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ABSTRACT

In this thesis I explore the results of ultra-high vacuum laboratory experiments performed at the

Syracuse University Astrophysics and Surface Science Laboratory on structural changes of analogs

of ice mantles that cover dust grains in dense clouds in the interstellar medium. We present the

experimental and analytical techniques that we used and the motivations for the investigations in

the context of molecular astrophysics. The primary contribution of this thesis is the meaningful

insight into the long-standing question of how molecular diffusion and formation occur in or on ices

in the interstellar medium under the conditions of low pressure and low temperature. Specifically,

the focus is placed on an astrophysically relevant two layer ice geometry where the first layer is

primarily composed of water molecules (water-rich), while the second layer’s dominant species

is CO (water-poor). We consider each layer separately, first investigating the pore surface area of

the water-rich layer and correspondingly its ability to store, trap, and facilitate the formation of

complex organic molecules (COMs). We then consider the water poor layer where we report the

discovery of a new phase transition in carbon monoxide ice at low temperature. We use CO2 as a

probe within the CO ice matrix to demonstrate how this transition causes a diffusion and clustering

of CO2 and consequentially suggests the potential mechanism for molecular formation in the ISM.

This information is used to build a predictive model that is applied to an astrophysically relevant

parameter space within which we are able to directly relate the time scale on which this transition

occurs with that of stellar evolution.
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Chapter 1

Introduction

1.1 Background

The field of molecular astrophysics devotes itself to the “study of the formation, destruction, and

excitation of molecules in astronomical environments and the corresponding influence on the struc-

ture, dynamics and evolution of astronomical objects.” [10]. The astronomical environments we

will be considering are those of the interstellar medium (ISM), a physically diverse and chemically

active landscape between star systems that consists of gas, dust, and ice. The condensation of gas-

phase species on cold dust grains is considered to be a powerful chemical route by which ices and

molecules are formed in ISM dense clouds; a starting point from which excitation, destruction, and

further molecular formation are guided by cloud collapse and stellar evolution. Surface chemistry

thus plays a commanding role in understanding the composition of ice mantles and molecular gas

that is desorbed from dust grains and observed in the space surrounding of young stellar objects

(YSO) [11].

1.1.1 Interstellar Gas

The interstellar gas is composed primarily of hydrogen followed by helium and trace amounts of

oxygen, carbon, and nitrogen (see Table 1) for elemental abundances [5]. To better understand

its elemental composition and where and how molecules are formed and found, as well as its

temperature and pressure range, we refer to the three phase model of the ISM put forward by

McKee and Ostriker [2]. The three phase model only takes hydrogen in to account assuming that

the influence of other elements are negligible and is defined by the intensity of the Interstellar

Radiation Field (ISRF) in that region [2]. The ISRF is the integrated light of all the stars in the

galaxy possessing a mean energy density of 7 10−14 J m−3 [12]. The three phases of the model
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are: Cold Neutral Interstellar Medium (CNM), Warm Interstellar Medium which is broken down

into subphases: neutral (WNM) and ionized (WIM) , and Hot Interstellar Medium (HIM) [2].

The details discussed in the following paragraph are summarized in Table 2. The HIM region

accounts for most of the ISM (∼ 70%) and as a result of energy imparted by nearby supernovae

contributes photons (UV for example) to the ISRF that have enough energy (greater than 13.56

eV) to ionize atomic hydrogen. Thereby this region is hot (average temperature of ∼ 105 K), low

in density (∼ 10−2 particles cm−3), and populated primarily by H+. The WIM and WNM regions

collectively account for approximately 30% of the ISM with average temperatures approximately

of 8,000 K and 80 K, respectively, and densities of approximately 0.1 to 1 and 10 to 100 particles

cm−3, respectively. The WIM region is populated by atomic hydrogen (H) and ionized hydrogen

(H+) and is where low pressure gas clouds known as inter clouds are formed. The WNM region is

populated by atomic hydrogen (H) and is where diffuse gas clouds are formed. The CNM phase

accounts for less than 1 % of the ISM and is the region where dense molecular clouds form. It

has a temperature range of approximately 10 - 70 K; it is coldest at the cloud core and becomes

warmer moving outwards towards the edges. This phase also has a relatively high average density

of approximately 104 particles cm−3 and is populated largely by molecular hydrogen (H2) formed

on the surface of dust grains [2] (formation of H2 on dust grains is discussed more in the subsection

below).

Dense molecular clouds in the CNM phase often are of most interest to molecular astrophysi-

cists. This is due to the fact that the cores of dense clouds are shielded from the interstellar ex-

tinction of UV photons by dust grains that reside at cloud edges. Molecular hydrogen provides

self-shielding as well. This protection provides an environment in which molecules that are too

fragile to exist in other regions of the ISM can form and have an appreciable probability of survival.

In turn, they may ultimately seed planetary systems that are produced via the collapse of dense

clouds; the typical lifetime of dense clouds is between 10 and 50 Myrs [13]. Over 200 molecular

species have been identified in the ISM via the detection of radio, far-IR and mid-IR spectra when

molecular rovibrational transitions are undergone in the gas phase; in the solid state phase (i.e. in

or on ice), molecules are identified through their near and mid IR spectra. About one third of these

detected molecules have multiple carbon atoms which are known as COMs (Complex Organic

Molecules) by their astronomical classification [14, 15].Example of detected COMs in the ISM in-

clude Hydrocarbons: ethene (HC4H), butadiyne (H2C4), butatrienylidene (H2C4); O-Containing:

methanol (CH3OH), propynal (HC2CHO), acetaldehyde (CH3CHO); N-Containing: acetonitrile

(CH3CN), methylisocyanide (CH3NC), keteneimine (CH2CNH); S-Containing: methyl mercaptan
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(CH3SH); and N,O-Containing: formamide (NH2CHO), acetamide (CH3CONH2) [16]. Particu-

larly noteworthy is the Atacama Large Millimeter/submillimeter Array (ALMA) 2014 discovery

of the COM isopropyl cyanide (C4H7N) in the giant gas cloud Sagittarius B2. It was the first de-

tection of a branched-carbon based molecule. [17]. In 2016 the chiral molecule propylene oxide

(CH3CHCH2O) was also detected by ALMA in Sagittarius B2 [18]. These discoveries give mean-

ingful credit to the theory that life essential molecules are a consequence of interstellar chemistry

that takes place in the CNM phase and that they might seed planets with such biogenic molecules.

1.1.2 Interstellar Dust

Interstellar dust grains are primarily made up of a mix of amorphous silicates and carbonaceous

materials; dust grains account for virtually the all of silicon, magnesium, and iron and approxi-

mately 30% of oxygen and 70% of carbon in the ISM. Dust grain sizes range from 0.001µm to 0.1

µm; the smaller grains being more prevalent. The smaller grains are responsible for the extinction

of UV radiation and thus play a crucial role in the shielding of dense cloud cores. As discussed in

the last subsection, this shielding is important for extended lifetimes of molecules and correspond-

ing increase in molecular complexity [5]. Interstellar dust grain parameters such as these are often

deduced from observations. For example, the 1930 Trumpler observations revealed that clouds of

interstellar dust were dimming starlight as it passed though space with a wavelength dependence

of the interstellar extinction that was proportional to 1
λ

, which implied that dust grains were on the

scale of submicrons [19]. Dust grain parameters are determined more effectively by a combina-

tion of observations and statistical models that consider different compositions and distributions

of size in order to fit or reproduce the observed wavelength-dependent extinction. Mathis et al.

[20] developed an authoritatively successful interstellar dust model by using observed extinction

of starlight along lines of sight that pass through diffuse clouds in the WNM phase, and deducing

a power-law interstellar dust grain size distribution function (IDGSDF) approximately given by:

n(a)∼ a−3.5 (1.1)

where n is the number density of dust grains and a is the dust grain size in µm [20].

The temperature of dust grains is particularly important given that physical chemical processes

on the dust strongly depend on this parameter. Furthermore, dust grains require temperatures in

excess of 1200 K to vaporize and thus are fairly resilient and versatile components of the ISM. For

example, at the boundary of dense clouds, shielding takes place and grains that absorb UV photons

heat up and emit mid-IR radiation [5]. This is known as the photodissociation region (PDR) and

dust grains not only prevent the penetration of UV radiation but the IR radiation they emit heats
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the surrounding gas via the photoelectric effect, causing the emission of electrons. Dust grain

temperatures in regions throughout dense clouds and extending in to the CNM on the other hand

range between 10 and 70 K as the three phase model tells us (see Table 2). Dust grains do not

emit IR radiation in this temperature range but instead the coldest grains in the dense cloud cores

serve as a catalytic surface upon which atoms and molecules accrete and molecular bonds form.

In fact, dust grains are considered responsible for the formation of all of the molecular hydrogen

in the ISM and the hydrogenation of O, C, and N; a process that is key to the formation of ice

mantles which coat the dust grains [11, 21]. It is important to note for the most cases and the work

presented in this thesis the surface particles of dust grains are not considered to play a catalytic

role with regard to chemistry of ice or volatile gases but rather provide a site on which reactions

occur [5].

1.1.3 Interstellar Ice

Spitzer Space Telescope data of large samples of young stellar objects (YSO), such as the protostar

HH46 IRS - to be discussed later, show that the dominant ice species detected in the ISM are simple

molecules, H2O, CO, CO2, CH4,NH3, and CH3OH (see Figure 2 and Table 3). The most prevalent

of ice species is H2O. It is important to note that these ices detected in YSO are considered to

be representative of the dense cloud environments where they formed. These ice species have

been confirmed by stimulatory laboratory experiments [22] [23] and observational inventory of

interstellar ices performed by the Kuiper Airborne Observatory (KAO) and the Infrared Space

Observatory (ISO). They are also precisely those predicted by the hydrogenation and oxidation of

dominant elements O, C, and N which occurs on the surface of cold dust grain as discussed in the

last subsection [11, 21]. The exception is CO which directly accretes from the gas phase on to the

grain surface.

Interstellar ices have a layered structure that is interpreted from the shapes of the ice IR bands

and the characteristics of the cloud, and consist of a water-rich first layer followed by a water-

poor second layer. The thickness and composition of the layers depend on the chemical make up

of the cloud and its thermal history. The layer in which a given molecule resides is revealed by

the molecule’s vibrational constant (i.e. spring constant) which differs depending on whether the

molecule is surrounded by water molecules or not. This distinction is found in the line profile

of solid CO and is indicative of the fact that 60-90 percent of CO is in pure form (i.e. is not

surrounded by water molecules) and is the dominant component of the water-poor layer (i.e. CO

rich) [24, 11]. While this layered interstellar ice grain geometry, called the onion model, is well
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understood, the morphology (porous vs non-porous and amorphous vs crystalline) of both the CO-

rich (water-poor) outer layer and CO-poor (water-rich) inner layer is not. Nor are the potential

consequences this information bares with regard to COM formation.

COM formation can be broken into three generations; zeroth, first, and second. The zeroth

generation is representative of COM formation during ice formation when the cloud core is still

cold and star formation has not yet begun. The zeroth generation is the most challenging to study,

since the chemical pathways that can lead to COM formation at temperatures as low as 10 K are

currently not well understood. Curiosity with regard to molecular formation during this generation

is peaked by the fact that all of the YSO sources in the Spitzer samples mentioned above show

remarkable similarities with regard to composition which suggests that there exists a strong and

universal zeroth generation formation mechanism. The main point of this thesis is to make a mean-

ingful contribution to this long-standing issue that currently is being investigated via observations,

laboratory work and computer simulations, as presented in greater detail in sections and chapters

below. The first generation is commenced during protostellar warm-up when enough thermal en-

ergy is imparted to the ice mantle (via warm-up of the grain surface), in such a way that molecules

in and on the ice mantle become mobile. The second generation is the result of high temperatures

in which the ice mantle evaporates, and COMs are ejected from the grains and some COMs are

also formed in the gas phase from this enrichment of the gas-phase chemical environment [5].

1.2 Surface Chemistry

A surface chemical model will be required going further in order to quantify experimental data and

draw meaningful connections between laboratory results and astrophysical phenomena associated

with interstellar ice-coated dust grains. We will be focusing our attention on surface chemical

mechanisms that occurs at the solid-vacuum interface and in the solid state. Figure 1 illustrates the

mechanisms that will be considered: adsorption, diffusion, and desorption [5].

Key to adsorption is the probability that a given atomic or molecular species sticks to the

grain surface when collision occurs. This is known as the sticking coefficient and is defined as

the ratio of molecules that adsorb to the surface to the sum total of all molecules that impinge

on the surface. Diffusion of a species in or on an ice mantle is paramount as it is considered the

primary mechanism by which COM formation occurs. There are two ways in which diffusion

can be described; quantum tunneling and thermal hopping. Diffusion via quantum tunneling is

particularly important for H as its low mass makes it significantly more likely to tunnel across

energy barriers to other adsorption sites as opposed to heavier atoms and radicals. Generally

speaking, quantum tunneling becomes dominant at temperatures below 100 K, which is likely to
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be the primary mechanism for many hydrogenation reactions on the surface of cold of grains [25].

However, the tunneling rate is highly sensitive to the height and width of the energy barrier between

adjacent adsorption sites. Experiments of molecular hydrogen formation on disordered/amorphous

surfaces in this laboratory showed that H2 formation is initiated by thermal energy [26]. Diffusion

via thermal hopping, however, is more relevant to this thesis and can be defined in terms of a rate

coefficient given by equation:

Khop = ν exp(
−Ehop

Ts
) (1.2)

where ν is the vibrational frequency of the molecule in the particle-surface adsorption potential

well, Ehop is the energy barrier that must be overcome in order for diffusion to ensue, and Ts is the

temperature of the surface. The diffusion energy barrier, Ehop, is conventionally considered to be

a fraction (0.3 to 0.8 depending on the model) of the binding energy (Ebind), the energy required

for the molecule to desorb from the surface [5]. It is important to note that this model does not

take into account the possibility of the surface being rough in which case the energy barriers may

change from site to site. An example of this occurance is the case for porous ice in contrast to

smooth compact ice. Such morphological states can significantly change the surface dynamics

of a given species. For example, in chapter 3 we will investigate porous amorphous solid water

(p-ASW) and how CO diffuses or gets trapped in water ice pores. This is in contrast to chapter

4 in which we will work with compact (non-porous) ASW. Different analyses and models will be

developed and used in the two cases.

1.3 Relevant Work

Laboratory experiments performed and analyzed at the Syracuse University Laboratory of Astro-

physics and Surface Science are the focus of the work that comprises this thesis. Our primary

objective is to simulate the environment of the interstellar medium and the chemical processes

described above so as to measure physical parameters that are useful in making meaningful and

powerful predictions with regard to astrophysical phenomena.

A detailed technical description of our laboratory and measuring methods is provided in chapter

2 of this thesis. It is advised that this introductory chapter be treated as a guiding companion when

reading the second chapter, so as to be able to discern utility and purpose of the various equipment

and measurement techniques that are mentioned. For added clarity, I will explicitly call on this

introductory chapter throughout the next chapter. In the second half of chapter 2 we focus on an in-

vacuum helical coaxial resonator I designed and built for the dissociation of gaseous molecules and
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ultimately the production of atomic beams. I mathematically explore this useful laboratory tool and

demonstrate a novel insight into its technical parameters; the work presented is done in the pursuit

of making meaningful recommendations for future work using this piece of equipment. I discuss

the exciting potential that in-vacuum atomic beam sources have with regard to the investigation of

COM formation via radical-induced chemistry of interstellar ice analogues.

In chapter 3 we perform a systematic study of the water rich (CO-poor) layer of ASW and

ASW mixtures via the infrared absorption spectrum of CO as a tool to measure the temperature

dependence of pore surface area, connectivity, and trapping potential. The primary motivation for

doing so is the potential of efficient diffusive processes that p-ASW may have to offer with regard

to the production of COMs in the ISM.

In chapter 4 we explore the water poor (CO-rich) layer of ASW and consider the crystallization

of CO as a mechanism by which COM formation occurs. We present compelling evidence of low

temperature crystallization kinetics that have never been identified or measured before. We extend

our novel experimental results to construct a predictive model that is applied to an astrophysically

relevant parameter space and impactful predictions are made with regard to COM formation.
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Table 1: Elemental Abundances of ISM [1]

Species Abundance

H 1

He 1 X 10−1

O 5 X 10−4

C 2 X 10−4

N 7 X 10−5

Fe 3 X 10−5

Mg 3 X 10−5

Si 2 X 10−5

S 1 X 10−5

Ca 2 X 10−6

Ni 1 X 10−6

Table 2: The Three Phase Model of the ISM [2]

Phase Region Species Present T(K) Density (particles cm−3) % ISM

HIM Ionized H+ ∼ 105 ∼ 10−2 - 10−3 ∼ 70 - 80%

WIM Inter clouds H+ and H 8000 0.1 - 1 ∼ 20 – 30%

WNM Diffuse clouds H 80 10 – 100 ∼3%

CNM Dense Clouds H2 ∼ 10-70 104 less than 1%
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Table 3: Molecular Abundances of ISM [1] [3]

Species Abundance

H2 1

CO 8 X 10−5

OH 3 X 10−7

H2O < 7 X 10−8

O2 < 3.9 X 10−8

C2 5 X 10−8

CN 3 X 10−8

CH 2 X 10−8

C4H 2 X 10−8

NH3 2 X 10−8

H2CO 2 X 10−8

Figure 1: Illustration of gas-grain chemistry model for binding sites on a dust grain surface. The

image was created by Dishoeck [5]
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Figure 2: Detection of ices torward the low-mass protostar HH46 IRS using Spitzer data at 5-20µm

Credit NASA/ESA/A.Noriego-Crespo [5]
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Chapter 2

Experimental Setup

2.1 General

A comprehensive view of the Syracuse University Laboratory of Astrophysics and Surface Science

ultrahigh vacuum (UHV) apparatus is shown in top view in Figure 3 (top view) and side view in

Figure 4. The apparatus can be divided into three major areas; a UHV main chamber and two

triply differentially pumped UHV beam lines and are referred to as R-Line and L-line in this thesis

(Figure 3). Located at the geometric center of the main chamber is the substrate or otherwise

known as the sample, which is a gold-coated copper disk attached to the cold finger of a closed-

cycle helium cryostat (ARS DE-204 4K). The sample is representative of an interstellar dust grain;

referred to as a dust grain analogue. The sample temperature is measured by a calibrated silicon

diode sensor (DT670) placed behind the substrate. A cartridge heater in the sample holder is used

to heat the sample. A Lakeshore 336 temperature controller reads and controls the temperature

between 5 to 300 K with an accuracy better than 50 mK.

