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ABSTRACT

This dissertation studies two machine learning problems: 1) clustering of independent and

identically generated random sequences, and 2) dimensionality reduction for classification

problems.

For sequence clustering, the focus is on large sample performance of classical clustering

algorithms, including the k-medoids algorithm and hierarchical agglomerative clustering

(HAC) algorithms. Data sequences are generated from unknown continuous distributions

that are assumed to form clusters according to some well-defined distance metrics. The

goal is to group data sequences according to their underlying distributions with little or

no prior knowledge of both the underlying distributions as well as the number of clusters.

Upper bounds on the clustering error probability are derived for the k-medoids algorithm

and a class of HAC algorithms under mild assumptions on the distribution clusters and

distance metrics. For both cases, the error probabilities are shown to decay exponentially

fast as the number of samples in each data sequence goes to infinity. The obtained error

exponent bound has a simple form when either the Kolmogrov-Smirnov distance or the

maximum mean discrepancy is used as the distance metric. Tighter upper bound on the

error probability of the single-linkage HAC algorithm is derived by taking advantage of the

simplified metric updating scheme. Numerical results are provided to validate the analysis.

For dimensionality reduction, the focus is on classification problem where label infor-

mation in the training data can be leveraged for improved learning performance. A su-

pervised dimensionality reduction method maximizing the difference of average projection

energy of samples with different labels is proposed. Both synthetic data and WiFi sensing

data are used to validate the effectiveness of the proposed method. The numerical results

show that the proposed method outperforms existing supervised dimensionality reduction

approaches based on Fisher discriminant analysis (FDA) and Hilbert-Schmidt independent



criterion (HSIC). When kernel trick is applied to all three approaches, the performance

of the proposed dimensionality reduction method is comparable to FDA and HSIC and is

superior over unsupervised principal component analysis.
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1

CHAPTER 1

INTRODUCTION

This chapter introduces two machine learning problems that have broad applications in

various fields: sequence clustering and supervised dimensionality reduction. For the for-

mer, sequences are assumed to be generated from unknown continuous distributions and

the goal is to group sequences according to some well-defined distribution metrics. For the

latter, dimensionality reduction is achieved by taking into account the label information to

preserve maximum discriminating information for classification problems.

1.1 Sequence clustering

Sequence clustering is of interest to a broad range of applications. Examples include mar-

ket segmentation [1], image clustering [2, 3], and meteorological parameters character-

ization [4–6]. This dissertation considers clustering of sequences generated by unknown

continuous distributions. Each sequence consists of independent and identically distributed

(i.i.d.) samples. The underlying distributions for the sequences are assumed to form clus-

ters with well-defined distance metrics for distributions. Distributions belonging to the

same cluster are close to each other whereas distributions belonging to different clusters are

assumed to be well separated from each other. For sequence clustering, while Euclidean
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distance and other vector norms have often been used [7,8], metrics that characterize distri-

bution distances are more relevant for the intended clustering problem when the underlying

generative distributions are of concern.

The above clustering problem belongs to the general problem of unsupervised learn-

ing [9, 10]. There are generally two classes of approaches: partitional and hierarchical.

Partitional clustering algorithms include k-means [11–13] and k-medoids [14–16] cluster-

ing. They usually start with some initial cluster centers, often randomly chosen, assign

data sequences to cluster centers, update cluster centers, and repeat the process until con-

vergence occurs.

Hierarchical clustering algorithms include both hierarchical agglomerative clustering

(HAC) algorithms and hierarchical divisive clustering (HDC) algorithms. HAC algorithms

start with singletons and proceed to merge clusters having the smallest pairwise distance

[17]. HDC algorithms, on the other hand, start with one cluster consisting of all data

sequences and proceed to split sequences into clusters [18, 19].

While the knowledge of the number of clusters is usually required for partitional clus-

tering algorithms, this is not necessary for hierarchical clustering algorithms. However, the

threshold for merging or splitting is required for hierarchical clustering algorithms. In the

following, we review existing results in both partitional and hierarchical clustering algo-

rithms.

1.1.1 Partitional-based clustering algorithms

The partitional-based clustering algorithms usually require the knowledge of the number

of clusters and they differ in how the initial centers are determined. One reasonable way

is to choose a data sequence as a center if it has the largest minimum distances to all the

existing centers [20–22]. Alternatively, all the initial centers can be randomly chosen [6].

With the number of clusters unknown, there are typically two alternative approaches for

clustering. One starts with a small number of clusters, e.g., 1, which is an underestimate of
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the true number, and proceed to split the existing clusters until convergence [22, 23]. The

authors in [23] assumed a maximum number of clusters and the threshold for clustering

depended on a pre-determined significance level of the two sample kolmogorov-smirnov

(KS) test whereas the algorithm proposed in [22] did not assume a maximum number of

clusters and the threshold for clustering was a function of the intra-cluster and inter-cluster

distances. Alternatively, one may start with an overestimated the number of clusters, e.g.,

every sequence is treated as a cluster, and proceed to merge clusters that are deemed close

to each other [22]. The algorithms in [6, 20, 23] were all validated by simulation results

without carrying out an analysis of the error probability.

There are some key differences between the k-means algorithm and the k-medoids al-

gorithm. The k-means algorithm minimizes a sum of squared Euclidean distances. Mean-

while, the k-medoids algorithm assigns data sequences as centers and minimizes a sum of

arbitrary distances, which makes it more robust to outliers and noise [24, 25]. Moreover,

the k-means algorithm requires updating the distances between data sequences and the cor-

responding centroids in every iteration whereas the k-medoids algorithm only requires the

pairwise distances of the data sequences, which can be computed before hand. Thus, the

k-medoids algorithm outperforms the k-means algorithm in terms of computational com-

plexity as the number of sequences increases [26].

Most prior research focused on computational complexity analysis, whereas the error

probability and the performance comparison of different clustering algorithms were typ-

ically studied through numerical experiments [15, 16, 26, 27]. This dissertation attempts

to theoretically analyze the error probability for the k-medoids algorithm especially in the

asymptotic region. Furthermore, in contrast to previous studies, which frequently used vec-

tor norms as the distance metric (e.g., Euclidean distance), our study adopts the distance

metrics between distributions for clustering in order to capture the statistical models of data

sequences considered in this dissertation. This formulation based on a distributional dis-

tance metric is uniquely suited to the proposed clustering problem, where each data point,
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i.e., each sequence, represents an empirical probability distribution and each cluster is a

collection of distributions that are close to each other with respect to a suitably selected

distribution metric.

1.1.2 Hierarchical clustering algorithms

Hierarchical clustering algorithms include both hierarchical agglomerative clustering (HAC)

algorithms and hierarchical divisive clustering (HDC) algorithms. HAC algorithms start

with singletons and proceed to merge clusters having the smallest pairwise distance [17].

HDC algorithms, on the other hand, start with one cluster consisting of all data sequences

and proceed to split sequences into clusters [18, 19]. The knowledge of the number of

clusters is not necessary for hierarchical clustering algorithms. However, the threshold for

merging or splitting is required for hierarchical clustering algorithms.

HAC algorithms can be further divided into two groups - linkage-based algorithms and

centroid-based algorithms. Linkage-based algorithms determine clustering using pairwise

distances between sequences; centroid-based algorithms on the other hand rely on dis-

tances between cluster centroids. Examples for linkage-based algorithms include single-

linkage (SLINK) [28], complete-linkage (CLINK) [29], weighted pair group method with

arithmetic mean (WPGMA) and unweighted pair group method with arithmetic mean (UP-

GMA) [30]. Centroid-based clustering algorithms include unweighted pair-group method

centroid (UPGMC) and weighted pair-group method centroid (WPGMC) [31]. For both

linkage-based and centroid-based HAC algorithms distances between clusters are updated

in a recursive manner [32] called Lance-Williams Dissimilarity (LWD) update formula and

the difference between these two classes are reflected by different weights in the LWD

update.

There has been prior work on the consistency for sequence clustering using HAC al-

gorithms. For example, in [33], the performance of HAC algorithms in the asymptotic

regime given Gaussian mixture model is analyzed. The information-theoretic threshold for
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clustering data sequences generated from Gaussian distributions with different means and

identical variance is investigated in [34], where the difference between means shrinks as

sample size increases. In [35], clustering time series generated from stationary ergodic dis-

tributions is considered where the sequence does not need to be independent and identically

distributed (i.i.d.). The proposed clustering algorithms therein are shown to be consistent.

The trade-off is that a single distribution is assumed for each cluster; this is different from

the current work where each cluster consists of multiple distributions. We note that a pop-

ular approach to analyze HAC algorithms is to define and subsequently minimize a cost

function [36,37]. With sequence clustering, error probability appears to be a natural choice

instead of any specialized cost functions.

1.2 Supervised Dimensionality Reduction

Principle component analysis (PCA) is a classical method for unsupervised data dimen-

sionality reduction approach [38]. PCA searches a low-dimension linear subspace approx-

imation of original data that preserves the maximum variation. However, classical PCA is

inherently unsupervised; finding the best linear approximation by PCA does not take into

account the label information associated with data when applied to supervised learning

such as classification problems [39].

Supervised dimensionality reduction (SDR) for classification has attracted a lot of re-

search interest in recent years [40–54]. For example, if some components of the original

samples are highly correlated with labels, then a reasonable way for dimensionality reduc-

tion is to compute the correlation between every component and the labels and compare it

with a pre-determined threshold [40]. Only components corresponding to the correlation

exceeding the threshold are kept. PCA can be then applied to the selected components for

further dimensionality reduction. The method proposed in [40] has some drawbacks. First,

it does not work when the number of classes exceeds 2. Second, the components excluded
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by the threshold may still contain useful information for classification. A iterative version

of the method is then proposed in [41], which choose one component in each iteration. The

influence of the newly selected component is then subtracted from the original samples.

The next component is then selected in the same manner.

More sophisticated approaches are also proposed for SDR. Some existing works are

shown to be equivalent to (generalized) eigenvalue problems. For instance, Fisher dis-

criminant analysis (FDA) finds the subspace that preserves the maximum difference of

projected empirical means with different labels normalized by the sample variance [42].

The subspace obtained by FDA is always (L− 1)-dimensional, where L is the number

of classes. The performance of FDA suffers when 1) the empirical means of different

classes are close to each other or 2) some class consists disjoint clusters, i.e., data become

multi-modal [43]. Local FDA is then proposed for the multi-modal case [44] which pre-

serves the structure of local data. Another drawback of FDA is that potential information

loss may occur given large sample size and small L. Alternatively, some works focus on

maximizing the dependency between projected samples and labels. The author in [45] pro-

posed an SDR approach which maximizes Hilbert-Schmidt independence criterion (HSIC)

between samples and labels. The subspace obtained by HSIC-based SDR is at most L-

dimensional, which implies potential information loss given large sample size and small L

as well. This problem can be alleviated by modifying the kernel matrix of labels [46, 47].

However, increasing the rank of the kernel matrix of labels may reduce the dependency

between samples and labels. The HSIC-based SDR is suitable for cases where the sample

dimension is much larger than the sample size, e.g., biomedical image processing [48].

One advantage shared by SDR approaches equivalent to (generalized) eigenvalue problems

is that the subspaces with different dimensions are obtained from the same unitary matrix

obtained by eigenvalue decomposition. This enables adaptive selection of the number of

features without the need to recompute the eigen-decomposition.

There are other SDR approaches that can not be formulated as eigen decomposition
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problems [49–54]. They usually do not have a closed-form solution and requires repeating

the SDR procedure if the number of selected features changes. In [49], the author proposed

an approach which jointly considers SDR and classification for a pre-determined subspace

dimension. The projection matrix is obtained through jointly minimizing the approxima-

tion error and a loss function related to classification error. In [50], the distance correlation

is used to characterize the dependency between the samples and the labels. The objective

function, depending on the pairwise distance of samples and labels, is also equivalent to an

eigenvalue problem. However, the constraint depends on the pairwise distance matrix of

the samples. In [51], a probability-based SDR approach is proposed based on the assump-

tion that data samples follow one of the common distributions such as Gaussian, heavy-tail

or linear. The cost function depends on the joint probability distributions in the projection

and response spaces. The projection matrix is solved by optimization methods. In [52], a

modified supervised distance preserving projection (SDPP) initially introduced in [53] is

proposed which incorporates the total variance of the projection and preserves the global

structure simultaneously. One can also apply neural network for SDR. A centroid-encoder

which is a generalized auto-encoder is proposed in [54].

This dissertation will focus on SDR approaches that can be transformed into a (gener-

alized) eigenvalue problem.

1.3 Scope of Dissertation and Summary of Contribu-

tions

The scope of the dissertation and its contributions are summarized in this section.

1.3.1 Scope of Dissertation

For sequence clustering, we focus on large sample performance and establish exponential

consistency of a number of classical clustering algorithms including the k-medoids algo-
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rithm and HAC algorithms. Data sequences are generated from unknown continuous distri-

butions that are assumed to form clusters according to some well-defined distance metrics.

The goal is to group data sequences according to their underlying distributions with little or

no prior knowledge of both the underlying distributions as well as the number of clusters.

Upper bounds on the clustering error probability are derived for the k-medoids algorithm

and a class of HAC algorithms under mild assumptions on the distribution clusters and

distance metrics. For both cases, the error probabilities are shown to decay exponentially

fast as the number of samples in each data sequence goes to infinity. The obtained error

exponent bound has a simple form when either the KS distance or the maximum mean

discrepancy (MMD) is used as the distance metric. Tighter upper bound on the error prob-

ability of SLINK algorithm is derived by taking advantage of the simplified metric updating

scheme. Numerical results are provided to validate the analysis.

For supervised dimensionality reduction, we attempt to address deficiency of several

existing approaches. Specifically, a supervised dimensionality reduction method maximiz-

ing the difference of average projection energy of samples with different labels is proposed.

Both synthetic data and WiFi sensing data are used to validate the effectiveness of the pro-

posed method. The numerical results show that the proposed method outperforms existing

supervised dimensionality reduction approaches based on FDA and HSIC as well as PCA.

When kernel trick is applied to all these approaches, the performance of the proposed

dimensionality reduction method is comparable to FDA and HSIC and is superior over

unsupervised principal component analysis.

1.3.2 Summary of contributions

The contribution of this dissertation is summarized as follows.

• For data sequences generated from distributions satisfying some simple assumptions,

the k-medoids algorithm is shown to be exponentially consistent. That is, the error

probability of clustering algorithms decays exponentially fast as the sample size in-
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creases. The exponential consistency is established with both known and unknown

number of clusters.

• For both linkage-based and centroid-based HAC algorithms, exponential consistency

is established when the number of clusters is unknown. While the results for these

two HAC algorithms differ, the analysis is unified as both these algorithms conform

to the Lance-Williams dissimilarity (LWD) update.

• A new supervised dimensionality reduction method is proposed. The new approach

maximizes the difference of the average energy in the subspace between data with

different labels. The proposed method is shown to outperform existing dimensional-

ity reduction approaches on both synthetic data and WiFi sensing data [55].

• A kernelized version of the proposed SDR method is also developed. Numeri-

cal comparison of the kernelized versions demonstrate that the proposed method

achieves similar performance to kernelized FDA and HSIC while significantly out-

perform kernelized PCA.



10

CHAPTER 2

SEQUENCE CLUSTERING BY

K-MEDOIDS ALGORITHM

This chapter focuses on asymptotic performance study of sequence clustering using the k-

medoids algorithm. Two commonly used distribution metrics, the KS distance and MMD,

are introduced, along with some relevant properities. The upper bound on the error proba-

bility of k-medoids algorithm with a known number of clusters is derived, followed by par-

allel results of the clustering algorithms with an unknown number of clusters. The derived

upper bounds are shown to decay exponentially as the same size increases, establishing the

exponential consistency of the k-medoids algorithm. The simulation results of k-medoids

algorithm under the KS distance and MMD are provided in Section 2.4.

2.1 System Model and Preliminaries

2.1.1 Clustering Problem

Suppose there are K distribution clusters denoted by Pk for k = 1, . . . , K, where K is

fixed but unknown. Define the intra-cluster distance of Pk and the inter-cluster distance
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between Pk and Pk′ for k 6= k′ to be

d (Pk) = sup
pi,pi′∈Pk

d (pi, pi′) ,

d (Pk,Pk′) = inf
pi∈Pk,pi′∈Pk′

d (pi, pi′) ,

(2.1)

where d (·, ·) is a suitably defined distribution metric. Thus d (Pk) and d (Pk,Pk′) are

respectively the diameter of Pk and the distance between Pk and Pk′ . Define further

dL = max
k=1,...,K

d (Pk) ,

dH = min
k 6=k′

d (Pk,Pk′) ,

Σ = dH + dL,

∆ = dH − dL.

