Dx [Yes] -0.00 -0.01 – 0.01 0.459 
 Child Trauma 0.00 -0.00 – 0.01 0.219 
 ScanHalf [2nd] 0.01 0.01 – 0.01 <0.001* 
 Group [PTSD] 0.01 -0.00 – 0.01 0.203 
 ScanHalf [2nd] *Group[PTSD] -0.00 -0.01 – 0.00 0.064 

Local Efficiency (Intercept) 0.58 0.56 – 0.59 <0.001* 
Age -0.00 -0.00 – 0.00 0.437 

 Sex [Male] 0.01 -0.00 – 0.02 0.074 
 Dep Dx [Yes] -0.00 -0.02 – 0.01 0.388 
 Child Trauma 0.00 -0.00 – 0.01 0.181 

 ScanHalf [2nd] 0.01 0.01 – 0.01 <0.001* 
 Group [PTSD] 0.01 -0.00 – 0.02 0.169 
 ScanHalf [2nd] *Group[PTSD] -0.00 -0.01 – 0.00 0.077 

Clustering 

Coefficient 

(Intercept) 0.59 0.58 – 0.61 <0.001* 
Age -0.00 -0.00 – 0.00 0.438 

 Sex [Male] 0.01 -0.00 – 0.02 0.074 
 Dep Dx [Yes] -0.00 -0.02 – 0.01 0.388 
 Child Trauma 0.00 -0.00 – 0.01 0.181 
 ScanHalf [2nd] 0.01 0.01 – 0.01 <0.001* 
 Group [PTSD] 0.01 -0.00 – 0.02 0.168 
 ScanHalf [2nd] *Group[PTSD] -0.00 -0.01 – 0.00 0.077 

Connectivity 

Strength 

(Intercept) 25.03 24.43 – 25.63 <0.001* 
Age -0.01 -0.02 – 0.01 0.378 

 Sex [Male] 0.32 -0.02 – 0.66 0.064 
 Dep Dx [Yes] -0.18 -0.61 – 0.26 0.429 
 Child Trauma 0.12 -0.06 – 0.30 0.207 
 ScanHalf [2nd] 0.37 0.24 – 0.51 <0.001* 
 Group [PTSD] 0.25 -0.12 – 0.63 0.185 
 ScanHalf [2nd] *Group[PTSD] -0.19 -0.39 – 0.02 0.070 
Characteristic  

Path Length 

(Intercept) 1.86 1.82 – 1.90 <0.001 
Age 0.00 -0.00 – 0.00 0.614 

 Sex [Male] -0.02 -0.05 – 0.00 0.068 
 Dep Dx [Yes] 0.01 -0.02 – 0.05 0.389 
 Child Trauma -0.01 -0.02 – 0.00 0.164 
 ScanHalf [2nd] -0.02 -0.03 – -0.01 <0.001* 
 Group [PTSD] -0.02 -0.05 – 0.00 0.107 
 ScanHalf [2nd] *Group[PTSD] 0.01 -0.00 – 0.03 0.082 
Note. LME, linear mixed effects model; CI, confidence interval. p-values presented are uncorrected, * 
indicates those that survived FDR correction (a=0.05). 
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Table 11. Scan halves comparison of graph metrics across the whole network by group (LME, reduced 
covariates, N=779) 
Graph Metric Model Terms Estimate CI P 
Global Efficiency (Intercept) 0.59 0.58 – 0.61 <0.001* 

Age -0.00 -0.00 – 0.00 0.289 
 Sex [Male] 0.02 0.01 – 0.03 <0.001* 
 Dep Dx [Yes] 0.00 -0.01 – 0.01 0.929 
 ScanHalf [2nd] 0.01 0.01 – 0.01 <0.001* 
 Group [PTSD] 0.00 -0.01 – 0.01 0.687 
 ScanHalf [2nd] *Group[PTSD] -0.00 -0.01 – 0.00 0.178 

Local Efficiency (Intercept) 0.58 0.57 – 0.59 <0.001* 
Age -0.00 -0.00 – 0.00 0.275 

 Sex [Male] 0.02 0.01 – 0.03 <0.001* 
 Dep Dx [Yes] 0.00 -0.01 – 0.01 0.880 

 ScanHalf [2nd] 0.01 0.01 – 0.01 <0.001* 
 Group [PTSD] 0.00 -0.00 – 0.01 0.503 
 ScanHalf [2nd] *Group[PTSD] -0.00 -0.01 – 0.00 0.201 

Clustering 

Coefficient 

(Intercept) 0.60 0.58 – 0.61 <0.001* 
Age -0.00 -0.00 – 0.00 0.276 

 Sex [Male] 0.02 0.01 – 0.03 <0.001* 
 Dep Dx [Yes] 0.00 -0.01 – 0.01 0.880 
 ScanHalf [2nd] 0.01 0.01 – 0.01 <0.001* 
 Group [PTSD] 0.00 -0.00 – 0.01 0.502 
 ScanHalf [2nd] *Group[PTSD] -0.00 -0.01 – 0.00 0.201 

Connectivity 

Strength 

(Intercept) 25.14 24.66 – 25.62 <0.001* 
Age -0.01 -0.02 – 0.00 0.289 

 Sex [Male] 0.82 0.55 – 1.09 <0.001* 
 Dep Dx [Yes] 0.02 -0.32 – 0.36 0.909 
 ScanHalf [2nd] 0.42 0.31 – 0.53 <0.001* 
 Group [PTSD] 0.08 -0.22 – 0.37 0.607 
 ScanHalf [2nd] *Group[PTSD] -0.11 -0.28 – 0.06 0.191 
Characteristic  

Path Length 

(Intercept) 1.85 1.81 – 1.88 <0.001* 
Age 0.00 -0.00 – 0.00 0.447 

 Sex [Male] -0.06 -0.08 – -0.04 <0.001* 
 Dep Dx [Yes] -0.00 -0.03 – 0.02 0.750 
 ScanHalf [2nd] -0.03 -0.03 – -0.02 <0.001* 
 Group [PTSD] -0.01 -0.03 – 0.01 0.310 
 ScanHalf [2nd] *Group[PTSD] 0.01 -0.00 – 0.02 0.122 
Note. LME, linear mixed effects model; CI, confidence interval. p-values presented are uncorrected, * 
indicates those that survived FDR correction (a=0.05). 
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Though the dynamic FC analysis across the whole network did not yield any robust group 

differences in graph metrics over time, given the static FC analysis yielded robust group 

differences within the SM and VIS subnetworks, I followed up the dynamic FC results by 

plotting and examining the dynamic changes in graph metrics within those subnetworks over 

time. Plots of graph metrics within the SM network over time indicate that while both groups 

show a general increase in metrics over time, the PTSD group has chronically lower (at almost 

all time points) metrics than the Control group (Figure 12). This observation is supported by a 

significant effect of scan half such that the PTSD group had lower graph metrics (except path 

length) within the SM network in both halves of the scan compared to Controls, but only in the 

sample without covariates (Table 12). In the samples with covariates, there were no group 

differences in graph metrics between halves, although there was still a significant effect of scan 

half where all graph metrics were higher in the second half of the scan compared to the first 

(Table 13, 14).  

As in the whole network analysis, graph metric variances within the SM network were 

compared in LMEs. Still, there were no effects apparent when evaluating variances rather than 

average metrics over time. Therefore, significant effects of graph metrics within SM across 

groups and/or scan halves are attributed to changes in mean values as opposed to changes in 

variability over time.  
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Figure 12. Graph metrics averaged within the sensorimotor (SM) network plotted over 201-time 
windows for each group. Red lines represent the PTSD group, and teal lines represent the 
Control group. The smoothed time series with error bands depict a fitted gamma function with 
95% confidence interval (N=1,049). 
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Table 12. Scan halves comparison of graph metrics in sensorimotor network by group (LME, whole 
sample no covariates, N=1,049) 
Graph Metric Model Terms Estimate CI p 
Global Efficiency (Intercept) 0.73 0.73 – 0.74 <0.001* 

ScanHalf [2nd] 0.02 0.02 – 0.03 <0.001* 
 Group [PTSD] -0.01 -0.03 – -0.00 0.021* 
 ScanHalf [2nd] *Group[PTSD] -0.00 -0.01 – 0.01 0.879 

Local Efficiency (Intercept) 0.77 0.76 – 0.77 <0.001* 
ScanHalf [2nd] 0.02 0.01 – 0.02 <0.001* 

 Group [PTSD] -0.01 -0.02 – -0.00 0.028* 
 ScanHalf [2nd] *Group[PTSD] -0.00 -0.01 – 0.01 0.855 

Clustering 

Coefficient 

(Intercept) 1.05 1.04 – 1.06 <0.001* 
ScanHalf [2nd] 0.02 0.02 – 0.03 <0.001* 

 Group [PTSD] -0.01 -0.03 – -0.00 0.029* 
 ScanHalf [2nd] *Group[PTSD] -0.00 -0.01 – 0.01 0.858 

Connectivity 

Strength 

(Intercept) 3.20 3.18 – 3.23 <0.001* 
ScanHalf [2nd] 0.06 0.05 – 0.08 <0.001* 

 Group [PTSD] -0.04 -0.08 – -0.01 0.022* 
 ScanHalf [2nd] *Group[PTSD] -0.00 -0.02 – 0.02 0.867 
Characteristic Path 

Length 

(Intercept) 1.47 1.45 – 1.48 <0.001* 

ScanHalf [2nd] -0.04 -0.06 – -0.03 <0.001* 
 Group [PTSD] 0.02 -0.00 – 0.05 0.104 
 ScanHalf [2nd] *Group[PTSD] 0.00 -0.02 – 0.02 0.915 
Note. LME, linear mixed effects model; CI, confidence interval. p-values presented are uncorrected, 
* indicates those that survived FDR correction (a=0.05). 
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Table 13. Scan halves comparison of graph metrics in sensorimotor network by group (LME, 
all covariates, N=442) 
Graph Metric Model Terms Estimate CI p 
Global 

Efficiency 

(Intercept) 0.72 0.69 – 0.75 <0.001* 
Age 0.00 -0.00 – 0.00 0.909 

 Sex [Male] -0.00 -0.02 – 0.01 0.594 
 Dep Dx [Yes] -0.01 -0.03 – 0.01 0.256 
 Child Trauma 0.00 -0.01 – 0.01 0.960 
 ScanHalf [2nd] 0.02 0.01 – 0.03 <0.001* 
 Group [PTSD] -0.01 -0.03 – 0.01 0.161 
 ScanHalf [2nd] *Group[PTSD] 0.00 -0.01 – 0.02 0.394 

Local 

Efficiency 

(Intercept) 0.76 0.73 – 0.78 <0.001* 
Age 0.00 -0.00 – 0.00 0.871 

 Sex [Male] -0.00 -0.02 – 0.01 0.547 
 Dep Dx [Yes] -0.01 -0.03 – 0.01 0.250 
 Child Trauma 0.00 -0.01 – 0.01 0.941 

 ScanHalf [2nd] 0.02 0.01 – 0.02 <0.001* 
 Group [PTSD] -0.01 -0.03 – 0.00 0.161 
 ScanHalf [2nd] *Group[PTSD] 0.00 -0.01 – 0.01 0.411 

Clustering 

Coefficient 

(Intercept) 1.04 1.00 – 1.07 <0.001* 
Age 0.00 -0.00 – 0.00 0.869 

 Sex [Male] -0.01 -0.02 – 0.01 0.546 
 Dep Dx [Yes] -0.01 -0.04 – 0.01 0.249 
 Child Trauma 0.00 -0.01 – 0.01 0.939 
 ScanHalf [2nd] 0.02 0.01 – 0.03 <0.001* 
 Group [PTSD] -0.01 -0.04 – 0.01 0.162 
 ScanHalf [2nd] *Group[PTSD] 0.01 -0.01 – 0.02 0.407 

Connectivity 

Strength 

(Intercept) 3.16 3.07 – 3.25 <0.001* 
Age 0.00 -0.00 – 0.00 0.897 

 Sex [Male] -0.01 -0.07 – 0.04 0.587 
 Dep Dx [Yes] -0.04 -0.11 – 0.03 0.252 
 Child Trauma 0.00 -0.03 – 0.03 0.953 
 ScanHalf [2nd] 0.06 0.04 – 0.08 <0.001* 
 Group [PTSD] -0.04 -0.10 – 0.02 0.162 
 ScanHalf [2nd] *Group[PTSD] 0.01 -0.02 – 0.05 0.407 
Characteristic 

Path Length 

(Intercept) 1.50 1.42 – 1.57 <0.001* 
Age -0.00 -0.00 – 0.00 0.719 

 Sex [Male] 0.02 -0.02 – 0.06 0.367 
 Dep Dx [Yes] 0.03 -0.02 – 0.09 0.221 
 Child Trauma -0.00 -0.03 – 0.02 0.793 
 ScanHalf [2nd] -0.04 -0.06 – -0.02 <0.001* 
 Group [PTSD] 0.03 -0.02 – 0.08 0.185 
 ScanHalf [2nd] *Group[PTSD] -0.02 -0.05 – 0.01 0.293 
Note. LME, linear mixed effects model; CI, confidence interval. p-values presented are 
uncorrected, * indicates those that survived FDR correction (a=0.05). 
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Table 14. Scan halves comparison of graph metrics in sensorimotor network by group (LME, reduced 
covariates, N=779) 
Graph Metric Model Terms Estimate CI P 
Global Efficiency (Intercept) 0.72 0.70 – 0.75 <0.001 

Age -0.00 -0.00 – 0.00 0.769 
 Sex [Male] 0.02 0.00 – 0.03 0.008* 
 Dep Dx [Yes] -0.00 -0.02 – 0.02 0.937 
 ScanHalf [2nd] 0.02 0.01 – 0.02 <0.001* 
 Group [PTSD] -0.01 -0.03 – 0.00 0.099 
 ScanHalf [2nd] *Group[PTSD] 0.00 -0.01 – 0.01 0.670 

Local Efficiency (Intercept) 0.76 0.74 – 0.78 <0.001 
Age -0.00 -0.00 – 0.00 0.746 

