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Abstract 

Process planning and scheduling (PPS) is an essential and practical topic but a very intractable 

problem in manufacturing systems. Many research studies use iterative methods to solve such 

problems; however, they cannot achieve satisfactory results in both quality and computational 

speed. Other studies formulate scheduling problems as a graph coloring problem (GCP) or its 

extensions, but these formulations are limited to certain types of scheduling problems. In this 

dissertation, we propose a novel approach to formulate a general type of the PPS problem with 

resource allocation and process planning integrated towards a typical objective, minimizing the 

makespan. The PPS problem is formulated into an undirected weighted conflicting graph, where 

nodes represent operations and their resources; edges represent constraints, and weight factors 

are guidelines for the node selection at each time slot. Then, the Maximum Weighted 

Independent Set (MWIS) problem, which considers a graph with weights assigned to nodes and 

seeks to discover the “heaviest” independent set, that is, a set of nodes with maximum total 

weight so that no two nodes in the set are connected by an edge, can be solved to find the best set 

of operations with their desired resources for each discrete time slot.  

This proposed approach solves the PPS problem directly (a direct method in computational 

mathematics context). We establish that the proposed approach always returns a feasible 

optimum or near-optimum solution to the PPS problem.  

The performance of the proposed approach for the PPS problem depends on the accuracy and 

computational speed of solving the MWIS problem. We propose a divide-and-conquer algorithm 

structure with relatively low complexity for solving the MWIS problem. An exact MWIS 

algorithm and an All Maximal Independent Set Listing (AMISL) algorithm are developed based 

on this algorithm structure. The proposed algorithm structure can also be used to compose the 

exact MWIS algorithm with existing approximation MWIS algorithms. This is an effective way 

to improve the accuracy of existing approximation MWIS algorithms or improve the 

computational speed of the exact MWIS algorithm.  

All eight algorithms for the MWIS problem, the exact MWIS algorithm, the AMISL algorithm, 

two approximation algorithms from the literature, and four composed algorithms, are tested on 

the test instances based on the PPS application environment. The different configurations of the 

proposed approach for solving the PPS problem are tested on a real-world PPS example and 

further designated test instances to evaluate the scalability, accuracy, and robustness. 
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Chapter 1. Introduction 

In this chapter, an overview of the research performed in this dissertation is presented. The 

chapter begins with an introduction of main topics of this research, (1) the Process Planning and 

Scheduling (PPS) problem, and (2) the Maximum Weighted Independent Set (MWIS) problem. 

The research objectives and contributions are then addressed. Lastly, this chapter is wrapped up 

by outlining the structure of the overall dissertation. 

1.1 Research Background 

Process Planning and Scheduling (PPS) is to process a set of prismatic parts into completed 

products effectively and economically in a manufacturing system. A prismatic part to be 

produced is generally described by features. For each feature, one or more corresponding 

operations are determined according to its feature geometry and available machining resources. 

Each operation requires a selection of critical resources; some examples of these vital resources 

include machines, tools, fixtures, or specially qualified technicians. The resource constraints are 

that one critical resource cannot be occupied by more than one operation at the same time. There 

are precedence relationship constraints among operations, according to the geometrical and 

technological considerations. Process planning in PPS is the determination of an optimum 

process plan, i.e., operations and their sequences, within the precedence relationship constraints 

and resource constraints. The scheduling is the allocation of the resources in the machine shop 

over time to manufacture the various parts (Zhang et al., 2003). One of the common objectives is 

to find the feasible schedule with the earliest finishing time of all parts, or formally, minimizing 

the makespan. PPS as one of the main functions of Computer-Aided Process Planning (CAPP) 

system, it becomes more critical for the effective allocation and utilization of resources in 
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modern flexible manufacturing systems. However, seeking an optimum integrated solution 

rapidly and effectively from all of the permutations, combinations of all of the tasks and 

resources according to specified criteria is challenging for the decision-makers (Zhang et al., 

2014). Traditionally, such a problem is usually solved in a trial and error fashion using iterations, 

for instance, generic algorithms (Alander, 2014; Milosevic et al., 2016) and metaheuristics 

(Belfares et al., 2007; Bloechliger & Zufferey, 2013; Thevenin et al., 2018), or partially solved 

as an operation sequencing problem with individual part (Salehi & Bahreininejad, 2011; Su et 

al., 2018). However, such methodologies do not guarantee that an optimal solution is ever found, 

and they are usually slow and highly uncertain. In this research, we focus on a general type of the 

PPS problem with integrated resource allocation and process planning towards a typical 

objective, minimizing the makespan. 

Without being restricted to the widely used methodologies, we would like to attack the PPS 

problem based on its nature. The nature of the PPS problem is to select a set of non-conflicting 

tasks that can be processed with available resources in parallel for each discrete time period. If 

tasks are represented as nodes, and the incompatibility between two tasks can be represented by 

an edge, then, the solution space of the PPS problem can be abstracted as the combinations of 

nodes in this conflicting graph. If a weight factor of each node can be introduced as the guideline 

for the node selection process, it is exactly solving the Maximum Weighted Independent Set 

(MWIS) problem. 

The MWIS problem is one of the most important optimization problems in graph theory (Lovasz, 

1994; Pardalos & Xue, 1994). It naturally arises in many applications, mainly in a scheduling 

environment. It considers a graph with weights assigned to nodes and seeks to discover the 

“heaviest” independent set, that is, a set of nodes with the maximum total weight so that no two 
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nodes in the set are connected by an edge. The exact solution to the MWIS problem on general 

graphs is known to be NP-hard (Köhler & Mouatadid, 2016). Therefore, in order to utilize the 

concept of the MWIS in our PPS application, low-complexity algorithms for solving the MWIS 

problem that yields “good-quality” feasible solutions are desired. 

1.2 Research Objectives 

To overcome the drawbacks of the traditional methodologies for solving the PPS problem, the 

objective of this research is to develop a new formulation of the PPS problem and solve it 

using the concept of the MWIS problem. First, this new formulation shall integrate the two 

parts of the PPS problem, process planning and scheduling. Second, a direct mothed, which is 

solving the problem by a finite sequence of operations, is preferred for solving the PPS problem, 

and at the same time, ensure a reasonable accuracy. Third, the new formulation of the PPS 

problem shall be based on its nature, which is to select a set of non-conflicting tasks that can be 

processed with the available resources in parallel for each time period. Fourth, since the MWIS 

problem is a critical subproblem for solving the PPS problem by its nature, the “good-

performance” MWIS algorithms are required. Lastly, the new approach for the PPS problem 

shall be tested and verified in terms of performance and feasibility. 

1.3 Our Approach and Research Contributions 

In this research, we propose a novel approach to formulate the PPS problem as a conflicting 

weighted graph. In such a graph, tasks and their resources selections are represented as nodes, 

the incompatibility between two tasks is represented by an edge. The solution space of the PPS 
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problem is abstracted as the combinations of the nodes in such a conflicting graph. If the weight 

factor of each node is introduced to be the guideline for the node selection process, the process 

schedule with resource allocations is generated by solving the MWIS problem for each discrete 

time slot. Lastly, new MWIS algorithms are developed in order to solve the PPS problem 

efficiently. 

The contributions of our approach are in the following areas: 

Contributions on the MWIS problem: The MWIS algorithms are the determinants of the 

accuracy and computational speed in the proposed approach for the PPS problem. We propose a 

divide and conquer algorithm structure with relatively low complexity for solving the MWIS 

problem exactly. The proposed algorithm structure can also be used to improve the accuracy of 

existing low-complexity approximation MWIS algorithms. A set of “good-performance” MWIS 

algorithms are highlighted based on our PPS application. The detail of this contribution is 

presented in Chapter 3. 

Contributions on the PPS problem: Unlike the commonly used iterative methods (such as 

generic algorithms and metaheuristics) or the mixed-integer programming approach, our 

approach provides a different angle to address the PPS problem and shows advantages over other 

approaches. The new approach requires minimum iteration. And it is guaranteed to return a 

feasible solution due to the nature of solving the MWIS problem on a conflicting graph. The new 

approach can be applied in a dynamic production environment, since the schedule of each time 

slot is computed separately. With carefully defined weight factors and “good-performance” 

MWIS algorithms, the new approach has satisfactory accuracy and computational speed. The 

detail of the proposed approach for the PPS problem is presented in Chapter 4, and the detail of 

computational experiments is presented in Chapter 5. 
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1.4 Outline of This Dissertation 

The rest of this dissertation is organized as follows. 

Chapter 2 provides a comprehensive literature review on the background, methodologies, and 

applications related to this work. Two major topics are reviewed in detail: (1) the MWIS problem 

and (2) the PPS problem. The findings, observations, and the proposed solutions based on the 

literature survey has been further analyzed to uncover the potential opportunities for the 

proposed new methodologies. 

Chapter 3 discusses the development of new algorithms for the MWIS problem. These 

algorithms are the core functions for solving the resource-constrained PPS problem in later 

chapters. It starts with a quick introduction and the necessary graph theory background and 

definitions. Then, the proposed algorithms are explained in detail, and a detailed algorithm 

walkthrough is provided in Appendix I. Section 3.5 discusses merging the proposed MWIS 

algorithm with approximation MWIS algorithms to reduce the complexity. Then, Section 3.6 

presents some illustrative numerical results to assess the performance of the algorithms in the 

context of the PPS application, and a set of “good-performance” algorithms are listed. Lastly, 

section 3.7 concludes the chapter. 

Chapter 4 proposes a novel approach to formulate and solve the resource-constrained PPS 

problem via a conflicting graph. It starts with the introduction to the PPS problem. Then, the 

mathematical formulation of the PPS problem is presented. Section 4.3 discusses how the 

conflicting graph is generated, and Section 4.4 explains how to assign weight factors to the nodes 

in the conflicting graph. Then, section 4.5 takes an example from the literature to illustrate the 

proposed methodologies thoroughly. Lastly, section 4.6 concludes the chapter. 

Chapter 5 presents the implementation and illustrative computational experiments of the integer 
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programming model described in Chapter 4 as the baseline for further testing. Then, we verify 

the feasibility of the proposed approach for the PPS problem on a real-world example from 

literature. And further test results are reported and analyzed in terms of scalability, accuracy, and 

robustness. A set of satisfactory heuristics configurations are found based on the tests. 

Chapter 6 concludes the dissertation and discusses the contributions of this research. Then, 

possible future directions for improving and extending this work are discussed. 
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Chapter 2. Literature Review 

In this chapter, a comprehensive literature review on the background, methodologies, and 

applications related to this work is carried out. Two major topics are reviewed in detail: (1) the 

Maximum Weighted Independent Set (MWIS) problem and (2) the Process Planning and 

Scheduling (PPS) problem. As the conclusion of the review, the summary of findings, 

observations, and the proposed solutions based on the literature survey are presented at last. 

2.1 Maximum Weighted Independent Set (MWIS) Problem 

As one of the most challenging problems in graph theory, the problem of finding the Maximum 

Weighted Independent Set (MWIS) can be stated as follows: for a graph where each node is 

assigned a weight, select a set of nodes, no two of which are adjacent, with the maximum 

possible total weight (Huang, 2013). We name such a graph as a conflicting weighted graph. The 

statement of the MWIS problem looks relatively simple; however, solving the MWIS problem on 

general graphs is computationally difficult. It has been shown to be an NP-hard problem (Köhler 

& Mouatadid, 2016), so it is unlikely to be solved in polynomial time.  

One brute-force algorithm for exactly solving the MWIS problem amounts to checking all 

Maximal Independent Sets (MIS) and picking one with the maximum total weight. It follows 

that the MWIS problem is converted to the All Maximal Independent Sets (AMIS) listing 

(AMISL) problem (or maximal cliques listing problem in the complement graph). A pioneering 

work (Moon & Moser, 1965) has shown that any n-vertex graph has at most 3
𝑛

3  maximum 

cliques. Many algorithms are now known for the clique (or independent set) listing problem 

(Bron & Kerbosch, 1973; Loukakis & Tsouros, 1981; Johnson et al., 1988; Makino & Uno, 2004; 

Eppstein, 2005; Tomita et al., 2006; Cazals & Karande, 2008). Among those algorithms, a 
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simple recursive backtracking algorithm (Bron & Kerbosch, 1973), Bron-Kerbosch algorithm 

named after its inventors, has been reported as the most successful clique listing algorithm in 

practice (Eppstein et al., 2010).  

Other than the costly non-polynomial algorithm for the optimum solution on general graphs,  

people naturally go to three types of solutions: (i) solutions for special cases, it is known to be 

solvable in polynomial time in many cases including perfect graphs (Grotschel et al., 1993), 

interval graphs (Grotschel et al., 1993), disk graphs (Matsui, 1998), claw-free graphs (Minty, 

1980), fork-free graphs (Alekseev, 2004), trees (Chen et al., 1988), sparse random graphs (Karp 

& Sipser, 1981; Czygrinow & Hanckowiak, 2006), circle graphs (Valiente, 2003), and growth-

bounded graphs (Gfeller & Vicari, 2007). The MWIS problem has been found to be solvable in 

strongly polynomial time only on perfect graphs and their complements, on t-perfect graphs, and 

on claw-free graphs (Schrijver, 2003). (ii) approximation algorithms, there has been extensive 

work on approximating the MWIS (Halldorsson, 2004). The approximation can be achieved by 

using a greedy strategy (Furer & Kasiviswanathan, 2007). Sakai et al. (Sakai et al., 2003) 

investigated the performance guarantee of greedy algorithms to solve the MWIS problem. And 

(iii) there has been extensive work in the literature proposing a variety of heuristics (Kako et al., 

2005). These specialized or heuristics algorithms have been developed for computing the exact 

MWIS (Fomin et al., 2006; Babel, 1994; Ostergard, 2002; Tassiulas & Ephremides, 1992) for 

limited types of graphs or graphs in general with certain trade-offs. 

The Graph Coloring Problem (GCP) consists of assigning a single color (integer) to each vertex 

of an undirected graph, such that no two adjacent vertices share the same color, intending to 

minimize the number of colors (Tucker, 2012). The MWIS problem is a special case of the GCP, 

when each node is associated with a weight factor with an optimization objective of finding the 
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set maximizing the total weight for each coloring terms of finding the optimum set of nodes for 

each color. The GCP, MWIS, and AMISL problems arise in many application domains, 

including resource allocation, scheduling, error-correcting coding, spatial statistics, and 

communication networks. Modeling scheduling problems as such problems are particularly 

relevant in the presence of incompatible entities to be scheduled, and multiple extensions of the 

GCP have been proposed to cope with these scheduling environments. We summarize the four 

scheduling problem formulations with GCP and its variations. Although these formulations are 

not fitting very well in the resource-constrained Process Planning and Scheduling (PPS) problem 

considered in this dissertation, but they are inspiring for us to develop our approach. 

(1) The Class/Exam Scheduling Problem  

The class scheduling problem, also named as the timetabling problem, can be stated as follows: 

schedule a set of classes in a number of time slots such that no professor or student is required at 

the same time. Constraints can be mapped onto GCP as follows. Let each class be represented by 

a node. Attach two nodes by an edge if and only if there is a reason that the classes they 

represent may not be offered at the same time. Initially, there are two such reasons for nodes to 

be linked: either they are taught by the same instructor, or they are required by the same set of 

students. Upon adding in the links, color the graph. Each color represents a time slot available on 

a given timetable, so every node with the same color is offered at the same time. Similar 

applications of this problem can be the scheduling of classes and exams in a university, the 

scheduling of flights for an airline, and the scheduling of computing tasks to be run on a 

multiprocessor machine (Dandashi & Al-Mouhamed, 2010; Miner et al., 1995). 

(2) The Interval Graph Scheduling   

An interval graph is the intersection graph of a set of intervals of a real line, that is, a graph 
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whose nodes correspond to intervals such that two nodes connected by an edge are associated 

with intersecting intervals, as shown in Figure 2-1 (Gardi, 2009). The intervals are representing 

the tasks, and the edges are indicating the incompatible tasks. The graph is then colored to find 

the mutual exclusion tasks that can be processed by the same resources. The interval graph 

scheduling and many variants of this problem have been extensively studied due to its numerous 

applications (Krarup & De Werra, 1982; Blazewicz et al., 2001; Zais & Laguna, 2016). 

 
Figure 2-1. A Sample Interval Graph (Gardi, 2009) 

(3) The Scheduling of Wireless Network 

In a wireless network, two wireless nodes that transmit at the same resource (frequency), 

interfere with each other if they are located close-by. The scheduling problem is to decide which 

nodes should transmit at the given resource so that there is no interference, and nodes with 

longer queue length are given priority. If each node is given a weight equal to the queue length, it 

is optimum to schedule the set of nodes with the highest total weight. If a conflicting weighted 

graph is made, with an edge between each pair of interfering nodes, the scheduling problem is 

exactly the MWIS problem. This type of scheduling problem is mostly found in wireless 

communication applications (Tassiulas & Ephremides, 1992; Joo et al., 2013; Du & Zhang, 

2016), but it is also applied in other types of applications (Duarte et al., 2015; Todosijevic & 

Mladenovic, 2016; Hansen et al., 2017; Gainanov et al., 2018). 
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(4) Graph Multi-coloring  

The graph multi-coloring problem is an extension of the GCP. In this case, a node coloring 

corresponds to a sequence of colors (from the smallest to the largest). A node stands for a task, 

and an edge indicates that two tasks represented by the two end nodes of the edge are 

incompatible. Each color is a time slot, and each node must be assigned with a number of colors 

as defined by the processing time of the job. The objective is to minimize the number of used 

colors. Thevenin et al. apply this problem in a flow production environment (Thevenin et al., 

2018). The graph multi-coloring problem formulation is the closest formulation comparable to 

our PPS problem. Still, it can only be applied in restricted conditions, such as each job requires 

the resources continuously and no subtasks of each job. 

2.2 Process Planning and Scheduling (PPS) Problem 

A job shop manufacturing environment is characterized by the make-to-order operation and the 

demands of small volumes with a large variety. Computer-aided process planning and scheduling 

systems have been developed to effectively support it. Computer-aided process planning (CAPP) 

is an essential interface between computer-aided design (CAD) and computer-aided 

manufacturing (CAM) in the computer integrated manufacturing (CIM) environment.  

The resource-constrained Process Planning and Scheduling (PPS) optimization problem can be 

defined as follows: Assuming there is a set of machining jobs in a machine shop, each job is 

referring to the production of a part. Each job consists of a set of machining operations (or tasks) 

to create features for the finishing part. These machining operations are processed in a sequence, 

which satisfies all the ordering constraints, and each operation requires specific combinations of 

critical resources. Some examples of these critical resources include machines, tools, fixtures, or 
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special qualified technicians. One of the common objectives is to find a feasible schedule with 

the earliest finishing time of all jobs. In other words, this goal is to create a process plan with 

resource allocations minimizing the number of time slots needed to cover all operations.  

 

Figure 2-2. Representation of the Process Plan adapted from Salehi and Bahreininejad (Salehi & 

Bahreininejad, 2011) 

Process planning and scheduling are usually complementary procedures. The former, process 

planning, can be used to plan manufacturing resources and operations for a part to ensure the 

application of good manufacturing practice and maintain the consistency of the desired 

functional specifications of the part during its production processes. Process planning activities 

include interpretation of design data, selection and sequencing of operations to manufacture the 

part, selection of machines and cutting tools, determination of cutting parameters, choice of jigs 

and fixtures, allocation of other resources required by the processes, and calculation of 

machining times and costs. To clarify process planning, parts are represented by manufacturing 

features. Figure 2-2 (Salehi & Bahreininejad, 2011) shows a part composed of 𝑚 features in 

which each feature can be manufactured by one or more machining operations (𝑛 operations in 

Part i

Feature Fi1 Feature Fim

Operation Oi1 Operation Oi2

Applicable machines

Applicable tools

Other applicable parameters

Applicable machines

Applicable tools

Other applicable parameters

Operation Oin

Applicable machines

Applicable tools

Other applicable parameters
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total for the part). Each operation can be executed by several alternative plans if different 

machines, cutting tools, or set-up plans are chosen for this operation (Case & Harun Wan, 2000; 

Maropoulos & Baker, 2000). The latter, scheduling, specifies the schedule of manufacturing 

resources on each operation of the parts according to the importance of jobs, availability of 

resources and time constraints, and in the meantime, achieves the optimization objectives (Zhang 

et al., 2003).  

PPS problems vary in complexity. However, seeking an optimum solution rapidly and effectively 

from all of the permutations, combinations of all of the tasks, manufacturing resources according 

to specified criteria is very difficult for decision-makers. Lenstra et al. (Lenstra et al., 1977) 

show that while some classical machine scheduling problems are efficiently solvable, others are 

NP-hard.  

Due to its importance, practicality, and difficulty, in the past decade, many research studies have 

addressed the PPS problem. Traditionally, such a problem is usually solved in a trial and error 

fashion adopting methods such as generic algorithms and metaheuristics (Alander, 2014; 

Milosevic et al., 2016). These approaches include simulated annealing algorithm (Zhang et al., 

2003; Tiwari et al., 2006; Li & McMahon, 2007; Chan et al., 2009), tabu search algorithm (Yan 

et al., 2003), agent-based approach (Shen et al., 2006; Wong et al., 2006), particle swarm 

optimization algorithm (Guo et al., 2006) and genetic algorithm (Zhang et al., 1997; Morad & 

Zalzala, 1999; Jia et al., 2002, 2003, 2007; Kim et al., 2003; Chan et al., 2005, 2006, 2008; 

Moon & Seo, 2005; Li et al., 2005; Zhang & Yan, 2005; Chan et al., 2006; Zhang & Gen, 2010; 

Salehi & Bahreininejad, 2011; Chaube et al., 2012; Qiao & Lv, 2012; Zhang et al., 2014). 

Researchers also solved the PPS problem partially as an operation sequencing problem with 

individual parts (Salehi & Bahreininejad, 2011; Su et al., 2018). 
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According to the discussions above, the integration and interactions of PPS are through an 

iterative and empirical fashion. The process planning system first generates a reasonable process 

plan for each part. Crucial processes in the system include determining suitable manufacturing 

resources (such as machines and tools), selecting set-up plans, and sequencing machining 

operations of the part. The scheduling system then specifies the schedule of manufacturing 

resources on each operation (task) of the parts according to the importance of operations, 

availability of resources, and time constraints. It is usually difficult to produce a satisfactory 

result in a single iteration of the execution of the two systems. For the process planning system, 

the decision of selecting machines and tools is usually made based on objectives to achieve the 

minimal manufacturing cost and ensure the good manufacturability of a part. Not all the 

generated process plans for a group of parts could be schedulable according to the time and 

resource feasibility in a job shop. To overcome this issue, it is necessary iteratively to re-invoke 

the process planning system to produce alternative plans for further trials until an acceptable 

scheduling solution is obtained. However, the above iterative process brings forth two severe 

problems in practical applications. First, it is quite tedious and time-consuming to search for a 

feasible solution to meet the requirements of process planning and scheduling simultaneously, 

and an overall optimized target is even more difficult to achieve. Meanwhile, the value of a 

process plan can be severely discounted since the assumption that all resources are available 

during the process planning stage might not be entirely valid in the scheduling stage. For 

instance, the generated process plans sometimes cause some machines to be overloaded, further, 

to create bottlenecks and restrict the capabilities of machines. Second, the PPS problem has vast 

solution spaces due to its combinatorial nature. Each time period can schedule one of the feasible 

operation sets, a feasible operation set can be any non-empty combination of feasible operations, 
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and each operation can be one instance among all the feasible combinations of the available 

resources. The iteration-based approach needs to be carried out again and again in this vast 

discrete solution space. Furthermore, the outputs of such methodologies are easily trapped at 

local optimum, and the local optimum is hard to detect due to the combinatorial nature of such a 

problem. 