2.2 Beam Sources

Diatomic gases commonly used in the laboratory such as N2 and O2 need to be molecularly disso-

ciated in order to produce atomic beams. Atomic and molecular beams are used to deposit species

on the substrate at low temperatures. The species produced are typically representative of dom-

inant elements in the ISM. There are many ways to transfer energy to gases and break down the

molecular bonds. Conventional techniques include thermal and microwave or radio frequency (RF)

dissociation. Electromagnetic energy can be transferred by inductive or capacitive means [7]. The

work presented in the latter half of this chapter pertains to inductive RF dissociation.

The cavity in which the gas resides during dissociation, known as the beam source, is a Pyrex
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glass tube that is mated and vacuum sealed to its respective beamline by a glass ball joint with

rubber O-ring. This ball joint is mounted on stainless steel bellows with X-Y positioning stages

for alignment. The beam sources are each equipped with a water jacket for cooling, a quarter

inch ribbed molecular gas inlet on the non-vacuum side and a nozzle on the UHV side that is

approximately 1mm in diameter and 10 mm by length. The molecular gas inlet is connected

to an Alicat gas flow regulator followed by a VCR stainless steel manifold that is pumped by a

turbomolecular pump in an external pumping station and mated to gas tanks by PVC lines. The

beam sources are inserted into coaxial resonators with helical inner conductors which provide

the dissociative RF energy mentioned above. The R-Line resonator is installed externally to the

vacuum system while the L-Line resonator is installed in the first stage vacuum chamber see Figure

4). The latter resonator is where I focused my work, and is explained in second half of this chapter.

2.3 Beamlines

The beamlines are replicas of one another with regard to their structure and, for the purposes of this

section, Figure 4 is representative of both lines. Each beamline consists of three vacuum chambers

that are individually pumped and connected to each other by stainless steel ports and by a bellow

to the UHV chamber. Each chamber represents a differential stage where the pressure decreases by

about an order of magnitude moving from the first stage to the third stage. Between each chamber,

including that of the third chamber and the main chamber, installed are copper gasket collimators

of about 2 mm in diameter. The collimators reduce the vacuum conductivity between adjacent

chambers isolating them from one another and defining the three pressure stages. The collimators

are also important so as to mitigate the beam divergence as it traverses its way to the main chamber.

It is important that a molecular beam is properly collimated as its main advantage is the rapid and

intense deposition of species on to the substrate mitigating the adsorption of impurities from the

background [27]. This is in contrast to vapor deposition which is discussed in detail later. The

beam lines converge at the position of the surface of the substrate (i.e. the geometric center of the

main chamber), with an angular separation between the beamlines of 38 degrees with a tolerance

that is within a fraction of a degree.

The first two chambers of each lines are evacuated by diffusion oil pumps backed by a large

mechanical pump (Kinney). Each diffusion pump is separated from its vacuum chamber by a gate

valve. To avoid backstreaming of oils from the diffusion pumps into the vacuum chamber, each

pump has a cooled baffle and the gate valves are kept open only when there is a beam, thus assuring

that there is a gas stream into the diffusion pumps. In the R line, the beam source is connected

to the first chamber which is pumped by a baffled water-cooled Varian diffusion pump (VHS-6)
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(1500 l/s).

The pressure in the first chamber is measured by a Varian tubular hot-cathode ionization gauge

and it routinely reaches a pressure of the order of 10−5 Torr. The second chamber is pumped by a

water-cooled diffusion pump with a liquid nitrogen trap, The pressure in the second stage is also

measured by a Varian tubular hot-cathode ionization gauge and it routinely reaches the order of

10−6 Torr.

The third chamber in each line is pumped by a 90 l/s turbomolecular pump backed by a rotary-

vane pump. Since each stage in each line is connected to the others by a collimator, the turbomolec-

ular pump maintains a base vacuum condition when the beam is not in operation. The pressure in

the third chambers of the beamlines is measured by two Instrutech cold cathode ion gauges (mod-

ule CCM500) and is in the low 10−8 Torr range. The third chamber of the R-Line has a flag shutter

installed that is controlled externally by a stepper motor so the beam can be blocked with rapid

speed.

In the L-line, I designed and built a variable-aperture beam collimator that replaced the flag

shutter. It allows for changing the aperture of the collimator from outside the vacuum (see Figure

6). As pointed out above collimation of a molecular or atomic beam is necessary to control its

divergence. This principle can be illuminated further by considering the phenomenon of isentropic

gas expansion. As a molecular or atomic gas leaves the nozzle of a beam source and begins its

trajectory through the beam line it expands isentropically such that there is no transfer of heat or

matter resulting in molecular or atomic speeds greater than that of the speed of sound (supersonic).

It is important to note that in this description and going forward in this chapter that supersonic flow

only occurs near the nozzle. This initial sprint however is broken by the fact that the expansion does

not stay isentropic and collisions and recombinations occur within the beam. This non isentropic

behavior can be mitigated and the integrity of the beam can be restored by collimating the beam

[27] [28]. In the laboratory the matter of collimator sizes can be a revisionary task and often

requires the breaking of the vacuum and the reinstallation of a brand new collimator. A variable

collimator that can be controlled outside the vacuum eliminates this hassle.

The variable collimator consists of a 0 to 21mm diameter iris diaphragm (Edmunds). It is in the

line of sight with the beamline collimators that are installed between the chambers. It is mounted in

to an aluminum C-shaped holder which is connected to a UHV linear motion feedthrough (Hunt-

ington Model VF-108-1) with a high precision (+/-0.05 mm) micrometer positioning knob that

allows a solid stainless steel rod to move in the z (vertical) direction. At the bottom of the stainless

steel rod attached is a thin metal arm that connects with the arm of the iris. As the rod is manipu-

lated from outside the vacuum by adjusting the micrometer positioning knob the metal arm moves
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with it and if retracted; opens the aperture of the collimator wider and the opposite for extension

of the rod. The variable collimator was calibrated before being installed in the third chamber by

changing the setting on the positioning knob, measuring the diameter of the collimator with dowel

pins and then fitting the diameter vs. micrometer position (see Figure 7) resulting in the calibration

equation:

Y = 2.72X–0.08 (2.1)

Where X is the diameter of the collimator in +/- 0.1 mm and Y is the setting on the positioning

knob in +/- 0.05 mm. The collimator is connected to an X-Y-Z micrometer positioning stage such

that the entire piece of equipment can move in unison without effecting the iris arm or diameter

setting. This is necessary in order to align the variable collimator precisely with the beam in the

third stage.

2.4 Main Chamber

The UHV main 10-inch diameter chamber can be divided in two sections. In the lower section

there is an 8” port that is connected to a pumping castle. At the bottom of the UHV chamber there

is a 13.25 inch diameter flange that carries a quadrupole mass spectrometer. The QMS is placed in

a housing that is inserted into the UHV chamber. The housing has opening for the beam to enter

the QMS from the back and from the front in the upper section (see also below). The housing is

pumped by a turbomolecular pump attached to the bottom of the rotatable flange. This arrangement

allows to differentially pump the QMS, thus reducing the pressure in the detector even further.

The bottom flange (Thermionics) is doubly differentially pumped by a turbomolecular pump and a

rotary pump connected to the flange by flexible lines, so the flange can be rotated while maintaining

UHV conditions in the chamber. The flange can be rotated 190 degrees around the sample by a

Labview controlled High Torque Stepper Motor (Applied Motion HT34-486) equipped with a 451

lb-in speed reducer (Graham Circulute Model A47) which is paired with the sprocket edges of the

flange by a comb style mechanical gear.

In the upper region the beams enter the UHV chamber via two gate valves and converge onto

the sample attached to a holder connected to the closed-cycle liquid helium cold finger(see below).

Two UHV high precision Varian leak valves are installed in this section.

The pumping castle is connected to the lower section of the UHV chamber. It has an air cooled

300 l/s turbo pump (Leybold 450i) backed by a 90 l/s turbomolecular pump (Pffiefer). There is

also a 110 l/s ion pump (Varian model 921-0041), and a 10 inch diameter cryo pump. All pumps
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can be sealed from the main chamber by gate valves. The pressure of the main chamber routinely

reaches pressures the order of low 10−10 Torr and is measured by a Labview monitored nude hot

ionization gauge that is installed in a port in the lower region.

Installed in the upper chamber are two Varian UHV high precision leak valves (see Figure 4),

one being designated for deposition of specialty gases and the other for water vapor. Each leak

valve is mated to its own stainless-steel VCR manifolds that are externally pumped by a separate

pumping station that routinely gets the manifold pressures down to low 10−3Torr. The water leak

valve manifold is equipped with an isolated 150 mL dewar in which distilled water is stored for

vapor deposition. The gas leak valve can be used for pure gas or gas mixture deposition. For

pure gas deposition a simple PVC connection from the manifold to a gas canister can be made.

For gas mixtures, the gas manifold is equipped with and can be isolated from if need be a VCR

sealed mixing manifold that is externally pumped by a separate pumping station (see Figure 8).

Detailed descriptions of how water vapor and gas mixtures are introduced in the main chamber for

the experiments described in this thesis are provided in chapter 3 and chapter 4.

2.4.1 Sample, Sample Holder, and Shield

Installed at the very top of the upper section of the UHV chamber is the sample manipulator. A

doubly differentially pumped rotatable flange allows to change the angle of the sample with respect

to the beams. On top of this flange there is a XYZ sample positioning manipulator (Huntington).

Through it, a thermally shielded cold finger reaches the sample holder. On top, there is a closed

cycle-liquid helium cryocooler (ARS model DE204) (see Figure 9). The sample holder unit is a

solid oxygen-free, high conductivity copper block in which the 1 cm diameter gold coated copper

sample is housed. Directly behind the sample there is a cavity in which a 25 Ohm cartridge

heater is installed. The heater is chosen to be powerful enough so as to have a linear temperature

ramp at the sample up to 200K. Higher temperatures up to 400K can be obtained without cooling.

The temperature of the sample is measured by a silicon diode hall-effect sensor (DT-670) that is

directly underneath the sample. This measurement is read and controlled with an accuracy better

than 50mK by a Lakeshore 336 Temperature controller in tandem with a LabVIEW program. The

temperature of the sample can be adjusted between 5 K and 300 K.

Finally, there is a copper shield installed around the sample holder unit such that it covers all

but the sample itself leaving the gold surface exposed (see Figure 9). The purpose of the shield is to

shield thermal radiation so that the substrate can reach a lower temperature than that of the shield

itself. This arrangement also prevents adsorption of gases on to the sample holder or cold finger

itself. In this way, only the surface of the sample receives deposition of atomic and molecular
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gas species. The shield must not be in thermal contact with the sample holder or cold finger. We

have found that this is an impractical ideal scenario and that despite our best ability to do so we

cannot completely eliminate all thermal contacts, especially at very low temperatures, such as 10

K and below. As a remedy, we have developed a shield degassing procedure in which before

cooling the sample to such low temperatures the cryocooler is powered down while the heater

remains powered on. In the time that it takes for the sample to raise only a Kelvin or so the shield

whose temperature is monitored by a thermocouple connection (seen in Figure 9 and 10) raises and

degases. This is made evident by a rise in pressure in the main chamber as measured by the nude

hot cathode ionization gauge mentioned previously. Once the shield has finished degassing (i.e.

the pressure reduces) the cryocooler can be powered on and the sample can be cooled to deposition

temperature. This allows for approximately a twenty minute window in which the sample is cold

enough for species to adsorb on to its surface while the shield is not.

2.5 Signal Detection

The mid-IR (4000-650 cm−1) vibrational spectra of ices composed of harmonically oscillating

independent molecules on the gold surface of the sample is monitored by a Nicolet 6700 Fourier

Transfer Infrared Spectrometer (FTIR) in the Reflection Absorption InfraRed Spectroscopy (RAIRS)

configuration. Gold is preferred for the coating of the copper sample due its inert qualities which

ensure that is does not play a catalytic role and its high reflectivity which ensures a strong FTIR

signal. The optical path of the IR laser is as follows: it emerges from the spectrometer and enters

a near air tight box in which its path is deflected by first a flat optical mirror (Edmund) and then

a concave curved mirror (Edmund) (see Figure 11). It then enters the main chamber through a

Potassium Bromide (KBr) vacuum view port where it strikes the sample with a grazing angle of

78 degree.

The optical path being almost parallel to the gold surface of the sample significantly strengthens

the absorption intensity. This enhancement is a product of the interaction of the electric fields of

the radiation and the conducting metal. Being that the electric field of the conducting metal only

extend a very short distance from the surface a grazing angle is necessary to facilitate this key

interaction. It is at this point in the optical path that a unique spectral fingerprint of the given

species of ice is formed when certain frequencies of the infrared laser are absorbed [29]. Further

details on how the spectra are acquired and analyzed are given in chapter 3 and 4.

Returning to IR laser optical path, after reflecting off the sample the laser leaves the main

chamber through another KBr view port where it enters another box, is deflected again by another

concave optical mirror and is directed into a liquid nitrogen cooled Thermo Electron Scientific
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Corps detector head (type MCTA) (see Figure 11). The detector is paired with a computer and

the spectra are collected using Omnic software. Spectra were measured and averaged every 20 s

at a resolution of 1 cm−1. All optical boxes are sealed with rubber o-rings and the entire path of

the IR laser is purged of water vapor and carbon dioxide by constantly flushing the system with

dry laboratory grade nitrogen gas. This is important as otherwise large water and carbon Diox-

ide background absorption bands will be present in the spectral features and hide experimentally

meaningful signals.

The concentration of gases and vapor species in the vacuum are monitored by a Hiden Analyt-

ical QMS (standard PIC triple filter). The QMS setup consists of an in vacuum rotatable detector

(type HAL 3F PIC) as discussed in the previous section, an RF preamplifier head that sits just

outside the vacuum under the main chamber and a control unit that is connected to a computer

and uses Hiden Analytical MASsoft software to collect data. The detector consists of four parallel

metal rods that are electrically connected between opposing pairs (the quadrupole). An RF voltage

with a DC offset is applied by the RF preamplifier head to each pair and ions that enter the de-

tector either from the beam line, the gas phase, or desorbing from the sample will travel down the

quadrupole between the rods. The ratio of the voltages applied to the rod pairs defines which mass

to charge ratios (i.e. specific ions) are detected [30]. The ions that make it through the quadrupole

rods are detected by an ion-counting secondary electron multiplier (SEM).

The detector is housed in a stainless steel cylinder with two entrance holes. One entrance hole

is facing the sample and equipped with a teflon cone. The purpose of this cone is to maximize the

flux of particles in to the QMS that would desorb from the sample in a Temperature Programmed

Desorption experiment (TPD) and mitigate any false signal that might be due to desorption of

particles that had adsorbed not on the sample itself but the sample holder unit, cold finger, or

shield. This ultimately results in a bolstered signal to noise ratio. The other entrance hole is

directly opposite and is aligned with the R-Line or L-Line if the detector is rotated to 0 or 38

degrees respectively. The QMS is aligned with a beamline often to test alignment of a beam source

or in the case of the work presented in this thesis the dissociation percentage of an atomic beam.

2.6 In-Vacuum Helical Coaxial Resonator

In the following section, the in vacuum RF helical coaxial resonator mentioned in the first half

of this chapter is explained in detail; the ultimate goal being the production of a gas dissociation

source that will maximize the transfer of power from the RF power supply to the load. We will

first calculate the plasma impedance by modeling the plasma as a circuit in which a resistor and

an inductor are in series and inductively coupled to a coil following the work of Chabert and
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Braithwaite [7]. We will apply this model to the molecular species N2 and O2. We will then

turn our attention to the RF autotransformers as will be required for the stepping down of the

very large plasma impedance in order to roughly match it to 50 Ω. This will give a unique and

valuable insight in to how the turns ratio of the autotransformer relates to these two species. Both

the plasma impedance and the turns ratio are calculated as a function of electron temperature and

electron elastic collisional cross section. This will be followed by a close examination of the most

optimal design parameters of the resonator as provided MacAlpine and Schildknecht [4]. Finally,

test results and future recommendations for improvements and implementation of this piece of

equipment will be shared.