(2.2)

Furthermore, when specific distance metric is used, subscript reflecting the distance met-

ric will be added, e.g., for the KS distance, dks, dL,ks, dH,ks, Σks and ∆ks represent the

corresponding quantities defined in (2.1) and (2.2).

Suppose Mk data sequences are generated from distributions in Pk, hence a total of

M :=
∑K

k=1Mk sequences are to be clustered. Each sequence xk,jk = [xk,jk [1], . . . ,xk,jk [n]]

consists of n i.i.d. samples generated from pk,jk ∈ Pk for k = 1, . . . , K and jk ∈

{1, . . . ,Mk}. Note that pk,jk’s are not necessarily distinct for the same k, i.e., xk,jk’s can

be generated from the same distribution from cluster k. Additionally, all sequences are

assumed to have equal length; our analysis can be easily extended to the case with different

sequence lengths by replacing n with the minimum sequence length.

We make the following assumptions on distribution clusters and on the distance metrics

used in clustering.
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Assumption 1. The dL and dH defined in (2.2) satisfies

dL < dH . (2.3)

Therefore, inter-cluster distances are greater than intra-cluster distances, ensuring the

clustering problem to be well defined.

Assumption 2. For any distribution clusters {P1, . . . ,PK}, any length-n sequences xk,jk ∼

pk,jk , xk,j′k ∼ pk,j′k and xk′,jk′ ∼ pk′,jk′ , where k 6= k′, and sufficiently large n, the following

inequalities hold for any dth with dL < dth < dH:

P
(
d
(
xk,jk ,xk′,jk′

)
≤ dth

)
≤ a1e

−b1n, (2.4a)

P
(
d
(
xk,jk ,xk,j′k

)
> dth

)
≤ a2e

−b2n, (2.4b)

P
(
d(xk,jk ,xk,j′k) ≥ d(xk,jk ,xk′,jk′ )

)
≤ a3e

−b3n, (2.4c)

where ai’s are some constants independent of distributions, bi’s (> 0) is a function of dth

and n is the sample size.

Assumption 2 relates to the concentration properties of the distance metric d(·, ·) and

is completely independent of the distribution clusters. Eq. (2.4a) states that the probability

that the distance between two sequences generated from distributions belonging to different

clusters is smaller than dH decays exponentially fast. Eq. (2.4b) states that the probability

that the distance between two sequences generated from distributions belonging to the same

cluster is greater than dL decays exponentially fast. Eq. (2.4c) states that the probability

that a sequence is closer to a sequence from a different cluster than to a sequence of the

same cluster decays exponentially fast.

A clustering error occurs if 1) any sequences generated from different distribution clus-

ters are assigned to the same cluster, or 2) sequences generated by the same distribution

cluster are assigned to more than one cluster. A clustering algorithm is said to be consistent
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if for any 0 ≤ dL < dH ,

lim
n→∞

Pe = 0,

where Pe is the probability of clustering error and n is the sequence length. The algorithm

is said to be exponentially consistent if for any 0 ≤ dL < dH ,

B = lim
n→∞

− 1

n
logPe > 0.

For the case where a clustering algorithm is exponentially consistent, we are also interested

in characterizing the (bound for) error exponent B.

2.1.2 Preliminaries of KS distance

Denote by Fp the cumulative distribution function (c.d.f.) of distribution p. The KS distance

between distributions p and q is defined as

dKS (p, q) = sup
a∈R
|Fp (a)− Fq (a) |. (2.5)

Let x be an i.i.d. sequence generated by the distribution p. The empirical c.d.f. induced by

x is given by

Fx (a) =
1

n

n∑
i=1

1[−∞,a] (x[i]) ,

where 1[−∞,x] (·) is the indicator function. The empirical KS distance between two se-

quences x and y is the KS distance between the corresponding empirical c.d.f., and denoted

by dKS(x,y) for notational convenience.

2.1.3 Preliminaries of MMD

Let P be a set of distributions, and H the reproducing kernel Hilbert space (RKHS) asso-

ciated with a positive definite kernel g (·, ·) [56]. Define a mapping from P to H such that



14

each distribution p ∈ P is mapped into an element inH as follows

µp (·) = Ep[g (·, x)] =

∫
g (·, x) dp (x) ,

where µp (·) is the mean embedding of the distribution p into the Hilbert space H. The

mean embedding of distributions is guaranteed to exist for bounded kernels and satisfies

the reproducing propertyH, Ep[f ] = 〈µp, f〉H for all f ∈ H.

Additionally, with characteristic kernels such as Gaussian and Laplace, mean embed-

ding is injective [57–60]. Many machine learning problems involving unknown distribu-

tions can thus be solved by mean embedding of probability distributions without actually

estimating the distributions [61–64]. For example, distinguishing between two distribu-

tions p and q can be achieved by computing the distance between the two mean embedding

functions in the RKHS

dMMD (p, q) := ‖µp − µq‖H. (2.6)

This is precisely the definition of MMD and its most celebrated use is in the two-sample

test [65] where a biased estimator of dMMD (p, q) based on x and y of respective sequence

lengths n and m is defined to be

dMMD (x,y) =

(
1

n2

n∑
i=1

n∑
j=1

g (x[i],x[j]) +

1

m2

m∑
i=1

m∑
j=1

g (y[i],y[j])− 2

nm

n∑
i=1

m∑
j=1

g (x[i],y[j])

) 1
2

.

(2.7)

Here g (x, y) is the kernel function assumed to be bounded, i.e., 0 ≤ g (x, y) ≤ G <∞ for

all x and y. This simple two-sample test was later shown to be asymptotically optimal [66].

Finally, we remark that both the KS distance and MMD satisfy the concentration prop-

erties in Assumption 2.

Proposition 1. [67] If Assumption 1 holds for both the KS distance and MMD, i.e., dL,ks <
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Algorithm 1 Initialization with known K

1: Input: Data sequences {yi}Mi=1, number of clusters K.
2: Output: Partitions {Ck}Kk=1.
3: {Center initialization}
4: Arbitrarily choose one yi as c1.
5: for k = 2 to K do
6: ck ← arg maxyi

(
minl∈Ik−1

1
d (yi, cl)

)
7: end for
8: {Cluster initialization}
9: Set Ck ← ∅ for 1 ≤ k ≤ K.

10: for i = 1 to M do
11: Cl ← Cl ∪ {yi}, where l = arg minl∈IK1 d (yi, cl)
12: end for
13: Return {Ck}Kk=1

dH,ks, dL,mmd < dH,mmd. Then (2.4a) - (2.4c) hold for both the KS distance and MMD.

2.2 Known number of clusters

In this section, we study the clustering algorithm for known K, the number of clusters.

The method proposed in [20] is used for center initialization, as described in Algorithm 1.

The initial K centers are chosen sequentially such that the center of the k-th cluster is the

sequence that has the largest minimum distance to the previous k−1 centers. The clustering

algorithm itself is presented in Algorithm 2. Given the centers, each sequence is assigned

to the cluster for which the sequence has the minimum distance to the center. For a given

cluster, a sequence is assigned as the center subsequently if the sum of its distances to all

the sequences in the cluster is the smallest. The algorithm continues until the clustering

result converges.

The following theorem provides the convergence guarantee for Algorithm 2 via an up-

per bound on the error probability.

Theorem 2.2.1. Algorithm 2 converges after at most
(
M
K

)
K(M−K) iterations. Moreover, if

the data sequences generated from distributions satisfying Assumption 1 and the distance
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Algorithm 2 Clustering with known K

1: Input: Data sequences {yi}Mi=1, number of clusters K.
2: Output: Partition set {Ck}Kk=1.
3: Initialize {Ck}Kk=1 by Algorithm 1.
4: while not converge do
5: {Center update}
6: for k = 1 to K do
7: ck ← arg minyi∈Ck

∑
yj′∈Ck

d (yi,yj′)

8: end for
9: {Cluster update}

10: for i = 1 to M do
11: if yi ∈ Ck′ and d (yi, ck) < d (yi, ck′) then
12: Ck ← Ck ∪ {yi} and Ck′ ← Ck′ \ {yi}.
13: end if
14: end for
15: end while
16: Return {Ck}Kk=1

metric used by the algorithm satisfies Assumption 2, the error probability of Algorithm 2

after T iterations is upper bounded as follows

Pe ≤M2 (a1 + a2 + (T + 1) a3) e−bn,

where a1, a2, a3 and b are as defined in Assumption 2 and

T ≤
(
M

K

)
K(M−K).

Outline of the Proof. The idea of proving the upper bound on the error probability is as

follows. We first prove that the error probability at the initialization step decays exponen-

tially. Note that the event that an error occurs during the first T iterations is the union of

the event that an error occurs at the t-th step and the previous t−1 iterations are correct for

t = 1, . . . , T . Thus, if we prove that the error probability at the t-th step given correct up-

dates from the previous iterations decays exponentially, then so does the error probability

of the algorithm by the union bound argument. See Appendix B.1 for details.
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Theorem 2.2.1 shows that for any given K and distributions satisfying Assumption 1,

any distance metric satisfying Assumption 2 yields an exponentially consistent k-medoids

clustering algorithm with the error exponent b.

Corollary 2.2.1.1. Suppose the KS distance and the MMD statistic are used for Algorithms

1 and 2, then for n sufficiently large,

PKS
e ≤M2 (6T + 14) exp

(
−n∆2

ks

8

)
,

PMMD
e ≤M2 (4T + 8) exp

(
−n∆2

mmd

64G

)
.

Proof. By Propositions 1, the upper bound on the error probability of Algorithm 2 in Theo-

rem 2.2.1 applies to the KS distance and the MMD statistic. Thus, the corollary is obtained

by substituting the values specified in Lemmas A.0.3 - A.0.8 in the upper bound.

Corollary 2.2.1.1, combined with the fact that T is finitely bounded for finite M and K,

implies that Algorithm 2 is exponentially consistent under both the KS and MMD distance

metrics with an error exponent no smaller than ∆2
ks

8
and ∆2

mmd

64G , respectively.

2.3 Unknown number of clusters

In this section, we propose the merge- and split-based algorithms for estimating the number

of clusters as well as grouping the sequences.

2.3.1 Merge Step

If a distance metric satisfies (2.4b) and two sequences generated by distributions within

the same cluster are assigned as centers, then, with high probability, the distance between

the two centers is small. This is the premise of the clustering algorithm based on merging

centers that are close to each other.



18

Algorithm 3 Merge-based initialization with unknown K

1: Input: Data sequences {yi}Mi=1 and threshold dth.
2: Output: Partitions {Ck}K̂k=1.
3: {Center initialization}
4: Arbitrarily choose one yi as c1 and set K̂ = 1.
5: while maxi∈IM1

(
min

k∈IK̂1
d (yi, ck)

)
> dth do

6: cK̂+1 ← arg maxyi

(
min

k∈IK̂1
d (yi, ck)

)
7: K̂ ← K̂ + 1
8: end while
9: Clustering initialization specified in Algorithm 1.

10: Return {Ck}K̂k=1

The proposed approach is summarized in Algorithms 3 and 4. There are two major

differences between Algorithms 3 and 4 and Algorithms 1 and 2. First, the center initial-

ization step of Algorithm 3 keeps generating an increasing number of centers until all the

sequences are close to one of the existing centers. Second, an additional Merge Step in

Algorithm 4 helps to combine clusters if the corresponding centers have small distances

between each other.

Theorem 2.3.1. Algorithm 4 converges after at most Tmax iterations, where

Tmax =
M∑
K̂=1

(
M

K̂

)
K̂(M−K̂).

Moreover, if the data sequences generated from distributions satisfying Assumption 1 and

the distance metric used by the algorithm satisfies Assumption 2„ then the error probability

of Algorithm 4 after T iterations is upper bounded as follows

Pe ≤M2 ((T + 1) a1 + a2 + (T + 1) a3) e−bn,

where a1, a2, a3 and b are as defined in Assumption 2 and T ≤ Tmax.

Proof. The proof shares the same idea as that of Theorem 2.2.1. See Appendix B.2 for

details.



19

Algorithm 4 Merge-based clustering with unknown K

1: Input: Data sequences {yi}Mi=1 and threshold dth.
2: Output: Partition set {Ck}K̂k=1.
3: Initialize {Ck}K̂k=1 by Algorithm 3.
4: while not converge do
5: Center update specified in Algorithm 2.
6: {Merge Step}
7: for k1, k2 ∈ {1, . . . , K̂} and k1 6= k2 do
8: if d (ck1 , ck2) ≤ dth then
9: if

∑
yi∈Ck1

d (ck2 ,yi) <
∑

yi∈Ck2
d (ck1 ,yi) then

10: Ck2 ← Ck1 ∪ Ck2 and delete ck1 and Ck1 .
11: else
12: Ck1 ← Ck1 ∪ Ck2 and delete ck2 and Ck2 .
13: end if
14: K̂ ← K̂ − 1.
15: end if
16: end for
17: Cluster update specified in Algorithm 2.
18: end while
19: Return {Ck}K̂k=1

Theorem 2.3.1 shows that the merge-based algorithm is exponentially consistent given

distributions satisfying Assumption 1 under any distance metric satisfying Assumption 2

with the error exponent b.

Corollary 2.3.1.1. Suppose the KS distance and the MMD statistic are used with dth = Σks

2

and dth = Σmmd

2
. Then for n sufficiently large, the error probability of Algorithm 4 after T

iterations is upper bounded as follows

PKS
e ≤M2 (10T + 14) exp

(
−n∆2

ks

8

)
,

PMMD
e ≤M2 (6T + 8) exp

(
−n∆2

mmd

64G

)
.

Proof. By Propositions 1, the upper bound on the error probability of Algorithm 4 in Theo-

rem 2.3.1 applies to the KS distance and the MMD statistic. Thus, the corollary is obtained

by substituting the values specified in Lemmas A.0.3 - A.0.8 in the upper bound.
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Algorithm 5 Split-based clustering with unknown K

1: Input: Data sequences {yi}Mi=1 and threshold dth.
2: Output: Partition set {Ck}K̂k=1.
3: C1 = {yi}Mi=1, K̂ = 1 and find c1 by center update specified in Algorithm 2.
4: while not converge do
5: {Split Step}
6: if max

k∈IK̂1 , yi∈Ck
d (ck,yi) > dth then

7: K̂ ← K̂ + 1.
8: k = arg max

k∈IK̂1
(maxyi∈Ck d (ck,yi))

9: cK̂ ← arg maxyi∈Ck d (ck,yi)
10: end if
11: Cluster update specified in Algorithm 2.
12: end while
13: Return {Ck}K̂k=1

Corollary 2.3.1.1, combined with the fact that T is finitely bounded for finite M and K,

implies that Algorithm 4 is exponentially consistent under both the KS and MMD distance

metrics with an error exponent no smaller than ∆2
ks

8
and ∆2

mmd

64G , respectively.

2.3.2 Split Step

Suppose a cluster contains sequences generated by different distributions and the center is

generated from p ∈ Pk. Then if the distance metric satisfies (2.4a), the probability that

the distances between sequences generated from distribution clusters other than Pk and the

center is small decays as the sample size increases. Therefore, it is reasonable to begin with

one cluster and then split a cluster if there exists a sequence in the cluster that has a large

distance to the center. The corresponding algorithm is summarized in Algorithm 5.

Definition 2.3.1.1. Suppose Algorithm 5 obtains K̂ clusters at the t-th iteration, where

K̂ < K and K̂ = t or t + 1. Then the correct clustering update result is that each cluster

contains all the sequences generated from the distribution cluster that generates the center.

Theorem 2.3.2. Algorithm 5 converges after at most M iterations. Moreover, under As-

sumptions 1 and 2, the error probability of Algorithm 5 after T iterations is upper bounded
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as follows

Pe ≤M2T (a1 + a2 + a3) e−bn,

where a1, a2, a3 and b are as defined in Assumption 2 and T ≤M .

Outline of the Proof. An error occurs at the t-th iteration if and only if the K̂-th center is

generated from distribution clusters that generated the previous centers or the clustering

result is incorrect. Note that the error event of the first T iterations is the union of the

events that an error occurs at the t-th iteration while the clustering results in the previous

t − 1 iterations are correct for t = 1, . . . , T . Similar to the proof of Theorem 2.2.1, the

error probability is bounded by the union bound. See Appendix B.3 for more details.

Theorem 2.3.2 shows that the split-based algorithm is exponentially consistent given

distributions satisfying Assumption 1 under any distance metric satisfying Assumption 2

with the error exponent b.

Corollary 2.3.2.1. Suppose the KS distance and the MMD statistic are used with dth = Σks

2

and dth = Σmmd

2
. Then for n sufficiently large, the error probability of Algorithm 5 after T

iterations is upper bounded as follows

PKS
e ≤ 14M2T exp

(
−n∆2

ks

8

)
,

PMMD
e ≤ 8M2T exp

(
−n∆2

mmd

64G

)
.