Modeling a PPS problem as a GCP is particularly relevant in the presence of incompatible jobs. 

Multiple extensions of the GCP have been proposed to cope with these scheduling environments 

(Epstein et al., 2009; Fukunaga et al., 2012; Werra et al., 2005; Giaro et al., 2009; Halldórsson et 

al., 2004; Meuwly et al., 2010; Thevenin et al., 2018). As we identify in the previous section, the 

structural nature of some scheduling problems makes graph coloring an attractive formulation. 

Gamache et al. (Gamache et al., 2007) use graph coloring methods to determine a feasible 

schedule for crew scheduling problems within the airline industry. Moreover, they propose a new 

methodology to determine the existence of a feasible solution based on a graph coloring model 

and a Tabu search algorithm (Thevenin et al., 2018). However, these methodologies often 

require a specific application environment. For example, Blöchliger and Zufferey (Blöchliger & 

Zufferey, 2013), Thevenin et al. (Thevenin et al., 2018) formulate the PPS problem as a graph 

multi-coloring problem. They require that the production system uses continuous flow 

production, and each job is leading to the end product with no resource change. And still, unlike 

the particular case of the scheduling problem they are attempting, a typical PPS problem often 

requires multiple operations to be performed with different resource selections for each job 

following sequencing constraints. For those reasons, the graph multi-coloring formulations of the 

PPS problem could be limited in terms of universality.  
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2.3 Summary: Observation and Our Solutions 

An in-depth review of the MWIS problem and PPS problem has been carried out in this Chapter. 

As a consequence, firstly, a closer integration of process planning and scheduling, is required. 

More specifically, determining the operation processing order in a machine shop and allocation 

of resources for each operation needs to be considered interactively. Secondly, a direct method or 

a method with fewer iterations is desired to solve the PPS problem.  

Starting with the nature of the PPS problem, we proposed a novel approach to formulate a 

general type of the PPS problem with resource allocation and process planning integrated 

towards a typical objective, minimizing the makespan. The PPS problem is formulated into an 

undirected weighted conflicting graph. In this conflicting graph, nodes stand for operations and 

their resources; edges stand for constraints; weight factors are the guidelines for the node 

selection at each time slot. A variation of GCP, the MWIS problem, can be solved to find the 

best set of operations with their desired resources for each discrete time slot. This proposed 

approach can solve the problem directly, or it can be applied with few iterations for improving 

the quality of results.  

The performance of the proposed approach depends on the accuracy and computational speed of 

the MWIS algorithms. We develop algorithms to compute the exact solution to the MWIS 

problem, and by utilizing the structure of the exact MWIS algorithms, we can improve the 

accuracy of existing MWIS approximation algorithms. 
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Chapter 3. Maximum Weighted Independent Set (MWIS) Algorithms 

In this chapter, we propose new algorithms for solving the Maximum Weighted Independent Set 

(MWIS) problem. These algorithms are the core functions for solving the resources constrained 

Process Planning and Scheduling (PPS) problem in later chapters. Chapter 3 is organized in the 

following sections: Section 3.1 is the summary of the content of the chapter. Section 3.2 provides 

the necessary background and definitions of graph theory. Section 3.3 and Section 3.4 explain 

the proposed approach in detail, and Appendix I illustrates the proposed algorithm with a simple 

example. Section 3.5 discusses merging the proposed MWIS algorithm with approximation 

MWIS algorithms to reduce the complexity. Then, Section 3.6 presents some illustrative 

numerical results to assess the performance of the algorithms in the application context of the 

proposed approach for the PPS problem. Lastly, section 3.7 concludes the chapter. 

3.1 Introduction 

The Maximum Weighted Independent Set (MWIS) problem considers a graph with weights 

assigned to nodes and seeks to identify the “heaviest” independent set, that is, a set of nodes with 

maximal total weight so that no two nodes in the set are connected by an edge. The MWIS 

problem arises in many application domains, including resource allocation, scheduling, error-

correcting coding, spatial statistics, and communication networks. It has been shown to be 

combinatorial hard (NP-Hard) (Köhler & Mouatadid, 2016), and there has been extensive work 

in the literature proposing a variety of algorithms for solving the MWIS problem exactly or 

approximately. In this dissertation, we propose novel hybrid heuristic algorithms in a divide and 

conquer structure that yields optimum feasible solutions to the MWIS problem. We also solve 

the All Maximal Independent Sets (AMIS) listing (AMISL) problem, which can be seen as the 

subproblem of the MWIS problem in the same structure. Moreover, the proposed algorithm 

structure enables us to utilize available approximation algorithms (e.g., GWMIN and GWMIN2 
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(Sakai et al., 2003)) as subfunctions to get optimum or near optimum feasible solutions but much 

faster in computational speed. In the following chapters, we apply the proposed algorithms in the 

resources constrained Process Planning and Scheduling (PPS) problem. 

3.2 Definitions and Notations  

Let 𝐺 = (𝑉, 𝐸) be a simple undirected graph with vertex set 𝑉 = {1,… , 𝑣}, and a set of edges 𝐸. 

We denote by |𝐴| the cardinality of set 𝐴, so that the edge number of 𝐺 is |𝐸| and the node 

number of 𝐺 is |𝑉|. Let 𝑥 ∈ 𝑉, the degree (valence) of 𝑥 is the number of edges with 𝑥 as an 

endpoint. We denote the degree of 𝑥 by 𝑑𝐺(𝑥). Let 𝑁𝑒𝑖𝑔𝐺(𝑥) denote the set of neighbors of 

vertex 𝑖 and 𝑁𝑒𝑖𝑔𝐺
+(𝑥) denote {𝑥} ∪ 𝑁𝑒𝑖𝑔𝐺(𝑥). 𝑑𝐺(𝑥) = |𝑁𝑒𝑖𝑔(𝑥)| is the degree of vertex 𝑥. 

In the graph 𝐺, let 𝑆 ⊂ 𝑉 be any subset of vertices of 𝐺. Then, the induced subgraph 𝐼𝑛𝑑𝐺(𝑆) is 

the graph whose vertex set is 𝑆 and whose edge set consists of all of the edges in 𝐸 that have 

both endpoints in 𝑆 (Diestel, 2006). For a vertex 𝑘 ∈ 𝑉, let the complementary induced subgraph 

𝐶_𝐼𝑛𝑑𝐺(𝑘)  refers to the subgraph induced by all the node in 𝑉  except node 𝑘 , and the 

complementary neighbor induced subgraph 𝐶_𝑁𝑒𝑖𝑔_𝐼𝑛𝑑𝐺  (𝑘) refers to the subgraph induced by 

the non-neighbors of 𝑘, and 𝑘 is not in 𝐶_𝑁𝑒𝑖𝑔_𝐼𝑛𝑑𝐺  (𝑘).  

In the graph 𝐺, assume there is a sequence of vertices and edges 𝑥0, 𝑒1, 𝑥1, 𝑒2,…, 𝑒𝑛, 𝑥𝑛, where, 

for all 𝑖 = 1,… , 𝑛, 𝑥𝑖−1 and 𝑥𝑖 are the endpoints of 𝑒𝑖 is called a walk (𝑥0, 𝑥𝑛-walk) in G from 𝑥0 

to 𝑥𝑛. A walk in which all edges are distinct is called a trail (𝑥0, 𝑥𝑛-trail) and a walk in which all 

vertices are edges are distinct is called a path (𝑥0, 𝑥𝑛-path). The length of this walk, trail, or path 

is 𝑛. The length of the shortest walk, trail, or path joining the vertex 𝑥 to the vertex 𝑦 is called 

the distance from 𝑥 to 𝑦. 
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A connected, acyclic (no circuits) graph is called a tree. The components of an arbitrary acyclic 

graph are trees, and an acyclic graph is called a forest.  

In the graph 𝐺, a subset 𝐼 ⊆ 𝑉 is called an independent set (stable set, vertex packing) if the 

edge set of the subgraph induced by 𝐼  is empty. An independent set is maximal (maximal 

independent set) if it is not a subset of any larger-size independent set, and maximum 

(maximum independent set) if there are no larger-size independent sets in the graph. The 

independence number 𝛼(𝐺) (also called the stability number) is the cardinality of a maximum 

independent set in 𝐺. For each node 𝑖 ∈ 𝑉, there is a positive weight 𝑤𝑖 > 0. A subset of 𝑉 can 

be represented by binary variable 𝑥𝑖 , (1 ≤ 𝑖 ≤ |𝑉|), where 𝑥𝑖  is 1 if 𝑖  is in the subset and 0 

otherwise. A subset is called an independent set if no two nodes in the subset are connected by 

an edge. We are interested in finding the MWIS (Papadimitriou and Steiglitz, 1982), which can 

be expressed as an integer program: 

max           ∑𝑤𝑖𝑥𝑖
𝑖

 

𝑠. 𝑡.          𝑥𝑘 + 𝑥𝑖 ≤ 1, (𝑘, 𝑖) ∈ 𝐸 

𝑥𝑖 ∈ {0, 1},   𝑖 ∈ 𝑉 

3.3 MWIS Algorithms 

The proposed approach for the MWIS problem and AMISL problem has two phases following a 

divide and conquer structure: it starts by (a) removing nodes to get the induced subgraphs that 

are simple enough for finding the MWIS; and then by (b) iteratively adding nodes back one at a 

time, compare and merge to get the output. The first phase recursively partitions the graph into 

complementary induced subgraphs by removing nodes (and the adjunct edges) one at a time 
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based on node removal heuristics. When induced subgraphs satisfy the desired patterns, these 

induced subgraphs become simple enough to be solved for MWIS with one comparison. A 

Preliminary Set (AMISL Preliminary Sets for the AMISL case) is found based on this 

complementary induced subgraph. The second phase of the algorithm adds back the nodes (and 

the adjunct edges) removed in the reversed sequence. At each adding, a Compare Set (AMISL 

sets for the AMISL case) is found to compare with the Preliminary Set (AMISL Preliminary 

Sets for the AMISL case). For the MWIS problem, the MWIS output set is the set with larger 

total weights among the Preliminary Set and the Compare Set of the current graph in the node 

adding process. For the AMISL problem, the AMISL output sets are the union of AMISL 

Compare Sets and AMISL Preliminary Sets for the graph with the adding node. The algorithm 

stops when all nodes (and the adjunct edges) are added back to the graph. With this brief 

understanding of the proposed approach, we are going into the details in the following sections.  

3.3.1 Phase I: Dividing 

Three types of unit graph structures (shown in Figure 3-1) are defined as Connected Unit 

Substructures (CUS). The three types of CUS are: (a) an isolated node; (b) a pair of two 

connected nodes; and (c) a tree with a maximum diameter of 2 edges. Given an undirected 

weighted graph Γ  consists of 𝑛  different CUSs, 𝐶𝑈𝑆1 , 𝐶𝑈𝑆2 , …, 𝐶𝑈𝑆𝑖 , …, 𝐶𝑈𝑆𝑛 , 𝑖 ∈

{1,2, … , 𝑛}, and no edge between these CUSs. Define 𝑀𝑊𝐼S(Γ) as a set of nodes, and this set 

has the maximum total weight in Γ . We denote the 𝑀𝑊𝐼S(Γ)  as the MWIS of graph 

Γ ,  𝑀𝑊𝐼S(CUS1),  𝑀𝑊𝐼S(CUS2), …,  𝑀𝑊𝐼S(CUSi), …,  𝑀𝑊𝐼S(CUSn)  as the MWISs of the 

CUSs, respectively. The  𝐴𝑀𝐼S(Γ) is a set of all maximal independent sets in Γ. We denote the 

 𝐴𝑀𝐼S(Γ)  as the AMIS of graph Γ , 𝐴𝑀𝐼𝑆(𝐶𝑈𝑆1) , 𝐴𝑀𝐼𝑆(𝐶𝑈𝑆2) , …, 𝐴𝑀𝐼𝑆(𝐶𝑈𝑆𝑖) , …, 
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𝐴𝑀𝐼𝑆(𝐶𝑈𝑆𝑛) as the AMIS of the CUSs, respectively. We denote the maximal independent set as 

𝑀𝐼𝑆𝐶𝑈𝑆𝑖
𝑘𝑖 , which is an element in 𝐴𝑀𝐼𝑆(𝐶𝑈𝑆𝑖) = {𝑀𝐼𝑆𝐶𝑈𝑆𝑖

1 , 𝑀𝐼𝑆𝐶𝑈𝑆𝑖
2 , … ,𝑀𝐼𝑆𝐶𝑈𝑆𝑖

𝑘𝑖 , … ,𝑀𝐼𝑆𝐶𝑈𝑆𝑖
𝑚𝑖 }, 

where 𝑘𝑖 ∈ {1, 2, … ,𝑚𝑖}. 

 

    

No edges between 

these nodes

Isolated 

Node
A pair of two 

connected nodes 

The diameter 

is <= 2 edges

 

Figure 3-1. Three Types of Connected Unit Substructures (CUSs) 

Theorem 3-1: For Base Cases in Recurrence 

Given a graph Γ that consists of 𝑛 different CUSs,  𝐶𝑈𝑆1 , 𝐶𝑈𝑆2, …, 𝐶𝑈𝑆𝑖 , …, 𝐶𝑈𝑆𝑛 , 𝑖 ∈
{1,2, … , 𝑛}, and no edge between these CUSs: 

 

(i) For the MWIS problem, the  𝑀𝑊𝐼S(CUSi) can be found by one comparison in a 

𝐶𝑈𝑆𝑖. The CUS with an isolated node can be considered as compared with an 

empty node set. For the Γ that consists of multiple CUSs, the 𝑀𝑊𝐼S(Γ) is the 

union of the MWIS of each CUS in Γ, or formally,  

𝑀𝑊𝐼𝑆(𝛤) =  𝑀𝑊𝐼𝑆(𝐶𝑈𝑆1) ∪  𝑀𝑊𝐼𝑆(𝐶𝑈𝑆2) ∪ …∪  𝑀𝑊𝐼𝑆(𝐶𝑈𝑆𝑛) 
(ii) For the AMISL problem, the 𝐴𝑀𝐼𝑆(𝐶𝑈𝑆𝑖) can be found by dividing the graph 

into two independent node sets in a 𝐶𝑈𝑆𝑖. The CUS with an isolated node can be 

considered as dividing the graph into two node sets (one of the two sets can be an 

empty set, 𝜙 ). For the  Γ  that consists of multiple CUSs, each 𝐶𝑈𝑆𝑖 , 𝑖 ∈
{1,2, … , 𝑛} , in Γ  has its 𝐴𝑀𝐼𝑆(𝐶𝑈𝑆𝑖) . The 𝐴𝑀𝐼S(Γ)  of graph Γ  is all the 

combinations of the MISs of all the CUSs, note that only picking one of the MISs 

from each CUS in one combination. For the 𝐴𝑀𝐼S(Γ)  of graph Γ , 𝑘𝑖 ∈
{1, 2, … ,𝑚𝑖}, formally, 

𝐴𝑀𝐼𝑆(𝛤) = 

{ 

{𝑀𝐼𝑆𝐶𝑈𝑆1
1 , 𝑀𝐼𝑆𝐶𝑈𝑆2

1 , … ,𝑀𝐼𝑆𝐶𝑈𝑆𝑛
1 }, 

…, 

{𝑀𝐼𝑆𝐶𝑈𝑆1
𝑘1 , … ,𝑀𝐼𝑆𝐶𝑈𝑆𝑖

𝑘𝑖 , … ,𝑀𝐼𝑆𝐶𝑈𝑆𝑛
𝑘𝑛 }, 

…, 

{𝑀𝐼𝑆𝐶𝑈𝑆1
𝑚1 , … ,𝑀𝐼𝑆𝐶𝑈𝑆𝑖

𝑚𝑖 , … ,𝑀𝐼𝑆𝐶𝑈𝑆𝑛
𝑚𝑛 } 

} 



22 

 

 

 

 

Proof of Corollary 3-1: In Corollary 3-1, the CUS in Γ in Theorem 3-1 is now a general 

graph. In other words, the connected components in Γ is a general graph. Similar to the proof 

of Theorem 3-1, because the MWISs or AMISs of these connected components in 𝛤 has no 

conflict with nodes in a different connected component of 𝛤, so that Corollary 3-1 holds 

which means that Theorem 3-1 also holds when CUS is a general graph. ∎ 

Corollary 3-1: The below statements in Theorem 3-1, 

“For the Γ that consists of multiple CUSs, 

(i) For the MWIS problem, the 𝑀𝑊𝐼S(Γ) is the union of the MWIS of each CUS in 

Γ, or formally,  

𝑀𝑊𝐼𝑆(𝛤) =  𝑀𝑊𝐼𝑆(𝐶𝑈𝑆1) ∪  𝑀𝑊𝐼𝑆(𝐶𝑈𝑆2) ∪ …∪  𝑀𝑊𝐼𝑆(𝐶𝑈𝑆𝑛) 

(ii) For the AMISL problem, the 𝐴𝑀𝐼S(Γ) of graph Γ is all the combinations of the 

MISs of all the CUSs, note that only picking one of the MISs from each CUS in 

one combination. For the 𝐴𝑀𝐼S(Γ) of graph Γ, 𝑘𝑖 ∈ {1, 2, … ,𝑚𝑖}, formally, 

𝐴𝑀𝐼𝑆(𝛤) = 

{ 

{𝑀𝐼𝑆𝐶𝑈𝑆1
1 , 𝑀𝐼𝑆𝐶𝑈𝑆2

1 , … ,𝑀𝐼𝑆𝐶𝑈𝑆𝑛
1 }, 

…, 

{𝑀𝐼𝑆𝐶𝑈𝑆1
𝑘1 , … ,𝑀𝐼𝑆𝐶𝑈𝑆𝑖

𝑘𝑖 , … ,𝑀𝐼𝑆𝐶𝑈𝑆𝑛
𝑘𝑛 }, 

…, 

{𝑀𝐼𝑆𝐶𝑈𝑆1
𝑚1 , … ,𝑀𝐼𝑆𝐶𝑈𝑆𝑖

𝑚𝑖 , … ,𝑀𝐼𝑆𝐶𝑈𝑆𝑛
𝑚𝑛 } 

} 
”, 

 also holds when the 𝐶𝑈𝑆 is a general graph.  

Proof of Theorem 3-1: 

(i) For the MWIS problem, the MWIS can be found by one comparison in a CUS, 

because there are only two maximal independent sets in all the three types of 

CUSs. Since Γ consists of multiple CUSs, and there are no edges between these 

CUSs, the MWIS of each CUS does not have a conflict with the MWIS of another 

CUS in Γ. Because the MWIS of each CUS in Γ is the independent set with the 

possible maximum total weight, and MWISs of CUSs has no conflict with each 

other. We can get the union of MWISs of CUSs in Γ as the MWIS of Γ. ∎ 

(ii) For the AMISL problem, the AMIS can be found by dividing a CUS into two 

independent node set. Since Γ consists of multiple CUSs, and there are no edges 

between these CUSs, the AMIS of each CUS does not have confliction with any 

node of another CUS in Γ. Because the AMISs of different CUSs in Γ has no 

confliction, get the union of the sets by choosing one set from the AMIS of each 

CUS and find all combinations without repeating of such unions. The union of 

each combination is one maximal independent set in the AMIS of Γ. ∎ 
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Theorem 3-1 and Corollary 3-1 show that we are able to find the MWIS and AMIS of an induced 

subgraph after partitioning it into a specific structure. In order to partition the graph to get an 

induced subgraph as Γ described in Theorem 3-1, we need to proceed in two steps: (a) break all 

the cycles in the graph, and (b) break the paths which are longer than 2 edges. In both steps, we 

need to remove the nodes (and the adjunct edges) which satisfying specific rules. We denote 

such a qualified node as a removed node.  

Step 1: Break all cycles 

First, we need to find a cycle basis of the given graph 𝐺 = (𝑉, 𝐸). For each node 𝑖 ∈ 𝑉 in 𝐺, 

count the number of basic (fundamental) cycles it belongs to, we denote the count for node 𝑖 as 

𝐶𝐺(𝑖). Then, we remove a node 𝑛 ∈ 𝑉 to get the complementary induced subgraph 𝐶_𝐼𝑛𝑑𝐺(𝑛), 

where 𝐶𝐺(𝑛) is the maximum among all the 𝐶𝐺(𝑖). This process iterates until no cycle left in the 

induced subgraph. This induced subgraph left is either a tree or a forest, since all the cycles are 

broken by removing the node (and adjunct edges) belongs to the most cycles. 

A basis for cycles of an undirected graph (Cycle Basis) is a minimal collection (a set of 

fundamental cycles) of cycles such that any cycle in the graph can be written as a sum of cycles 

in the Cycle Basis set (Diestel, 2012). Here summation of cycles is defined as “exclusive or” of 

the edges. The algorithm for finding a cycle basis is adapted from algorithm CACM 491, 

originally developed by K. Paton. For details on the algorithm and the production of the basic 

cycles, Paton’s original paper (Paton, 1969) should be consulted. Paton also discusses two other 

algorithms for basic cycle generation and contains performance statistics in the paper referred to. 

The adopted basic (fundamental) cycles algorithm can be depicted as in Algorithm 3-1 (Paton, 

1969). 
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Algorithm 3-1: The Basic Cycles Algorithm (Paton, 1969) 

Step 2: Break the paths which are longer than 2 edges to reduce the diameter of the components 

of the induced acyclic subgraph from step 1 

If any of the connected components of the induced subgraph from step 1 has a diameter that is no 

less than 3 edges, remove the node in the middle of the longest path in that connected component 

of the graph. We name this node as the Middle Node of the path. For an odd path, the Middle 

Node is the midpoint of the path; for an even path, the Middle Node is one of the two nodes in 

the middle of the path. Algorithms 3-2 are adopted for checking the diameter, and Algorithms 3-

3 is implemented for finding the Middle Node, respectively. 

The diameter is the maximum eccentricity. The eccentricity of a node 𝑣 is the maximum distance 

from 𝑣 to all other nodes in 𝐺. If 𝐺 is disconnected, the eccentricity of a node 𝑣 is infinite. A 

diameter algorithm adapted based on the work by F.W. Takes, and his colleagues (Takes & 

Kosters, 2011; Takes & Kosters, 2013; Borassi et al., 2015) is applied here for computing the 

diameters in step 2. For each connected component of 𝐺 , we utilize a function 

Algorithm 3-1: The Basic Cycles Algorithm 

Input:  

A graph is finite, connected, undirected, and without loops or multiple edges. 

Step 1: 

Let vertex 1 be the root of the spanning tree. Start forming the spanning tree by 

placing all edges of the form {1,𝑊} into the tree. At the same time, place all vertices 

W into a push-down list called STACK. 

Step 2: 

Let Z be the last vertex added to STACK (i.e. the top of the stack). If STACK is 

empty, then stop. If STACK is not empty, then remove Z from STACK and go to step 

3. 

