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ABSTRACT

ASYNCHRONOUS MONAD FOR REACTIVE IOT

PROGRAMMING

by

Adam Bertrand Berger

The University of Wisconsin-Milwaukee, 2020
Under the Supervision of Professor Tian Zhao

The widespread adoption of Internet of Things (IoT) has given rise to

systems which must reactively process signal data, while maintaining latency

and throughput constraints. While the reactive programming paradigm par-

tially addresses this problem, it does not offer a complete solution. We

propose a design for a monad, AsyncM, and apply it to implement push-

pull functional reactive programming (FRP) where side-effect bound events

are performed in low-latency push streams, and time-series computations

are performed in demand-driven pull streams. The design uses implicitly

threaded cancellation tokens and continuation passing style to allow for im-

plementations in languages which have single-threaded event-loops as well as

languages which have multi-threading.
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We present our abstractions Stream, Signal, and Behavior and their func-

tor, applicative, and (when applicable) monadic instances. We demonstrate

how push streams (Stream) can be converted to pull streams (Signal) (and

visa versa) to apply our model to practical use cases. We give a use case of

a real-time IoT data analytics platform to demonstrate our design’s indus-

trial significance where signal sample rates can change dynamically based on

unknown factors such as network speed and processor resources. Applica-

tion of the design to dynamic languages is shown throughout the paper in a

reference JavaScript implementation.
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1 Introduction

The Internet of Things (IoT) has grown to popularity in the last decade, con-

necting an ever-increasing number of devices to networks. IoT devices range

from consumer IoT devices, to robust industrial electrical systems which de-

mand for monitor and control capabilities. For those mission-critical electri-

cal systems, it is important to perform real-time system diagnostics to have

visibility into the system to avoid system failure. We refer to these diagnos-

tics as key performance indicators (KPIs). KPIs are computations performed

on signals which characterize a system’s health. For example, a solar panel

manufacturer may specify that a panel has 20% efficiency (converts 20% of

the sun’s energy into electricity). To ensure the panel is performing according

to the rated efficiency, a KPI could be computed that takes the sun’s energy

and the panel’s output power as input signals, and computes the efficiency

as an output signal. The signal could be stored to a database and visualized

on a dashboard. A user could monitor the efficiency KPI (along with many

others) to know when components of their system need maintenance.

The efficiency KPI is a simple example, as it is a point-wise calculation

(applied to one sample at a time) which can be run at a low resolution (as

calculating efficiency even more than once per second could be redundant).
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However, there exist KPIs which require high frequency signals at rates of

10KHz or above (depending on the input signal), such as total harmonic

distortion (THD). Calculating THD of a signal requires performing a Fourier

transform. This requirement means the sample rate must be high enough to

reproduce the real continuous signal using discrete samples. The requirement

for high sample rate puts a burden on the system, forcing it to either scale

or fail. If high speed data is coming at a rate in which the KPI calculation

can not keep up with, it accrues unprocessed data (called back-pressure) and

must decide to buffer the data, or discard it. Neither are complete solutions

as buffering could consume the entire system’s memory, and discarding loses

information. A robust solution is to have built-in measures to communicate

(via events) in the system, so that sample rates could be reduced. This way,

the system will not crash over lack of memory, and batches of data will not

be lost. The problem will have been addressed at the source. A complete

IoT monitoring system could capture, run KPI computations, store data,

and visualize data all at once.

We propose a model for reactive programming that provides asynchronous

computations for events with side-effects, synchronous computation for pure

KPI calculations, composability via a monadic interface, and compatibility

with dynamic languages such as JavaScript. Our design, inspired by Elliott’s

Push-Pull FRP [9], combines push-streams and pull-streams to provide low
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latency for responding to events (such as receiving batches of data), and pull-

streams for composability of KPI calculations. These push and pull streams

can be composed using the push2pull and reactimate combinators to

convert from push streams to pull streams and back. We improve on Elliott’s

design by providing the AsyncM monad which provides a more efficient and

event-loop compatible design for Elliott’s unambiguous choice (unamb) op-

erator, which represents a future computation that may or may not happen

depending on the progress of other asynchronous computations.

Roadmap For the rest of the thesis we will explain the background of

Classic FRP, Push-Pull FRP, and related problems of functional reactive

programming (FRP) in Chapter 2, where we also give a brief introduction

to monads, the monad laws, and an example of a simple monad to provide

intuition. Chapter 3 introduces AsyncM our abstraction for asynchronous

computation. We describe our cancellation tokens, Progress, the monadic

instance for AsyncM, present several AsyncM primitives, and provide a real-

world use case for AsyncM. We present our design of push-streams (called

Streams), along with its components (Emitter and Channel) in Chapter

4. We also present Stream primitives, the monadic instance of Stream, and

show how Stream satisfies the monad laws. Chapter 5 introduces our design

of pull-streams (called Signals and Behaviors), and their primitives. We
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apply our design to a real-world use case in Chapter 6, show related work in

Chapter 7, and finally conclude with Chapter 8.
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2 Background

2.1 Classic FRP

Classic FRP (the original design of functional reactive programming, first

defined in FRAN [10]) was a source of motivation for our design. It uses an en-

tirely pull-based approach featuring two fundamental abstractions Behaviors

and Events which represent time-varying values and time-value pairs respec-

tively. A Behavior is a function from time to value (Time -> a) that is

used for representing continuous signals where at any time, the signal value

can vary.

t -> sin(t) is a simple Behavior, as every time t yields some value.

The most primitive Behavior is Time defined as the identity function

t -> t.

Events are discrete occurrences of some action that are either internal

to the program (which can be created via the predicate operator) or

external (which the library provides a default set of – such as lbp for a

left mouse button press). The at operator is defined as a means of getting a

Behavior’s value at an absolute time and the occ operator provides means

of accessing the time and value of an event occurrence.
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1 at :: Behavior -> Time -> a

2 occ :: Event -> (Time, a)

This approach is pure. Behaviors and Events have no side-effects,

which allows them to be composed without interference. Functions can be

lifted into Behavior combinators through lift functions (lift0, lift1,

and so on for different arities). Listing 2.1 defines efficiencyB, the effi-

ciency of a solar panel over time, provided a Behavior of the sun’s energy

sunB and of the solar panel’s output power powerB. It uses lift2 to create

a division combinator for Behaviors.

1 divB = lift2 (/)

2 efficiencyB = divB sunB powerB

Listing 2.1: FRP-style definition of solar array efficiency

Part of the novelty of FRP is its reactivity. Behaviors can be com-

bined to create more Behaviors. A graph can be constructed (known as

a “signal graph”) to represent the connections between Behaviors. Unlike

previous designs, such as in synchronous data-flow programming, this graph

is dynamic. Edges in the graph (control flow to different Behaviors) can

change while the program is running. This is done through the untilB

operator. This functionality is known as “switching”.

1 untilB :: Behavior a -> Event (Behavior a) -> Behavior a

6



untilB produces a Behavior that uses an initial Behavior until some

event occurs that contains another Behavior, in which case it “switches”

to that Behavior. This concept is powerful, as it enables the signal graph

to be dynamic instead of fixed. This concept enables our Streams to scale

device sample rates to the system’s throughput dynamically.

2.2 Push-Pull FRP

Push-Pull FRP [9] is a modernization and re-work of Classic FRP that gives

lower latency responses to events where it is desirable, and keeps Behaviors

for demand driven values. A core realization was there are two types of

Behaviors: time functions, and reactive values. Time functions are ab-

solute functions which don’t depend on events. They are well suited to be

pull-based, unlike reactive values which rely on events (which make them

change discretely). In Classic FRP, all Behaviors are pulled at some inter-

val, meaning each Behavior has a latency which at worst could be equal

to the polling interval. This is the cost paid for the composability of pull-

streams. Reactive values maintain their composability, but don’t pay the

penalty of latency from the poll interval. Our reactive programming model

adopts the hybrid push-pull model of Push-Pull FRP, while improving upon
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the switching mechanism (known as the unamb operator) by supporting non-

multi-threaded environments such as JavaScript.

2.3 Problems with FRP

FRP has some intrinsic issues to its design which can make some implementa-

tions inconsistent, and dangerous to run. Most issues have known solutions,

for example by reducing the expressiveness (limiting the first-class nature of

Behaviors).

Space-Time Leaks Classic FRP’s design was too permissive to be safe.

Recall the at operator which takes a Time and Behavior and returns a

value. The Time parameter refers to an absolute time. This means any

time in the past, present, or future. Knowing the value of a Behavior in

the past that depends on events requires caching events, and knowing the

future value is impossible (without delaying the computation until that time

becomes the present time). The issue of accessing future times causes another

fundamental problem in FRP called causality which we discuss in the section

below.

The ability to reference arbitrary times in the past for Behaviors which

use Events requires storing every Behavior’s complete history since the

program began (if the Behavior is not a simple time function relies on
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events). Moreover, Behaviors can be defined recursively where each re-

cursion runs a computation on a previous time value until the beginning

of time (a problem that affects both time functions and event dependent

Behaviors). Additionally a computation could consume non-linear time

or space, escalating the problem where performance space and time usage

increase over time. Listing 2.2 defines past, a time transformer which looks

one time-step into the past. Looking backwards by a constant amount can

be manageable (requires some constant sized buffer). Then past_ is de-

fined, a time transformer which looks into the past an arbitrary amount re-

quires an infinite buffer. Finally, average a recursively defined Behavior

which samples a Behavior once per time-step to compute the sum of some

Behavior then dividing by the number of elapsed time-steps. The helper

function sum results in a linear space-time leak.

1 past b = \t -> b `at` (t - 1)

2 past_ b n = \t -> b `at` (t - n)

3 sum t0 step b = \t ->

4 if t0 <= t then

5 (sum (t0 + step) b) + (b `at` t)

6 else 0

7 average t0 b = \t -> (sum t0 1 b) / (lift0 t0-t)

Listing 2.2: Three progressively larger space-time leaks

Space-time leaks must be addressed to ensure program safety. Arrowized

9



FRP (AFRP) [21] uses signal functions (SF a b), abstracts functions from

Behavior a to Behavior b, which are composed using Hughes’s Arrow

abstraction [11] which is a point-free style that doesn’t expose Behaviors

as first class values. Liu and Haduk demonstrated how AFRP prevents the

class of space-time leak described above from occurring by using arrows as the

base abstraction instead of first-class Behaviors [18]. Another approach is

to allow first-class Behaviors, but redefine the semantics of FRP such that

first-class Behavior can be used, but the time parameter is not persisted

indefinitely over time [13]. Our model restricts access to continuous time

(seen in Section 4.3.2 with the fold operator), and therefore prevents space-

time leaks of this kind.

