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ABSTRACT 
CROSS -DATASET EVALUATION FOR IOT NETWORK INTRUSION 

DETECTION 
by 

 
Anjum Farah 

 
The University of Wisconsin -Milwaukee, 2020 

Under the Supervision of Professor Rohit J. Kate 
 

 

With the advent of Internet of Things (IOT) technology, the need to ensure the 

security of an IOT network has become important. There are several intrusion 

detection systems (IDS) that are available for analyzing and predicting network 

anomalies and threats. However, it is challenging to evaluate them to realistically 

estimate their performance when deployed. A lot of research has been conducted 

where the training and testing is done using the same simulated dataset. 

However, realistically, a network on which an intrusion detection model is 

deployed will be very different from the network on which it was trained. The aim 

of this research is to perform a cross-dataset evaluation using different machine 

learning models for IDS. This helps ensure that a model that performs well when 

evaluated on one dataset will also perform well when deployed. Two publicly 

available simulation datasets., IOTID20 and Bot-IoT datasets created to capture 

IOT networks for different attacks such as DoS and Scanning were used for 
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training and testing. Machine learning models applied to these datasets were 

evaluated within each dataset followed by cross -dataset evaluation. A significant 

difference was observed between the results obtained using the two datasets. 

Supervised machine learning models were built and evaluated for binary 

classification to classify between normal and anomaly attack instances as well as 

for multiclass classification to also categorize the type of attack on the IoT 

network.  
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1. INTRODUCTION 

1.1. Background 

The Internet of Things or commonly referred to as IoT constitutes to a 

network of several million devices that are interconnected to each other via the 

internet for the purpose of accumulating, sharing, and processing data. In other 

words, any of the smart devices connected over wireless networks can be 

controlled and used for communication. The application of IoT is widely spread into 

several domains ranging from households, commercial, automobiles to industries.  

IoT technology is highly scalable and has a huge economic impact on the society. 

According to research conducted by McKinsey Global institute [1] in 2015, the IoT 

Market is estimated to be valued at $11.1 trillion by 2025 across nine different 

sectors. Having several devices connected over the internet is a great cause of 

concern for security. Not all data that is transferred over the IoT network is 

encrypted and can be vulnerable to different attacks or threats. A lot of research is 

being performed to enhance IoT security to create a reliable and secure network. 

Solutions provided should adhere to the three basic principles of security that is 

confidentiality, integrity, and authenticity. Developing various types of security 

measures such as intrusion detection systems for IoT networks have become quite 
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significant and the idea of applying machine learning to IDS is gaining immense 

popularity. 

Intrusion detection systems refers to a software or a service that can help monitor 

or identify anomalous activity within a network or a system. Several machine 

learning methods are being implemented to predict anomaly detection within IOT 

networks and promised successful results [2]. Intrusion detection systems as seen 

in Figure 1., are categorized mainly into two types – Host-based Intrusion detection 

systems and Network-based intrusion detection systems. Host based IDS is used to 

monitor and secure a single device or host, based on information of the device such 

as system logs. Network based IDS is used to monitor an entire network by 

accessing and analyzing the flows present within the network.  

Figure 1: Types of Intrusion Detection Systems 
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Network based IDS are further classified into Packet based IDS and Flow based IDS. 

Packet based IDS used the network packet information such as payload or header 

information. They are also referred to as Traditional IDS [3]. Flow based IDS on the 

other hand uses network flow characteristics such as data rate and byte 

information to analyze and monitor anomalies within the network. Flow based IDS 

are also called as Network Behavior Analysis [3]. Several supervised or 

unsupervised machine learning models are being used that help classify malicious 

or anomalous activity within the network.  

1.2. Motivations and Objectives 

The challenging aspect of creating a machine learning based IDS for an IOT network 

is the lack of availability of datasets. Many industries are bound to data privacy and 

cannot grant public access to IoT network data. To overcome these issues, several 

researchers have simulated a test bed environment and data is gathered from it. 

This is later used for the purpose of network analysis, network improvement and 

for providing security solutions. 

While several machine learning methods used to classify anomalies in the network 

have been studied in the past, a common trend seen across is the same simulated 

dataset is used for training and testing these models and then very high accuracy is 

reported. In an ideal life scenario, the data that is used to train a model would 
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greatly differ when compared to the data that the model will run on when deployed 

in production. This can adversely impact the performance of the models when 

deployed. The aim of this research is to understand how the performance of the 

model varies when different datasets are separately used to train and test the 

model. We are using two publicly available simulated datasets to validate the 

performance of IDS built using machine learning models. The objective of this 

proposed research is to: 

- Extract and process data with common features needed to perform 

comparison between the two datasets 

- Compare the performance of different supervised machine learning 

methods on individual datasets for binary and multiclass attack classification 

- Perform cross dataset evaluation using the same machine learning methods 

for binary and multiclass attack classification  

- Analyze the challenges and performance results  

The rest of the thesis is structured as follows. In Section 2, we perform literature 

survey to understand the datasets and methods used in previous papers. In 

Section 3, we overview the materials and methods required as part of this 

research. In Section 4, we discuss the results and challenges. In Section 5, we 

present the conclusions and future work.  
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2. LITERATURE SURVEY  

In this section, we will discuss the different types of intrusion detection systems 

created for the purpose of identifying anomalous behavior in networks as well as 

in IoT networks, the different datasets used, and the evaluation metrics adopted. 

Several datasets have been simulated for the use of IDS. One of the datasets that 

has been used for quite long for the purpose of building a predictive IDS is the KDD 

CUP 99 [4] [5] that has both training and test sets available. The dataset consists of 

normal and attack instances. The attacks are Denial of Service (DoS), probe attacks, 

Remote to Local(R2L) and User-to-root(U2R). Obeidat, I. et al. [6]  in their paper 

used the KDD CUP 99 datasets and applied different machine learning models to 

create an IDS. The different machine learning models used were decision trees, 

naïve bayes, multilayer perceptron, random forests, and random tree. The AUC for 

each of these classifiers was reported as 0.969, 0.969, 0.990, 0.996 and 0.953, 

respectively. However, the paper uses accuracy scores to evaluate the different 

classifiers. It does not specify the scores for each category and all the features of 

KDD where taken into consideration.   