Step 3: 

Consider all edges {𝑍,𝑊} which have not been examined. If all edges have been 

examined, go to step 2. Otherwise, for each edge {𝑍,𝑊} do the following: 

a. If W is in the tree generate the basic cycle formed by adding {𝑍,𝑊} to the 

tree and repeat step 3. 

b. If W is not in the tree, add {𝑍,𝑊} to the tree, W to STACK, and repeat 

step 3. 
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“single_source_shortest_path_length” from the python module “networkx” to 

compute the shortest path lengths from each node to all reachable nodes. The maximum value of 

the lengths found is the diameter of the connected component of 𝐺. We mark this algorithm as 

Algorithm 3-2, the diameter algorithm. 

The Algorithm 3-3: the middle node algorithm is developed in order to find the middle point in a 

connected component of the induced acyclic subgraph. Since the input graph for finding the 

middle node is either a tree or a forest, we iteratively remove the nodes 𝑥 (and the adjunct edges) 

whose degrees satisfy 𝑑(𝑥) = 1 or 𝑑(𝑥) = 0. The last one node removed is the middle node, if 

the path is odd. One of the last two nodes removed is one of the two middle nodes, if the path is 

even. This middle node algorithm is implemented as below.  

 
Algorithm 3-3: The Middle Node Algorithm 

After the two steps of the node removal process, the induce subgraph satisfies the conditions as 

described in Theorem 3-1. We name the node 𝑥 ∈ 𝑉 removed from 𝐺 as a removed node. The 

complementary induced subgraph 𝐶_𝐼𝑛𝑑𝐺(𝑥) is called the induced subgraph at level node “𝑥.” 

Algorithm 3-3: The Middle Node Algorithm 

Input:  

The input graph, a tree or forest, is finite, undirected, and without loops or multiple 

edges. This input graph has at least ONE connected component whose diameter is 

greater than 2 edges. 

Step 1: 

Get a dictionary of the degrees of nodes in the input graph, namely 

“node_degree_dict”, using the node name as keys and the degree value as values.  

Step 2: 

Find the keys which have values as 0 or 1, remove these nodes from the input graph to 

get the updated induced subgraph. 

Step 3: 

a. If the number of nodes in the updated induced subgraph is ZERO, the middle node 

is a node in the input graph (from step 1). Return this middle node. 

b. If the number of nodes in the updated induced subgraph is not ZERO, clean the 

dictionary “node_degree_dict” and update the input graph with the updated 

induced subgraph. Then, start from step 1. 
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All the removed nodes and the associated components are stored in a dictionary named 

Subgraphs Dictionary (SD) with removed nodes as keys and the associated components as 

values for recording this process.  

The number of removed nodes determines the number of iterations in both node removal and 

node adding processes so that we want to reduce the number of removed nodes to the greatest 

extend. By using the Algorithm 3-1, the basic cycles algorithm, we can break the cycles as many 

as possible at each removal so that we can reduce the graph to a tree with a minimum number of 

nodes removed. And by removing the middle node of the trees using the Algorithm 3-2, the 

diameter algorithm and Algorithm 3-3, the middle node algorithm, the diameter of the remaining 

trees are minimized, which is also minimizing the number of the node removed. 

3.3.2 Phase II: Adding Nodes and Conquering 

We consider a collection of problems that involve finding a feasible subset of the input of 

maximum weight. The input contains a collection of 𝑛 distinguished elements, each carrying an 

associated nonnegative rational weight. Each set of distinguished elements uniquely induces a 

candidate for a solution, which we assume is efficiently computable from the set. The weight of a 

solution is the sum of the weights of the distinguished elements in the solution. 

Halldorsson defines such a partitioning structure as the hereditary property (Halldorsson, 2000). 

A property is said to be hereditary if whenever a set 𝑆 of distinguished element corresponds to a 

feasible solution, any subset of 𝑆 also corresponds to a feasible solution. A property is semi-

hereditary if under the same circumstances, any subset 𝑆′  of 𝑆  uniquely induces a feasible 

solution, possibly corresponding to a superset of 𝑆′. Theorem 3-2 is based on this partitioning 

idea.  



27 

 

 

0 2
5

1

3

4

6

7

W3=4.5

W1=7

W0=2

W2=2

W4=7

W5=4

W6=4

W7=2

 

Figure 3-2. Compare Set at Level Node ‘3’ 

Theorem 3-2: For Recurrence 

For a given graph 𝐺 = (𝑉, 𝐸) , remove one node 𝑛 ∈ 𝑉  (the removed node) to get the 

complementary induced subgraph 𝐶_𝐼𝑛𝑑𝐺(𝑛). Let 𝑀𝑊𝐼𝑆(𝐺) denote the MWIS of graph 𝐺 

and let 𝐴𝑀𝐼𝑆(𝐺) denote the AMIS of graph 𝐺. 

  

(i) For the MWIS case, the 𝑀𝑊𝐼𝑆(𝐺)  is either the 𝑀𝑊𝐼𝑆[𝐶_𝐼𝑛𝑑𝐺(𝑛)]  or the 

maximum weighted independent set that has node 𝑛 as an element in graph 𝐺, 

{𝑛} ∪ 𝑀𝑊𝐼𝑆[𝐶_𝑁𝑒𝑖𝑔_𝐼𝑛𝑑𝐺(𝑛)] . We name the 𝑀𝑊𝐼𝑆[𝐶_𝐼𝑛𝑑𝐺(𝑛)] as the 

Preliminary Set at level node 𝑛 , and the 𝐶_𝐼𝑛𝑑𝐺(𝑛) as the Preliminary Set 

Subgraph (PSS) at level node 𝑛 . Similarly, we name the set {𝑛} ∪
𝑀𝑊𝐼𝑆[𝐶_𝑁𝑒𝑖𝑔_𝐼𝑛𝑑𝐺(𝑛)]  as the Compare Set at level node 𝑛 , and the  

𝐶_𝑁𝑒𝑖𝑔_𝐼𝑛𝑑𝐺(𝑛) with node 𝑛 as the Compare Set Subgraph (CSS) at level node 

𝑛. 

 

(ii) For the AMISL case, the AMIS of the complementary induced subgraph  

𝐶_𝐼𝑛𝑑𝐺(𝑛) is formally 𝐴𝑀𝐼𝑆[𝐶_𝐼𝑛𝑑𝐺(𝑛)]. All maximal independent sets which 

has node 𝑛 as an element in each of the all maximal independent sets in graph 𝐺 is 

formally 𝐴𝑀𝐼𝑆[𝐼𝑛𝑑𝐺(𝑛) ∪ 𝐶𝑁𝑒𝑖𝑔𝐼𝑛𝑑𝐺
(𝑛) ∪ {𝑛}]. The all maximal independent set 

of 𝐺, 𝐴𝑀𝐼𝑆(𝐺) , is the union of the 𝐴𝑀𝐼𝑆[𝐶_𝐼𝑛𝑑𝐺(𝑛)] and 𝐴𝑀𝐼𝑆[𝐼𝑛𝑑𝐺(𝑛) ∪
𝐶_𝑁𝑒𝑖𝑔_𝐼𝑛𝑑𝐺(𝑛) ∪ {𝑛}]. Note that if any maximal independent set in the AMISL 

outputs is a subset of another set in AMISL output sets in the union process. The 

subset is eliminated, since it is no longer a maximal independent set in the induced 

subgraph with node 𝑛 . We name the 𝐴𝑀𝐼𝑆[𝐶_𝐼𝑛𝑑𝐺(𝑛)]  as the AMISL 

Preliminary Sets at level node 𝑛 . Similarly, we name the 𝐴𝑀𝐼𝑆[𝐼𝑛𝑑𝐺(𝑛) ∪
𝐶_𝑁𝑒𝑖𝑔_𝐼𝑛𝑑𝐺(𝑛) ∪ {𝑛}] as the AMISL Compare Sets at level node 𝑛. 
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Let’s take an example to explain Theorem 3-2. Given a weighted graph 𝐺3−2 as Figure 3-2, the 

nodes, edges, node indexes, and weights associated is shown in the figure. Assuming node ‘3’ is 

the removed node, according to Theorem 3-2, the Compare Set at level node ‘3’ is the node set 

{‘0’, ‘3’, ‘6’} circled in red in Figure 3-2, and the Preliminary Set at level node ‘3’ is the node 

set {‘0’, ‘2’, ‘5’, ‘6’} circled in red in Figure 3-3. The 𝑀𝑊𝐼𝑆(𝐺3−2) is either the set {‘0’, ‘3’, 

‘6’} or {‘0’, ‘2’, ‘5’, ‘6’}. Since the set {‘0’, ‘2’, ‘5’, ‘6’} has a total weight 12 versus the total 

weight of  {‘0’, ‘3’, ‘6’}, which is 11, the 𝑀𝑊𝐼𝑆(𝐺3−2) is the set {‘0’, ‘2’, ‘5’, ‘6’}. In Figure 3-

2, the induced subgraph in blue circles is the CSS, which is the 𝐶_𝑁𝑒𝑖𝑔_𝐼𝑛𝑑𝐺({′3′}) plus node 

‘3’. In Figure 3-3, the complementary induced subgraph, 𝐶_𝐼𝑛𝑑𝐺(𝑛) in the green circle is the 

PSS at level node 𝑛. 

 

Proof of Theorem 3-2: by contradiction  

(Since the MWIS and AMISL algorithms follow the same structure, we only prove the 

MWIS case here.) As the conditions described in Theorem 3-2, assuming all three statements 

always hold: 

 

1. The Preliminary Set is the MWIS of 𝐶_𝐼𝑛𝑑𝐺(𝑛), 𝑀𝑊𝐼𝑆[𝐶_𝐼𝑛𝑑𝐺(𝑛)]; 
2. The Compare Set is {𝑛} ∪ 𝑀𝑊𝐼𝑆[𝐶_𝑁𝑒𝑖𝑔_𝐼𝑛𝑑𝐺(𝑛)]; 
3. There exists an Assumption Set in 𝐺. The Assumption Set is a maximal independent 

set that has a total weight greater than that of either the Preliminary Set or the 

Compare Set. 

 

In the same graph 𝐺, since the Assumption Set, a maximal independent set in 𝐺, has a total 

weight greater than the total weight of the Compare set, and the Compare Set has the 

maximum possible total weight of the maximal independent set has node 𝑛 as one element, 

the Assumption Set cannot contain node 𝑛 as an element. Because the Preliminary Set has the 

maximum possible total weight of the maximal independent set in the complementary 

induced subgraph 𝐶_𝐼𝑛𝑑𝐺(𝑛) , so that the maximum possible total weight of a maximal 

independent set without node 𝑛 as an element is equal to the total weight of the Preliminary 

Set. Since the Assumption Set cannot contain node 𝑛  as an element, then it must be a 

maximal independent set in the complementary induced subgraph 𝐶_𝐼𝑛𝑑𝐺(𝑛) and its total 

weight is no greater than the total weight of the Preliminary Set. It is a Contradiction with 

statement 3, which implies that such an Assumption Set does not exist. ∎ 
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Figure 3-3. Preliminary Set at Level Node ‘3’ 

In order to further understand Theorem 3-2, suppose we decide to place a node 𝑣 into a given 

maximum weighted independent set. It then suffices to search only in the non-neighborhood of 

𝑣, 𝐶_𝑁𝑒𝑖𝑔_𝐼𝑛𝑑𝐺(𝑣), for the remaining nodes in the set. This suggests a natural heuristic, the 

greedy method. We can specify its result formally as 

𝑐ℎ𝑜𝑜𝑠𝑒: 𝑣 ∈ 𝑉 

𝑀𝑊𝐼𝑆(𝐺) ← {′𝑣′} ∪ 𝑀𝑊𝐼𝑆[𝐶_𝑁𝑒𝑖𝑔_𝐼𝑛𝑑𝐺(𝑣)] 

This rapid accumulation of an independent set by recursively looking at non-neighborhoods is 

attractive. Yet it remains disconcerting to completely ignore the neighborhoods of the pivot 

nodes, which may contain much larger weighted independent sets. Indeed, if we make a bad 

choice of a pivot node, we may be left with a minuscule set of independent vertices where there 

were plenty; thus, Greedy performs poorly in the worst case. 

We are led to another rule for searching for an independent set. As before, choose a vertex and 

search in the non-neighborhood of that node. But this time also searches in the neighborhood of 

the pivot node, which makes the search area as 𝐶_𝐼𝑛𝑑𝐺(𝑣), and use whichever result has a 
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heavier total weight. More formally, 

𝑐ℎ𝑜𝑜𝑠𝑒: 𝑣 ∈ 𝑉 

𝑀𝑊𝐼𝑆_𝐴𝑆(𝐺) ← max ({′𝑣′} ∪ 𝑀𝑊𝐼𝑆_𝐴𝑆[𝐶_𝑁𝑒𝑖𝑔_𝐼𝑛𝑑𝐺(𝑣)],𝑀𝑊𝐼𝑆_𝐴𝑆[𝐶_𝐼𝑛𝑑𝐺(𝑣)]) 

The discussions above are resulting Algorithm 3-4, MWIS algorithm structure (MWIS_AS), as 

below: 

 
Algorithm 3-4: MWIS Algorithm Structure 

AMISL algorithm follows the same structure, but we need to define a particular function called 

the Special Union. Assuming 𝑆𝑆1  and 𝑆𝑆2  are two sets of sets, the Special Union, 𝑆𝑝𝑒𝑐_ ∪

(𝑆𝑆1, 𝑆𝑆2), which is a set, which is the union of all the sets in 𝑆𝑆1 and 𝑆𝑆2, and no set in 𝑆𝑝𝑒𝑐_ ∪

(𝑆𝑆1, 𝑆𝑆2) is a subset of another set. This is resulting Algorithm 3-5, AMISL algorithm structure, 

(AMISL_AS) as below: 

 
Algorithm 3-5: AMISL Algorithm Structure 

 

AMISL_AS (𝐺), 𝐺 is a weight undirected graph. 

Begin 

If  𝐺 = ∅, then return [∅] 
Choose some 𝑣 ∈ 𝑉 

[𝐴𝑀𝐼𝑆1]← 𝑨𝑴𝑰𝑺𝑳_𝑨𝑺[𝐶_𝐼𝑛𝑑𝐺(𝑣)] 
[𝐴𝑀𝐼𝑆2]← 𝑨𝑴𝑰𝑺𝑳_𝑨𝑺[𝐶_𝑁𝑒𝑖𝑔_𝐼𝑛𝑑𝐺(𝑣) ∪ {′𝑣′}] 
return (Spec_∪ (𝐴𝑀𝐼𝑆1, 𝐴𝑀𝐼𝑆2)) 

End 

MWIS_AS (𝐺), 𝐺 is a weight undirected graph. 

Begin 

If  𝐺 = ∅, then return [∅] 
Choose some 𝑣 ∈ 𝑉 

[𝑀𝑊𝐼𝑆1]← 𝑴𝑾𝑰𝑺_𝑨𝑺[𝐶_𝐼𝑛𝑑𝐺(𝑣)] 
[𝑀𝑊𝐼𝑆2]← 𝑴𝑾𝑰𝑺_𝑨𝑺[𝐶_𝑁𝑒𝑖𝑔_𝐼𝑛𝑑𝐺(𝑣) ∪ {′𝑣′}] 
return (larger weight of (𝑀𝑊𝐼𝑆1,𝑀𝑊𝐼𝑆2)) 

End 
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3.4 Construction of the Algorithms 

From Theorem 3-1, we illustrate that the base cases for the divide and conquer algorithm 

structure. The base cases are constructed by removing nodes and the adjacent edges. We 

iteratively remove one node at a time by maximizing the number of cycles that the node belongs 

to in a cycle basis of the input graph or the current induced subgraph. Subgraphs dictionary (SD) 

is used to record this procedure. In SD, each node removed is the key and node sets of the 

connected components in the induced subgraphs as values of the keys, until the induced 

subgraphs satisfy the Theorem 3-1 conditions. 

The node adding procedures that are illustrated in Figure 3-4, is based on Algorithm 3-4 and 

Algorithm 3-5. Assume there are 𝑚 removed nodes for computing the MWIS or AMIS of graph 

𝐺, the CSS and the PSS denote the Compare Set Subgraph and the Preliminary Set Subgraph, 

respectively. The MWIS algorithm or the AMISL algorithm needs to be executed on the CSS at 

level node 𝑙 , 𝑙 ∈ {1,2, … , 𝑙, … ,𝑚} , with 𝑛𝑙  removed nodes to find the MWIS or the AMIS, 

respectively. 

For the MWIS case, according to Theorem 3-2 and Algorithm 3-4, we can get the desired MWIS 

set by comparing the Compare Set and the Preliminary Set at each level of the removed node. 

The MWIS found at each level of the removed node is recorded in the subgraph MWIS 

dictionary (SMWISD): the current induced subgraph (the PSS plus the removed node at the 

level) is the key, and the MWIS found is the value. The SMWISD is used for searching the 

MWIS of the connected components, which is part of the Preliminary Set at the level. 

For the AMISL case, according to Theorem 3-2 and Algorithm 3-5, we can get AMIS by 

comparing and merging the AMISL Compare Sets and the AMISL Preliminary Sets at each level 

of the removed node. The AMIS found at each level of the removed node is recorded in the 
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subgraph AMIS dictionary (SAMISD): the current induced subgraph (the PSS plus the removed 

node at the level) is the key, and the AMIS found is the value. The SAMISD is used for 

searching the AMIS of the connected components, which is part of the AMISL Preliminary Set 

at the level. 

G

CSS PSS

CSS PSS

CSS PSS

CSS PSS

...

1

2

3

m

n1 removed nodes

n2

n3

nm

m is the number of  removed 

nodes for computing the 

MWIS/AMIS of G. The level 

node, l            l,     m}. 

...

CSS PSSl
nl

...

The MWIS/AMIS of PPS 

are found by merging the 

MWIS/AMIS of each 

connected component of 

the current induced 

subgraph according to 
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the SMWISD/SAMISD or 

computed according to 
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...
The Compare Set can be 

computed by apply the 

proposed MWIS or AMISL 

algorithm on the CSS. Such 

a linear recurrence leads to 

exponential complexity 

 

Figure 3-4. The Node Adding Procedures 
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Together with Corollary 3-1, recurrence can be set up by adding the removed nodes back to the 

graph in the reverse order from the CUSs till getting the whole original graph. At each level of 

the removed node, the Preliminary Set and the AMISL Preliminary Set can be found as follows. 

For the MWIS case, we can get the Preliminary Set by aggregating the MWIS of each connected 

component of the current induced subgraph (without the removed node) according to the key-

value pair in the SD. These MWISs are found by searching the SMWISD or computed according 

to Theorem 3-1. For the AMISL case, following the Theorem 3-1 and Corollary 3-1, we can 

merge the AMISs of all connected components of the current induced subgraph according to the 

key-value pair in the SD to get the AMISL Preliminary Set. These AMISs are found by 

searching the SAMISD or computed according to Theorem 3-1. While adding nodes back to get 

the Compare Set and the AMISL Compare Set, we follow the node adding heuristics for finding 

the Compare Set as below: 

1. Get CSS, which is the induced subgraph by removing all neighbors of the removed node 

added; the removed node is included in the CSS. 

2. Get the MWIS or AMIS of the CSS. 

3. If the CSS getting from (1) does not satisfy the Theorem 3-1 conditions, perform the 

algorithm on this subgraph. 

 

Thus, the Algorithm #1 MWIS (Algorithm A1) and Algorithm #2 AMISL (Algorithm A2) can 

be constructed as below:  
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Algorithm A1 MWIS: A Hybrid Heuristic Algorithm for MWIS Problem 

For better describing the algorithms we proposed in this section, we provide a walkthrough of 

Algorithm A1 as well as all the terms in detail with a simple example in Appendix I. In the 

following section, we discuss the complexity of the proposed algorithms, and the means to 

improve the computational speed.  

 

Algorithm A1 MWIS: A hybrid heuristic algorithm for MWIS problem 

Input: a weighted graph 𝐺 

Output: MWIS of graph 𝐺. 

Initializing: subgraphs dictionary (SD) = {}; subgraph MWIS dictionary (SMWISD) = {}; 

‘last key’ vertex = null. 

Begin: 

(1.1) From step (1.1.1) to (1.1.5) Based on the input graph, find and remove the nodes one 

at a time, based on the node removal procedures, and update the SD: each node 

removed is the key and vertices sets of the connected components in the induced 

subgraphs as values of the keys, until the induced subgraphs satisfy the Theorem 3-1 

conditions. 

(1.1.1) If the input graph satisfies the Theorem 3-1 conditions, go to step (1.2); if the input 

graph does not satisfy the Theorem 3-1 conditions, remove a vertex (the key in SD) 

and edges attached to it following the node removal steps in section 4.1, and get the 

component subgraphs vertices set(s) (value with the key);  

(1.1.2) Update SD with the key-value pair; 

(1.1.3) For each connected subgraph, exam whether it satisfies the Theorem 3-1 conditions; 

(1.1.4) For those who do not satisfy Theorem 3-1 conditions, input these subgraphs to step 

(1.1.1); If the Theorem 3-1 conditions are satisfied, go to (1.1.5) 

(1.1.5) When all subgraphs satisfy Theorem 3-1 conditions, return the latest SD and go to 

step (1.2). 

(1.2) Get the Preliminary Set by aggregating the MWIS of each connected component of 

the induce subgraph according to the last key-value pair in SD. These MWISs are 

found by searching the SMWISD or computed according to Theorem 3-1. 

(1.3) If ‘last key’ vertex = null, Compare Set is ∅; if not add the ‘last key’ vertex to the 

induced subgraph from (1.2) and follow the node adding heuristics to find the 

Compare Set at the level ‘last key’.  

(1.4) Get the set with maximum total weight among the two sets: Preliminary Set and 

Compare Set at the level ‘last key’. This set is the MWIS at the level ‘last key’ (the 

MWIS of the induced subgraph of the last level in SD). Update the SMWISD: the 

current induced subgraph from (1.3) is the key, and the MWIS found is the value. 

(1.5) Update SD by removing the last key-value pair. If the updated 𝑆𝐷 = {}, return the 

MWIS from step (1.4); if not, go to step (1.2). 
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Algorithm A2 AMISL: A Hybrid Heuristic Algorithm for MWIS/AMISL Problem 

 

 

 

Algorithm A2 AMISL: A hybrid heuristic algorithm for AMISL problem 

Input: a weighted graph 𝐺 

Output: MWIS of graph 𝐺. 

Initializing: subgraphs dictionary (SD) = {}; subgraph AMIS dictionary (SAMISD) = {}; 

‘last key’ vertex = null. 

Begin: 

(2.1) From step (2.1.1) to (2.1.5) Based on the input graph, find and remove the vertices 

one at a time, based on the vertices removal procedures, and update the SD: each 

vertex removed is the key and vertices sets of the connected components in the 

induced subgraphs as values of the keys, until the induced subgraphs satisfy the 

Theorem 3-1 conditions. 