Causality The at operator causes another issue, which is the ability to

depend on future or past values in the present. Unguarded access to an

absolute time parameter allows for Behaviors which request values in the

future. For example, Listing 2.3 defines a time transformer futureB which

takes a Behavior and returns that Behavior which looks one time step

into the future.

1 futureB b = \t -> b `at` (t + 1)

Listing 2.3: A behavior who’s current value is always in the future

Supporting a look-ahead Behavior this way, would require delaying
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evaluation of Behaviors until their times have actually arrived (in which

case the future will have become the present). This causes a space-time leak

and requires some initial values to be used until the Behavior actually has

a value.

Glitches The order in which the signal graph is updated can cause an

issue called a “glitch”. For example, Listing 2.4 shows a computation (in a

language with JavaScript syntax and reactive evaluation semantics) which

could cause glitches in reactive programming implementations which don’t

explicitly handle them. c depends on the values a and b. If a is updated

(via an event), the signal graph could update in two orders: a, then c or c

then a. In the first case, c will correctly equal 2 (3 - 1). In the second

case, c will incorrectly equal 0 (1 - 1).

1 var a = 1;

2 var b = a - 1;

3 var c = a + b;

4 b = 3;

Listing 2.4: Definition of a glitch-prone signal graph

Reactive programming models solve this problem by having a global

scheduler that topologically sorts the signal graph before it updates the

graph (ensuring the graph is updated in the correct order). Other designs

have glitches, but provide some ad-hoc means of ignoring the updates of

11



glitches. Our model allows for glitches to occur in push-streams (due to

their asynchronous nature), but prohibits them in pull-streams (Signals

and Behaviors). This is sufficient in preventing unexpected errors in the

computation.

2.4 Monadic Interface

Our reactive design features a monadic interface for AsyncM, the driving

force for our push-streams (known in Push-Pull FRP as reactive values).

Monads are a concept from category theory that was imported into functional

programming by Phillip Walder [29] as a way of structuring computations in

a consistent way which isolate a computation into two parts: the potentially

side-effect bound code hidden behind the interface, and the code that utilizes

the interface.

Monads abstract a common pattern of computation in which some type

m (which represents a computational context) wraps another computation a

which can be composed (m a -> m b) using functions of type a -> m b

where wrapped computations are returned in functions (called Klesli arrows).

An example of this pattern is the use of flatMap for lists (the relation

is obvious in the type signature list a -> (a -> list b) -> list

b), or in the context of reactive programming switchMap (seen in RxJS to

12



switch between push-streams [2]).

2.4.1 Monadic Laws

Utilizing a monadic interface ensures that if the monad’s definition is sound

(if it obeys a set of laws), computations are guaranteed to be correct when

they are composed. This cannot be said about arbitrarily defined interfaces

in imperative code. To get the composability guarantees, monads must obey

the following three laws.

Left Identity The first law, left identity, requires that a monad must pro-

vide an operator, return, which produces an identity value such that

return x�= λy.f ≡ f [x/y]

The notation used is analogous to Walder’s original laws [29], but with

Haskell syntax. �= applies a Klesli arrow to a monad with the type m

a -> (a -> m b) -> m b, where [x/y] means “x is bound to y”. Left

identity implies that some binding occurs of the value inside the monad on

the left side of the �= operator to the Klesli arrow on the right. Left iden-

tity requires that lifting x to a monad and applying the �= operator to a

function λy.f is equivalent to just binding x to y in the function λy.f .
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Right Identity The second law, right identity, requires the same concept,

but a return on the opposite side. That is, some monad m bound (�=)

with some function that returns a value x is the same as just the original

monad m.

m�= λx.return x ≡ m

Associativity Associativity requires the ordering of parentheses with the

�= operator to be irrelevant. Note that on the left, x is bound in g and on

the right x is free in g.

m�= (λx.f �= λy.g) ≡ (m�= λx.f) �= λy.g

In practice, monads can be defined which break these rules. Because there

are no means of statically proving if a monad respects the rules, it is the

responsibility of the implementer to ensure the rules are followed. Following

the monad laws ensures that the monad’s behavior is consistent, and that

simple transformations to the code do not result in unexpected differences in

the computation.

14



2.4.2 A Time Function Monad

To demonstrate the usefulness of a monadic interface, Listing 2.5 shows

a Haskell implementation of a time function monad. Time functions are

Behaviors that don’t use Events. Without a monadic approach, time pa-

rameters would be scattered around the code which is both cumbersome to

write, and allows for unprotected modification of the time parameter (leading

to issues that arise from time transformations such as non-causal Behaviors

and space-time leaks).

In this example, an animation is considered (inspired by FRAN [10]).

A circular motion can be created by animating an object over time using

cos and sin for the x and y coordinates. circleB demonstrates how a

Behavior can be created only by composing pre-defined Behavior monads

(sinB and cosB) to produce a Behavior Vec2 (a two dimensional vector

that can be indexed based on continuous time). scaleB defines a combinator

which scales the x and y coordinates by some factor amt which can stretch

the motion of any Behavior Vec2.

The Behavior monad implicitly threads a Time parameter throughout

the entire computation. The Time can be retrieved by an identity function

Behavior called time. This is similar to a Reader monad. A Reader

monad is one of many standard monads (such as Maybe, List, Either,

Writer and State) that define some well-understood behavior. In the
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case of Reader it is for providing an implicitly threaded value which can be

asked for, and also can be locally set. The Behavior monad in Listing 2.5

isn’t a complete Reader monad because there is no way to locally set the

Time (doing so would make it possible to implement time transformations

which are a source of many problems, and a source of the ultimate flexibility

that FRAN provided). The effects of the standard monads can be layered on

top of each other without re-implementing their behavior by use of monad

transformers. We will use this idea as a model for understanding the AsyncM

implementation later.

1 type Time = Float;

2 data Behavior a = Behavior (Time -> a)

3

4 at :: Behavior a -> Time -> a

5 at (Behavior f) t = f t

6

7 instance Functor Behavior where

8 fmap f b = Behavior $ \t -> f $ b `at` t

9 instance Applicative Behavior where

10 pure x = Behavior $ \t -> x

11 mf <*> mx = Behavior $ \t -> (mf `at` t) (mx `at` t)

12 instance Monad Behavior where

13 return = pure

14 b >>= f = Behavior $ \t -> (f $ (b `at` t)) `at` t

16



15

16 time = Behavior $ \t -> t

17 sinB = do

18 t <- time

19 return $ sin t

20 cosB = do

21 t <- time

22 return $ cos t

23

24 type Vec2 = (Float, Float)

25 circleB :: Behavior Vec2

26 circleB = do

27 x <- cosB

28 y <- sinB

29 return $ (x, y)

30

31 scaleB :: Float -> Behavior Vec2 -> Behavior Vec2

32 scaleB amtB b = do

33 (x, y) <- b

34 z <- amtB

35 return $ (x * z, y * z)

Listing 2.5: Time Function Monad Definition

The scaleB combinator can be used as scaleB (return 2) circleB

to increase the circle’s motion radius by two. A variable scaling can be

17



achieved by scaleB (absB cosB) circleB (assuming some absolute

value combinator absB).

18



3 AsyncM

Our design builds on Push-Pull FRP [9] by providing a monad, AsyncM,

which uses continuation-passing style (CPS), to create a concurrency model

agnostic means of implementing futures (the concept behind reactive values

in Push-Pull FRP). AsyncM uses nested Progress values to control the

cancellation of composed AsyncM monads, which allows for expressing asyn-

chronous operations that race against each other (raceM), wait for all to

complete (allM), wait for any to complete (anyM), run in parallel without

merging progress (forkM).

3.1 Progress

Progress of asynchronous computation is monitored in a nested fashion.

These progress values (known as “cancellation tokens”) are constructed as a

cons list where each Progress has a head value indicating if the Progress

has been cancelled, and optionally a tail (which is another Progress value).

Progress values can either be a ConsP where the cell has a head value

(which is true if the Progress is cancelled) and a tail value, or a NilP

where there is only a head value.

Checking if a progress value is alive is a recursive algorithm (seen in
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Listing 3.1) where the current progress value’s head is checked, then its

tail is checked recursively. If the head is true for any Progress value

(including the nested ones), this indicates cancellation.

1 class ConsP extends Progress {

2 isAliveP () {

3 if (!this.head) { return this.tail.isAliveP(); }

4 else return false;

5 }

6 }

7 class NilP extends Progress {

8 isAliveP () {

9 return !this.head;

10 }

11 }

Listing 3.1: Recursive liveliness check for Progress values

The significance of this design is that cancellation bubbles up from the

inside out. For example, consider three Progress objects (A, B, and C)

which are all alive (head is false) in Figure 3.1.

However in Figure 3.2, Progress B is cancelled. This cancellation

automatically causes Progress C to be cancelled too. Even though the

outer Progress is cancelled, Progress A will continue to be alive. This
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Figure 3.1: Progress value C with two child Progress values.

property is useful for AsyncM where we want to create a nested asyn-

chronous computation who’s cancellation is not affected by its outer scope

(e.g. scopeM).

Figure 3.2: Progress C after cancelling Progress B.

3.2 AsyncM

3.2.1 Monadic Stack

AsyncM is a combination of two monad transformers (ReaderT and ContT)

with a base IO monad that can be created with a type of Progress

-> (a -> IO()) -> IO (). That is, a function which takes an ini-

tial Progress value, a continuation Progress (the next computation),
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and performs some side-effect. As mentioned in the monad section, mon-

ads can be combined using monad transformers. Transformers can be used

directly in languages that support them (e.g. Haskell), otherwise writing a

new monad with the effects of both is necessary. To understand AsyncM

it is important to first consider the effects of the two monads Reader and

Continuation and imagine stacking their effects on top of each other to

create a single monad.