Proof. By Propositions 1, the upper bound on the error probability of Algorithm 5 in Theo-

rem 2.3.2 applies to the KS distance and the MMD statistic. Thus, the corollary is obtained

by substituting the values specified in Lemmas A.0.3 - A.0.8 in the upper bound.

Corollary 2.3.2.1, combined with the fact that T is finitely bounded for finiteM , implies

that Algorithm 5 is exponentially consistent under both the KS and MMD with an error

exponent no smaller than ∆2
ks

8
and ∆2

mmd

64G , respectively.
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2.4 Numerical Results

In this section, we provide some simulation results given K = 5, Mk = 5 for k = 1, . . . , 5,

and xk,jk [i] ∈ R. Gaussian distributionsN (µk,jk , σ
2) and Gamma distributions Γ (αk,jk , β)

are used in the simulations. The probability density function (p.d.f.) of Γ(α, β) is defined

as

f (x;α, β) =
1

βαΓ (α)
xα−1 exp

(
−x
β

)
(x > 0) ,

where α > 0, β > 0 and Γ (·) is the Gamma function, respectively. For this experiment,

we set σ = 1, β = 1, and

µk,jk = (k − 1) +

(
jk −

Mk + 1

2

)
δ

2
,

αk,jk = 2.5 (k − 1) +

(
jk −

Mk + 1

2

)
δ

2
+ 1,

where jk = 1, . . . , 5, δ = 0 and 0.1. Note that when δ = 0, sequences belonging to the

same distribution cluster are generated from a single distribution. The squared exponential

kernel function is used for the MMD distance, i.e.,

g (x, y) = e−
(x−y)2

2 . (2.8)

The Monte Carlo experiment for a given sample size continues until the following two

conditions are both satisfied:

1. the number of trials that provide incorrect clustering output reaches 1000,

2. the total number of trials reaches 5× 104.

2.4.1 Known Number of Clusters

Simulation results for a known number of clusters are shown in Fig. 2.1. One can observe

from the figures that by using both the KS distance and MMD, logPe is a linear function of
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the sample size, i.e., Pe is exponentially consistent. Moreover, the logarithmic slope of Pe

with respect to n, i.e., the quantity − logPe

n
, increases as δ becomes smaller, which, in the

current simulation setting, implies a larger ∆.

Furthermore, a good distance metric for Algorithm 2 depends on the underlying distri-

butions. The kernel function in (2.8) is a good choice given symmetric p.d.f.s whereas the

KS distance which relates to the order statistics becomes a better choice when the p.d.f.s

are skewed.
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Figure 2.1: Performance of Algorithm 2
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2.4.2 Unknown Number of Clusters

With an unknown number of distribution clusters, the threshold dth specified in Corollaries

2.3.1.1 and 2.3.2.1 are used in the simulation. The performance of Algorithms 4 and 5 for

the KS distance and MMD are shown in Figs. 2.2 - 2.5, respectively. Given the KS distance

and MMD, logPe’s are linear functions of the sample size when the sample size is large

and larger ∆ implies a larger slope of logPe.

Intuitively, smaller δ implies larger ∆ in the current simulation setting, thereby should

result in better clustering performance for a given sample size. Figs. 2.3 and 2.5 indicates

that Algorithms 4 and 5 with the KS distance and MMD performs better with δ = 0.1

than that with δ = 0 when the sample size is small. This is likely due to the fact that 1)

the KS distance between the two sequences is always lower bounded by 1
n

, 2) the MMD

estimator in (2.7) always has a positive bias, 3) the Gaussan kernel in (2.8) may not be

a good choice for skewed p.d.f.s. Thus, with small sample sizes, Algorithms 4 and 5 are

likely to overestimate the number of clusters.

In Tables 2.1 - 2.8, the frequencies of the cases where K̂ = K and K̂ > K corre-

sponding to Figs. 2.2 - 2.5 are provided. From Tables 2.1 - 2.8, we can conclude that

under both KS and MMD, the algorithms tend to overestimate the number of clusters given

dth = dL+dH
2

.
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Table 2.1: K̂ = K/K̂ > K in Fig. 2.2a

n 80 90 100 110 120 130 140 150

δ = 0
P (K̂ = K) 0.46 0.62 0.76 0.84 0.84 0.90 0.94 0.96
P (K̂ > K) 0.54 0.38 0.24 0.16 0.16 0.10 0.06 0.04

δ = 0.1
P (K̂ = K) 0.23 0.34 0.46 0.57 0.67 0.74 0.81 0.84
P (K̂ > K) 0.77 0.66 0.54 0.43 0.33 0.26 0.19 0.16
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Figure 2.2: Performance of Algorithms 4 and 5 for the KS distance given Gaussian distri-
butions
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Table 2.2: K̂ = K/K̂ > K in Fig. 2.2b

n 100 110 120 130 140 150 160 170 180

δ = 0
P (K̂ = K) 0.48 0.61 0.63 0.74 0.81 0.86 0.91 0.93 0.96
P (K̂ > K) 0.52 0.39 0.37 0.27 0.19 0.14 0.10 0.07 0.04

δ = 0.1
P (K̂ = K) 0.21 0.30 0.38 0.46 0.52 0.60 0.66 0.71 0.75
P (K̂ > K) 0.79 0.70 0.62 0.54 0.48 0.40 0.34 0.29 0.25
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Figure 2.3: Performance of Algorithms 4 and 5 for the KS distance given Gamma distribu-
tions
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Table 2.3: min K̂/max K̂ in Fig. 2.3a

n 100 110 120 130 140 150 160 170 180

δ = 0
P (K̂ = K) 0.17 0.32 0.50 0.52 0.68 0.70 0.80 0.87 0.87
P (K̂ > K) 0.83 0.68 0.50 0.48 0.32 0.30 0.20 0.13 0.13

δ = 0.1
P (K̂ = K) 0.59 0.70 0.77 0.83 0.87 0.90 0.93 0.94 0.96
P (K̂ > K) 0.41 0.30 0.23 0.17 0.13 0.09 0.07 0.06 0.04

Table 2.4: min K̂/max K̂ in Fig. 2.3b

n 140 150 160 170 180 190 200 210 220

δ = 0
P (K̂ = K) 0.38 0.39 0.53 0.65 0.67 0.75 0.77 0.84 0.84
P (K̂ > K) 0.62 0.61 0.47 0.35 0.33 0.25 0.23 0.16 0.16

δ = 0.1
P (K̂ = K) 0.67 0.73 0.78 0.81 0.84 0.86 0.88 0.90 0.92
P (K̂ > K) 0.33 0.27 0.22 0.19 0.16 0.14 0.12 0.10 0.08
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Figure 2.4: Performance of Algorithms 4 and 5 for MMD given Gaussian distributions
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Table 2.5: min K̂/max K̂ in Fig. 2.4a

n 50 55 60 65 70 75 80 85 90

δ = 0
P (K̂ = K) 0.64 0.73 0.80 0.86 0.90 0.93 0.95 0.96 0.97
P (K̂ > K) 0.36 0.28 0.20 0.14 0.10 0.07 0.05 0.04 0.03

δ = 0.1
P (K̂ = K) 0.53 0.64 0.69 0.75 0.80 0.82 0.87 0.88 0.91
P (K̂ > K) 0.47 0.36 0.31 0.25 0.20 0.18 0.13 0.12 0.09

Table 2.6: min K̂/max K̂ in Fig. 2.4b

n 60 70 80 90 100 110 120

δ = 0
P (K̂ = K) 0.49 0.66 0.77 0.87 0.92 0.95 0.97
P (K̂ > K) 0.51 0.34 0.34 0.13 0.08 0.05 0.03

δ = 0.1
P (K̂ = K) 0.36 0.50 0.60 0.70 0.76 0.82 0.87
P (K̂ > K) 0.64 0.50 0.40 0.30 0.24 0.18 0.13
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Figure 2.5: Performance of Algorithms 4 and 5 for MMD given Gamma distributions
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Table 2.7: min K̂/max K̂ in Fig. 2.5a

n 100 110 120 130 140 150 160 170 180

δ = 0
P (K̂ = K) 0.04 0.10 0.18 0.30 0.38 0.47 0.57 0.64 0.72
P (K̂ > K) 0.96 0.89 0.82 0.72 0.62 0.53 0.43 0.36 0.28

δ = 0.1
P (K̂ = K) 0.54 0.67 0.75 0.81 0.87 0.90 0.93 0.95 0.96
P (K̂ > K) 0.46 0.33 0.25 0.19 0.13 0.10 0.07 0.05 0.04

Table 2.8: min K̂/max K̂ in Fig. 2.5b

n 170 180 190 200 210 220 230 240 250

δ = 0
P (K̂ = K) 0.29 0.36 0.43 0.48 0.57 0.62 0.69 0.73 0.77
P (K̂ > K) 0.71 0.64 0.57 0.52 0.43 0.38 0.31 0.27 0.23

δ = 0.1
P (K̂ = K) 0.76 0.80 0.82 0.85 0.88 0.90 0.91 0.92 0.93
P (K̂ > K) 0.24 0.20 0.18 0.15 0.12 0.10 0.09 0.08 0.07

2.4.3 Choice of dth

Note that in general dth = αdL + (1− α) dH , where α ∈ (0, 1). Theorems 2.3.1 and 2.3.2

only establish the exponential consistency of Algorithms 4 and 5, respectively. One can

observe from Tables 2.1 - 2.8 that given α = 0.5, Algorithms 4 and 5 tend to overestimate

the number of clusters, which may imply larger error probability. In Figs. 2.6 - 2.9, the

performance of Algorithms 4 and 5 with α < 0.5 is provided. The performance of the two

algorithms is indeed improved by choosing smaller α, i.e., larger dth. The frequencies of

the cases where K̂ = K and K̂ > K corresponding to Fig. 2.6 - 2.9 are provided in Tables

2.9 - 2.15.
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Table 2.9: K̂ = K/K̂ > K in Fig. 2.6a

n 40 45 50 55 60 65 70 75 80

δ = 0
P (K̂ = K) 0.39 0.71 0.75 0.78 0.91 0.92 0.94 0.97 0.98
P (K̂ > K) 0.60 0.28 0.25 0.22 0.09 0.08 0.06 0.02 0.02

δ = 0.1
P (K̂ = K) 0.09 0.13 0.39 0.45 0.51 0.55 0.60 0.78 0.80
P (K̂ > K) 0.91 0.87 0.61 0.55 0.49 0.45 0.40 0.22 0.20
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Figure 2.6: Performance of Algorithms 4 and 5 for the KS distance given Gaussian distri-
butions with α = 0.3
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Table 2.10: K̂ = K/K̂ > K in Fig. 2.6b

n 60 65 70 75 80 85 90 95 100

δ = 0
P (K̂ = K) 0.76 0.78 0.81 0.91 0.92 0.93 0.97 0.97 0.98
P (K̂ > K) 0.24 0.22 0.19 0.09 0.08 0.07 0.03 0.03 0.02

δ = 0.1
P (K̂ = K) 0.24 0.28 0.33 0.52 0.55 0.59 0.61 0.65 0.76
P (K̂ > K) 0.76 0.72 0.67 0.48 0.45 0.41 0.39 0.35 0.24
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Figure 2.7: Performance of Algorithms 4 and 5 for the KS distance given Gamma distribu-
tions with α = 0.3
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Table 2.11: min K̂/max K̂ in Fig. 2.7a

n 60 70 80 90 100 110 120

δ = 0
P (K̂ = K) 0.49 0.63 0.75 0.91 0.94 0.96 0.98
P (K̂ > K) 0.51 0.37 0.25 0.09 0.06 0.04 0.02

δ = 0.1
P (K̂ = K) 0.58 0.67 0.75 0.89 0.92 0.94 0.97
P (K̂ > K) 0.41 0.32 0.24 0.10 0.08 0.06 0.03

Table 2.12: min K̂/max K̂ in Fig. 2.7b

n 70 80 90 100 110 120 130 140

δ = 0
P (K̂ = K) 0.35 0.48 0.75 0.79 0.86 0.90 0.93 0.97
P (K̂ > K) 0.65 0.52 0.25 0.21 0.14 0.10 0.07 0.03

δ = 0.1
P (K̂ = K) 0.42 0.51 0.70 0.75 0.81 0.88 0.90 0.92
P (K̂ > K) 0.58 0.49 0.30 0.25 0.19 0.12 0.10 0.08
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Figure 2.8: Performance of Algorithms 4 and 5 for MMD given Gaussian distributions with
α = 0.3
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Table 2.13: min K̂/max K̂ in Fig. 2.8a

n 30 35 40 45 50 55 60

δ = 0
P (K̂ = K) 0.80 0.86 0.92 0.94 0.95 0.96 0.97
P (K̂ > K) 0.09 0.05 0.02 0.01 0.01 0 0

δ = 0.1
P (K̂ = K) 0.62 0.73 0.82 0.88 0.91 0.94 0.96
P (K̂ > K) 0.35 0.24 0.15 0.10 0.07 0.05 0.03

Table 2.14: min K̂/max K̂ in Fig. 2.8b

n 40 45 50 55 60 65 70 75 80

δ = 0
P (K̂ = K) 0.87 0.93 0.95 0.97 0.98 0.99 0.99 1 1
P (K̂ > K) 0.12 0.06 0.04 0.02 0.01 0.01 0 0 0

δ = 0.1
P (K̂ = K) 0.58 0.67 0.75 0.82 0.85 0.89 0.92 0.94 0.95
P (K̂ > K) 0.42 0.33 0.25 0.18 0.14 0.11 0.08 0.06 0.05
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Figure 2.9: Performance of Algorithms 4 and 5 for MMD given Gamma distributions with
α = 0.2
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Table 2.15: min K̂/max K̂ in Fig. 2.9a

n 50 60 70 80 90 100 110 120

δ = 0
P (K̂ = K) 0.28 0.53 0.72 0.82 0.90 0.93 0.95 0.97
P (K̂ > K) 0.70 0.44 0.25 0.15 0.07 0.04 0.02 0.01

δ = 0.1
P (K̂ = K) 0.30 0.54 0.70 0.81 0.87 0.92 0.94 0.95
P (K̂ > K) 0.68 0.42 0.25 0.15 0.08 0.04 0.02 0.02

Table 2.16: min K̂/max K̂ in Fig. 2.9b

n 70 80 90 100 110 120 130 140

δ = 0
P (K̂ = K) 0.22 0.29 0.36 0.43 0.48 0.57 0.62 0.69
P (K̂ > K) 0.78 0.71 0.64 0.57 0.52 0.43 0.38 0.31

δ = 0.1
P (K̂ = K) 0.70 0.76 0.80 0.82 0.85 0.88 0.90 0.91
P (K̂ > K) 0.30 0.24 0.20 0.18 0.15 0.12 0.10 0.09

2.4.4 Modulation Clustering for Wireless Communications

In this subsection, merge based k-medoids algorithm under the KS distance is applied to

an on-line data set of wireless communication signals with different modulations1. This

data set include wireless signals corresponding to 11 modulation types, each with 1000

waveforms (magnitude only) of length 960. As no ground truth is given for the waveforms,

our experiment using the digital communication signals is intended to demonstrate the ex-

ponential consistency, i.e., clustering errors decays exponentially as the sequence length

increases. We consider clustering waveforms corresponding to three out of the 11 wave-

forms: 2 Amplitude-Shift Keying (2ASK), 4 Phase-Shift Keying (4PSK) and 16 Quadrature

amplitude modulation (16QAM) with the signal-to-noise ratio (SNR) at 16dB and 20dB,

respectively. A total of 100 waveforms of each modulation scheme is randomly selected in

each of the 2000 trials. The clustering result is correct if and only if the 300 waveforms are

correctly grouped according to their corresponding modulation schemes. As the underly-

ing distributions of these waveforms are unknown, dth is determined empirically using the

waveforms for the three modulations. The performance of k-medoids algorithm under the

KS distance is given in Fig. 2.10. It is clear that log(Pe) is approximately a linear function

1Data set is available at https://github.com/bczhangbczhang/Communication-Signal-Dataset
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Figure 2.10: Performance of Modulation clustering by Algorithm 4 given dth = 0.1

when sample size n becomes large.

2.4.5 Computational Complexity

Assume that the complexity of the sum and point-wise max/min operations is linear in

the argument cardinality. The complexity of other operations is assumed to be O(1). The

computational complexities of the center initialization step and the cluster initialization step

in Algorithm 1 are O(K2M) and O(KM), respectively. The computational complexity of

the center update step and cluster update step in Algorithm 2 are O(KM2) and O(KM).

Thus, the computational complexity of Algorithm 2 is O
((
M
K

)
K(M−K+1)M2

)
Similarly, one can verify that the computational complexities of the center initialization

step and the cluster initialization step in Algorithm 3 are O(M3) and O(M2), respectively.