(2.1.1) If the input graph satisfies the Theorem 3-1 conditions, go to step (2.2); if the input 

graph does not satisfy the Theorem 3-1 conditions, remove a vertex (the key in SD) 

and edges attached to it following the node removal steps in section 4.1, and get the 

component subgraphs vertices set(s) (value with the key);  

(2.1.2) Update SD with the key-value pair; 

(2.1.3) For each connected subgraph, exam whether it satisfies the Theorem 3-1 conditions; 

(2.1.4) For those who do not satisfy Theorem 3-1 conditions, input these subgraphs to step 

(2.1.1); If the Theorem 3-1 conditions are satisfied, go to (2.1.5) 

(2.1.5) When all subgraphs satisfy Theorem 3-1 conditions, return the latest SD and go to 

step (2.2). 

(2.2) Following the Theorem 3-1 and Corollary 3-1, merge the AMISs of all connected 

components of the induce subgraph according to the last key-value pair in SD to get 

the AMISL Preliminary Set. These AMISs are found by searching the SAMISD or 

computed according to Theorem 3-1. 

(2.3) If ‘last key’ vertex = null, Compare Set is ∅; if not add the ‘last key’ node to the 

induced subgraph from (2.2) and follow the node adding heuristics to find AMISL 

Compare Sets at the level ‘last key’. 

(2.4) Get the Special Union of the two sets of sets: AMISL Preliminary Set and AMISL 

Compare Set at the level ‘last key’. Note that if any maximal independent set in the 

union is a subset of another set in this union process, eliminate this set from the union. 

This union is the AMISL output at the level ‘last key’ (the AMIS set of the induced 

subgraph of the last level in SD). Update the SAMISD: the current induced subgraph 

from (2.3) is the key, and the AMIS found is the value. 

(2.5) Update SD by removing the last key-value pair. If the updated 𝑆𝐷 = {}, return the 

AMIS from step (2.4); if not, go to step (2.2). 

(2.6) Find the MWIS based on the AMIS. 
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3.5 Reducing the Complexity of the Algorithm Using Approximation Algorithms 

3.5.1 Discussion on the Complexity 

The runtime of the proposed Algorithm A1 and A2 highly depends on the input graph. In the 

Algorithm A1, the node adding procedures through step (1.2) to step (1.5), the Preliminary Sets 

are computed based on the CUS, or they may inherit the MWIS of previous induced subgraph 

before adding the node. By searching the dictionary, which stores the results of previous node 

adding steps, computations for Preliminary Sets are at low cost. But computations for Compare 

Sets may require executing Algorithm A1 on the CSSs according to the node adding heuristics. 

This leads to exponential complexity.  

Let us take the graph 𝐺3−5  in Figure 3-5 as an example to illustrate the complexity of the 

proposed algorithm structure, to simplify the problem, assuming weights of the vertices are the 

same as the vertex index.   

0 1 2 3 4 5 6 7

1 2

8  Compare Set Subgraph at level node    

 Preliminary Set Subgraph at level node    

Removed Nodes
 

Figure 3-5. A sample graph with 9 vertices 

Based on step (1.1) in Algorithm A1,  

𝑆𝐷 = {′1′: [{′0′, ′8′}, {′2′, ′3′, ′4′, ′5′, ′6′, ′7′}], ′5′: [{′2′, ′3′, ′4′}, {′6′, ′7′}]} 



37 

 

At level node ‘5’, the Preliminary Set is {'2','4','7'} and the Compare Set is {'3','5','7'} in the 

subgraph induced by nodes, {′5′, ′2′, ′3′, ′4′, ′6′, ′7′}. The MWIS as level node ‘5’ is {'3','5','7'}. 

At level node ‘1’, based on the step (1.4), the Preliminary Set is the union the two MWIS of the 

two induced subgraphs (in the blue boxes), 𝐼𝑛𝑑𝐺3−5({
′0′, ′8′})  and 

𝐼𝑛𝑑𝐺3−5({′2′, ′3′, ′4′, ′5′, ′6′, ′7′}) . The MWIS of 𝐼𝑛𝑑𝐺3−5({
′0′, ′8′})  is simple to know. The 

MWIS of 𝐼𝑛𝑑𝐺3−5({′2′, ′3′, ′4′, ′5′, ′6′, ′7′}) is the same as the MWIS at level node ‘5’, which is 

{'3’, ‘5’, ‘7’}. But for the Compare Set, whenever the CSS does not satisfy the Theorem 3-2 

conditions, we need to execute the Algorithm A1. Just like the CSS in the yellow boxes shown as 

Figure 3-6, it requires to execute Algorithm A1 to get the Compare Set at level node ‘1’, which is 

{'1’, ‘3’, ‘5’, ‘7’}. Such a linear recurrence leads to exponential complexity (Erickson, 2018). 

Note that, since Algorithm A2 follows a similar structure, but it is returning the AMIS at each 

step, the Algorithm A1 and A2 have the same complexity with the same input graph. 

 

Figure 3-6. The CSS at Level Node ‘1’ 

3.5.2 Merging Approximation Algorithms with the Proposed MWIS Algorithm 

Since calculations for the Compare Set slow down the execution of the proposed Algorithm A1 

for the MWIS problem, we can speed up the computation by replacing Algorithm A1 on 

computing MWIS for Compare Sets with fast MWIS approximation algorithms. To illustrate this 

idea, we utilize two low complexity approximation algorithms to compute the Compare Set. 

Sakai et al. (Sakai et al., 2003) discuss greedy algorithms for the MWIS problem (GMIN-type 

1 3 4 5 6 7

1
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algorithms). Two algorithms are the GMWIN and GMWIN2, which select a node of maximizing 

a node selection function, then remove it and its neighbors from the graph, and iterates this 

process on the remaining graph (induced subgraph) until no vertex remains. The set of selected 

nodes is the desired independent set. Let 𝐺 = (𝑉, 𝐸,𝑊) be a simple undirected graph with node 

set 𝑉, a set of edges 𝐸, and 𝑊 is a set of weight factors associated with element in 𝑉. Let 𝑢, 𝑣 ∈

𝑉, for each 𝑣𝑖 ∈ 𝑉 (0 ≤ 𝑖 ≤ |𝐼|  − 1), the two node-selecting functions are:  

(1) GWMIN: maximizing 
𝑊𝑢

𝑑𝐺𝑖(𝑢)+1
 

(2) GWMIN2: maximizing 
𝑊𝑢

∑ 𝑊𝑢𝑢∈𝑁𝑒𝑖𝑔𝐺𝑖
+ (𝑢)

 

Where, 𝐺𝑖 is the remaining graph. We refer to the two simple greedy algorithms as Algorithm A3 

GMWIN and Algorithm A6 GMWIN2, which are using the GWMIN and GWMIN2 node 

selection functions, respectively. 

Let us consider the following framework of GMIN-type algorithms. 

 
Algorithm A3 and A6. The Algorithm GWMIN and Algorithm GMWIN2 

As approximation algorithms, we are interested to know the lower bound of their accuracy. Sakai 

et al. (Sakai et al., 2003) proved the Theorem 3-3 and Theorem 3-4 as the lower bounds of the 

accuracy of the two algorithms.  

Algorithm A3 GMWIN and Algorithm A6 GMWIN2, GMIN-type Algorithm Framework  

INPUT: A weighted graph G 

OUTPUT: A maximal independent set in G 

begin 

𝐼: = ∅; 𝑖: = 0; 𝐺𝑖: = 𝐺; 

while 𝑉(𝐺𝑖) ≠ ∅ do 

Choose a node based on a node-selecting function, say 𝑣𝑖, in 𝐺𝑖; 
𝐼: = 𝐼 ∪ {𝑣𝑖}; 𝐺𝑖 + 1:= 𝐺𝑖[𝑉(𝐺𝑖) − 𝑁𝑒𝑖𝑔(𝑣𝑖) + 𝐺𝑖(𝑣𝑖)]; 
𝑖: = 𝑖 + 1; 

od 

Output 𝐼; 
end. 
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With the approximation algorithms ready, we employ two different methods to merge an 

approximation algorithm with the proposed MWIS algorithm structure. Shown as Figure 3-7, in 

the step (1.3) of Algorithm A1, we denote the whole induced subgraph 𝐺𝑙 at the level node ‘𝑙,’ 

which is the PPS at the level node ‘𝑙’ plus node ‘𝑙’ (with the attached edges) in the node adding 

Proof of Theorem 3-4: 

Let 𝐼 = {𝑣1, 𝑣2, … , 𝑣𝑡}  be the independent set obtained by the algorithm. Let 𝑓𝐺(𝑣) =
𝑊𝑣/∑ 𝑊𝑢𝑢∈𝑁𝑒𝑖𝑔𝐺

+(𝑣) . 

∑𝑊𝑣𝑖 ≥

𝑡

𝑖=1

∑(𝑓𝐺𝑖(𝑣𝑖) × ∑ 𝑊𝑢

𝑢∈𝑁𝑒𝑖𝑔𝐺𝑖
+ (𝑣𝑖)

)

𝑡

𝑖=1

 

≥ ∑ (∑ 𝑓𝐺𝑖(𝑣𝑖)𝑊𝑢𝑢∈𝑁𝑒𝑖𝑔𝐺𝑖
+ (𝑣𝑖)

)𝑡
𝑖=1     (from 𝑓𝐺𝑖(𝑣𝑖) ≥ 𝑓𝐺𝑖(𝑢)∀𝑢 ∈ 𝑉(𝐺𝑖)) 

 

≥ ∑ 𝑓𝐺(𝑣)𝑊𝑣𝑣∈𝑉(𝐺)      (from 𝑓𝐺𝑖(𝑢) ≥ 𝑓𝐺(𝑢)∀𝑢 ∈ 𝑉(𝐺)) 

 

=∑
𝑊𝑣
2

∑ 𝑊𝑢𝑢∈𝑁𝑒𝑖𝑔𝐺
+(𝑣)𝑣∈𝑉

 ∎ 

 

Theorem 3-4. Algorithm A6 GWMIN2 outputs an independent set of weight at least 

∑
𝑊𝑣
2

∑ 𝑊𝑢𝑢∈𝑁𝑒𝑖𝑔𝐺
+(𝑣)

𝑣∈𝑉 . 

Proof of Theorem 3-3: 

∑ 𝑊𝑣𝑖 ≥

|𝐼|−1

𝑖=0

∑ ( ∑
𝑊𝑢

𝑑𝐺𝑖(𝑢) + 1𝑢∈𝑁𝑒𝑖𝑔𝐺𝑖
+ (𝑣𝑖)

)

|𝐼|−1

𝑖=0

 

≥ ∑ ( ∑
𝑊𝑢

𝑑𝐺(𝑢) + 1
𝑢∈𝑁𝑒𝑖𝑔𝐺𝑖

+ (𝑣𝑖)

)

|𝐼|−1

𝑖=0

 

=∑
𝑊𝑣

𝑑𝐺(𝑣) + 1𝑣∈𝑉
 ∎ 

 

Theorem 3-3. Algorithm A3 GWMIN outputs an independent set of weight at least 

∑
𝑊𝑣

𝑑𝐺(𝑣)+1
𝑣∈𝑉 . 
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processes. Based on this assumption, the CSS at the level node ‘𝑙’ is the induced subgraph of 

𝐶_𝑁𝑒𝑖𝑔_𝐼𝑛𝑑𝐺𝑙(𝑙)  plus the node ‘𝑙 ,’ 𝐶_𝑁𝑒𝑖𝑔_𝐼𝑛𝑑𝐺𝑙(𝑙) ∪ {′𝑙′}; the PPS is the complementary 

induced subgraph 𝐶_𝐼𝑛𝑑𝐺𝑙(𝑙). We can either apply an approximation algorithm on the whole 

induced subgraph 𝐺𝑙 or the 𝐶_𝑁𝑒𝑖𝑔_𝐼𝑛𝑑𝐺𝑙(𝑙) for computing an MWIS as the Compare Set at the 

level node ‘𝑙.’ Formally, for the two approximation algorithms, GWMIN and GWMIN2, four 

merged MWIS approximation algorithms are as follows: 

(1) Algorithm A4 MWIS_CS_GWMIN: In the step (1.3) of Algorithm A1, when the CSSs 

do not satisfy the Theorem 3-1 conditions, instead of executing the Algorithm A1 on the 

CSSs, we compute Compare Sets based on the whole subgraph 𝐺𝑙 using Algorithm A3 

GWMIN. 

(2) Algorithm A5 MWIS_SubCS_GWMIN: In the step (1.3) of Algorithm A1, when the 

CSSs do not satisfy the Theorem 3-1 conditions, we use Algorithm A3 GWMIN to 

compute MWISs on the 𝐶_𝑁𝑒𝑖𝑔_𝐼𝑛𝑑𝐺𝑙(𝑙) , then plus node ‘ 𝑙 ’ for Compare Set 

computations. 

(3) Algorithm A7 MWIS_CS_GWMIN2: In the step (1.3) of Algorithm A1, when the CSSs 

do not satisfy the Theorem 3-1 conditions, we compute Compare Sets based on the whole 

subgraph 𝐺𝑙 using Algorithm A6 GWMIN2. 

(4) Algorithm A8 MWIS_SubCS_GWMIN2: In the step (1.3) of Algorithm A1, when the 

CSSs do not satisfy the Theorem 3-1 conditions, we use Algorithm A3 GWMIN2 to 

compute MWISs on the 𝐶_𝑁𝑒𝑖𝑔_𝐼𝑛𝑑𝐺𝑙(𝑙) , then plus node ‘ 𝑙 ’ for Compare Set 

computations. 
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Figure 3-7. Merging Approximation Algorithms with the MWIS Algorithm Structure 

According to Theorem 3-2, both composed MWIS approximation algorithms generate results no 
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worse than the lower bound of the original approximation algorithms. In Algorithm A5 and 

Algorithm A8, the approximation algorithms are used on the 𝐶_𝑁𝑒𝑖𝑔_𝐼𝑛𝑑𝐺𝑙(𝑙) , compare to 

Algorithm A4 and Algorithm A7, which are the approximation algorithms using the Algorithm 

A3 GWMIN and Algorithm A6 GWMIN2 on the whole subgraph 𝐺𝑙, respectively. By definition, 

the complementary neighbor induced subgraph, 𝐶_𝑁𝑒𝑖𝑔_𝐼𝑛𝑑𝐺𝑙(𝑙), is smaller than the whole 

induced subgraph 𝐺𝑙, because the node 𝑛 and its neighbors are not included in 𝐶_𝑁𝑒𝑖𝑔_𝐼𝑛𝑑𝐺𝑙(𝑙). 

Theoretically, the Algorithm A5 and Algorithm A8 should have better accuracy than the 

Algorithm A4 and Algorithm A7, respectively. And the Algorithm A5 and Algorithm A8 should 

have a faster computational speed than the Algorithm A4 and Algorithm A7, respectively. The 

computational experiments in the following section also justify these conjectures. 

3.6 Computational Experiment on MWIS Algorithms 

According to the proposed approach for the Process Planning and Scheduling (PPS) problem 

discussed in Chapter 4, conflicting weighted graphs are created to test the scalability and 

accuracy of the algorithms in solving the PPS problem. Forty-three conflicting weighted graphs 

are created based on randomized PPS problems, from 5 nodes and 6 edges to 161 nodes and 

4718 edges. The scalability analysis shows how the algorithms behave on the test graphs. It can 

be evaluated based on the computation time versus the different sizes of the test graphs, which 

measures by the node numbers and edge numbers of the different conflicting graphs. The 

accuracy refers to how likely the proposed approach can get to the optimum solution, MWIS. It 

can be measured by the average and the maximum error rate of all the test instances. The details 

of the results are shown in Appendix II.  
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Before we start the discussion on the scalability and accuracy, let us formally summarize all the 

MWIS algorithms to be tested as below: 

• Algorithm A1 MWIS: the proposed exact MWIS algorithm. 

• Algorithm A2 AMISL: the proposed exact AMISL-based MWIS algorithm. 

• Algorithm A3 GWMIN: the GWMIN approximation algorithm from literature. 

• Algorithm A4 MWIS_CS_GWMIN: it is an algorithm composed of Algorithm A1 and 

Algorithm A3. This algorithm computes Compare Sets based on the whole induced 

subgraph at each level using Algorithm A3 GWMIN. 

• Algorithm A5 MWIS_SubCS_GWMIN: it is an algorithm composed of Algorithm A1 

and Algorithm A3. This algorithm computes Compare Sets based on the induced CSSs, 

excluding the current removed node, using Algorithm A3 GWMIN. 

• Algorithm A6 GWMIN2: the GWMIN2 approximation algorithm from literature.  

• Algorithm A7 MWIS_CS_GWMIN2: it is an algorithm composed of Algorithm A1 and 

Algorithm A6. This algorithm computes Compare Sets based on the whole induced 

subgraph at each level using Algorithm A6 GWMIN2. 

• Algorithm A8 MWIS_SubCS_GWMIN2: it is an algorithm composed of Algorithm A1 

and Algorithm A6. This algorithm computes Compare Sets based on the induced CSSs, 

excluding the current removed node, using Algorithm A6 GWMIN2. 

 

The computation time of Algorithms A1 and A2 changing with node number and edge number is 

shown in Figure 3-8 and Figure 3-9, respectively. Algorithms A1 and A2, as discussed in section 

3.5, can be exponentially slow on certain graphs. The computation time can be hours when there 

are about 140 nodes and 4000 edges. Although the worst case of the two algorithms can be 
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exponentially slow, the using scenarios of the PPS problem considered here may not always be 

the worst case. Algorithms A1 and A2 match higher-order (order 4 or higher) polynomial 

trendlines, but they are faster than the exponential trendline.  

Figure 3-10 and Figure 3-11 show how the computation time changing with node number and 

edge number on Algorithms A3 and A6, respectively. Algorithms A3 and A6 are the 

approximation algorithms from literature, and they are the fastest among the 8 algorithms. The 

computation time is less than one second on the test graphs. Algorithms A3 and A6 are in lower-

order polynomial complexity on the test graphs. The difference in the complexity of the two 

algorithms is due to the different greedy functions of the two algorithms. 

Figure 3-12 and Figure 3-13 show how the computation time is changing with node number and 

edge number on Algorithms A4, A5, A7, and A8, respectively. Algorithms A4, A5, A7, and A8 

are the composed algorithms based on Algorithm A1 structure with MWIS approximation 

algorithms. They are slower than the approximation algorithms utilized, but they are still much 

faster than the exact MWIS algorithms. The computation time is less than 45 seconds on the test 

graphs. Algorithm A5 and A8 are faster than Algorithm A4 and A7, respectively. This result of 

computational experiments matches the conjectures in section 3.5 that is the Compare Set 

computation is based on a smaller subgraph. And the Algorithm A7 and A8 are faster than 

Algorithm A4 and A5, respectively. This result also justifies that Algorithms A6 is faster than 

Algorithms A3 when the graph is relatively small (less than 3500 edges and less than 135 nodes.)  
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Figure 3-8. Computation Time with Node Number of Algorithms A1 and A2 

 

Figure 3-9. Computation Time with Edge Number of Algorithms A1 and A2 
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Figure 3-10. Computation Time with Node Number of Algorithms A3 and A6 

 

Figure 3-11. Computation Time with Edge Number of Algorithms A3 and A6 
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Figure 3-12a. Computation Time with Node Number of Algorithms A4, A5, A7 and A8 
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Figure 3-14a. Computation Time with Edge Number of Algorithms A4, A5, A7 and A8 

 

Figure 3-15b. Computation Time with Edge Number of Algorithms A4, A5, A7 and A8 (zoom-
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Figure 3-14 shows the average and maximum error rate of the algorithms. Assume 𝑊𝑜𝑝𝑡𝑖𝑚𝑢𝑚 is 

the total weight of the optimum solution of the MWIS problem on the test graph, and 𝑊 is the 

total weight of the MWIS set found by the algorithm. The weight error rate is calculated using 

the function below. 

𝑊𝑒𝑖𝑔ℎ𝑡 𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 =
𝑊 −𝑊𝑜𝑝𝑡𝑖𝑚𝑢𝑚

𝑊𝑜𝑝𝑡𝑖𝑚𝑢𝑚
× 100% 

Note that the Algorithms A1 and A2 shall return optimum solutions with the same total weight. 

And the test results justify this conjecture. This value is used as the baseline, 𝑊𝑜𝑝𝑡𝑖𝑚𝑢𝑚 for the 

weight error rate calculation. 

The general accuracy of the algorithms can be listed below from the best to the worst: 

1. Algorithm A1 MWIS 

2. Algorithm A2 AMISL (same as Algorithm MWIS) 

3. Algorithm A5 MWIS_SubCS_GWMIN 

4. Algorithm A8 MWIS_SubCS_GWMIN2 

5. Algorithm A4 MWIS_CS_GWMIN 

6. Algorithm A3 GWMIN 

7. Algorithm A7 MWIS_CS_GWMIN2 

8. Algorithm A6 GWMIN2  

As listed above, merging the approximation algorithms with Algorithm A1 structure can improve 

the accuracy. And the test results justify the statement that applying the approximation algorithm 

on smaller subgraphs can achieve better accuracy, e.g., Algorithm A5 and A8 have better 

accuracy than the Algorithm A4 and A7, respectively. 
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Figure 3-16. The Average and Maximum Error Rate for All Algorithms 

3.7 Summary 

In this chapter, we proposed new algorithms for exactly solving the MWIS problem. Moreover, 

based on the structure of the proposed MWIS algorithms, fast approximation algorithms 

GWMIN and GWMIN2 (Sakai et al., 2003) to are applied as a subfunction for finding sub-

solutions on subgraphs. The merged algorithms are much faster than the original Algorithm A1 

MWIS, and the accuracy of the outputs is no worse than the overall output of the approximation 
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Algorithm A1 MWIS; Algorithm A2 AMISL (same as Algorithm MWIS); Algorithm A5 

MWIS_SubCS_GWMIN; Algorithm A8 MWIS_SubCS_GWMIN2; Algorithm A4 

MWIS_CS_GWMIN. Note that all these algorithms considered satisfactory have the average 

error of less than 1% and the maximum error of less than 13% (The first four algorithms have the 

maximum error less than 9%) on all test instances. 

 

Figure 3-17. Performance of the MWIS Algorithms 
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Chapter 4. Formulation of the Resources Constrained Process Planning and 

Scheduling (PPS) Problem  

In this chapter, we propose a novel approach to formulate and solve the resource-constrained 

Process Planning and Scheduling (PPS) optimization problem via a conflicting weighted graph. 

Using our approach, an optimized process schedule can be generated by solving the Maximum 

Weighted Independent Set (MWIS) problem using the proposed MWIS algorithms discussed in 

Chapter 3. Chapter 4 is organized as the following sections: Section 4.1 is the introduction to the 

PPS problem and the summary of the Chapter. Section 4.2 describes the PPS problem and 

formulates the mathematical model. Section 4.3 discusses how the conflicting graph is generated 

for the resource-constrained PPS problem. Section 4.4 explains how we configure the weight 

factors of the nodes in the conflicting graph with the proposed MWIS algorithms to achieve the 

optimization objective. Then, section 4.5 takes an example from the literature to illustrate the 

proposed methodologies thoroughly. Lastly, section 4.6 concludes the Chapter. 