Reader Monad A Reader monad (as discussed in the Time Function

Monad section) provides a �= operator definition, return definition, and

two helper functions ask and local. First consider the type signature of

a Reader type: e -> a (where e is an environment and a is some out-

put type). The �= operator (Reader e a -> (a -> Reader e b)

-> Reader e b) implicitly threads the environment e throughout func-

tions. Note how the Klesli arrow takes a value of the output type a (e is

hidden). return lifts some value into the monad by creating a function

which takes e (which it ignores) and returns a constant value. The monad

would be useless if it didn’t have a means of accessing the environment e.

ask serves this purpose by creating a Reader using an identity function

(e -> e). ask has type Reader e a -> Reader e e. Although the

monad is called “reader” there is a way of writing a new value (at least for any
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child readers). local (type (e -> e) -> Reader e a -> Reader e

a) can be used to map over the environment e so that a child reader is run

with a modified environment.

Listing 3.2 shows a definition for �= for a Reader e a type. This

reveals the implicit threading of the environment value which is hidden to

code that uses the monad.

1 >>= :: Reader e a -> (a -> Reader e b) -> Reader e b

2 m >>= f = Reader \e -> runReader (f (runReader m e)) e

Listing 3.2: Reader monad interface

Continuation Monad A continuation monad uses a monadic interface to

implement continuations via continuation passing style (CPS). Continuations

are a way to represent computations (along with all their state) that have

yet to happen. Some languages implement continuations as first-class values

(e.g. Scheme, Ruby). Languages with first-class functions can emulate con-

tinuations using CPS. This involves passing an additional function parameter

to each participating function, and optionally calling that function with the

result of the function when the computation completes. This style replaces

return statements with function calls, giving the program more access to

modify control-flow. However, CPS is cumbersome to write manually. Using

a monad for this task is ideal, because the continuation parameter can be
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passed implicitly (through the �= operator).

A continuation monad instance has the type of (a -> r) -> r where

r is some return type, and a is some input type. Often in Haskell, this will

be presented as a monad transformer ContT which adds a monad parameter

into the type signature (a -> m r) -> m r. We are concerned with when

the monad is IO (such as (a -> IO r) -> IO r)). The difference isn’t

necessary to distinguish in languages such as JavaScript where types are not

checked statically. The first argument of the continuation type is called the

“continuation” (that is (a -> r)). This is the continuation function which

is implicitly propagated via �= operator.

A continuation monad should provide three definitions: return which

simply calls the continuation with a constant value, �= :: Cont r a ->

(a -> Cont r b) -> Cont r b which creates a new continuation that

runs its first argument Cont r a and with the value it yields, calls the

Klesli arrow with it (producing an inner continuation). Listing 3.3 shows the

definition for �= for a continuation type Cont whose type is (a -> r) ->

r.

1 >>= :: Cont r a -> (a -> Cont r b) -> Cont r b

2 m >>= f = Cont (\k -> runCont m (\x -> runCont (f x) k))

Listing 3.3: Continuation monad interface
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3.2.2 Monadic Definition

Having understood the Reader and Continuation monad, the AsyncM

monad can be understood by layering their effects on top of each other.

Listing 3.4 shows the monadic definition for AsyncM. The definition includes

the functions fmap and app which correspond with AsyncM’s functor and

applicative instances respectively. fmap can be used to create an AsyncM

who’s asynchronous result (that depends some hidden Progress value) has

been applied to a function. app can be used to apply a function wrapped

in some asynchronous computation to another asynchronous value. pure

corresponds with AsyncM’s monadic return operator (also required for

applicative instances).

1 class AsyncM {

2 // new :: (Progress -> (a -> IO ()) -> IO()) -> AsyncM a

3 constructor = run => { this.run = run; }

4 // fmap :: AsyncM a -> (a -> b) -> AsyncM b

5 fmap = f => new AsyncM (p => k => this.run(p)(x => k(f(x))));

6 // pure :: a -> AsyncM a

7 static pure = x => new AsyncM (p => k => k(x))

8 // app :: AsyncM (a -> b) -> AsyncM a -> AsyncM b

9 app = mx => this.bind(f => mx.bind(x => AsyncM.pure(f(x))))

10 // bind :: AsyncM a -> (a -> AsyncM b) -> AsyncM b

11 bind = f => new AsyncM (p => k =>

12 this.run(p)(x => f(x).run(p)(k)));
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13 }

Listing 3.4: The definition of AsyncM

The bind implementation (�=) merges the definitions of Reader and

Continuation that we saw in the previous section. The run method

serves the purpose as both runReader and runCont did in the previous

section (it is a curried function where the first application has the same

semantics as runReader and the second of runCont). In our Haskell

implementation this monad can be expressed without any custom code by

stacking the ReaderT and ContT monad transformers. The usefulness of

this bind definition will be apparent after the definition of several utility

functions.

3.2.3 Primitives

scopeM scopeM (similar to a Reader monad’s local function) creates

a new AsyncM with a modified Progress value. The Progress value is

extended via adding to the Progress cons list. This way, cancelling the re-

turned AsyncM will not cancel any child AsyncM. As explain in the Progress

Section, the AsyncM will be cancelled whenever any child is cancelled.

1 const scopeM = m => new AsyncM(p => k => this.run(p.cons())(k));
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unscopeM unscopeM performs the opposite of scopeM. That is, it cre-

ates a new AsyncM which has a modified Progress value that uses the tail

of the Progress cons list.

1 const unscopeM = m =>

2 new AsyncM(p => k => this.run(p.tail ? p.tail : p)(k));

forkM forkM runs the AsyncM and the continuation k with a new Progress

value which is cancelled if the parent is ever cancelled. The AsyncM’s side-

effects are run in parallel along with the continuation’s side-effects. This is a

race; however, the Progress values are not linked which makes forkM dis-

tinct from raceM. An identity function is used for when running the AsyncM

as the final continuation, as we are running it for its side-effects (has type

IO ()). Note the the Progress value of the forked AsyncM is exposed as

a means of cancelling the forked computation.

1 const forkM = scopeM(m => new AsyncM (p => k => {

2 m.run(p)(x => x);

3 k(p);

4 }));

ifAliveM ifAliveM creates a checkpoint where Progress of the given

AsyncM is checked. If the AsyncM has been cancelled (using the recursive

condition specified in the Progress Section), the AsyncM’s continuation is
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not called. This causes the computation to terminate immediately after the

checkpoint.

1 const ifAliveM = new AsyncM(p => k => p.ifAliveP(k));

cancelM cancelM cancels the current Progress and continues the com-

putation (calls the continuation k). This primitive is used for indicating

cancellation to parent or racing AsyncM, but continuing the current compu-

tation.

1 const cancelM = new AsyncM(p => k => { if (p.cancelP()) k(); });

commitM commitM combines ifAliveM and cancelM to only con-

tinue the computation if the Progress is alive, and then cancelling the

Progress. This is primitive is useful in cases, such as just after an raceM,

to ensure the continuation is only called once.

1 const commitM = ifAliveM.bind(_ => cancelM);

timeout timeout run calls the AsyncM’s continuation in n milliseconds.

This function forms the base for reactimateing pull-streams (Signals)

into push-streams Streams. The JavaScript implementation uses setTimeout,

but the concept works with any form of concurrency (event-loop based or

multi-threading for example).

1 const timeout = n => new AsyncM(p => k => setTimeout(k, n));
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raceM raceM runs two AsyncMs in parallel with a newly scoped Progress

value. Scoping the Progress allows child AsyncMs to use either commitM

or cancelM directly to cancel itself to allow for only one to continue after

the race. If no cancellation is made, the continuation k will be called twice.

1 const raceM = m1 => m2 => scopeM(new AsyncM(p => k => {

2 m1.run(p)(k);

3 m2.run(p)(k);

4 }));

anyM anyM runs two AsyncMs that race with each other, where if the

first m1 succeeds, the computation continues with a Either value of Left

x1 otherwise it continues with a value of Right x2. commitM is used so

that the continuation of raceM is only called once (by the AsyncM that won

the race). Using Either allows the succeeding computation to know which

AsyncM completed.

1 const anyM = m1 => m2 => raceM

2 (m1.bind(x1 => commitM.bind(_ => AsyncM.pure(Left(x1)))))

3 (m2.bind(x2 => commitM.bind(_ => AsyncM.pure(Right(x2)))))

allM allM runs two AsyncM in parallel, joins their return values together,

and continues when both AsyncM have completed.

1 const allM = m1 => m2 => new AsyncM (p => k => {
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2 let count = 0, r = [];

3 const k1 = x => {

4 r[0] = x;

5 if (++count >= 2) k(r);

6 };

7 const k2 = x => {

8 r[1] = x;

9 if (++count >= 2) k(r);

10 };

11 m1.run(p)(k1);

12 m2.run(p)(k2);

13 });

3.2.4 Monad Laws

Section 2.4.1 presented the monad laws which were three laws which monads

are to follow to ensure consistent behavior. AsyncM should obey these laws

if we claim it to be a monad. Our monadic definition of AsyncM utilized the

concept of monad transformers, where conceptually two monad transform-

ers ReaderT and ContT are “stacked” on top of an IO monad to create

AsyncM. It is well-established that stacking monad transformers on top of a

monad such as IO monad results in another monad [17], which means that

AsyncM obeys the monad laws.

30



3.2.5 Use Case: Cancelable Web Requests

AsyncM primitives can be combined for general purpose asynchronous com-

putations. The code that interfaces with AsyncM can be written in a declar-

ative style (in Haskell using do-notation, in JavaScript through bind), but

represents complex relationships between cancelable asynchronous processes.

Consider an example where some data is being loaded from an API, and

the user has a cancel button which stops the loading from happening. The

HTTP request could be sent with some delay (timeout), and if the cancel

button was not pressed before the delay, the resources would be loaded.

Listing 3.5 shows an example of this where a list of URLs is loaded in five

seconds, unless the user clicks a button. Not only is this effect achieved, but

the resulting AsyncM, cancelableFetchM, is composable. Code that uses

the example can bind cancelableFetchM. If the value is a Left, the

button cancelled the data from being loaded, otherwise a Right value that

contains the result of the web requests is received. getM defines an AsyncM

that fetches a JSON via a HTTP request (using the JavaScript fetch API),

and continues the computation with the JSON value. clickM is an AsyncM

which continues when a button is pressed (given some DOM node).

1 const getM = url => new AsyncM(p => k =>

2 fetch(url).then(r => r.json().then(k)));

3 const clickM = el => new AsyncM(p => k =>
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4 el.addEventListener('click', k, { once: true }));

5 const fetchDataM = allM(getM('/user/1'))(getM('/user/2'));

6 const cancelableFetchM = anyM(

7 clickM(document.querySelector('#cancel')))

8 (timeout(5000).bind(_ =>

9 ifAliveM().bind(_ => fetchDataM)));

Listing 3.5: An AsyncM which fetches data unless a cancel button is pressed.
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4 Streams

AsyncM can be used as the foundation for creating a push-pull model of

FRP. This model of FRP will inherit the benefits of using AsyncM. AsyncM’s

usage of CPS will enable the FRP system to support implementations in lan-

guages regardless of their concurrency strategy (e.g. multi-threading, single-

threaded event loops), and AsyncM’s cancellation semantics will enable the

FRP system to create exit checkpoints where asynchronous computations

can exit safely and reliably.