 Sex [Male] 0.02 0.00 – 0.03 0.010* 
 Dep Dx [Yes] -0.00 -0.02 – 0.01 0.951 

 ScanHalf [2nd] 0.02 0.01 – 0.02 <0.001* 
 Group [PTSD] -0.01 -0.02 – 0.00 0.120 
 ScanHalf [2nd] *Group[PTSD] 0.00 -0.01 – 0.01 0.707 

Clustering 

Coefficient 

(Intercept) 1.04 1.01 – 1.07 <0.001 
Age -0.00 -0.00 – 0.00 0.749 

 Sex [Male] 0.02 0.00 – 0.03 0.010* 
 Dep Dx [Yes] -0.00 -0.02 – 0.02 0.950 
 ScanHalf [2nd] 0.02 0.01 – 0.03 <0.001* 
 Group [PTSD] -0.01 -0.03 – 0.00 0.121 
 ScanHalf [2nd] *Group[PTSD] 0.00 -0.01 – 0.01 0.706 

Connectivity 

Strength 

(Intercept) 3.17 3.10 – 3.24 <0.001 
Age -0.00 -0.00 – 0.00 0.761 

 Sex [Male] 0.05 0.01 – 0.09 0.008* 
 Dep Dx [Yes] -0.00 -0.05 – 0.05 0.937 
 ScanHalf [2nd] 0.06 0.04 – 0.07 <0.001* 
 Group [PTSD] -0.04 -0.08 – 0.01 0.104 
 ScanHalf [2nd] *Group[PTSD] 0.01 -0.02 – 0.03 0.692 
Characteristic  

Path Length 

(Intercept) 1.49 1.44 – 1.55 <0.001* 
Age 0.00 -0.00 – 0.00 0.806 

 Sex [Male] -0.03 -0.07 – -0.00 0.040 

 Dep Dx [Yes] -0.00 -0.04 – 0.04 0.986 
 ScanHalf [2nd] -0.04 -0.06 – -0.02 <0.001* 
 Group [PTSD] 0.02 -0.01 – 0.06 0.248 
 ScanHalf [2nd] *Group[PTSD] -0.01 -0.03 – 0.02 0.667 
Note. LME, linear mixed effects model; CI, confidence interval. p-values presented are uncorrected, * 
indicates those that survived FDR correction (a=0.05). 
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Examination of the plots of graph metrics within the VIS network over time indicated a 

striking difference between groups with a clear divergence in metrics around time window 75 

that persists through the end of the scan whereby the PTSD group has lower metrics compared to 

Controls (Figure 13). This is supported by a significant interaction of ScanHalf*Group such that 

those with PTSD had significantly lower global and local efficiency, clustering coefficient, and 

connectivity strength, and higher characteristic path length within the visual network in the 

second half of the scan compared to Controls. These effects (except path length) held within all 

samples with and without covariates (Table 15, 16, 17).  

Similar to the whole network and SM results, there were no significant effects of graph 

metric variances within the VIS network, and thus significant effects of graph metrics across 

groups and/or scan halves are attributed to changes in mean values as opposed to changes in 

variability over time. 
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Figure 13. Graph metrics averaged within the visual (VIS) network plotted over 201-time 
windows for each group. Red lines represent the PTSD group, and teal lines represent the 
Control group. The smoothed time series with error bands depict a fitted gamma function with 
95% confidence interval (N=1,049). 
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Table 15. Scan halves comparison of graph metrics in visual network by group (LME, whole sample, 
N=1,049) 
Graph Metric Model Terms Estimate CI p 
Global Efficiency (Intercept) 0.68 0.68 – 0.69 <0.001* 

ScanHalf [2nd] 0.01 0.01 – 0.02 <0.001* 
 Group [PTSD] -0.00 -0.01 – 0.01 0.432 
 ScanHalf [2nd] *Group[PTSD] -0.01 -0.02 – -0.00 <0.001* 

Local Efficiency (Intercept) 0.69 0.68 – 0.69 <0.001* 
ScanHalf [2nd] 0.01 0.01 – 0.02 <0.001* 

 Group [PTSD] -0.00 -0.01 – 0.01 0.622 
 ScanHalf [2nd] *Group[PTSD] -0.01 -0.02 – -0.00 0.001* 

Clustering 

Coefficient 

(Intercept) 0.78 0.77 – 0.78 <0.001* 
ScanHalf [2nd] 0.01 0.01 – 0.02 <0.001* 

 Group [PTSD] -0.00 -0.01 – 0.01 0.621 
 ScanHalf [2nd] *Group[PTSD] -0.01 -0.02 – -0.00 0.001* 

Connectivity 

Strength 

(Intercept) 7.14 7.08 – 7.19 <0.001* 
ScanHalf [2nd] 0.13 0.09 – 0.16 <0.001* 

 Group [PTSD] -0.03 -0.11 – 0.05 0.502 
 ScanHalf [2nd] *Group[PTSD] -0.09 -0.14 – -0.04 <0.001* 
Characteristic  

Path Length 

(Intercept) 1.61 1.59 – 1.62 <0.001* 

ScanHalf [2nd] -0.03 -0.04 – -0.02 <0.001* 
 Group [PTSD] 0.00 -0.02 – 0.03 0.918 
 ScanHalf [2nd] *Group[PTSD] 0.02 0.01 – 0.04 0.002* 
Note. LME, linear mixed effects model; CI, confidence interval. p-values presented are uncorrected, 
* indicates those that survived FDR correction (a=0.05). 
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Table 16. Scan halves comparison of graph metrics in visual network by group (LME, all covariates, 
N=442) 
Graph Metric Model Terms Estimate CI p 
Global 

Efficiency 

(Intercept) 0.67 0.65 – 0.69 <0.001* 
Age 0.00 -0.00 – 0.00 0.854 

 Sex [Male] -0.02 -0.04 – -0.01 0.001* 
 Dep Dx [Yes] -0.02 -0.03 – 0.00 0.050# 
 Child Trauma -0.00 -0.01 – 0.01 0.959 
 ScanHalf [2nd] 0.01 0.01 – 0.02 <0.001* 
 Group [PTSD] 0.01 -0.01 – 0.02 0.317 
 ScanHalf [2nd] *Group[PTSD] -0.01 -0.02 – -0.00 0.016* 

Local Efficiency (Intercept) 0.67 0.65 – 0.70 <0.001* 
Age 0.00 -0.00 – 0.00 0.676 

 Sex [Male] -0.03 -0.04 – -0.01 <0.001* 
 Dep Dx [Yes] -0.02 -0.03 – -0.00 0.039# 
 Child Trauma -0.00 -0.01 – 0.01 0.971 

 ScanHalf [2nd] 0.01 0.01 – 0.02 <0.001* 
 Group [PTSD] 0.01 -0.01 – 0.02 0.225 
 ScanHalf [2nd] *Group[PTSD] -0.01 -0.02 – -0.00 0.022* 

Clustering 

Coefficient 

(Intercept) 0.76 0.73 – 0.78 <0.001* 
Age 0.00 -0.00 – 0.00 0.677 

 Sex [Male] -0.03 -0.04 – -0.01 <0.001* 
 Dep Dx [Yes] -0.02 -0.04 – -0.00 0.039# 
 Child Trauma -0.00 -0.01 – 0.01 0.971 
 ScanHalf [2nd] 0.01 0.01 – 0.02 <0.001* 
 Group [PTSD] 0.01 -0.01 – 0.02 0.226 
 ScanHalf [2nd] *Group[PTSD] -0.01 -0.02 – -0.00 0.022* 

Connectivity 

Strength 

(Intercept) 7.01 6.80 – 7.21 <0.001* 
Age 0.00 -0.00 – 0.01 0.798 

 Sex [Male] -0.22 -0.33 – -0.10 <0.001* 
 Dep Dx [Yes] -0.15 -0.30 – -0.00 0.046# 
 Child Trauma -0.00 -0.06 – 0.06 0.949 
 ScanHalf [2nd] 0.11 0.06 – 0.16 <0.001* 
 Group [PTSD] 0.07 -0.06 – 0.20 0.276 
 ScanHalf [2nd] *Group[PTSD] -0.08 -0.15 – -0.01 0.018* 
Characteristic 

Path Length 

(Intercept) 1.67 1.60 – 1.73 <0.001* 
Age -0.00 -0.00 – 0.00 0.267 

 Sex [Male] 0.08 0.05 – 0.12 <0.001* 
 Dep Dx [Yes] 0.05 0.00 – 0.09 0.037# 
 Child Trauma -0.00 -0.02 – 0.02 0.864 
 ScanHalf [2nd] -0.02 -0.04 – -0.01 0.006* 
 Group [PTSD] -0.03 -0.07 – 0.01 0.178 
 ScanHalf [2nd] *Group[PTSD] 0.02 -0.00 – 0.04 0.075 
Note. LME, linear mixed effects model; CI, confidence interval. p-values presented are uncorrected, * 
indicates those that survived FDR correction (a=0.05). 
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Table 17. Scan halves comparison of graph metrics in visual network by group (LME, reduced 
covariates, N=779) 
Graph Metric Model Terms Estimate CI P 
Global 

Efficiency 

(Intercept) 0.66 0.64 – 0.68 <0.001* 
Age 0.00 -0.00 – 0.00 0.058# 

 Sex [Male] 0.00 -0.01 – 0.01 0.690 
 Dep Dx [Yes] -0.01 -0.02 – 0.01 0.314 
 ScanHalf [2nd] 0.01 0.01 – 0.02 <0.001* 
 Group [PTSD] 0.00 -0.01 – 0.01 0.998 
 ScanHalf [2nd] *Group[PTSD] -0.01 -0.01 – -0.00 0.011* 

Local 

Efficiency 

(Intercept) 0.66 0.65 – 0.68 <0.001* 
Age 0.00 0.00 – 0.00 0.024* 

 Sex [Male] 0.00 -0.01 – 0.01 0.934 
 Dep Dx [Yes] -0.01 -0.02 – 0.01 0.327 

 ScanHalf [2nd] 0.01 0.01 – 0.02 <0.001* 
 Group [PTSD] 0.00 -0.01 – 0.01 0.803 
 ScanHalf [2nd] *Group[PTSD] -0.01 -0.01 – -0.00 0.014* 

Clustering 

Coefficient 

(Intercept) 0.75 0.73 – 0.77 <0.001* 
Age 0.00 0.00 – 0.00 0.024* 

 Sex [Male] 0.00 -0.01 – 0.01 0.935 
 Dep Dx [Yes] -0.01 -0.02 – 0.01 0.328 
 ScanHalf [2nd] 0.01 0.01 – 0.02 <0.001* 
 Group [PTSD] 0.00 -0.01 – 0.01 0.805 
 ScanHalf [2nd] *Group[PTSD] -0.01 -0.02 – -0.00 0.014* 

Connectivity 

Strength 

(Intercept) 6.93 6.76 – 7.10 <0.001* 
Age 0.00 0.00 – 0.01 0.046# 

 Sex [Male] 0.01 -0.08 – 0.11 0.773 
 Dep Dx [Yes] -0.06 -0.18 – 0.06 0.314 
 ScanHalf [2nd] 0.13 0.10 – 0.17 <0.001* 
 Group [PTSD] 0.01 -0.10 – 0.11 0.919 
 ScanHalf [2nd] *Group[PTSD] -0.07 -0.13 – -0.02 0.013* 
Characteristic  

Path Length 

(Intercept) 1.68 1.63 – 1.73 <0.001* 
Age -0.00 -0.00 – -0.00 0.002* 

 Sex [Male] 0.01 -0.02 – 0.04 0.419 

 Dep Dx [Yes] 0.01 -0.02 – 0.05 0.511 
 ScanHalf [2nd] -0.03 -0.04 – -0.02 <0.001* 
 Group [PTSD] -0.01 -0.04 – 0.02 0.656 
 ScanHalf [2nd] *Group[PTSD] 0.02 0.00 – 0.04 0.031#

 

Note. LME, linear mixed effects model; CI, confidence interval. p-values presented are uncorrected, 
* indicates those that survived FDR correction (a=0.05). 
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Connectivity States (Individual-level) 

To identify individual-level connectivity states, modularity was assessed across all time 

windows for each subject. Time windows with high correlations of component 

strengths/connectivity measures were considered modular (Rubinov & Sporns, 2010; Telesford 

et al., 2013) and assigned to the same module. Each module was then considered an “individual-

level connectivity state”. The number of modules for each subject were counted so that quantities 

of connectivity states between groups could be compared (Figure 14). In either group, at most six 

connectivity states were identified for an individual across the whole scan. 
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Figure 14. Relative proportions of individual-level connectivity states by group in the whole 
sample (N=1,049). Red bars represent the PTSD group, and teal bars represent the Control 
group.  
 

An independent samples t-test was used to compare quantities of individual-level 

connectivity states by group for the full sample and ANCOVA with covariates of interest was 

used for reduced samples (Table 18). Results showed there were no significant group differences 

in number of individual-level connectivity states in any comparisons, with or without covariates.  
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Table 18.  Individual-level connectivity states counts comparisons by group across whole scan 

Model Model Terms 
Mean 

PTSD 

Mean 

Control 
t p-value 95% CI

 

t-test  
(no covariates 
N=1,049) 

# Indiv CS  3.41 3.38 -0.43 0.66 (-0.12, 
0.07) 

  B ß t p Model R
2 

ANCOVA  
(all covariates, 
N=442) 

(Intercept) 3.71 0.14 24.85 <0.001* 0.01 
Age -0.00 -0.04 -0.82 0.413  
Sex [Male] -0.17 -0.20 -2.01 0.045*  
Dep Dx [Yes] -0.01 -0.01 -0.06 0.952  
Child Trauma -0.01 -0.02 -0.32 0.750  
Group [PTSD] -0.07 -0.09 -0.83 0.407  

ANCOVA  
(all covariates 
excluding 
Child Trauma, 
N=779) 

(Intercept) 3.75 0.10 33.87 <0.001** 0.01 
Age -0.01 -0.10 -2.66 0.008**  
Sex [Male] -0.12 -0.14 -1.94 0.053  
Dep Dx [Yes] 0.03 0.04 0.41 0.684  
Group [PTSD] -0.04 -0.04 -0.56 0.576  

Note. ANCOVA, analysis of covariance; # Indiv CS, number of individual-level connectivity states, 
B, unstandardized beta; ß, standardized beta; t, t-statistic, p, p-value. Dep Dx, depression diagnosis, 
Child Trauma, z-scored childhood trauma severity score. *p < 0.05, **p < 0.01. 