4.1 Introduction 

In this chapter, we propose a novel approach for formulating and solving the resource-

constrained Process Planning and Scheduling (PPS) optimization problem. The PPS problem can 

be defined as follows. Assuming there is a set of machining jobs in a machine shop, each job is 

referring to the production of a part. Each job consists of a set of machining operations (tasks) to 

create features for the finishing part. These machining operations are processed in a sequence, 

which satisfies all the ordering constraints, and each operation requires a particular combination 

of critical resources. Some examples of these critical resources include machines, tools, fixtures, 

or special qualified technicians. One of the common objectives is to find a feasible schedule with 

the earliest finishing time of all jobs. In other words, this goal is to create a process plan with 

resource allocations minimizing the number of time slots needed to cover all operations.  
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Based on the literature review in chapter 2, firstly, a closer integration of process planning and 

scheduling is required. More specifically, the determination of the operation processing order in 

a machine shop and the allocation of resources for each operation need to be considered 

interactively. Secondly, non-iteration or light-iteration methodologies with satisfactory accuracy 

are desired for the PPS problem. More specifically, the PPS problem is usually solved in a trial 

and error fashion using methods such as generic algorithms and metaheuristics. However, such 

methodologies do not guarantee an optimal solution is ever found, and they usually do not scale 

well with complexity. Also, these methods operating on dynamic data sets is difficult, as 

genomes begin to converge early on towards solutions which may no longer be valid for later 

data. 

In our approach, the two procedures, the resource selection and process scheduling, in the PPS 

problem are integrated and formulated into an undirected weighted conflicting graph due to the 

nature of sequencing and resource constraints. A node in the conflicting graph represents one 

operation with one possible combination of its required resources during one time slot, and an 

edge indicates that there is a conflict between the two nodes at both ends of the edge. Each node 

in the graph is assigned with a weight factor as the guidance for the node selection process to 

fulfill the optimization objective. The node with a higher possibility leading to the objective, is 

given a larger weight, so that they are more likely to be selected when generating the schedule. 

We utilize algorithms proposed in Chapter 3 to solve the Maximum Weighted Independent Set 

(MWIS) problem to realize this node selection process to get the optimum or a near-optimum 

solution. A simplified PPS example problem from the literature (Zhang et al., 2014) is employed 

to illustrate the proposed approach.  
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4.2 Process Planning and Scheduling Problem 

4.2.1 Problem Description 

As an example of the PPS problem in a manufacturing system, there are four parts to be 

processed by four machines with a number of tools. Each part requires several operations (four 

parts have 4, 3, 3, and 4 operations, respectively), and each operation can be performed on at 

least one available machine with different processing times. Table 4-1 shows the operation 

information of the four parts. Each column describes the part ID, operation ID, successors, 

operation name, machine candidates, tool candidates, and machining time, respectively. The 

illustration of one feasible solution to this example problem is shown in Figure 4-2. 

Table 4-1. Operation Information of Part 1-4 

Part-ID Op-ID Successor Operations Machine Candidates Tool Candidates Machining time 

(time unit) 

Part 1 O1,1 O1,2, O1,3 Milling M2, M3, M4 T6, T7 40, 40, 30 

 O1,2 O1,4 Milling M2, M3, M4 T6, T7 40, 40, 30 

 O1,3 O1,4 Milling M2, M3, M4 T6, T7 20, 20, 15 

 O1,4 - Drilling M1, M2, M3, M4 T2 12, 10, 10, 7.5 

Part 2 O2,1 O2,2, O2,3 Drilling M1, M2, M3, M4 T1 12, 10, 10, 7.5 

 O2,2 - Milling M2, M3, M4 T12 20, 20, 15 

 O2,3 - Milling M2, M3, M4 T6, T7, T11 18, 18, 13.5 

Part 3 O3,1 O3,2 Milling M2, M3, M4 T7, T8 20, 20, 15 

 O3,2 - Milling M2, M3, M4 T7, T8 20, 20, 15 

 O3,3 O3,2 Milling M2, M3, M4 T7, T8 15, 15, 11.25 

Part 4 O4,1 O4,3 Milling M2, M3 T6, T9 12, 15 

 O4,2 O4,4 Milling M2, M3 T9, T10 21, 18 

 O4,3 - Milling M2, M3 T3 18, 25 

 O4,4 - Milling M2, M3 T1, T3 27, 25 

The PPS problem herein is to determine a process plan and schedule (Gantt chart is shown in the 

lower part of Figure 4-1), which provides the information for decision-makers on how, when, 

and in which sequence to allocate these operations of parts to suitable manufacturing resources 

effectively. When determining the process plan, the best practice operation sequence should be 
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decided first. Then, manufacturing resources such as a machine and one tool should be assigned 

to every operation. All the manufacturing resources are assumed available in this phase. The 

determination of schedule is to decide the most appropriate moment to execute each operation 

with competitive resources like machines, tools, and other possible critical resources. Precedence 

constraints and resource constraints should be satisfied while determining the process plan and 

schedule. Moreover, this process plan and schedule should also satisfy the optimization 

objectives (in this case, minimizing the makespan) concurrently while maintaining the 

feasibility. 

The problem can be defined as follows: 

(i) Part scheduling: determining how and when to allocate the manufacturing resources 

to the parts and satisfying the best practice operation sequencing for all the parts. 

(ii) Machine and tool selecting: determining the resource selection according to the 

feature geometry and available machining resources. 

The PPS problem subjects to the following assumptions: 

A1. Each resource set (a set of resources needed for processing an operation) can only 

handle one operation at each time; 

A2. Each operation is completed before another operation is loaded; 

A3. The sequence of the operations of each part complies with manufacturing constraints; 

A4. All parts, machines, tools and other possible resources are available at time zero 

simultaneously; 

A5. Each operation is performed on a single resource set, and each resource can only be 

occupied by one operation at a time; 
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A6. The time for setup change is considered as part of the operation. The time for a 

machine change or a tool change follows the same assumption; 

A7. Machines are continuously available for production. 

 

Figure 4-1. Illustration of the PPS Example Problem 
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As for the constraints, there are precedence constraints among the operations of each part. These 

precedence relationships must not be violated in the manufacturing process. For example, a best 

practice operation sequence of 14 operations from example PPS problem is shown as in the top 

part of Figure 4-1. According to this operation sequence, the manufacturing resources can be 

specified (machines, tools, and other possible critical resources), and then, the schedule can be 

determined. 

4.2.2 Mathematical Formulation of the PPS Problem 

Many important and frequently-used objectives in both literature and real-life are applied in the 

PPS problem. To name a few, there are minimizing the makespan, variation of workload for each 

machine, minimizing cost, maximizing capacity utilization, delivery dates, or profit 

optimizations. In this work, we are focusing on minimizing the makespan as the main objective 

for our solution to the PPS problem. Minimizing the makespan means that the manufacturing 

system can get high production in a limited period. Or, in other words, the earliest time for 

finishing all the planned parts. The mathematical model of the problem is expressed in the 

following notations: 

Indices 

𝑖, 𝑘: indices of part, (𝑖, 𝑘 = 1, 2, . . . , 𝐼 ). 

𝑗, ℎ: indices of operation for part 𝑖, (𝑗, ℎ = 1, 2, . . . , 𝐽𝑖  ). 

𝑚: index of machine, (𝑚 = 1, 2, . . . , 𝑀). 

𝑙: index of tool, (𝑙 = 1, 2, . . . , 𝐿). 
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Parameters 

𝐼: number of parts. 

𝐽𝑖: number of operations for part 𝑖. 

𝑀: number of machines. 

𝐿: number of tools. 

𝑂𝑖: set of operations for part 𝑖, 𝑂𝑖 = {𝑜𝑖,𝑗  | 𝑗 = 1, 2, . . . , 𝐽𝑖}. 

𝑜𝑖,𝑗: the 𝑗th operation of part 𝑖. 

𝑚𝑚: the 𝑚th machine. 

𝑡𝑙: the 𝑙th tool. 

𝑀𝑖,𝑗: a set of machines that can process 𝑜𝑖,𝑗. 

𝐿𝑖,𝑗: a set of tools that can process 𝑜𝑖,𝑗. 

𝐴𝑚: a set of operations that can be processed on machine 𝑚. 

𝐴𝑙: a set of operations that can be processed with tool 𝑙. 

𝑟𝑖,𝑗,ℎ: precedence constraints. if 𝑜𝑖,𝑗 is predecessor of 𝑜𝑖,ℎ, 𝑟𝑖,𝑗,ℎ = 1; otherwise, 0. 

𝑡𝑚,𝑖,𝑗
𝑃 : processing time of 𝑜𝑖,𝑗 by machine 𝑚. All the process related time such as setup 

time, tool and machine change time are integrated with 𝑡𝑚,𝑖,𝑗
𝑃 . 

𝑡𝑚,𝑖,𝑗
𝐶 : completion time of 𝑜𝑖,𝑗 by machine 𝑚, it should satisfy the inequality 𝑡𝑚′,𝑖,(𝑗−1)

𝐶 +

𝑡𝑚,𝑖,𝑗
𝑃 ≤ 𝑡𝑚,𝑖,𝑗

𝐶  that means for every operation, its direct predecessor’s completion time 

plus its processing time might be shorter than its completion time. 

 

Decision variables 

𝑥𝑚,𝑖,𝑗
𝑀 = {

1, 𝑖𝑓 𝑜𝑖,𝑗 𝑖𝑠 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑒𝑑 𝑏𝑦 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑚,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
                                                        (1) 
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𝑥𝑙,𝑖,𝑗
𝐿 = {

1, 𝑖𝑓 𝑜𝑖,𝑗 𝑖𝑠 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑒𝑑 𝑏𝑦 𝑡𝑜𝑜𝑙 𝑙,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
                                                                     (2) 

𝑦𝑖,𝑗,𝑘,ℎ = {
1, 𝑖𝑓 𝑜𝑖,𝑗 𝑖𝑠 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑒𝑑 𝑜𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑟𝑖𝑔ℎ𝑡 𝑏𝑒𝑓𝑜𝑟𝑒 𝑜𝑘,ℎ,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
            (3)  

Ω(𝑋, 𝑌) = {
1, 𝑖𝑓 𝑋 ≠ 𝑌,
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

                                                                                               (4) 

The mathematical model for minimization of makespan can be formulated as the following the 

mixed-integer programming model: 

min 𝑡𝑀 = max
𝑚,𝑖,𝑗

{𝑡𝑚,𝑖,𝑗
𝐶 }                                                                                                        (5) 

𝑠. 𝑡. (𝑡𝑚,𝑘,ℎ
𝐶 − 𝑡𝑚,𝑘,ℎ

𝑃 − 𝑡𝑚,𝑖,𝑗
𝐶 ) ∗ 𝑥𝑚,𝑖,𝑗

𝑀 ∗ 𝑥𝑚,𝑘,ℎ
𝑀 ∗ 𝑦𝑖,𝑗,𝑘,ℎ = 0, ∀(𝑖, 𝑗), (𝑘, ℎ),𝑚                  (6) 

𝑠. 𝑡. (𝑡𝑚,𝑘,ℎ
𝐶 − 𝑡𝑚,𝑘,ℎ

𝑃 − 𝑡𝑚,𝑖,𝑗
𝐶 ) ∗ 𝑥𝑙,𝑖,𝑗

𝐿 ∗ 𝑥𝑙,𝑘,ℎ
𝐿 ∗ 𝑦𝑖,𝑗,𝑘,ℎ = 0, ∀(𝑖, 𝑗), (𝑘, ℎ), 𝑙                       (7) 

𝑟𝑖,𝑗,ℎ ∗ 𝑦𝑖,ℎ,𝑖,𝑗 = 0, ∀(𝑖, 𝑗), ℎ                                                                                                (8) 

𝑦𝑖,𝑗,𝑖,𝑗 = 0, ∀(𝑖, 𝑗)                                                                                                               (9) 

∑ 𝑥𝑚,𝑖,𝑗
𝑀𝑀

𝑚−1 = 1 , ∀(𝑖, 𝑗)                                                                                                   (10) 

∑ 𝑥𝑙,𝑖,𝑗
𝐿𝐿

𝑙−1 = 1 , ∀(𝑖, 𝑗)                                                                                                      (11) 

𝑥𝑚,𝑖,𝑗
𝑀 = 0, ∀(𝑖, 𝑗) ∉ 𝐴𝑚, ∀𝑚                                                                                           (12) 

𝑥𝑙,𝑖,𝑗
𝐿 = 0, ∀(𝑖, 𝑗) ∉ 𝐴𝑙 , ∀𝑙                                                                                                 (13) 

𝑦𝑖,𝑗,𝑘,ℎ ∈ {0,1}, ∀(𝑖, 𝑗), (𝑘, ℎ)                                                                                           (14) 

𝑥𝑚,𝑖,𝑗
𝑀 ∈ {0,1}, ∀𝑚, (𝑖, 𝑗)                                                                                                   (15) 

𝑥𝑙,𝑖,𝑗
𝐿 ∈ {0,1}, ∀𝑙, (𝑖, 𝑗)                                                                                                      (16) 

𝑡𝑚,𝑖,𝑗
𝐶 ≥ 0, ∀𝑚, (𝑖, 𝑗)                                                                                                         (17) 

𝑡𝑚,𝑖,𝑗
𝑃 ≥ 0, ∀𝑚, (𝑖, 𝑗)                                                                                                         (18) 
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Firstly, the objective function for the PPS problem. Equation (5) illustrates the objective 

function, which is the minimization of makespan 𝑡𝑀 . Makespan 𝑡𝑀  is the last operation’s 

finishing time, i.e., the maximization of completion time among all the operations. Secondly, the 

sequencing constraints. Equations (6) and (7) imposes that any machine or tool cannot be 

selected for one operation until the predecessor is completed. The precedence constraint is 

defined as Equation (8). Equation (9) ensures the feasible operation sequence. Thirdly, the 

incompatible resource constraints. The feasible resource selection is defined by Equations (10) 

and (11). Equation (10) ensures that one operation is only performed on a single machine, and 

Equation (11) ensures that one operation requires only one tool. Equation (12) and (13) denotes 

that the assignment of machine and tool for each operation should be selected from the available 

machine candidates and tool candidates. Lastly, Equations (14), (15), (16), (17) and (18) impose 

nonnegative condition. 

4.2.3 Discussions on Formulating and Solving the PPS Problem via Conflicting Graph  

Based on previous discussions, there are mainly two types of constraints, the sequencing 

constraints and the incompatible recourse constraints. The former ensures the best practice 

operation sequence for each part, and the latter ensures no resource conflict for operations 

scheduled in parallel. Since the operation sequence of the parts is usually predefined, the PPS 

problem can be considered as selecting the best set of feasible operations that can be processed in 

parallel during every discrete time period. The feasible operations refer to the operations that can 

be scheduled for the current time period without resource and precedence conflicts. Usually, 

there is more than one set of feasible operations can be selected for the current time period. The 

best set of feasible operations refers to that by scheduling the best set of feasible operations for 
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the current time period, the global optimization objective, minimizing the makespan, is most 

likely to achieve. If we consider each operation-resource pair (the operation along with one 

combination of the required resources during a unit discrete time period) as a node, and apply the 

edges to represent the constraints, a conflicting graph can be generated for the PPS problem. 

Furthermore, with a weight factor assigned to each operation-resource node as the guidance for 

selecting the best set of feasible operations, solving the PPS problem becomes solving the MWIS 

problem for each unit discrete time period. The output of the PPS problem is a combination of 

the best sets of feasible operations of each unit discrete time period. In the following sections, we 

discuss how the conflicting graph is generated, how the weight factor is calculated and assigned, 

and how we generate the optimal or near-optimal solution for the example problem, as shown in 

Figure 4-1. 

4.3 Generating the Conflicting Graph 

Based on previous discussions, the PPS problem can be naturally represented as a conflicting 

graph. Then, the optimization is to find and schedule the best qualified Maximal Independent Set 

(MIS) for each time period, so that an optimal processing schedule can be constructed. In this 

section, we discuss how to construct the conflicting graph. There are two steps to construct the 

conflicting graph, Step 1, Operation Data Preparation, and Step 2, Generating the Conflicting 

Graph. 

Step 1. Operation Data Preparation 

Before we start to generate the conflicting graph, let us reformulate all operations of the parts 

that need to be produced. In this step, we need three types of information on the operations of the 

parts, they are (1) the best practice operation sequence, (2) the resource options of each 
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operation, and (3) the processing time of each operation with each of its resource combinations. 

The top part of Figure 4-1 illustrates the best practice operation sequence of each part. And from 

Table 4-1, we understand machine candidates, tool candidates, and machining time associated 

with the machines, respectively. With this information, we can reformulate the operation 

information of the parts as Figure 4-2. 

 

Figure 4-2. Reformatted Parts Information 

Part #1: 𝑂1,1 → 𝑂1,2 → 𝑂1,3 → 𝑂1,4 

(

T1,1a[(M2,  M3)1 and (T6, T7)1]

40
T1,1b[(M4)1 and (T6, T7)1]

30

)

1

→ (

T1,2a[(M2,  M3)1 and (T6, T7)1]

40
T1,2b[(M4)1 and (T6, T7)1]

30

)

1

→ (

T1,3a[(M2,  M3)1 and (T6, T7)1]

20
T1,3b[(M4)1 and (T6, T7)1]

15

)

1

→

(

 
 
 

T1,4a[(M1)1 and (T2)1]

12
T1,4b[(M2,𝑀3)1 and (T2)1]

10
T1,4c[(M4)1 and (T2)1]

7.5 )

 
 
 

1

 

Part #2: 𝑂2,1 → 𝑂2,2 → 𝑂2,3 

 

(

 
 

T2,1a[(M1)1 and (T1)1]

12
T2,1b[(M2,𝑀3)1 and (T1)1]

10
T2,1c[(M4)1 and (T1)1]

7.5 )

 
 

1

→ (

T2,2a[(M2, M3)1 and (T12)1]

20
T2,2b[(M4)1 and (T12)1]

15

)

1

→ (

T2,3a[(M2, M3)1 and (T5,T6,T11)1]

18
T2,3b[(M4)1 and (T5,T6,T11)1]

13.5

)

1

 

Part #3: 𝑂3,3 → 𝑂3,1 → 𝑂3,2 

 (

T3,1a[(M2, M3)1 and (T7,T8)1]

15
T3,1b[(M4)1 and (T7,T8)1]

11.25

)

1

→ (

T3,2a[(M2, M3)1 and (T7,T8)1]

20
T3,2b[(M4)1 and (T7,T8)1]

15

)

1

→ (

T3,3a[(M2, M3)1 and (T7,T8)1]

20
T3,3b[(M4)1 and (T7,T8)1]

15

)

1

 

Part #4: 𝑂4,2 → 𝑂4,4 → 𝑂4,1 → 𝑂4,3 

 (

T4,1a[(M2)1 and (T9,T10)1]

21
T4,1b[(M3)1 and (T9,T10)1]

18

)

1

→ (

T4,2a[(M2)1 and (T1,T3)1]

27
T4,2b[(M3)1 and (T1,T3)1]

25

)

1

→ (

T4,3a[(M2)1 and (T6,T9)1]

12
T4,3b[(M3)1 and (T6,T9)1]

15

)

1

→

(

T4,4a[(M2)1 and (T3)1]

18
T4,4b[(M3)1 and (T3)1]

25

)

1
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Figure 4-3. Interpretation for Operation Data Preparation 

As described in Figure 4-3, it can be interpreted as the four operations for Part #1 need to be 

processed in the sequence of 𝑂1,1 → 𝑂1,2 → 𝑂1,3 → 𝑂1,4. Each operation of each part is corresponding 

to a detailed task unit. For instance, the first operation 𝑂1,1is corresponding to the detailed task 

unit, (

T1,1a[(M2, M3)1 and (T6,T7)1]

40
T1,1b[(M4)1 and (T6,T7)1]

30

)

1

, which means that operation 𝑂1,1 can be processed with one of 

the two task options, 𝑇1,1𝑎 and 𝑇1,1𝑏. The 𝑇1,1𝑎 and 𝑇1,1𝑏 here indicate that we can choose one of 

the options “𝑎” or “𝑏” for the operation 𝑂1,1 as the first operation (task) to produce part #1. The 

task 𝑇1,1𝑎 has its detail resource information,  
T1,1a[(M2, M3)1 and (T6,T7)1]

40
. It means that for the task 

option 𝑇1,1𝑎 , it requires one of the machines among (M2,  M3)  and one of the tools among 

(𝑇6, 𝑇7). And the duration of task option 𝑇1,1𝑎 is 40 time units. 

Each operation with its resource selection needs a certain period of time to process; we can 

simplify the problem by fitting the processing time of an operation into a discrete number of time 

slots. For example, if an operation 𝑜𝑚,𝑛 requires 35 time units to finish, and we define each time 

slot (1TS) stands for 10 time units. Therefore, the operation 𝑜𝑚,𝑛 needs 4 time slots (4TS) to 

process. Based on this assumption, we can translate Figure 4-2 to Figure 4-4 with the simplified 
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processing time (duration) information.  

Since we want to use the node in the conflicting graph to represent a task with its resource 

instance, while choosing the best qualified MIS of nodes, tasks with different durations may 

cause unbalanced conflicting constraints. Because a long duration task only causes one 

conflicting count with another conflicting task. In order to capture all the possible constraints, as 

well as simplify the weight factor calculation and fulfill different weights factor assignment 

strategies, we want to ensure every node in the conflicting graph stands for one task with one 

combination instance of its required resources for one time slot. Based on the task information in 

Figure 4-4, we break down all tasks into single time slots. We name a task that is broken down in 

such a way as a Unit Task. For example,  
T1,1a−1[(M2, M3)1 and (T6,T7)1]

1𝑇𝑆
 is a Unit Task, it can be 

marked as T1,1a−1, which means that it is the first Unit Task of option “a” in part #1 operations. 