The new FRP design must not only be equipped with AsyncM, but also

have several new primitive objects. For implementation of an IoT analytics

system (as we demonstrate in Chapter 6), it is important to have switching

(for adjusting the computation to dynamic factors), a hybrid push-pull ap-

proach (where data which should be low latency is pushed, and composable

time-series computations are pulled), and a means of converting between

push and pull streams. To accomplish this, we layer several objects on top

of AsyncM: Emitter, Channel, Stream, Signal, and Behavior.
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4.1 Emitter

An Emitter is a stateful class which implements the core of push-streams.

Emitters maintain a list of listeners (which are AsyncM continuations to

call upon emission), and the last emitted value. Emitters have three ba-

sic primitive methods: emit, listen, and wait. listen creates a new

AsyncM who registers itself to the emitter (the continuation is called during

emission), emit calls each continuation (stored in listeners) with a given

value, wait creates an AsyncM which either continues with the latest value

of the emitter (if it has one), otherwise, registers the continuation with the

emitter.

1 class Emitter {

2 constructor() {

3 this.now = null;

4 this.listeners = [];

5 }

6 emit = x => {

7 this.now = x;

8 const listeners = this.listeners;

9 this.listeners = [];

10 for (const listener of listeners) listener(x);

11 }

12 listen = () => new AsyncM(p => k => this.listeners.push(k))

13 wait = () => new AsyncM(p => k => {

34



14 if (this.now !== null) k(this.now);

15 else this.listeners = [k];

16 });

17 }

Listing 4.1: Emitter class definition

Emitter objects are used to propagate values throughout the signal

graph via pushing. The latency of Emitter objects is low, as the listeners

are called immediately after an event is emitted. Pull-based models could

have delay that is at worst case as long as the sample rate; while this push-

based approach doesn’t introduce any additional latency.

An AsyncM utility function spawnM is defined that uses Emitter (found

in Listing 4.2). spawnM creates a new AsyncM which yields an inner AsyncM,

who continues whenever the parameter AsyncM, m, continues. The synchro-

nization between AsyncM is done via a shared Emitter object. This be-

comes useful for our definition of switching for push-streams, when we need

to refer the next continuation of an AsyncM as an AsyncM value.

1 const spawnM = m => new AsyncM(p => k => {

2 const e = new Emitter();

3 m.run(p)(x => e.emit(x));

4 k(e.wait());

5 });

Listing 4.2: Definition of spawnM
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4.2 Channel

Channel is a stateful class which implements the core of pull-streams.

Channels have a list of data (called the “buffer”), and a list of continu-

ations (called “listeners”). The purpose of a Channel is to provide a queue

(FIFO) of buffered values which are written asynchronously (an AsyncM

would continue immediately) and read synchronously (an AsyncM will not

continue until there is a value). Channels have two primitive operators:

read and write. read takes a continuation, and if the Channel has

data, dequeues an item from the buffer, and calls the continuation with that

item. If there is no data, the continuation is added as a listener, so that it is

called immediately when a write occurs. write adds an item to the buffer

(if there are no listeners), otherwise immediately dequeues the next listener

and calls it with the item.

1 class Channel {

2 constructor() {

3 this.data = [];

4 this.listeners = [];

5 }

6 // read :: (a -> IO()) -> IO()

7 read = k => this.data.length > 0 ?

8 k(this.data.shift()) :

9 this.listeners.push(k);
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10 // write :: a -> IO()

11 write = x => this.listeners.length > 0 ?

12 this.listeners.shift()(x) :

13 this.data.push(x);

14 }

As consecutive calls to write occur, items accumulate indefinitely in the

buffer. This accumulation is called back-pressure. Back-pressure is essential

in systems which must process data at rates that are dynamic or could ex-

ceed the processing limits of some computation. While back-pressure enables

such computations to occur, it can also be the source of a memory-leak in

programs who can not process buffered data at a rate greater than the rate

of incoming data. In our IoT Analytics use case we address this problem

by measuring the data rate, and altering the sampling rate to match the

computation’s throughput. Maintaining a safe amount of back-pressure is a

matter of ensuring that writes from channels occur at less than or equal to

the rate that reads occur.

4.3 Stream

Stream is our implementation of push-streams (in the spirit of Push-Pull

FRP) which is comprised of a cons list of Next values linked together by

AsyncMs, and terminated with an End value. The head value of each item
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in the list is a Maybe type where there can either be Just some value, or

Nothing. The use of a Maybe type is due to streams of IoT data having

no reasonable initialization value (the data is only known after the data is

received). To illustrate why Maybe is necessary, imagine a Stream of voltage

signals, and a KPI which divides by voltage. Now the most reasonable of

initialization values, zero, causes division by zero. To avoid this, there must

be some way of skipping a computation when there is no value (to not force an

initial value). This way a Stream can be initialized with a nothing value,

until data comes in. The tail of a Next type is an AsyncM of Stream (a

Stream which occurs in the future). This cons list structure where the tail

is an asynchronous computation can continue indefinitely (by always yielding

Next values), or can terminate via a End value (which has no tail).

Similar to AsyncM, Stream has a monadic interface, but unlike AsyncM,

the monad is not comprised of monadic transformers. Listing 4.3 defines

the monadic interface for Stream (along with fmap, and app for functor

and applicative instances). fmap applies a function to each head of the

cons list recursively. Next’s fmap implementation can continue indefinitely,

as this.next is an AsyncM value. This is desired behavior to support

Streams which never terminate (e.g. background processing, real-time vi-

sualizations). maybe_a represents the Maybe type, which is a separate

monad consisting of the current value of the Stream. This means Maybe’s
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fmap function will not apply the function parameter to Stream values who

are a Nothing value (it only applies the function to Just values). Maybe’s

maybe method takes two arguments (curried), the first being the value if

the maybe is a Nothing type, the second being the value if the maybe is a

Just type.

bind is implemented in a similar fashion to a List monad where the

monad is applied to fmap, then flattened (with join). To “flatten” is to

take some type T of T and yield a type of just T. For example, taking a

Stream of Streams (a Stream which produces Streams), and create a

single Stream. While the concept is simple, the way that the flattening

occurs determines the semantics of the monad. In this case, the flattening

determines the semantics of push-stream switching. The switchS function

is discussed in Section 4.3.1 which is omitted in this listing, and is responsible

for the majority of the bind implementation. Finally, the app function uses

bind to apply a Stream of functions to a Stream of any value.

1 class Stream {

2 constructor(a) { this.maybe_a = a; }

3 static next = (a, m) => new Next(a, m)

4 static end = a => new End(a)

5 app = sx => this.bind(f => sx.bind(x => Stream.pure(f(x))))

6 static pure = x => Stream.end(Maybe.just(x))

7 }
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8 class Next extends Stream {

9 constructor (a, m) { super(a); this.next = m; }

10 fmap = f => Stream.next(

11 this.maybe_a.fmap(f),

12 this.next.fmap(s => s.fmap(f)))

13 bind = k => this.fmap(k).join()

14 join = () => this.maybe_a.maybe

15 (Stream.next(Maybe.nothing, this.next.fmap(ss => ss.join())))

16 (s => s.switchS(this.next))

17 run = k => ifAliveM.bind(_ =>

18 AsyncM.liftIO(k1 => k1(this.maybe_a.maybe (unit) (k)))

19 .bind(_ => this.next.bind(s => s.run(k))))

20 }

21 class End extends Stream {

22 constructor (a) { super(a); }

23 fmap = f => Stream.end(this.maybe_a.fmap(f))

24 bind = k => this.maybe_a.maybe (this) (k)

25 join = () => this.maybe_a.maybe (this) (s => s)

26 run = k => ifAliveM.bind(_ =>

27 AsyncM.liftIO(k1 => k1(this.maybe_a.maybe (unit) (k))))

28 }

Listing 4.3: Monadic instance for Stream

The run method can be used to recursively call the Stream for its values,

calling each value with the continuation k. This way, values in the Stream
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can be exposed to functions which perform side-effects.

4.3.1 Switching

In Listing 4.3, we presented the monadic instance for Stream. However,

it omitted the implementation of switchS. Listing 4.4 shows extensions

to the Stream classes to provide switching (separated from Listing 4.3 for

clarity). Note either is a method of an Either object where the first

function parameter is called if the Either value is of type Left, and calls

the second function parameter if the value is of type Right. switchS is the

final interface function (seen in its usage in bind), while the other functions

are utility functions.

1 class Stream {

2 static _switchA = ms => mss => {

3 const f = choice =>

4 choice.either(ss => ss.join()) (s => s._switch(mss));

5 return anyM(mss)(ms.unscopeM()).fmap(f);

6 }

7 }

8 class Next extends Stream {

9 switchS = mss1 => Stream

10 .next(this.maybe_a,

11 mss1.spawnM()

12 .bind(mss2 => Stream._switchA(this.next)(mss2)))
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13 _switch = mss => Stream

14 .next(this.maybe_a, Stream._switchA(this.next)(mss))

15 }

16 class End extends Stream {

17 switchS = mss => this._switch(mss)

18 _switch = mss =>

19 Stream.next(this.maybe_a, mss.fmap(ss => ss.join()))

20 }

Listing 4.4: Extensions to Stream classes for switching

Switching decides which Stream in the Stream of Streams to use by

racing the first Stream with the Stream of Streams. If the initial Stream

wins, that Stream produces values for the parent Stream. Otherwise, if

the Stream of Streams wins, the next value of that Stream is used as

the next initial value, and the racing continues in this manner until an End

value is reached.

spawnM is used in Next’s switchS method to create a reference to

the next AsyncM that will occur after the given one (not as a continuation

function as usual, but as another AsyncM object). _switchA must call

unscopeM to use the inner Progress object of ms, as anyM would other-

wise cause it to be cancelled via commitM (as seen in the anyM definition).
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4.3.2 Primitives

receive receive takes an Emitter, and creates a Stream of values

which are continuously pushed by the Emitter. The effect can be concep-

tualized as a converter from Emitter to a Stream.