A newer version of KDDCUP99 was introduced named the NSL-KDD as the former 

suffered with issues in redundancies in the training and test sets and class 

imbalance in attacks [7] [8]. The NSL KDD consists of different train and test files. 
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Gao X. et al. [9] in his paper performs multi-class classification using an ensemble 

machine learning model and compares accuracy with other machine learning 

methods. The accuracy on the test sets for decision tree is 79.71%, for random 

forests is 76.64%, on is 75.51%, Logistic Regression is 73.58%, SVM is 74.09%, DNN 

is 81.6% and adaboost is 76.02%. Their proposed ensemble machine learning 

method is that of a multitree that and gives the highest accuracy score of 84.23%. 

This paper uses accuracy metric to draw comparisons between the different 

model’s performances. The scores for each classification label are not mentioned. 

DH Deshmukh et al. [10] in their paper further improved the accuracy of the NSL 

KDD dataset by performing preprocessing on the training and test datasets prior to 

applying the machine learning models. Correlation based feature selection and 

data discretization was done on the data followed by which they report an accuracy 

of 88.20% for Naïve Bayes, 93.40% for Hidden Naïve Bayes and the highest of 

94.20% for Naïve Bayes Tree. This paper uses accuracy metric to draw comparisons, 

which does not help in understanding the performance based on the class 

distribution of the datasets. 

A relatively newer dataset named as ISCX-IDS-2012 was created for the purpose of 

network intrusion detection by Ali A. et al. [11] [12]. This dataset consists of wide 

array of different attacks within a network over a range of different network 
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protocols such as HTTP, SMTP, SSH, POP3, IMAP, and FTP. M.J. Vargas et al. [13] 

used Bayesian networks to perform anomaly detection in networks using the ISCX-

IDS-2012 dataset. Their paper reports accuracies across uniflow, bi-flows and 

aggregated flows as 99.95%, 99.92% and 99.92% respectively by generating flow-

based features for the model. Their Bayesian network classifier heavily relies on the 

flow identification features like the source and destination IP address to perform 

prediction. This can cause an issue when the model comes across an attack from a 

different IP address which was not observed in the training set.  A different 

approach was adopted by S.N. Mighan et al. [14] in his paper to perform anomaly 

detection on the UNB ICSX-IDS 2012 dataset. They used deep learning in 

combination with support vector machines to perform binary classification which 

provides an accuracy of 90.2%. The paper does not comment on the class 

imbalance and does not report weighted accuracies for their model. 

A newer dataset named as CICIDS2017 was created that consisted of more common 

attacks such as DoS, DDoS, Brute Force, XSS, SQL Injection, Infiltration, Port scan 

and Botnet [15] [16]. This dataset consists of a total of 80 flow-based features 

generated using CICFlowMeter [17] [18]. S. Ustabay et al. [19] in their paper used 

the CICIDS2017 dataset to create an Intrusion detection system using recursive 

feature elimination by random forest classifier and deep learning model. The flow 
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identifier features were eliminated. The original dataset was reduced by 95% and 

this was split into 80% for training and rest 20% for testing. The model performs 

binary classification and reports an AUC score of 0.96. 

The CICIDS2017 dataset was used for binary classification by Arif Y. et al. [20] to 

create an IDS with a synthetic minority oversampling technique or SMOTE to 

overcome the class imbalance in the dataset. The flow identifier features were 

eliminated, and the dataset was split into 70% training and 30% test data. The 

AdaBoost machine learning algorithm was applied to a total of 25 features selected 

using principal component analysis (PCA) and accuracy of 81.83% was achieved 

with an AUC score of 0.92. 

A more realistic network IDS dataset was created by Nour M. et. al [21] [22] that 

captured a wider range of attacks named UNSW-NB15. The attacks simulated 

within the network are Fuzzers, Analysis, Backdoors, DoS, Exploits, Reconnaissance, 

shellcode, and worms. The dataset has binary labels for attack or normal instance, 

attack category labels as well as further categorized sub-category attack labels with 

a total of 49 features. Mustapha B. et.al [23] implement a RepTree algorithm on 

UNSW-NB15 and NSL-KDD datasets and perform both binary and multiclass 

classification to create an IDS. The authors split the UNSW-NB15 into training and 

test sets and use feature selection followed by which they apply a two-level 
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classifier(RepTree) and report an accuracy of 88.95% on UNSW-NB15 for binary 

classification and 81.28% for multiclass classification. As for NSL-KDD dataset, they 

report an accuracy of 89.95% for binary classification and 83.59% for multi-class 

classification. The paper does not report AUC for the different classes and does not 

take class imbalance into consideration. Moving onto unsupervised machine 

learning methods, Liu X. et. al [24] applied a feed forward neural network learning 

model on the UNSW-NB15 dataset that consists of 10 hidden layers for multiclass 

classification to detect anomalies. They perform 10-fold cross validation on 60% of 

training data, used 10% of data as validation set and achieve an accuracy of 99.5% 

on 30% test data and AUC of 1.0. The model uses all features and does not disregard 

the flow identifiers. 

The above datasets mentioned so far were mainly used for Intrusion detection 

systems within networks and do not contain any smart devices that are present 

within an IoT network. An approach was made to simulate an IOT network in the 

Bot-IoT dataset by Nicholaos K. et al. [25] [26]  by connecting smart devices and 

sensors within the network. Different attacks such as Port Scanning, DoS, 

Distributed DoS, Information theft were performed within the network and the 

instances were labelled accordingly. The authors extracted 10 best features which 

do not contain the flow identifiers from the entire set of 47 features and used three 
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different classifier machine learning methods to train and test the dataset. They 

used support vector machines, recurrent neural networks, and LSTM- recurrent 

neural networks. 5% of the entire data was used for the purpose of training and 

testing. Results were reported for both binary classification and multiclass 

classification. The confusion matrices for binary were reported for all three 

classifiers and confusion matrices for RNN were reported for multiclass 

classification. In addition, the accuracy scores were for each attack category were 

mentioned. The AUC scores for SVM, RNN and LSTM-RNN were 0.976 ,0.99 and 

1.00, respectively.   