According to the details of T1,1a−1, it requires one of the machines among (M2,  M3) and one of 

the tools among (𝑇6, 𝑇7) . Based on the information from Figure 4-4, the transformed tasks 

information in Unit Tasks is shown in Figure 4-5. The information in Figure 4-5 can be 

formulated into a dictionary for the implementation of the proposed approach. The format is 

shown in Figure 4-6 below; there are 47 Unit Tasks after breaking up. In the next step, we 

discuss how we can generate the nodes and edges for generating the conflicting graph for the 

PPS problem. 
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Figure 4-4. Tasks Information with Simplified Duration Information 

Part #1: 𝑂1,1 → 𝑂1,2 → 𝑂1,3 → 𝑂1,4 

(

T1,1a[(M2,  M3)1 and (T6, T7)1]

4𝑇𝑆
T1,1b[(M4)1 and (T6, T7)1]

3𝑇𝑆

)

1

→ (

T1,2a[(M2,  M3)1 and (T6, T7)1]

4𝑇𝑆
T1,2b[(M4)1 and (T6, T7)1]

3𝑇𝑆

)

1

→ (
T1,3a[(M2,  M3, M4)1 and (T6, T7)1]

2𝑇𝑆
)

1

→ (

T1,4a[(M1)1 and (T2)1]

2𝑇𝑆
T1,4b[(M2,  M3, M4)1 and (T2)1]

1𝑇𝑆

)

1

 

Part #2: 𝑂2,1 → 𝑂2,2 → 𝑂2,3 

(

T2,1b[(M1)1 and (T1)1]

2𝑇𝑆
T2,1a[(M2,  M3, M4)1 and (T1)1]

1𝑇𝑆

)

1

→ (
T2,2a[(M2,  M3, M4)1 and (T12)1]

2𝑇𝑆
)

1

→ (
T2,3a[(M2,  M3, M4)1 and (T6, T7, T11)1]

2𝑇𝑆
)

1

 

Part #3: 𝑂3,3 → 𝑂3,1 → 𝑂3,2 

(
T3,1a[(M2,  M3, M4)1 and (T7, T8)1]

2𝑇𝑆
)

1

→ (
T3,2a[(M2,  M3, M4)1 and (T7, T8)1]

2𝑇𝑆
)

1

→ (
T3,3a[(M2,  M3, M4)1 and (T7, T8)1]

2𝑇𝑆
)

1

 

Part #4: 𝑂4,2 → 𝑂4,4 → 𝑂4,1 → 𝑂4,3 

(

T4,1a[(M2)1 and (T9, T10)1]

3𝑇𝑆
T4,1b[(M3)1 and (T9, T10)1]

2𝑇𝑆

)

1

→ (
T4,2a[(M2, M3)1 and (T1, T3)1]

3𝑇𝑆
)

1

→ (
T4,3a[(M2, M3)1 and (T6, T9)1]

2𝑇𝑆
)

1

→ (

T4,4a[(M2)1 and (T3)1]

2𝑇𝑆
T4,4b[(M3)1 and (T3)1]

3𝑇𝑆

)

1
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Figure 4-5. Transformed Tasks Information in Unit Tasks 

 

Part #1: 𝑂1,1 → 𝑂1,2 → 𝑂1,3 → 𝑂1,4 

(

T1,1a−1[(M2,  M3)1 and (T6, T7)1]

1𝑇𝑆
→
T1,1a−2[(M2,  M3)1 and (T6 , T7)1]

1𝑇𝑆
→
T1,1a−3[(M2 ,  M3)1 and (T6 , T7)1]

1𝑇𝑆
→
T1,1a−4[(M2,  M3)1 and (T6, T7)1]

1𝑇𝑆
T1,1b−1[(M4)1 and (T6 , T7)1]

1𝑇𝑆
→
T1,1b−2[(M4)1 and (T6, T7)1]

1𝑇𝑆
→
T1,1b−3[(M4)1 and (T6 , T7)1]

1𝑇𝑆

)

1

→ (

T1,2a−1[(M2 ,  M3)1 and (T6 , T7)1]

1𝑇𝑆
→
T1,2a−2[(M2,  M3)1 and (T6, T7)1]

1𝑇𝑆
→
T1,2a−3[(M2,  M3)1 and (T6 , T7)1]

1𝑇𝑆
→
T1,2a−4[(M2,  M3)1 and (T6, T7)1]

1𝑇𝑆
T1,2b−1[(M4)1 and (T6 , T7)1]

1𝑇𝑆
→
T1,2b−2[(M4)1 and (T6, T7)1]

1𝑇𝑆
→
T1,2b−3[(M4)1 and (T6, T7)1]

1𝑇𝑆

)

1

→ (
T1,3a−1[(M2,  M3, M4)1 and (T6 , T7)1]

1𝑇𝑆
→
T1,3a−2[(M2 ,  M3, M4)1 and (T6, T7)1]

1𝑇𝑆
)

1

→ (

T1,4a−1[(M1)1 and (T2)1]

1𝑇𝑆
→
T1,4a−2[(M1)1 and (T2)1]

1𝑇𝑆
T1,4b[(M2,  M3, M4)1 and (T2)1]

1𝑇𝑆

)

1

 

Part #2: 𝑂2,1 → 𝑂2,2 → 𝑂2,3 

(

T2,1b−1[(M1)1 and (T1)1]

1𝑇𝑆
→
T2,1b−2[(M1)1 and (T1)1]

1𝑇𝑆
T2,1a[(M2,  M3, M4)1 and (T1)1]

1𝑇𝑆

)

1

→ (
T2,2a−1[(M2,  M3, M4)1 and (T12)1]

1𝑇𝑆
→
T2,2a−2[(M2,  M3, M4)1 and (T12)1]

1𝑇𝑆
)

1

→ (
T2,3a−1[(M2,  M3, M4)1 and (T5 , T6, T11)1]

1𝑇𝑆
→
T2,3a−2[(M2,  M3, M4)1 and (T6 , T7 , T11)1]

1𝑇𝑆
)

1

 

Part #3: 𝑂3,3 → 𝑂3,1 → 𝑂3,2 

(
T3,1a−1[(M2,  M3, M4)1 and (T7 , T8)1]

1𝑇𝑆
→
T3,1a−2[(M2,  M3, M4)1 and (T7 , T8)1]

1𝑇𝑆
)

1

→ (
T3,2a−1[(M2,  M3, M4)1 and (T7, T8)1]

1𝑇𝑆
→
T3,2a−2[(M2,  M3, M4)1 and (T7 , T8)1]

1𝑇𝑆
)

1

→ (
T3,3a−1[(M2,  M3, M4)1 and (T7, T8)1]

1𝑇𝑆
→
T3,3a−2[(M2,  M3, M4)1 and (T7 , T8)1]

1𝑇𝑆
)

1

 

Part #4: 𝑂4,2 → 𝑂4,4 → 𝑂4,1 → 𝑂4,3 

(

T4,1a−1[(M2)1 and (T9 , T10)1]

1𝑇𝑆
→
T4,1a−2[(M2)1 and (T9 , T10)1]

1𝑇𝑆
→
T4,1a−3[(M2)1 and (T9 , T10)1]

1𝑇𝑆
T4,1b−1[(M3)1 and (T9, T10)1]

1𝑇𝑆
→
T4,1b−2[(M3)1 and (T9, T10)1]

1𝑇𝑆

)

1

→ (
T4,2a−1[(M2, M3)1 and (T1, T3)1]

1𝑇𝑆
→
T4,2a−2[(M2, M3)1 and (T1, T3)1]

1𝑇𝑆
→
T4,2a−3[(M2, M3)1 and (T1 , T3)1]

1𝑇𝑆
)

1

→ (
T4,3a−1[(M2, M3)1 and (T6 , T9)1]

1𝑇𝑆
→
T4,3a−2[(M2, M3)1 and (T6, T9)1]

1𝑇𝑆
)

1

→ (

T4,4a−1[(M2)1 and (T3)1]

1𝑇𝑆
→
T4,4a − 2[(M2)1 and (T3)1]

1𝑇𝑆
T4,4b−1[(M3)1 and (T3)1]

1𝑇𝑆
→
T4,4b−2[(M3)1 and (T3)1]

1𝑇𝑆
→
T4,4b−3[(M3)1 and (T3)1]

1𝑇𝑆

)

1
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Figure 4-6. Scheduling Problem Input Format 
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Step 2. Generating Nodes and Edges of the Conflicting Graph 

A conflicting graph consists of two essentials, the nodes and edges. A node is representing one 

possible resource combination instance of a Unit Task. And the edges are representing the 

resource constraints of the instances of the Unit Tasks. 

Step 2.1 Generating the Nodes 

In order to explain how to generate nodes for the conflicting graph, let us take a Unit Task 

example from Figure 4-5, T2,1b−1, which is the first Unit Task in option “b” of the first operation 

in part #2 production processes. Based on the details, 
T2,1b−1[(M1)1 and (T1)1]

1𝑇𝑆
, of this Unit Task, it 

can be represented by one node, because it only has one possible resource instance, machine 𝑀1 

and tool 𝑇1. On the same idea, all the nodes stand for all the possible resource instance of all the 

Unit Tasks can be generated for the conflicting graph. The node details of the example problem 

are shown in the first two columns in Figure 4-9.  

Step 2.2 Generating the Edges 

We developed the following four rules for generating edges in the conflicting graph. 

(1) For any two nodes from the same Unit Task, they are connected by an edge. It implies the 

constraint that for each Unit Task, it can only be scheduled once. 

(2) For any two nodes from the same operation, if they belong to different task options, they 

are connected by an edge. It implies the constraint that for each operation, we can only 

schedule it with only one task option. 

(3) For any two nodes from the same operation and the same task option, but different Unit 
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Task, if their resources are not the same, they are connected by an edge. It implies the 

constraint that once an operation is started, the resources have been selected cannot be 

changed until it is finished. 

(4) For the nodes from different parts, if any of their resources is the same, they are 

connected by an edge. It implies the resource constraints that one resource can be 

occupied by only one operation during the same time period. 

Besides the rules mentioned above, note that there are no edges between the nodes of two 

different operations for the same part because they cannot be scheduled in the same time slot, 

and the selection has no effect on each other. This situation is ensured by the weight assignment 

strategies, which are discussed in detail in the following sections. 

To better illustrate the rules for generating the edges of the conflicting graph, let us take the two 

operations 𝑂2,1 → 𝑂2,2 (𝑇2,1 → 𝑇2,2) of Part #2 from the example problem plus a given operation 

𝑂𝑖,1 (𝑇𝑖,1) of Part #𝑖, tasks details are shown as below: 

(

T2,1a[(M2,  M3, M4)1 and (T1)1]

1𝑇𝑆
T2,1b−1[(M1)1 and (T1)1]

1𝑇𝑆
→
T2,1b−2[(M1)1 and (T1)1]

1𝑇𝑆

)

1

→ (
T2,2a−1[(M2,  M3, M4)1 and (T12)1]

1𝑇𝑆
→
T2,2a−2[(M2,  M3, M4)1 and (T12)1]

1𝑇𝑆
)

1

 

And 

(
T𝑖,1a−1[(M4)1 and (T6)1]

1𝑇𝑆
)

1

 

A conflict graph can be constructed, as shown in Figure 4-7. The colors differentiate the Unit 

Tasks, and the numbers on edges indicate the rule used while generating the edges. 
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T2,1a-1[(M2, T1)2]

T2,1b-1[(M1, T1)2] T2,1b-2[(M1, T1)2]

T2,1a-1[(M3, T1)2](1)

T2,2a-1[(M2, T12)2]

T2,2a-1[(M3, T12)2]

T2,2a-1[(M4, T12)2]

T2,2a-2[(M2, T12)2]

T2,2a-2[(M3, T12)2]

T2,2a-2[(M4, T12)2]
(1

)
(1

)

(1
)

(1
)

(1
)(1

)

T2,1a-1[(M4, T1)2]

Ti,1a-1[(M4, T6)2]

 

Figure 4-7. The Conflict Graph of operations 𝑂2,1 → 𝑂2,2 of Part #2 and the operation 𝑂𝑖,1 (𝑇𝑖,1) 
of Part #𝑖 

On the same idea, a conflicting graph for all four parts in the example problem is constructed as 

Figure 4-8. The graph has 161 nodes and 4718 edges. The node labels and the connection details 

of the conflicting graph are shown in Figure 4-9. For example, the node ‘0’ represents 

T1,1a−1(𝑀2, 𝑇6) , which is one of the resource selections of the Unit Task, 

T1,1a−1[(M2, M3)1 and (T6,T7)1]

1𝑇𝑆
. Note that the color clusters in Figure 4-9 are for differentiating 

different operations. With the conflicting graph ready, in the next section, we explain how we 

generate weights for Unit Tasks and how we assign weight factors to nodes so that the MWIS 

algorithms can be configured to schedule the nodes to achieve the objective of minimizing the 

makespan for the PPS problem. 
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Figure 4-8. Conflict Graph for the Example Problem
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Figure 4-9. Graph Connection Details for the Example Problem 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

 T11a-1(M2, T6) 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T11a-1(M2, T7) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T11a-1(M3, T6) 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T11a-1(M3, T7) 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T11a-2(M2, T6) 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T11a-2(M2, T7) 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T11a-2(M3, T6) 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T11a-2(M3, T7) 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T11a-3(M2, T6) 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T11a-3(M2, T7) 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T11a-3(M3, T6) 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T11a-3(M3, T7) 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T11a-4(M2, T6) 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T11a-4(M2, T7) 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T11a-4(M3, T6) 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T11a-4(M3, T7) 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T11b-1(M4, T6) 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T11b-1(M4, T7) 17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T11b-2(M4, T6) 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T11b-2(M4, T7) 19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T11b-3(M4, T6) 20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T11b-3(M4, T7) 21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T12a-1(M2, T6) 22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T12a-1(M2, T7) 23 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T12a-1(M3, T6) 24 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T12a-1(M3, T7) 25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T12a-2(M2, T6) 26 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T12a-2(M2, T7) 27 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T12a-2(M3, T6) 28 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T12a-2(M3, T7) 29 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T12a-3(M2, T6) 30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T12a-3(M2, T7) 31 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T12a-3(M3, T6) 32 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T12a-3(M3, T7) 33 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T12a-4(M2, T6) 34 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T12a-4(M2, T7) 35 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T12a-4(M3, T6) 36 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T12a-4(M3, T7) 37 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T12b-1(M4, T6) 38 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T12b-1(M4, T7) 39 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T12b-2(M4, T6) 40 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T12b-2(M4, T7) 41 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T12b-3(M4, T6) 42 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T12b-3(M4, T7) 43 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T13a-1(M2, T6) 44 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T13a-1(M2, T7) 45 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T13a-1(M3, T6) 46 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T13a-1(M3, T7) 47 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T13a-1(M4, T6) 48 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T13a-1(M4, T7) 49 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T13a-2(M2, T6) 50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T13a-2(M2, T7) 51 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T13a-2(M3, T6) 52 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T13a-2(M3, T7) 53 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T13a-2(M4, T6) 54 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T13a-2(M4, T7) 55 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T14a-1(M1, T2) 56 1 1 1 1 1

 T14a-2(M1, T2) 57 1 1 1 1 1

 T14b-1(M2, T2) 58 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T14b-1(M3, T2) 59 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T14b-1(M4, T2) 60 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T21a-1(M2, T1) 61 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T21a-1(M3, T1) 62 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T21a-1(M4, T1) 63 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T21b-1(M1, T1) 64 1 1 1 1 1 1

 T21b-2(M1, T1) 65 1 1 1 1 1

 T22a-1(M2, T12) 66 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T22a-1(M3, T12) 67 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T22a-1(M4, T12) 68 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T22a-2(M2, T12) 69 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T22a-2(M3, T12) 70 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T22a-2(M4, T12) 71 1 1 1 1 1 1 1 1 1 1 1 1

 T23a-1(M2, T6) 72 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T23a-1(M2, T7) 73 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T23a-1(M2, T11) 74 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T23a-1(M3, T6) 75 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T23a-1(M3, T7) 76 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T23a-1(M3, T11) 77 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T23a-1(M4, T6) 78 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T23a-1(M4, T7) 79 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T23a-1(M4, T11) 80 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T23a-2(M2, T6) 81 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T23a-2(M2, T7) 82 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T23a-2(M2, T11) 83 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T23a-2(M3, T6) 84 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T23a-2(M3, T7) 85 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T23a-2(M3, T11) 86 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T23a-2(M4, T6) 87 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T23a-2(M4, T7) 88 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T23a-2(M4, T11) 89 1 1 1 1 1 1 1 1 1 1 1 1

 T31a-1(M2, T7) 90 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T31a-1(M2, T8) 91 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T31a-1(M3, T7) 92 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T31a-1(M3, T8) 93 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T31a-1(M4, T7) 94 1 1 1 1 1 1

 T31a-1(M4, T8) 95 1 1 1 1 1

 T31a-2(M2, T7) 96 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T31a-2(M2, T8) 97 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T31a-2(M3, T7) 98 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T31a-2(M3, T8) 99 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T31a-2(M4, T7) 100 1

 T31a-2(M4, T8) 101

 T32a-1(M2, T7) 102 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T32a-1(M2, T8) 103 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T32a-1(M3, T7) 104 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T32a-1(M3, T8) 105 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T32a-1(M4, T7) 106 1 1 1 1 1 1

 T32a-1(M4, T8) 107 1 1 1 1 1

 T32a-2(M2, T7) 108 1 1 1 1 1

 T32a-2(M2, T8) 109 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T32a-2(M3, T7) 110 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T32a-2(M3, T8) 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T32a-2(M4, T7) 112 1

 T32a-2(M4, T8) 113

 T33a-1(M2, T7) 114 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T33a-1(M2, T8) 115 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T33a-1(M3, T7) 116 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T33a-1(M3, T8) 117 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T33a-1(M4, T7) 118 1 1 1 1 1 1

 T33a-1(M4, T8) 119 1 1 1 1 1

 T33a-2(M2, T7) 120 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T33a-2(M2, T8) 121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T33a-2(M3, T7) 122 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T33a-2(M3, T8) 123 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T33a-2(M4, T7) 124 1

 T33a-2(M4, T8) 125

 T41b-1(M3, T9) 126 1 1 1 1 1 1 1 1

 T41b-1(M3, T10) 127 1 1 1 1 1 1 1

 T41b-2(M3, T9) 128 1 1 1 1 1 1 1

 T41b-2(M3, T10) 129 1 1 1 1 1 1

 T41a-1(M2, T9) 130 1 1 1

 T41a-1(M2, T10) 131 1 1

 T41a-2(M2, T9) 132 1 1

 T41a-2(M2, T10) 133 1

 T41a-3(M2, T9) 134 1

 T41a-3(M2, T10) 135

 T42a-1(M2, T1) 136 1 1 1 1 1 1 1 1 1

 T42a-1(M2, T3) 137 1 1 1 1 1 1 1 1

 T42a-1(M3, T1) 138 1 1 1 1 1 1 1

 T42a-1(M2, T3) 139 1 1 1 1 1 1

 T42a-2(M2, T1) 140 1 1 1 1 1 1

 T42a-2(M2, T3) 141 1 1 1 1 1

 T42a-2(M3, T1) 142 1 1 1 1

 T42a-2(M3, T3) 143 1 1 1

 T42a-3(M2, T1) 144 1 1 1

 T42a-3(M2, T3) 145 1 1

 T42a-3(M3, T1) 146 1

 T42a-3(M3, T3) 147

 T43a-1(M2, T6) 148 1 1 1 1 1 1

 T43a-1(M2, T9) 149 1 1 1 1 1

 T43a-1(M3, T6) 150 1 1 1 1

 T43a-1(M3, T9) 151 1 1 1

 T43a-2(M2, T6) 152 1 1 1

 T43a-2(M2, T9) 153 1 1

 T43a-2(M3, T6) 154 1

 T43a-2(M3, T9) 155

 T44b-1(M3, T3) 156 1 1

 T44b-2(M3, T3) 157 1 1

 T44b-3(M3, T3) 158 1 1

 T44a-1(M2, T3) 159

 T44a-2(M2, T3) 160
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4.4 Weight Factors Calculation and the Configurations of MWIS Algorithms  

With the problem formulated as a conflicting graph, our goal is to find the nodes to schedule for 

each time slot towards the objective of minimizing the total number of required time slots to 

finish all the operations. The weight factors assigned to nodes of the conflicting graph are used 

as the guidance for task and resource selections towards the optimal solution of the PPS problem.  

From Figure 4-4, only the node from the first Unit Task of each option of each part can be 

scheduled for the current time slot. We name such a Unit Task as a Unit Task Candidate, and the 

nodes from Unit Task Candidates as Candidate Nodes. The simple idea is that we want to 

schedule as much as possible Unit Task Candidates at each time slot, and we want to ensure that 

these scheduled Unit Task Candidates have the most constraints for the rest of Unit Tasks. 

Because once a Unit Task is scheduled for the current time slot, it is removed from the graph of 

the following procedures. By doing so, we can remove as many as possible Candidate Nodes at 

each time slot, and if we can ensure that by removing those nodes, we can remove the most 

constraints for the remaining Unit Tasks. By discharging the constraints at each time slot, we 

have more freedom to schedule more Unit Task Candidates in the following time slots. In this 

sense, we can achieve the optimal or near-optimal result of the PPS problem. In order to execute 

this idea, we developed a set of heuristics to generate the weights and configure these heuristics 

with MWIS algorithms discussed in Chapter 3. We are focusing on the weights calculation and 

the MWIS algorithm configurations for the PPS problem in the following discussions of this 

section. In Chapter 5, computational experiments are performed on both a real-world case and 

randomized cases to exam the proposed approach. 

4.4.1 The Weights Calculation 
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From the edges generating rules, Candidate Nodes, which are not compatible due to constraints, 

are connected. In other words, they are not independent. By applying the MWIS algorithms, we 

can find the most weighted set of independent candidate nodes, which can be scheduled for the 

current time slot. We assume that the nodes belong to the same Unit Task should have the same 

weights. Then, the weight of a Unit Task can be determined based on the conflicting condition of 

this Unit Task among all Unit Tasks remaining. We can calculate the weights for all Unit Tasks 

remaining and configure the weight factors for Unit Tasks Candidates with different MWIS 

algorithms.  

We define two types of weight to describe the conflicting condition of a Unit Task.  

1. The Unit Task connection weight,  

𝑊𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛(𝑇𝑝,𝑡, 𝑇𝑝′,𝑡′) 

2. The Unit Task length weight,  

𝑊𝑙𝑒𝑛𝑔𝑡ℎ(𝑇𝑝,𝑡) 

Where the two Unit Tasks, 𝑇𝑝,𝑡 and 𝑇𝑝′,𝑡′, belong to two different parts, 𝑃𝑝 and 𝑃𝑝′ . 𝑝 ≠

𝑝′ , 𝑡 ∈ [1, 𝑡𝑝_𝑚𝑎𝑥] ,  𝑡′ ∈ [1, 𝑡′𝑝′_𝑚𝑎𝑥] , 𝑝 & 𝑝′ ∈ [1, 𝑝𝑚𝑎𝑥] , where 𝑡𝑝_𝑚𝑎𝑥  is the last Unit 

Task (the task with the greatest index) in part 𝑃𝑝 and 𝑡′𝑝′_𝑚𝑎𝑥 is the last Unit Task in part 

𝑃𝑝′.  𝑝𝑚𝑎𝑥 is the index of the last part (the part with the greatest index). 

The Unit Task connection weight, 𝑊𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛(𝑇𝑝,𝑡, 𝑇𝑝′,𝑡′) , is based on the connection rate 

between two Unit Tasks 𝑇𝑝,𝑡  and 𝑇𝑝′,𝑡′  from different parts 𝑃𝑝  and 𝑃𝑝′ . Being inspired by the 

graph density definition. Let 𝑁(𝑇𝑝,𝑡) be a set of 𝑛(𝑇𝑝,𝑡) number of nodes from the Unit Task 𝑇𝑝,𝑡, 

and 𝑒(𝑇𝑝,𝑡, 𝑇𝑝′,𝑡′) is the number of edges between set 𝑁(𝑇𝑝,𝑡) and set 𝑁(𝑇𝑝′,𝑡′). Then, we have 

the Unit Task connection weights: 
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𝑊𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛(𝑇𝑝,𝑡, 𝑇𝑝′,𝑡′) =
𝑒(𝑇𝑝,𝑡, 𝑇𝑝′,𝑡′)

𝑛(𝑇𝑝,𝑡) ∗ 𝑛(𝑇𝑝′,𝑡′)
 

The Unit Task length weight, 𝑊𝑙𝑒𝑛𝑔𝑡ℎ(𝑇𝑝,𝑡), is the length weight coefficient, 𝐿𝑊𝑐, multiply by 

the number, 𝑟(𝑇𝑝,𝑡), of remaining time slots needed to finish part 𝑃𝑝. Where we have:  

𝑊𝑙𝑒𝑛𝑔𝑡ℎ(𝑇𝑝,𝑡) = 𝐿𝑊𝑐 ∗ 𝑟(𝑇𝑝,𝑡) 

Note that the length weight coefficient, 𝐿𝑊𝑐, is used to describe the level priority given to a Unit 

Task based on the number of time slots remaining for finishing the part individually. Based on 

our testing, we define three levels of length weight coefficient, median, high and low, as 𝐿𝑊𝑐
𝑀, 

𝐿𝑊𝑐
𝐻 and 𝐿𝑊𝑐

𝐿 respectively. And they are defined as follows: 

• Let 𝐿𝑊𝑐
𝑀 = 1, to keep the length weight coefficient in the same scale as the Unit Task 

connection weight. In this case, the resource constraints and sequencing constraints are 

considered as equal while selecting nodes. 