 

The number of modules for each subject were also counted separately for the first and 

second halves of the scan (Figure 15). In the first half of the scan, at most 5 connectivity states 

were identified for an individual, and in the second half of the scan at most 6 connectivity states 

were identified. LME models were used to compare quantities of individual-level connectivity 

states between scan halves (Table 19). In the full sample, results showed a marginal interaction 

of ScanHalf*Group such that those with PTSD in the second half of the scan had greater 

numbers of individual connectivity states. In the reduced sample (N=442), there was a significant 

main effect of Group where those with PTSD had fewer individual connectivity states than 

Controls. Finally, with the reduced set of covariates (N=779), there was a significant interaction 
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of ScanHalf*Group such that those with PTSD in the second half of the scan had greater 

numbers of individual connectivity states. 

 

Figure 15. Relative proportions of individual-level connectivity states by group in the whole 
sample for first (left) and second halves (right) of the scan (N=1,049). Red bars represent the 
PTSD group, and teal bars represent the Control group.  
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Table 19.  Individual-level connectivity states counts comparison by group between first and 
second half of the scan 
Model Model Terms Estimate CI p 

LME 
(whole sample, 
N=1,049) 

(Intercept) 3.45 3.39 – 3.51 <0.001** 
ScanHalf [2nd] -0.03 -0.11 – 0.06 0.537 
Group [PTSD] -0.06 -0.15 – 0.03 0.212 
ScanHalf [2nd]  
* Group[PTSD] 0.12 -0.01 – 0.25 0.063# 

LME 
(all covariates, 
N=442) 

(Intercept) 3.45 3.26 – 3.65 <0.001** 
Age 0.00 -0.00 – 0.01 0.607 
Sex [Male] 0.04 -0.07 – 0.15 0.471 
Dep Dx [Yes] 0.02 -0.12 – 0.15 0.825 
Child Trauma 0.02 -0.04 – 0.07 0.558 
ScanHalf [2nd] 0.03 -0.10 – 0.16 0.665 
Group [PTSD] -0.18 -0.33 – -0.03 0.019* 
ScanHalf [2nd]  
* Group[PTSD] 0.14 -0.06 – 0.33 0.170 

LME 
(reduced 
covariates, 
N=779) 

(Intercept) 3.56 3.41 – 3.72 <0.001** 
Age -0.00 -0.01 – 0.00 0.194 
Sex [Male] -0.02 -0.11 – 0.06 0.559 
Dep Dx [Yes] 0.02 -0.08 – 0.12 0.729 
ScanHalf [2nd] -0.04 -0.14 – 0.05 0.368 
Group [PTSD] -0.07 -0.18 – 0.04 0.234 
ScanHalf [2nd]  
* Group [PTSD] 0.16 0.02 – 0.31 0.030* 

Note. LME, linear mixed effects model; CI, confidence interval 95%, p, p-value. Dep Dx, 
depression diagnosis, Child Trauma, z-scored childhood trauma severity score. #p<0.10, *p < 
0.05, **p < 0.01 uncorrected. 

 
 
Connectivity States (Group-level) 

To identify group-level connectivity states, the modules identified in the individual-level 

connectivity states analysis were submitted to a k-means clustering algorithm (Forgy, 1965; 

Hartigan & Wong, 1979; Lloyd, 1982). The modules comprising individual-level connectivity 

states represented recurrent states over time for each individual; therefore, I submitted the 

modules to the clustering algorithm in order to identify states within individuals that were similar 

across the whole sample. In addition, submitting the individual-level connectivity states (1,049 
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subjects x max of 6 states per sub =6,294 modules), rather than all time windows for all 

participants (1,049 subjects x 201 time windows = 210,849 windows), significantly reduced 

computational demands for clustering (Allen et al., 2014). The elbow criterion was used to select 

the optimal number of clusters for the k-means solution (Figure 16; Ketchen & Shook, 1996). 

Based on these results, the 2-cluster solution was a logical choice; however, it was difficult to 

provide justification supporting the exclusion of the 3-cluster solution, which also appeared to be 

an acceptable choice. Due to the ambiguity in cluster choice, results for the 2-cluster are 

presented below and results for the 3-cluster solution are presented in Appendix E. 

The cluster centroids, for a given cluster solution choice, were then used to predict cluster 

membership of each time window for each subject, based on Euclidean distance to the centroid 

(Aggarwal et al., 2001; Allen et al., 2014). All time windows were assigned membership to a 

group-level connectivity state which yielded a time series of connectivity states for each subject. 

From this time series, dwell time within each state was calculated by the sum total of time 

windows assigned to a given state. Transitions between states were quantified by tallying the 

instances of state membership change between consecutive time windows (1-back) across the 

whole time series. Both dwell time and transitions were compared across groups using 

independent samples t-tests for the whole sample, and in ANCOVAs with covariates of interest 

in reduced samples. Given the different patterns of graph metric dynamics in the second half of 

the scan for both groups (Figure 11), dwell time and transitions were also calculated and 

compared across groups for both halves of the scan using linear mixed effects models with 

subject as the only random factor. 
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Figure 16. Elbow plot of k-clusters solutions and sum of squared error explained in group-level 
CS analysis.. The 2-cluster solution was chosen, however, results for a 3-cluster solution are 
included in Appendix E. 
 

See Table 20 for graph metrics calculated for each group connectivity state centroid in 

the 2-cluster solution and Figure 17 for similarity indices heat maps of group state cluster 

centroids. Connectivity state #1 depicts a state with high within and low between network 

connectivity, whereas connectivity state #2 depicts high within and between network 

connectivity (higher global and local efficiency, clustering coefficient, and connectivity strength 

compared to state #1). 

Table 20. Graph metrics of group-level connectivity state centroids  
 GE LE CC CS PL 
CS #1 0.567 0.571 0.58 24.2 0.56 
CS #2 0.681 0.684 0.70 28.92 0.68 
Note. GE, global efficiency; LE, local efficiency; CC, clustering coefficient; CS, connectivity strength; 
PL, characteristic path length; CS #, group-level connectivity state. 
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Figure 17. Heat maps of similarity indices between component pairs for each group-level connectivity state centroid from the 2-
cluster solution. Cool colors indicate weak to no similarity for a given component pair, whereas warm colors indicate stronger 
similarity for a given pair. Black lines designate component groupings by broad domain. CB, cerebellar; COG, cognitive control; 
DMN, default mode network; L/A, language/audition; SM, sensorimotor; SC, subcortical; VIS, visual.  
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Across the whole scan in the whole sample, there were no significant differences in dwell 

time in either group connectivity state, or in transitions between states (Figure 18 and Table 21). 

With either set of covariates (full or reduced), there were still no significant group differences in 

dwell time or transitions (Table 22 and 23). In the reduced set of covariates (N=776), males spent 

significantly less time in CS #1, significantly more time in CS #2, and had more transitions 

between states than females (Table 23).

 

Figure 18. Group comparisons of group-level connectivity state metrics across the whole scan in 
the full sample (N=1,049). A) Average dwell time (in TRs) for group-level connectivity states 
(2-cluster). Error bars depict standard deviation. B) Relative proportions of transitions between 
states across full sample (N=1,049). Dashed colored lines represent the respective group means. 
Red bars represent the PTSD group, and teal bars represent the Control group.   
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Table 21. Group-level connectivity states t-test comparisons by group over whole scan (N=1,049) 

 Mean PTSD 
Mean 

Control 
t p-value 95% CI 

CS #1 Dwell Time 140 136 -1.15 0.24 (-10.80, 2.80) 

CS #2 Dwell Time 60.5 64.5 1.15 0.24 (-2.80, 10.80) 

Transitions 8.00 8.18 0.50 0.61 (-0.51, 0.86) 

Note. t, t-statistic; p, p-value (uncorrected); CI, confidence interval; CS, group-level connectivity state. 
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Table 22.  Group-level connectivity states comparisons by group over whole scan  
ANCOVAs with all covariates (N=442) 
 Model Terms B ß t p Model 

R2 

CS #1  
Dwell Time 

(Intercept) 145.97 0.04 16.31 <0.001 0.01 
Age 0.22 0.05 0.93 0.351  
Sex [Male] -6.73 -0.13 -1.32 0.188  
Dep Dx [Yes] 6.31 0.12 0.96 0.336  
Child Trauma -3.88 -0.07 -1.43 0.154  
Group [PTSD] 0.33 0.01 0.06 0.951  

CS #2 
Dwell Time 

(Intercept) 55.03 -0.04 6.15 <0.001 0.01 
Age -0.22 -0.05 -0.93 0.351  
Sex [Male] 6.73 0.13 1.32 0.188  
Dep Dx [Yes] -6.31 -0.12 -0.96 0.336  
Child Trauma 3.88 0.07 1.43 0.154  
Group [PTSD] -0.33 -0.01 -0.06 0.951  

Transitions 

(Intercept) 5.91 -0.13 6.16 <0.001 0.01 
Age 0.00 0.01 0.18 0.859  
Sex [Male] 1.14 0.21 2.09 0.037  
Dep Dx [Yes] -0.10 -0.02 -0.14 0.889  
Child Trauma -0.15 -0.03 -0.50 0.619  
Group [PTSD] 0.33 0.06 0.57 0.566  

Note. ANCOVA, analysis of covariance; B, unstandardized beta; ß, standardized beta; t, t-statistic; p, 
p-value; Dep Dx, depression diagnosis; Child Trauma, z-scored childhood trauma severity score; p-
values presented are uncorrected, * indicates those that survived FDR correction (a=0.05). 
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Table 23.  Group-level connectivity states comparisons by group over whole scan  
ANCOVAs with reduced covariates (N=779) 
 Model Terms B ß t p Model 

R2 

CS #1 
Dwell Time 

(Intercept) 143.36 0.22 19.92 <0.001* 0.03 
Age 0.23 0.05 1.45 0.148  
Sex [Male] -21.18 -0.38 -5.18 <0.001*  
Dep Dx [Yes] -1.40 -0.03 -0.27 0.784  
Group [PTSD] 1.95 0.03 0.46 0.648  

CS #2 
Dwell Time 

(Intercept) 57.64 -0.22 8.01 <0.001* 0.03 
Age -0.23 -0.05 -1.45 0.148  
Sex [Male] 21.18 0.38 5.18 <0.001*  
Dep Dx [Yes] 1.40 0.03 0.27 0.784  
Group [PTSD] -1.95 -0.03 -0.46 0.648  

Transitions 

(Intercept) 6.06 -0.19 8.51 <0.001* 0.02 
Age 0.02 0.04 1.05 0.293  
Sex [Male] 1.82 0.33 4.49 <0.001*  
Dep Dx [Yes] -0.31 -0.06 -0.61 0.543  
Group [PTSD] 0.02 0.00 0.05 0.958  

Note. ANCOVA, analysis of covariance; CS, group level connectivity state; B, unstandardized beta; 
ß, standardized beta; t, t-statistic; p, p-value; Dep Dx, depression diagnosis; p-values presented are 
uncorrected, * indicates those that survived FDR correction (a=0.05). 
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LME models were used to compare group differences in dwell time and transitions 

between the first and second half of the scan (Figure 19). FDR correction for multiple 

comparisons was applied (a=0.05). In the whole sample (N=1,049) there was a main effect of 

scan half such that participants in the second half of the scan spent less time in CS #1 and more 

time in CS #2 (Table 24).  

Similarly, in the reduced sample with all covariates (N=442), there was a main effect of 

scan half such that participants in the second half of the scan spent less time in CS #1 and more 

time in CS #2 (Table 25). In addition, a significant main effect of sex showed males had a greater 

number of transitions than females. There was marginal interaction (uncorrected) of 

Group*ScanHalf suggesting those with PTSD in the 2nd half of the scan spent more time in CS 

#1 and less time in CS #2.  