A strong motivation for this project is the efficient dissociation of N2 and thus the production

of a powerful nitrogen atomic beam. As alluded to in the introduction of this project, atomic beams

are critical to the study of the formation of molecules induced by deposition of elemental species

such as H, O, and N as well as radicals on interstellar ice analogues. Particularly important is that

of nitrogen bearing molecules and formation mechanisms of ammonia (NH3); a key reactant in the

formation of precursors to prebiotic molecules such as amino acids [31]. NH3 is one of only a few

nitrogen-bearing molecular species detected in interstellar ices toward YSOs and dense interstellar

clouds [23]. This makes the surface chemistry of nitrogen bearing molecules and its role with

regard to the formation of NH3 a prime candidate for potentially revealing the link between simple

species and life essential COMs found in the ISM. In order to explore this key area of research

further in the lab a source of atomic nitrogen is required. Hiraoka et al performed TPD experiments

of hydrogenated solid N2 trapped within which were N-atoms and confirmed the formation of

NH3 [32]. McPherson et al confirmed that condensation of atomic carbon at 77 K on interstellar

ice grain analogues composed of H2O:NH3 produces the amino acids glycine, N-methylglycine,

alanine, beta-alanine, aspartic acid and serine [31].

Despite works such as these the surface chemistry of nitrogen bearing molecules remains

largely unexplored and thus is poorly understood in the field [23]. This is largely due to the

difficulty of dissociating N2; typically a dissociation rate of only a few percent is achieved. The

most pressing challenges to overcome in producing atomic nitrogen is the large bond dissociation

energy and triple bond of N2; the latter of which has the adverse effect of recombination at the

walls of the glass source. This is not helped by poor impedance matching of RF circuitry and inef-

ficient resonators many parameters of which are determined empirically. One such example would

be the turns ratio or tap point of the helical inner conductor of the resonator (see Figure 12) which

is key for impedance matching as it is the most impactful measure by which large impedance of the

plasma is reduced [33] [8]. The resonator design and tests presented in this chapter address these
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challenges. In an effort to move away from empiricism and to theoretically expound on the role

of the turns ratio parameter I present a calculation of the plasma impedances for the gas species

N2 and O2 and their relation to this parameter. In the interest of addressing plasma locality, the

resonator is designed to be installed in vacuum at the end of the glass source near the orifice of the

nozzle of the glass source as this mitigates the recombination of atoms as they traverse out of the

source and in to the UHV environment (see Figure 12).

2.6.1 Plasma Impedance

Plasma is an ionized gas which is composed of electrons and ions that are subject to collective mo-

tion by an applied external electromagnetic fields. Most visible matter in the universe is plasma.

We observe stars to consist largely of plasma as well as the interstellar medium where the plasma

is cold and of low density [7]. Specifically, we are interested in radio frequency inductively cou-

pled plasmas that are induced via coil systems. The resonant coil is designed to use the standard

13.5 MHz laboratory frequency that is provided by an RF power supply. The formation of the

inductively coupled plasma can be viewed in two stages; low density known as the glow regime

and higher density known as the filamentary mode [7]. When the RF power is initially applied to

the coil the RF photons interact with the gas molecules and liberate electrons. This produces a low

density plasma known as the glow regime in which the electron density and ion density are equal

and thus is electrically neutral. The free electrons begin to bombard neutral molecules breaking the

bonds and liberating atoms. While in the glow regime, the plasma is capacitively coupled between

the adjacent coil turns. As an azimuthal RF field is established by the coil current in the low-density

plasma, the ionization process is strengthened, and the plasma density increases. As the plasma

is to be considered a conductive fluid in this state, it can be viewed as a collection of filamentary

discharges that run parallel to the coil thus transitioning to what is known as the filamentary mode

and becoming inductively coupled to the coil. We are then able to model the plasma as a one turn

secondary coil of an air-core transformer [34]. In the filamentary mode a sheath is formed which

is occupied by the ions. The electric and magnetic fields decay in the sheath giving a skin depth δ

which is illustrated in Figure 13 and defined as:

δ =

√
2

ωσmµo
(2.2)

where σm is the real part of the conductivity of the plasma:

σm =
nee2

me(νm + iω)
(2.3)
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where ne is the electron density typically on the order of 1016m−2 in the filamentary mode [7] and

νm is the electron elastic collisional frequency:

νm = ngσve (2.4)

where ng is number of molecules per unit volume which can calculated by the vacuum conductivity

relationship:

Ps =
Q
C

(2.5)

where Ps is the pressure inside the glass source after gas is introduced but before any power is sup-

plied to the coil, Q is the volumetric flow rate of the gas in to the glass source which is controlled

by an Alicat gas regulator and held at a constant 0.013 Torr*L/s. C is the vacuum conductance

between the nozzle of the glass source and the first stage of the triply differentially pumped beam-

line. Taking the ideal gas law in to account we can re-express equation[2.5] and explicitly state ng

as:

N/V = ng =
Q

KbTC
(2.6)

where T is the temperature of the gas before any power is applied to the coil which of course is

room temperature. The vacuum conductance is given by:

C = A

√
RT

2πMm
t (2.7)

where A is the cross sectional area of the beam nozzle which is on the order of 10−7m2, R is

the universal gas constant, and Mm is the molar mass of the gas species. The parameter t is the

transmission probability for a cylindrical tube which in this case is represented by the nozzle of the

glass source. This value of this parameter is dependent on the ratio of the length and diameter of

the nozzle and for this geometry it was empirically determined to be 0.109304 [35]. Finally, this

gives a vacuum conductivity of 0.087L/s which results in a number density for both O2 and N2 that

is on the order of ng = 1021 molecules
m3 and a Ps value of approximately 150 mTorr.

Returning to equation [2.4], σ is the mean elastic electron collisional cross section which is

reported by Itikawa [36] to be on the order of 10−19m2 for N2 and 10−20 for O2 in the respective

electron energy range of interest which is 10eV to 15eV and 5.5eV to 10eV or in terms of kinetic

temperatures 116,000 K to 174,000 K and 63,855 K to 116,000 K. This range was determined by

considering the fact that the electrons of interest with regard to dissociation must have an energy
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greater than that of the bond-dissociation energy of N2 and O2 which is reported to be 9.79eV and

5.15eV respectively [37]. Finally, ve is the average velocity of the electron given by:

ve =

√
8KbTe

me
(2.8)

where Te is the kinetic electron temperatures discussed above.

At this stage the plasma must be maintained by the transfer of energy to the free electrons by

the electromagnetic fields that decay within the sheath [34]. Thus, it is appropriate at this point to

direct our attention to the calculation of the impedance of the plasma as modeled by Chabert and

Baithwaite as a circuit in which a resistor and an inductor are in series and inductively coupled to

a coil (see Figure 14). We begin by considering the impedance of the plasma alone and not taking

the reactance of the coil in to account. My reasons for proceeding in this fashion are as follows; the

mutual inductance of the plasma coil implicitly includes the coil inductance as will be explained

shortly and is shown in Figure 14 as Lmp and secondly after reviewing Sibener et al. [8] one learns

that any reactance from the coil is negated by a fine tuning process via an external π-network (see

Figure 20 ) and that the crucial first step is to reduce the impedance of the plasma load; a process

that is dependent on the square of turns ratio of the rf autotransformer coil [8]. In fact, Alagia et

al. [33] whose design relied heavily on the work of Sibener’s group claims that with an efficient

enough turn ratio this pi-network may not even be necessary.

Taking in to account the parameters mentioned above we see that the collisional elastic fre-

quency given by equation[2.4], νm, is on the order of 109s−1 while the angular frequency of the RF

coil , ω , is on the order of 107s−1. This justifies using the approximation of the plasma resistance

for νm greater than ω given by Chabert and Baithwaite as:

Rp =
πroωp

σ lc

√
2ω

νm
(2.9)

where ωp is the characteristic plasma frequency given by:

ωp =

√
nee2

meεo
(2.10)

Next we consider the mutual inductance Lmp which is due to the RF positive ion current local-

ized in the skin depth. We are assuming that we are in the filamentary phase so that the current

only exists in the skin depth and as a result Lmp effectively mirrors the inductance of the coil except

with the number of turns being equal to one and the radius being that of the source, ro , giving:

Lmp =
µoπr2

o
l

(2.11)
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We take in to account the inductance due to the electron inertia which follows from the imagi-

nary component of the plasma conductivity [2.3], giving:

Lp =
Rp

νm
(2.12)

Giving the total inductance of the plasma to be:

Lptot =
µoπr2

o
l

+
Rp

νm
(2.13)

which in turn gives the plasma impedance:

Zp = Rp + iωpeLptot (2.14)

Taking in to account the parameters already discussed and the dimensions of the glass source

the following parameters can be substituted in to impedance equation (2.14) as follows:

ro ≈ 0.02m (2.15)

l ≈ 0.075m (2.16)

ωp ≈ 5.63x109s−1 (2.17)

This gives the approximate plasma impedance as a function of electron kinetic temperature and

collisional electron elastic cross section as:

Zp ≈ [3.42x1018√Teσ + i652.232](Ω) (2.18)

The modulus is plotting using Mathematica and is shown in Figure 15 in the Electron temper-

ature and collisional elastic cross region of interest for O2 and N2 collectively and respectively.

As expected we see that impedance increases with large Te and large σ and that it is consider-

ably larger than 50 Ω requiring the need for an RF autotransformer. Notice that the impedance

for cross sections falling in the 10−20m2 range differs very slightly while the opposite is true for

cross sections in the range of 10−18m2 to 10−19m2. This suggests that for sources possessing rel-

atively large cross sections and electron temperature range, such as N2 relative to that of O2, the

determination of an efficient turns ratio requires special attention and may be more difficult to dis-

sociate than those of smaller cross sections and lower kinetic electron temperatures. This offers a

validating note for the presented model as it is well known in the field that generating N atomic
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beams of an appreciable dissociation are difficult to achieve and significantly limit studies of this

astrochemically fundamental gas species [33].

2.6.2 RF Autotransformer

An rf autotransformer can either step up or step down the voltage across a given load. We will

be focusing our attention on the step up transformer (see Figure 17) as this translates to a stepped

down impedance of the load [38]. The voltage division equation is given by:

V2 =
NT

N1
V1 (2.19)

Where V2 is the secondary voltage applied across the plasma load, V1 is the primary voltage

applied to the inducting coil, NT is the total number of turns and N1 is the number of turns of the

primary. Given the fact that V1I1 = V2I2 we get the following expression; I2
I1
= V 1

V 2 = N1
NT

. In terms

of impedance we can show Z1 =
V1
I1
=

V2
N1
NT

I1
= Z2

I2
I1

N1
NT

[38] yielding the step up RF autotransformer

impedance transformation relationship:

Z1 = Z2[
N1

NT
]2 (2.20)

The plasma impedance is our load and we can define the following relationship:

Z1 = Zp[
N1

NT
]2 (2.21)

Where Zp is the modulus of equation (2.18). Setting Z1 to 50 Ω and solving for the turns ratio

gives:

N1

NT
=

√
50
Zp

(2.22)

The turns ratio equation(2.22) was plotted in the same fashion as the plasma impedance and

is pictured in Figure 16. As to be expected from the plasma impedance results, we see that the

greater the cross section and the higher the electron kinetic temperature the smaller the required

turn ratio. This makes sense because a smaller turn ratio means a greater step up of the voltage

which translates inversely to a greater step down of the plasma impedance. Also, we see once again

that for cross sections in the 10−20m2 range there is a small difference in turn ratio as opposed to

cross sections in the 10−19m2 where the difference is more appreciable.

We must remember that assumed in this analysis is a constant electron density and thus also

a constant characteristic plasma frequency via equation(2.10). Also, the collisional cross section
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is electron energy dependent and thus a dynamic variable in the plasma manifestation process. It

should also be reiterated that the equations used in the plasma impedance calculations are approx-

imations. The figures presented in this thesis are meant to be guiding in nature and illuminate

the mathematical relationship between the required turn ratio to step down plasmas of different

gaseous variety.

There remains a valuable lesson to be learned from the trend present in these results. That

is, there appears to be a ledge structure in the impedance and the turn ratio such that if a given

source possesses a large enough average cross section, and electron temperature more finesse with

regard to impedance matching may be required. Molecular nitrogen falls in to this category while

molecular oxygen does not.

2.6.3 Coaxial Resonator with Helical Inner Conductor Design

We now move on to the coaxial resonator with helical inner conductor design as suggested by

Macalpine and Schildknecht which consists of a cylindrical copper shell housing a helical coil

whose rear is soldered to the shell. The shell is then connected to the shield of a straight coaxial

resonator line or conventional coaxial cable grounding shell as well as the rear of the coil. The high

voltage signal is passed through the surface of the shell to a tapped point which defines the turns

ratio of the coil and gives the unit as a whole autotransformer properties with regard to a load (the

plasma) that is inserted in to the resonator (see Figure 12). Macalpine and Schildkneckt produce

design equations that allow all pertinent parameters such as coil length, pitch, etc. to be calculated

for a resonator with a Q factor of several thousand. Figure 18 illustrates the most pertinent of these

parameters. The equations have been experimentally verified to within +/- 10 percent [4]. The

most important design equation is that of the Q factor which is defined as:

Q = 50D
√

fo (2.23)

Where D is the shield inner diameter in inches and fo is the resonant frequency in mega cycles

which as stated earlier is dictated by the RF power supply and is 13.56 mc or 13.56 MHz. The

shield inner diameter parameter is limited by the size of the 1st stage of the beamline and has

a maximum value which allows for slight motions so as to be able to adjust for alignment of

approximately 3.6 inches giving a Q factor of 662.83 +/- 66.28. This result certainly does not meet

the standards of Macalpine and Schildknecht who, for the sake of functionality, recommend a Q

factor that is at least 1000 with an uncertainty of 10% taken in to account. In fact, in order to

reach this target the inner diameter of the shield would only need to be increased by approximately

three inches. However, this Q factor, while diminished, does allow for the constructed resonator
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built for this project to be functional enough to illustrate the phenomenon appropriately and offer

valuable guidance for future designs. All of the other parameters are calculated consequently from

equation(2.23) and are illustrated in Figure 18 and described and listed in Table(4).

Finally, the resonator is connected to the RF power supply in tandem with an external Pi net-

work that utilizes series capacitor arrangement. The Pi network is used for fine tuning and consists

of one large inductor and two large variable capacitors. The Figure 20 represents the work of

Sibener et al. [8] but is identical to this case with the exception of Ct . For the resonator presented

in this thesis, Ct is fixed and represents the value of the capacitance between the shield and the

helical coil. In the work of Sibener et al. it is representative of a variable capacitor that is external

from the vacuum as the coil is not encased in a cylindrical shield. It is worth noting that the de-

sign utilized by Sibener et al. is stronger and more versatile as a variable value of Ct can offer a

fine-tuning that is an advantage in impedance matching. Sibener’s design, however, does require

water-cooled RF lines which were not available to me and thus the reason I instead followed the

work of Macalpine and Schildknecht [8].

2.6.4 Test Results and Discussion

The resonator was tested separately for 1.2 sccm of O2 and N2 with a turns ration of 0.2. As can

be seen in Figure (19) when the resonators is powered on there is a reduction of the intensity of the

beam with regard to O2 and a directly proportional increase in atomic oxygen. A calculation of the

area underneath the O2 curve before and after gives a molecular dissociation of approximately 10

percent. While this result may be relatively weak compared to that of Alagia et al. who claims to

have a molecular dissociation of 70 percent for O2 it is nonetheless encouraging as it demonstrates

the functionality of the constructed resonator [33]. Furthermore, it is well understood that with

more space in the first stage of the beam line and thus a larger resonator the Q factor can be

significantly improved along with the molecular dissociation percentage.

A figure for the dissociation test for N2 is not included as the constructed resonator was com-

pletely unable to produce a N atomic beam. Given the relatively weak molecular dissociation of

O2 it comes as little surprise. It is worth noting, however, that the N2 gas did glow a vibrant pink

characteristic of high energy nitrogen plasma (see photo 21); in contrast to low energy nitrogen

plasma which emits yellow light [39]. With this in mind, it is possible that there was an appre-

ciable molecular dissociation but the beam suffered from recombination in the glass source. If

this is indeed one of the underlying issues then it can be remedied by passing the beam through a

nozzle tip composed of materials that are not prone to recombination such as teflon or aluminum

oxide [26]. Another measure worthy of further consideration in future designs is localization of
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the plasma directly behind the orifice of the nozzle; achievable by not only placing the resonator

in-vacuum and at the nozzle tip as has been presented but also by the placement of a grounded

aluminum block around the nozzle tip as is done by Sibener et al. [8].

Figure 3: Top down view of the entire experimental apparatus. Details are provided in text. [6]
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Figure 4: Side view of experimental apparatus. Details provided in text.
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Figure 5: a) external R Line RF dissociation source b) internal L Line dissociation source.
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Figure 6: In-vacuum variable collimator design-installed in third chamber of L-Line.
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Figure 7: Calibration data and fit for in vacuum variable collimator.