• Let 𝐿𝑊𝑐
𝐻 = 𝑝𝑚𝑎𝑥 + ∑ 𝑟(𝑇𝑝,1)

𝑝=𝑝𝑚𝑎𝑥
𝑝=1 , which is the total number of time slots of all the 

parts, to ensure the parts need more remaining time slots are given priority. 

• 𝐿𝑊𝑐
𝐿 = 0.01, to keep the length weight coefficient a minimum effect on node selection. 

In this case, the resource constraints are more emphasized compare to the sequencing 

constraints while selecting nodes. 

The total weight, 𝑊𝑡𝑜𝑡𝑎𝑙(𝑇𝑝,𝑡), of the nodes of a Unit Task, 𝑇𝑝,𝑡, is the sum of the Unit Task 

connection weight between itself and all other Unit Tasks of different parts, plus the Unit Task 

length weight. Formally, 

𝑊𝑡𝑜𝑡𝑎𝑙(𝑇𝑝,𝑡) = 𝑊𝑙𝑒𝑛𝑔𝑡ℎ(𝑇𝑝,𝑡) + ∑ 𝑊𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛(𝑇𝑝,𝑡, 𝑇𝑝′,𝑡′)

𝑝′=𝑝𝑚𝑎𝑥,𝑡
′=𝑡𝑝_𝑚𝑎𝑥

𝑝′=1,𝑡′=1
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Note that the total weight, 𝑊𝑡𝑜𝑡𝑎𝑙(𝑇𝑝,𝑡), as the initial weight value, its purpose is to describe the 

conflicts that a Unit Task can possibly cause in a PPS problem. The final weight factors need to 

be configured with the MWIS algorithms for solving the PPS problem. An instance of the 

weights of the example problem can be calculated as Table 4-2 below. Each column describes 

the part ID, operation ID, Unit Tasks, nodes, and the value of the initial weights, respectively. 

Note that in Table 4-2, we choose to use the high length weight coefficient, 𝐿𝑊𝑐
𝐻 = 32. 

Table 4-2. Unit Tasks and Nodes 

Part-ID Op-ID Unit Tasks Nodes Initial Weights 

Part 1 O1,1 T1,1a-1 0, 1, 2, 3 157.097 

  T1,1a-2 4, 5, 6, 7 141.097 

  T1,1a-3 8, 9, 10, 11 125.097 

  T1,1a-4 12, 13, 14, 15 117.097 

  T1,1b-1 16, 17 154.722 

  T1,1b-2 18, 19 138.722 

  T1,1b-3 20, 21 122.722 

 O1,2 T1,2a-1 22, 23, 24, 25 101.097 

  T1,2a-2 26, 27, 28, 29 85.097 

  T1,2a-3 30, 31, 32, 33 69.097 

  T1,2a-4 34, 35, 36, 37 61.097 

  T1,2b-1 38, 39 98.722 

  T1,2b-2 40, 41 82.722 

  T1,2b-3 42, 43 66.722 

 O1,3 T1,3a-1 44, 45, 46, 47, 48, 49 88.611 

  T1,3a-2 50, 51, 52, 53, 54, 55 56.611 

 O1,4 T1,4a-1 56 8.5 

  T1,4a-2 57 0.5 

  T1,4b-1 58, 59, 60 11.417 

Part 2 O2,1 T2,1a-1 61, 62, 63 76.750 

  T2,1b-1 64 73.25 

  T2,1b-2 65 65.25 

 O2,2 T2,2a-1 66, 67, 68 104.499 

  T2,2a-2 69, 70, 71 72.499 

 O2,3 T2,3a-1 72, 73, 74, 75, 76, 77, 78, 79, 80 43.389 

  T2,3a-2 81, 82, 83, 84, 85, 86, 87, 88, 89 11.389 

Part 3 O3,3 T3,1a-1 90, 91, 92, 93, 94, 95 169.722 

  T3,1a-2 96, 97, 98, 99, 100, 101 137.722 

 O3,1 T3,2a-1 102, 103, 104, 105, 106, 107 105.722  

  T3,2a-2 108, 109, 110, 111, 112, 113 73.722 

 O3,2 T3,3a-1 114, 115, 116, 117, 118, 119 41.722  

  T3,3a-2 120, 121, 122, 123, 124, 125 9.722 

Part 4 O4,2 T4,1b-1 126, 127 147.167 

  T4,1b-2 128, 129 131.167 

  T4,1a-1 130, 131 147.167 
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  T4,1a-2 132, 133 131.167 

  T4,1a-3 134, 135 123.167 

 O4,4 T4,2a-1 136, 137, 138, 139 215.0 

  T4,2a-2 140, 141, 142, 143 183.0 

  T4,2a-3 144, 145, 146, 147 151.0 

 O4,1 T4,3a-1 148, 149, 150, 151 120.139 

  T4,3a-2 152, 153, 154, 155 88.139 

 O4,3 T4,4b-1 156 27.167 

  T4,4b-2 157 11.167 

  T4,4b-3 158 3.167 

  T4,4a-1 159 27.168 

  T4,4a-2 160 11.167 

 

4.4.2 Weight Factor Arrangements with MWIS Algorithms 

We have calculated the weight factors for the Unit Tasks, and now we explain how to finalize the 

weight factors with the MWIS algorithms. We developed three weight factor arrangements for 

the MWIS-based algorithms and seven weight factor arrangements for the AMISL-based 

algorithms. The weight factor arrangements, together with the MWIS algorithms, make twenty-

eight different heuristics configurations for solving the PPS problem.  

Before we start to talk about the weight factor arrangements, let us first recall the eight MWIS 

algorithms from Chapter 3. These algorithms are: 

• Algorithm A1 MWIS: the proposed exact MWIS algorithm. 

• Algorithm A2 AMISL: the proposed exact AMISL-based MWIS algorithm. 

• Algorithm A3 GWMIN: the GWMIN approximation algorithm from literature. 

• Algorithm A4 MWIS_CS_GWMIN: it is an algorithm composed of Algorithm A1 and 

Algorithm A3. This algorithm computes Compare Sets based on the whole induced 

subgraph at each level using Algorithm A3 GWMIN. 

• Algorithm A5 MWIS_SubCS_GWMIN: it is an algorithm composed of Algorithm A1 

and Algorithm A3. This algorithm computes Compare Sets based on the induced CSSs, 
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excluding the current removed node, using Algorithm A3 GWMIN. 

• Algorithm A6 GWMIN2: the GWMIN2 approximation algorithm from literature.  

• Algorithm A7 MWIS_CS_GWMIN2: it is an algorithm composed of Algorithm A1 and 

Algorithm A6. This algorithm computes Compare Sets based on the whole induced 

subgraph at each level using Algorithm A6 GWMIN2. 

• Algorithm A8 MWIS_SubCS_GWMIN2: it is an algorithm composed of Algorithm A1 

and Algorithm A6. This algorithm computes Compare Sets based on the induced CSSs, 

excluding the current removed node, using Algorithm A6 GWMIN2. 

 

The algorithms list above except Algorithm A2 AMISL are MWIS-based algorithms; they 

require the weights of all nodes to be positive (≥ 0) to make valid comparations in steps so that 

the final MWIS can be calculated. In this case, the flexibility of weight arrangements is limited, 

but this is easy to apply approximation strategies to reduce the complexity to speed up the 

computation. However, Algorithm A2 AMISL first look for all the Maximal Independent Sets 

(MIS), then get the set with the maximum total weight. In this case, the negative and zero 

weights are allowed. But Algorithm A2 AMISL may have an unreasonable complexity when 

there is a large number of large size MISs. Algorithm A2 AMISL is also hard to applied 

approximation strategies. The details of the three weight factor arrangements for the MWIS 

based algorithms and the seven weight factor arrangements for the AMISL based MWIS 

algorithms are discussed below. The idea is that while searching for the nodes for the current 

time slot, the Unit Tasks that can only be scheduled a good number of time slots later may have 

limited impact. Based on this idea, the wright factor arrangements are created by only checking 

different limited numbers of steps ahead and aiming to find the best set of the nodes for the 
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current time slot to achieve the objective of minimizing the makespan.  

(1) The weight factor arrangements for MWIS based algorithms 

For the MWIS based algorithms, we assign weight factors to the Candidate Nodes of Unit Task 

Candidates according to the three arrangements described below. Then, a small positive value 

(for instance, 0.0000001) is assigned to the non-candidate nodes. With the weight factors ready, 

we can apply one of the seven MWIS-based algorithms to find the set of Candidate Nodes with 

the maximum total weight with the maximum number of nodes. For this setup, the Candidate 

Nodes associated with the most uncommon resources for the non-candidate nodes are scheduled 

for the current time slot. So that there are fewer conflicts for the following time slots if the 

operations scheduled for the current time slot must be continued for more time slots. The Unit 

Tasks Candidates with the associated resources represented by the set of nodes are scheduled for 

the current time slot. The three weight factor arrangements are as follows: 

(1.1) MWIS A1: MWIS Weights 1 

In each time slot, for each 𝑝 ∈ [1, 𝑝𝑚𝑎𝑥], assign weight factors to the Unit Task Candidates, 

𝑇𝑝,𝑡𝑚𝑖𝑛
𝐶 , which is the first Unit Task, 𝑇𝑝,𝑡𝑚𝑖𝑛 , that can be scheduled for part 𝑃𝑝. The value of 

weight factors of the candidate nodes in 𝑇𝑝,𝑡𝑚𝑖𝑛
𝐶  is the weight of 𝑇𝑝,𝑡𝑚𝑖𝑛 , as the equation below, 

𝑊𝑀𝑊𝐼𝑆_𝐴1_𝑐𝑜𝑛𝑑𝑖𝑑𝑎𝑡𝑒(𝑇𝑝,𝑡𝑚𝑖𝑛
𝐶 ) = 𝑊𝑡𝑜𝑡𝑎𝑙(𝑇𝑝,𝑡𝑚𝑖𝑛) 

(1.2) MWIS A2: MWIS Weights 2  

In each time slot, for each 𝑝 ∈ [1, 𝑝𝑚𝑎𝑥], assign weight factors to the Unit Task Candidates, 

𝑇𝑝,𝑡𝑚𝑖𝑛
𝐶 . The value of weight factors of the Candidate Nodes in 𝑇𝑝,𝑡𝑚𝑖𝑛

𝐶  is the sum of the weights 
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of 𝑇𝑝,𝑡𝑚𝑖𝑛  and 𝑇𝑝,( 𝑡𝑚𝑖𝑛+1) , where 𝑇𝑝,( 𝑡𝑚𝑖𝑛+1)  is the following Unit Task of  𝑇𝑝,𝑡𝑚𝑖𝑛 , as the 

equation below, 

𝑊𝑀𝑊𝐼𝑆_𝐴2_𝑐𝑜𝑛𝑑𝑖𝑑𝑎𝑡𝑒(𝑇𝑝,𝑡𝑚𝑖𝑛
𝐶 ) = 𝑊𝑡𝑜𝑡𝑎𝑙(𝑇𝑝,𝑡𝑚𝑖𝑛) +𝑊𝑡𝑜𝑡𝑎𝑙(𝑇𝑝,𝑡𝑚𝑖𝑛+1) 

(1.3) MWIS A3: MWIS Weights 3  

In each time slot, for each 𝑝 ∈ [1, 𝑝𝑚𝑎𝑥], assign weight factors to the Unit Task Candidates, 

𝑇𝑝,𝑡𝑚𝑖𝑛
𝐶 . The value of weight factors of the Candidate Nodes in 𝑇𝑝,𝑡𝑚𝑖𝑛

𝐶  is the sum of the weights 

of 𝑇𝑝,𝑡𝑚𝑖𝑛 , 𝑇𝑝,( 𝑡𝑚𝑖𝑛+1)  and 𝑇𝑝,( 𝑡𝑚𝑖𝑛+2) , where 𝑇𝑝,( 𝑡𝑚𝑖𝑛+2)  is the following Unit Task of  

𝑇𝑝,( 𝑡𝑚𝑖𝑛+1), as the equation below, 

𝑊𝑀𝑊𝐼𝑆_𝐴3_𝑐𝑜𝑛𝑑𝑖𝑑𝑎𝑡𝑒(𝑇𝑝,𝑡𝑚𝑖𝑛
𝐶 ) = 𝑊𝑡𝑜𝑡𝑎𝑙(𝑇𝑝,𝑡𝑚𝑖𝑛) +𝑊𝑡𝑜𝑡𝑎𝑙(𝑇𝑝,𝑡𝑚𝑖𝑛+1) +𝑊𝑡𝑜𝑡𝑎𝑙(𝑇𝑝,𝑡𝑚𝑖𝑛+2) 

(2) The weight factor arrangements for Algorithm A2 AMISL 

For the AMISL based algorithms, we assign weight factors to the nodes indicated by the seven 

different weight factor arrangements described below. Then, a small negative value (for instance, 

-0.0000001) is assigned to the unaddressed nodes. With the weight factors ready, applied 

Algorithm A2 AMISL to find the set of Candidate Nodes with the maximum total weight with 

the minimum number of nodes. For this setup, the Candidate Nodes associated with the most 

common resources for the unaddressed nodes are scheduled for the current time slot, so that the 

most constraints are removed for the following time slots by scheduling such a set of Candidate 

Nodes. The Unit Tasks Candidates with the associated resources represented by the set of nodes 

are scheduled for the current time slot. The seven weight factor arrangements are as follows: 

(2.1) AMISL A1: AMISL Weights 1 
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In each time slot, for each 𝑝 ∈ [1, 𝑝𝑚𝑎𝑥], assign weight factors to the Unit Task Candidates, 

𝑇𝑝,𝑡𝑚𝑖𝑛
𝐶 . The value of weight factors of the Candidate Nodes in 𝑇𝑝,𝑡𝑚𝑖𝑛

𝐶  is the weight of 𝑇𝑝,𝑡𝑚𝑖𝑛 , as 

the equation below, 

𝑊𝐴𝑀𝐼𝑆𝐿_𝐴1_𝑐𝑜𝑛𝑑𝑖𝑑𝑎𝑡𝑒(𝑇𝑝,𝑡𝑚𝑖𝑛
𝐶 ) = 𝑊𝑡𝑜𝑡𝑎𝑙(𝑇𝑝,𝑡𝑚𝑖𝑛) 

(2.2) AMISL A2: AMISL Weights 2 Aggregation 

In each time slot, for each 𝑝 ∈ [1, 𝑝𝑚𝑎𝑥], assign weight factors to the Unit Task Candidates, 

𝑇𝑝,𝑡𝑚𝑖𝑛
𝐶 . The value of weight factors of the Candidate Nodes in 𝑇𝑝,𝑡𝑚𝑖𝑛

𝐶  is the sum of the weights 

of 𝑇𝑝,𝑡𝑚𝑖𝑛  and 𝑇𝑝,( 𝑡𝑚𝑖𝑛+1) , where 𝑇𝑝,( 𝑡𝑚𝑖𝑛+1)  is the following Unit Task of  𝑇𝑝,𝑡𝑚𝑖𝑛 , as the 

equation below, 

𝑊𝐴𝑀𝐼𝑆𝐿_𝐴2_𝑐𝑜𝑛𝑑𝑖𝑑𝑎𝑡𝑒(𝑇𝑝,𝑡𝑚𝑖𝑛
𝐶 ) = 𝑊𝑡𝑜𝑡𝑎𝑙(𝑇𝑝,𝑡𝑚𝑖𝑛) +𝑊𝑡𝑜𝑡𝑎𝑙(𝑇𝑝,𝑡𝑚𝑖𝑛+1) 

(2.3) AMISL A3: AMISL Weights 2 Aggregation + Non-aggregation 

In each time slot, for each 𝑝 ∈ [1, 𝑝𝑚𝑎𝑥], assign weight factors to the Unit Task Candidates, 

𝑇𝑝,𝑡𝑚𝑖𝑛
𝐶 , and the following Unit Task, 𝑇𝑝,( 𝑡𝑚𝑖𝑛+1). The value of weight factors of the Candidate 

Nodes in 𝑇𝑝,𝑡𝑚𝑖𝑛
𝐶  is the sum of the weights of 𝑇𝑝,𝑡𝑚𝑖𝑛  and 𝑇𝑗,( 𝑡𝑚𝑖𝑛+1), as the equation below, 

𝑊𝐴𝑀𝐼𝑆𝐿_𝐴3_𝑐𝑜𝑛𝑑𝑖𝑑𝑎𝑡𝑒(𝑇𝑝,𝑡𝑚𝑖𝑛
𝐶 ) = 𝑊𝑡𝑜𝑡𝑎𝑙(𝑇𝑝,𝑡𝑚𝑖𝑛) +𝑊𝑡𝑜𝑡𝑎𝑙(𝑇𝑝,𝑡𝑚𝑖𝑛+1) 

The value of weight factors of nodes in 𝑇𝑝,𝑡𝑚𝑖𝑛+1 is the weight of 𝑇𝑝,𝑡𝑚𝑖𝑛+1 , as the equation 

below, 

𝑊𝐴𝑀𝐼𝑆𝐿_𝐴3_𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔(𝑇𝑝,𝑡𝑚𝑖𝑛+1) = 𝑊𝑡𝑜𝑡𝑎𝑙(𝑇𝑝,𝑡𝑚𝑖𝑛+1) 

(2.4) AMISL A4: AMISL Weights 2 Non-aggregation 
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In each time slot, for each 𝑝 ∈ [1, 𝑝𝑚𝑎𝑥], assign weight factors to the Unit Task Candidates, 

𝑇𝑝,𝑡𝑚𝑖𝑛
𝐶 , and the following Unit Task, 𝑇𝑝,( 𝑡𝑚𝑖𝑛+1). The value of weight factors of the Candidate 

Nodes in 𝑇𝑝,𝑡𝑚𝑖𝑛
𝐶  is the weight of 𝑇𝑝,𝑡𝑚𝑖𝑛 , as the equation below, 

𝑊𝐴𝑀𝐼𝑆𝐿_𝐴4_𝑐𝑜𝑛𝑑𝑖𝑑𝑎𝑡𝑒(𝑇𝑝,𝑡𝑚𝑖𝑛
𝐶 ) = 𝑊𝑡𝑜𝑡𝑎𝑙(𝑇𝑝,𝑡𝑚𝑖𝑛) 

The value of weight factors of nodes in 𝑇𝑝,𝑡𝑚𝑖𝑛+1 is the weight of 𝑇𝑝,𝑡𝑚𝑖𝑛+1 , as the equation 

below, 

𝑊𝐴𝑀𝐼𝑆𝐿_𝐴4_𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔(𝑇𝑝,𝑡𝑚𝑖𝑛+1) = 𝑊𝑡𝑜𝑡𝑎𝑙(𝑇𝑝,𝑡𝑚𝑖𝑛+1) 

(2.5) AMISL A5: AMISL Weights 3 Aggregation 

In each time slot, for each 𝑝 ∈ [1, 𝑝𝑚𝑎𝑥], assign weight factors to the Unit Task Candidates, 

𝑇𝑝,𝑡𝑚𝑖𝑛
𝐶 . The value of weight factors of the Candidate Nodes in 𝑇𝑝,𝑡𝑚𝑖𝑛

𝐶  is the sum of the weights 

of 𝑇𝑝,𝑡𝑚𝑖𝑛, 𝑇𝑝,( 𝑡𝑚𝑖𝑛+1) and 𝑇𝑝,( 𝑡𝑚𝑖𝑛+2), as the equation below, 

𝑊𝐴𝑀𝐼𝑆𝐿_𝐴5_𝑐𝑜𝑛𝑑𝑖𝑑𝑎𝑡𝑒(𝑇𝑝,𝑡𝑚𝑖𝑛
𝐶 ) = 𝑊𝑡𝑜𝑡𝑎𝑙(𝑇𝑝,𝑡𝑚𝑖𝑛) +𝑊𝑡𝑜𝑡𝑎𝑙(𝑇𝑝,𝑡𝑚𝑖𝑛+1) +𝑊𝑡𝑜𝑡𝑎𝑙(𝑇𝑝,𝑡𝑚𝑖𝑛+2) 

(2.6) AMISL A6: AMISL Weights 3 Aggregation + Non-aggregation 

In each time slot, for each 𝑝 ∈ [1, 𝑝𝑚𝑎𝑥], assign weight factors to the Unit Task Candidates, 

𝑇𝑝,𝑡𝑚𝑖𝑛
𝐶 , and the two following Unit Tasks, 𝑇𝑝,( 𝑡𝑚𝑖𝑛+1)  and 𝑇𝑝,( 𝑡𝑚𝑖𝑛+2) . The value of weight 

factors of the Candidate Nodes in 𝑇𝑝,𝑡𝑚𝑖𝑛
𝐶  is the sum of the weights of 𝑇𝑝,𝑡𝑚𝑖𝑛 , 𝑇𝑝,( 𝑡𝑚𝑖𝑛+1) and 

𝑇𝑝,( 𝑡𝑚𝑖𝑛+2), as the equation below, 

𝑊𝑀𝑊𝐼𝑆_𝐴6_𝑐𝑜𝑛𝑑𝑖𝑑𝑎𝑡𝑒(𝑇𝑝,𝑡𝑚𝑖𝑛
𝐶 ) = 𝑊𝑡𝑜𝑡𝑎𝑙(𝑇𝑝,𝑡𝑚𝑖𝑛) +𝑊𝑡𝑜𝑡𝑎𝑙(𝑇𝑝,𝑡𝑚𝑖𝑛+1) +𝑊𝑡𝑜𝑡𝑎𝑙(𝑇𝑝,𝑡𝑚𝑖𝑛+2) 

The value of weight factors of nodes in 𝑇𝑝,𝑡𝑚𝑖𝑛+1 is the weight of 𝑇𝑝,𝑡𝑚𝑖𝑛+1 , as the equation 

below, 



83 

 

𝑊𝐴𝑀𝐼𝑆𝐿_𝐴6_𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔(𝑇𝑝,𝑡𝑚𝑖𝑛+1) = 𝑊𝑡𝑜𝑡𝑎𝑙(𝑇𝑝,𝑡𝑚𝑖𝑛+1) 

The value of weight factors of nodes in 𝑇𝑝,𝑡𝑚𝑖𝑛+2 is the weight of 𝑇𝑝,𝑡𝑚𝑖𝑛+2 , as the equation 

below, 

𝑊𝐴𝑀𝐼𝑆𝐿_𝐴6_𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔_𝑡𝑤𝑜(𝑇𝑝,𝑡𝑚𝑖𝑛+2) = 𝑊𝑡𝑜𝑡𝑎𝑙(𝑇𝑝,𝑡𝑚𝑖𝑛+2) 

(2.7) AMISL A7: AMISL Weights 3 Non-aggregation 

In each time slot, for each 𝑝 ∈ [1, 𝑝𝑚𝑎𝑥], assign weight factors to the Unit Task Candidates, 

𝑇𝑝,𝑡𝑚𝑖𝑛
𝐶 , and the two following Unit Tasks, 𝑇𝑝,( 𝑡𝑚𝑖𝑛+1)  and 𝑇𝑝,( 𝑡𝑚𝑖𝑛+2) . The value of weight 

factors of the Candidate Nodes in 𝑇𝑝,𝑡𝑚𝑖𝑛
𝐶  is the weights of 𝑇𝑝,𝑡𝑚𝑖𝑛, as the equation below, 

𝑊𝑀𝑊𝐼𝑆_𝐴7_𝑐𝑜𝑛𝑑𝑖𝑑𝑎𝑡𝑒(𝑇𝑝,𝑡𝑚𝑖𝑛
𝐶 ) = 𝑊𝑡𝑜𝑡𝑎𝑙(𝑇𝑝,𝑡𝑚𝑖𝑛) 

The value of weight factors of nodes in 𝑇𝑝,𝑡𝑚𝑖𝑛+1 is the weight of 𝑇𝑝,𝑡𝑚𝑖𝑛+1 , as the equation 

below, 

𝑊𝐴𝑀𝐼𝑆𝐿_𝐴7_𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔(𝑇𝑝,𝑡𝑚𝑖𝑛+1) = 𝑊𝑡𝑜𝑡𝑎𝑙(𝑇𝑝,𝑡𝑚𝑖𝑛+1) 

The value of weight factors of nodes in 𝑇𝑝,𝑡𝑚𝑖𝑛+2 is the weight of 𝑇𝑝,𝑡𝑚𝑖𝑛+2 , as the equation 

below, 

𝑊𝐴𝑀𝐼𝑆𝐿_𝐴7_𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔_𝑡𝑤𝑜(𝑇𝑝,𝑡𝑚𝑖𝑛+2) = 𝑊𝑡𝑜𝑡𝑎𝑙(𝑇𝑝,𝑡𝑚𝑖𝑛+2) 

4.4.3 Heuristics Configurations  

The eight MWIS algorithms, together with the ten weight arrangements, can be configured into 

twenty-eight heuristics configurations for solving the PPS problem. The heuristics configurations 

are shown in Table 4-3. Each column describes the heuristics configuration ID, algorithm ID, 

weight arrangement strategies, whether it is an MWIS-based algorithm and whether it is an 
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approximation algorithm, respectively. 