1 const receive = e => {

2 const h = _ => e

3 .listen()

4 .bind(a => ifAliveM.bind(_ =>

5 AsyncM.pure(Stream.next(Maybe.just(a), h()))));

6 return Stream.next(Maybe.nothing, h());

7 }

repeatS repeatS takes a AsyncM and creates a Stream which continu-

ously runs that AsyncM. Between each run of the AsyncM, the Progress

value is checked. If the AsyncM has been cancelled, the computation does not

continue. The utility function repeatA recursively constructs the Stream,

and repeatS initializes the Stream with a Nothing value.

1 const repeatS = m => Stream.next(Maybe.nothing, repeatA(m))

2 const repeatA = m => m.bind(a =>

3 ifAliveM.bind(_ =>

4 AsyncM.pure(Stream.next(Maybe.just(a), repeatA(m)))))
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broadcast broadcast runs a Stream s and emits all values from the

Stream into a new Emitter object. Emission does not block, as it is

run in parallel with forkM. The resulting Emitter object (along with its

Progress) is exposed in the resulting AsyncM, to be listened to by

another AsyncM (or converted to a Stream by receive). Note that the

Stream s will run indefinitely. To allow cancellation, forkM exposes the

Progress value and passes on in the result (AsyncM [a, Progress]).

1 const broadcast = s => AsyncM.liftIO(k => k(new Emitter()))

2 .bind(e => s.run(x => e.emit(x))

3 .forkM()

4 .bind(p => AsyncM.pure([e,p])))

multicast multicast enables multiple Streams to be constructed which

have the values of a single Emitter. It uses receive to create a Stream

from an Emitter and yields a Stream [Stream a, Progress]. The

Progress value of the input Stream is exposed, similar to broadcast,

as the Stream is run indefinitely until the Progress is cancelled, or the

Stream reaches an End.

1 const multicast = s => Stream.next(Maybe.nothing,

2 broadcast(s).bind(([e,p]) =>

3 AsyncM.pure(Stream.pure([e.receive(), p]))))
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fetch fetch Streams to be buffered, which allows asynchronous actions

which have variable running times (such as network requests) to be buffered

in a Channel so that AsyncM can be executed in parallel and buffered,

instead of waiting for each AsyncM to complete. In practice this means

network requests which take two seconds to capture one second of IoT data

(due to a one second latency in the network) could be made in parallel so

that every second requests are made instead of every two seconds.

fetch uses a Channel to write a Stream of asynchronous results

(AsyncM), and yields a new Stream which reads the results continuously.

fetch provides clean integration between AsyncM based computations and

Streams. For example, fetch can take batched HTTP requests represented

as a Stream (AsyncM Request) and provide a more natural type of

Stream Request.

1 // fetch :: Stream (AsyncM a) -> Stream a

2 const fetch = s => {

3 const m = AsyncM.liftIO (k => k(new Channel())).bind(c => {

4 const w = s.bind(m => m.spawnM()

5 .liftS()).run(m1 => c.write(m1)).forkM();

6 return w.bind(p =>

7 repeatA(AsyncM.liftIO(k => c.read(k)).join()));

8 })

9 return Stream.next(Maybe.nothing, m)

10 }
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fold fold, similar to the reduce or fold functions commonly seen in

functional languages, accumulates some value over a list. In our case, the

list is a Stream of functions (a -> a). This way, a Stream can persist

some state over the course of its lifetime. When the Stream ends, a final

accumulated value is provided.

Recall two of the issues common in FRP: non-causality and space-time

leaks. Our implementation of fold avoids one important class of space-

time leak by only persisting the current value of the accumulator, instead of

persisting all events emitted (this is similar to how AFRP avoids this space-

time leak). Also, our function is causal, as you cannot refer to times in the

future directly. You can directly refer to future values by using timeout

to delay computation; however, that will resolve when the future time has

become the present.

1

2 class Stream {

3 // fold :: Int -> a -> Stream (a -> a) -> AsyncM a

4 fold = n => c =>

5 this.accumulate(c).last(timeout(n)).fmap(r => r.fromJust())

6 last = m => m.spawnM().bind(m1 => this._last(m1))

7 }

8 class Next extends Stream {

9 accumulate = a => {

10 const a1 = this.maybe_a.maybe(a)(f => f(a));
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11 return Stream

12 .next(Maybe.just(a1),

13 this.next.fmap(s => s.accumulate(a1)));

14 }

15 _last = m => anyM(this.next)(m)

16 .bind(r => r.either

17 (s => s._last(m))

18 (_ => AsyncM.pure(this.maybe_a)))

19 }

20 class End extends Stream {

21 accumulate = a =>

22 Stream.end(Maybe.just(this.maybe_a.maybe(a)(f => f(a))))

23 _last = m => m.fmap(_ => this.maybe_a)

24 }

Listing 4.5: Extensions to Stream class to provide fold

fold uses a utility function, accumulate, which is specialized for Next

and End types, where Next recursively accumulates and End accumulates

once and terminates. last returns either the last event of a Stream, or if

some given AsyncM m completes first, returns the last event that was emitted

before the race was won.

fold’s integer parameter corresponds with how many milliseconds to

accumulate a value before providing the final value. For example, Listing 4.6

defines count which yields an AsyncM of how many events occurred in n
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milliseconds.

1 const count = s => n => s.fmap(_ => c => c+1).fold(n)(0);

Listing 4.6: Definition of count using fold

4.3.3 Monad Laws

Wadler defines that there are seven laws that when satisfied, are equivalent

to the three monad laws we defined earlier [29]. These laws are better suited

for monads which define a fmap and join function, as our Stream monad

does, so long as the �= operator is defined as:

1 m >>= f = join (fmap f m)

The seven laws are as follows:

1. fmap id = id

2. fmap (f ◦ g) = fmap f ◦ fmap g

3. fmap f ◦ return = return ◦ f

4. fmap f ◦ join = join ◦ fmap (fmap f)

5. join ◦ return = id

6. join ◦ fmap return = id

7. join ◦ fmap join = join ◦ join
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Law one, law two, and law three The first three laws deal primarily

with the behavior of fmap. Proving the first will provide the intuition that

the next two laws follow. Recall fmap applies some function f recursively

to a Stream. We can substitute f for the identity function id, as seen in

Listing 4.7.

1 fmap id (Next a ms) = Next (fmap id a) (fmap id ms)

2 fmap id (End a) = End (fmap id a)

Listing 4.7: Substituation of identity function in fmap

When fmap is applied with the identity function (a -> a), we can derive

that fmap id on a Stream applies the inner Maybe value with an identity

function, which is equivalent to just id of the Stream itself. Notice that

fmap is only ever applied to either a Maybe type or recursively (which results

in an fmap to a Maybe type). Because Maybe upholds the monad laws and

all recursive calls use Maybe fmap, it follows that our monad upholds the

monad laws for fmap. The third law needs one more clarification, which is

that return x simply creates an End stream of Just x (which reduces it

again to fmaps of Maybe).

Law four Law four requires applying fmap to a nested monad (in our

case Stream (Stream a)), then applying fmap once more is the same

as joining the nested monad, then applying fmap. This law is implied
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by the type of join (Stream (Stream a) -> Stream a), which is

parametric to the type variable of the monad [28].

Law five Law five says that the joined return of some Stream is equiv-

alent to the identity function. To prove this, we need a concrete represen-

tation of the join operator. The join operator is represented in a more

algebraic form than our previous JavaScript formulation in Listing 4.8.

1 join :: Stream (Stream a) -> Stream a

2 join (Next (Nothing) mss) = (Next (Nothing) (fmap join mss))

3 join (Next (Just s) mss) = switch s mss

4 join (End (Just s)) = s

Listing 4.8: Defintion of join for Stream

Because return x creates a End (Just x) Stream, it is equivalent

to join (End (Just x)) = id x. As seen in Listing 4.8, join of an

End Stream equals the value of the Just type. This reduces join to be an

identity function when applied with an End Stream, and therefore, satisfies

the law.

Law Six Law six holds for a similar reason as law five. fmap return is

applied to a Stream, which produces a Stream of End Streams. As seen

in Listing 4.9, join of an End Stream constructs a Next Stream where

the value is equivalent to the End Stream.

50



Law Seven The final law says that joining the resulting Stream of fmap

join (with a Stream of Stream of Stream) is equivalent to joining

twice. In words, this says that the ordering in which join occurs has no

importance (fmap first joins the inner Streams first). This is associativity

for the join operator.

To prove this, we must first understand the complete definition of join.

join uses switch (which was ommitted from Listing 4.8) to implement

flattening of the nested Stream. switch is represented in Listing 4.9 in a

more algebraic form.

1 switch :: Stream a -> AsyncM (Stream (Stream a)) -> Stream a

2 switch (Next a ms) mss = Next a (h ms =<< spawnM mss)

3 where h ms mss =

4 let

5 f (Left ss) = join ss

6 f (Right (Next a ms')) = Next a (h ms' mss)

7 in

8 fmap f (anyM mss (unscopeM ms))

9 switch (End a) mss = Next a (fmap join mss)

Listing 4.9: Definition of switch for Stream

The semantics of switch are to race Stream s (using anyM) until an

event occurs on the nested Stream of Streams mss. switch reduces to

calls of anyM where a Stream is raced against a Stream of Streams. If
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anyM holds this property (where the order of races is arbitrary), then join

too has this property.

anyM (anyM m1m2)m3 ≡ anyM m1 (anyM m2m3)

Our anyM primitive is associative. Racing a nested race with an AsyncM

is the same as racing an AsyncM with some nested race (it has no preference

for order). This is because all three AsyncM (m1, m2, or m3) are raced

simultaneously, instead of racing the nested race, then racing that against

the next AsyncM in some order. Because anyM is associative, and join is

defined in terms of anyM, join is associative and satisfies the seventh law.
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5 Signals and Behaviors

Push streams are ideal for applications which must be low latency and asyn-

chronous such as requesting batches of IoT data, visualizing data, and push-

ing data to a database. However, they are not a well suited abstraction for

synchronous time-series computations such as KPIs. KPI computations fall

into two categories: point-wise computations and windowed computations.

Point-wise computations operate on single samples at a time, for example ef-

ficiency (input power divided by output power) or power calculations (voltage

times current). Windowed computations operate on many samples at a time,

and include windowed averages and THD calculations.