Table 4: Calculated parameter values for resonator [4]

Parameter Design Equation Calc. Value

Diameter of shield (D) 3.6”

Resonance Frequency ( fo) 13.56 mc

Q-factor (Q) Q = 50D
√

fo 663

Number of turns (N) N = 1900
foD 39 turns

Pitch (τ) τ = foD2

2300 0.76 in/turn

Diameter of turns (d) d = .55D 1.98”

Axial length of coil (b) b = 1.5d 2.97”

Length of shield (B) B = b+ D
2 4.77”

Maximum power that can be accommodated by resonator (Pm) Pm = 0.58D3√ fo 100 W

Power dissipated by heat (Pc) Pc = 2.32D2 31 W

Power delivered to gas (P) P = Pm−Pc 69 W
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Figure 8: Mixing manifold connected to gas manifold.
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Figure 9: Sample, sample holder, cold finger and shield geometry.
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Figure 10: Photograph of shield when installed.
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Figure 11: Optical path of FTIR laser.
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Figure 12: Coaxial Resonator with Helical Inner Conductor design with load pictured (not drawn

to scale). Dimensions are provided in text.
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Figure 13: Plasma in filamentary mode where ro represents the radius of the glass source, rc

represents the radius of the coil, and the shaded region is the dielectric boundary separating the

coils from the glass source [7]
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Figure 14: Plasma-coil model in which the plasma is represented as a resistor in series with two

inductors one of which is coupled to the coil, Lmp, by mutual inductance M. [7]
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A)

B) C)

Figure 15: Plasma impedance as a function of collisional elastic cross section and electron tem-

perature plotted for a) the entire region of interest for both N2 and O2 and b) only the region of

interest for N2 and c) the interest of region for O2
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A)

B) C)

Figure 16: Turns ratio as a function of collisional elastic cross section and electron temperature

plotted for a) the entire region of interest for both N2 and O2 and b) only the region of interest for

N2 and c) the interest of region for O2
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Figure 17: Basic circuit of a step up RF autotransformer
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Figure 18: Parameters of interest for Coaxial Resonator with Helical Inner Conductor as provided

by Macalpine and Schildsknecht [4]
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Figure 19: Dissociation test results for O2 The marked decrease of O2 and corresponding decrease

of O are indicative of a ∼ 10% dissociation rate.
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Figure 20: External impedance matching circuit with external Pi network used for fine tuning

impedance matching of RF coaxial resonator. [8]
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Figure 21: Photograph of dissociated N2 gas a) in vacuum at tip of glass source b) outside of the

vacuum at rear of glass source. The bright pink glow is indicative of high energy Nitrogen plasma

as opposed to if the glow was yellow which would suggest low energy plasma.
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Chapter 3

The Effective Surface Area of Amorphous
Solid Water Measured by the Infrared
Absorption of Carbon Monoxide

3.1 Introduction

The morphology of ice coated dust grains in dense interstellar clouds is crucial in facilitating

the diffusion and storage of radicals and reaction products in ices. The ice provides a catalytic

surface where atoms and molecules are stored and where reactions leading to the formation of

many molecular species including complex organic molecules take place [15]. Yet, there is a

considerable uncertainty about the structure of ISM ices, their ability to store volatiles and under

what conditions. Particularly of interest is the catalytic role played by pore surfaces. Porous

amorphous solid water (p-ASW) possesses a specific surface area up to a few hundred m2g−1 and

therefore may account for most of the catalytic surface on the dust grains [40].

A pore system is composed of microscopic voids between the molecules that make up the

solid. These voids can cause some molecules in the solid to possess a deficit of covalent bonds

with other water molecules. This defect is known as an immobilized free radical or dangling

bond. Immobilized free radicals are reactive and unstable but more stable than mobilized free

radicals due to their constrained kinetic environment and a phenomenon known as steric hindrance.

Steric hindrance is a nonbonding intermolecular reaction in which, within a bulk, overlapping

electron clouds provide a repulsive force that reduces chemical reactivity and slows decay rates.

This results in immobilized free radicals having longer life times relative to that of mobilized

free radicals [41]. Thus, important to the study of porosity is a careful examination of dangling
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bonds. In fact, one useful signature of p-ASW is the presence of OH dangling bonds (dOH). Water

molecules on surfaces of pores have approximately twice as many hydrogen bonds as covalent

bonds around each molecule and can form two, three, or four hydrogen-bonds with neighboring

water molecules. This is opposed to liquid water in which all molecules have at most one bond with

neighboring molecules [42].These bonds are called one-, two-, three-, and four-coordinated. It is

established that there are two types of dOH, for doubly and triply coordinated hydrogen-bonded

water molecules at the ice surface [43]. Their presence is uncovered in the IR tail of the OH stretch,

at 3720 cm−1 and 3696 cm−1 for doubly and triply coordinated water molecules, respectively.

Based on this information, it is conceivable to link the presence and strength of the dOH to the

porosity of ice; however, this linkage has been proven difficult to establish through astronomical

observation. As of now, observational evidence of dOH bands in ISM ices has not been found and

this has led to the general consensus in the field that most ASW in the ISM is compact [44]. This

consensus, however, is unsatisfactory in addressing a point of fundamental curiosity in molecular

astrophysics; that being the formation, destruction, excitation, and storage of complex organic

molecules.

Comets are often the source of this curiosity as the main component of comets is ASW; chemi-

cally stored in which is a pristine record of the composition of the solar nebula [45]. An explanation

is lacking in the Rosetta mission detection of a number of molecules degassed from comet 67P/

Churyumov–Gerasimenko. Specifically, the detection of molecular oxygen at an abundance of 4%

respect to water [46]. It has been argued that as the structure of the ice changes when the comet

is exposed to solar irradiation, molecules can be trapped in the ice well beyond the temperature at

which they would desorb if they were adsorbed on the surface [47, 48]. Bieler et al. [46] discussed

the possibility of the comet undergoing molecular decomposition of water molecules by ionizing

radiation resulting in the escaping of hydrogen and the trapping of molecular oxygen in voids or

as otherwise interpreted closed pores. This work calls into question the ice morphology of comets,

little of which is known, and the historical information they have to tell us about stellar evolution.

It is possible that comets are composed of p-ASW in which molecules are trapped deep within

open pores on inner surfaces of the comet or was porous at one point in its stellar evolution and

compaction ensued trapping molecules in a lattice.

Furthermore, Oberg et al [45] observed the presence of simple and complex cyanides outside

the water snow line in MWC480 protoplanetary disk. This finding suggests an unknown efficient

disk chemistry by which large amounts of carbon originally in CO and other small molecules are

converted into more complex organic molecules early in the disk’s history (first million years).

Agundez et al. [49] conducted radioastronomical observations of 9 dark clouds with the IRAM



47

30 m telescope and identified for the first time the presence of COMS; ketenyl radical (HCCO),

ketene (H2CCO), acetaldehyde (CH3CHO), formyl radical (HCO) and propelyne (CH2CHCH3) in

regions with high extinction. They argue that this discovery demands the revision of the chemistry

of cold dense clouds and with regard to HCCO there must be a formation mechanism not previously

considered that protects this radical from the efficient destruction through gas phase reactions with

H, O, and N atoms. Efficient catalytic processes as provided by pore systems of interstellar p-ASW

coated dust grains may offer useful insight into these observed phenomena.

Linkage between dOH bonds and porosity has also been proven difficult to establish unam-

biguously in the laboratory. Experimental studies [50, 51, 40, 52] show that the total number of

dangling bonds is not proportional to the porosity, and some porosity is retained when the signa-

ture of dangling bonds disappears. This is an important point, since dOH IR signatures have not

been seen in astronomical observations [53]. It is also known that the position and strength of dOH

dangling bonds are affected by the presence of other atoms or molecules (see [54]) for a recent

investigation of change in the IR bands of the dangling bonds due to adsorption of H2, D2, Ar, CO,

N2, CH4, and O2). Furthermore, the thermal treatment of ASW irreversibly changes the network

of pores: as the temperature is increased, the ice morphology changes and pore collapse occurs. In

this work, we investigate again the relation between dOH bands and porosity, and hope to find new

insights into this decades-old problem.

In typical laboratory experiments under UHV conditions, the structure of ASW as porous or

compact depends on the deposition methods [55, 56, 57, 58]. Generally, lower deposition tem-

perature and higher deposition angle respect to surface normal favor a higher porosity. If ASW is

grown from water vapor deposition onto a substrate at 130 K or above, the ice is compact. It was

also reported that ASW grown from a collimated beam of water vapor at normal incidence forms

a compact structure even at lower temperatures [56]. Omnidirectional deposition of water vapor

when the substrate is at lower than 130 K forms porous ASW. Upon heating, porous ice gradually

transforms into non-porous ice. This temperature dependence is explored in detail in the Results

and Analysis section of this chapter.

Compared to the studies mentioned above, which mostly focused on measuring the porosity (or

equivalently the density) of the ASW, fewer details are available about the link between morphol-

ogy and catalytic properties of ices. Raut et al [51] performed energetic ion bombardment of ASW

and found that the surface area of porous ice decreases at a faster rate than the pore volume during

ion-induced compaction. The underlying reason for this difference is still not well understood,

but several mechanisms have been proposed, including coalescence of micropores, preferential
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destruction of smaller pores, and smoothing of pore wall topology [51]. Prior laboratory measure-

ments of porosity based on density [59, 60] do not reflect the true catalytic potential of the ASW

surface. It is important to measure the pore surface area that is accessible for the adsorption of

volatiles from the gas phase. Palumbo et al [50] studied the accessible pore surface area after com-

paction of the ASW by energetic ions. However, in highly shielded gas clouds in the ISM, thermal

processes should dominate over energetic processing, and the temperature dependence of the pore

surface area is the most important.

Taking the above arguments and questions of interest in the field as motivation we use CO as a

tool with which to probe p-ASW ice and the resulting infrared absorption spectrum to quantify the

temperature dependence of the pore surface area of ASW that is accessible by volatile molecules

condensed from the gas phase. Furthermore, we investigate the affect that the presence of volatiles

in the ASW matrix have on dOH by applying the same methodology to ASW with the minority

species of NH3 and CO2 (treated separately). We also present results obtained from a Monte Carlo

model of ASW in which the morphology of the ice is visualized and quantified. The simulations

were done by Robin Garrod and his student Aspen Clements of the University of Virginia in a joint

collaboration [61].

3.2 Experimental Procedure

A detailed description of the Syracuse University Laboratory of Astrophysics and Surface Science

UHV apparatus is given in chapter 2 of this thesis, and here only the main features that are relevant

to this study are summarized. Ices are grown on the gold coated copper disk sample by vapor

deposition from the chamber background when the sample is cooled to 10 K. Gas and water vapor

enter the chamber via two separate manifolds attached to UHV precision leak valves, which are

automated by stepper motors controlled with LabVIEW programs.

Water vapor is produced in a stainless-steel gas manifold that is connected to one of the leak

valves on one end and an isolated 150 ml dewar on the other end. The procedure for depositing

water vapor comprises: 1. Pumping down the manifold with an external pumping station to ap-

proximately 2 mTorr range; 2. Wrapping the manifold in heating tape and aluminum foil to heat

the manifold so that it is hot to the touch - this prevents water vapor from stick to the walls; 3.

Depositing distilled liquid water in to the dewar; 4. Wrapping the dewar in fiberglass heating tape

and aluminum foil and heating the dewar so it is hot to the touch; 5. Preparing an isolated nearby

sorption pump by cooling it with liquid nitrogen; 6. Isolating the pumping station from the mani-

fold and then disconnecting the pumping station; 7. Connecting the sorption pump in place of the

pumping station (still isolated from manifold) and exposing the water dewar to the gas manifold,



49

effectively filling it with hot water vapor; 8.After about 20 seconds, isolating the water dewar so

as not to inundate the manifold; 9. Opening and controlling the leak valve via a LabVIEW pro-

gram and stepper motor and beginning deposition (the program will automatically close the leak

valve once target thickness is reached); 10. After deposition is complete, pumping down the man-

ifold with the sorption pump (this is necessary as the water vapor would inundate and damage the

pumping station); 11. Once a pressure of approximately 40 mTorr is reached, isolating the sorption

pump and disconnecting it and reconnecting the pumping station in the place of the sorption pump

(still isolated). For ice mixtures, this procedure differs only in that NH3 and CO2 are co-deposited

individually in separate experiments through the gas leak valve at the same time that the water

vapor leak valve is being operated. A different LabVIEW program is used that takes both species

and leak valves in to account.

In all experiments, CO is deposited after the deposition of water vapor or water vapor mixtures.

The deposition procedure for depositing CO comprises: 1. Pumping down the gas manifold with

an external pumping station until the manifold reached a pressure of approximately 2 mTorr; 2.

Isolating the pumping station from the manifold; 3. Introducing 20 psi of laboratory grade CO

gas to the manifold; 4. Opening the leak valve via LabVIEW program and stepper motor and

beginning deposition (the program will automatically close the leak valve once target thickness

is reached); after deposition is complete pumping down the manifold with the external pumping

station.

Ice thickness in monolayer (ML) are calculated from the impingement rate based on an in-

tegration of the chamber pressure [54]. One monolayer is defined as 1015 molecule cm−2 on a

flat surface. The ion gauge correction factor and velocity of both water and CO were taken into

account in the calculation. The relative uncertainty in CO dose and water dose are less than 0.1%

and 1%, respectively. The main source of uncertainty is from the hot cathode ion gauge, which has

absolute uncertainty up to 30%. More details of the deposition control are reported in He et al [54].

Spectroscopic features of the ice on the sample is measured using a Fourier Transform InfraRed

(FTIR) spectrometer in the Reflection Absorption InfraRed Spectroscopy (RAIRS) configuration

as is discussed in more detail in chapter two signal detection section.

In the first experiment we deposited 200 ML of porous ASW when the surface was at 10 K as

described in the above procedure, then heated the ice at a ramp rate of 3 K/minute from 10 K to

200 K. The RAIR spectra were measured continuously during the heating and we monitored how

the two dOH bands evolved with changing temperature. Next, we carried out a whole set of ex-

periments of CO deposition on top of 200 ML of ASW ice annealed at different temperatures. The

ASW samples were grown when the sample was at 10 K as described in the procedure above, and
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then annealed at 20, 40, 60, 80, 100, 120, and 140 K for 30 minutes. Afterwards, the ice sample

was cooled down to 20 K (except for the 20 K annealing) before depositing CO continuously until

the ASW pore surface was fully covered by CO, as indicated by the emergence of the longitudinal

optical (LO) mode of CO at∼ 2143 cm−1. The optical (LO) mode is the typical one that is excited

in the grazing mode geometry as it is representative of the vibration of molecules parallel to the

surface as opposed to the optical transverse mode (TO) in which case the molecules vibrate perpen-

dicular to the surface. The dOH bands were also continuously monitored during these experiments

so as to measure how the these spectral features change when CO is deposited. The CO deposition

rate was chosen so that there are enough data points during the deposition, and it varies between

experiments. The CO deposition temperature was chosen to be 20 K, because at this temperature,

CO has enough mobility on the surface of p-ASW ice [54]. Finally, a Temperature Programmed

Desorption (TPD) was then done by heating up the sample from 20 K to 200 K at a ramp rate of 0.1

K s−1. Spectral information was collected during the TPD and was used to correlate temperature

dependence of the dOH bands with that of CO features to effectively show the trapping of CO in

ASW ice (more details in the Results and Analysis section).

3.3 Modeling

Ice simulations are conducted using the off-lattice microscopic kinetic Monte Carlo model MIM-

ICK (Model for Interstellar Monte Carlo Ice Chemical Kinetics), adapted from the works of Garrod

et al [62] and Clements et al [63], with flat geometry and periodic boundary conditions. For studies

involving porosity an off-lattice modeling approach is necessary as it offers a three-dimensional

treatment of the dust grain. This approach is opposed to on-lattice techniques in which the grain

surface is two dimensional and the atoms and molecules are not free to adapt to local conditions

and may only diffuse between pre-defined lattice positions. The limitations given by the on-lattice

approach are unacceptable for studying p-ASW as they do not allow for the investigation of the

effects of large-scale grain morphologies on the surface chemistry and ice structure [62].

The model allows the diffusion of individual molecules to be traced over time, at various tem-

peratures. As well as thermal diffusion (hopping) between surface potential minima, non-thermal

diffusion is also allowed, immediately following the deposition of each water molecule onto the

surface; the gas-phase translational energy of the molecule and the energy it gains as it enters the

surface potential allow it to diffuse if its energy is sufficient to overcome the local diffusion bar-

rier(s). The model uses isotropic Lennard-Jones potentials, which were parameterized within the

model by Clements et al [63] using experimental density data from the literature for amorphous

water formed through background deposition at various temperatures [64]. More specifically, the
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model uses the Lennard-Jones potential to calculate local minima in effect determining the position

of the water molecules after adsorption or diffusion on the grain surface [63].

The Lennard-Jones Potential represents the interaction between a pair of molecules by:

V = 4ε[(
σ

r
)12–(

σ

r
)6] (3.1)

Where r is the distance between interacting molecules, ε is the depth of the potential well, and

σ is the optimal distance between molecules; a finite distance at which the potential is zero. The

second term that is to the sixth power accounts for the induced dipole-induced dipole attraction

(Van der Waals Force) between the molecules. The first term the twelve power accounts for the

close-range repulsion of molecules due to overlapping electron shells; a phenomenon known as

Pauli Repulsion. This effect was already touched on in the introduction section of this chapter in

the discussion of pore systems and their relation to dangling bonds and steric hindrance [41].

In the present models, water is deposited at interstellar dust grain temperatures (10 to 20 K)

and then heated at laboratory rates (1 to 3 K min−1) up to a temperature of 150 K. First, the

water molecules are deposited using background deposition onto a square surface of length 650 Å,

significantly smaller than a surface used in the experiments for computation time. A deposition

rate of 1013 cm−2 s−1 and temperature of 10 K were used and two thicknesses were tested (25 ML

and 200 ML). Surface area and density are calculated for each ice and measured during heating.