Another supervised learning approach with a newer algorithm – Bijective soft set 

technique was applied on the Bot-IoT dataset to classify attacks by Muhammad S. 

et. al [27]. The authors used Bayes Net, Naïve Bayes, C4.5 decision trees, Random 

Forest and Random Tree fed to the bijective soft set technique which uses different 

machine learning models to train and test. The ML method that presented the best 

results is returned by the bijective soft set technique. Three classifiers namely DT, 

RF and Random Trees reported an accuracy of 99.99% while Bayes Net and Naïve 

Bayes reported an accuracy of 99.77% and 99.79%, respectively for binary 

classification. The paper does not mention weighted accuracies or area under curve 

scoring metrics for the classification performed.  
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Another IOT network intrusion detection dataset (IoTID) was publicly made 

available by the HCR Lab [28] . This dataset simulates an IOT network by using smart 

devices. The dataset consists of different attacks and normal instances in the form 

of raw network packet files. Liu Z. et. al [29] used the IoTID dataset [28] to perform 

anomaly detection by using various machine learning methods. The packet data 

was extracted into CSV files and split into 75% for training data and 25% for testing 

data. The results for binary classification for Random Forest was the highest with 

an accuracy of 100%, followed by KNN with an accuracy of 99%. XGBoost algorithm 

gave an accuracy of 97%, logistic regression was 86% and the poorest performance 

was that of SVM with an accuracy of 79%. The confusion matrices for each method 

were reported to better evaluate the result. All the machine learning models rely 

only on the basic flow identifiers to perform binary classification. The weighted 

accuracies were not reported for any models to understand the class imbalance. 

The IoTID [28] dataset paved way for the creation of another Intrusion detection 

dataset with more features., IoTID20 [30] [31]for the purpose of anomaly detection 

in IoT networks. The authors of the IoTID20 [30] [31] dataset also performed binary 

as well as multiclass classification on the dataset and reported the accuracy scores 

for different classifier methods by using cross validation. The F-Scores were also 

reported for binary classification and category classification. The decision tree 
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classifier gave the highest accuracy of 88%, followed by ensemble classifier with an 

accuracy of 87%. The accuracies for Random Forest, Naïve Bayes, Linear 

Discriminant Analysis, Logistic Regression and SVM are 84%, 73%, 70%, 40% and 

40%, respectively. The paper specifies the F1-score for each attack category class; 

however, it does not report AUC scores or weighted accuracies and takes the flow 

identifiers into account for features. The IDS created will fail to provide better 

results when deployed in production. 

The latest dataset for an IoT network is the Ton-IOT Telemetry dataset [32] [33] 

that provides heterogenous data at different layers within a IoT network, i.e., edge 

layer, fog layer and cloud layer. The Ton-IOT telemetry dataset makes use of 

different sensors and smart devices, and a wide range of attacks were simulated. 

The data collected individually for each of these devices were combined to form a 

larger dataset and different machine learning models were applied to the individual 

datasets as well as the combined IIOT dataset to perform binary and multiclass 

classification. 80% of the data was used for training and 20% was used for testing, 

followed by which a 4-fold cross validation was performed on the training data. The 

accuracy scores for each of the models and devices were mentioned for both binary 

and multiclass classification. CART decision trees performed the best with an 

accuracy of 88% for binary and 77% for multiclass classification. The paper does not 
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mention weighted accuracy or AUC to better evaluate the class distribution within 

the dataset. The datasets and the highest scoring machine learning model and the 

performance metrics reported are summarized in the Table 1 below. 

Dataset Paper Classification 
Highest 

Scoring ML 
Model 

Performance 
Metric 

Value 

KDD-CUP 99 Obeidat, I. et al. [6] Binary 
Random 
forests 

AUC 0.996 

Accuracy 0.99 

NSL-KDD 

Gao X. et al. [9] Multi-class 
Ensemble 

(Multitree) 
Accuracy 0.8423 

DH Deshmukh et al. [10] Binary 

Feature 
selection + 

data 
discretization 

+ Naïve 
Bayes Tree 

Accuracy 0.942 

Mustapha B. et.al [23] 
Binary Two-level 

RepTree 
Accuracy 

0.8995 

Multi-class 0.8359 

ISCX-IDS-
2012 

M.J. Vargas et al. [13] Binary 
Bayesian 
Networks 

Accuracy 0.9995 

S.N. Mighan et al. [14] Binary SVM Accuracy 0.9020 

CICIDS2017 

S. Ustabay et al. [19] Binary 

Recursive 
feature 

elimination 
by random 

forest 
classifier and 

deep 
learning 
model 

AUC 0.96 

Arif Y. et al. [20] Binary 
PCA+ SMOTE 
+ AdaBoost 

Accuracy 0.8183 

AUC 0.92 

UNSW-
NB15 

Mustapha B. et.al [23] 
Binary Two-level 

RepTree 
Accuracy 

0.8895 

Multi-class 0.8128 

Liu X. et. al [22]  Binary 
Neural 

Network 
AUC 1 

Bot-IoT Nicholaos K. et al. [23] [24] 
Binary 

LSTM-RNN AUC 1 
Multi-class 
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Muhammad S. et. al [25] Binary 

Bijective soft 
set - Decision 

trees, 
Random 

Forest, and 
Random Tree 

Accuracy 0.9999 

IOTID Liu Z. et. al [27] binary 
Random 
Forest 

Accuracy 1 

IoTID20 
I. Ullah and Q. H. Mahmoud 

[28] 

Binary 

Decision 
Tree and 
Random 
Forest 

F-Score 1 

Category Classification 
Decision 

Tree 
F-Score 1 

Sub-category 
classification 

Decision 
Tree 

Accuracy 0.87 

Ton-IOT A. Alsaedi. Et. al [30] [31] 
Binary 

CART Accuracy 
0.88 

Multi-class 0.77 

 

Table 1: Literature Review Summary 

As it can be seen from the above table, the accuracy reported for several models 

and datasets is extremely high. Several models take the basic flow identifiers like 

the IP addresses and timestamps into consideration while developing the IDS. Using 

such features to develop an IDS lead to achieving 100% accuracy for the models. 

Alternatively, the training and testing sets contain the same simulated attacks for 

a given dataset, which can present misleading performance metrics, since attacks 

simulated in a test environment can differ to ones the IDS will face when deployed.  