Data can be requested from web-servers using the fetch primitive of a

Stream in batches. Streams cannot reliably be used for KPI computations,

as multiple Streams may be combined for a single KPI (for example power

uses both voltage and current). Each request of data batches will take a

different amount of time to resolve leading to another problem. Moreover,

time-series KPI computations are concerned with the data’s sample time,

instead of the system time of Stream events. The solution is to buffer

batches into a Channel, using some demand driven interface (which can

be composed), and coordinate related samples based off sample time. We
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call this solution Signals. Signals are optimal for point-wise computa-

tions; however, we will find that Signals are not flexible enough to express

signals with variable sampling rates and another abstraction is necessary.

The signals with variable sampling rates can be represented as Behaviors

which are related to Signal, but have a time parameter which allows for

re-sampling.

5.1 Signal

Signal is an applicative functor which implements demand-driven com-

putations. Signals can be composed with others using an app opera-

tor (Signal (a -> b) -> Signal a -> Signal b). They can be

created from Streams via a push2pull offering interoperability between

push-streams and pull-streams. Signals represent the real signals from IoT

devices, or the resulting computations based on signals or other computa-

tions. Listing 5.1 defines Signal and the applicative instance (via pure

and app).

1 class Signal {

2 // run :: (a -> IO()) -> IO()

3 constructor(run) { this.run = run; }

4 fmap = f => new Signal(k => this.run(x => k(f(x))));

5 static pure = a => new Signal(k => k(a))
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6 app = gx => new Signal(k => this.run(f => gx.run(x => k(f(x)))))

7 }

Listing 5.1: Definition of Signal

app is used to apply a Signal of a -> b to another Signal of a.

This operator is more powerful than fmap because it allows a mapping to

occur that within the Signal type. Signals themselves can be composed

with app which gives Signals enough power to express point-wise KPI

computations. Listing 5.2 shows an example power KPI calculation with

two input Signals voltageS and currentS. A curried multiplication

function is lifted into the applicative, and applied twice to the Signals.

1 const power = Signal.pure(x => y => zip(x, y).map([x, y] => x * y))

2 .app(voltageS)

3 .app(currentS);

Listing 5.2: Example power KPI using applicative interface

Streams can be converted to Signals via the push2pull operator.

The conversion uses a Channel to buffer events from the Stream. This

causes a source of back-pressure. If the Signal does not pull data at a rate

on average equal to the Stream’s push rate, data will consume memory until

the Signal’s rate increases or the Stream’s rate decreases. This issue is

addressed in the next section on Behaviors.

1 const push2pull = s =>
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2 AsyncM.liftIO(k => k(new Channel())).bind(c =>

3 s.run(x => c.write(x)).forkM().bind(p =>

4 AsyncM.pure(new Signal(k => c.read(k)))));

Streams can be converted to Signals via the reactimate operator.

reactimate takes an amount of delay to wait between pulling from the

input Signal, and produces a Stream who samples the Signal at that

rate.

5.1.1 Event Signals

Signals are concerned with the timing of the data instead of the timing of

events themselves. Events can be defined as Signals of time-value pairs

(Signal (Time, a)) where time is the sampling period. fetchE takes

a sample period dt, and a request, creates a Stream of values paired with

the sampling period, and finally converts that Stream to a Signal.

1 // fetchE :: Time -> (Time -> Stream (AsyncM a)) -> AsyncM (Event a)

2 const fetchE = dt => reqFun => fetchES(dt)(reqFun).push2pull()

3 // fetchES :: Time -> (Time -> Stream (AsyncM a)) -> Stream (Time, a)

4 const fetchES = dt => reqFun => reqFun(dt).fetch().fmap(x => [dt, x])

Listing 5.3: Definition of fetchE

Using fetchE allows computations to be conscious of how much time
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a sample represents. However, the data returned by fetchE could be im-

proved by unbatching it. If fetchE’s request function returns a batch of

samples, it should be converted into an Event Signal of samples instead of

batches (Signal (Time, a) instead of Signal (Time, [a])). This

allows the data to use the applicative interface completely, and to make re-

sampling data easier.

1 class Signal {

2 // unbatch :: Signal (Time, [a]) -> Signal (Time, a)

3 unbatch = () => new Signal(

4 k => {

5 this._run(([dt, lst]) => {

6 const a = lst.shift();

7 if (lst.length > 0) this.cache = [dt, lst];

8 k([dt, a])

9 })

10 }

11 )

12 _run = k => {

13 const cache = this.cache;

14 if (cache) {

15 this.cache = null;

16 k(cache)

17 }

18 else this.run(k);
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19 }

20 }

Listing 5.4: Extensions to Signal class to implement unbatch

unbatch takes a batched Event Signal, and creates an unbatched

Event Signal by iterating over the batch in order. The _run utility

function keeps a stateful cache of batch values which have not yet been pro-

cessed. In our pure functional version, Signal is made pure by returning

(a, Signal a). That is, running a Signal returns the value along with

a new Signal which continues the computation. In JavaScript, creating

so many additional object would be wasteful (for memory and garbage col-

lection) which is why we chose a stateful approach. Notice how the sample

period of the input Event Signal is propagated to the output Event

Signal (each value is wrapped with the same sample period as the batch).

5.2 Behavior

Behaviors, similar to Signals, are applicative functors which represent

KPI computations. They differ from Signals in the way that they can

adjust the sampling period dt for windowing and re-sampling. Listing 5.5

shows the definition of the applicative instance for Behavior.

1 class Behavior {
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2 // run :: Time -> (a -> IO()) -> IO()

3 constructor(run) { this.run = run; }

4 fmap = f => new Behavior(dt => k => this.run(dt)(x => k(f(x))))

5 static pure = a => new Behavior(_ => k => k(a))

6 app = bx => new Behavior(dt => k =>

7 this.run(dt)(f => bx.run(dt)(x => k(f(x)))))

8 }

Listing 5.5: Definition of Behavior

Computations can be expressed in terms of the Behavior’s app and

pure functions. Listing 5.6 shows the same power calculation seen in Listing

6.4, except with Behaviors. Notice how Behaviors are not concerned

with batches of data, so no zip is necessary on data before processing it,

which makes the code clearer.

1 const power = pure(x => y => x * y)

2 .app(voltageB)

3 .app(currentB);

Listing 5.6: A power calculation using Behavior

Behavior can be created by using a stepper function to summarize an

unbatched Event Stream (Signal (Time, a)) via a summary function

[(Time, a)] -> a. Listing 5.7 shows an implementation of stepper.

Note that Signal uses a shared state between unbatch and stepper with

the signal.cache list. This list propagates the remaining items to process
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in the Signal, which makes Signals not reusable (must be instantiated

for each use). This is a trade-off between performance and usability which

had to be made for JavaScript, but can be avoided in languages which have

cheaper costs for recursively constructing objects (such as Haskell). Also

note that the recursion of h requires an implementation of JavaScript which

optimizes recursive tail calls. Otherwise, an implementation could be written

which uses trampolining.

1 // stepper :: Signal (Time, a) -> ([(Time, a)] -> a) -> Behavior a

2 const stepper = signal => summary => {

3 const f = lst => (lst.length == 1) ? lst[0][1] : summary(lst);

4 const h = lst => dt1 => k => signal._run(([dt2, a]) => {

5 if (dt1 == dt2) k(f(lst.concat([[dt1,a]])))

6 else if (dt1 < dt2) {

7 k(f(lst.concat([[dt1,a]])));

8 signal.cache = [dt2-dt1, a];

9 } else h(lst.concat([[dt2,a]]))(dt1-dt2)(k);

10 });

11 return new Behavior (h([]));

12 }

Listing 5.7: Definition of stepper

Behaviors can be converted to Streams via the reactimate op-

erator. reactimate uses a Behavior, a delay (in which the resulting

Stream should pull data from the Behavior), and a sampling period dt.
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The result is a Stream of the sampling period with the value (Stream

(Time, a)). In an IoT system, reactimate is used for taking a KPI

computation (as a Behavior) and sending it to a visualization, or to a

database. The sampling period can be chosen which gives reactimate

the ability to choose the resolution of data to receive. Signals also have a

reactimate operator which provides a conversion into a Stream; however,

it does not allow for a sampling period parameter, as it is fixed.

1 // reactimate :: Behavior a -> Int -> Time -> Stream (Time, a)

2 const reactimate = b => delay => dt => {

3 const h = timeout(delay).bind(_ =>

4 ifAliveM.bind(_ =>

5 AsyncM.liftIO(k => b.run(dt)(k)).bind(a =>

6 AsyncM.pure(Stream.next(Maybe.just([dt, a]), h)))));

7 return Stream.next(Maybe.nothing, h)

8 }

Behaviors can be upsampled, downsampled, and windowed. upsample

allows for a Behavior’s sample rate to be increased by some factor. Up-

sampling at a higher resolution than the Stream provides can only provide

artificial values (e.g. repeating previous values) as seen in the behavior of

list (Behavior [a]) output type where the length is equal to the number

of repeated samples. To achieve higher sample rates of authentic data, a

Stream could be used which sends web-requests to devices to provide data
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at a higher rate (Section 6 handles this case). downsample decreases the

Behavior’s sample period by a factor. It uses a summary function (sim-

ilar to stepper) to implement the logic of down sampling, as some use

cases may require an averaging of values while others could take the first

or last sample. window uses a Behavior to create an Event Signal

of batches with the given size (first parameter), and stride (second parame-

ter). The stride indicates how many samples to skip between each window.

window is useful for computing a THD KPI or moving averages where an

exact time window is necessary. Listing 5.8 provides the type signatures (im-

plementations are omitted for brevity) for the upsample, downsample,

and window operators.

1 upsample :: Behavior a -> Int -> Behavior [a]

2 downsample :: Behavior a -> Int -> ([(Int, a)] -> a) -> Behavior a

3 window :: Behavior a -> Int -> Int -> Time -> Event [a]

Listing 5.8: Type signatures for upsample, downsample, and window

Behaviors allow for the sampling period of computations to be separate

from the sampling period of the captured data itself. This provides a layer of

abstraction where Streams are concerned with getting the appropriate data

at the devices full resolution, then Behaviors can re-sample the data at a

rate in which the KPI computations can handle without producing excessive

back-pressure in Channels. This re-sampling can be dynamic. For example,
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it could be based off of the throughput of data by counting the number of

incoming events of a Stream. We will see in the next section a design for

an IoT analytics system which implements this method of scaling.
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6 Use Case: IoT Analytics

Equipped with AsyncM, Stream, Signal, and Behavior we can address

the use case of an IoT analytics system, where remote IoT devices provide

access to their signals which can be accessed via web-requests. Those signals,

which are to be captured in parallel, should support multiple KPI compu-

tations (e.g. to check each device’s health). The resulting KPIs are then

stored in a database for archival, and visualized on a dashboard for real-time

display. Figure 6.1 shows the environment in which our IoT analytics sys-

tem will be placed in. There is a web-server which provides a /capture

endpoint which gives access to captured signals on several devices.