The computational complexity of the center update step, the merge step and the cluster

update step in Algorithm 4 are O(M3), O(M3) and O(M2). Thus, the computational

complexity of Algorithm 4 is O(M3Tmax).

The computational complexities of the finding c1
1, the split step and the cluster update

step in Algorithm 5 are O(M2), O(M) and O(M2), respectively. Thus, the computational

complexity of Algorithm 5 is O(M3).
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2.5 Summary

This chapter studied the k-medoids algorithm for clustering data sequences generated from

composite distributions. The convergence of the proposed algorithms and the upper bound

on the error probability were analyzed for both known and unknown number of clusters.

The exponential decay of error probabilities of the proposed algorithms was established

for distance metrics satisfying certain properties. In particular, the KS distance and MMD

were shown to satisfy the required condition, and hence the corresponding algorithms were

exponentially consistent. Note that the assumption of knowing dL and dH (or their bounds)

can be justified because the empirical KS distance and MMD can be constructed, which

converge to the true KS distance and MMD. Thus these thresholds or their bounds can be

obtained from historical data.
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CHAPTER 3

SEQUENCE CLUSTERING BY

HIERARCHICAL AGGLOMERATIVE

CLUSTERING ALGORITHMS

This chapter focuses on asymptotic performance study of sequence clustering using hierar-

chical agglomerative clustering algorithms. The HAC algorithms with LWD update are in-

troduced. The upper bound on the error probability of linkage-based HAC algorithms with

unknown number of clusters is derived, followed by parallel results of centroid-based HAC

algorithms with an unknown number of clusters. The derived upper bounds are shown to

decay exponentially as the sample size increases, establishing the exponential consistency

of a large set of HAC algorithms.

3.1 HAC Algorithms with LWD Update

In the previous chapter, the exponential consistency of k-medoids algorithm which up-

dates centroid and clustering result iteratively was established. In this chapter, we consider

another popular class of clustering algorithms, the hierarchical agglomerative clustering al-
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gorithms, which starts with clusters containing a single data sequence and then merge two

clusters with the smallest distance in every iteration until the minimum pairwise dissimi-

larity among remaining clusters is greater than some pre-determined threshold dth. Given

a dissimilarity matrix consisting of the pairwise distance between all data sequences, HAC

algorithms iteratively update the dissimilarity matrix by LWD update formula.

Let Cl, l = 1, · · · , L, denote the l-th sequence cluster. The dissimilarity matrix of L

clusters is defined as

D =



0 d (C1, C2) · · · d (C1, CL)

d (C2, C1) 0 · · · d (C2, CL)

...
...

...
...

d (CL, C1) d (CL, C2) · · · 0


,

where d (Cl, Cl′) is the dissimilarity (i.e., the distance metric) between clusters Cl and Cl′

and satisfies 1) d (Cl, Cl′) ≥ 0, 2) d (Cl, Cl) = 0, and 3) d (Cl, Cl′) = d (Cl′ , Cl). In each

iteration, HAC algorithms try to merge two clusters Cl1 and Cl2 if

d (Cl1 , Cl2) = min
l 6=l′

d (Cl, Cl′) ≤ dth,

with dth a pre-determined threshold. The algorithm stops if

min
l 6=l′

d (Cl, Cl′) > dth.

The general HAC algorithm is summarized in Algorithm 6. Note that any HAC algorithm

converges within a finite number of steps which is at most M . The LWD update formula

provides a unified view for dissimilarity updating after each merge step [32]. Suppose Cl1
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Algorithm 6 HAC Algorithm

1: Input: Data sequences {yi}Mi=1 and threshold dth.
2: Output: Partition set {Ck}K̂k=1.
3: Ci = {yi} for i = 1, . . . ,M , and construct the corresponding D.
4: while minCl,Cl′∈{C1,C2,...} d (Cl, Cl′) ≤ dth do
5: Merge Cl1 and Cl2 if

d (Cl1 , Cl2) = minCl,Cl′∈{C1,C2,...} (Cl, Cl′),
6: Update the dissimilarity matrix D.
7: end while
8: Return {Ck}K̂k=1

and Cl2 are merged. Then the LWD between Cl1 ∪ Cl2 and Cl3 is given by

d(Cl1∪Cl2 , Cl3) = α1d (Cl1 , Cl3) + α2d (Cl2 , Cl3)

+ βd (Cl1 , Cl2) + γ |d (Cl1 , Cl3)− d (Cl2 , Cl3)| .
(3.1)

The choices of coefficients in (3.1) for typical HAC algorithms are given in Table 3.1, where

|C| denotes the cardinality of C [17]. For the rest of the section, linkage-based clustering

algorithms with LWD update are assumed to satisfy

αi ≥ 0 for i = 1, 2, (3.2a)

α1 + α2 = 1, (3.2b)

|γ| ≤ min{α1, α2}, (3.2c)

β = 0. (3.2d)

Thus d (Cl1 ∪ Cl2 , Cl3) in (3.1) is always non-negative and

d (Cl1 ∪ Cl2 , Cl3) ≥ min{d (Cl1Cl3) , d (Cl2Cl3)},

d (Cl1 ∪ Cl2 , Cl3) ≤ max{d (Cl1Cl3) , d (Cl2Cl3)}.

Eq. (3.2d) is necessary for linkage-based HAC algorithms and implies that d (Cl, Cl′) is

only a function of d (yi,yi′), where yi ∈ Cl and yi′ ∈ Cl′ . Furthermore, centroid-based
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Table 3.1: Coefficients of HAC algorithms

SLINK α1 = α2 = 0.5, β = 0, γ = −0.5.
CLINK α1 = α2 = 0.5, β = 0, γ = 0.5.

UPGMA
α1 =

|Cl1 |
|Cl1 |+|Cl2 |

, α2 = 1− α1,
β = 0, γ = 0.

WPGMA α1 = α2 = 0.5, β = 0, γ = 0.
WPGMC α1 = α2 = 0.5, β = −0.25, γ = 0.

UPGMC
α1 =

|Cl1 |
|Cl1 |+|Cl2 |

, α2 = 1− α1,

β = − |Cl1 ||Cl2 |

(|Cl1 |+|Cl2 |)
2 , γ = 0.

clustering algorithms with LWD update are assumed to satisfy

αi ≥ 0 for i = 1, 2, (3.3a)

α1 + α2 = 1, (3.3b)

γ = 0, (3.3c)

β ∈ (−1, 0). (3.3d)

3.2 Linkage-Based Algorithms

This section presents an upper bound on the error probability of the linkage-based cluster-

ing algorithms generated from the LWD update formula with coefficients satisfying (3.2).

The complete proof of the results will be provided in the Appendix.

3.2.1 General Case

Proposition 2. If the linkage-based clustering algorithm updates D by (3.1), then for t ≥ 0

and l 6= l′,

d
(
Ctl , Ctl′

)
=
∑

i: yi∈Ctl

∑
i′: yi′∈Ctl′

θtii′ (yi,yi′) d (yi,yi′) , (3.4)
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where θtii′(yi,yi′) ∈ [0, 1] is a function of t, i and i′. Moreover, if the LWD update satisfies

(3.2), then for any l 6= l′,

∑
i: yi∈Ctl

∑
i′: yi′∈Ctl′

θtii′ (yi,yi′) = 1. (3.5)

Outline of the Proof. (3.4) can be proved by induction while (3.5) results from (3.4) and

(3.2).

Intuitively, with (3.2), the updated metric in (3.1) can be rewritten as a convex com-

bination of d (Cl1 , Cl3) and d (Cl2 , Cl3), leading to (3.5). For simplicity, θtii′ (yi,yi′) will be

replaced by θtii′ if there is no ambiguity. The choice of θtii′ for SLINK, CLINK and UPGMA

is given in (3.6) - (3.8), respectively.

θtii′ =


1 if d (yi,yi′) = minyj∈Cl,yj′∈Cl′ d (yj,yj′) ,

0 otherwise.
(3.6)

θtii′ =


1 if d (yi,yi′) = maxyj∈Cl,yj′∈Cl′ d (yj,yj′) ,

0 otherwise.
(3.7)

θtii′ =
1

|Ctl | |Ctl′|
. (3.8)

Theorem 3.2.1. Suppose a linkage-based clustering algorithm uses update in (3.1) and

satisfies (3.2) and data sequences are generated from distributions satisfying (2.3). If the

distance metric used by the algorithm satisfies (2.4a) and (2.4b), then for dth ∈ (dL, dH)

and sufficiently large n, the error probability upon convergence is upper bounded by

Pe ≤M2a1e
−nb1 +M2a2e

−nb2 .

Outline of the Proof. Note that by Assumption (2), the data sequences are well separated
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with probability lower bounded by
(
1−M2a1e

−nb1
) (

1−M2a2e
−nb2

)
which is futher

lower bounded by 1 −M2a1e
−nb1 −M2a2e

−nb2 . By proposition 2, if data sequences are

well separated, the clusters obtained by linkage-based clustering algorithms are still well

separated. Thus, the error probability is upper bounded by M2a1e
−nb1 +M2a2e

−nb2 .

Corollary 3.2.1.1. Suppose the KS distance and MMD are used with dth = 1
2
Σks and

dth = 1
2
Σmmd, where Σks and Σmmd are defined in (2.2). Then for sufficiently large n,

the error probability of linkage-based clustering algorithms upon convergence is upper

bounded by

PKS
e ≤ 8M2 exp

(
−n∆2

ks

8

)
,

PMMD
e ≤ 4M2 exp

(
−n∆2

mmd

64G

)
,

where ∆ks and ∆mmd are defined in (2.2)

Proof. By Proposition 1, the error probability upper bound of linkage-based clustering

algorithms in Theorem 3.2.1 applies to KS and MMD. The corollary is obtained by substi-

tuting ai and bi with values specified in Lemmas A.1 - A.4.

Corollary 3.2.1.1 implies that any linkage-based clustering algorithm satisfying (3.2)

is exponentially consistent under both the KS and MMD distance metrics with an error

exponent no smaller than ∆2
ks

8
and ∆2

mmd

64G , respectively.

3.2.2 Tighter bounds for SLINK

Tighter upper bounds on the error probability for SLINK can be derived by taking advan-

tage of the fact the inter-cluster distance is computed using a single pair of sequences. The

entry d (Cl, Cl′) in D for SLINK is given by

dS (Cl, Cl′) = min
y1∈Cl,y2∈Cl′

d (y1,y2) . (3.9)

The following theorem provides a tighter upper bound on the error probability of SLINK.
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Theorem 3.2.2. Under Assumptions 1 and 2, the error probability of SLINK for dth ∈

(dL, dH) and sufficiently large n is upper bounded by

Pe,S ≤M2a1e
−nb1 +Ma2e

−nb2 .

Outline of the Proof. The idea of proving the upper bound on the error probability is the

same as the proof of Theorem 3.2.1. The only difference is that the distance between two

clusters for both SLINK only depends on a pair of sequences from the two clusters.

The second term in the upper bound on error probability in Theorem 3.2.2 is 1
M

of the

general bound obtained in Theorem 3.2.1.

Remark: Let D̃ be a binary matrix, where

D̃i,j = 1d(C0i ,C0j )>dth
.

Thus D̃ is obtained by simply thresholding pairwise distances with dth. Suppose an MST

with weight K̂ − 1 is obtained by applying a comparison-based minimum spanning tree

(MST) algorithm, e.g., Dijkstra’s algorithm, Kruskal’s algorithm and Prim’s algorithm, to

D̃. The clustering result is then obtained by removing all the edges with nonzero weights in

the MST. With probability 1− Pe, where Pe has the same upper bound as Pe,S in Theorem

3.2.2, K̂ = K and the clustering result is correct provided that Assumptions 1 and 2 are

satisfied.

Corollary 3.2.2.1. Suppose the KS distance and MMD are used with dth = 1
2
Σks and

dth = 1
2
Σmmd. Then for sufficiently large n, the error probability of SLINK and CLINK

upon convergence is upper bounded by

PKS
e,S ≤ 4M (M + 1) exp

(
−n∆2

ks

8

)
,

PMMD
e,S ≤ 2M (M + 1) exp

(
−n∆2

mmd

64G

)
.
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Proof. The proof is the same as that of Corollary 3.2.1.1.

3.3 Centroid-Based Algorithms

This section presents upper bounds on the error probability of centroid-based clustering

algorithms with LWD update whose coefficients satisfy (3.3). The complete proof of the

results will be provided in Appendix due to the space limit.

Proposition 3. Suppose a centroid-based clustering algorithm is generated from (3.1) and

satisfies (3.3) and data sequences are generated from distributions satisfying (2.3). If the

distance metric used by the algorithm satisfies (2.4a) and (2.4c), then for dth ∈ (dL, dH)

and sufficiently large n,

P
(
d
(
Ctl1 , C

t
l2

)
≥ d

(
Ctl1 , C

t
l3

))
≤ 2ta3e

−nb3 , (3.10a)

P
(
d
(
Ctl1 , C

t
l2

)
> dth

)
≤ 3ta2e

−nb2 , (3.10b)

where Ctl1 , C
t
l2
∼ Pk and Ctl3 ∼ Pk′ for k 6= k′.

Outline of the Proof. By induction.

Therefore, under Assumption 2, for sequence clusters obtained after the t-th iteration by

any centroid-based algorithm, any cluster pair generated from the same distribution cluster

is close to each other whereas any cluster pair generated from different distribution clusters

is far apart.

Theorem 3.3.1. Suppose a centroid-based clustering algorithm is generated from (3.1) and

satisfies (3.3) and data sequences are generated from distributions satisfying (2.3). If the

distance metric of the data sequences satisfies (2.4a) and (2.4c), then for dth ∈ (dL, dH)

and sufficiently large n, the error probability upon convergence is upper bounded by

Pe ≤M2
(
2M+1Ma3e

−nb3 + 3Ma2e
−nb2

)
.
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Outline of the Proof. The proof is similar to the proof of Theorem 3.2.1.

Corollary 3.3.1.1. Suppose the KS distance and MMD are used with dth = 1
2
Σks and dth =

1
2
Σmmd. Then for sufficiently large n, the error probability of centroid-based clustering

algorithms upon convergence is upper bounded by

PKS
e ≤M2

(
6× 2M+1M + 4× 3M

)
exp

(
−n∆2

ks

8

)
,

PMMD
e ≤M2

(
2M+3M + 2× 3M

)
exp

(
−n∆2

mmd

64G

)
.

Proof. By Proposition 1, the upper bound on the error probability of centroid-based cluster-

ing algorithm in Theorem 3.3.1 applies to KS and MMD. Thus, the corollary is obtained by

substituting ai and bi with values specified in Lemmas A.0.3, A.0.4, A.0.7 and A.0.8.

Corollary 3.3.1.1 implies that any centroid-based clustering algorithm satisfying (3.3)

is exponentially consistent under both the KS and MMD distance metrics with an error

exponent no smaller than ∆2
ks

8
and ∆2

mmd

64G , respectively.

3.4 Numerical Results

This section presents numerical results for both linkage and centroid based algorithms. The

simulation setup is the same as that in Section 2.4. The Monte Carlo experiment for a given

sample size continues until following two conditions are both satisfied:

1. the number of trials that provides incorrect clustering output reaches 1000,

2. the total number of trials reaches 5× 104.

The performance of SLINK, CLINK and WPGMC is provided in the following.
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3.4.1 Performance with dth = 1
2 (dL + dH)

The error probabilities of SLINK, CLINK and WPGMC under the KS distance are given

in Figs. 3.1 and 3.3 while the performance of these algorithms under MMD is given in

Figs. 3.2 and 3.4. That logPe is a linear function of the sample size validates exponen-

tial consistency of these algorithms. Furthermore, both SLINK and WPGMC outperform

CLINK under both the KS distance and MMD in terms of the error probability. One possi-

ble reason is that the distance between two clusters estimated by

dC (Cl, Cl′) = max
y1∈Cl,y2∈Cl′

d (y1,y2) .

tends to underestimate the number of clusters. Thus, a larger dth may help to improve the

performance of CLINK. Moreover, the slope of logPe with respect to n, i.e., the quantity

− logPe

n
, is non-decreasing as δ becomes smaller. In the current simulation setting, this

implies a larger ∆ under both the KS distance and MMD.

However, with Gamma distributions, logPe with δ = 0 can be larger than logPe with

δ = 0.1. Possible reasons are 1) the KS distance between two sequences is always lower

bounded by 1
n

, and 2) the MMD estimator in (2.7) has a positive bias, which has a larger

impact on the clustering result when all sequences in the same cluster are generated from a

single distribution.