This gives rise to the need of cross-dataset evaluation to analyze the performance 

of a model. Several other domains have adopted the idea of evaluating the 

performance of machine-learning methods using a cross-dataset. In the field of 
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neuroscience, M. Lorbach et. al [34] performed cross-dataset evaluation to 

recognize social behavior in rats. The authors use an interaction classifier and 

report the F1-score to evaluate their model. The f1-score when trained and tested 

with RatSI and Validation datasets respectively is 0.54 and when reversed gives an 

f1-score of 0.72. Similarly, Y.Chen et.al [35] perform cross-dataset evaluation for 

the purpose of activity recognition in humans using transfer learning. The accuracy 

is reported for after cross-evaluating with four different datasets.  

F. Sha et.al [36] perform cross dataset evaluation for the purpose of answering 

visual questions. The models are trained using one dataset and evaluated using 

other datasets. Binary classification is performed using deep learning. The accuracy 

results reported within the dataset versus the results evaluated using other 

datasets report great differences. For instance, the VQA dataset reports an 

accuracy of 65.7% within the dataset and when evaluated with Visual7W dataset 

reports an accuracy of 53.4%.  

Cross dataset evaluation thereby helps in understanding if an IDS created using a 

single dataset is likely to perform well when deployed. 
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3. MATERIALS AND METHODS 

In this section, we describe the datasets used, preprocessing performed, features 

used, and the machine learning methods applied to the dataset. In addition, we 

also mention the classification performed and metrics used to evaluate the 

classifiers. 

3.1. Terminology  

3.1.1. Different types of attacks 

An IoT network is vulnerable to different types of attacks and is prone to several 

weaknesses. Hardware, software, and network challenge can hinder the 

performance of an IoT network, additionally devices present within a smart home 

are vulnerable to Distributed DoS, DoS, malware, and impersonation attacks [37]. 

As part of this research, we are considering two of the attacks that are commonly 

observed in an IoT network and are described below 

- Denial of Service (DoS):  A denial of service or DoS attack occurs when 

legitimate users are unable to access resources, such as network, 

information system or devices due to the presence of a malicious code.  This 

attack is established by inundating the network with traffic or flooding the 
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information systems with requests so that it crashes or fails to respond to 

the legitimate user.  

- Scanning: Scanning attacks occur when attackers can scan devices within a 

given network to gather information either by scanning ports, IP address or 

OS and version. These attacks help the adversaries to obtain personal 

information that can be later used to launch other attacks. 

3.1.2. Classification 

Classification refers to the task of assigning labels to examples with the help of 

machine learning algorithms. The value to be predicted is called as class label or 

target. It can also be viewed as a predictive modeling problem that can help 

distinguish one instance from another using the input variables and applying a 

function to obtain the target class. 

- Binary classification: Binary classification is the task of classifying the output 

variables into two target variables or classes. The IoT network instances are 

mainly classified into two types. 

• Normal - This represents no attack on the network 

• Anomaly – This represents an attack on the network 
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- Multiclass or Category classification: Multiclass classification is the task of 

mapping machine learning algorithms on input variables to classify more 

than 2 targets variables or classes. The class labels for the attacks on the IoT 

network can be classified as follows. 

• Normal – This indicates no attack on the network 

• Scan – This indicates the type of attack on the IoT network is a scanning 

attack. 

• DoS – This indicates the attack on the IoT network is Denial of Service 

3.2. CICFlowmeter 

CICFlowmeter is a network traffic generator and analyzer software. It is used to 

understand flows present in the network packets. It can determine bi-directional 

flows based on the protocols – TCP and UDP. In addition, it generates a CSV file 

from raw network packet (pcap) files with several time-based features that can be 

used for network analysis. It is predominantly used for intrusion detection systems 

[17] [38] [18]. 

3.3. Datasets  

To perform cross-dataset evaluation, this research uses two publicly available IoT 

network intrusion detection datasets i.e., Bot-IoT dataset [17] and the IoTID20[20] 

datasets. Both these datasets simulated the attacks caused on an IOT network.  
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3.3.1. Bot-IoT Dataset 

The Bot-IoT [25] [26] dataset set up a testbed with simulated IoT devices, normal 

and attacking virtual machines and network devices. The Node-red tool [39] was 

used to simulate 5 IoT devices i.e., the weather station, smart fridge, motion 

activated lights, smart garage door, and a smart thermostat. In addition, a firewall 

and two network interface cards were configured into the testbed environment. 

The IoT simulated devices were connected to the Ubuntu server. The normal traffic 

data was generated using Ostinato network monitoring and testing tool [40] that 

was used to extract data from the target machines which were ubuntu mobile, 

windows machines  and ubuntu server. Kali Linux machines were used to simulate 

the attacks. The attacks simulated were DDoS, DoS, Scanning and information theft. 

The data collected was then labelled based on the hacking machines IP addresses 

and features were extracted. [25] [26]. The testbed architecture is presented in the 

Figure 2 below.  
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Figure 2: Bot-IoT Testbed Architecture [25] [26] 

The dataset consisted of 69.3 GB of raw network packet files. The formatted csv 

files extracted amounted to 16.7GB. A smaller set was extracted for the purpose of 

training and testing that contains over 3 million records. The scanning attacks were 

further classified into OS scan and Port Scan. DDoS and DoS attacks were 

categorized further based on the protocols i.e., TCP, HTTP and UDP. The scanning 

attacks were simulated using the Nmap and Hping3 software and the DoS attacks 

were simulated using the Hping3 tool. 

3.3.2. IOTID20 Dataset 

The IoTID20 [30] used the raw network packet files created by the IoTID [28] 

dataset. For the purpose of creating an IoT network, two smart home devices – SKT 
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NUGU(NU 100) which is an AI-based speaker and EZVIZ Wi-Fi Camera (C2C Mini O 

Plus 1080P) along with different smart phones and laptops were connected to the 

same wireless network using a smart home Wi-Fi router. The network packet files 

were then captured using the wireless adaptor’s monitor mode. Attacks like DoS, 

Scanning and Man in the middle were simulated using Nmap tools. The attacks 

packets for Mirai botnet were generated separately using a laptop and were later 

changed to simulate its origination from the IoT devices [28]. The testbed 

architecture is presented in the Figure 3 below.  