Figure 6.1: Block diagram of the IoT analytics system environment

We will use all of the components defined in this paper to pull data from
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the web-server via a buffered Stream (a Stream which uses a Channel).

Figure 6.2 shows a block diagram of the components involved of making a

request to the web-server, converting the request to a Stream, then to a

Signal, and using the applicative interface to compute the power of the

signal. We use a new function request to make requests to a web-server,

fetch to buffer requests in a Channel, push2pull to convert a Stream

to a Signal, and app to compute KPIs.

Figure 6.2: Block diagram of a power KPI

We demonstrate the composability of Signals by computing the THD of

a current signal and joining it with the power KPI Signal to create a stream

consisting of all our KPIs Stream (Power, THD). The current Signal

is converted to a Behavior by using a stepper function. A windowed com-

putation is run on the current Behavior to produce a Behavior of THD.

The Behavior THD is then converted to a Signal THD by batch, where

it can be combined into a single Signal with the power calculation (Signal

(Power, THD)). Finally, the Signal of KPIs can be reactimated into

a Stream.

A Stream of KPIs is the ideal abstraction to use when sending KPIs to
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Figure 6.3: Block diagram of a THD KPI

a database and visualization. A function send could be constructed which

produces a Stream that performs the side-effect of sending the data.

Figure 6.4: Sending KPIs to a database and visualization

As expressed in the introduction, there is an issue of back-pressure where

if the incoming sampling rate of signals is too high for a system to handle,

the KPI computations (specifically THD) may not be able to keep up with

the devices. Recall that the average of the output samples must be equal to

or less than the number of input samples. Otherwise memory usage grows

indefinitely. We address this problem with another primitive control which

drives the input Stream to ensure our system can scale back device sample

rates.
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6.1 Web Server

Our web server has one end-point /capture which accepts JSON requests

with a device_name, signal_name, sample_period, and window_size.

The device_name specifies which devices the server should capture a signal

from, signal_name specifies which signal to capture (e.g. voltage or cur-

rent), sample_period is the inverse of the sample rate, and window_size

is how many milliseconds of data to capture. Listing 6.1 shows an example

request (the details of the request function will be examined later) which

asks for the voltage of device “a” where the signal should be captured once

every ten milliseconds, over the course of a second. Once the capture is

complete, the server replies with one hundred samples worth of data.

1 // Request

2 request({

3 device_name: 'a',

4 signal_names: ['voltage', 'current'],

5 sample_period: 10,

6 window_size: 1000,

7 }, k);

8

9 // Response

10 { "voltage": <100 item list>, "current": <100 item list> }

Listing 6.1: An example request and response
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Our example server is presented in Python using the minimal web frame-

work, Flask, in Listing 6.2. The server simply accepts JSON requests, and

directs their parameters to a capture function. In a simulation system,

capture could run an electrical system simulation to generate signals. In

a testing system, capture could read previously captured electrical signals

from a file (or database). In a real-time system, capture could either have

direct access to signals via hardware or have an additional software layer

which buffers real signal data. In any case, the interface to capture could

remain the same. Depending on the robustness requirements of the captur-

ing processes, a request identifier (or timestamp) could be present with each

request which allows for the server to cache samples for the client in the event

that the client missed samples due to errors (e.g. client crashed, network link

disconnected).

1 from flask import Flask, request, jsonify

2 from iot import capture

3

4 app = Flask(__name__)

5

6 @app.route('/capture', methods=['POST'])

7 def signals():

8 jo = request.json

9 device_name = jo['device_name']

10 signal_names = jo['signal_names']
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11 sample_period = jo['sample_period']

12 window_size = jo['window_size']

13 signals = capture(device_name, signal_names, \

14 sample_period, window_size)

15 return jsonify(dict(zip(signal_names, signals)))

Listing 6.2: Web server which captures IoT signals

6.2 External Sources

Application of our system requires that we define several new utility functions

which will act as a bridge between our library and external sources (the web

server, database, and visualization). post, defined in Listing 6.3, uses the

JavaScript fetch API (an HTTP client) to make JSON requests a web-

server. Specializations are made for request which sends data to our web

server (as defined above), and two more for sending to the database and

visualization. It is expected that body has the appropriate fields that the

web server accepts. k is a continuation to call once a JSON response is

received which contains the signal data.

1 const post = url => body => k => {

2 fetch(url, {

3 method: 'POST',

4 headers: {
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5 'Content-Type': 'application/json',

6 },

7 body: JSON.stringify(body),

8 }).then(r => r.json().then(x => k(x)));

9 }

10 const request = post(CAPTURE_ENDPOINT_URL);

Listing 6.3: Definition of web request utility functions

6.3 Point-wise KPIs

Point-wise KPI calculations can be computed by creating a Stream of re-

quests (which return batches of data), converting them to either Signals

or Behaviors, then applying the computation with the app operator. In

our case, each request can contain more than one signal. For example, re-

questing two signal names for voltage and current will yield two signals in

a signal request (of type Stream ([Voltage], [Current])). When

converted to a pull-stream, this format does not allow the applicative in-

stance of Signal or Behavior to express the computation, so a utility

function push2pullN is defined in Listing 6.4. push2pullN takes a list

of signal names, a request (which returns some object who’s fields match the

given signal names), and returns an AsyncM of list of Signal. Now with

two Signals, the applicative instance regains its composability (as Signal
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Voltage and Signal Current can be combined naturally, while Signal

([Voltage], [Current]) cannot)).

1 const powerKPI = req_stream =>

2 push2pullN(['voltage', 'current'])(req_stream)

3 .bind(([voltageS, currentS]) =>

4 AsyncM.pure(Signal.pure(x => y =>

5 zip(x)(y).map(([x, y]) => x * y))

6 .app(voltageS)

7 .app(currentS)));

8 }

9 // push2pullN :: [String] -> Stream Object -> AsyncM ([Signal a])

10 const push2pullN = names => s =>

11 AsyncM.liftIO(k =>

12 k(range(names.length)

13 .map(_ => new Channel())))

14 .bind(channels =>

15 s.run(x => zip(names)(channels)

16 .map(([n, c]) => c.write(x[n]))

17 ).forkM().bind(p =>

18 AsyncM.pure(channels.map(c => new Signal(k => c.read(k))))))

19 const zip = a1 => a2 => a1.map((k, i) => [k, a2[i]]);

20 const range = n => {

21 let xs = [];

22 for (let i=0; i < n; ++i) xs.push(i);

23 return xs;
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24 };

Listing 6.4: Definition of powerKPI

powerKPI takes a request stream to the /capture endpoint, con-

verts the response to two Signals (a Signal Voltage and a Signal

Current), applies the Signals together using app (with a zipped mul-

tiplication function on the entire batch at a time), and finally returns a

Signal Power.

Figure 6.5 defines driver code which uses powerKPI to compute the

power of device “a” by fetching requests with a AsyncM requestM (a wrap-

per around request). A clock sends requests to the web server for batches

of one second long data (with a sampling period of ten milliseconds). fetch

is used on the request Stream for its buffering capabilities, so if the request

takes longer than one second to complete due to network latency, requests

are run simultaneously to save time. powerA is a Signal Power, which

can be reactimated into a Stream, and sent to an external source (e.g.

database) to complete the end-to-end process of this KPI.

1 const requestM =

2 device_name => signal_names =>

3 sample_period => window_size =>

4 new AsyncM(p => k =>

5 request({ device_name, signal_names,
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6 sample_period, window_size })(k));

7 const clock = timeout(1000).repeatS();

8 const requestS = req => clock.fmap(x => req);

9 const deviceS = req => requestS(req).fetch();

10 const requestA = requestM('a')(['voltage', 'current'])(10)(1000);

11 const powerA = powerKPI(deviceS(requestA));

Listing 6.5: Computing a power KPI using powerKPI

6.4 Windowed KPIs

Windowed computations be expressed with either Signals or Behaviors

using their applicative interfaces. Behaviors have an advantage that when

driven by a clock, it can produce batches with variable sample period (seen in

Listing 6.7), contrasted with Signals which operate directly on batches of

data. Signals can be more optimal for computations which strictly require

fixed batch sizes (which don’t scale with the system’s performance) or do not

rely on operating on time windows.

Listing 6.6 defines thdE, an AsyncM (Signal (Time, THD)) which

performs a THD calculation over a window of 1000 samples, which skips

1000 samples per window (due to the stride value), with a sampling period

of 100 microseconds. A utility function requestCurrent is defined which

converts a request to retrieve the current signal from the /capture endpoint
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to a simple Signal Current. This example uses a fixed driver which has a

sampling period of 100 microseconds. We will see in Section 6.5 an approach

to make the sampling-period a variable.

1 const requestCurrent = dt =>

2 requestS(requestM('b')(['current'])(dt)(1000))

3 .fmap(m => m.fmap(o => o['current']));

4 const driver = Stream.fetchE(0.1)(requestCurrent);

5 const currentB = driver.fmap(s =>

6 s.unbatch().stepper(x => x[0]));

7 const thdE = currentB.fmap(b =>

8 b.window(1000)(1000)(0.1).fmap(thd))

Listing 6.6: Definition of thdE

6.5 Scaling Sampling Rate

Using Behaviors allows for expressing computations over variable sampling

periods. This enables for windowed computations to remain consistent even

when the input Event Signal changes its sampling rate. speedControl

is a Stream primitive which allows a Stream to scale its output rate based

on the Stream’s performance. It uses another primitive, speed, to fold

over an Event Stream’s time, to compute the amount of time an Event

Stream has processed. A time parameter n is accepted which represents
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how much time the Stream should process. A data rate is computed by

dividing the amount of time processed by n.

With the data rate provided by speed, speedControl can be defined

which takes an additional function Double -> Int to determine if the

rate is too slow, too fast, or acceptable. The function parameter takes the

data rate, and returns -1 if the rate is too slow, 1 if too fast, or 0 if it is

acceptable. speedControl uses this function to create a AsyncM Bool

which is true when the Stream is operating too fast, and false when it

is too slow. As long as the Stream is operating at an acceptable rate, the

AsyncM won’t continue as no action must be taken. The AsyncM Bool can

be used in the system to modify the amount of input data or the resolution

of the data (depending on which effect is desired).