Finally, in the sample with a reduced set of covariates (N=779), there was a significant 

main effect of scan half such that participants in the second half of the scan spent less time in CS 

#1, more time in CS #2, and had more transitions (Table 26). There was also a main effect of sex 

such that males spent less time in CS #1, more time in CS #2, and had greater number of 

transitions than females. 
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Figure 19. Group comparisons of group-level connectivity state metrics between scan halves in the full sample (N=1,049). A) 
Average dwell time (in TRs) for group-level connectivity states (2-cluster). Error bars depict standard deviation. B) Relative 
proportions of transitions between states across full sample (N=1,049). Dashed colored lines represent the respective group means. 
Red bars represent the PTSD group, and teal bars represent the Control group.  
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Table 24. Scan halves comparison of group-level connectivity states by group (LME, whole sample, N=1,049) 

Predictors CS # 1 CS # 2 Transitions 

 Estimate CI p Estimate CI p Estimate CI p 

(Intercept) 71.26 68.88 – 73.63 <0.001* 28.74 26.37 – 31.12 <0.001* 3.94 3.67 – 4.21 <0.001** 

ScanHalf [2nd] -6.05 -7.75 – -4.36 <0.001* 7.05 5.36 – 8.75 <0.001* 0.30 0.00 – 0.60 0.050# 

Group [PTSD] 0.80 -2.84 – 4.44 0.666 -0.80 -4.44 – 2.84 0.666 0.05 -.36 – 0.46 0.812 
ScanHalf [2nd] * 
Group[PTSD] 2.39 -0.20 – 4.98 0.070 -2.39 -4.98 – 0.20 0.070 -0.28 -.74 – 0.18 0.239 

Note. LME, linear mixed effects model; CS, group-level connectivity state; CI, confidence interval; σ2 , random effects variances; ICC, intraclass correlation 
coefficient (calculated by dividing random effect variance by the total variance); p-values presented are uncorrected, * indicates those that survived FDR 
correction (a=0.05). # p<0.05 uncorrected. 
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Table 25. Scan halves comparison of group-level connectivity states by group (LME, all covariates, N=442) 

Predictors CS # 1 CS # 2 Transitions 

 Estimate CI p Estimate CI p Estimate CI p 

(Intercept) 76.36 67.50 – 85.22 <0.001* 23.64 14.78 – 32.50 <0.001* 2.89 1.92 – 3.85 <0.001* 

Age 0.11 -0.12 – 0.35 0.351 -0.11 -0.35 – 0.12 0.351 0.00 -0.02 – 0.03 0.859 

Sex [Male] -3.36 -8.37 – 1.64 0.188 3.36 -1.64 – 8.37 0.188 0.57 0.04 – 1.11 0.036* 

Dep Dx [Yes] 3.15 -3.27 – 9.58 0.336 -3.15 -9.58 – 3.27 0.336 -0.05 -0.74 – 0.64 0.889 

Child Trauma -1.94 -4.61 – 0.73 0.154 1.94 -0.73 – 4.61 0.154 -0.07 -0.36 – 0.21 0.618 

ScanHalf [2nd] -6.75 -9.19 – -4.31 <0.001* 7.75 5.31 – 10.19 <0.001* 0.14 -0.30 – 0.59 0.529 

Group [PTSD] -1.60 -7.18 – 3.98 0.575 1.60 -3.98 – 7.18 0.575 0.11 -0.55 – 0.76 0.747 
ScanHalf [2nd] * 
Group[PTSD] 3.53 -0.06 – 7.12 0.054# -3.53 -7.12 – 0.06 0.054# 0.12 -0.54 – 0.77 0.727 

Note. LME, linear mixed effects model; CS, group-level connectivity state; CI, confidence interval; Dep Dx, depression diagnosis; Child Trauma, z-scored 
childhood trauma severity score; σ2 , random effects variances; ICC, intraclass correlation coefficient (calculated by dividing random effect variance by the 
total variance); p-values presented are uncorrected, * indicates those that survived FDR correction (a=0.05). # p<0.05 uncorrected. 
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Table 26. Scan halves comparison of group-level connectivity states by group (LME, reduced covariates N=779) 

Predictors CS # 1 CS # 2 Transitions 

 Estimate CI p Estimate CI p Estimate CI p 

(Intercept) 75.37 68.25 – 82.48 <0.001* 24.63 17.52 – 31.75 <0.001* 2.80 2.08 – 3.52 <0.001* 

Age 0.11 -0.04 – 0.27 0.148 -0.11 -0.27 – 0.04 0.148 0.01 -0.01 – 0.02 0.293 

Sex [Male] -10.59 -14.60 – -
6.58 <0.001* 10.59 6.58 – 14.60 <0.001* 0.91 0.51 – 1.31 <0.001* 

Dep Dx [Yes] -0.70 -5.70 – 4.30 0.783 0.70 -4.30 – 5.70 0.783 -0.15 -0.65 – 0.34 0.543 

ScanHalf [2nd] -7.37 -9.25 – -5.49 <0.001* 8.37 6.49 – 10.25 <0.001* 0.46 0.13 – 0.79 0.007* 

Group [PTSD] -0.12 -4.55 – 4.32 0.959 0.12 -4.32 – 4.55 0.959 0.17 -0.32 – 0.66 0.501 
ScanHalf [2nd] * 
Group[PTSD] 2.18 -0.73 – 5.09 0.142 -2.18 -5.09 – 0.73 0.142 -0.31 -0.83 – 0.20 0.236 

Note. LME, linear mixed effects model; CS, group-level connectivity state; CI, confidence interval; Dep Dx, depression diagnosis; Child Trauma, z-scored 
childhood trauma severity score; σ2 , random effects variances; ICC, intraclass correlation coefficient (calculated by dividing random effect variance by the 
total variance); p-values presented are uncorrected, * indicates those that survived FDR correction (a=0.05). 
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Results Summaries by Sample 

 See Table 27 for table overview of all results presented below. 

Whole Sample (N=1,049) 

 Results of the static FC analysis showed those with PTSD had lower global and local 

efficiency, clustering coefficient, and connectivity strength within the identified network 

compared to Controls. Regional group differences in the network indicated those with PTSD had 

significantly lower sFC compared to Controls within sensorimotor and within the SM and VIS 

subnetworks, and between SM and VIS, SM and L/A, and VIS and COG subnetworks. 

 Results of the dynamic FC analysis demonstrated a qualitative difference in pattern of 

graph metrics across the whole network in the second half of the scan compared to the first; 

however, LME results indicated this pattern was not different between groups rather both groups 

had higher graph metrics in the second half of the scan compared to the first. Further 

examination of graph dynamics within the SM network showed those with PTSD had lower 

metrics across both halves of the scan compared to Controls. In addition, within the VIS network 

there was a significant interaction of ScanHalf*Group such that those with PTSD had 

significantly lower graph metrics in the second half of the scan compared to Controls. 

 Comparison of individual level connectivity states did not indicate group differences in 

number of states, though there was a marginal interaction of ScanHalf*Group such that those 

with PTSD had more individual connectivity states in the second half of the scan compared to 

Controls. Comparison of group-level connectivity states for the 2-cluster solution revealed no 

group differences in dwell time or number of transitions between states, though LME results 

indicated in the second half of the scan, both groups spent less time in CS #1 and more time in 

CS #2.  
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Reduced Sample with All Covariates (N=442) 

 After controlling for all covariates of interest, results of the static FC analysis from the 

whole sample were consistent showing those with PTSD had lower global efficiency and 

connectivity strength within the network compared to Controls. Regional group differences in 

the network indicated similar results to the whole sample, where those with PTSD had 

significantly lower sFC compared to Controls within sensorimotor and within the SM and VIS 

subnetworks, and between SM and VIS, SM and L/A, and VIS and COG subnetworks; however, 

these patterns were more robust after controlling for covariates compared to the unadjusted 

sample. 

 Again, similar to the whole sample there was no significant group differences in graph 

metrics between scan halves, rather both groups showed higher graph metrics in the second half 

of the scan. Further examination of graph dynamics within the sensorimotor network showed no 

group differences; however, within the visual network the interaction of ScanHalf*Group still 

held. 

 Comparison of individual level connectivity states across the whole scan did not indicate 

group differences in number of states. There was a main effect of sex: males had fewer 

individual connectivity states than females. Results of the LME comparing scan halves, showed 

a significant group difference such that those with PTSD had significantly fewer individual level 

connectivity states in the first and second halves of the scan compared to Controls. 

Group-level connectivity states for the 2-cluster solution revealed no group differences in 

dwell time or number of transitions between states across the whole scan, though males had 

greater number of transitions than females. Results of the LME comparing scan halves, again 

showed males had more transitions between states than females, and subjects in both groups 
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spent significantly more time in CS #2 and less time in CS #1 in the second half of the scan. 

There was also a marginal (uncorrected) interaction of ScanHalf*Group. Those with PTSD spent 

more time in CS #1 and less time in CS #2 in the second half of the scan compared to Controls. 

Reduced Sample with Reduced Covariates (N=779) 

 After controlling for most covariates of interest, results of the static FC analysis from the 

prior analyses held showing those with PTSD had lower global efficiency and connectivity 

strength, within the network compared to Controls. Regional group differences in the network 

showed near identical results as the prior analysis with covariates; again, these patterns were 

more robust after controlling for covariates compared to the whole sample. 

 Again, similar to the whole sample there was no significant group differences in graph 

metrics between the first and second half of the scan, rather both groups showed higher graph 

metrics in the second half of the scan. In addition, males had higher graph metrics than females 

in both halves of the scan. Further examination of graph dynamics within the sensorimotor 

network showed no group differences; however, within the visual network the interaction of 

ScanHalf*Group still held. 

 Comparison of individual level connectivity states across the whole scan did not indicate 

group differences in number of states. There was a significant negative relationship of age and 

number of states across the whole scan. Results of the LME comparing scan halves, showed a 

significant interaction of ScanHalf*Group such that those with PTSD had more states in the 

second half of the scan than Controls. 

Group-level connectivity states for the 2-cluster solution revealed no group differences in 

dwell time or number of transitions between states across the whole scan, though males spent 

more time in CS #2, less time in CS #1, and had more transitions than females. Results of the 
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LME comparing scan halves, showed the same effects for males for both scan halves, as well as 

a main effect of scan half such that all subjects spent more time in CS #2, less time in CS #1, and 

had more transitions in the second half of the scan. 
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Table 27. Summaries of significant results for all 3 samples analyzed 

Analysis Whole sample (N=1,049) All covariates (N=442) Reduced covariates (N=779) 

Static functional connectivity    

Whole network graph metrics PTSD had lower LE, CC, CS PTSD had lower LE, CS, *CC PTSD had lower LE, *CS 

Component pairs pattern PTSD had lower sFC within sensorimotor and within visual networks,  
as well as between sensorimotor and visual and sensorimotor and language/audition networks 

Dynamic functional connectivity    

Graph metrics by scan halves Both groups greater GE, LE, CC, CS in second half 

Graph metrics by scan halves 
(sensorimotor network) PTSD lower metrics in second half  No group differences 

Graph metrics by scan halves 
(visual network) Interaction: PTSD lower graph metrics in second half compared to Controls 

Individual CS counts    

Whole scan No group difference Males more CS than females Negative relationship with age 

By scan halves *Interaction: PTSD had more CS in 2nd 
half than Controls 

PTSD had fewer than Controls in both 
halves 

Interaction: PTSD had more CS in 2nd half 
than Controls 

Group CS (2-cluster)    

Dwell CS #1 
No group differences 
 

No differences Males less than females 

Dwell CS #2 No differences Males more than females 

Transitions Males more transitions than females 

Dwell halves CS #1 Less in second half 
• Less in second half 
• *Interaction: PTSD more in second 

half than Controls 

• Less second half 
• Males less than females 

Dwell halves CS #2 More in second half 
• More in second half 
• *Interaction: PTSD less in second 

half than Controls 

• More second half 
• Males more than females 

Transitions halves *More in second half Males more than females • More second half 
• Males more than females 

Note. LE, local efficiency; CC, clustering coefficient; CS, connectivity strength; CS counts, individual level connectivity states; Dwell CS, dwell time in group-level 
connectivity states; halves, LME analysis comparing first and second halves of the scan time (first 100 time windows vs. last 100 time windows); * indicate results that were 
marginal and uncorrected (p<0.05). 
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Discussion 

The current study utilized a data-driven approach to evaluate resting state brain network 

dynamics in a large global sample of trauma exposed individuals. Graph dynamics were 

evaluated for both static and dynamic FC within the identified resting state network via group 

ICA. Further, recurrent connectivity states identified through k-means clustering of time 

windows derived from the dynamic FC analysis were examined at the individual- and group-

level. Though results were mixed and occasionally in opposition with the current literature, the 

current study is the first to utilize this method on a large and diverse trauma sample (N=1,049). 

Static FC analyses resulted in robust group differences across the whole network and within 

subnetworks between groups. Dynamic FC analyses did not show clear differential patterns of 

graph dynamics across the whole network between groups, though some differences were 

apparent within subnetworks. Finally, analysis of recurrent connectivity states yielded marginal 

group differences at both the individual- and group-level.  

Network Identification (Group ICA) 

First, the components extracted from the group ICA, especially after organization into 

seven cognitive domains (CB, COG, DMN, L/A, SM, SC, VIS), closely resemble networks 

identified in many other samples using the same method (Abrol et al., 2017; Damaraju et al., 

2014; Ma et al., 2011; Salman et al., 2019; Yu et al., 2015; Yu et al., 2012). While there is an 

inherent degree of subjectivity in selecting components derived from the group ICA, relative 

consistency in the final components used within studies across researchers in several different 

fields lends support to the reliability of this data-driven approach to network identification in 

resting state fMRI analyses (Abrol et al., 2017; Fu et al., 2018; Rashid et al., 2014; Ross & 

Cisler, 2020).  
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Static Functional Connectivity 

Regardless of inclusion of covariates, results of the static FC analysis showed those with 

PTSD had lower graph metrics (most robust were global efficiency and connectivity strength) 

across the whole network compared to Controls. These effects are largely supported by the 

current literature on overall brain network connectivity in PTSD (Akiki et al., 2017; Akiki et al., 

2018; Ross & Cisler, 2020; Xu et al., 2018; Zhang et al., 2017). 

A recent systematic review of resting state connectivity in PTSD reported a significant 

majority of seed based and canonical network-based approaches indicate reduced connectivity in 

those with PTSD compared to controls (Ross & Cisler, 2020). For studies that have utilized 

graph theory metrics to characterize seed-based or canonical networks, many have reported 

findings in the same direction as the current study (i.e. PTSD had lower graph metrics than 

Controls; (Akiki et al., 2017; Akiki et al., 2018; Xu et al., 2018; Zhang et al., 2017) while some 

others have reported effects in the opposite direction (Lei et al., 2015). Despite inconsistencies in 

the direction of results, it is clear that alterations at a large-scale, across canonical and 

widespread whole-brain networks, are evident in PTSD (Ross & Cisler, 2020). 

Use of data driven approaches in network identification as well as graph theoretical 

principles to describe network properties has shown brain dysfunction does not lie simply 

between connections of a handful of regions, rather the integration and segregation within and 

between subnetworks across the whole network is a more robust and reliable measure of network 

structure and function (Bullmore & Sporns, 2009; Fornito et al., 2016; Ross & Cisler, 2020; 

Zalesky et al., 2014). With accumulating evidence of global network properties in healthy 

subjects serving as a functional baseline (Power et al., 2011, 2013; Ross & Cisler, 2020), 

deviations from “healthy” functioning can serve to characterize the neural underpinnings of 
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symptoms in PTSD and other clinical disorders. Recent and ongoing research beyond traditional 

ROI-based (i.e. amygdala-hippocampal-frontal network) and/or canonical network models of 

PTSD (DMN, CEN, SN) indicates a more comprehensive view of PTSD dysfunction lies in 

global connectivity patterns (Akiki et al., 2018; Cisler et al., 2018; Lei et al., 2015; Li et al., 

2014; Ross & Cisler, 2020; Suo et al., 2015; Xu et al., 2018; Yin et al., 2011).  