 

Figure 3 : IoTID20 testbed environment [31] [28] 
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The IoTID20 dataset used these packet files and created CSV files using the 

CICFlowMeter [18] [17]. The CSV files generated were then labelled accordingly for 

anomaly and types of attacks based on the IP addresses. The distribution of the 

dataset is mentioned in Table 2 and Table 3 below. 

Binary Label Instances 

Anomaly 585710 

Normal 40073 

 

Table 2 : IoTID20 Binary Data Distribution 

 

Category Instances 

DoS 59391 

Mirai 415677 

MITM 35377 

Scan 75265 

PortOS 53073 

HostPort 22192 

 

Table 3 : IoTID20 Anomaly Data Distribution 
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3.4. Machine Learning Methods  

Different machine learning based classifiers are used for the purpose of predicting 

binary and multiclass labels. The following machine learning methods described 

have been used as part of this research  

3.4.1. Naïve Bayes 

The Naïve Bayes classifier uses the Bayes theorem to perform classification. This 

model assumes the conditional independence of the features given the target. X 

represents the features of the dataset and Y represent the target class or variable. 

The likelihood of an instance belonging to a certain class can be determined using 

the formula below. This can be extended to perform both binary and multiclass 

classification.  

𝑃(𝑋1 … 𝑋𝑛|𝑌) =  ∏ 𝑃(𝑋𝑖|𝑌)

𝑛

𝑖=1

 

3.4.2. Logistic Regression 

Logistic Regression machine method models on “sigmoid function” or “logistic 

function” to perform predictive analysis. It helps predict the likelihood of a target 

occurring for a given instance. [41].  
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3.4.3. KNN  

K-Nearest Neighbor or k-NN machine learning method is also called as a lazy 

learning algorithm. It is used for the purpose of predictive analysis and performs 

classification of a given instance based on the Euclidean distance from its “k” 

nearest neighbors. It then labels the instances based on the majority class value of 

its neighbors. 

3.4.4. Decision Trees 

A decision tree machine learning model is a simple and widely used supervised 

machine learning method that can perform both binary and multiclass 

classification. This method models on decision trees where the internal nodes are 

features. The path can be viewed as a classification rule and leaf node represents 

label or class. 

3.4.5. Ensemble  

Ensembles makes use of different machine learning methods to perform predictive 

analysis to classify a given task at hand. Random Forest is an ensemble of decision 

trees that can be used to provide better performance and results as they are less 

prone to overfitting when compared to decision trees.  
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3.5. Evaluation Methods 

It is crucial to use the right metric to evaluate a machine learning model’s 

performance. If the correct evaluation measure is not used, the machine learning 

model may perform poorly when it is deployed in real life. Some standard 

evaluation metrics are described below. 

- Confusion Matrix: A confusion matrix is a N x N table that can help determine 

the performance of a machine learning model. From the confusion matrix 

one can infer the following 

• True Positive (TP): The actual value is true, and model predicts true. 

• False Positive (FP): This is also called as Type I Error; the actual value is 

false, and the model predicts true. 

• True Negative (TN): The actual value is false, and model predicts false 

• False Negative (FN): This is also called as Type II Error, the actual value 

is true, and model predicts false. 

- ROC-AUC: ROC stands for Receiver Operating Characteristics. ROC is a curve 

mapped with model’s sensitivity versus the model’s false positive rate. These 

values can be calculated using the below formulae.  
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• Sensitivity (True Positive Rate):  This is the fraction of positive 

instances that the model classifies as positive correctly. Sensitivity can 

be calculated as 

𝑇𝑃𝑅 =
𝑇𝑃

𝐹𝑁 + 𝑇𝑃
 

• Specificity (True Negative Rate): This is the fraction of negative 

instances that the model classifies as negative correctly. Specificity can 

be calculated as 

𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

• False positive Rate: This is the fraction of negative instances that the 

model misclassifies as positive. FPR can also be viewed as 1-specificity 

and can be calculated as 

𝐹𝑃𝑅 =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
 

ROC curve of a model is not affected by imbalanced classes. AUC or Area 

under the curve is a single value that calculates the area under the ROC 

curve. AUC values range from 0 to 1.0 which can help determine the 

performance of the model. The higher AUC value, the better the model 

performs. So the AUC of 1.0 indicates that the models classifies all the 
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instances correctly. AUC of 0.5 can be obtained using the baseline of random 

classification.  

3.6. Methodology 

In this section, the methods used for data extraction, labelling and data cleaning 

are mentioned followed by the features and testbed used to perform machine 

learning experiments. 

3.6.1. Data Preparation 

The Bot-IoT dataset and the IoTID20 dataset can be accessed publicly from [25] and 

[31] respectively. The training and testing files presented in the Bot-IoT dataset 

cannot be directly used for cross-dataset evaluation, as the features are not in sync 

with the IOTID20 dataset. For this research, only scanning and DoS attack instances 

are considered, since the simulation of the Mirai Botnet or DDoS attacks vary highly 

between the two datasets. The process of extracting newer features from the raw 

packet files and labelling the records is described in detail. 

3.6.1.1 Extracting data 

The Bot-IoT dataset [26] [25] consisted of 69.9 GB of raw network packet files. We 

employed the scheme used by IoTID20[20] to extract similar features. The raw 

network packet files were downloaded. As this research intends to classify between 
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DoS, Scanning and normal features only, the respective raw packet files were used 

and flow-based features were extracted using the CICFlowmeter [38] [17] [18]. A 

total of 83 features were extracted.  

3.6.1.2. Labelling 

The generated CSV file from above was then labelled using the labelled CSV files 

presented in the Bot-IoT dataset [25] [26]. The files were loaded to a MySQL table 

and the flow identifiers such as the source ip address , destination ip address , port 

numbers and protocols were used to add binary labels and category attack labels 

which are DoS, Scan and Normal. 