A more automatic, but less powerful primitive, control, can be used

for monitoring the speed of web requests and responses, and adjust sampling

periods to reach a stable throughput. The request and response Streams are

folded to count the number of events emitted from the input and output

over some time window. Based on this mechanism, Streams can dynamically

alter their sampling periods when performance is not sustainable because

control has access to a request function which parameterizes the sampling

period.

control takes a request function (Time -> (Stream (AsyncM a))),
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a duration, an initial sampling period, an adjustment function (Bool ->

Time -> Time), and returns a Stream which automatically adjusts its

own sampling period based off the input throughput and output through-

put. Adjustments are made based off of the given adjust function, which

receives a boolean indicating if the output rate is less than the input rate

(which means an unsustainable request rate is taking place), the current sam-

pling period, and returns a new sampling period. A simple adjust function

is to multiply or divide the sample period by some constant factor (in this case

1.1), so that incrementally the sampling period moves towards a sustainable

value. The duration tells control how long to measure throughput until

adjusting. The new driver function can be used to replace the previous

THD KPI driver from Listing 6.6 to provide a scalable computation.

1 const driver = dt0 => Stream.fetchES(dt0)(requestCurrent)

2 .multicast().bind(([s1, p1]) => {

3 return s1.push2pull().liftS().bind(g => {

4 const b = g.unbatch().stepper(avg);

5 const f = dt => {

6 const thdS = b.windowing(1000)(1000)(dt).fmap(thd).reactimate(dt);

7 return thdS.multicast().bind(([s2, p2]) => {

8 return Stream.next(Maybe.just(s2),

9 s2.speedControl(dt)(x => x < 1.0 ? -1 : 0).bind(_ => {

10 p2.cancelP();

11 return AsyncM.pure(f(dt * 1.5));
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12 }))

13 });

14 };

15 return f(dt0).join();

16 });

17 });

Listing 6.7: Alternate driver for thdS that scales to Stream performance

6.6 External Sinks

The final step of the IoT analytics platform is to send data to its external

sinks (e.g. databases, or visualizations). Listing 6.8 defines kpiS, a function

which combines the KPIs we defined in the previous sections (power and

THD) into a single JavaScript object to create a Stream Object. Notice

how the Signals are first combined using the app function, and then con-

verted into a Stream using reactimate. sendKPIs is the final interface

function which takes a send function of type Object -> IO(), which

receives each processed batch of KPIs and sends it to the relevant external

sinks.

1 const kpiS = powerA.bind(power =>

2 thdE.bind(thd =>

3 AsyncM.pure(
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4 Signal.pure(x => y => { 'power': x, 'thd': y })

5 .app(power)

6 .app(thd)

7 .reactimate(1000))));

8

9 function sendKPIs(send) {

10 kpiS.run(Progress.nil())(send)

11 }

Listing 6.8: Definition of kpiS and sendKPIs
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7 Related Work

FRP [10] is a general framework for continuously changing behaviors. The

power of FRP roots in its precise treatment of time, but unmitigated ac-

cess to time leads to practical problems such as space/time leaks, violation

of causality, and the difficulties in interacting with the outside world. A

value in the present cannot depend on events of the future or have arbitrary

memory of the past. The precise timing of events also limits concurrency,

where asynchronous events occur in uncertain orders. Time is also relative

depending the frame of reference. For IoT applications, the data time when

the sensor signals are captured is different from the system time when the

signals are analyzed. The proposed model avoids some of the problems in

the treatment of time by separating data time from system time. Our push-

stream handles asynchronous events in system time but it cannot access time

like a behavior, has no arbitrary memory of the past, or depends on events

of the future. The primary function of push-stream is to push IoT data to

a buffer from which a pull-signal can pull data. The pull-signal has access

to data time like a behavior, but it is first order and does not interact with

asynchronous events. Pull-signals using the same data time are driven by the

same clock to pull data synchronously from their respective buffers. Space
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leaks may occur in the buffers, though it can be controlled through dynamic

switching of the push-streams to ensure that the IoT data is processed in

real-time.

Push vs Pull Classic FRP is pull-based, which detects events through

polling in discrete time steps with the implication that the event latency

depends on the step size and the behaviors are checked for possible switching

every time step. Push-based FRP such as FrTime [6], Flapjax [20], Scala

React [19], ReactiveX [1], and Elm [8] wait on event occurrences and only

run when an event occurs. Though this provides timely responses to events

and avoids re-computation when events do not occur, there may be glitches

where the events propagated from the same source are not evaluated the same

time. Solutions to this problem usually involve some kind of central planner

that oversees the event dispatching or propagation. For example, in Elm,

the first-order signals form a graph where a global dispatcher takes events

from their sources and push updates through the graph. In Flapjax, where

a dataflow graph is used, the graph nodes are updated based on topological

order. In Monadic FRP [26], a program runs in a loop where at each iteration,

it collects a set of future events, uses blocking IO to wait for one of the events

to occur, and then starts the next iteration with the event. These types of

solutions add complexity to their implementations. Our push-stream does
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not prevent glitch in itself, but the data events pushed to the pull-signals will

not have glitches when they are driven by the same clock.

Push-Pull Our work was influenced by push-pull FRP [9], which was a

modernization of Fran [10]. Push-pull FRP models a behavior as a reactive

time function, where a push-event can cause a pull-based behavior to switch

to another one. Reactive is recursively defined as a value followed by a

future Reactive where the racing of future values is implemented with

threads. Our push-stream shares the same structure as Reactive and its

monadic interface. The difference is that we implement the future value

using AsyncM. Racing future values with AsyncM is lightweight, does not

involve threads so that it is suitable for dynamic languages with event loops.

Moreover, a stream is also run as an AsyncM, which can be shared through

multicast.

Variations of classic FRP First-class behaviors can lead to space-time

leaks and wasteful re-computation. Jeltsch [12] used phantom types to tie

discrete push-signals to specific start time to avoid restarting a signal after

switching and used memoization to avoid duplicated computation of signals.

The paper’s motivation is related to stateful signals such as the one that

counts network traffic. Such a signal is recomputed if used in multiple places

and gets restarted after switching. Our push-stream does not prevent this
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type of issue through types since our model is aimed for dynamic languages.

Instead, we can multicast a stream so that multiple uses will not cause

re-computation, and switching will not cause restart. Krishnaswami [14]

used a static approach to ensure that past values cannot be accessed and

Patai [22] achieved similar goals by distinguishing streams and streams of

streams at the type level. FRP Now [25] provided a variation to Fran that

does not cause space leaks and also supports asynchronous IO. This approach

erases past values with an optimization based on mutable memory. It handles

asynchronous IO in a behavior by running the IO on a new thread, which

passes the results as an event to the next round of the clock that runs the

behavior.

Arrowized FRP Another type of solution to the space-time leak problem

is to use the Arrows abstraction [18]. Yampa is an arrowized FRP variant

which composes signal functions using arrow combinators where signals are

not first-class values. A drawback of the arrowized approach is that it re-

quires inputs and outputs be threaded throughout the entire program, and

imposes a point-free style of programming [7]. Scalable FRP [4] improved

on Yampa by providing an imperative implementation which has most of the

expressiveness of Yampa with better performance. Arrowized FRP has been

generalized into a monad stream function in Ivan Perez’s Dunai [23], which
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can model FRP signals and stateful reactive programming by stacking dif-

ferent monads. A later version called Rhine [3] introduced type-level clocks

for processing data at different rates, where synchronous processes are run

with an atomic clock on signal functions while asynchronous processes are

run with schedules on resampling buffers. Rhine statically checks for correct

composition involving clocks, and concurrent data is processed by threads

that pass results through channels.

Dataflow Languages Before FRP, dataflow languages (e.g. Lucid [27])

and synchronous dataflow languages (e.g. Lustre [24] and SIGNAL [15])

provided an efficient and correct solution to real-time processing of signals.

However, they are limited in power, as their dataflow graphs are static, and

they do not support a form of first-class signals. In these models, signals use

implicit time based on ordering of events, rather than an explicit continuous

time or discrete time interval. Without switching operator, adjusting sample

rates to external factors is not possible with these languages.

Concurrency monad The use of a continuation monad for a form of

concurrency was demonstrated by Claessen [5] in the context of Haskell. This

idea was later adopted by Li and Zidancwic [16] in their design for scalable

network services that provides type-safe abstractions for both events and

threads. They use a continuation monad to build traces that are scheduled
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by event loops. This work uses a continuation monad to provide concurrency

control for asynchronous IO that is run by event loops or threads.
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8 Conclusion

We have created a model of reactive programming structured around IoT use

cases by layering multiple composable abstractions on top of each other. First

AsyncM was presented, offering a foundation for representing asynchronous

computations. We demonstrated how AsyncM’s monadic interface is useful

for combining chains of bind applications and other AsyncM together to

create new behavior. The cancellation token structure which is implicit to

AsyncM was presented, which allows AsyncM to have liveliness checkpoints

by use of ifAliveM, and to race each other with anyM (among many other

primitives).

We presented our design of push-streams with the Stream class. Streams

provide low latency push capabilities where Emitters are used to broadcast

events throughout the program. We defined a monadic instance for Stream

which used a primitive called “switching” to add a dynamic structure to the

program’s dataflow graph. We showed how this behavior is well-behaved

through its satisfaction of the monad laws.

Two pull-based abstractions (Signal and Behavior) were presented

to serve two discrete use cases. Signals are for computations on batches

of data which do not use the sample’s time explicitly (such as point-wise
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computations), and Behavior are for better abstracting time-bound com-

putations (such as windowed computations). We demonstrated how both are

applicative functors which can be composed via an app operator.

Finally, we applied our model to a real-world use case of an IoT analytics

system. Primitives were added to our model (control and speedControl)

for scaling the KPI computations with the performance of the system (to

avoid excessive back-pressure). More primitives were added for interfacing

with external sources and sinks, acting as a bridge between our model and

the outside world (e.g. web servers, databases, and visualizations). We

outlined the process from data capture to data display and storage, where

data is fetched from external sources as a Streams of input, is converted to

Signals and Behaviors (where KPIs are computed), then converted to a

Stream of KPIs, and finally, sent to external sinks.
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