The ice surface area (including pore surfaces) is calculated by counting the number of surface

molecules. This value is then divided by the total number of water molecules in the ice. This

ratio corresponds to the coverage of the surface to the total ice thickness in monolayers. With the

microscopic model the surface coverage can be directly measured. An average of the thin ice (25

ML) and the thick ice (200 ML) was averaged to calculate the pore surface, as we later discuss

the surface area is dependent of thickness between 10 to 200 ML. This method of calculating the

pore surface area is comparatively more direct in comparison with how it is done experimentally

through measuring the emergence of the longitudinal optical (LO) mode of CO at ∼ 2143 cm−1

(see Experimental Setup section of this chapter) and thus puts our laboratory data to a rigorous and

meaningful test. Images were created using the freeware POV–Ray to visualize the entire ice or,

using cross sections, the connectedness of the pores.
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3.4 Results and Analysis

3.4.1 Infrared Characterization of Pure ASW

We begin by examining the infrared spectral features of the dOH bands of 200 ML of ASW ice

when no CO is deposited. This first phase of study is important as the interaction of CO with

porous ASW ice has its own distinct effect of shifting the dOH bands [54]. Thus, in order to

clearly understand the phenomena of temperature dependence of the ASW ice and the effect of

CO deposition we must be able to distinguish between the two.

ASW has three main vibrational modes in the mid-infrared region: OH stretching at ∼ 3300

cm−1, bending mode at 1640 cm−1, and libration mode at ∼ 700 cm−1. On the blue shoulder of

the OH stretch band, there are two small absorption features at ∼ 3696 cm−1 and ∼ 3720 cm−1,

generally attributed to 3-coordinated and 2-coordinated water molecules, respectively [43]. These

features are the dOH bands and contain important information regarding the pore structure of the

ASW. The dOH region of the RAIR spectra of the 200 ML ASW during heating is shown in Figure

22. As the ice temperature is raised, both dOH bands decrease. By 60 K, the 3720 cm−1 band is

almost gone, while the 3696 cm−1 band persists until above 140 K.

To quantify the temperature dependence of both bands, we use two Gaussian functions to fit the

two dOH bands. Gaussian and Lorentzian functions are very often used to fit solid state infrared

absorption features. Typically, disordered ices have relatively broad Gaussian line shapes, while

crystalline ices have narrower Lorentzian line shapes. This is due to the fact that the molecules

in disordered ices, ASW ice being an example of such, experience a statistical distribution of

environments which results in a more diverse collection of vibrational energy states and thus a

softer and broader peak that upon wider view reveals a bell curve or Gaussian profile. This is a

direct consequence of two fundamental facts of IR spectroscopy that the line shape originates from

the sum of all the individual vibrations and the exact vibrational frequency of a particular molecule

is controlled by its environment [65].

We tried (1) one Gaussian; (2) one Lorentzian; (3) two Gaussians; and (4) one Gaussian and

one Lorentzian functions to fit the blue side of the OH stretch peak; the two dOH bands are also

included in the fitting. Figures 23 and 24 show the fitting and the residuals, respectively. It can be

seen that the fitting using one Gaussian and one Lorentzian, in addition to two Gaussians for the

dOH bands achieve the best results. For analyses that do not require high accuracy, one Gaussian

function also fits the blue half of the OH stretch well. In the remaining of this work, we use one

Gaussian and one Lorentzian to fit the OH stretch band. Based on the above fitting scheme, the

band areas of both dOH bands during warming of the 200 ML ASW are calculated and presented in
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Figure25. At∼60 K, the 3720 cm−1 band becomes negligible, which suggests the disappearance of

2-coordinated dangling bonds. This is consistent with previous experimental studies [51, 66, 67].

The 3696 cm−1 band drops linearly with temperature from 60 K to above 140 K. The residual 3696

cm−1 band at above 140 K is largely due to the dangling bonds located on the outer surface [66].

3.4.2 Infrared Characterization of ASW:NH3

We turn our attention to the infrared spectral features and temperature dependence of the dOH

bands of 200 ML of ASW at 3720 cm−1 and 3696 cm−1 when the minority species NH3 is present

in the ASW matrix. This is important as stated in the introduction of this chapter; it is well

known that the presence of minority species in the ASW matrix has its own unique effect on the

dOH bonds. Furthermore, NH3 is a minority molecule of particular interest given it is a volatile

commonly detected in the water rich layer of ice coated dust grains in the ISM.

Figure 26 shows the dOH spectral features for ASW with 0%, 10%, and 20% NH3 present.

We observe a marked decrease in the two-coordinated 3720 cm−1 immediately upon the presence

of NH3 before thermal energy is imparted to the ice during heating. The presence of NH3 causes

the two-coordinated water molecule bonds to vanish from the ASW matrix. The 3696 cm−1 dOH

feature is also significantly diminished in intensity by the presence of NH3. It quickly vanishes

upon application of thermal energy.

We performed an identical fitting of the dOH band at 3696 cm−1 as was done in the last section.

Figure 27 shows the band area of the three-coordinated 3696 cm−1 band during the warm up of all

ice mixtures. The 3696 cm−1 band area for 0% NH3 drops linearly with temperature from 20 K to

120K and beyond whereas for 5% to 15% becomes negligible at ∼ 120 K as does for 20% at ∼ 85

K and below. This result clearly illustrates the powerful effect that minority species in the ASW

ice matrix have on reducing the intensity of dOH.

In the next two sections we take these conclusions even farther and explicitly measure the pore

surface area accessible to volatiles in the gas phase. We use the deposition of CO to explicitly

calculate the pore surface area for pure ASW and ASW mixtures.

3.4.3 CO on pure ASW

We know that the dOH bonds are indicative of pore systems in the ASW ice (discussed in section

3.1) and that the intensity of the dOH spectral bands is diminished if the temperature of the ice

is increased or minority species are present in the ASW matrix. We do not know, however, how

best to relate reduction of dOH band intensity to pore surface area that is accessible to adsorption

from species in the gas phase. To meet this need by using the infrared spectra of CO deposited on



54

ASW ice as a tool to map the accessible pore surface area as a function of CO ice thickness and

temperature of the sample.

It is with this rationale in mind that we turn our attention to the next set of experiments, in

which we use the infrared bands of CO to probe the pore surface area of ASW annealed at different

temperatures. It is well-established that the infrared absorption feature of CO interacting with water

ice is different from that of pure CO ice. The RAIRS of pure CO shows the longitudinal optical

longitudinal mode (LO) at 2143 cm−1 while CO interacting with water shows two bands at∼2140

cm−1 and ∼2152 cm−1. According to our previous laboratory measurement of the diffusion of

CO on the surface of p-ASW ([54]), diffusion of CO becomes significant at about 15 K. At 20

K, the diffusion is very efficient. If CO is deposited on top of ASW at 20 K, CO should diffuse

into the pores and occupy the pore surface of the ASW. Once the whole surface area is covered

by CO, and CO begins to build up as “pure” CO ice, the LO mode emerges. By examining the

amount of CO deposited at which the LO peak emerges, the accessible surface area of p-ASW can

be obtained. Furthermore, following this same analytical procedure but for ASW ice annealed at

different temperatures we can reveal the temperature dependence of the pore system of ASW ice

as compaction takes place. In the following, we first present a detailed analysis of the results of

CO deposition on ASW annealed at 60 K and cooled to 20 K, and then show the results at other

annealing temperatures.

Figure 28 shows the RAIR spectra of C-O stretching mode during deposition of CO on ASW

annealed at 60 K and cooled to 20 K. At low CO deposition doses, there are two broad components

centered at ∼2140cm−1 and 2152 cm−1. When the CO dose is over ∼30 ML, the LO mode at

2143 cm−1 emerges, which we take as a sign of full coverage of the pore surface.

There have been several experimental studies of the interaction between CO and ASW surface

[e.g. 68, 69]. Although It is generally accepted that the ∼2152 cm−1 component is due to the

adsorption of CO on the dOH sites of ASW, there is no direct experimental evidence, as far as we

know, that demonstrates the correlation between dOH bands and the 2152 cm−1 component. We

used two Gaussian functions to fit the 2140 cm−1 and 2152 cm−1 components, and one Lorentzian

function to fit the 2143 cm−1 component, and then we studied how these three components change

with CO deposition dose. An example of fitting is shown in Figure 30. We apply similar fitting to

all of the spectra in this experiment. The resulting band areas for the three components are shown

in Figure31.

As was discussed in the section 3.1, introducing CO in ASW shifts the dOH bands. In Figure29,

the dOH region of the RAIR spectra before and after the CO deposition is shown. Before CO

deposition, the dOH band is at 3694–3696 cm−1 (the peak position varies between 3694 and 3696
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cm−1, depending on the annealing temperature; hereafter we refer to this peak as the 3696 cm−1

peak), while after CO deposition, the area of the 3696 cm−1 peak decreases to zero and the dOH

induced by CO shows up at ∼3636 cm−1. We used one Gaussian function to fit the 3696 cm−1

peak and one Gaussian function to fit the 3636 cm−1 peak, and obtained how the two peaks change

with increasing CO deposition. The area of the 3696 cm−1 peak is shown in Figure 31, together

with the peak areas of the three components of C-O stretching mode. Between 0 and 12 ML, the

3696 cm−1 band area decreases to zero. At the same time, the band area of 2152 cm−1 component

increases from 0 to the saturation level. The anti-correlation between these two bands is evident.

This is direct evidence that the 2152 cm−1 component is associated with CO binding to the dOH

bonds. This evidence is not only experimentally novel in the field, but also justification for using

CO a tool to investigate porosity in ASW; a species with a spectral feature we know is closely

associated with dOH bonds.

Referring back to Figure 31 we see that at about 27 ML of CO deposition, the 2140 cm−1 band

begins to saturate, while at the same time the 2143 cm−1 LO band emerges. This demonstrates that

at about 27 ML of CO deposition, all the pore surface area is occupied, and pure CO starts to build

up. This happens at a higher CO dose than the full covering of the dOH bonds, likely because CO

molecules preferentially occupy the dOH sites over the non-dOH sites. In a prior study by Zubkov

et al [70], it is reported that the full coverage of pore surface by nitrogen adsorption happens

simultaneously with the saturation of the shifted dangling bond intensity. They suggested that

N2 does not preferentially bind to dangling OH groups. The difference between that work and

this one is possibly due to the relative interaction energies of the two adsorbates. While nitrogen

adsorption shifts the 3-coordinated dangling OH peak to 3668 cm−1, CO adsorption shifts it by a

larger amount, to 3635 cm−1 [54]. We take the CO dose at which 2143 cm−1 component just starts

to show up, 27 ML in this case, to be the pore surface area of the 200 ML ASW ice annealed to 60

K. It is worth noting that the fact that the 3696 cm−1 band vanishes after CO deposition indicates

that all of the pore surface area is accessible for CO adsorption, and the ASW ice does not contain

closed non-accessible cavities inside the ASW ice. These cavities would have been detected by

residual dOH bonds.

Similar CO depositions were carried out on 200 ML ASW samples that were annealed at 20,

40, 80, 100, 120, and 140 K, and cooled down to 20 K. RAIR spectra were recorded during CO

depositions at 20 K and are shown in Figure 32. We determine the pore surface areas for the ASW

annealed at different temperatures by visually examining the CO deposition dose at which the 2143

cm−1 component emerges. The ASW surface area versus annealing temperature is shown in Figure

33. The accessible pore surface area decreases linearly with annealing temperature almost up to
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120 K, above which the surface area becomes about 2 ML. Considering that the surface of ASW

is rough, it is likely that 2 ML covers the very top of the surface, (i.e. the ice-vacuum interface).

3.4.4 CO on ASW:NH3 and ASW:CO2

We now turn our attention to spectra of CO deposited on 220 ML 10 % ASW:NH3 and 240 ML 20

% ASW:CO2 samples that were annealed at 20, 40, 60, 80, 100, and 120 K, and cooled down to

20 K for deposition of CO. The same experimental and analytical procedure is followed as in the

previous section regarding CO on pure ASW (section 3.4.3). Recall that the minority species NH3

and CO2 and the mixing ratios of 10 % and 20 % were utilized because they are representative of

observations of ice coated dust grains in the ISM as discussed in section 3.1. We saw in Figure 27

and discussed in section 3.4.2 that the presence of NH3 in the ASW matrix reduces the intensity of

dOH spectral features and reduces the temperature at which they vanish. Now we are in a position

to continue this intellectual thread by seeing if this translates to a mitigation of pore surface area

and also determining if this trend translates to CO2.

Figure 34 shows the spectra for CO interacting with water (∼2140 cm−1 and ∼2152 cm−1)

during deposition on pure ASW (the same data as was shown in Figure 32) alongside that of 220

ML 10 % ASW:NH3 and 240 ML 20 % ASW:CO2 that are all annealed at different temperatures.

Once again we use the coverage at which the CO LO mode at 2143 cm−1 emerges as indicative

of the pore surface area. It can be deduced by visual inspection from Figure 34 that the presence

of the minority species NH3 or CO2 does indeed reduce the accessible pore surface area. This

point, however, is made abundantly clear in Figure 35 where particularly for CO2 there is a marked

decrease in accessible pore surface area relative to that of pure ASW.

This result paired with that of section 3.4.2 offers valuable insight in to the the confounding

fact that dOH bonds have never been observed in the ISM but yet the porosity of ASW ice remains

allusive. With these two results we have shown that the minority species NH3 and CO2 can disguise

dOH bands by reducing their spectral signature significantly in effect blocking dOH sites and

reducing the accesible pore surface.

3.4.5 Trapping of CO in ASW

In the previous section, we focused on the infrared spectra during CO depositions. Here in this

section, we focus on the TPD stage of the same set of experiments. After the deposition of CO on

ASW at 20 K, the ice was heated up from 20 K to 200 K at a ramp rate of 0.1 K/s while RAIR

spectra were measured continuously. The band area of the C-O stretching mode was calculated for

each spectrum during warming up (see Figure 36). For ices that are annealed at 60 K and above,
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the C-O stretch band area becomes zero after the temperature goes past 60 K. This is in agreement

with the study by Horimoto et al [71] who carried out similar experiments using methane instead

of CO. In Figure 3.4.5, the desorption of CO from the ice can be separated into three regions. The

first region is below about 55 K, which is the temperature at which CO on ASW surface (including

the surface of pores) desorbs. The second region is from about 55 K to about 150 K, during which

the CO band area drops linearly with temperature. These are the CO molecules that are trapped

in the ASW matrix and released back into the gas phase gradually. Here we don’t exclude the

possibility that the band strength of CO buried inside bulk ASW can change with temperature.

Indeed, experimental measurements by Schmitt et al [72] have found that the band strength of C-O

stretching for CO buried in water ice has a reversible component that decreases almost linearly with

the temperature between 50 K and 120 K. The irreversible component corresponds to the gradual

releasing of CO from the bulk ASW. The third desorption happens when the ASW crystallizes,

and all of the remaining CO molecules are forced out of the ice. This is sometimes referred to

as the “molecular volcano” [47]. The amount of CO that is in the ice at about 60 K represents

the CO that is trapped inside the ASW matrix, and we define it as the trapping amount. When

the ASW is annealed to 60 K or above, the ASW does not trap any CO. The lower the annealing

temperature, the higher the number of CO molecules that can be trapped. Based on this result one

can also make the statement that the lower the annealing temperature the deeper and more complex

the pore system of the ASW. This morphology temperature dependence probably results in some

pores that are not directly connected to the vacuum-ice surface but are interconnected to those that

are thus making the entire pore system accessible to CO as was confirmed in the last section.

Furthermore, the linear decrease of C-O stretching band area during heating is similar to that of

CO2 (see Figure 4 of He et al [73]). This suggests that the linearity may be a general phenomenon

that occurs to all volatiles that are trapped in ASW. As was stated in the introduction section of

this chapter there is a lack of knowledge pertaining to the structure of ASW in comets and how

gas is released as a comet is exposed to solar irradiation. Perhaps this linearity, if explored further

with other volatiles, may provide meaningful clues as to the elusive cometary relationship between

trapping of volatiles and ice structures.

3.4.6 Dangling OH bonds during CO deposition

We now turn our attention to the dOH spectra during CO deposition on ASW. As the pore surface

is gradually covered by CO, the dOH band at 3696 cm−1 decreases, and the band at 3636 cm−1

increases as is seen in Figure 29 . We applied the fitting scheme as discussed above to obtain the

area of the dOH band during CO deposition. Figure 37 shows the area of the 3696 cm−1 dOH
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band during CO deposited on ASW that has been annealed at different temperatures. For the ASW

that was annealed at 140 K, the dOH band area is too small, and is not presented in the figure.

The main finding from Figure 37 is that the dOH band area always drops to zero at high enough

CO doses, regardless of the annealing temperature. This suggests that almost all the pore surface

inside the ASW are accessible to CO, and the pores throughout the whole ice are interconnected as

was also pointed out in the subsection 3.4.3. This conclusion also agrees with the previous results

by Raut et al [58] which demonstrated that all of the pores are interconnected and are accessible to

CH4 adsorption.