Despite evidence of global network dysfunction, further examination of specific ROIs 

and subnetworks in the brain may reveal idiosyncrasies particular to PTSD. For instance, in the 

current study, examination of the network showed decreased connectivity compared to Controls 

for those with PTSD (with and without covariates) primarily within the SM and VIS 

subnetworks, and between SM and VIS, SM and L/A, and VIS and COG subnetworks. A 

predominant finding in the PTSD resting state fMRI literature, is hypoactivation within the DMN 

in those with PTSD, and/or hypoactivation between the DMN and other canonical networks (for 

review see: Koch et al., 2016; Ross & Cisler, 2020). The current study did not replicate this 

finding, but rather showed a different set of hypoactivations within and between networks. While 

decreased connectivity within and between the SM and VIS subnetworks in PTSD is supported 

by previous work (Zhang et al., 2015), the majority of findings in this line of work are in the 

direction of hyperconnectivity. For example, in two veteran samples hyperconnectivity between 

these subnetworks was related to greater symptoms in PTSD (Dunkley et al., 2015; Vanasse et 

al., 2019). Similarly, deficient alpha oscillations in visual cortex (Clancy et al., 2017; Clancy et 

al., 2020) and lower fractional amplitude of low-frequency fluctuations (fALFF) in the visual 

cortex (Yin et al., 2011) in those with PTSD have been hypothesized to underlie impaired 

sensory gating and overactive sensory memories within visual networks and between visual and 
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other subnetworks. The discrepancies in the current findings and the literature may stem from the 

use of significantly smaller homogenous trauma/PTSD samples compared to the current study.  

However, one potential explanation for the specific direction of decreased connectivity 

amongst subnetworks, is a trend of reduced “small-worldness” for those with PTSD (Akiki et al., 

2018; Jung et al., 2016; Rangaprakash et al., 2019; Xu et al., 2018; Zhu et al., 2019). Small-

worldness describes a network structure that has high segregation between subnetworks and high 

integration within subnetworks (Bullmore & Sporns, 2009). Though small-worldness was not 

calculated directly in the current study, the observed reductions in efficiency, clustering 

coefficient, and connectivity strength allude to a disequilibrium of segregation and integration 

processes across the network in those with PTSD (Jung et al., 2016; Sripada et al., 2012). Shifts 

in this manner away from small-worldness result in a network more akin to a random network 

configuration (all connections between nodes are equally probable; Bullmore & Sporns, 2009) 

with disrupted neuronal organization compared to Controls (Akiki et al., 2018; Jung et al., 2016; 

Rangaprakash et al., 2019; Sripada et al., 2012; Xu et al., 2018; Zhu et al., 2019).  

Shifts away from small-worldness in the current study were largely driven by decreased 

FC between SM and other subnetworks and/or VIS and other subnetworks. In the context of 

PTSD, this disruption of network organization could underlie symptoms in either a top-down or 

bottom up manner (Cisler et al., 2018; Dossi et al., 2020; Fenster et al., 2018). From a top-down 

perspective, broad disorganization of the network could allow for specific regions or 

subnetworks to become unregulated (Cisler et al., 2018; Dossi et al., 2020; Fenster et al., 2018). 

In the current study, disrupted regulation was observed within SM and VIS networks, though 

further downstream effects cannot be discounted. From a bottom-up perspective, dysfunction 

within specific regions or subnetworks (components within the SM and VIS) could be driving 
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broader disorganization across the network and within other subnetworks (Cisler et al., 2018; 

Dossi et al., 2020; Fenster et al., 2018). However, neither the direction of effects nor the causal 

relationships among subnetworks can be determined within the current analysis or results. 

Nonetheless, aberrant network organization affects some level of processing in the brain that 

underlies specific symptoms of PTSD though further speculation is beyond the scope of the 

current study. While the effect of small-worldness has been demonstrated in other samples with 

other psychiatric conditions including schizophrenia (Lynall et al., 2010), depression (Zhang et 

al., 2011), and obsessive-compulsive disorder (Shin et al., 2014), further work in larger samples 

with PTSD is needed. 

Dynamic Functional Connectivity and Connectivity States 

Closer examination of graph metrics in the dynamic FC analysis, elucidate more nuanced 

effects of network properties through time. Most notably, in the static FC analysis, decreased 

efficiencies across the whole network were observed for those with PTSD when graph metrics 

were averaged across the whole scan; however, assessment through time across the whole 

network showed there were no significant group differences in graph metric dynamics. Rather, 

both groups showed a “ramping up” of network efficiencies over time (increased global and local 

efficiency, clustering coefficient, and connectivity strength, and decreased path length between 

first and second half of scan). Interestingly, in following up the particular subnetwork effects 

found in the static FC analysis (decreased efficiencies within SM and VIS in PTSD), a unique 

trend over time was found specifically within the VIS subnetwork.  

While Control subjects showed the same ramping up effect in the VIS subnetwork, 

apparent across the whole network, those with PTSD did not exhibit the same effect of 

increasing efficiencies. This pattern suggests, when free of task-demands, visual subnetwork 
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organization in those with PTSD exhibits increasingly deficient organization compared to 

Controls (Jin et al., 2017; Thome et al., 2020; Zhang et al., 2015). The unique trend observed in 

the VIS subnetwork in those with PTSD may reflect a degree of inflexibility akin to an effect 

observed in depression, whereby subjects have impaired ability to react to internal and/or 

external demands (Hutchison et al., 2013; Rashid et al., 2014). In PTSD, this inflexibility, or 

impaired efficiency, specifically in the VIS subnetwork, may also underlie aberrant self-

referential visual memory (i.e. flashbacks to the trauma) (Dunkley et al., 2015; Frewen et al., 

2017; Hutchison et al., 2013; Jin et al., 2017; Kroes et al., 2011; Thome et al., 2020; Zhang et al., 

2015).  

Greater network efficiencies across time throughout the network can be further explained 

by specific trends of identified connectivity states. While there were no group differences in the 

number of individual-level connectivity states, nor in dwell time or transitions between group-

level connectivity states when averaged across the whole scan, group differences in these 

connectivity state metrics between first and second halves of the scan may explain the effect of 

increasing efficiencies apparent in the dynamic FC graph analysis and provide additional insight 

into overall network connectivity characteristics that distinguish groups. At the individual-level, 

with covariates accounted for, the PTSD group had fewer overall connectivity states over the 

course of the scan. While efficiencies within individual states were not assessed within the 

current study, fewer overall states in those with PTSD compared to Controls may reflect overall 

greater stochasticity in the network. As observed in the static FC and the VIS subnetwork in the 

dynamic FC analysis, there was more deficient integration within and between networks in those 

with PTSD. Greater stochasticity may provide additional evidence of aberrant network 
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organization compared to Controls that could underlie symptoms of PTSD (Li et al., 2014; Yin et 

al., 2011; Zhang et al., 2016; et al., 2015; Zhu et al., 2019).  

For group-level connectivity states, there were no group differences in dwell time or 

transitions in either connectivity state across the whole scan nor between scan halves. For all 

participants, there was a general trend of more time spent in CS #2 and more transitions in the 

second half of the scan. Given the results of the dynamic graph analysis, it is not surprising that 

CS #2 is a state characterized by higher efficiencies (higher global and local efficiency, 

clustering coefficient, connectivity strength, and path length) than CS #1. More time spent in this 

higher efficiency state in the second half of the scan, as well as more transitions between states, 

likely explains the overall efficiency increases observed across the whole network in the 

dynamic graph analysis. 

While many, if not all, participants in the Control group were trauma exposed, it remains 

unclear whether increased network efficiencies over time is a trend unique to trauma exposure or 

if this effect would also be apparent in a true healthy control sample. As network dynamics in 

resting state analyses are typically thought to reflect mind wandering or spontaneous thoughts 

(Christoff et al., 2016; Hutchison et al., 2013; Preti et al., 2017), increased efficiencies and 

coherence across the network may reflect increased mind wandering for all subjects through the 

course of the scan. In healthy and clinical samples, large positive and negative trends of 

efficiency and coherence between and within brain structures are not surprising over the course 

of a scanning session (Abrol et al., 2017; Chang & Glover, 2010; Deco et al., 2011; Handwerker 

et al., 2012; Hutchison et al., 2013; Jia et al., 2014). Whether these trends are noise related or 

correspond to actual fluctuations in mental states or relate to behavioral outcomes remains to be 
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disentangled (Abrol et al., 2017; Chang & Glover, 2010; Deco et al., 2011; Handwerker et al., 

2012; Hutchison et al., 2013; Jia et al., 2014).  

Beyond the primary group differences assessed (PTSD vs. Control), robust sex 

differences in connectivity metrics (i.e. dwell time in higher graph states, greater transitions 

between states), regardless of group membership, were not surprising as previous work has 

shown much of the variability in resting state connectivity can be explained by age and sex 

(Biswal et al., 2010; Viviano et al., 2017). Interestingly, neither depression diagnosis nor 

childhood trauma covariates contributed uniquely in any models for any analysis. Though 

previous work has shown differential network dynamics and connectivity states in depression 

(Yao et al., 2019), these results were not replicated in the current study. This is likely due to the 

fewer number of subjects who had depression as well as the fact that group comparisons were 

done across PTSD Dx groups and not depression Dx groups. Given the high comorbidity of 

PTSD and depression (18% in the current sample; American Psychiatric Association, 2013; 

Karam et al., 2014), grouping subjects by PTSD Dx may have already separated any unique 

variance of depression Dx.  

Although, specific effects of childhood trauma in PTSD network dynamics have been 

reported previously (Koch et al., 2016). Lack of effects with this covariate in the current study 

may be explained in a similar manner to depression—the variability associated with childhood 

trauma may have already been accounted for in grouping PTSD Dx, given the high comorbidity 

of prior traumatic experiences and PTSD (25% in the current sample; Bonanno, 2004; Foa & 

Riggs, 1995; Karam et al., 2014; Powers et al., 2014; Riggs et al., 1995). Alternatively, z-scoring 

across childhood trauma clinical measures may have been too crude of method to combine 



 

 100 

scores. If possible, future work should aim to disentangle, the differential brain effects of PTSD 

Dx, depression Dx, and childhood trauma on brain network dynamics. 

General Discussion 

The analysis and overall method of the current study was adopted from methodology 

applied to other psychiatric samples, namely schizophrenia (Damaraju et al., 2014; Salman et al., 

2019; Yu et al., 2015; Yu et al., 2012) and Alzheimer’s Disease (Fu et al., 2019). This method 

has been shown to yield highly reproducible and reliable results of network identification and 

functional connectivity properties (Abrol et al., 2017); however, the current study did not yield 

robust group differences as has been shown in the dynamic and connectivity states analyses of 

other psychiatric conditions. While aberrant intrinsic networks at rest have been described in 

PTSD, many results also report effects that specifically relate to symptoms (Akiki et al., 2017; 

Dunkley et al., 2015; Tursich et al., 2015). Without sufficient symptom information in the 

current sample, network dynamics related to specific symptom clusters of PTSD cannot be 

evaluated. Furthermore, at the scale of the current sample and with little to no control over 

relevant covariates or sufficient information on the trauma that led to PTSD in addition to current 

symptoms, the conclusion stands that there is nothing robustly unique to PTSD Dx across the 

whole identified network that was captured using dynamic functional connectivity.  

This conclusion should not discourage use of the current method. For one, the data-driven 

approach to network identification still yielded more refined components and additional brain 

regions than would have been investigated using an a priori ROI or canonical networks approach 

(Allen et al., 2014). Second, dynamic functional connectivity allowed for a more complete 

characterization of network properties over time, even though these properties did not distinguish 

groups across the whole network, nuances within SM and VIS subnetworks were evaluated more 
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thoroughly (Hutchison et al., 2013). While there were general trends observed in network 

dynamics across groups, one could argue these effects are unique to trauma exposure, as the 

“Control” group in this study was trauma exposed. However, without a true “healthy control” 

group this argument cannot be made definitively but should certainly be revisited in future work. 

Limitations 

 This study is certainly not without limitation. First, given the post-hoc organization 

within the ENIGMA PGC-PTSD workgroup, there were many variables that could not be 

accounted for because they were either not collected at all sites or were measured in different 

ways. Variables that would have been pertinent to the aims and analysis but could not be 

included are index trauma timing and type, previous trauma history, anxiety disorder 

comorbidities, and substance and/or medication use. In addition, a large loss of sample size was 

necessary given the parameters of the analysis. Though I attempted to provide sufficient 

justification for decision points present at various stages of the analysis pipeline, several 

alternative decisions could have just as easily been justified.  

Second, the group ICA used for network identification was applied to the entire sample 

which yielded a network derived from both PTSD and Control subjects. Applying the group ICA 

to each group separately could yield additional insights into network properties as different 

components may have been derived between groups.  

Third, more fine-grained comparisons through time can and should be employed in 

analyzing dynamic FC and connectivity states to provide clarity as to when network connectivity 

patterns emerge in the course of a resting state scan. However, given the immense heterogeneity 

of scan timing and acquisition parameters among participants in the sample, only macro-level 

(first vs. second halves of scan) time comparisons were analyzed.  
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Conclusion 

In a general sense, the overarching question of the current analysis was “is there anything 

unique in the resting brain as it pertains to the diagnosis of PTSD (regardless of trauma type, 

timing of trauma, symptom severity/presentation etc.)?” While trauma exposure is a common 

global phenomenon, PTSD presentation is not (Galatzer-Levy & Bryant, 2013; Miao et al., 2018; 

Yehuda et al., 2015). There are myriad combinations of symptoms that make PTSD a 

significantly more heterogenous disorder than originally conceptualized, as proposed by broader 

dimensional diagnostic systems such as the Research Domain Criteria Initiative (RDoc) 

framework (Insel et al., 2010; Insel & Cuthbert, 2009). The results of the current study suggest 

there are few differences in resting state brain network organization that underlie PTSD as a 

diagnosis. While differences between groups were apparent in the static FC analysis, particularly 

within the dynamic and connectivity states analyses results might just be too nuanced to describe 

differences across just the diagnostic group. However, effects could emerge with more 

information such as PTSD symptom severity. Furthermore, findings will likely be difficult to 

generalize due to the immense variability in trauma type, previous trauma history, and symptom 

presentation that could not be accounted for in the current sample (Miao et al., 2018).  