3.6.1.3. Data Cleaning 

The IoTID20 and the Bot-IoT files were checked for duplicates and the duplicated 

instances were deleted. A total of 229029 instances were deleted from the IotID20 

dataset. The data extracted from the Bot-IoT dataset consisted of huge files, to be 

able to draw better comparisons, the instances for DoS, Scan and normal were 

extracted using python scripts.  The table below mentions the number of instances 

used for each dataset. The subcategory column within the IoTID20 dataset was also 

removed. The data distribution for these two datasets is mentioned below in  

Table 4 and Table 5 for bot-IoT dataset and Table 6 and Table 7 for IoTID20. 
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Bot-IoT dataset 

Binary Label Instances 

Anomaly 77573 

Normal 4938 

 

Table 4 : Bot-IoT Binary Data 

Bot-IoT Anomaly Distribution 

Category Instances 

DoS 61164 

Scan 16409 

 

Table 5 : Bot-IoT Anomaly Data 

 
IoTID20 dataset 

Binary Label Instances 

Anomaly 77157 

Normal 38598 

 

Table 6 : IoTID20 Binary Data 
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IoTID20 Anomaly Distribution 

Category Instances 

DoS 59390 

Scan 17767 

 

Table 7: IoTID20 Anomaly Data 

 

3.6.2. Features  

The time and flow based features extracted using CICFlowmeter [38] [17] [18] and 

the description for each of these features is mentioned in Table 8 below. 

Feature Name Feature Description 

Flow ID Flow Identifier 

Src IP Source IP Address 

Src Port Source Port Number 

Dst IP Destination IP Address 

Dst Port Destination Port Number 

Protocol Internet Protocol used 

Timestamp Timestamp of the packet 

Flow duration Duration of the flow in Microsecond 

total Fwd Packet Total packets in the forward direction 

total Bwd packets Total packets in the backward direction 

total Length of Fwd Packet Total size of packet in forward direction 

total Length of Bwd Packet Total size of packet in backward direction 

Fwd Packet Length Min  Minimum size of packet in forward direction 

Fwd Packet Length Max  Maximum size of packet in forward direction 

Fwd Packet Length Mean Mean size of packet in forward direction 

Fwd Packet Length Std Standard deviation size of packet in forward direction 

Bwd Packet Length Min Minimum size of packet in backward direction 

Bwd Packet Length Max Maximum size of packet in backward direction 

Bwd Packet Length Mean Mean size of packet in backward direction 

Bwd Packet Length Std Standard deviation size of packet in backward direction 
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Flow Bytes/s Number of flow bytes per second 

Flow Packets/s Number of flow packets per second  

Flow IAT Mean Mean time between two packets sent in the flow 

Flow IAT Std Standard deviation time between two packets sent in the flow 

Flow IAT Max Maximum time between two packets sent in the flow 

Flow IAT Min Minimum time between two packets sent in the flow 

Fwd IAT Min Minimum time between two packets sent in the forward direction 

Fwd IAT Max Maximum time between two packets sent in the forward direction 

Fwd IAT Mean Mean time between two packets sent in the forward direction 

Fwd IAT Std Standard deviation time between two packets sent in the forward direction 

Fwd IAT Total    Total time between two packets sent in the forward direction 

Bwd IAT Min Minimum time between two packets sent in the backward direction 

Bwd IAT Max Maximum time between two packets sent in the backward direction 

Bwd IAT Mean Mean time between two packets sent in the backward direction 

Bwd IAT Std Standard deviation time between two packets sent in the backward direction 

Bwd IAT Total Total time between two packets sent in the backward direction 

Fwd PSH flags 
Number of times the PSH flag was set in packets travelling in the forward direction (0 for 
UDP) 

Bwd PSH Flags 
Number of times the PSH flag was set in packets travelling in the backward direction (0 for 
UDP) 

Fwd URG Flags 
Number of times the URG flag was set in packets travelling in the forward direction (0 for 
UDP) 

Bwd URG Flags 
Number of times the URG flag was set in packets travelling in the backward direction (0 for 
UDP) 

Fwd Header Length Total bytes used for headers in the forward direction 

Bwd Header Length Total bytes used for headers in the backward direction 

FWD Packets/s Number of forward packets per second 

Bwd Packets/s Number of backward packets per second 

Packet Length Min  Minimum length of a packet 

Packet Length Max Maximum length of a packet 

Packet Length Mean  Mean length of a packet 

Packet Length Std Standard deviation length of a packet 

Packet Length Variance   Variance length of a packet 

FIN Flag Count  Number of packets with FIN 

SYN Flag Count  Number of packets with SYN 

RST Flag Count  Number of packets with RST 

PSH Flag Count  Number of packets with PUSH 

ACK Flag Count  Number of packets with ACK 

URG Flag Count  Number of packets with URG 

CWR Flag Count  Number of packets with CWR 

ECE Flag Count  Number of packets with ECE 

down/Up Ratio Download and upload ratio 

Average Packet Size  Average size of packet 

Fwd Segment Size Avg  Average size observed in the forward direction 

Bwd Segment Size Avg  Average number of bytes bulk rate in the backward direction 

Fwd Bytes/Bulk Avg Average number of bytes bulk rate in the forward direction 

Fwd Packet/Bulk Avg Average number of packets bulk rate in the forward direction 

Fwd Bulk Rate Avg  Average number of bulk rate in the forward direction 

Bwd Bytes/Bulk Avg Average number of bytes bulk rate in the backward direction 

Bwd Packet/Bulk Avg  Average number of packets bulk rate in the backward direction 

Bwd Bulk Rate Avg Average number of bulk rate in the backward direction 

Subflow Fwd Packets The average number of packets in a sub flow in the forward direction 
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Subflow Fwd Bytes The average number of bytes in a sub flow in the forward direction 

Subflow Bwd Packets The average number of packets in a sub flow in the backward direction 

Subflow Bwd Bytes The average number of bytes in a sub flow in the backward direction 

Fwd Init Win bytes The total number of bytes sent in initial window in the forward direction 

Bwd Init Win bytes The total number of bytes sent in initial window in the backward direction 

Fwd Act Data Pkts Count of packets with at least 1 byte of TCP data payload in the forward direction 

Fwd Seg Size Min Minimum segment size observed in the forward direction 

Active Min Minimum time a flow was active before becoming idle 

Active Mean Mean time a flow was active before becoming idle 

Active Max Maximum time a flow was active before becoming idle 

Active Std Standard deviation time a flow was active before becoming idle 

Idle Min Minimum time a flow was idle before becoming active 

Idle Mean Mean time a flow was idle before becoming active 

Idle Max Maximum time a flow was idle before becoming active 

Idle Std Standard deviation time a flow was idle before becoming active 

Label Anomaly or Normal 

Cat Category of attack or Normal 

 

Table 8 : Feature Description 

3.6.2.1 Feature Removal 

To ensure that the model performs well, it was important to delete the flow 

identifiers of a network packet like the source and destination IP address, the port 

numbers, and the timestamp. If the model is trained using these features, it will fail 

to generalize well when deployed as attackers can use different IP addresses and 

times to launch attacks on the network. In addition to this, 10 more features were 

deleted as they consisted of a single value after the data was extracted using the 

CICFlowmeter [38] [17] [18] across the dataset and would not add any value to the 

machine learning models. The features deleted are mentioned in the Table 9 below. 