3.4.7 Modeling of ASW Ice Porosity

Thus far in this chapter we have experimentally measured the accessible pore surface area for

different annealing temperatures of ASW, ASW:CH4, and ASW:CO2 found a direct correlation

between the CO and dOH spectral bands demonstrating that the CO molecules interact directly

with the dOH bonds, measured the trapping amount of CO within an ASW pore system, and con-

firmed the accessibility of pore systems in ASW to CO. Now we direct our attention to theoretical

simulations and modeling in order to clearly visualize the morphology of ASW ice and further

justify these findings.

Figure 38 shows the structure of simulated water ice; the column-like structure becomes smoother

with increasing temperatures, until eventually an entirely smooth structure is obtained at 140 to 150

K. In the model, the initial ice was deposited at 10 K and then heated to ∼150 K where the ice

starts to desorb into the gas phase. The first two images of the model (at 10 and 70 K) have es-

sentially the same structure. The model indicates there is little to no re-arrangement of the ice

until the temperature of 60 K is reached. For the most part this is in agreement with the findings

of the trapping section 3.4.5 seen in Figure 37 in which we observed that ASW ice does not trap

CO molecules beyond an annealing temperature of 60 K thus demonstrating the marked difference

between morphological evolution of ASW ice (i.e. re-arrangement) before and after 60 K. At 60

to 80 K, diffusion of water becomes efficient enough to play a role in the surface area and poros-

ity, and increases at higher temperatures. The structure begins to smooth, by eliminating first the

smaller pores until gradually all the pores are removed. Through this process, the ice reaches its

maximum density at 150 K. It is important to note the model does not include the phase change

from amorphous to crystalline ice, which would begin to occur at ∼140 K; this does not alter the

results of the model as the main focus is between temperatures of 10 to 140 K.

In the laboratory results shown in Figure 33, we see that the accessible surface area decreases

steadily up to 140 K. As stated in the earlier section regarding pure ASW 3.4.1, the 3-coordinate
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dOH absorption band (3696 cm−1) linearly decreases from 60 to 140 K (see Figure 25), likely

corresponding to the beginning of significant pore collapse and thus the decrease in the surface

area; this matches the decrease of the exposed surface in the model (Figure 39. The model shows

in Figure 39 that the coverage begins to reduce between 60 K and 80 K and then steadily decreases

after 80 K is reached. Until those temperatures are reached, very little rearrangement and pore

collapse occur; this is probably due to the fact that the model uses isotropic potentials and thus

is not sensitive to defects (OH dangling bonds) or orientational realignment of water molecules

to which the experiment is sensitive. However, within the model we see a reasonable match at

lower temperatures given that CO is a proxy for the extent of the accessible exposed H2O network.

It is worth noting that one of the limitations of the experiment is we do not have a data point

corresponding to CO deposition on a ASW sample at 10 K (i.e. ice that has not been annealed at

all) and it is fair to assume that if we had this result then the model would match the experimental

results even better.

Figure 40 shows the modeling results of the ratio of the number of surface molecules to the

total number of molecules during the deposition of 200 ML water onto a 10 K surface. In the

first few monolayers, there is a large fraction of surface molecules. After the thickness reaches

more than ∼10 ML, the fraction of surface molecules is no longer dependent on the thickness.

This suggests that the structure of the ASW film is homogeneous and the conclusions in this work

based on measurements of 200 ML ASW can be generalized to other thicknesses as well, as long

as the ice is thicker than a threshold, in this study, ∼10 ML. This is more or less in agreement with

previous studies by [55, 56, 74, 66].

Previously, Kimmel et al. 2001b.[74] used a kinetic model where a hit and stick method was

used. Each individual molecule sticks to the surface being placed depending on the trajectory angle

provided. This model does not include kinetic energy, but a parameter that designates how many

times each incoming particle is allowed to hop before being permanently sticking. The images

presented from Kimmel et al. show that the pores are also interconnected at the temperature of

deposition, but does not include a linear warm-up of the ice. The model presented here is a kinetic

model and hopping is set by the temperature, which in this case is essential as we linearly increase

the temperature to replicate the experimental results. We show that the pores are interconnected

and maintain this structure for high temperatures.

Unlike the experiments, within the model no rearrangement occurs below 60 K, because of

the isotropic treatment used. Essentially, the model does not show the small-scale rearrangement

due to orientational re-alignment of water molecules within their original potential. While the

model cannot achieve these changes, it can provide a direct way to measure the surface coverage
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of water ice. The surface area can be monitored during heating instead of requiring CO adsorption

experiments where the water ice must be cooled down to 20 K to measure the amount of CO

adsorbed on the ASW. Furthermore, the determination of surface area using CO adsorption as in

the laboratory experiments may not be exactly the same as that from counting the number of water

molecules on pore surfaces as in the modeling. A small difference between these two methods is

possible.

Figure 41 shows the interconnectedness of the pores. A portion of ice was imaged to show the

inner structure and not the total structure. Visually it shows that most pores are connected within

the shown plane. As the ice is heated the pores collapse until eventually empty cavities within the

water ice are left. The cavities appear to be the remnants of the initial column-like structure, which

minimize their potentials by forming approximately spherical structures. The encapsulated pores

are fairly small in size with widths around 2 to 3 nanometers. These cavities may allow entrapment

of some volatile species such as CO until a later temperature. By 150 K all cavities have collapsed

and the volatiles have either been desorbed or are trapped within a water matrix. These findings are

in agreement with what was suggested by Bieler et al [46] but with regard to trapping of molecular

oxygen in comets after molecular decomposition occurs as discussed in the introduction of this

chapter.

3.5 Summary

In this study we measured the pore surface area of ASW that is annealed at different temperatures,

and also quantified the temperature dependence of dOH band area during heating of ASW. We

found a clear anticorrelation between the CO band 2152cm−1 and the ASW dOH band 3696cm−1

(see Figure 31) which revealed a remarkably clear and proportional relationship between dOH

bonds and pore surface area. This finding warranted our moving forward with our study. We

have shown in Figure 25 the 3-coordinated dOH absorption band (3696 cm−1) decreases almost

linearly between 60 and 140 K. This linear decrease with temperature can be compared with the

linear decrease of pore surface area shown in Figure 33. Both seem to decrease linearly with

temperature, although the curve in Figure 33 drops to the minimum at a slightly lower temperature

than in Figure 25. This difference can be attributed to the fact that the ice represented in Figure 33

was annealed for thirty minutes and the ice represented in Figure25 was continuously heated. Our

results are bolstered by computational modeling in which the pore surface area of ASW during

heating was calculated by computing directly the total number of surface molecules (Figure 39).

Taking in to account the fact that the model does not include orientational disorder it agrees with

these experimental findings.
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These proportional relationships are encouraging given it is well established in the field that

the presence of dOH bonds is a key indicator that an ASW sample is porous. It is not so well

established, however, whether or not this presence is a trustworthy tool with which to interpret

porosity measurements such as accessible pore surface area. An example of such would be the

work of Palumbo et al [50] in which they performed energetic ion bombardment on ASW and

found that the decrease of pore surface area is four times less than the decrease in dOH absorption.

From this experiment, one might conclude that the dOH band area is not proportional to the pore

surface area. These results produce an unclear relationship between dOH band area and pore

surface area for ASW as ion bombardment also induces chemistry that produces molecules such

as O2, O3, H2O2, which may interact with the dOH bonds and shift or shield the dOH bands

[54]. Furthermore, it shows that it is more appropriate to work with thermal processing of ASW;

especially considering we are interested in simulating the conditions of highly shielded gas clouds

in the ISM where the dominant mechanism by which energy is imparted to ice coated dust grains

is through thermal processes.

The presence of cavities inside ASW has been reported or mentioned in several prior studies

[75, 71, 76]. However, it is unclear whether these cavities are closed inside the bulk ASW or

interconnected and accessible from the vacuum-ice interface. In Figure 3 of Raut et al [51] and

Figure 8 of Cazaux et al [60], it was hinted that there are closed cavities, but there was no discussion

about the connectivity of the cavities. In Figure 37, it is evident that after CO adsorption, the 3696

cm−1 band always drops to zero, regardless of the annealing temperature. This suggests that there

is an insignificant number of closed cavities inside the bulk ASW, and almost all of the cavities

(pores) are interconnected as well as connected to the vacuum-ice interface. This result is verified

by the modeling by which the morphology is imaged in three and two dimensions (Figure 38 and

Figure 41 ) demonstrating the interconnectedness of the pore system. This is also in agreement

with the experimental results of Raut et al [58], who found that the number of closed pores is

insignificant in a 1000 ML ASW. Furthermore, the threshold thickness is also computationally

modeled and shows that for ASW ice of thicknesses greater than 10 ML the experimental work seen

in this chapter with regard to porosity can be generalized for deposition for other volatiles (Figure

40 ). This is important as the experimental interconnectivity result (Figure 37) is in agreeance with

the work of Raut et al [58] who demonstrated interconnectivity of ASW using a deposition volatile

of CH4.

With regard to astrophysical implications the fact that all pores are connected all the way to

the vacuum–ice interface suggests the possibility that volatile molecules that are formed on the

pore surface can diffuse and desorb from the ice before the desorption of water. The desorption



62

of molecules before water desorption has the potential to explain the observations which found

complex organic molecules in regions with high-extinction [77, 49] and regions outside the water

snow line in protoplanetary disks [45] and the low abundance of molecular oxygen detected from

comet67P/ Churyumov–Gerasimenko [46]. Findings from this study:

• Experimental results show that the total pore surface area in 200 ML of ASW at 20 K is

equivalent to 46ML, and decreases linearly with annealing temperature to ∼120 K.

• Almost all pores are connected to the vacuum–ice interface and accessible for volatiles ad-

sorption.

• The 3720 cm−1 dOH band, which is due to 2-coordinated water molecules, disappears when

the ASW is heated to 60 K.

• The 3720 cm−1 dOH band disappears if a 5% or greater minority species of NH3 is present

in the ASW matrix.

• The 3696 cm−1 dOH band, which is due to the 3-coordinated water molecules, is reduced in

intensity if a minority species of NH3 is present in the ASW matrix.

• The 3696 cm−1 dOH band decreases more or less linearly between ∼50 K and 140 K.

• The temperature at which the 3696 cm−1 dOH band vanishes reduces with increasing pres-

ence of the minority species NH3.

• The accessible pore surface area decreases with increasing minority species of NH3 or CO2

present in the ASW matrix.

• The accessible pore surface area is reduced with the lessening in intensity of the 3696 cm−1

dOH band.

• The 2152 cm−1 absorption peak observed for CO on ASW is due to the interaction of CO

with dOH bonds on pore surfaces.

• ASW annealed to 60 K or above loses the capability to trap CO molecules from the gas

phase.

• After the first∼10 ML, the fraction of surface molecules to the total number water molecules

does not change with thickness.
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Figure 22: RAIR spectra of 200 ML water ice during heating at various temperatures. The water

ice is deposited from the background when the surface is at 10 K. The heating ramp rate is 3

K/minute. Spectra are offset for clarity.[9]
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Figure 23: Example of fitting of the RAIR spectrum of bulk water OH stretching mode absorption

using different fitting schemes. The small features of the dangling OH (dOH) bonds located at

∼3696 cm−1 and ∼3720 cm−1 are each fitted with a Gaussian function. The left side of the main

peak is fit using the four schemes labeled in the figure. [9]
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Figure 24: Residual of the fittings in Figure23. [9]
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Figure 25: The area of the two dOH absorption bands during warming up of a 200 ML water ice

grown at 10 K and heated at 3 K/minute. [9]
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Figure 26: RAIR spectra of 200 ML water ice and 200 ML water ice with minority species NH3

present during heating at various temperatures. The water ice is deposited from the background

when the surface is at 10 K. The heating ramp rate is 3 K/minute. Spectra are offset for clarity. [9]
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Figure 27: The area of the three-coordinated dOH absorption band during warming up of a 200 ML

water ice with different percentages of minority species NH3 present; grown at 10 K and heated at

3 K/minute. [9]
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Figure 28: The RAIR spectra of CO deposited on top of 200 ML ASW that is annealed at 60 K for

30 minutes and cooled down to 20 K. The CO dose for each spectrum is shown in the inset. [9]
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Figure 29: The dOH region of the RAIR spectra of 200 ML water ice annealed at 60 K and cooled

down to 20 K (1) ; and after 21 ML of CO deposition (2). Dashed lines are the fitting. Spectra are

offset for clarity.[9]
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Figure 30: An example fitting of the spectra in Figure 28 using two Gaussian functions and one

Lorentzian function. [9]
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Figure 31: The band area of the three components of the CO absorption profile and the dOH band

at 3696 cm−1 during CO deposition on 200 ML ASW annealed to 60 K. Fittings are done as shown

in Figure30 [9]
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Figure 32: The RAIR spectra of CO deposited on top of 200 ML ASW that is annealed at 20, 40,

80, 100, 120, and 140 K, and cooled down to 20 K. The CO dose for each spectrum is shown in

the inset.

[9]
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Figure 33: Accessible pore surface area in 200 ML of ASW that are annealed at different annealing

temperatures. The pore surface area is measured by the amount of CO that fully covers the pore

surface.

[9]
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Figure 34: The RAIR spectra of CO deposited on top of 200 ML ASW, 220 ML 10 % ASW:NH3

and 240 ML 20 % ASW:CO2 that are annealed at different temperatures and cooled to 20 K for

CO deposition. The CO dose for each spectrum is shown in the inset. [9]
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Figure 35: Accessible pore surface area in 200 ML ASW, 220 ML 10 % ASW:NH3 and 240 ML

20 % ASW:CO2 that are annealed at different temperatures. The pore surface area is measured by

the amount of CO that fully covers the pore surface. [9]
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Figure 36: Band area of the 2140 cm−1 peak during warming up of (1) CO adsorbed on ASW that

is annealed at 20 K; (2) CO adsorbed on ASW that is annealed at 40 K and cooled down to 20

K; (3) CO adsorbed on ASW that is annealed at 60 K and cooled down to 20 K. Band area for all

curves are 21 ML for CO and 200 ML for ASW. [9]
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Figure 37: Band area of the dOH bond absorption at 3696 cm−1 after deposition of CO at 20 K on

200 ML ASW that has been annealed at 60, 80, 100, and 120 K. [9]
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Figure 38: 25 ML amorphous water deposited and heated at 3 K min−1 to 160 K. Simulations

were done by Robin Garrod and his student Aspen Clements of the University of Virginia in a joint

collaboration. [9]
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Figure 39: Accessible pore surface area in the model of ASW as it is heated at 1 K min−1. The

pore surface area is measured by the percentage of surface to total water molecules. The error bars

are calculated by using both 25 and 200 ML model coverages, and are essentially insignificant.

Simulations were done by Robin Garrod and his student Aspen Clements of the University of

Virginia in a joint collaboration. [9]
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Figure 40: Ratio of the number of surface water molecules to the total number of water molecules

obtained in modeling during deposition of 200 ML water at 10 K. Simulations were done by Robin

Garrod and his student Aspen Clements of the University of Virginia in a joint collaboration. [9]
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Figure 41: A slice of a 200 ML thick amorphous water deposited at 10 K imaged with POV–Ray.

The thicker ice was used to demonstrate the interconnectedness as it was more obvious than in

the much thinner ice of 25 ML. Simulations were done by Robin Garrod and his student Aspen

Clements of the University of Virginia in a joint collaboration. [9]
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Chapter 4

Phase Transition of Interstellar CO Ice

4.1 Introduction

In the last chapter, we used the spectral features of the adsorption of CO on and in ASW and ASW

mixtures as a tool with which to measure the available pore surface area and draw a connection

between this parameter and dOH spectral features. This allowed us a useful analytical perspective

from which to discuss predictive insights into the astrophysical phenomena of trapping of gas

species in comets and potential mechanisms of COM formation on and in the water-rich (i.e. CO-

poor) layer of interstellar ice mantles. In this chapter we direct our attention to the transition of

CO itself from a disordered state to one that is more ordered as a potential diffusive mechanism by

which COM formation occurs on and in the water-poor (i.e. CO-rich) outer layer of interstellar ice

mantles (see chapter one for a detailed discussion on interstellar ice composition and geometry).

One of the primary motivations of this study is that laboratory experiments and astrophysical

models all suggest that many COMs are formed in the CO-rich layer yet little is known about its

morphology [78] [79]. In fact, interstellar CO-rich ice morphology has never been the main focus

of a prior study. In 2017 Chuang et al performed laboratory experiments in which they showed

that several COMs (most notably: methyl formate (MF), ethylene gycol (EG), glycolalhyde (GA))

form in CO-rich ice following hydrogenation and UV irradiation at 13 K [78]. A year prior to this

Chuang demonstrated the feasibility of COMs formation without the aid of energetic particles/ra-

diation in the identification of two-carbon COMs in a laboratory experiment of H atom addition

to CO ice at 10 K [80]. Simons et al built a CO hydrogenation network model using quantum

chemical calculations for rate constants in combination with microscopic Monte Carlo for posi-

tional information of molecules. They used CO hydrogenation experiments to bench mark their

model and were able to simulate, in agreement with observed COM ratios, that MF, GA, and EG
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are formed under all interstellar conditions, even at extremely low temperatures such as 8 K [79].