Differences in resting state networks in PTSD are often reported in smaller and 

homogenous trauma samples, and the current results provide additional support to studying 

PTSD as a disorder whose symptom presentation varies according to many factors (Galatzer-

Levy & Bryant, 2013; Ross & Cisler, 2020; Yehuda et al., 2015). Nonetheless, this line of 

research fuels the argument that brain alterations underlying PTSD likely do not fit a constrained 

theoretical model (i.e. impaired fear learning within amygdala-hippocampal-frontal network) 

rather aberrations encompass a widespread an dynamic network (Ross & Cisler, 2020).   
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Appendix A: Supplemental Site and Sample Information 

Table 28. Sample characteristics for full released dataset (N=2,902) 
Sex 1,538 F / 1,353 M / 1 missing 

Age 36.91 (14.61) 
*405 missing 

Race  
Asian 295 
Black/African American 441 
European American 54 
Hispanic 40 
Multi-racial 162 
NA 649 
Pacific Islander 3 
Unknown 6 
White 1252 

PTSD Dx 1,175+ / 1,717 –  
*10 missing 

Depression Dx 690 + / 1377 –  
*835 missing 

Site (N’s)  
AMC 74 
BEI 88 
CAP 169 
COL 79 
DUK 149 
EMO 107 
GHE 65 
GRO 40 
LEI 51 
MAS 282 
MCL 78 
MIC 63 
MIL 97 
MIN 248 
MUN 47 
NAN 143 
STA 203 
TOL 79 
TOU 42 
UMN 72 
UTR 109 
UWA 149 
VAN 50 
WAC 70 
WCI 106 
WGR 58 
WON 184 

Note: F, female; M, male; NA, not available/missing; Dx, diagnosis; N, sample 
size.  
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Table 29. General study aim information for all ENIGMA PGC-PTSD sites in first wave of data release 

Site Study population recruited 

Academic Medical Center at the University of 
Amsterdam (AMC) 
Netherlands 

Trauma Exposed police officers 

Beijing University of Chinese Academy of Sciences 
(BEI) 
China 

Earthquake survivors 

University of Capetown/Tygerberg Hospital (CAP) 
South Africa 

Civilian females presenting for antenatal 
care 

Columbia University (COL) 
USA 

Civilian childhood trauma survivors 

Duke/Durham Veterans Affairs (DUK) 
USA 

OEF/OIF veterans 

Emory University- Grady Trauma Project (EMO) 
USA 

Civilian patients reporting to ER following 
trauma 

Ghent University (GHE) 
Belgium 

Civilian childhood abuse survivors 

University of Groningen (GRO) 
Netherlands 

Civilian females with adolescent trauma 
exposure 

Leiden University Medical Center (LEI) 
Netherlands 

Adolescent sexual abuse survivors 

Masaryk University—Central European Institute of 
Technology (MAS) 
Czech Republic 

Holocaust survivors and descendants 

McLean Hospital (MCL) 
USA 

Civilian female childhood abuse survivors 

University of Michigan (MIC) 
USA 

OEF/OIF veterans 

University of Wisconsin-Milwaukee (MIL) 
USA 

Trauma-exposed civilians 

Minneapolis Veterans Affairs (MIN) 
USA 

Veterans 

University of Munster (MUN) 
Germany 

Trauma-exposed civilians 

Nanjing University/Yixing Hospital (NAN) 
China 

Civilians who lost only child 

Stanford University (STA) 
USA 

OEF/OIF veterans  
civilians 

University of Toledo (TOL) 
USA 

Civilian motor vehicle accident survivors  
OEF/OIF veterans from Ohio national 
guard 

Universite de Tours (TOU) 
France 

Civilian sexual assault survivors 

University of Minnesota (UMN) 
USA 

Veterans 

Utrecht University Medical Center (UTR) Veterans 
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Netherlands 

University of Washington (UWA) 
USA 

Adolescents 

Vanderbilt University (VAN) 
USA 

OEF/OIF/OND veterans 

Waco Veterans Affairs (WAC) 
USA 

Veterans 

University of Western Ontario (WON) 
Canada 

Civilian interpersonal violence survivors 

University of Wisconsin Dr. Cisler group (WCI) 
USA 

OEF/OIF veterans 

University of Wisconsin Dr. Grupe group (WGR) 
USA 

OEF/OIF veterans 
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Figure 20. Consort diagram depicting sample reductions from initial released data from 
ENIGMA PGC-PTSD to the final sample analyzed (N=1,049). 
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Table 30. Inclusion/exclusion criteria by site 
Sites Inclusion Exclusion 
AMC • PTSD patients had to fulfill the DSM-IV 

diagnostic criteria for PTSD, with a score of > 
45 on the clinician-administered PTSD scale 
(CAPS) 

• PTSD patients were excluded if they met 
DSM-IV criteria for current psychotic disorder, 
substance-related disorder, severe personality 
disorder, severe major depressive disorder 
(MDD) (ie, involving high suicidal risk and/or 
psychotic symptoms) or current suicidal risk 

COL • Between the ages of 18 and 60.  
• Experience of a traumatic event or events in 

childhood 
and/or adulthood 

• Current DSM-V Criterion A for PTSD 
• Able to give consent, fluent in English 

• Prior or current Axis I psychiatric diagnosis of 
schizophrenia, psychotic disorder, bipolar 
disorder, dementia.  

• Depression score of > 25 on the Hamilton 
Rating Scale for Depression (HAM-D-17-
item); significant depression and /or depression 
related impairment that is judged to warrant 
pharmacotherapy or combined medication and 
psychotherapy.  

• Individuals at risk for suicide based on history 
and current mental state.  

• History of substance/alcohol dependence 
within the past six months, or abuse within past 
two months.  

• Any psychotropic medications.  
• Pregnancy, or plans to become pregnant during 

the period of the study. Paramagnetic metallic 
implants or devices contraindicating magnetic 
resonance imaging or any other non-removable 
paramagnetic metal in the body.  

• Medical illness that could interfere with 
assessment of diagnosis, or biological measures 
(SCR, fMRI), including organic brain 
impairment from stroke, CNS tumor, or 
demyelinating disease; and renal, thyroid, 
hematologic or hepatic impairment.  

• Any condition that would exclude MRI exam 
(e.g. pacemaker, paramagnetic metallic 
prosthesis, surgical clips, shrapnel, necessity 
for constant medicinal patch, some tattoos) 

MIC • age 18-65 
• fluent in English & capable of understanding 

consent 
• OEF/OIF Veteran 

• Axis I disorders (except Depression, GAD, 
PTSD,Panic Disorder, Agoraphobia, Other 
Specific Phobias, Anxiety NOS) 

• neurological disorders  
• Current or history of Psychotic disorders 
• Suicide attempts in past year 
• ferrous metal in the body 
• claustrophobia 
• Other contraindication for MRI 

MIL • PTSD criterion A met 
• age 18-60 
• GCS>= 13 (mild TBI criteria) 
• Rothbaum 3 or higher or item 2 rated 3 or 

higher  
• English speaking (either native or bilingual 

proficiency) 
• able to schedule within 30 days of brain injury 

• Still in high school 
• re-admitted to hospital for current brain injury 
• live too far away to travel for study 
• police hold 
• incarcerated 
• intentional self-inflicted injury 
• known perpetrator 
• moderate to severe cognitive impairment,  
• loss of consciousness > 30 minutes 
• pregnant 
• clear evidence of substance abuse 
• anti-psychotic or anti-seizure medication,  
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• indication of psychotic disorder or manic 
symptoms 

• MRI contraindications 
• history of seizures or other neurological 

conditions 
• severe hearing or vision problems 

MIN • age: 18-60  
• OEF/OIF 
• deployed 
• positive screen on VA TBI Clinical Reminder 

• mod/sev TBI  
• non-TBI neurological conditions 
• current psychotic symptoms 
• substance abuse/dependence other than alcohol 
• unstable med conditions 
• sig risk of suicide/homicide 

NAN • age 40-70 
• Chinese adults who had lost their only child 

• psychiatric disorders except PTSD (MDD, 
GAD) 

• any history of or current brain injury or other 
major medical or neurological conditions 

• any MRI contraindication 
• left-handedness 
• unavailable data 
• excessive head motion 
• MRI scan was taken more than 120 months, or 

10 years, after the child-loss event 
STA • age 18-65 

• fluent in English & capable of understanding 
consent 

• OEF/OIF Veteran 
• Patients will be required to have chronic (>3 

months) moderate to severe anxiety or 
depression, assessed dimensionally by a score 
on the PHQ9 scale (excluding the suicide 
question)>10 or a score on the GAD7scale >10.  

• subjects will need to indicate that they would be 
interested in seeking treatment for these 
symptoms (i.e. that symptoms impair 
functioning).  

• community dwelling adults ages 18-60  
• not currently in treatment 
• free of metal or ferrous implant 
• good English comprehension and non-impaired 

intellectual abilities to ensure understanding of 
task instructions 

• no history of neurological disorders, brain 
surgery, electroconvulsive or radiation 
treatment, brain hemorrhage or tumor, stroke, 
epilepsy, hypo- or hyperthyroidism 

• no daily use of PRN benzodiazepines or opiates 
(max: 3x/wk), or daily thyroid medications, and 
no antidepressant, anticonvulsant or 
antipsychotic medications for > 2 wks 
(fluoxetine >6 wks).  

• As-needed benzodiazepines or opiates cannot 
be used within 48 hours of assessments.  

• Medication-free healthy subjects will likewise 
be split equally between those who have never 
been traumatized and those who have had a 
criterion A trauma.  

• Controls must deny lifetime psychiatric 
diagnosis and treatment and have PHQ9 
andGAD7≤4.  

• a history of psychotic, bipolar or substance 
dependence (within 3 months for patients and 
lifetime for controls) 

• a history of a neurological disorder, greater 
than mild traumatic brain injury (i.e. >30 
minutes loss of consciousness or >24 hour 
post-trauma amnesia) 

• claustrophobia 
• regular use of benzodiazepines, opiates, thyroid 

medications, or other CNS medication 
• Trauma-exposed healthy controls were 

required to have experienced a criterion A 
trauma, but not meet lifetime criteria for any 
Axis 1 psychiatric disorder, including PTSD 
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• Stratification of each group by trauma exposure 
will be re-assessed every 20 participants and we 
will ensure that groups are matched on 
demographic variables. 

TOL • Survivors of a Motor Vehicle Accident 
(MVA) who are transported to the University 
of Toledo Emergency department, or to a 
ProMedica emergency medicine department 

• Pregnancy 
• under the influence of alcohol or drugs at the 

time of MVA 
• major injuries 
• moderate to severe traumatic brain injury 
• major medical illnesses; conditions affecting 

ability to undergo MRI scans 
UMN • Age 18-65 

• history of combat-related trauma meeting 
DSM-5 

• criterion-A stressors 

• Current or past history of any psychotic 
disorder, history of any psychotic disorder, 
bipolar disorder, delirium, dementia, amnestic 
disorder, or mental retardation 

• comorbid depression if accompanied by 
current, significant suicide risk 

• substance use disorder presently or for the six 
months preceding testing 

• Medical health and pregnancy status:  
• Current or past medical illnesses which in the 

investigator’s opinion may confound study 
results, or place the participant at risk 

• Females who are, or may be, pregnant.  
• Current use of any medication that alters 

central nervous system function including 
antidepressants, benzodiazepines, anti-
psychotics, mood-stabilizers, anti-
parkinsonian agents, anti-convulsant, sleep 
medications, pain medications, and anti-
hypertensives 

• Ferrous metal in the body, other MRI 
contraindication 

UTR • All: 18-60 years of age, eligible for MRI 
• PTSD: current PTSD diagnosis, with CAPS ≥ 

45, military deployment >4 months 
• Trauma controls: exposure to at least one 

traumatic event (according to DSM-IV A1 
criterion), with CAPS < 15, no current 
psychiatric disorder, military deployment >4 
months; healthy controls: no current 
psychiatric disorder according to DSM-IV. 