3.4.2 Performance Given dth >
1
2 (dL + dH)

Note that Theorems 3.2.1 and 3.3.1 guarantee the exponential consistency for all dth ∈

(dL, dH). Let dth = αdL + (1 − α)dH , where α ∈ (0, 1). The performance of the three

algorithms given dth > 1
2

(dL + dH) is provided in Figs. 3.5 and 3.6. Compare the error

probability in Figs. 3.5 and 3.6 with that in Figs. 3.3 and 3.4, one can see that 1) the

performance of CLINK can be significantly improved by increasing dth, 2) a good choice

of dth for SLINK and CLINK depends on both the underlying distribution and the distance
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Figure 3.1: Performance of HAC algorithms given Gaussian distributions under the KS
distance

metric.
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Figure 3.2: Performance of HAC algorithms given Gaussian distributions under MMD

3.4.3 Modulation Clustering for Wireless Communications

In this subsection, SLINK and UPGMA under the KS distance are applied to an on-line

data set of wireless communication signals with different modulations which is introduced
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Figure 3.3: Performance of HAC algorithms given Gamma distributions under the KS
distance

in Chapter 2.4.4. The performance of SLINK and UPGMA under the KS distance is given

in Fig. 3.7. It is clear that log(Pe) is approximately a linear function when sample size n

becomes large.
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Figure 3.4: Performance of HAC algorithms given Gamma distributions under MMD

3.5 Summary

This chapter studied asymptotic performance of HAC algorithms for clustering samples

generated from distribution clusters. Error probability upper bounds were derived that help

establish the exponential consistency of HAC algorithms under certain conditions on the



51

50 60 70 80 90 100 110
sample size per sequence

-4

-3

-2

-1

0

lo
g(

P
e)

δ=0
δ=0.1

(a) SLINK, α = 0.4

70 80 90 100 110 120 130

sample size per sequence

-5

-4

-3

-2

-1

0

lo
g(

P
e)

δ=0
δ=0.1

(b) CLINK, α = 0.2

50 55 60 65 70 75 80 85 90 95 100

sample size per sequence

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

lo
g(

P
e)

δ=0
δ=0.1

(c) WPGMC, α = 0.4

Figure 3.5: Performance of HAC algorithms given Gamma distributions under the KS
distance with different α’s

distance metrics and the underlying distribution clusters. In particular, both linkage-based

and centroid-based clustering algorithms under the KS distance and MMD were shown to

be exponentially consistent and lower bounds on the error exponent were characterized.

While the number of sequences M is assumed to be fixed in the analysis, it is straightfor-
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Figure 3.6: Performance of HAC algorithms given Gamma distributions under MMD with
different α’s

ward to verify that exponential consistency remains valid if M grows sub-exponentially

with the sample size n.
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Figure 3.7: Performance of Modulation clustering by HAC algorithms
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CHAPTER 4

MAXIMUM DISCRIMINATING ENERGY

This chapter focuses on supervised dimensionality reduction approaches that are equiva-

lent to (generalized) eigen-decomposition for classification problems. A new supervised

dimensionarity reduction method is proposed that maximizes the difference of the average

energy difference between data with different labels in the subspace. Comparison of the

proposed approach with existing dimensionality reduction methods is provided to under-

stand the relative merits among competing approaches.

4.1 Dimensionality Reduction

A common dilemma for many learning problems is the scarcity of data. The problem is

particularly acute when samples are of high dimension. An example is gene sequence data

whose length is often in the thousands, which may far outnumber the number of samples

(i.e., the number of human subjects). Another example is in WiFi sensing where the channel

state information measured in temporal, frequency, and spatial dimensions may result in a

high dimensional vector when flattened.

Dimensionality reduction is an effective way to alleviate this problem. For example,

the principal components are often obtained as a sequence of projection, determined by the
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dataset itself, with decreasing variances. Low dimension representation can thus be ob-

tained through simple truncation, i.e., retaining only the dominant principal components.

Principal component analysis (PCA) has long been used as a de facto way for dimension-

ality reduction for unsupervised learning problems.

For supervised learning such as classification or regression problems, the label informa-

tion or response variables were often disregarded when dimensionality reduction is carried

out. This can become problematic since high variance principal components do not nec-

essarily lead to good discriminating property for classification problems or may not have

strong correlation with the response variables for regression problems.

Focusing on classification problems, we examine supervised dimensionality reduction

by exploiting the label information associated with each data sample. Our goal is to pre-

serve maximum discriminating information in the reduced dimension representation for the

classification problem. We first review existing dimensionality reduction methods includ-

ing the classical PCA as well as some recently proposed SDR methods.

4.2 Unsupervised PCA

Consider M data samples xm ∈ RN×1 for m = 1, . . . ,M . The centered data sample

x̄m = xm − µ̂, where µ̂ = 1
M

∑M
i=1 xi. Conventionally, PCA is used as a dimensionality

reduction method for unsupervised problems which tries to construct orthonormal basis

U = [u1, . . . ,uK ] ∈ RN×K , where K < N , such that the total variation of UT x̄m’s is

maximized. Let X = [x1, . . . ,xM ] and X̄ = [x̄1, . . . , x̄M ]. uk is the eigenvector corre-

sponding to the k-th largest eigenvalue of X̄X̄T .

Some problems arise when PCA is used for supervised learning problems, e.g., classi-

fication. Since PCA tries to find a subspace that preserves the maximum variation of the

centered samples regardless of the label of xm, the obtained subspace may ignore label

information. For instance, consider a binary classification problem. Denote by x
(l)
i the i-th
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sample with label l for l = 1, 2. Assume that x
(1)
i ∼ N

(
µ(1),Σ

)
and x

(2)
i ∼ N

(
µ(2),Σ

)
,

where µ(1) = [0.1, 0], µ(2) = [−0.1, 0], and

Σ =

0.1 0

0 10

 .
It is easy to verify that the 1-D subspace u1 = [1, 0] is sufficient for classification. However,

PCA will find the 1-D subspace u1 = [0, 1] since this direction contains larger variation.

Furthermore, when samples with the same label form multiple clusters in the sample space,

we may want to group samples according to labels in the subspace. Without utilizing the

label information, it is unlikely that PCA is capable of grouping samples with the same

label.

4.3 Existing Supervised PCA Methods

Before discussing the existing supervised PCA methods, we first introduce some notations

to be used in the following discussion. Denote by X(l) = [x
(l)
1 , . . . ,x

(l)
Ml

] ∈ RN×Ml the

matrix containing all the samples with label l for l ∈ {1, . . . , L}, where
∑L

l=1Ml = M .

Let X̄(l) = [x̄
(l)
1 , . . . , x̄

(l)
Ml

] be the centered samples with label l, where x̄
(l)
i = x

(l)
i − µ̂.

Denote by X = [X(1), . . . ,X(L)] and X̄ = [X̄(1), . . . , X̄(L)] the matrices containing original

samples and centered samples for all labels, respectively. In the following discussion, we

may use either x
(l)
i or xm to denote a sample depending on whether the label is of interest

or not. Finally, let K be the dimension of the subspace obtained by an SDR approach.
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4.3.1 FDA

Define µ̂(l) = 1
Ml

∑Ml

i=1 x
(l)
i for l = 1, . . . , L. The subspace obtained by FDA is actual the

solution to the following problem [42] :

max
U

∣∣UTSBU
∣∣

|UTSWU|
,

s.t. UTU = I.

(4.1)

where

SB =
L∑
l=1

Ml

(
µ̂(l) − µ̂

) (
µ̂(l) − µ̂

)T
,

Sw =
L∑
l=1

Ml∑
i=1

(
x

(l)
i − µ̂(l)

)(
x

(l)
i − µ̂(l)

)T
.

(4.1) is equivalent to the following generalized eigenvalue problem:

SBu = λSWu. (4.2)

There are two obvious drawbacks of FDA. First, FDA requires that samples with different

labels should have different means. Otherwise, SB ≈ 0. Second, since rank (SB) ≤ L− 1,

the dimension of the subspace obtained by FDA is at most (L−1), which may be too small

to contain all the useful information for classification, especially when L is small.

Let Φ be a map from the sample space X to some feature space H and k (·, ·) be

the kernel function associated with Φ. Denote by K ∈ RM×M the matrix containing

kernel function result for each pair of training samples where the (i, j)-th entry of K is

k (xi,xj). Let K̄(l) and K̄ be column vectors of length M and the m-th entry of them

are 1
Ml

∑Ml

i=1 k(xm,x
(l)
i ) and 1

L

∑L
l=1

1
Ml

∑Ml

i=1 k(xm,x
(l)
i ), respectively. Furthermore, let

K(l) ∈ RM×Ml be a matrix where its (m, i)-th entry is k(xm,x
(l)
i ). Then kernel FDA can
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be expressed as

max
β

∣∣∣βT∑L
l=1 Ml

(
K̄(l) − K̄

) (
K̄(l) − K̄

)T
β
∣∣∣∣∣∣βT∑L

l=1

(
K(l)(I− 1

Ml
11T )(K(l))T

)
β
∣∣∣ ,

s.t. βTKβ = I,

(4.3)

which is also a generalized eigenvalue problem.

4.3.2 HSIC

In [45], the author proposed HSIC based supervised PCA, which solves the following prob-

lem:
max
U

tr
(
UT X̄LX̄TU

)
s.t. UTU = I,

(4.4)

where L is a kernel of outcome measurement matrix Y ∈ RL×M . e.g., L = YTY. One

possible choice of Y is Y = [y1, . . . ,yM ], where ym is a one-hot column vector depending

on the label of xm. Given L = YTY, where Y consists of one-hot vectors, them-th column

of X̄YT ∈ RN×M is
∑Ml

i=1 x̄
(l)
i for some l ∈ {1, . . . , L}. Therefore, (4.4) is equivalent to

max
U

L∑
l=1

Ml

∣∣∣∣∣
∣∣∣∣∣UT

Ml∑
i=1

x̄
(l)
i

∣∣∣∣∣
∣∣∣∣∣
2

2

,

s.t. UTU = I,

which is equivalent to PCA with L samples and the l-th sample is
√
Ml

∑Ml

i=1 x̄
(l)
i for l =

1, . . . , L.

The drawback of HSIC-based approach is that 1) (4.4) becomes unreliable when
∑Ml

i=1 x̄
(l)
i ≈

0 for all l = 1, . . . , L, 2) unbalanced data with different labels may lead to performance

degradation, and 3) the maximum number of non-zero eigenvalues obtained from (4.4) is

on greater than rank(L). Hence, the subspace obtained by HSIC-based SPCA may be too

small to contain all the useful information for classification when L is small.
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Kernel trick can also be applied to HSIC which is to solve the following problem:

max tr
(
βTKHLHKβ

)
s.t. βTKβ = I,

(4.5)

where H = I − 1
M

11T . (4.5) is also equivalent to a generalized eigenvalue problem.

However, kernel trick does not increase the upper bound on the dimension of the subspace

as long as L = YTY.

4.4 The Proposed Approach

The main idea of the proposed SDR approach named maximum discriminating energy

(MDE) is to find directions that maximizes the difference of the average projection energy

between different labels.

4.4.1 MDE for binary case

For binary classification problems, the subspace U ∈ RN×K preserving maximum average

energy difference between samples with different labels can be written as

K∑
k=1

∣∣∣∣∣ 1

M1

M1∑
i=1

∣∣∣∣∣∣uTk x̄
(1)
i

∣∣∣∣∣∣2
2
− 1

M2

M2∑
i=1

∣∣∣∣∣∣uTk x̄
(2)
i

∣∣∣∣∣∣2
2

∣∣∣∣∣ .
Let us first consider the case with

1

M1

M1∑
i=1

∣∣∣∣∣∣uTk x̄
(1)
i

∣∣∣∣∣∣2
2
− 1

M2

M2∑
i=1

∣∣∣∣∣∣uTk x̄
(2)
i

∣∣∣∣∣∣2
2
> 0. (4.6)
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The subspace satisfying (4.6) can be found by solving the following problem:

max
1

M1

tr
(
< UT X̄(1),UT X̄(1) >

)
− 1

M2

tr
(
< UT X̄(2),UT X̄(2) >

)
,

s.t. UTU = I.

(4.7)

The objective function in (4.7) can be further rewritten as

1

M1

tr
(
< UT X̄(1),UT X̄(1) >

)
− 1

M2

tr
(
< UT X̄(2),UT X̄(2) >

)
= tr

(
1

M1

X̄(1)TUUT X̄(1) − 1

M2

X̄(2)TUUT X̄(2)

)
= tr

(
1

M1

UT X̄(1)X(1)TU− 1

M2

UT X̄(2)X̄(2)TU

)
.

Define Q = 1
M1

X̄(1)X̄(1)T − 1
M2

X̄(2)X̄(2)T . Then (4.7) becomes

max tr
(
UTQU

)
s.t. UTU = I.

(4.8)

In general, Q is neither positive nor negative semi-definite.

Now consider the other case with

1

M1

M1∑
i=1

∣∣∣∣∣∣uTk x̄
(1)
i

∣∣∣∣∣∣2
2
− 1

M2

M2∑
i=1

∣∣∣∣∣∣uTk x̄
(2)
i

∣∣∣∣∣∣2
2
< 0.

It should be apparent that the eigenvectors corresponding to the negative eigenvalues ob-

tained in (4.8) consists a solution to (4.4.1). Without loss of generality, assume that there are

P (P ≥ K) non-zero eigenvalues λ1, . . . , λP such that |λ1| ≥ . . . ≥ |λP | > 0. Let up be the

eigenvector corresponding to λp. Then the subspace obtained by (4.8) is U = [u1, . . . ,uK ],

where K can be either pre-defined or the smallest positive number such that
∑K

p=1 |λp| is

dominant in
∑P

p=1 |λp|.

Note that the method in (4.8) cannot distinguish samples generated from the following
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Algorithm 7 MDE algorithm for Binary Classification

1: Input: Training data sequences and labels (X,y), test data x, and hyperparameter τ .
2: Output: Dimension reduced training data Z and test data z.
3: Compute X̄ = X− µ̂, where µ̂ = 1

M

∑M
i=1 xi.

4: Split X̄ into X̄(1) and X̄(2) by labels and compute µ̂(1) = 1
M1

∑M1

i=1 x
(1)
i and µ̂(2) =

1
M2

∑M2

i=1 x
(2)
i .

5: Compute the eigen decomposition of Q + τδµδ
T
µ and find K eigenvalues with the

largest absolute value λ1, . . . , λK and the corresponding eigenvectors u1, . . . ,uK .
6: U = [u1, . . . ,uK ].
7: Z = UTX and z = UTx.

case. Suppose x
(1)
i ∼ N (µ,C) and x

(2)
i ∼ N (−µ,C). The correlation matrices are, for

l = 1, 2,

Rl = EPl

[
xxT
]

= µµT + C.

Assume that the sample correlation matrix is a good approximation for the true correlation

matrix, i.e., 1
Ml

X(l)X(l)T ≈ Rl. Then Q ≈ 0. A simple remedy is to add a penalty term

relating to the mean difference to (4.8), resulting in the following problem:

max tr
(
UT

(
Q + τδµδ

T
µ

)
U
)

s.t. UTU = I,

where δµ = µ̂(1) − µ̂(2) and τ ∈ R+ is a tunable hyperparamter. MDE for binary case is

summarized as Algorithm 7.

4.4.2 MDE for Multi-Class Case

Algorithm 7 can be directly extended to multi-class classification by viewing an L-class

classification as L binary classification problems. Define U(l) as the subspace obtained by

Algorithm 7 for X(l) and X \X(l). Then the subspace for the multi-class classification is

given by

Uagg =
[
U(1), . . . ,U(L)

]
. (4.9)
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Algorithm 8 MDE algorithm for Multi-Class Classification

1: Input: Training data sequences and labels (X,y), test data x, and hyperparameter λ.
2: Output: Dimension reduced training data Z and test data z.
3: Compute X̄ = X− µ̂, where µ̂ = 1

M

∑M
i=1 xi.

4: Uagg = ∅.
5: for l = 1 to L do
6: Apply Algorithm 7 to X̄(l) and X \ X̄(l).
7: Uagg ←

[
Uagg, U(l)

]
.

8: end for
9: Compute the eigen decomposition of UaggU

T
agg and find K largest positive eigenvalues

λ1, . . . , λK and the corresponding eigenvectors u1, . . . ,uK .
10: U = [u1, . . . ,uK ].
11: Z = UTX and z = UTx.

In practice, Uagg in (4.9) may not be mutually orthogonal. By applying PCA to UaggU
T
agg,

the subspace obtained by MDE consists of the K eigenvectors corresponding to the K

largest eigenvalues of UaggU
T
agg. The proposed algorithm for multi-class classification is

summarized as Algorithm 8.

4.4.3 Kernel MDE

Kernel trick can be applied to MDE. Let

IM1,M2 =

 1
M1

I 0M1×M2

0M2×M1 − 1
M2

I

 .
Then Q in (4.8) can be rewritten as

Q = [X̄(1) X̄(2)]IM1,M2 [X̄
(1) X̄(2)]T .