As discussed in chapter 1 the driving mechanism by which the phenomenon of molecular for-

mation is thought to occur on interstellar ice mantles is diffusion [5]. The question, however, as

to how diffusion of molecules becomes energetically favorable at extremely low dense cloud core

temperatures of 10-15 K remains an unsolved fundamental problem of molecular astrophysics as at

this temperature range the probability of overcoming a typical activation energy barrier is exceed-

ingly small[81]. COM formation in the solid-state phase of cold dense cloud cores vs that of the

gas-phase of hot cores makes for a useful debate in illuminating this issue. The standard model of

hot core complex chemistry is generally described as icy mantles of cold cloud cores being rapidly

warmed by a nearby protostar. Consequentially they are injected back into the gas phase in which

COM formation is stimulated [81] [82]. Motivated by failings of this model to predict the produc-

tion of complex molecules from precursor methanol [83] Garrod et al used a gas-grain network

of reaction modeling to investigate the formation of methyl formate, dimethyl ether, formic acid,

formaldehyde and methanol during protostellar warm-up and evaporative phase [81]. They found,

in agreement with observation, a strong coupling between gas-phase and grain surface reactions.

Implicit in their findings is that the observed COMs in hot cores may have very recently evaporated

giving meaningful credit to the theory of COM formation on and in interstellar ice as opposed to

taking place only in the gas phase [81]; in effect calling back in to question the pivotal and elusive

role of a diffusive mechanism and the lack thereof a satisfactory explanation.

The morphology of water ice has been studied extensively both experimentally and theoreti-

cally [84, 85, 86]. As is known from the prior studies, the phase transition of water ice is typically

accompanied by the segregation and possible desorption of the minority species. Trapped gases in

amorphous water ice are released through cracks that develop in the crystallization process. The

eruption of volatiles during the crystallization is known as a molecular volcano [47]. Molecules

more volatile than water ice desorb during the molecular volcano, but less volatile molecules re-

main in a segregated form and desorb at higher temperatures. We decided to see whether a sim-

ilar transition happens in CO ice, what is the temperature of the transition, and whether minority

species segregate into clusters during the transition. If the minority species happen to be reactive,

chemical reactions between them could form COMs. To verify it, laboratory experiments were

performed under dense cloud relevant conditions to study the crystallization of CO ice, with and

without minority species, on an amorphous solid water ice film that emulates the inner layers of

the ice mantle. The results are shared and discussed in this chapter.

As stated earlier there is a significant lack of interstellar CO ice morphology studies. There are

some prior works of interest, however, but many of them do not take into account astrophysically
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relevant temperature ranges and thicknesses for the CO-rich ice layer which are 10-15 K and

approximately 0.01 µm or 3 ML respectively [11, 21] [87]. An example of such a study would

be that of Mizuno et al who performed X-Ray Diffraction measurements on 6µm of CO deposited

on to a 3 × 3 cm2 silicon substrate at 3 K. The purpose of their study was to investigate structural

properties of molecular glass. They performed annealing experiments from which they were able to

make a convincing argument for the existence of an amorphous CO phase [88]. The extremely low

temperature, even for interstellar standards, at which Mizuno et al. observes this groundbreaking

morphological property demonstrates the challenging nature of studying CO ice morphology. This

elusive quality can be seen in the work of Kang et al. who applied strong external electric fields

across CO crystal films of thicknesses 0.0081, 0.0224, and 0.024 µm deposited at 10 K and studied

the vibrational stark effect and dipolar inversion in CO crystals via infrared spectroscopy (RAIRS).

While their experimental method and analysis regarding the head-to tail inversion of CO dipoles is

sensible and quite interesting their conclusions regarding the CO ice temperatures that constitute

crystalline and amorphous structure are misguided. They claim that CO ice is amorphous when

deposited on to ASW at 10 K and it is crystalline when either deposited at or heated up to 20 K [89].

However, we have measured a marked structural change in CO ice on ASW in a temperature range

that is lower than 10 K. We find that what Kang et al considers to be “amorphous” is in actuality

more ordered and is referred to as polycrystalline in our work . It is evident that what they deem

to be amorphous is in actuality a state that is more ordered. This point is revisited and discussed

in greater detail in the results section of this chapter. It is important to note that the morphology of

thin CO ice was not the main focus of this group’s study. Furthermore, despite the astrophysically

relevant temperature and thickness ranges utilized by this group there was no motivation to draw

astrophysical relevance from the data. This study, however, demonstrates clearly how subtle and

easily an amorphous CO ice phase disguises itself.

Astrophysical studies involving CO ice often don’t focus on CO itself but instead other species.

Simon et al. measured the entrapment of CO molecules on CO2 ice by depositing 7-53 ML of

1:1 and 9:1 CO2:CO mixtures at 17 K. This work was done with the astrophysical motivation of

exploring whether or not CO2 as a common cometary component is able to trap CO in the same

manner for which water ice is known. Essentially, they use CO ice not as a main subject of study

but as a probe with which to characterize CO2 ice [90]. Inversely, in the work of this thesis we use

CO2 as a probe with which to characterize CO ice through the use of CO:CO2 9:1 mixtures as is

discussed in detail in the results section of this chapter. In fact, we consulted the work of Simon

et al in designing our gas mixing manifold and determination of appropriate mixing times (this is

discussed in more detail in the experimental procedure section of this chapter).
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4.2 Experimental Procedure

A detailed description of the apparatus is given in Chapter 2 of this thesis as well as in prior

published works [91, 92], and here only the main features that are relevant to this study are sum-

marized. In all experiments, 30 ML of compact water ice was grown by introducing water vapor

into the UHV chamber through a stepper motor controlled UHV precision leak valve when the

sample is cooled to 10 K. The details of the water vapor deposition procedure are identical to those

discussed in the experimental procedure section of chapter 3. During water vapor deposition, the

temperature of the sample was kept at 10 K. After the water deposition was completed, the sample

was then heated to 130 K and annealed for at least an hour to ensure that it was compact ASW.

Two types of experiments were done, one in which a CO ice was grown on compact (non-

porous) ASW, and another in which a vapor mixture of CO and CO2 was grown on compact ASW.

For the types of measurements we planned, it was important to make ice thin films reliably and

with the desired thickness. The following procedures were implemented.

In one set of experiments 9 ML of pure CO ice were grown on compact water ice at 6 K and

then heated at 12 K/min to various temperatures at which experiments of ordering kinetics were

performed. In another set of experiments different thicknesses of pure CO ices were grown on the

compact water surface at 6 K and then slowly heated to 20 K at 0.2 K/min. (We also performed a

slow heat-up experiment of 10 ML of a 9:1 CO:CO2, see next paragraph for details). The procedure

for depositing CO comprised: 1. Pumping down the gas manifold with an external pumping station

until the manifold reached a pressure of approximately 2 mTorr; 2. Isolating the pumping station

from the manifold; 3. Introducing∼ 20 PSI of laboratory grade CO gas to the manifold; 4. Opening

the leak valve via Labview program and stepper motor and beginning deposition (the program will

automatically close the leak valve once target thickness is reached). After deposition was complete

the manifold was pumped down with the external pumping station. The ice was characterized by

IR spectroscopy using a FTIR spectrometer in the RAIRS configuration (see Chapter 2 for more

details).

In another set of experiments 10 ML of CO:CO2 9:1 mixtures were grown in the same fashion

on compact water ice at 6 K and then heated to various temperatures at 12 K/min at which isother-

mal experiments were performed. CO:CO2 9:1 mixtures were made inside a 500 ml canister that is

connected to a stainless steel VCR sealed gas manifold. CO and its minority CO2 were introduced

consecutively into the manifold and canister through a specially constructed mixing manifold that

is discussed and shown in Chapter 2. The ratios were determined by measuring the pressure in

the gas manifold with a heated MKS Baratron high accuracy absolute capacitance manometer. We

determined that at least one hour was required for sufficient mixing. This mixing time was also
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found to be most effective for Simon et al. in their studies of CO2:CO mixtures [90].The proce-

dure for preparing and depositing the mixture was: 1. Pumping down the gas manifold and mixing

manifold with two separate external pumping stations until both manifolds reached a pressure of

approximately 2 mTorr; 2. Isolating the pumping stations from their respective manifolds; 3. In-

troducing ∼ 20 PSI of 99.99 percent purity research grade CO gas into the mixing manifold; 4.

Opening the mixing manifold to the gas manifold and introducing the CO gas in to the gas man-

ifold until 90 mTorr was measured; 5. Isolating the mixing manifold from the gas manifold; 6.

Pumping down the mixing manifold with the external pumping station until a pressure of 2 mTorr

was reached; 7. Isolating the pumping station from the mixing manifold; 8. Introducing ∼ 20 PSI

of laboratory grade CO2 gas in to the mixing manifold; 9. Opening the mixing manifold to the

gas manifold and introducing the CO gas in to the gas manifold until 100 mTorr was measured;

isolating the mixing manifold from the gas manifold; 10. Isolating the canister from the gas mani-

fold; 11. Pumping down both manifolds with their respective pumping stations until a pressure of

2 mTorr was reached; 12. Waiting at least one hour for the gas to thoroughly mix ; 13. Isolating the

pumping stations from their respective manifolds; 14. Opening the canister introducing the mix-

ture in to the gas manifold; 15. Opening the leak valve via a LabVIEW program and stepper motor

and beginning deposition (the program automatically closes the leak valve once target thickness

is reached). After deposition was complete the gas manifold was pumped down with the external

pumping station.

The UHV base pressure prior to deposition was ∼ 4 X 10−10 Torr, the pressure during deposi-

tion was ∼ 4 X 10−7 Torr, and the typical duration of deposition was ∼ 2 minutes.

4.3 Results and Analysis

4.3.1 Experiments of Kinetics of Pure CO

We begin by examining the CO infrared spectral features of 9 ML of pure CO deposited on 30 ML

of compact ASW at 6 K and then heated at a fast 12 K/min rate in five separate experiments to 8.0,

8.2, 8.3, 8.4, and 8.6 Kelvin. In these experiments the time evolution of key IR bands is measured

in order to obtain information about the kinetics of structural transformation and diffusion. Figure

42 shows the 8.6 K isothermal experiment and as it can be seen CO has two primary components;

a sharp peak at 2143 cm−1 fitted by a Lorentzian function and a broader peak lesser in amplitude

at 2140 cm−1 fitted by a Gaussian function. With time, the 2143 cm−1 sharpens and increases in

amplitude slightly while the 2140 cm−1 feature decreases in amplitude. You will notice a slight

overshooting of the fitting of the 2143 cm−1 peak. This is due to the limitations of the spectral
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resolution of the detector which during all experiments discussed in this chapter was set at its most

optimal value of ∆λ = 1 cm−1. You will also notice a slightly less than ideal fit of the initial t=0

seconds 2140 cm−1 peak. The band profile of amorphous CO is notoriously difficult to fit and

many methods including using multiple curves were used to get a better fit but this arrangement of

just a single Lorentzian and single Gaussian gave us the best and most clearly interpreted fit of the

data. Furthermore, notice that once the spectral features begin to evolve with time, the Gaussian

fit quickly improves and fits the data quite well. In the discussion in chapter 3, the reasoning as to

the use of Lorentzian and Gaussian functions to fit IR spectral features is that Gaussian functions

are indicative of disordered solid states. In these states ices experience a more diverse environment

with more diverse vibrational energy states and thus a softer and broader spectral peak [65]. Thus,

it is likely that this initial slightly ill-fitting of the 2140 cm−1 peak which in time is quickly rectified

is a subtle indication as to the decrease in diversity of energy states and thus a transition from a

disordered to a more ordered phase which for the remainder of this thesis will be be referred to

as a polycrystalline phase. We use the term polycrystalline and not simply crystalline because the

Gaussian feature does not completely vanish and is indicative of a remaining degree of disorder

[88].

A stronger and more obvious indicator of a transition from disordered to polycrystalline phase

is the time evolution of the band area of the 2143 cm−1 Lorentzian fitted peak and the 2140 cm−1

Gaussian fitted peak (also pictured in figure 42). With time the 2143 cm−1 peak increases as the

2140 cm−1 peak correspondingly decreases. We fitted the 2140 cm−1 band area vs. time curves

for all the isothermal experiments using the following exponential decay equation.

Area = a exp(−k(t− to)n)+b (4.1)

Where Area is the band area, t is the time in seconds, to is an experimental offset to account for

varying start times for each individual isothermal experiment, k is the decay constant in units 1
sn

and the fit parameter of most interest, and a + b is the band area at t = to. The value of n to which

the time parameter is raised is determined from the linearization of the Johnson-Mehl-Avrami-

Kolmogorov (JMAK) equation which describes how solids transition from one phase to another

under isothermal conditions [93]:

Y = 1− exp(−ktn) (4.2)

Where Y is the fraction of ice that has transformed and is referred to as the degree of crys-

tallinity (DOC) and n is the Avrami exponent. For now we assume an n value of 0.8 but in the next

section this parameter is explicitly calculated and discussed in further detail. Figure 43 compares
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the 8.6 K isothermal exponential decay fitting of the Gaussian 2140 cm−1 peak band area vs time

with a n value of 1.0 to that of 0.8. One can see from both visual inspection as well as from the

residuals (also shown in figure 43) that 0.8 produces a much better fit.

With the decay rate constant k calculated for all isothermal experiments we can then use the

Arrhenius equation which describes how reaction rates depend on isothermal temperatures:

k = ν exp(−E
T
) (4.3)

where ν is the pre-exponential factor and is in units 1
s0.8 , E is the activation energy of the

transformation in units of Kelvin, and T is the isothermal temperature. We write equation [4.3] in

linear form by taking the natural log of both sides giving:

ln(k) =−E
1
T
+ ln(ν) (4.4)

ln(k) vs. T is plotted, fitted with equation 4.4, and shown in figure 44 giving an activation

energy of E = 222 ± 17 K and ν = 2 x 109 1
s0.8 .

4.3.2 Experiments of Kinetics of Carbon Monoxide:Carbon Dioxide 9:1 Mixture

Next we examine the infrared spectral features of 10 ML of CO:CO2 9:1 mixture deposited on 30

ML of compact ASW at 6K and then heated at 12 K/min to 7.9, 8, 8.1, 8.2, 8.3, 8.4, 8.5, 8.6 K for

nine separate isothermal experiments. Figure 45 shows the CO2 ν3 band at selected times during

the 8.6 K isothermal experiment. Also shown is the band area vs time for the entire isotherm for the

initial single broad peak at 2344.9 cm−1 that is fitted with a Gaussian function and the blue-shifted

narrower peak that emerges with time at 2346.7 cm−1 that is fitted with a Lorentzian function.

The experimental role that the CO layer plays is a proxy of the CO rich layer in dense ISM

clouds (with trace minority species of H, CO, HCO, and CO2 [5]) . As mentioned in the Introduc-

tion of this chapter, it is well known that the phase transition of the CO-poor layer, alternatively

understood as the water-rich layer, from amorphous to crystalline triggers the diffusion of minor-

ity species resulting in segregation and clustering [47]. With this in mind, we attribute the initial

Gaussian peak at 2344.9 cm−1 to isolated CO2 molecules and the emergence of the Lorentzian

peak at 2346.7 cm−1 to clusters of CO2 molecules [61]. It is important to note that the CO2 struc-

tural change within the CO ice matrix occurs simultaneously with the sharpening and increased

intensity of the CO peak at 2140 cm−1. This behavior is explicitly shown and discussed in further

detail in the next section in which we explore the slow heat-up of CO-rich ices.

Now we turn our attention to the calculation of n as given by the JMAK equation (eq [4.2].

First we linearize equation[4.2] giving:



90

ln(− ln(1−Y (t))) = ln(k)+n ln(t) (4.5)

Recall Y is the degree of crystallinity (DOC) and is the fraction of the solid that has transformed

to a more ordered state. With this principle in mind we define it experimentally as the ratio between

the band area underneath the Lorentzian peak at 2346.7 cm−1 to the sum of the area under this peak

and the Gaussian peak at 2344.9 cm−1. This is plotted in Figure 46. An n value of approximately

0.8 is obtained. It is worth noting that in the conventional theory of crystallization, the n value for

a three dimensional solid is usually between 3 and 4. However, in a geometrically confined solid

lower values are possible. In fact, crystallization studies of ASW reveal that the Avrami exponent

is thickness dependent and decreases from 4 to about 1 when the thickness of ASW decreases

from 18 to about 5 ML [94]. Another study found deposition temperature dependence and that the

Avrami exponent for 100 nm of ASW decreases from 2.17 to 1.0 when the ice growth temperature

drops from 90 K to 14 K [95]. Because the thickness of the CO ices in our experiments 9 ML and

10ML are much smaller and deposited at an even lower temperature 6 K, n = 0.8 is reasonable.

With our n value now confirmed and explicitly calculated we can move on to the exponential

fitting of the band area vs time using equation [4.1] and following the same analytical treatment

from last section we calculate the activation energy of the transformation. Figure 47 shows the

fitted exponential decay of the Gaussian peak at 2344.9 cm−1 for all isothermal experiments. In

Figure 48 ln(k) vs. T for all isothermal experiments is plotted, fitted with the linearized Arrhenius

equation 4.4, and shown in Figure 48, giving an activation energy of E = 235 ± 26 K and ν = 8 x

109 1
s0.8 .

Taking into account the two measured values of E for the pure CO 2140 cm−1 band and the

CO:CO2 9:1 mixture 2345 cm−1 band and referring to table 5 in which they are summarized

together, we see the activation energy measurements are in agreeance with one another. This is an

important conclusion as it is evidence that the presence of CO2 does not alter the activation energy

of the transformation, thus justifying the use of CO2 as a probe and showing that the CO ice matrix

is not affected by the presence of minority species. Averaging the measured ν values together we

obtain 5 X 109 1
s0.8 . This ν value will be used in the next section for building a predictive model.