• Alcohol / drug abuse or dependency during 
treatment 

• neurological disorders (i.e. Parkinson's 
Disease) 

• claustrophobia 
• pacemakers 
• other metals that might interfere with an MRI 

scan 

WCI • Age 21-50 
• fluent in English 
• experience of interpersonal violence 

• Psychotic symptoms 
• past psychotic disorders, stable on 

medications < 4 weeks 
• cognitive impairment 
• current substance or alcohol use disorder 
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Table 31. Scan acquisition parameters by site for final sample (11 sites, N=1,049) 

Site Scanner  
type 

Scanner  
model 

Coil  
channels Voxel size FOV (mm) AqOr TR 

(sec) 
TE 

(ms) 
Flip 

angle 
Number of 

slices 
Slice  

thickness 
Matrix size 

(mm) 
Number of 

TRs 

AMC Philips Achieva 32 3 x 3 x 3 240x240 Axial 2 28 76 37 3 80 x 80 233 

COL GE MR750 3T 32 3 x 3 x 4 192 x 192 Interleaved 1.3 28 60 27 4 64 x 64 277 

MIC Phillips 3T Achieva X-series 8 3 x 3 x 3 220 x 220 Axial 2 25 90 42 2.8 64 x 64 240 

MIL GE MR750 3T 32 3.5 x 3.5 x 3.5 224 x 224 Sagittal 2 25 77 41 3.5 64 x 64 240 

MIN Siemens (DEFEND) Tim Trio 3T 32 2 x 2 x 2 212 x 212 Axial 1.32 30 90 64 2 106 x 106 270 

NAN Philips Achieva 3.0 
TTX 8 3 × 3 × 4 192 × 192 Axial 1 30 90 35 4 64 × 64 220 

STA GE  
(BRAINS) MR750 3T 8 3.4 x 3.4 x 4.9 220 x 220 Axial 1 30 80 29 4 64 x 64 240 

 GE  
(CausCon) MR750 3T 8 3.4 x 3.4 x 4.9 220 x 220  Axial 1 30 80 29 4 64 x 64 240 

TOL GE Signa HDxt 3T 8 3.75 x 3.75 x 3.5 240 x 240 Axial  
Interleaved 2 30 90 34 3.5 64 x 64 240 

UMN Siemens MAGNETOM Prisma 32 2.4 x 2.4 x 2.4 208 x 208 Axial 1.5 30.4 75 60 2.4 88 x 88 240 

UTR Philips Achieva 3.0T 8 4 x 4 x 3.6 208 x 120 x 256 Transverse 1.6 23 72.5 30  64 x 51 320 

WCI Philips  
(DOP UAMS: sub num < 200) 3T Achieva X-Series 32 3 x 3 x 3 240 x 240 Axial 2 30 90 37 2.5 80 x 80 225 

 GE  
(DOP UW, sub_num > 200) MR750 3T 8 4 x 3.75 x 3.75 240 x 240  Sagittal 2 25 60 40 4 64 x 64 225 

 GE (EMOREG) MR750 3T 8 4 x 3.75 x 3.75 240 x 240 Sagittal 2 25 60 40 4 64 x 65 225 

 Philips (PAL) 3T Achieva X-Series 32 3 x 3 x 3 240 x 240 Oblique 2 30 90 37 2.5 80 x 80 225 
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Appendix B: Sample Characteristics of Reduced Samples with Covariates 

 
Table 32. Final sample characteristics by diagnostic group for reduced sample with all covariates  
(age, sex, depression Dx, and childhood trauma, N=442) 
 PTSD+ (N=204) Control (N=238) 
Sex 115 F / 89 M 109 F / 129 M 

Age 35.3 (10.5) 34.8 (10.5) 

Race   
Asian 4 6 
Black/African American 38 72 
European American   
Hispanic 1 1 
Multi-racial 12 11 
NA 42 50 
Pacific Islander   
Unknown 2 2 
White 105 96 

Depression Dx 136 - / 68 + 219 - / 19 + 

Childhood Trauma (Z-scored) 0.25 (1.03) -0.31 (0.80) 

Site (N’s)   
AMC 34 32 
COL 24 46 
MIL 22 60 
TOL 12 40 
UTR 36 40 
WCI 76 20 

Note: F, female; M, male; NA, not available/missing; Dx, diagnosis; N, sample size.  
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Table 33. Final sample characteristics by diagnostic group for reduced sample with reduced covariates 
(age, sex, depression Dx, N=779) 
 PTSD+ (N=325) Control (N=454) 
Sex 148 F / 177 M 160 F / 294 M 

Age 37.51 (12.61) 39.30 (12.61) 

Race (N’s)   
Asian 50 85 
Black/African American 42 77 
European American 33 0 
Hispanic 2 3 
Multi-racial 13 12 
NA 48 52 
Pacific Islander 1 0 
Unknown 3 2 
White 133 223 

Depression Dx 203 - / 122  + 406 - / 48  + 

Site (N’s)   
AMC 34 32 
COL 24 46 
MIC 36 0 
MIL 23 64 
MIN 24 74 
NAN 44 76 
TOL 12 54 
UMN 10 47 
UTR 42 41 
WCI 76 20 

Note: F, female; M, male; NA, not available/missing; Dx, diagnosis; N, sample size. 
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Appendix C: GIFT (Group ICA) Batch Script 

 
% Enter the values for the variables required for the ICA analysis. 
% Variables are on the left and the values are on the right. 
% Characters must be entered in single quotes 
% 
% After entering the parameters, use icatb_batch_file_run(inputFile);  
 
%% Modality. Options are fMRI and EEG 
modalityType = 'fMRI'; 
 
%% Type of stability analysis 
% Options are 1 and 2. 
% 1 - Regular Group ICA 
% 2 - Group ICA using icasso 
% 3 - Group ICA using Minimum spanning tree (MST) 
which_analysis = 2; 
 
%% ICASSO options. 
% This variable will be used only when which_analysis variable is set to 2. 
icasso_opts.sel_mode = 'randinit';  % Options are 'randinit', 'bootstrap' and 
'both' 
icasso_opts.num_ica_runs = 10; % Number of times ICA will be run 
% Most stable run estimate is based on these settings.  
icasso_opts.min_cluster_size = 8; % Minimum cluster size 
icasso_opts.max_cluster_size = 10; % Max cluster size. Max is the no. of 
components 
 
%% Enter TR in seconds. If TRs vary across subjects, TR must be a row vector 
of length equal to the number of subjects. 
% Import data from text file (imported in separate script). 
 
TR = round1TRs; 
 
%% Group ica type 
% Options are spatial or temporal for fMRI modality. By default, spatial 
% ica is run if not specified. 
group_ica_type = 'spatial'; 
 
%% Parallel info 
% enter mode serial or parallel. If parallel, enter number of 
% sessions/workers to do job in parallel 
parallel_info.mode = 'parallel'; 
parallel_info.num_workers = 12; 
 
%% Group PCA performance settings. Best setting for each option will be 
selected based on variable MAX_AVAILABLE_RAM in icatb_defaults.m.  
% If you have selected option 3 (user specified settings) you need to 
manually set the PCA options. See manual or other 
% templates (icatb/icatb_batch_files/Input_data_subjects_1.m) for more 
information to set PCA options  
% 
% Options are: 
% 1 - Maximize Performance 
% 2 - Less Memory Usage 
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% 3 - User Specified Settings 
perfType = 2; 
 
 
%% Design matrix selection 
% Design matrix (SPM.mat) is used for sorting the components 
% temporally (time courses) during display. Design matrix will not be used 
during the 
% analysis stage except for SEMI-BLIND ICA. 
% options are ('no', 'same_sub_same_sess', 'same_sub_diff_sess', 
'diff_sub_diff_sess') 
% 1. 'no' - means no design matrix. 
% 2. 'same_sub_same_sess' - same design over subjects and sessions 
% 3. 'same_sub_diff_sess' - same design matrix for subjects but different 
% over sessions 
% 4. 'diff_sub_diff_sess' - means one design matrix per subject. 
 
keyword_designMatrix = 'no'; 
 
%% There are three ways to enter the subject data 
% options are 1, 2, 3 or 4 
dataSelectionMethod = 4; 
 
%% Method 4 
% Input data file pattern for data-sets must be in a cell array. The no. of 
rows of cell array correspond to no. of subjects 
% and columns correspond to sessions. In the below example, there are 3 
% subjects and 1 session. If you have multiple sessions, please see 
% Input_data_subjects_2.m file. 
 
 
%% Import the subject list text file. (sitesfilteredrestingID imported in 
separate script) 
%% 
input_data_file_patterns = sitesfilteredrestingID; 
 
 
% Enter no. of dummy scans to exclude from the group ICA analysis. If you 
have no dummy scans leave it as 0. 
dummy_scans = 0; 
 
%%%%%%%% End for Method 4 %%%%%%%%%%%% 
 
%% Enter directory to put results of analysis 
outputDir = '/raid-
06/LS/Data/PGC_CW_Dissertation/ROUND_1_icasso_219vols_results'; 
 
%% Enter Name (Prefix) Of Output Files 
prefix = 'ROUND_1'; 
 
%% Enter location (full file path) of the image file to use as mask 
% or use Default mask which is [] 
maskFile = '/raid-06/LS/Data/PGC_CW_Dissertation/fmriprep_mask_refit.nii'; 
 
%% Group PCA Type. Used for analysis on multiple subjects and sessions when 2 
data reduction steps are used. 
% Options are 'subject specific' and 'grand mean'.  
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%   a. Subject specific - Individual PCA is done on each data-set before 
group 
%   PCA is done. 
%   b. Grand Mean - PCA is done on the mean over all data-sets. Each data-set 
is 
%   projected on to the eigen space of the mean before doing group PCA. 
% 
% NOTE: Grand mean implemented is from FSL Melodic. Make sure that there are 
% equal no. of timepoints between data-sets. 
% 
group_pca_type = 'subject specific'; 
 
%% Back reconstruction type. Options are 1 and 2 
% 1 - Regular 
% 2 - Spatial-temporal Regression  
% 3 - GICA3 
% 4 - GICA 
% 5 - GIG-ICA 
backReconType = 3; 
 
%% Data Pre-processing options 
% 1 - Remove mean per time point 
% 2 - Remove mean per voxel 
% 3 - Intensity normalization 
% 4 - Variance normalization 
preproc_type = 1; 
 
%% Maximum reduction steps you can select is 2 
% You have the option to select one data-reduction or 2 data reduction 
% steps when spatial ica is used. For temporal ica, only one data-reduction 
% is done. 
numReductionSteps = 2; 
 
%% Batch Estimation. If 1 is specified then estimation of  
% the components takes place and the corresponding PC numbers are associated 
% Options are 1 or 0 
doEstimation = 0;  
 
 
%% MDL Estimation options. This variable will be used only if doEstimation is 
set to 1. 
% Options are 'mean', 'median' and 'max' for each reduction step. The length 
of cell is equal to 
% the no. of data reductions used. 
estimation_opts.PC1 = 'max'; 
estimation_opts.PC2 = 'mean'; 
 
%% Number of pc to reduce each subject down to at each reduction step 
% The number of independent components the will be extracted is the same as  
% the number of principal components after the final data reduction step.   
numOfPC1 = 120; 
numOfPC2 = 100; 
 
pca_opts.precision='single'; 
pca_opts.stack_data='no'; 
pca_opts.storage='packed'; 
pcaType='MPOWIT'; 
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%% Scale the Results. Options are 0, 1, 2 
% 0 - Don't scale 
% 1 - Scale to Percent signal change 
% 2 - Scale to Z scores 
scaleType = 2; 
 
 
%% 'Which ICA Algorithm Do You Want To Use'; 
% see icatb_icaAlgorithm for details or type icatb_icaAlgorithm at the 
% command prompt. 
% Note: Use only one subject and one session for Semi-blind ICA. Also specify 
atmost two reference function names 
 
% 1 means infomax, 2 means fastICA, etc. 
algoType = 1; 
 
%% Report generator (fmri and smri only) 
% 0 - Don't display results 
% 1 - HTML 
% 2 - PDF 
display_results = 1; 
 
%% ICA Options - Name by value pairs in a cell array. Options will vary 
depending on the algorithm. See icatb_icaOptions for more details. Some 
options are shown below. 
% Infomax -  {'posact', 'off', 'sphering', 'on', 'bias', 'on', 'extended', 0} 
% FastICA - {'approach', 'symm', 'g', 'tanh', 'stabilization', 'on'} 
 
icaOptions = {'posact', 'off', 'sphering', 'on', 'bias', 'on', 'extended', 
0}; 
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Appendix D: Images of Individual Final Components Grouped by Domain 

 
Figure 21. Brain images depicting each of the final 42 components organized by domain: 
cerebellar (CB), cognitive control (COG), default mode (DMN), language and audition (L/A), 
sensorimotor (SM), subcortical (SC), visual (VIS). Component numbers are listed in the upper 
left of each panel. Images depict binary mask (red) of mean group components used to extract 
time series. 
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Appendix E: Group-level Connectivity States 3-cluster Solution Results 

See Table 34 for graph metrics calculated for each group connectivity state in the 3-

cluster solution and Figure 22 for similarity indices heatmaps of group state cluster centroids. 

Connectivity State #1 depicts a state with moderate within and between network connectivity 

(graph metrics between states #2 and #3), connectivity state #2 depicts high within network 

connectivity (lowest graph metrics), and connectivity state #3 depicts high within and between 

network connectivity (highest graph metrics). 

 
Table 34. Graph metrics of group-level connectivity state centroids (3-cluster solution) 
 GE LE CC CS PL 

CS #1 0.621 0.625 0.64 26.49 0.62 

CS #2 0.550 0.554 0.57 23.56 0.55 

CS #3 0.728 0.730 0.75 30.85 0.72 

Note. GE, global efficiency; LE, local efficiency; CC, clustering coefficient; connectivity strength; PL, 
characteristic path length; CS #, group-level connectivity state. 



 

 

147 

 

 
Figure 22. Heat maps of similarity indices between component pairs for each group-level connectivity state centroid from the 3-
cluster solution. States are displayed in no particular order. Cool colors indicate weak to no similarity for a given component pair, 
whereas warm colors indicate stronger similarity for a given pair. Black lines designate component groupings by broad domain. CS, 
group-level connectivity state; CB, cerebellar; COG, cognitive control; DMN, default mode network; L/A, language/audition; SM, 
sensorimotor; SC, subcortical; VIS, visual.  
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Across the whole scan in the whole sample, there were no significant differences in dwell 

time in group connectivity states, or in transitions between states (Table 35). With either set of 

covariates, there were still no significant group differences in dwell time.  

In the full set of covariates (N=442), there was a main effect of sex such that males spent 

more time in CS #1, less time in CS#2, and had a greater number of transitions than females 

(Table 36). There was also a marginal group difference (uncorrected) in transitions where those 

with PTSD had a greater number of transitions than Controls. 

In the reduced set of covariates (N=776), males spent significantly more time in CS #1 

and CS #3, less time in CS #2, and had a greater number of transitions than females (Table 37). 

Finally, age was negatively related time spent in CS #3 and marginally positively (uncorrected) 

related to time spent in CS #1. 