Define

Φ(Q) = [Φ(X(1)) Φ(X(2))]HIM1,M2H[Φ(X(1)) Φ(X(2))]T ,

where Φ(X(l)) = [Φ(x
(l)
1 ), . . . ,Φ(x

(l)
Ml

)]. Note that the features of the original samples

rather than centered samples are computed in Φ (Q). Then applying kernel trick to (4.8),
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we have
max tr

(
UTΦ(Q)U

)
s.t. UTU = I.

(4.10)

By representation theorem [68], U = [Φ(X(1)) Φ(X(2))]β, where β ∈ RM×K . Thus,

(4.10) can be rewritten as

max
β

tr
(
βTKHIM1,M2HKβ

)
s.t. βTKβ = I,

(4.11)

where

K =

Φ
(
X(1)

)T
Φ
(
X(1)

)
Φ
(
X(1)

)T
Φ
(
X(2)

)
Φ
(
X(2)

)T
Φ
(
X(1)

)
Φ
(
X(2)

)T
Φ
(
X(2)

)
 .

(4.11) is also equivalent to a generalized eigen-value problem. When L > 2, PCA is

applied to [β(1), . . . ,β(L)], where β(l) is obtained by from (4.11) given X(l) and X \X(l).

4.5 Performance Comparison

In this section, we will first provide some projection results given synthetic data. WiFi

sensing data will then be used to evaluate the performance of MDE, HSIC, FDA and PCA

in classification.

4.5.1 Visualization by Synthetic Data

Let s ∈ Rd for d = 2, 3 be the ground truth of the data, which is generated from some

Gaussian distribution N (µ,Σ), Σ is identical for samples with different labels. The ob-

servation x ∈ R5 is obtained by x = Vs + w, where V ∈ R5×d consists of orthonormal

column vectors and w ∼ N (0, 0.1I) is additive noise. The ground truth of s in 6 cases is

shown in Fig. 4.1, where data with different labels are denoted by markers with different

colors. Training and test data with the same label are denoted by filled and unfilled markers,
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Figure 4.1: Original data s with lower dimension

respectively. In Fig. 4.1a, c and e, s ∈ R2 whereas in Fig. 4.1b, d and f, s ∈ R3. Further-

more, in Fig. 4.1b and d, µ = [µ1, µ2, 0]. i.e., The label information still concentrate in the

first two dimensions. Only in Fig. 4.7, the third dimension of s contains label information.

For MDE, τ = 0.1 and for kernel MDE, HSIC and FDA, radial basis function (RBF)
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kernel is used. The RBF kernel of two vectors x and y is defined as

k(x,y) = exp(−γ||x− y||22),

where γ is a tunable hyper-parameter.

The projections corresponding to the largest two (or three) eigen values given MDE,

HSIC and FDA are shown in Fig.s 4.2 - 4.7, respectively. From Fig.s 4.2 - 4.7, we have the

following observations for the three SDR methods without kernel trick:

1. MDE can find a subspace that is identical to the original one subject to rotation even

for data forms a concentric ring as shown in Fig.s 4.2a - 4.6a. Given label information

in a 3-D space, MDE groups data according to their labels and preserve some margin

between data with different labels as shown in Fig. 4.7a.

2. The projection obtained by HSIC does not always preserve the geometry of s given

label information in 2-D space, e.g., Fig.s 4.2c and 4.3c, even though the projection

obtained by HSIC preserves the concentric structure as shown in Fig. 4.6c. Further-

more, the margin of projection with different labels tends to be smaller when HSIC

is used as shown in Fig.s 4.2c - 4.6c. Recall that the only difference between data

in Fig.s 4.1c and 4.1d is that one dimension of s has large variance but without any

label information. From Fig. 4.5c, one can see that HSIC is unable to find a good

subspace for data in Fig. 4.1d. This implies that HSIC is sensitive to dimensions

with large variance. Finally, HSIC is unable to find a good subspace for data in Fig.

4.1f when K = 2 as shown in Fig. 4.7c.

3. FDA without kernel trick is unable to find a subspace that can separate data with

different labels in all the six cases.

For the comparison of three methods with kernel trick, we have observations as follows:

1. With kernelization, both MDE and HSIC are capable of finding a good subspace for
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(b) MDE with RBF kernel (γ = 0.1)
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(f) FDA with RBF kernel (γ = 1)

Figure 4.2: Projection result for data in Fig. 4.1a

data in Fig. 4.1. Furthermore, by properly setting γ in the RBF kernel, data with the

same label are grouped in the subspace which makes classification easier. However,

kernel trick does not help FDA to find a good subspace for concentric data shown in

Fig. 4.1e.
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(b) MDE with RBF kernel (γ = 0.14)
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(f) FDA with RBF kernel (γ = 1)

Figure 4.3: Projection result for data in Fig. 4.1b

2. MDE benefit less from kernel trick than HSIC and FDA. As shown in Fig.s 4.4b and

4.5b, MDE requires a 3-D subspace to group all the data with the same label whereas

HSIC and FDA only require a 2-D subspace.

We would like to note that the kernel trick increases the computational complexity
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Figure 4.4: Projection result for data in Fig. 4.1c

significantly since it requires computing the kernel function for all pairs of samples.
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Figure 4.5: Projection result for data in Fig. 4.1d

4.5.2 WiFi Sensing data

We now consider dimensionality reduction for data collected for presence detection via

WiFi signal. This dataset1 is originally collected and used in [55]. In this simulation,

1The dataset is available at https://github.com/bigtreeyanger/presence_detection_cnn
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(a) MDE (b) MDE with RBF kernel (γ = 0.2)
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(f) FDA with RBF kernel (γ = 0.2)

Figure 4.6: Projection result for data in Fig. 4.1e

X̃abs-fft-crop ∈ R64×7×9 is constructed in the way described in [55]. Denote by X̃abs-fft-crop
i,j,k

the (i, j, k)-th entry in X̃abs-fft-crop. Then the WiFi sensing data for dimension reduction is

the vectorization of X, where Xi,j = 1
9

∑9
k=1 X̃abs-fft-crop

i,j,k . Training data is randomly chosen

from days 9, 11, 12 and 14 such that there are exactly 500 samples for each label. Note that
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(b) MDE with RBF kernel (γ = 0.1)
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(d) HSIC with RBF kernel (γ = 0.1)
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(f) FDA with RBF kernel (γ = 0.1)

Figure 4.7: Projection result for data in Fig. 4.1f

the training data chosen for the four dimentionality reduction methods are identical. Test

data are all the data collected on days 4, 7, 15, 16, 17, and 24. On each day, there are at

least 5000 samples. All the data are collected in the same lab within two months.

The dimension of the subspace K is set to be 3. Both k-nearest neighbor (KNN) with
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k = 11 and support vector machine (SVM) with RBF kernel with γ = 1
3

are used for clas-

sification on the data after dimension reduction. The classification performance of WiFi

sensing data after dimensionality reduction by MDE, HSIC, FDA and PCA with/without

kernel trick is summarized in Tables 4.1 and 4.2, respectively. Since there are only two

classes, FDA always provides one-dimensional results. No SVM is applied to the projec-

tion result of FDA. One can see from Table 4.1 that MDE outperforms HSIC, FDA and

PCA if KNN is used for classification. Meanwhile, on day 17, the performance of PCA is

much worse than MDE and HSIC with SVM used as the classifier, which implies that the

use of label information helps find a better subspace for the data. The RBF kernel is used

in kernel MDE, HSIC, FDA and PCA. The coefficient γ ∈ [0.01, 1] in the RBF kernel is

chosen by 10-fold validation on the training data. The final choices of γ for kernel MDE,

HSIC, FDA and PCA are 0.01, 0.05, 0.1 and 0.01, respectively. On day 24, PCA has much

larger error rate than the three SDR methods, which implies that even with kernel trick,

unsupervised dimensionality reduction can lose significant label information.

Another interesting observation is that given WiFi sensing data, kernel trick does not

help to improve the performance of dimensionality reduction methods whereas given syn-

thetic data, kernel trick is shown to group data by their labels. This implies that kernel trick

for dimensionality reduction methods may not be necessary for some real datasets.

4.6 Summary

This chapter studied the supervised dimensionality reduction problem. An SDR approach

is proposed which maximizes the average energy difference preserved in the subspace. The

projection results of synthetic data show that the proposed SDR method outperforms ex-

isting SDR approaches based in eigen-decomposition such as FDA and HSIC if no kernel

trick is applied. Meanwhile, the proposed SDR method, FDA and HSIC achieve similar

performance given kernel trick. WiFi sensing data is used to test the performance of the pro-
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Table 4.1: Error probability given WiFi sensing data without kernel trick

day num classification MDE HSIC FDA PCA

4
KNN 0 0.0009 0.0005 0
SVM 0 0.0009 0

7
KNN 0.0029 0.0069 0.0132 0.0040
SVM 0.0047 0.0049 0.0063

15
KNN 0.0007 0.0022 0.0013 0.0018
SVM 0.0006 0.0003 0.0016

16
KNN 0.0024 0.0035 0.0048 0.0032
SVM 0.0019 0.0039 0.0069

17
KNN 0.0005 0.0009 0.0028 0.0004
SVM 0.0004 0.0007 0.1384

24
KNN 0.0059 0.0070 0.0231 0.0081
SVM 0.0058 0.0064 0.0094

Table 4.2: Error probability given WiFi sensing data with kernel trick

day num classification kernel MDE kernel HSIC kernel FDA kernel PCA

4
KNN 0 0 0 0.0015
SVM 0 0 0.0002

7
KNN 0.0034 0.0087 0.0056 0.0015
SVM 0.004 0.0076 0.0024

15
KNN 0.001 0.0012 0.0004 0
SVM 0.0002 0.0027 0.0003

16
KNN 0.0031 0.0071 0.0017 0.0017
SVM 0.0019 0.0054 0.0008

17
KNN 0.0002 0.0002 0.0002 0.0021
SVM 0.0002 0.0007 0.0004

24
KNN 0.0077 0.0109 0.0093 0.0255
SVM 0.0054 0.0108 0.0270
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posed SDR method for classification problems. It is shown that the proposed SDR method

outperforms FDA and HSIC in every case if KNN is used as the classifier. Furthermore,

the proposed SDR also outperforms unsupervised PCA on average.
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CHAPTER 5

CONCLUSION AND FUTURE RESEARCH

5.1 Conclusion

In this dissertation, two machine learning problems are studied. The first one is the se-

quence clustering problem, in which sequences are assumed to be generated from unknown

continuous distributions and the goal is to group sequences according to some well-defined

distribution metrics. The upper bound on the error probability of clustering algorithms is

investigated under distribution distance metrics.

In Chapter 2, upper bounds on error probability for the k-medoids algorithm were de-

rived that help establish the exponential consistency of the k-medoids algorithm under cer-

tain conditions on the distance metrics and the underlying distribution clusters. In particu-

lar, the exponential consistency of k-medoids is established for both known and unknwon

number of clusters under the KS distance and MMD.

In Chapter 3, the asymptotic performance of HAC algorithms for clustering samples

generated from distribution clusters is studied. The derived upper bounds on the error

probability implies the exponential consistency of HAC algorithms under certain conditions

on the distance metrics and the underlying distribution clusters. In particular, both linkage-

based and centroid-based clustering algorithms under the KS distance and MMD were
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shown to be exponentially consistent.

The second problem is supervised dimensionality reduction which attempts to find a

lower dimensional subspace which preserves label information for data used in supervised

machine learning problems.

In Chapter 4, maximum discriminant energy is proposed, which takes into account the

label information to preserve maximum discriminating information for classification prob-

lems. The performance of the proposed MDE is validated by both synthetic data and WiFi

sensing data. The projection results of synthetic data show that the proposed SDR method

outperforms existing SDR approaches based on eigen-decomposition such as FDA and

HSIC if no kernel trick is applied. Given WiFi sensing data, the proposed SDR method

outperforms FDA and HSIC without kernel trick if KNN is used as the classifier. Further-

more, the proposed SDR achieves performance comparable to FDA and HSIC with kernel

trick.

5.2 Future Research

We counclude the dissertation by listing several future research directions.

1. The preseted work in Chapters 2 and 3 assumes i.i.d. samples generated from dis-

tributions. However, samples are usually correlated in practice. One possible future

work is to investigate the upper bound on the error probability of clustering algo-

rithms given correlated data.

2. Another crucial assumption for the presented work in Chapters 2 and 3 is Assump-

tion 1 which requires that the maximum intra-cluster distance between distributions

is always smaller than the minimum inter-cluster distance between distributions. One

possible future work is to investigate whether exponential consistency can be estab-

lished while relaxing the condition in Assumption 1.
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3. In Chapter 4, MDE is applied to sample of two classes since MDE tries to maximize

the difference of average energy preserved in the subspace. One possible future

work is to modify MDE so that it can handle multi-class case without the need for

additional PCA after multiple MDEs.

4. MDE proposed in this dissertation is only validated by WiFi sensing data which is

a binary classification problem. Related to 3, extending MDE to multi-class clas-

sification problems and investigating its performance are necessary to broaden its

applications.
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APPENDIX A

TECHNICAL LEMMAS

The following technical lemmas are used to prove Corollaries 2.2.1.1, 2.3.1.1 and 2.3.2.1.

All the data sequences in Lemmas A.0.3 - A.0.8 are assumed to consist of n i.i.d. samples.

Lemma A.0.1. [Dvoretzky-Kiefer-Wolfowitz Inequality [69]] Suppose x consists of n i.i.d.

samples generated from p. Then

P
(
dKS (x, p) > ε

)
≤ 2 exp

(
−2nε2

)
.

Theorem A.0.2. [Theorem 7 in [65]] Suppose x ∼ p, y ∼ q, where x and y have m and n

samples, respectively. Given 0 ≤ g(x, y) ≤ G, the following inequality holds:

P (|MMD(x,y)−MMD(p, q)| > f(G,m, n) + ε)

≤ 2 exp

(
− ε2mn

2G (m+ n)

)
.

where f(G,m, n) = 2
(√

G
m

+
√

G
n

)
.

Lemmas A.0.3 - A.0.8 establish that the KS distance and the MMD statistic obtained by

(2.7) satisfy Assumption 2 if the distribution clusters satisfy Assumption 1. Moreover, the

lemmas provided in [21] are special cases of Lemmas A.0.3, A.0.5 and A.0.7 with dL = 0.
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Lemma A.0.3. Suppose xj ∼ pj for j = 1, 2, where pj ∈ P and dKS (P) ≤ dL,ks. Then

for any d0 > dL,ks,

P
(
dKS (x1,x2) > d0

)
≤ 4 exp

(
−n(d0 − dL,ks)2

2

)
.

Proof. Consider

P
(
dKS(x1,x2) > d0

)
≤ P

(
dKS(x1, p1) + dKS(p1, p2) + dKS(x2, p2) > d0

)
≤ P

(
dKS(x1, p1) + dL,ks + dKS(x2, p2) > d0

)
≤ P

(
dKS(x1, p1) >

d̂

2

)
+ P

(
dKS(x2, p2) >

d̂

2

)
≤ 4 exp

(
− nd̂2

2

)
,

where d̂ = d0 − dL,ks. The first inequality is due to the triangle inequality of the L1-

norm and the property of the supremum, and the last inequality is due to Lemma A.0.1.

Therefore, we have

P
(
dKS(x1,x2) > d0

)
≤ 4 exp

(
− n(d0 − dL,ks)2

2

)
.

Lemma A.0.3 implies that the KS distance satisfies (2.4b) for d > dL,ks.

Lemma A.0.4. Suppose xj ∼ pj for j = 1, 2, where pj ∈ P and MMD(P) ≤ dL,mmd.

Then for any d0 > dL,mmd and sufficiently large n,

P
(
MMD(x1,x2) > d0

)
≤ 2 exp

(
−n (d0 − dL,mmd)2

16G

)
.
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Proof. Since MMD(p1, p2) ≤ dL,mmd, we have

P (MMD(x1,x2) > d0)

≤ P (MMD(x1,x2)−MMD(p1, p2) > d0 − dL,mmd)

≤ P (|MMD(x1,x2)−MMD(p1, p2)| > d0 − dL,mmd) .

Choose ε =
d0−dL,mmd

2
and n sufficiently large such that f (G, n, n) + ε < d0− dL,mmd. By

Theorem A.0.2, we have,

P (MMD(x1,x2) > d0) ≤ 2 exp

(
−n (d0 − dL,mmd)2

16G

)
.

Lemma A.0.4 implies that the MMD statistc satisfies (2.4b) for d > dL,mmd.

Lemma A.0.5. Suppose two distribution clusters P1 and P2 satisfy Assumption 1 under the

KS distance. Assume that for j = 1, 2, xj ∼ pj where pj ∈ Pj . Then for any d0 < dH,ks,

P
(
dKS(x1,x2) ≤ d0

)
≤ 4 exp

(
− n(dH,ks − d0)2

2

)
.