4.3.3 Slow Heat-up Experiments

We now turn our attention to experiments in which the temperature of the CO-rich ice was not held

constant but slowly heated at a ramp rate of 0.2 K/min. We will be examining these slow heat-

up experiments for the CO-ice thicknesses of 2, 5, 7, 9 and 11 ML. The primary motivation for

doing so is to investigate how the crystallization temperature depends on the thickness of the pure
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CO-rich ice layer. With this accomplished, we will be able to make a predictive model that can be

applied to an astrophysical parameter space. Before addressing this, however, we must consider

the secondary motivation for the slow heat-up experiments: the confirmation that in the CO:CO2

9:1 mixtures the structure change for both species occurs simultaneously as was alluded to in the

last section. Figure 49 is a two-dimensional density plot that shows the slow heat-up of 10 ML of

CO:CO2 9:1 mixture from 6 K to 13 K at 0.2 K/min and includes both the CO vibrational band

at 2143 cm−1 and the CO2 ν3 band at 2345 cm−1. The morphological change occurs between 8

and 9 K and both bands intensify and blue-shift simultaneously at a crystallization temperature

of approximately 8.6 K. This results provides us with the impactful conclusion that the structure

change of CO facilitates the diffusion of CO2 molecules within the CO ice matrix.

Moving on to our primary motivation we refer to Figure 50 which is a two-dimensional density

plot for the different CO ice thicknesses during the slow heat-up experiments. It is clear that the

crystallization temperature increases with reduced thickness. It is likely that this relationship is

a consequence of a more confined geometry with increasing thickness. The fact that the crystal-

lization kinetics associated with CO-rich ice reveal themselves in a strong and meaningful manner

only at both low temperature and low thickness are contributing factors to the subtlety and elu-

siveness that makes this particular phenomenon so challenging to study. It is worth noting that the

thicknesses studied and presented in Figure 50 are comparable to thicknesses estimated to be in

the ISM.

We begin building our predictive model by extracting from Figure 50 the crystallization tem-

peratures and corresponding ice thicknesses, plotting those data points and fitting them with an

exponential curve as is shown in Figure 51. This gives the dependence of crystallization tempera-

ture on ice thickness and gives the empirical equation:

Tcrys = 16.5 exp(−0.2 d)+6.0 (4.6)

We now move away from empiricism for the moment and build a simulation that will give

us crystallization temperature as a function of activation energy which in turn when set equal

to equation [4.6] will yield an activation energy and ice thickness dependence. The temperature

during the slow heat up experiments can be simply related to time by:

T (t) = To +β t (4.7)

Where To is the initial temperature (6 K) and β is the heating ramp rate (0.2 K/min). Solving

equation [4.7] for t gives:
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t =
T –To

β
(4.8)

Next, we recall the JMAK equation [4.2] and differentiate it yielding:

dY
dT

=
dY
dt

dt
dT

=
1
β

k n tn−1 exp(−ktn) (4.9)

We substitute k and t in equation [4.9] with the Arrhenius equation [4.3] and equation [4.8]

respectfully yielding:

dY =
1
β

ν exp
(
−E

T

)
n
(

T −To

β

)n−1

exp
[
−ν exp

(
E
T

)(
T −To

β

)n]
dT (4.10)

We assume the previously discussed values: β = 0.2 K/min, n=0.8, ν=5 x 109 1
s0.8 . We also

assume the fixed E values of 200, 250, 300, 350, 400, 450, 500, 550 K and numerically integrate

for each of these E values with respect to temperature between the limits of 6 and 22 K. This

produces the degree of crystallinity (DOC) vs. temperature curves shown in Figure 52.

Next, using these simulated curves we define the crystallization temperature (T crys) for each

individual curve as the temperature at which the DOC reaches half of its maximum value. We plot

the energy value (E) associated with that curve versus T crys and fit it with a linear equation as

shown in Figure 53. The line of best fit is given by:

Tcrys = 0.03E +0.62 (4.11)

We set equation [4.11] equal to the empirical equation [4.6] and we obtain the thickness de-

pendence of the activation energy:

E(d) = 500 exp(−0.15d)+126 (4.12)

We are now in the exciting position to finish building our predictive model. We will need the

JMAK equation [4.2], the Arrhenius equation [4.3], and thickness dependence of the the activation

energy [4.12]. We assume in the JMAK equation [4.2] a DOC of Y = 0.5 as this is our definition for

what constitutes a sufficiently crystallized ice and thus consequentially redefines t in equation 4.2

as the time required for the ice to crystallize (tcrys). We also substitute for k in the JMAK equation

[4.2] the Arrhenius equation [4.3] (just as we did for the numerical integration of [4.10]) yielding

the revised JMAK equation:

Y = 0.5 = 1–exp(−ν exp(
E
T
)tn

crys) (4.13)
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We solve equation [4.13] for tcrys and substitute for E with equation [4.12] yielding:

tcrys(d,T ) = [
ln(2)

ν
exp(

500exp(−0.15d)+126
T

)]
1
n (4.14)

Figure 54 shows both the logarithmic three dimensional and two dimensional density plotting

of equation [4.14]. We consider parameters of astrophysical relevance that are representative of

dense interstellar cloud conditions and plotting a time range of 10−10 to 1010 years, an ice thickness

range of 0 to 10 ML, and the temperature of the ice to be 10 to 15 K. A particularly important

distinction is the temporal range as the laboratory time scale over which the temperature is raised

and the CO-rich ice crystallizes is simply dwarfed by that of the ISM (hours versus thousands of

years) [5].

The best way in which to view the two dimensional plot in Figure 54 and draw meaningful con-

clusions is to focus our attention on the 105 tcrys curve as this is the typical prestellar core lifetime.

With this key point of reference it becomes clear that with the exception of the coldest and thinnest

CO-rich ice (less than 2 ML and approximately 10 K) the time required for all other crystallization

to occur is within the lifetime of the prestellar core. This leads to the larger prediction that accord-

ing to this model by the time cloud collapse occurs and a protoplanetary system begins to form

most of the CO-rich ice in the ISM is in the polycrystalline phase and the diffusion of minority

species in the CO-rich ice has been precipitated by this crystallization facilitating COM formation.

4.4 Summary

The structure of CO ice is important for the chemistry on dust grains. However, it has largely

been overlooked in previous astronomical/astrochemical studies, including observations, computer

modeling, and laboratory simulations. Future endeavors should combine efforts from all of the

three aspects. In observations, comparing observed spectra with the laboratory spectra of CO of

different morphologies would make it possible to confirm the structure of CO ice on dust grains,

as it was done for water ice [96]. In astrochemical models of the interstellar medium, it is crucial

to take into account the phase transition of CO ice as a mechanism for solid-state reactions in

addition to the conventional mechanism of thermal diffusion. This is especially important for well-

shielded clouds where the dust grain temperature is too low for thermal diffusion to be efficient.

Computational chemistry would also lend help in systematically studying how the crystallization

depends on the substrate material, temperature, thickness, and composition of the ice.

In the laboratory, at least four types of experiments would be highly valuable. Firstly, infrared

spectra of CO ice of different morphologies, with and without segregated minority species, need
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to be measured. The spectra of the minority species are likely to be affected by the morphology of

CO ice and may provide a powerful tool to probe the physical environment of the ice mantle and

even provide an insight into the formation mechanism of molecules. Secondly, more experimental

studies are needed to further constrain the crystallization kinetics of pure CO ice and CO ice with

minority species. Thirdly, experiments in which CO ice with minority species are hydrogenated,

nitrogenated, or oxygenated would be advantageous. The in-vacuum helical coaxial resonator

presented in chapter two could prove particularly useful in the production of atomic nitrogen. Fe-

doseev et al. [97] experimentally investigated the formation routes of NH3 and HNCO through

non-energetic surface reactions in interstellar ice analogues at astrophysically relevant tempera-

tures. They co-deposited different ratios of H + N + CO at 13 K monitoring the ice with a RAIRS

setup and then performed TPD experiments to monitor via QMS desorption of formed species.

They confirmed the formation of NH3 in H:N:CO upon deposition by measuring the emergence

of two signature spectral features. They confirmed the formation of HNCO in by detecting it in

the gas phase desorbed during the TPD [97]. In our case, an experiment such as this could be

done for CO ice but at temperatures and thicknesses low enough (less than 10 K and less than

10 ML respectively) such that we could observe how the phase transition of CO ice from amor-

phous to polycrystalline affects molecular formation. This work would allow us to continue to

learn about and explore the connection between this transition and molecular formation that is in-

dicative of eventual formation of COMs or COM precursors. Furthermore, infrared spectroscopy,

which has been used in this study, should be paired with other techniques such as neutron scat-

tering, X-ray diffraction (such as in the case of Mizuno et al. [88]), and Reflection high-energy

electron diffraction (RHEED), which are widely used to characterize the structure of molecular

solids. RHEED would be particularly helpful as it has been successfully demonstrated in studies

of thin ice films[98]. They would certainly provide further insight into the structure of CO ice and

crystallization kinetics[99]. Lastly, laboratory simulations of the chemistry in the ice mantle that

take into account the thickness of the CO ice will be fruitful. In the last two decades, numerous

laboratory studies of the chemistry in CO-containing ices have probed thermally activated and ion-

izing irradiation driven reactions [100, 101, 23, 78] without considering the role of the thickness.

As is shown in Figure 49, the crystallization of CO ice strongly depends on its thickness. Experi-

ments that utilize a thicker CO ice, as in most existing laboratory studies, likely overestimated the

yield of complex organic molecules. Further laboratory studies will help to better constrain the

formation of COMs in interstellar clouds.

Findings from this study:
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• 9 ML of pure CO ice transforms from amorphous to polycrystalline at isothermal tempera-

tures greater than∼ 7.5 K. The 2143 cm−1 Lorentzian spectral peak of pure CO ice sharpens

and increases in band area with time while the Gaussian peak at 2140 cm−1 correspondingly

broadens and decreases in band area.

• The activation energy of the transformation from amorphous to polycrystalline of 9 ML of

pure CO ice is measured to be: E = 222 ± 17 K.

• 10 ML of 9:1 CO:CO2 ice transforms from amorphous to polycrystalline at isothermal tem-

peratures approximately greater than ∼ 7.5 K. This transformation facilitates the mobiliza-

tion and clustering of CO2 molecules in the CO ice matrix. There is a sharpening of the

2143 cm−1 CO Lorentzian spectral peak and increase in band area with time while the CO

Gaussian peak at 2140 cm−1 correspondingly broadens and decreases in band area; identical

to the first conclusion of this itemized list. Simultaneously, the CO2 Gaussian peak at 2344.9

cm−1 decreases in band area as correspondingly a CO2 Lorentzian peak emerges at 2346.7

cm−1.

• 9 ML of pure CO ice and 10 ML of 9:1 CO:CO2 ice transforms from amorphous to crystalline

at ∼ 8.6 K. This is observed in slow heat up experiments of 9 ML of pure CO and 10 ML of

CO:CO2 ice.

• The activation energy of the transformation from amorphous to polycrystalline of 10 ML of

9:1 CO:CO2 ice is measured to be: E = 222 ± 17 K; in agreeance with that of pure CO ice

(see Figures 44 and 48 and Table 5).

• CO ices with thicknesses and surface temperatures greater than ∼ 2 ML and ∼ 10 K respec-

tively require a crystallization time that is within the average prestellar core lifetime of ∼ 10

Myrs.
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Figure 42: 8.6 K Isothermal experiment for 9 ML of pure CO deposited at 6 K on 30 ML of

compact ASW. Top Panel: Fitted IR spectra at selected times. Bottom Panel: The band areas vs

time for the entire isothermal experiment.

Table 5: Activation Energy Measurements

Isothermal Experiment Wave Number Activation Energy Measurement

Pure CO 2140 cm−1 222 +/- 17 K

CO:CO2 mixture 2345 cm−1 235 +/- 26 K
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Figure 43: a) Exponential fitting of 2140 cm−1 Gaussian component of pure CO during the 8.6 K

isotherm using an n value of 1.0 b) Exact same as a) but with the exception that an n value of 0.8

is used instead.
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Figure 44: Arrhenius type plot for isothermal experiments of 9 ML of pure CO deposited at 6 K

on 30 ML of compact ASW
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Figure 45: 8.6 K Isothermal experiment for 10 ML of 9:1 CO:CO2 deposited at 6 K on 30 ML of

compact ASW. Top Panel: Fitted IR spectra CO2 spectral feature at selected times. Bottom Panel:

The band areas vs time for the entire isothermal experiment.
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Figure 46: ln(−ln(1−Y )) versus ln(t), where Y is the degree of crystallinity.
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Figure 47: Area the CO2 2346.7 cm−1 band during isotherm experiments at the temperature indi-

cated in the inset. The fitting using Area = aexp(−k(t− t0)0.8)+b is shown in black dashed lines.
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Figure 48: Arrhenius type plot for isothermal experiments of 10 ML of CO:CO2 9:1 mixture

deposited at 6 K on 30 ML of compact ASW
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Figure 49: Two dimensional density plot for slow heat up of 10 ML of 9:1 CO:CO2. On the left is

density profile for CO2 and on the right is the density profile for CO. The ices are deposited on top

of np-ASW surface at 6 K and then warmed up at 0.2 K/minute.
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Figure 50: 2D plot of the RAIRS spectra measured during warm-up of CO ice of different thick-

ness. The CO ices are deposited on top of np-ASW surface at 6 K and then warmed up at 0.2

K/minute. The ice thickness is marked on top of each column. The intensity is normalized to the

maximum intensity reached in the warm-up.
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Figure 51: The crystallization temperature of CO ice versus the thickness (blue circles) and the

fitting with an empirical function (orange line). The CO ices were grown on np-ASW at 6 K and

then warmed up at a ramp rate of 0.2 K/minute.



106

Figure 52: Simulated degree of crystallinity versus temperature using Avrami equation and assum-

ing different activation energies for crystallization. The heating ramp rate is 0.2 K/minute.
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Tcrys = 0.03*E + 0.62

Figure 53: Crystallization temperature versus activation energy extracted from Fig 52. A linear

fitting is shown with the orange line.
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Figure 54: Crystallization time (tcrys) as a function of CO ice thickness and temperature. The

crystallization time is defined here as the time for the degree of crystallinity to reach half maximum.

The time is represented in the logarithmic scale as lg(tcrys/year). Top: three dimensional plot

Bottom: same as top but plotted two-dimensionally.
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Chapter 5

Conclusions

5.1 In-Vacuum Helical Coaxial Resonator (Chapter 2, Section 2.6)

In this section I showed the detailed mathematical modelling, design and implementation of an in-

vacuum helical coaxial resonator; built for the dissociation of gaseous molecules and ultimately the

production of atomic beams. The primary motivation was to explore the potential that in-vacuum

atomic beam sources have with regard to the investigation of COM formation via radical-induced

chemistry of interstellar ice analogues. A strong competing motivation was to make a move away

from empiricism and develop a more theoretical understanding of the turns ratio parameter and its

mathematical relationship to efficient dissociation of gas species; particular interest being taken in

the dissociation of N2 and O2. Both the plasma impedance and the turns ratio were calculated as

a function of electron temperature and electron elastic collisional cross section. We saw that the

plasma impedance and required turn ratio in the region of interest for O2 varied very slightly rela-

tive to that of N2 giving novel theoretical insight in to the challenges associated with the production

of atomic nitrogen beams. I was successful in dissociating N2 but was unable to produce an atomic

beam. I was successful in producing an oxygen atomic beam but of relatively low dissociation (∼
10 %). These shortcomings were useful, however, as they provided a clear understanding of how

this important laboratory tool could be improved for future work as was discussed in detail.

5.2 The Effective Surface Area of Amorphous Solid Water Measured by the
Infrared Absorption of Carbon Monoxide (Chapter 3)

In this study we sought to characterize the structure of p-ASW with regard to temperature depen-

dence, surface area, the ability to trap molecules, accessibility to adsorption of volatiles from the
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vacuum-ice interface, and the presence of minority species. We also sought to visualize p-ASW

and its associated phenomena through the use of modeling. The primary motivation for doing so

was the exciting promise of efficient catalytic processes that p-ASW may have to offer with regard

to the production of COMs in the ISM. In tandem with this was the goal of making a meaningful

contribution to the long standing issue of how best to study dOH bonds in order to gain a deeper

insights in to the dynamics of p-ASW.

5.3 Phase Transition of Interstellar CO Ice (Chapter 4)

In this study we sought to characterize the morphological transformation of CO-rich ice from

amorphous to polycrystalline. It is worth noting that this transformation has never been reported or

studied before and constitutes a discovery. We performed isothermal experiments for 9 ML of pure

CO and 10 ML of a 9:1 CO:CO2 mixture. The latter was done so as to investigate the effect had

on astrophysically relevant CO ice minority species; a potential mechanism of zeroth generation

COM formation [5]. To confirm the independence of the CO ice morphological transition from the

presence of CO2 in the ice matrix we performed slow heat up experiments of pure CO and a 9:1

CO:CO2 mixture. We also performed slow heat up experiments of various thicknesses of pure CO

ice so as to discern an ice thickness dependence on the temperature at which this transition occurs.

This dependence allowed us to build an astrophysically relevant predictive model for the duration

of time required for this transition to occur for ices of different thicknesses and temperatures in

dense molecular clouds in the ISM.
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