 
Table 35. Group-level connectivity states (3-cluster solution) t-test comparisons by group over whole 

scan (N=1,049) 
Graph Theory Metric Mean PTSD Mean Control t p-value 95% CI 

CS #1 80.6 79.6 -0.35 0.72 (-6.09, 4.23) 

CS #2 94.9 92.2 -0.72 0.47 (-9.99, 4.61) 

CS #3 25.5 29.1 1.50 0.13 (-1.11, 8.35) 

Transition Tally 14.3 14.1 -0.42 0.69 (-0.98, 0.63) 

Note. CS #, group-level connectivity state; t, t-statistic; p, p-value; CI, confidence interval. p-values 

presented are uncorrected, * indicates those that survived FDR correction (a=0.05). 
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Table 36.  Group-level connectivity states (3-cluster solution) comparisons by group over whole 

scan ANCOVAs with all covariates (N=442) 
 Model Terms B ß t p Model 

R2 

CS #1 (Intercept) 57.64 -0.18 7.32 <0.001* 0.02 

 Age 0.10 0.02 0.45 0.652  

 Sex [Male] 13.03 0.29 2.90 0.004*  

 Dep Dx [Yes] -3.67 -0.08 -0.64 0.524  

 Child Trauma 0.81 0.02 0.34 0.736  

 Group [PTSD] 5.61 0.12 1.18 0.238  

CS #2 (Intercept) 115.39 0.13 10.80 <0.001* 0.01 

 Age 0.13 0.02 0.46 0.643  

 Sex [Male] -15.43 -0.25 -2.53 0.012*  

 Dep Dx [Yes] 7.50 0.12 0.96 0.338  

 Child Trauma -3.76 -0.06 -1.16 0.247  

 Group [PTSD] -3.78 -0.06 -0.59 0.558  

CS #3 (Intercept) 27.97 0.01 4.97 <0.001* 0.01 

 Age -0.23 -0.07 -1.51 0.131  

 Sex [Male] 2.40 0.07 0.75 0.455  

 Dep Dx [Yes] -3.83 -0.12 -0.93 0.353  

 Child Trauma 2.95 0.09 1.73 0.085  

 Group [PTSD] -1.83 -0.06 -0.54 0.589  

Transitions (Intercept) 11.75 -0.23 9.49 <0.001* 0.02 

 Age -0.03 -0.04 -0.85 0.394  

 Sex [Male] 2.12 0.29 3.00 0.003*  

 Dep Dx [Yes] -0.34 -0.05 -0.38 0.704  

 Child Trauma 0.04 0.00 0.10 0.921  

 Group [PTSD] 1.53 0.21 2.06 0.040
#  

Note. ANCOVA, analysis of covariance; B, unstandardized beta; ß, standardized beta; t, t-statistic, p, 

p-value, Dep Dx, depression diagnosis, Child Trauma, z-scored childhood trauma severity score. p-

values presented are uncorrected, * indicates those that survived FDR correction (a=0.05). # p<0.05 

uncorrected. 
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Table 37. Group-level connectivity states (3-cluster solution) comparisons by group over whole scan 

ANCOVAs with reduced covariates (N=779) 
 Model Terms B ß t p Model 

R2 

CS #1 (Intercept) 57.61 -0.21 10.44 <0.001* 0.03 

 Age 0.26 0.08 2.13 0.033
#  

 Sex [Male] 13.58 0.32 4.33 <0.001*  

 Dep Dx [Yes] -0.32 -0.01 -0.08 0.935  

 Group [PTSD] 2.19 0.05 0.67 0.504  

CS #2 (Intercept) 113.31 0.27 14.52 <0.001* 0.04 

 Age 0.01 0.00 0.05 0.957  

 Sex [Male] -27.35 -0.45 -6.16 <0.001*  

 Dep Dx [Yes] -0.12 -0.00 -0.02 0.983  

 Group [PTSD] -0.03 -0.00 -0.01 0.995  

CS #3 (Intercept) 30.08 -0.19 5.90 <0.001* 0.03 

 Age -0.27 -0.08 -2.39 0.017*  

 Sex [Male] 13.77 0.35 4.75 <0.001*  

 Dep Dx [Yes] 0.44 0.01 0.12 0.904  

 Group [PTSD] -2.16 -0.05 -0.71 0.475  

Transitions (Intercept) 11.54 -0.25 13.19 <0.001* 0.03 

 Age 0.01 0.02 0.55 0.585  

 Sex [Male] 2.37 0.35 4.78 <0.001*  

 Dep Dx [Yes] 0.10 0.01 0.16 0.877  

 Group [PTSD] 0.56 0.08 1.07 0.284  

Note. ANCOVA, analysis of covariance; B, unstandardized beta; ß, standardized beta; t, t-statistic, p, 

p-value, Dep Dx, depression diagnosis. p-values presented are uncorrected, * indicates those that 

survived FDR correction (a=0.05). # p<0.05 uncorrected. 

 

LME models were used to compare group differences in dwell time and transitions 

between the first and second half of the scan. FDR correction was applied to correct for multiple 

comparisons (a=0.05). Results across the whole sample indicated a main effect of scan half such 

that participants in the second half of the scan spent less time in CS #1, less time in CS #2, and 

more time in CS#3 (Table 38). There was a marginal interaction of Group*ScanHalf suggesting 

those with PTSD in the 2nd half of the scan spent more time in CS #2.  

Similarly, in the reduced sample with all covariates (N=442), there was a significant 

interaction of Group*ScanHalf suggesting those with PTSD in the 2nd half of the scan spent less 

time in CS #3. There was also a main effect of scan half such that participants in the second half 
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of the scan spent less time in CS #2 and more time in CS #3 (Table 39). In addition, a significant 

main effect of sex showed males spent more time in CS #1, less in CS #2, and had a greater 

number of transitions than females. 

Finally, in the sample with a reduced set of covariates (N=779), there was a marginal 

interaction of Group*ScanHalf those with PTSD in the 2nd half of the scan spent more time in CS 

#2. There was a significant main effect of scan half such that participants in the second half of 

the scan spent more time in CS #1 and CS #3, and less time in CS#2 (Table 40). There was also a 

main effect of sex such that males spent more time in CS #1 and CS #3, less time in CS #2, and 

had greater number of transitions than females. Finally, age was positively related to time spent 

in CS #1 and negatively related to time spent in CS #3.
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Table 38. Scan halves comparison group-level connectivity states (3-cluster solution) by group (LME, whole sample, N=1,049) 

Predictors CS # 1 CS # 2 CS # 3 Transitions 

 Estimate CI p Estimate CI p Estimate CI p Estimate CI p 

(Intercept) 38.37 36.43 – 40.30 <0.001* 48.93 46.37 – 51.49 <0.001* 12.71 11.02 – 14.40 <0.001* 7.08 6.76 – 7.40 <0.001* 

ScanHalf [2nd] 2.91 1.06 – 4.75 0.002* -5.63 -7.43 – -3.83 <0.001* 3.73 2.41 – 5.04 <0.001* -0.04 -0.39 – 0.31 0.817 

Group [PTSD] 1.02 -1.94 – 3.98 0.500 0.12 -3.80 – 4.04 0.954 -1.14 -3.72 – 1.45 0.390 0.03 -0.45 – 0.52 0.889 

ScanHalf [2nd] 
*Group[PTSD] -1.11 -3.93 – 1.71 0.441 2.46 -0.30 – 5.22 0.081 -1.35 -3.36 – 0.66 0.189 0.11 -0.43 – 0.65 0.699 

Note. LME, linear mixed effects model; CS, group-level connectivity state, CI, confidence interval. p-values presented are uncorrected, * indicates those that survived 
FDR correction (a=0.05). 
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Table 39. Scan halves comparison of group-level connectivity states (3-cluster solution) by group (LME, all covariates, N=442) 

Predictors CS # 1 CS # 2 CS # 3 Transitions 

 Estimate CI p Estimate CI p Estimate CI p Estimate CI p 

(Intercept) 27.72 19.86 – 35.58 <0.001* 60.43 49.86 – 71.00 <0.001* 11.85 6.27 – 17.43 <0.001* 5.98 4.74 – 7.22 <0.001* 

Age 0.05 -0.16 – 0.25 0.652 0.07 -0.21 – 0.35 0.643 -0.11 -0.26 – 0.03 0.130 -0.01 -0.05 – 0.02 0.394 

Sex [Male] 6.51 2.11 – 10.92 0.004* -7.72 -13.69 – -
1.74 0.011* 1.20 -1.94 – 4.35 0.454 1.06 0.37 – 1.75 0.003* 

Dep Dx [Yes] -1.84 -7.49 – 3.82 0.524 3.75 -3.91 – 11.41 0.338 -1.91 -5.95 – 2.12 0.353 -0.17 -1.06 – 0.72 0.704 

Child Trauma 0.40 -1.94 – 2.75 0.736 -1.88 -5.06 – 1.30 0.247 1.48 -0.20 – 3.15 0.084 0.02 -0.35 – 0.39 0.921 

ScanHalf [2nd] 2.20 -0.73 – 5.13 0.142 -5.47 -8.46 – -2.47 <0.001* 4.27 2.55 – 5.99 <0.001* -0.21 -0.74 – 0.31 0.425 

Group [PTSD] 2.46 -2.67 – 7.59 0.348 -2.94 -9.63 – 3.74 0.388 0.49 -3.07 – 4.04 0.788 0.44 -0.39 – 1.27 0.298 
ScanHalf [2nd] 
*Group[PTSD] 0.70 -3.62 – 5.02 0.751 2.11 -2.30 – 6.52 0.348 -2.81 -5.34 – -

0.27 0.030# 0.66 -0.12 – 1.43 0.098# 

Note. LME, linear mixed effects model; CS, group-level connectivity state, CI, confidence interval, Dep Dx, depression diagnosis, Child Trauma, z-scored childhood trauma 
severity score. p-values presented are uncorrected, * indicates those that survived FDR correction (a=0.05). # p<0.05 uncorrected. 
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Table 40. Scan halves comparison of group-level connectivity states (3-cluster solution) by group (LME, reduced covariates, N=779) 

Predictors CS # 1 CS # 2 CS # 3 Transitions 

 Estimate CI p Estimate CI p Estimate CI p Estimate CI p 

(Intercept) 26.90 21.39 – 32.42 <0.001* 60.11 52.39 – 67.83 <0.001* 12.99 7.94 – 18.04 <0.001* 5.75 4.87 – 6.63 <0.001* 

Age 0.13 0.01 – 0.25 0.033# 0.00 -0.16 – 0.17 0.957 -0.13 -0.24 – -0.02 0.017* 0.01 -0.01 – 0.02 0.585 

Sex [Male] 6.79 3.71 – 9.86 <0.001* -13.67 -18.02 – -9.33 <0.001* 6.88 4.04 – 9.73 <0.001* 1.19 0.70 – 1.67 <0.001* 

Dep Dx [Yes] -0.16 -3.99 – 3.68 0.935 -0.06 -5.48 – 5.36 0.983 0.22 -3.33 – 3.76 0.904 0.05 -0.56 – 0.66 0.876 

ScanHalf [2nd] 3.81 1.68 – 5.94 <0.001* -6.91 -8.98 – -4.84 <0.001* 4.10 2.62 – 5.58 <0.001* 0.04 -0.35 – 0.43 0.842 

Group [PTSD] 2.20 -1.40 – 5.81 0.231 -1.50 -6.31 – 3.32 0.542 -0.71 -3.89 – 2.47 0.663 0.26 -0.34 – 0.85 0.398 
ScanHalf [2nd] 
*Group[PTSD] -2.22 -5.51 – 1.08 0.187 2.97 -0.24 – 6.17 0.070 -0.75 -3.04 – 1.54 0.522 0.05 -0.56 – 0.65 0.880 

Note. LME, linear mixed effects model; CS, group-level connectivity state, CI, confidence interval, Dep Dx, depression diagnosis. p-values presented are uncorrected, * 
indicates those that survived FDR correction (a=0.05). # p<0.05 uncorrected. 



 

 155 

Brief Summaries by Sample (Group CS 3-cluster Solution) 

 See Table 41 for summary below. For the 3-cluster solution, in the whole sample 

(N=1,049) there were no significant group differences in dwell time or number of transitions 

between states. There was a significant effect of scan half such that both groups spent 

significantly more time in CS#1 and CS#3 and less time in CS#2 in the second half of the scan. 

Similarly, for the reduced sample with all covariates (N=442), there were no significant 

group differences in dwell time, but those with PTSD had marginally (uncorrected) greater 

number of transitions between states than Controls. Results of the LME comparing scan halves, 

showed males, in both the first and second half of the scan, spent more time in CS #1, less time 

in CS#2, and had more transitions between states than females. In addition, there was a 

significant effect of scan half such that subjects in both groups spent less time in CS #2 and more 

time in CS#3 in the second half of the scan. 

 Finally, for the reduced sample with reduced covariates (N=779), there were no 

significant group differences in dwell time or number of transitions between states. There was 

again a significant effect of sex, such that males spent more time in CS#1, less time in CS#2 and 

CS#3 and had more transitions than females. Results of the LME comparing scan halves, showed 

the same effects for males across both scan halves, as well as a main effect of scan half, whereby 

all subjects spent more time in CS #1 and CS#3, and less time in CS#2 in the second half of the 

scan. In addition, there was significant negative relationship between age and dwell time in CS 

#3.  
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Table 41. Summaries of significant results for 3 samples analyzed (Group CS, 3-cluster solution) 

Analysis Whole sample 
(N=1,049) All covariates (N=442) Reduced covariates 

(N=779) 

Group CS (3-cluster)    

Dwell CS #1 

No group differences 

Males more than females 

Dwell CS #2 Males less than females 

Dwell CS #3 No difference 

• Males more than 
females 

• Negative relationship 
with age 

Transitions 

• Males more than 
females 

• *PTSD more than 
Controls 

Males more than females 

Dwell halves CS 
#1 More in second half Males more than females 

• Males more than 
females 

• More in second half 
Dwell halves CS 
#2 Less in second half • Males less than females 

• Less second half 

Dwell halves CS 
#3 More in second half 

• More second half 
• *Interaction: PTSD 

less than Controls in 
second half 

• Males more than 
females 

• More in second half 
• Negative relationship 

with age 

Transitions halves No differences Males more than females 
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