Proof. Similar to the proof of A.0.3, we have

P
(
dKS(x1,x2) ≤ d0

)
≤ P

(
− dKS(x1, p1) + dKS(p1, p2)− dKS(x2, p2) ≤ d0

)
≤ P

(
− dKS(x1, p1) + d2 − dKS(x2, p2) < d0

)
≤ P

(
dKS(x1, p1) >

d̂

2

)
+ P

(
dKS(x2, p2) >

d̂

2

)
≤ 4 exp

(
− nd̂2

2

)
,

where d0 < d2 < dH,ks, d̂ = d2 − d0 and limd2↑dH,ks
= dH,ks − d0. The last inequality is
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due to Lemma A.0.1. Therefore, by the continuity of the exponential function, we have

P
(
dKS(x1,x2) ≤ d0

)
≤ 4 exp

(
− n(dH,ks − d0)2

2

)
.

Lemma A.0.5 implies that the KS distance satisfies (2.4a) for d > dH,ks.

Lemma A.0.6. Suppose two distribution clusters P1 and P2 satisfy Assumption 1 under

MMD. Assume that for j = 1, 2, xj ∼ pj , where pj ∈ Pj . Then for any d0 < dH,mmd and

sufficiently large n,

P
(
MMD(x1,x2) ≤ d0

)
≤ 2 exp

(
−n (dH,mmd − d0)2

16G

)
.

Proof. Similar to the proof of Lemma A.0.4, we have

P (MMD(x1,x2) ≤ d0)

≤ P (MMD(p1, p2)−MMD(x1,x2) ≥ dH,mmd − d0)

≤ P
(
|MMD(x1,x2)−MMD(p1, p2)| > d̂

)
where d̂ = d3− d0 and d0 < d3 < dH,mmd. Choose ε = d̂

2
and n sufficiently large such that

f(G, n, n) + ε < d̂. By Theorem A.0.2, we have

P (MMD(x1,x2) > d0) ≤ 2 exp

(
− nd̂

2

16G

)
.

Let limd3↑dH,ks
= dH,ks − d0. Then by the continuity of the exponential function, we have

for n sufficiently large,

P (MMD(x1,x2) ≤ d0) ≤ 2 exp

(
−n (dH,mmd − d0)2

16G

)
.

Lemma A.0.6 implies that MMD satisfies (2.4a) for d > dH,mmd.
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Lemma A.0.7. [70] Suppose two distribution clusters P1 and P2 satisfy Assumption 1

under the KS distance. Assume that for j = 1, 2, xj ∼ pj with length n where pj ∈ Pj .

Then for any x3 ∼ p3 with length n where p3 ∈ P1,

P
(
dKS(x1,x3) ≥ dKS(x2,x3)

)
≤ 6 exp

(
− n∆2

ks

8

)
.

Lemma A.0.7 implies that the KS distance satisfies (2.4c) for d ∈ (dL,ks, dH,ks).

Lemma A.0.8. Suppose two distribution clusters P1 and P2 satisfy Assumption 1 under

MMD. Assume that for j = 1, 2, xj ∼ pj where pj ∈ Pj . Then for any x3 ∼ p3 where

p3 ∈ P1, where n is sufficiently large,

P
(
MMD(x1,x3) ≥MMD(x2,x3)

)
≤ 4 exp

(
−n∆2

mmd

64G

)

Proof. Let ∆̂ ∈ (0,∆mmd). Similar to the proof of Lemmas A.0.4 and A.0.6, we have

P (MMD(x1,x3) ≥MMD(x2,x3))

≤ P
(
MMD(x1,x3)−MMD(p1, p3) + MMD(p2, p3)−MMD(x2,x3) ≥ ∆mmd

)
≤ P

(∣∣MMD(x1,x3)−MMD(p1, p3)
∣∣+
∣∣MMD(p2, p3)−MMD(x2,x3)

∣∣ > ∆̂
)

≤ P
(∣∣MMD(x1,x3)−MMD(p1, p3)

∣∣ > ∆̂

2

)
+ P

(∣∣MMD(x2,x3)−MMD(p2, p3)
∣∣ > ∆̂

2

)
,

where the last inequality is due to the union bound. Choose ε = ∆̂
4

and n sufficiently large

such that f(G, n, n) + ε < ∆̂
2

. By Theorem A.0.2, we have

P (MMD(x1,x3) ≥MMD(x2,x3)) ≤ 4 exp

(
−n∆̂2

64G

)
.

Let ∆̂ ↑ ∆mmd. By the continuity of the exponential function, we have for n sufficiently

large,

P (MMD(x1,x3) ≥MMD(x2,x3)) ≤ 4 exp

(
−n∆2

mmd

64G

)
.
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Lemma A.0.8 implies that MMD satisfies (2.4c) for d ∈ (dL,mmd, dH,mmd).
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APPENDIX B

DETAILED PROOF OF THEOREMS IN

CHAPTER 2

Define the following three events:

S1(dth) =
{
∃k, k′ ∈ IK1 , k 6= k′, j ∈ IMk

1 , j′ ∈ IMk′
1 , s.t. d(xk,j,xk′,j′) ≤ dth

}
,

S2(dth) =
{
∃k ∈ IK1 , j, j′ ∈ I

Mk
1 s.t. d(xk,j,xk,j′) > dth

}
,

S3 =
{
∃k, k′ ∈ IK1 , k 6= k′, j1, j2 ∈ IMk

1 , j′ ∈ IMk′
1 , s.t. d(xk,j1 ,xk,j2) ≥ d(xk,j1 ,xk′,j′)

}
,

where dth ∈ (dL, dH).

Assume that the sequences xk,j’s and the corresponding distribution clusters Pk’s sat-

isfy Assumption 1. By (2.4a) - (2.4c) and the union bound, we have

P
(
S1(dth)) ≤

K∑
k=1

K∑
k′=1
k′ 6=k

Mk∑
jk=1

Mk′∑
jk′=1

a1e
−bn ≤M2a1e

−bn, (B.1a)

P
(
S2(dth)

)
≤

K∑
k=1

Mk∑
jk=1

Mk′∑
jk′=1

a2e
−bn ≤M2a2e

−bn, (B.1b)

P
(
S3

)
≤

K∑
k=1

Mk∑
jk=1

Mk′∑
jk′=1

a3e
−bn ≤M2a3e

−bn. (B.1c)
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The main idea of the proofs of Theorems 2.2.1, 2.3.1 and 2.3.2 is to show that the error

event at each iteration is a subset of S1(dth) ∪ S2(dth) ∪ S3.

B.1 Proof of Theorem 2.2.1

The convergence of Algorithm 2 results from the design of the algorithm. Consider the

(t− 1)-th clustering step and the t-th center update step. We have for t ≥ 1,

K∑
k=1

∑
yi∈Ct−1,a

k

d(yi, c
t−1,a
k ) ≥

K∑
k=1

∑
yi∈Ct−1,a

k

d(yi, c
t,a
k ). (B.2)

Moreover, for the t-th center update and the t-th cluster update, we have for t ≥ 1,

K∑
k=1

∑
yi∈Ct−1

k

d(yi, c
t,a
k ) ≥

K∑
l=1

∑
yi∈Ctk

d(yi, c
t,a
k ). (B.3)

The equalities in (B.2) and (B.3) hold if and only if Ct−1
k = Ctk and ct−1,a

k = ct,ak for

k = 1, . . . , K respectively which implies the convergence of the algorithm.

Suppose there are K sequences assigned as cluster centers, and as a result M − K

remaining sequences are to be assigned to cluster centers. The order in which cluster

centers are chosen does not matter, so there are a total of
(
M
K

)
permutations of them. Since

each of the remaining M − K sequences can be assigned to one and only one cluster

center, there are a total of K(M−K) possible assignments. Therefore the total number of

valid partitions is
(
M
K

)
K(M−K). By (B.2) and (B.3), Algorithm 2 is guaranteed to visit each

possible partition at most once except the one coinciding with the clustering output. Hence

the maximum number of algorithm iterations is always upper bounded as

T ≤
(
M

K

)
K(M−K).
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Define for t ≥ 1,

Et = {After t-th iteration, there are K1 centers

generated from K2 distribution clusters}.

where

K1


> K2 if K2 = K,

≥ K2 if K2 < K.

Similarly, define

E0 = {The center initialization obtains K1 centers

generated from K2 distribution clusters}.

Then Et for t ≥ 0 denotes the error event that centers are incorrectly chosen at the center

initialization or the t-th center update. We first consider the error occurs at the initialization

step. For Algorithm 2,

E0 = {The center initialization results in K centers gene-

rated from K2 (< K) distribution clusters centers.}

= {∃k, l, l′ ∈ IK1 , l 6= l′ s.t. c0,a
l , c0,a

l′ ∼ Pk}.

Moreover, define

E0
1 = E0 ∩

{
∃l, l′ ∈ {1, . . . , K} s.t. d(c0,a

l , c0,a
l′ ) ≤ dth

}
,

E0
2 = E0 ∩

{
∃l, l′ ∈ {1, . . . , K} s.t. d(c0,a

l , c0,a
l′ ) > dth

}
.

Then E0 = E0
1 ∪ E0

2 . Without loss of generality, assume that c0,a
1 , . . . , c0,a

K are chosen

sequentially at the center initialization step and l < l′. Then E0
1 implies that for all the
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sequences z ∈ {yi}Mi=1 \ {c0,a
m }l

′
m=1,

min
m∈{1,...,l′−1}

d(c0,a
m , z) ≤ dth.

Thus, E0
1 ⊂ S1(dth). Then by (B.1a), we have

P
(
E0

1

)
≤ P

(
S1(dth)

)
≤M2a1e

−bn.

Moreover, since E0
2 ⊂ S2(dth), by (B.1b), we have

P
(
E0

2

)
≤ P

(
S2(dth)

)
≤M2a2e

−bn.

Thus, the error probability at the center initialization step is bounded as follows

P
(
E0
)
≤M2(a1 + a2)e−bn. (B.4)

We now consider the assignment step. Define for t ≥ 1,

H t = {The clustering result after the t-th cluster update is incorrect},

Moreover, define

H0 = {The clustering initialization is incorrect}.

Since Et ⊂ H t−1 for t ≥ 1, it is sufficient to obtain an upper bound on P
(
H t
)

which

serves as the upper bound of P (H t ∪ Et). Define

Ĥ t
1 =


H0 \ E0 for t = 0,

H t \
(
E0 ∪

(
∪t−1
l=0

(
H l
)))

for t ≥ 1.
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Then E0 ∪
(
∪Tt=1 H

t
)

= E0 ∪
(
∪Tt=0 Ĥ

t
1

)
, which is the event that Algorithm 2 makes an

error before the first T iterations complete. Moreover, Ĥ t
1 implies the event that an error

occurs at the t-th cluster update step given correct center update in the same iteration which

is denoted by

H̄ t
1 =

{
∃k, k′, l, l′ ∈ IK1 , k 6= k′, jk ∈ IMk

1 s.t.

d(xk,jk , c
t,a
l ) ≥ d(xk,jk , c

t,a
l′ ) : ct,al ∼ Pk, ct,al′ ∼ Pk′

}
.

Then P (Ĥ t
1) ≤ P

(
H̄ t

1

)
. Moreover, since H̄ t

1 ⊂ S3, we have

P (Ĥ t
1) ≤ P (H̄ t

1) ≤ P
(
S3

)
≤M2a3e

−bn. (B.5)

Therefore, by (B.4), (B.5) and the union bound, the error probability of Algorithm 2 after

T iterations is bounded by

Pe = P
(
E0 ∪

(
∪Tt=0 Ĥ

t
1

))
≤M2

(
a1 + a2 + (T + 1)a3

)
e−bn.

(B.6)

B.2 Proof of Theorem 2.3.1

If no merge step is executed and K̂ clusters are found by Algorithm 3, then similar to the

proof of Theorem 2.2.1 Algorithm 4 converges after at most T0 iterations, where

T0 =

(
M

K̂

)
K̂(M−K̂).

If the merge step is executed, the valid partitions before and after the merge step are mu-

tually exclusive since the number of clusters is strictly decreasing. Therefore, Algorithm 4
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converges after at most Tmax iterations, where

Tmax =
M∑
K̂=1

(
M

K̂

)
K̂(M−K̂).

In conclusion, Algorithm 4 converges after at most Tmax iterations since T0 < Tmax.

We then analyze the error probability of Algorithm 4. We first consider the initialization

step. Define

E0
3 = E0 ∩

{
K2 < K

}
,

E0
4 = E0 ∩

{
K2 = K

}
.

Then E0 = E0
3 ∪ E0

4 . Moreover, since

E0
3 ⊂

{
∃k, k′ ∈ IK1 , jk ∈ I

Mk
1 , jk′ ∈ I

Mk′
1 s.t. d(xk,jk ,xk′,jk′ ) ≤ dth

}
,

E0
4 ⊂

{
∃k ∈ IK1 , jk, j′k ∈ I

Mk
1 , s.t. d(xk,jk ,xk,j′k) > dth

}
,

then E0
3 ⊂ S1(dth) and E0

4 ⊂ S2(dth). Thus, by (B.1a), (B.1b), we have

P
(
E0

3

)
≤ P

(
S1(dth)

)
≤M2a1e

−bn,

P
(
E0

4

)
≤ P

(
S2(dth)

)
≤M2a2e

−bn.

Therefore, by the union bound, the probability that an error occurs at the center initializa-

tion step is bounded by

P
(
E0
)
≤ P

(
E0

3

)
+ P

(
E0

4

)
≤M2a1e

−bn +M2a2e
−bn. (B.7)

We now consider the error that occurs during iterations. Et ⊂ H t−1 for t ≥ 1 still

holds. Furthermore, define an incorrect merge as the event that the distance between two

centers generated from different distribution clusters is smaller than dth. Let Dt be the

event that incorrect merges occur at the t-th (t ≥ 1) merge step. Thus we only need to

bound P
(
H t
)

and P
(
Dt
)
. Let Bt1,t2 =

(
∪t1l=1 D

l
)
∪
(
∪t2l=0 H

l
)

for t1 ≥ 1 and t2 ≥ 1.
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Define

D̂t =


D1 for t = 1

Dt \
(
E0 ∪Bt−1,t−1

)
for t > 1

,

Ĥ t
2 =


H0 \ E0 for t = 0

H t \
(
E0 ∪Bt,t−1

)
for t ≥ 1

.

Then
E0 ∪

(
∪Tt=1 D

t
)
∪
(
∪Tt=0 H

t
)

= E0 ∪
(
∪Tt=1 D̂

t
)
∪
(
∪Tt=0 Ĥ

t
1

)
,

which denotes the event that an error occurs before T iterations complete. Note that D̂t

implies the event that an error occurs at the t-th merge step given correct center update in

the same iteration, which is denoted by

D̄t =
{
∃k, k′ ∈ IK1 , k 6= k′, l ∈ IK̂t−1

1 , s.t. d(ct,al , c
t,a
l′ ) ≤ dth : ct,el ∼ Pk, c

t,e
l′ ∼ Pk′

}
.

Then P
(
D̂t
)
≤ P

(
D̄t
)

and D̄t ⊂ S1(dth). Thus, by (B.1a), we have

P
(
D̂t
)
≤ P

(
D̄t
)
≤ P

(
S1(dth)

)
≤M2a1e

−bn. (B.8)

Moreover, we have P
(
Ĥ t

2

)
≤ P

(
H̄ t

2

)
, where

H̄ t
2 =

{
∃k, k′ ∈ IK1 , k 6= k′, jk ∈ IMk

1 , l, l′ ∈ IK̂t

1 , s.t.

d(xk,jk , c
t,e
l ) ≥ d(xk,jk , c

t,e
l′ ) : ct,el ∼ Pk, ct,el′ ∼ Pk′

}
.

Note that P (H̄ t
2) has the same upper bound as P (H̄ t

1) in (B.5). Therefore, by (B.7), (B.5)
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and (B.8), the error probability after T iterations is bounded by

Pe = P
(
Y 0 ∪

(
∪Tt=0 Ĥ

t
2

)
∪
(
∪Tt=1 D̂

t
))

≤M2
(
(T + 1)a1 + a2 + (T + 1)a3

)
e−bn.

(B.9)

B.3 Proof of Theorem 2.3.2

Note that in the extreme case, splitting results in each cluster containing only one sequence,

i.e., splitting can happen at most M − 1 times. Therefore, Algorithm 5 converges after at

most M iterations. Furthermore, if K̂ does not change from the (t − 1)-th to the t-th

iteration, then Ct−1
k = Ctk and ct−1

k = ctk for k = 1, . . . , K̂, which implies the convergence

of the algorithm.