A total of 67 features were then used to train the models. 
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Features Deleted 
Flow ID, Src IP, Dst IP, Src Port, Timestamp ,Dst Port, Fwd PSH Flags, Fwd URG Flags, Fwd 
Byts/b Avg, Fwd Pkts/b Avg, Fwd Blk Rate Avg, Bwd Byts/b Avg, Bwd Pkts/b Avg, Bwd Blk 

Rate Avg,  Init Fwd Win Byts, Fwd Seg Size Min 

 

Table 9 : Deleted Features 
 

3.6.2.2. Feature Ranking and Distribution 

Information gain is a measure that helps determine how informative a feature is 

achieved by decreasing the uncertainty or entropy of the dataset [42]. Higher 

information gain has lower entropy. In order to understand how the features are 

distributed and the information gain for features, we used WEKA [43] software to 

calculate the information gain for each feature using the ranker method.  The Table 

10 below mention the top 10 features for Bot-IoT dataset and IoTID20 dataset. 

Bot-IoT Dataset IoTID20 Dataset 

Pkt Size Avg Flow Duration 

Pkt Len Mean Flow Pkts/s 

Tot Len Bwd Pkts Idle Mean 

Subflow Bwd Byts Idle Max 

Bwd Pkt Len Max Flow IAT Max 

Bwd Seg Size Avg Flow IAT Mean 

Bwd Pkt Len Mean Init Bwd Win Byts 

Pkt Len Max Bwd Pkts/s 

Flow Byts/s Bwd IAT Tot 

Flow Duration Idle Min 

Table 10 : Important features using Information Gain 
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To better understand the how features are distributed across both models, the bell 

curve for both the datasets is visualized using the RapidMiner Studio [44]. 

 

Figure 4 : Flow Duration distribution for Bot-IoT dataset 

 

Figure 5 : Flow Duration distribution for IoTID20 dataset 
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Figure 6 : Packet Size Average distribution for Bot-IoT dataset 

 
Figure 7 : Packet Size Average for IoTID20 dataset 

As it can be inferred from the above images the features are not evenly distributed 

across both the datasets. The distribution varies because of the different testbed 

used for data simulation. A given network can have packets with varying length as 

well as the flow duration for each packet can vary differently. An effective IDS 

should be able to reflect these different distributions. 
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3.6.2.3. Scaling 

Scaling is the technique ensures that different values present for a given feature 

can be fit into a common range so that the outliers or larger values present for that 

feature do not dominate the performance of a model. Different techniques are 

present to scale the data like standard scaling, min-max scaling, and robust scaling. 

Robust scaling is obtained by subtracting the median of the values from the value 

itself divided by the interquartile range of the values present in the feature [45]. 

The formula to perform robust scaling for values of a feature is described below. 

𝑆𝑐𝑎𝑙𝑒𝑑𝑣𝑎𝑙𝑢𝑒 =
𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑣𝑎𝑙𝑢𝑒 − 𝑚𝑒𝑑𝑖𝑎𝑛𝑎𝑙𝑙𝑣𝑎𝑙𝑢𝑒𝑠

𝐼𝑛𝑡𝑒𝑟𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒𝑟𝑎𝑛𝑔𝑒𝑎𝑙𝑙𝑣𝑎𝑙𝑢𝑒𝑠
 

Since the data was not normally distributed across different features, a robust 

scaling was performed to help enhance the performance of machine learning 

algorithms. Robust scaling was opted as it is less prone to being misled by the 

outliers when compared to standard scaling or min-max scaling. [46] 

3.6.3. Testbed and Experimental Setup  

For all experimental results presented in this section, we used 64-bit Windows 8 

operating system on a PC with 1.80 GHz Intel core i7 CPU, 4MB cache and 8GB of 

RAM. The programming language used was python and data formatting were done 



 

 

37 

 

using Pandas [47] which is a data analysis library. The machine learning models 

were implemented using the Scikit-Learn library [46].  
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4. RESULTS AND DISCUSSIONS 

In this section, we discuss the results for different supervised machine learning 

models. Section 4.1 reports the model’s performance using the same dataset by 

splitting the data into 80% training and 20% testing. Section 4.2 reports the model’s 

performance with cross-dataset. 

4.1. Comparison of results within same datasets 

4.1.1. Binary Classification 

The AUC weighted average was calculated for each model on the Bot-IoT dataset 

and the values are plotted in the Figure 8 .  

A 10-fold cross evaluation was performed on the training data for parameter 

selection for the IoTID20 binary classification. The parameters selected for the 

decision tree classifier involve increasing the minimum number of samples needed 

to split a node from 2 to 8, increasing  the minimum number of samples needed at 

the leaf from 1 to 10 and the maximum features to look when splitting a node is 

the square root of all features. This model was used for both binary and category 

classification. The parameters chosen for k-nearest neighbor method was setting 

the k value to 31, algorithm used to compute the nearest neighbors was ball tree 

and the weights function was set to distance (i.e., neighbors closer to the instance 
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to be classified have higher influence compared to the neighbors far away) [46]. 

The ensemble used was a bagging classifier which used decision trees as the base 

estimator and the number of estimators used were 150. This model was used for 

both the datasets. As for the Bot-IoT dataset, all the other models performed very 

well with the default parameters in the scikit-learn library [46].  

The AUC weighted average for IoTID20 dataset and is presented in the Figure 9. 

 

Figure 8: Weighted AUC scores for Bot-IoT Binary Classification 
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Figure 9: Weighted AUC scores for IoTID20 Binary Classification 

As observed from the above two figures, the models perform very well and can 

detect anomalies within the dataset. The scores reported for decision tree, k-NN 

and ensemble are above 0.95 for both the datasets. 