LetAt be the event that the error occurs at the t-th split step. ThenAt = At1∪At2, where

At1 =
{

The algorithm fails to split any cluster containing sequences generated

by diffierent distribution clusters at the t-th iteration
}
,

At2 =
{

The algorithm splits a cluster containing sequences generated by

one distribution clusters at the t-th iteration
}
.

Let V t denote the event that the clustering result at the t-th cluster update is incorrect. Then

At ∪ V t denotes the event that an error occurs at the t-th iteration. Define Ât = Ât1 ∪ Ât2,

where

Âti =


A1 for t = 1,

Ati \
(
(∪t−1

l=1A
l) ∪ (∪t−1

l=1V
l)
)

for t > 1,

for i = 1, 2. Moreover, define

V̂ t =


V 1 \ A1 for t = 1

V t \
(
(∪t−1

l=1V
l) ∪ (∪tl=1A

l)
)

for t > 1

.
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Then
(
∪Tt=1 A

t
)
∪
(
∪Tt=1 V

t
)

=
(
∪Tt=1 Â

t
)
∪
(
∪Tt=1 V̂

t
)
. Since Ât1 ⊂ S1(dth) and

Ât2 ⊂ S2(dth), then we have for t = 1, . . . , T ,

P
(
Ât1
)
≤ P

(
S1(dth)

)
≤M2a1e

−bn,

P
(
Ât2
)
≤ P

(
S2(dth)

)
≤M2a2e

−bn.

Moreover, since P
(
Ât
)

= P
(
Ât1 ∪ Ât2

)
, by the union bound

P
(
Ât
)
≤M2a1e

−bn +M2a2e
−bn. (B.10)

Furthermore, by Definition 2.3.1.1, V̂ t implies the following event

V̄ t =
{
∃l, l′ ∈ IK̂t

1 , k, k′ ∈ IK1 k′ 6= k, jk ∈ IMk
1 s.t.

d(xk,jk , c
t,s
l ) ≥ d(xk,jk , c

t,s
l′ ) : ct,sl ∼ Pk, ct,sl′ ∼ Pk′

}
.

Then, P
(
V̂ t
)
≤ P

(
V̄ t
)

and V̄ t ⊂ S3. Thus, we have

P
(
V̂ t
)
≤ P

(
V̄ t
)
≤M2a3e

−bn. (B.11)

Therefore, by (B.10), (B.11) and the union bound, the error probability of Algorithm 5 after

T iterations is bounded by

Pe = P
((
∪Tt=1 Â

t
)
∪
(
∪Tt=1 V̂

t
))

≤M2T
(
a1 + a2 + a3

)
e−bn.

(B.12)
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APPENDIX C

DETAILED PROOF OF THEOREMS IN

CHAPTER 3

C.1 Proof of Proposition 2

Without loss of generality, assume that {C0
i } = {yi} for i = 1, . . . ,M . Then (3.4) holds

for t = 0 and θ0
ii′ (yi,yi′) = 1. Since each C0

l consists of one sequence, (3.5) holds for any

l 6= l′ and t = 0.

Let r+
1 = α1 + γ, r−1 = α1 − γ, r+

2 = α2 + γ and r−2 = α2 − γ, which are all

non-negative by (3.2). Assume that (3.4) and (3.5) hold for 0 ≤ t0 ≤ t and there are

L + 1 clusters after the t-th iteration. Without loss of generality, we further assume that

the last two clusters are combined as Ct+1
L in the (t+ 1)-th iteration, i.e., Ct+1

l = Ctl for

l < L and Ct+1
L = CtL ∪ CtL+1. Then at the (t+ 1)-th iteration, (3.4) and (3.5) hold for

l, l′ ∈ IL−1
1 , l 6= l′, since d

(
Ct+1
l , Ct+1

l′

)
= d (Ctl , Ctl′). Furthermore, for any l < L, if
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d (Ctl , CtL) ≥ d
(
Ctl , CtL+1

)
, we have

d
(
Ct+1
l , Ct+1

L

)
= r+

1 d
(
Ctl , CtL

)
+ r−2 d

(
Ctl , CtL+1

)
= r+

1

∑
i: yi∈Ctl

∑
i′: yi′∈CtL

θtii′ (yi,yi′) d (yi,yi′) + r−2
∑

i: yi∈Ctl

∑
i′: yi′∈CtL+1

θtii′ (yi,yi′) d (yi,yi′)

=
∑

i: yi∈Ctl

∑
i′: yi′∈C

t+1
L

θt+1
ii′ (yi,yi′) d (yi,yi′) ,

where

θt+1
ii′ (yi,yi′) =


r+

1 θ
t
ii′ (yi,yi′) if yi′ ∈ CtL,

r−2 θ
t
ii′ (yi,yi′) if yi′ ∈ CtL+1.

Since r+
1 + r−2 = 1 and (3.5) holds for t, then

∑
i: yi∈Ct+1

l

∑
i′: yi′∈C

t+1
L

θt+1
ii′ (yi,yi′) d (yi,yi′) = 1.

The case where d (Ctl , CtL) < d
(
Ctl , CtL+1

)
can be proved in a similar manner.

C.2 Proof of Proposition 3

Note that if Ctl1 = Ct−1
l1

, Ctl2 = Ct−1
l2

and Ctl3 = Ct−1
l3

for t ≥ 1, then we can replace t by t−1 in

(3.10). Thus, we only need to consider the case where Ctl1 results from combining in the t-th

iteration. Without loss of generality, assume that Ctl1 = Ct−1
l1
∪Ct−1

l4
, where Ct−1

l1
, Ct−1

l4
∼ Pk

and t ≥ 1. We further assume that Ctl2 = Ct−1
l2
∼ Pk and Ctl3 = Ct−1

l3
∼ Pk′ , where k 6= k′.
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Then by (3.1), we have

d
(
Ctl1 , C

t
l2

)
− d

(
Ctl1 , C

t
l3

)
= α1d

(
Ct−1
l1
, Ct−1

l2

)
+ α2d

(
Ct−1
l4
, Ct−1

l2

)
+ βd

(
Ct−1
l1
, Ct−1

l4

)
− α1d

(
Ct−1
l1
, Ct−1

l3

)
− α2d

(
Ct−1
l4
, Ct−1

l3

)
− βd

(
Ct−1
l1
, Ct−1

l4

)
= α1

[
d
(
Ct−1
l1
, Ct−1

l2

)
− d

(
Ct−1
l1
, Ct−1

l3

) ]
+ α2

[
d
(
Ct−1
l4
, Ct−1

l2

)
− d

(
Ct−1
l4
, Ct−1

l3

) ]
.

(C.1)

By (C.1), we have for t = 1,

P
(
d
(
C1
l1
, C1

l2

)
≥ d

(
C1
l1
, C1

l3

))
= P

(
α1

[
d
(
C0
l1
, C0

l2

)
− d

(
C0
l1
, C0

l3

) ]
+ α2

[
d
(
C0
l4
, C0

l2

)
− d

(
C0
l4
, C0

l3

) ]
≥ 0
)

≤ P
(
d
(
C0
l1
, C0

l2

)
− d

(
C0
l1
, C0

l3

)
≥ 0
)

+ P
(
d
(
C0
l4
, C0

l2

)
− d

(
C0
l4
, C0

l3

)
≥ 0
)

≤ 2a3e
−nb3 ,

where the two inequalities are due to the union bound and (2.4c), respectively. Assume that

for 1 ≤ t0 ≤ t,

P
(
d
(
Ct0l1 , C

t0
l2

)
≥ d

(
Ct0l1 , C

t0
l3

))
≤ 2t0a3e

−nb3 . (C.2)

Then for t0 = t+ 1, we have

P
(
d
(
Ct+1
l1
, Ct+1

l2

)
≥ d

(
Ct+1
l1
, Ct+1

l3

))
= P

(
α1

[
d
(
Ctl1 , C

t
l2

)
− d

(
Ctl1 , C

t
l3

) ]
+ α2

[
d
(
Ctl4 , C

t
l2

)
− d

(
Ctl4 , C

t
l3

) ]
≥ 0
)

≤ P
(
d
(
Ctl1 , C

t
l2

)
− d

(
Ctl1 , C

t
l3

)
≥ 0
)

+ P
(
d
(
Ctl4 , C

t
l2

)
− d

(
Ctl4 , C

t
l3

)
≥ 0
)

≤ 2t+1a3e
−nb3 ,
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where the two inequalities are due to the union bound and (C.2), respectively. We then

prove (3.10b). For t = 1, we have

P
(
d
(
C1
l1
, C1

l2

)
> dth

)
= P

(
d
(
C1
l1
, C1

l2

)
> dth and d

(
C0
l1
, C0

l4

)
≤ dth

)
+

P
(
d
(
C1
l1
, C1

l2

)
> dth and d

(
C0
l1
, C0

l4

)
> dth

)
,

≤ P
(
α1d

(
C0
l1
, C0

l2

)
+ α2d

(
C0
l4
, C0

l2

)
> dth

)
+ P

(
d
(
C0
l1
, C0

l4

)
> dth

)
≤ P

(
d
(
C0
l1
, C0

l2

)
> dth

)
+ P

(
d
(
C0
l4
, C0

l2

)
> dth

)
+ P

(
d
(
C0
l1
, C0

l4

)
> dth

)
≤ 3a2e

−nb2 .

(C.3)

The second inequality is due to α1 + α2 = 1 and the union bound. Assume that for some

1 ≤ t0 ≤ t,

P
(
d
(
Ct0l1 , C

t0
l2

)
> dth

)
≤ 3t0a3e

−nb3 . (C.4)

Then for t0 = t+ 1, we have

P
(
d
(
Ct+1
l1
, Ct+1

l2

)
> dth

)
≤ P

(
d
(
Ctl1 , C

t
l2

)
> dth

)
+ P

(
d
(
Ctl4 , C

t
l2

)
> dth

)
+ P

(
d
(
Ctl1 , C

t
l4

)
> dth

)
≤ 3t+1a2e

−nb2 .

The first inequality is due to the assumption β ∈ (−1, 0) and (3.1) while the last two

inequalities are due to the union bound and (C.4).

C.3 Proof of Theorem 3.2.1

Denote by F the event that sequences are well separated:

F =
{
d (yj1 ,yj2) ≤ dth and d (yj1 ,yj3) > dth : yj1 ,yj2 ∼ Pk

and yj3 ∼ Pk′ ∀k, k′ ∈ {1, . . . , K} , k 6= k′
}
.
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Since there are M data sequences, by Assumption 2, P (F ) can be lower bounded by

P (F ) ≥
K∏
k=1

(
1− a1e

−b1n
)M2

k

K∏
k=1

K∏
k′=1
k′ 6=k

(
1− a2e

−b2n
)MkMk′

≥
(
1− a1e

−b1n
)M2 (

1− a2e
−b2n

)M2

≥
(
1−M2a1e

−b1n
) (

1−M2a2e
−b2n

)
≥ 1−M2a1e

−b1n −M2a2e
−b2n.

(C.5)

The third inequality is due to Bernoulli’s inequality. Without loss of generality, assume that

Cl1 and Cl2 are merged. By Proposition 2, the distance d (Cl1 ∪ Cl2 , Cl3) satisfies

d (Cl1 ∪ Cl2 , Cl3) ≥ min {d (Cl1 , Cl3) , d (Cl2 , Cl3)} ,

d (Cl1 ∪ Cl2 , Cl3) ≤ max {d (Cl1 , Cl3) , d (Cl2 , Cl3)} .

This implies that if data sequences are well separated, 1) the distances between clusters

consisting of data sequences generated from the same Pk are always no greater than dth;

and the distances between clusters consisting of data sequences generated from Pk and Pk′

for k 6= k′ are always no less than dth. Hence, if data sequences are well separated, linkage-

based clustering algorithms always provide correct clustering results. The error probability

of a linkage-based clustering algorithm is then upper bounded by

Pe ≤ 1− P (F ) ≤M2a1e
−b1n +M2a2e

−b2n.
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C.4 Proof of Theorem 3.2.2

Define

F1 =

{
min

yj1
,yj2
∼Pk

d (yj1 ,yj2) ≤ dth : ∀k ∈ {1, . . . , K}
}
,

F2 =
{

min
yj1
∼Pk, yj3

∼Pk′
d (yj1 ,yj3) > dth : ∀k, k′ ∈ {1, . . . , K} , k 6= k′

}
.

Similar to (C.5), we have

P (F1 ∩ F2) ≥
(
1− a1e

−b1n
)M2 (

1− a2e
−b2n

)M
≥ 1−M2a1e

−b1n −Ma2e
−b2n.

The error probability of SLINK is thus upper bounded by

Pe,S ≤ 1− P (F1 ∩ F2) ≤M2a1e
−b1n +Ma2e

−b2n.

C.5 Proof of Theorems 3.3.1

Without loss of generality, assume that an HAC algorithm converges after T iterations,

where T ≤ M . Denote by Et for 1 ≤ t ≤ T the event that after the t-th iteration,

there exists at least one cluster that contains sequences generated from different distribution

clusters. Due to the scheme of HAC algorithms, the clustering error can not be corrected

in the following iterations. Hence, E1 ⊂ E2 . . . ⊂ ET . Denote by H t the event that after

the t-th iteration, there exists at least two clusters that contain sequences generated from

the same distribution clusters. Then H1 ⊃ H2 . . . ⊃ HT . Moreover, since a clustering

algorithm provides an incorrect clustering result if and only if either ET or HT happens,

i.e., the error event is ET ∪ HT , then the error probability of the HAC algorithm is given

by

Pe = P
(
ET ∪HT

)
. (C.6)
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Denote by E0 the event that each cluster has exactly one data sequence. Define for 1 ≤ t ≤

T , Êt = Et \ Et−1 and ĤT = HT \ ET . Then (C.6) becomes

Pe = P
((
∪Tt=1Ê

t
)
∪ ĤT

)
≤

T∑
t=1

P
(
Êt
)

+ P
(
ĤT
)
, (C.7)

where the inequality is due to the union bound. We then try to bound P
(
Êt
)

and P
(
ĤT
)

.

Since after each iteration, two clusters are combined, then the number of clusters after t

iterations is M − t. Denote by Ct1, . . . , CtM−t the M − t clusters. Since

Êt =

{
d
(
Ct−1
l1
, Ct−1

l2

)
≤ dth : Ct−1

l1
∼ Pk, Ct−1

l2
∼ Pk′ , k 6= k′, (l1, l2) =

arg min
l,l′∈IM−t+1

1 , l 6=l′
d
(
Ct−1
l , Ct−1

l′

)
, ∀l ∈ IM−t+1

1 , Ct−1
l ∼ Pk for some k ∈ IK1

}
,

where Ik2k1 denotes the integer set from k1 to k2, then for centroid-based clustering algo-

rithms,

Êt ⊂ ∪l1,l2,l3∈IM−t+1
1

{
d
(
Ct−1
l1
, Ct−1

l2

)
≥ d

(
Ct−1
l1
, Ct−1

l3

)
: Ct−1

l1
, Ct−1

l2
∼ Pk, Ct−1

l3
∼ Pk′ ,

k, k′ ∈ IK1 , k 6= k′
}
.

Thus, by the union bound and (3.10a), we have for sufficiently large n,

P
(
Êt
)

≤
M−t+1∑
l1=1

M−t+1∑
l2=1
l2 6=l1

M−t+1∑
l3=1
l3 6=l2
l3 6=l1

P
({
d
(
Ct−1
l1
, Ct−1

l2

)
≥ d

(
Ct−1
l1
, Ct−1

l3

)
:

Ct−1
l1
, Cl2 ∼ Pk, Ct−1

l3
∼ Pk′ , k, k′ ∈ IK1 , k 6= k′

})
≤ 2tM3a3e

−nb3 .

(C.8)
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Furthermore, since

ĤT =

{
min

l,l′∈IM−T
1 , l 6=l′

d
(
CTl , CTl′

)
> dth, and ∀l ∈ IM−T1 , CTl ∼ Pk for some k ∈ IK1 ,

and ∃ CTl1 , C
T
l2
∼ Pk′ for k′ ∈ IK1

}
⊂ ∪l,l′∈IM−T

1

{
d
(
CTl , CTl′

)
> dth : CTl , CTl′ ∼ Pk

}
,

then for centroid-based clustering algorithms with sufficiently large n, P
(
ĤT
)

is upper

bounded by

P
(
ĤT
)
≤ 3TM2a2e

−nb2 . (C.9)

By (C.7) - (C.9), the upper bound on the error probability of linkage-based clustering al-

gorithms and centroid-based clustering algorithms for n sufficiently large is given by the

following two inequalities, respectively,

Pe ≤
T∑
t=1

2tM3a3e
−nb3 + 3TM2a2e

−nb2 ,

≤M2
[
2M+1Ma3e

−nb3 + 3Ma2e
−nb2

]
.
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