4.1.2.  Category Classification 

A 10-fold cross evaluation was performed on the training data for parameter 

selection for the Bot-IoT category classification. The parameters selected for the 

decision tree classifier involve increasing the minimum number of samples needed 

to split a node from 2 to 8, increasing  the minimum number of samples needed at 

the leaf from 1 to 50 and the maximum features to look when splitting a node is 

the square root of all features. The parameters chosen for k-nearest neighbor 
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method was setting the k value to 11. As for the IoTID20 dataset, all the other 

models performed very well with the default parameters in the scikit-learn library 

[46].  

 

The AUC value for each attack class category and the AUC weighted average for 

each model is plotted for both the Bot-IoT and IoTID20 datasets and presented in 

the figures below. 

 

Figure 10 : AUC value for each category for Bot-IoT  
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Figure 11:  AUC for each category class for IoTID20  

As observed from the above two figures, the models also perform and can 

categorize the different attacks and normal instances for both the datasets. The 

scores reported for decision tree, k-NN and ensemble are above 0.95 for both the 

datasets. 

4.2 Cross dataset evaluation results 

The above models where then tested with cross-dataset for both binary and 

category classification and the results are described below. 
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4.2.1. Binary Classification 

Binary classification was performed using the same models and the AUC weighted 

average was calculated with cross-datasets.  

The weighted AUC for binary classification with IoTID20 as train set and Bot-IoT as 

test set and vice-versa are plotted in the below figures, Figure 12 and Figure 13 

respectively. 

 

 
 

Figure 12 : Weighted AUC for Cross-dataset Binary Classification with IoTID20 as training set and Bot-IoT as test set 
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Figure 13 :Weighted AUC for Cross-dataset Binary Classification with Bot-IoT as training set and IoTID20 as test set 

 

4.2.2.  Category Classification 
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Figure 14: AUC for Cross-dataset Category Classification with training set as IoTID20 and test set as Bot-IoT dataset 

As it can be inferred from the above figure, the performance of the model is poor 

compared to when the testing is performed within dataset. 
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Figure 15:  AUC for Cross-dataset Category Classification with training set as Bot-IoT and test set as IoTID20 dataset 

As it can be inferred from the above figure, the performance of the model is very 

poor for normal instances as well as attack categories compared to when the 

testing is performed within dataset. 
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that can be easily learnt by decision trees, but it is not easy for probabilistic models 

to learn. Similarly, binary and category classification on the IoTID20 dataset 

achieves high scores for all methods except for Naïve Bayes. When the models are 

trained with the IoTID20 dataset and tested with the Bot-IoT dataset, they perform 

very poorly and cannot identify the normal instances. This is because normal data 

generated by the dataset was done for using the network adaptor’s monitor mode. 

This mode is limited to a single wireless channel and is prone to corrupted packets 

as error detection is not performed, whereas the normal data in the Bot-IoT data 

was generated using the Ostinato tool [40]. This tool can generate traffic via 

multiple streams and capture traffic for different protocols and test errors. Hence 

the IoTID20 was unable to generalize well for Bot-IoT. However, the models can 

detect anomalies very well. An IDS built with these models would cause issues and 

not allow normal or safe traffic to pass within the IoT network. In contrast, all the 

models except for Naïve Bayes trained with the Bot-IoT dataset and tested with the 

IoTID20 dataset perform relatively well but the AUC scores obtained are lower 

compared to their performance tested with the same dataset. The decision trees 

perform the best and can classify the normal and anomaly instances. Therefore, 

cross-dataset evaluation for binary classification on both the datasets provide 

lower AUC score compared to within dataset. 
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Although the primary aim of an IDS is to perform anomaly detection, to better 

understand the behavior of the models on the datasets, category classification is 

performed. Logistic Regression performs better compared to the other methods 

when trained with Bot-IoT and tested with IoTID20 and can capture the signal 

needed to classify DoS and Scan attacks. The other models built using the Bot-IoT 

dataset do not perform well with attack category classification for DoS and Scan. 

The attacks simulation method on the Bot-IoT dataset differs from that of the 

IoTID20 dataset and default packet sizes were used to simulate these attacks. On 

the other hand, the models trained with IotID20 can categorize the attacks well but 

fail with the normal instances.  This is again because the dataset does not generalize 

well with normal instances. This indicates that IDS created using the same training 

and test data is likely to perform well but perform poorly when deployed because 

the traffic for a given network when deployed can greatly differ from the simulated 

data. 

4.4. Challenges  

A lot of shortcomings were observed as part of this research. We only found two 

IoT intrusion detection network datasets that performed similar attacks and could 

be used for comparison. In addition, most datasets simulated are done for different 

attack categories. The test-bed setup, simulation methods and tools adopted for 
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the generation of the dataset vary which can greatly alter model’s performance and 

make it difficult to evaluate an IDS using cross-dataset.  The data available cannot 

be directly used for comparison because the features generated for different 

datasets differ highly. Generating newer features from the raw packet files and 

labelling them is a challenging task. 
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5. CONCLUSION AND FUTURE WORK 

It is crucial to use the right way to evaluate the performance of a machine learning 

model used to build an intrusion detection system. An IDS trained and tested using 

a single dataset may not perform well when deployed as the data observed in real 

life can vary a lot from the simulated data. The Bot-IoT dataset and IOTID20 

datasets perform exceptionally well when trained and tested within the same 

dataset because the train and test sets data distribution is similar. The results 

obtained mislead the performance of the IDS as the model is bound to face 

different data when deployed. When the models were trained with one dataset 

and tested with another, the performance of the model declines because the 

methods used for simulation are different across both the datasets. Performing 

cross-dataset evaluation helps understand that the IDS generated with the same 

simulated data does not generalize well when tested with attacks simulated 

differently that is adversaries may intrude into the network using novel methods 

which the simulated data does not reflect. 

To be able to develop a strong IDS using simulated data, it is important to train the 

model with different types of data and simulation, so that the IDS can generalize 

well when deployed. Future work includes to generate a dataset that contains 

similar attacks simulated using different methods to help generalize well, train a 
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single model with different datasets to reflect all possible attack simulations. One 

can also perform cross-dataset evaluations with a greater number of datasets to 

ensure that the IDS built is strong and perform well when its deployed in 

production.  
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