Table 4-3. Heuristics Configurations 

Heuristics-ID  Algorithm-ID Weight arrangement strategies MWIS 

based? 

Appr? 

1 A1 MWIS MWIS A1: MWIS Weights 1 Yes No 

2 A1 MWIS MWIS A2: MWIS Weights 2 Yes No 

3 A1 MWIS MWIS A3: MWIS Weights 3 Yes No 

4 A2 AMISL AMISL A1: AMISL Weights 1 No No 

5 A2 AMISL AMISL A2: AMISL Weights 2 Agg No No 

6 A2 AMISL AMISL A3: AMISL Weights 2 Agg + Nagg No No 

7 A2 AMISL AMISL A4: AMISL Weights 2 Nagg No No 

8 A2 AMISL AMISL A5: AMISL Weights 3 Agg No No 

9 A2 AMISL AMISL A6: AMISL Weights 3 Agg + Nagg No No 

10 A2 AMISL AMISL A7: AMISL Weights 3 Nagg No No 

11 A3 GWMIN MWIS A1: MWIS Weights 1 Yes Yes 

12 A4 MWIS_CS_GWMIN MWIS A1: MWIS Weights 1 Yes Yes 

13 A5 MWIS_SubCS_GWMIN MWIS A1: MWIS Weights 1 Yes Yes 

14 A3 GWMIN MWIS A2: MWIS Weights 2 Yes Yes 

15 A4 MWIS_CS_GWMIN MWIS A2: MWIS Weights 2 Yes Yes 

16 A5 MWIS_SubCS_GWMIN MWIS A2: MWIS Weights 2 Yes Yes 

17 A3 GWMIN MWIS A3: MWIS Weights 3 Yes Yes 

18 A4 MWIS_CS_GWMIN MWIS A3: MWIS Weights 3 Yes Yes 

19 A5 MWIS_SubCS_GWMIN MWIS A3: MWIS Weights 3 Yes Yes 

20 A6 GWMIN2 MWIS A1: MWIS Weights 1 Yes Yes 

21 A7 MWIS_CS_GWMIN2 MWIS A1: MWIS Weights 1 Yes Yes 

22 A8 MWIS_SubCS_GWMIN2 MWIS A1: MWIS Weights 1 Yes Yes 

23 A6 GWMIN2 MWIS A2: MWIS Weights 2 Yes Yes 

24 A7 MWIS_CS_GWMIN2 MWIS A2: MWIS Weights 2 Yes Yes 

25 A8 MWIS_SubCS_GWMIN2 MWIS A2: MWIS Weights 2 Yes Yes 

26 A6 GWMIN2 MWIS A3: MWIS Weights 3 Yes Yes 

27 A7 MWIS_CS_GWMIN2 MWIS A3: MWIS Weights 3 Yes Yes 

28 A8 MWIS_SubCS_GWMIN2 MWIS A3: MWIS Weights 3 Yes Yes 

4.5 Solving the Example Problem via the Proposed Approach  

In this section, we summarize the proposed method for solving the PPS problem with the 

example PPS problem described at the beginning of this chapter. The major steps of the proposed 

approach are described below: 

Step #1: Prepare the input information. 

In step one, we reformat the operation information with the best practice operation sequence and 

simplify the problem by breaking down the processing time into time slots. The operation 
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information of the four parts in the example problem is reformatted as Figure 4-2 based on 

operation sequencing constraints shown as the top part of Figure 4-1. Figure 4-4 can be 

transformed based on Figure 4-2 by breaking down the operations into Unit Tasks. Here, the 

processing time for each Unit Task is one time slot, which stands for 10 time units. 

Step #2: Generate the conflicting graph for the PPS problem. 

In step two, the nodes for the conflict graph is generated based on the different possible resource 

selections for each Unit Task. And the edges of the conflicting graph are generated based on the 

constraints. Figure 4-8 is the conflicting graph for the example problem, which has 4718 edges 

and 161 nodes, and Figure 4-9 shows the details of the edges.  

Step #3: Based on the selected heuristics configuration, arrange weight factors and compute the 

MWIS. 

In step three, we select Heuristics #13, which assigns weight factors as MWIS A1: MWIS 

Weights 1 and uses Algorithm A5 MWIS_SubCS_GWMIN to compute the MWIS for the nodes 

to schedule for the current time slot. Note that we choose to use the high length weight 

coefficient, 𝐿𝑊𝑐
𝐻, which 𝐿𝑊𝑐

𝐻 = 32 for the example problem. The final weight factors at the 

first time slot for the Unit Task Candidates and Candidate Nodes of the example problem are 

shown in Table 4-4. Each column describes the part ID, operation ID, Unit Tasks, nodes of the 

Unit Tasks and the Final weight factors, respectively. The MWIS found by Heuristics #13 is the 

node set, ['0', '4', '8', '12', '22', '26', '30', '34', '44', '50', '139', '143', '147', '126', '128', '151', '155', 

'156', '157', '158', '58', '95', '101', '107', '113', '119', '125', '64', '65']. It means that the Unit Task 

Candidates with their resources, T1,1a−1[(M2)1 and (T6)1] , T2,1b−1[(M1)1 and (T1)1] , 

T3,1a−1[(M4)1 and (T8)1] and T4,1b−1[(M3)1 and (T9)1], are scheduled for the current time slot. 

Step #4: Update the remaining Unit Tasks and the conflicting graph 



86 

 

In step four, remove the Unit Tasks that have been scheduled and remove the Unit Tasks that 

cannot be scheduled because of the constraints that no changing resources is allowed before an 

operation is finished. Then, update the conflicting graph and the weight factors. Figure 4-10 is 

the updated task information for the remaining Unit Tasks. And the updated remaining 

conflicting graph, the node labels, and edge connection details for the following time slot are 

shown as Figure 4-11 and Figure 4-12, respectively.  

Table 4-4. Final Weight Factors Unit Task Candidates and Candidate Nodes via Heuristics 

#13 on the Example Problem 

Part-ID Op-ID Unit Tasks Nodes Final Weights 

Part 1 O1,1 T1,1a-1 0, 1, 2, 3 157.097 

  T1,1a-2 4, 5, 6, 7 141.097 

  T1,1a-3 8, 9, 10, 11 125.097 

  T1,1a-4 12, 13, 14, 15 117.097 

  T1,1b-1 16, 17 154.722 

  T1,1b-2 18, 19 138.722 

  T1,1b-3 20, 21 122.722 

Part 2 O2,1 T2,1a-1 61, 62, 63 76.750 

  T2,1b-1 64 73.25 

  T2,1b-2 65 65.25 

Part 3 O3,3 T3,1a-1 90, 91, 92, 93, 94, 95 169.722 

  T3,1a-2 96, 97, 98, 99, 100, 101 137.722 

Part 4 O4,2 T4,1b-1 126, 127 147.167 

  T4,1b-2 128, 129 131.167 

  T4,1a-1 130, 131 147.167 

  T4,1a-2 132, 133 131.167 

  T4,1a-3 134, 135 123.167 
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Figure 4-10. Updated Remaining Tasks Information for the Following Time Slot 

Job #1: 𝑂11 → 𝑂12 → 𝑂13 → 𝑂14 

(
T11a−2[(M2,  M3)1 and (T6 , T7)1]

1𝑇𝑆
→
T11a−3[(M2,  M3)1 and (T6 , T7)1]

1𝑇𝑆
→
T11a−4[(M2,  M3)1 and (T6 , T7)1]

1𝑇𝑆
)

1

→ (

T12a−1[(M2,  M3)1 and (T6, T7)1]

1𝑇𝑆
→
T12a−2[(M2,  M3)1 and (T6, T7)1]

1𝑇𝑆
→
T12a−3[(M2,  M3)1 and (T6, T7)1]

1𝑇𝑆
→
T12a−4[(M2,  M3)1 and (T6, T7)1]

1𝑇𝑆
T12b−1[(M4)1 and (T6 , T7)1]

1𝑇𝑆
→
T12b−2[(M4)1 and (T6, T7)1]

1𝑇𝑆
→
T12b−3[(M4)1 and (T6, T7)1]

1𝑇𝑆

)

1

→ (
T13a−1[(M2,  M3, M4)1 and (T6 , T7)1]

1𝑇𝑆
→
T13a−2[(M2 ,  M3, M4)1 and (T6, T7)1]

1𝑇𝑆
)

1

→ (

T14a−1[(M1)1 and (T2)1]

1𝑇𝑆
→
T14a−2[(M1)1 and (T2)1]

1𝑇𝑆
T14b[(M2 ,  M3, M4)1 and (T2)1]

1𝑇𝑆

)

1

 

Job #2: 𝑂21 → 𝑂22 → 𝑂23 

(
T21b−2[(M1)1 and (T1)1]

1𝑇𝑆
)1 → (

T22a−1[(M2,  M3, M4)1 and (T12)1]

1𝑇𝑆
→
T22a−2[(M2,  M3, M4)1 and (T12)1]

1𝑇𝑆
)

1

→ (
T23a−1[(M2,  M3, M4)1 and (T5 , T6, T11)1]

1𝑇𝑆
→
T23a−2[(M2,  M3, M4)1 and (T6, T7 , T11)1]

1𝑇𝑆
)

1

 

Job #3: 𝑂33 → 𝑂31 → 𝑂32 

(
T31a−2[(M2,  M3, M4)1 and (T7 , T8)1]

1𝑇𝑆
)

1

→ (
T32a−1[(M2,  M3, M4)1 and (T7, T8)1]

1𝑇𝑆
→
T32a−2[(M2 ,  M3, M4)1 and (T7, T8)1]

1𝑇𝑆
)

1

→ (
T33a−1[(M2,  M3, M4)1 and (T7 , T8)1]

1𝑇𝑆
→
T33a−2[(M2,  M3, M4)1 and (T7, T8)1]

1𝑇𝑆
)

1

 

Job #4: 𝑂42 → 𝑂44 → 𝑂41 → 𝑂43 

(
T41b−2[(M3)1 and (T9, T10)1]

1𝑇𝑆
)

1

→ (
T42a−1[(M2, M3)1 and (T1 , T3)1]

1𝑇𝑆
→
T42a−2[(M2, M3)1 and (T1 , T3)1]

1𝑇𝑆
→
T42a−3[(M2, M3)1 and (T1, T3)1]

1𝑇𝑆
)

1

→ (
T43a−1[(M2 , M3)1 and (T6 , T9)1]

1𝑇𝑆
→
T43a−2[(M2, M3)1 and (T6, T9)1]

1𝑇𝑆
)

1

→ (

T44a−1[(M2)1 and (T3)1]

1𝑇𝑆
→
T44a − 2[(M2)1 and (T3)1]

1𝑇𝑆
T44b−1[(M3)1 and (T3)1]

1𝑇𝑆
→
T44b−2[(M3)1 and (T3)1]

1𝑇𝑆
→
T44b−3[(M3)1 and (T3)1]

1𝑇𝑆

)

1
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Figure 4-11. Updated Remaining Conflicting Graph for the Following Time Slot
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Figure 4-12. Updated Remaining Edge Connection Details for the Following Time Slot

4 5 6 7 8 9 10 11 12 13 14 15 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 128 129 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

 T11a-2(M2, T6) 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T11a-2(M2, T7) 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T11a-2(M3, T6) 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T11a-2(M3, T7) 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T11a-3(M2, T6) 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T11a-3(M2, T7) 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T11a-3(M3, T6) 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T11a-3(M3, T7) 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T11a-4(M2, T6) 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T11a-4(M2, T7) 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T11a-4(M3, T6) 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T11a-4(M3, T7) 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T12a-1(M2, T6) 22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T12a-1(M2, T7) 23 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T12a-1(M3, T6) 24 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T12a-1(M3, T7) 25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T12a-2(M2, T6) 26 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T12a-2(M2, T7) 27 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T12a-2(M3, T6) 28 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T12a-2(M3, T7) 29 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T12a-3(M2, T6) 30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T12a-3(M2, T7) 31 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T12a-3(M3, T6) 32 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T12a-3(M3, T7) 33 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T12a-4(M2, T6) 34 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T12a-4(M2, T7) 35 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T12a-4(M3, T6) 36 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T12a-4(M3, T7) 37 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T12b-1(M4, T6) 38 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T12b-1(M4, T7) 39 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T12b-2(M4, T6) 40 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T12b-2(M4, T7) 41 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T12b-3(M4, T6) 42 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T12b-3(M4, T7) 43 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T13a-1(M2, T6) 44 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T13a-1(M2, T7) 45 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T13a-1(M3, T6) 46 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T13a-1(M3, T7) 47 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T13a-1(M4, T6) 48 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T13a-1(M4, T7) 49 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T13a-2(M2, T6) 50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T13a-2(M2, T7) 51 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T13a-2(M3, T6) 52 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T13a-2(M3, T7) 53 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T13a-2(M4, T6) 54 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T13a-2(M4, T7) 55 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T14a-1(M1, T2) 56 1 1 1 1

 T14a-2(M1, T2) 57 1 1 1 1

 T14b-1(M2, T2) 58 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T14b-1(M3, T2) 59 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T14b-1(M4, T2) 60 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T21b-2(M1, T1) 65 1 1 1 1 1

 T22a-1(M2, T12) 66 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T22a-1(M3, T12) 67 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T22a-1(M4, T12) 68 1 1 1 1 1 1 1 1 1 1 1 1

 T22a-2(M2, T12) 69 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T22a-2(M3, T12) 70 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T22a-2(M4, T12) 71 1 1 1 1 1 1 1 1 1 1

 T23a-1(M2, T6) 72 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T23a-1(M2, T7) 73 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T23a-1(M2, T11) 74 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T23a-1(M3, T6) 75 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T23a-1(M3, T7) 76 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T23a-1(M3, T11) 77 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T23a-1(M4, T6) 78 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T23a-1(M4, T7) 79 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T23a-1(M4, T11) 80 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T23a-2(M2, T6) 81 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T23a-2(M2, T7) 82 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T23a-2(M2, T11) 83 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T23a-2(M3, T6) 84 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T23a-2(M3, T7) 85 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T23a-2(M3, T11) 86 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T23a-2(M4, T6) 87 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T23a-2(M4, T7) 88 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T23a-2(M4, T11) 89 1 1 1 1 1 1 1 1 1 1

 T31a-2(M2, T7) 96 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T31a-2(M2, T8) 97 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T31a-2(M3, T7) 98 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T31a-2(M3, T8) 99 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T31a-2(M4, T7) 100 1

 T31a-2(M4, T8) 101

 T32a-1(M2, T7) 102 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T32a-1(M2, T8) 103 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T32a-1(M3, T7) 104 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T32a-1(M3, T8) 105 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T32a-1(M4, T7) 106 1 1 1 1 1 1

 T32a-1(M4, T8) 107 1 1 1 1 1

 T32a-2(M2, T7) 108 1 1 1 1 1

 T32a-2(M2, T8) 109 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T32a-2(M3, T7) 110 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T32a-2(M3, T8) 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T32a-2(M4, T7) 112 1

 T32a-2(M4, T8) 113

 T33a-1(M2, T7) 114 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T33a-1(M2, T8) 115 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T33a-1(M3, T7) 116 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T33a-1(M3, T8) 117 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T33a-1(M4, T7) 118 1 1 1 1 1 1

 T33a-1(M4, T8) 119 1 1 1 1 1

 T33a-2(M2, T7) 120 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T33a-2(M2, T8) 121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T33a-2(M3, T7) 122 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T33a-2(M3, T8) 123 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T33a-2(M4, T7) 124 1

 T33a-2(M4, T8) 125

 T41b-2(M3, T9) 128 1

 T41b-2(M3, T10) 129

 T42a-1(M2, T1) 136 1 1 1 1 1 1 1 1 1

 T42a-1(M2, T3) 137 1 1 1 1 1 1 1 1

 T42a-1(M3, T1) 138 1 1 1 1 1 1 1

 T42a-1(M2, T3) 139 1 1 1 1 1 1

 T42a-2(M2, T1) 140 1 1 1 1 1 1

 T42a-2(M2, T3) 141 1 1 1 1 1

 T42a-2(M3, T1) 142 1 1 1 1

 T42a-2(M3, T3) 143 1 1 1

 T42a-3(M2, T1) 144 1 1 1

 T42a-3(M2, T3) 145 1 1

 T42a-3(M3, T1) 146 1

 T42a-3(M3, T3) 147

 T43a-1(M2, T6) 148 1 1 1 1 1 1

 T43a-1(M2, T9) 149 1 1 1 1 1

 T43a-1(M3, T6) 150 1 1 1 1

 T43a-1(M3, T9) 151 1 1 1

 T43a-2(M2, T6) 152 1 1 1

 T43a-2(M2, T9) 153 1 1

 T43a-2(M3, T6) 154 1

 T43a-2(M3, T9) 155

 T44b-1(M3, T3) 156 1 1

 T44b-2(M3, T3) 157 1 1

 T44b-3(M3, T3) 158 1 1

 T44a-1(M2, T3) 159

 T44a-2(M2, T3) 160
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Step #5: Checking the ending condition 

In step five, we need to make a judgment. If there is at least one remaining Unit Task, go to step 

#3. If there is no remaining Unit Task, the PPS problem computation is finished, and the output 

schedule is the combination of Unit Task Candidates and Candidate Nodes found at each time 

slot.  

The results of the example problem with Heuristics #13 is illustrated in Figure 4-13. Our 

approach can get to a near-optimal solution finishing in 107.5 time unit compare to the optimum 

solution finishing in 98 time units, which is a 9.69% error. The computation of our approach 

takes about 20 seconds, which is much faster (seconds versus days) compare to the optimum 

solutions using integer programming.  

Table 4-5 shows the performance of our approach in terms of accuracy and computation time. 

Each column describes the heuristics ID, the minimum makespan in a number of time slots, 

average clock time in 3-run, whether it is an approximation algorithm, error in a number of time 

slots, and error rate, respectively. The accuracy is the error rate by comparing the result of my 

approach with the optimal solution, and computation time is the clock time taken to finish the 

computation. For the example problem, we can get a near-optimal in seconds with a minimum 

10% error but much faster. In the following chapter, we test our approach on a real-world 

example from the literature, and further test cases are designed to exam the accuracy, robustness, 

and scalability of our approach. 

 



91 

 

 

Figure 4-13. Schedule Created with Heuristics #13 
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Table 4-5. Outputs of the Heuristics Configurations on the Example PPS Problem 
Methods  Minimum makespan 

(in time slots) 

Clock time, 

3-run average 

Is approx? Error Error rate 

Heuristics#1 11 11768.55 No 1 10% 

Heuristics#2 11 14392.62 No 1 10% 

Heuristics#3 11 13370.07 No 1 10% 

Heuristics#4 11 13344.73 No 1 10% 

Heuristics#5 11 10904.36 No 1 10% 

Heuristics#6 11 12042.11 No 1 10% 

Heuristics#7 14 11942.88 No 4 40% 

Heuristics#8 11 10178.87 No 1 10% 

Heuristics#9 11 10496.09 No 1 10% 

Heuristics#10 11 10833.84 No 1 10% 

Heuristics#11 12 8.75 Yes 2 20% 

Heuristics#12 11 38.73 Yes 1 10% 

Heuristics#13 11 26.02 Yes 1 10% 

Heuristics#14 11 9.23 Yes 1 10% 

Heuristics#15 11 39.22 Yes 1 10% 

Heuristics#16 11 28.09 Yes 1 10% 

Heuristics#17 11 9.16 Yes 1 10% 

Heuristics#18 11 37.66 Yes 1 10% 

Heuristics#19 11 26.74 Yes 1 10% 

Heuristics#20 14 9.99 Yes 4 40% 

Heuristics#21 11 43.34 Yes 1 10% 

Heuristics#22 11 27.02 Yes 1 10% 

Heuristics#23 14 9.78 Yes 4 40% 

Heuristics#24 11 41.62 Yes 1 10% 

Heuristics#25 11 27.59 Yes 1 10% 

Heuristics#26 14 9.91 Yes 4 40% 

Heuristics#27 11 40.42 Yes 1 10% 

Heuristics#28 11 28.64 Yes 1 10% 

4.6 Summary 

In this chapter, we propose a novel approach to formulate a general type of PPS problem with 

integrated resource allocation and process planning towards a typical objective, minimizing the 

makespan. The PPS problem is formulated into an undirect weighted conflicting graph due to its 

nature of resource and sequence constraints. In this conflicting graph, nodes stand for operations 

and their resources; edges stand for constraints, and weight factors are the guidelines for the node 

selection at each time slot. A variation of the GCP, the MWIS problem, can be solved to find the 

best set of operations with their desired resources at each discrete time slot.  
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This proposed approach solves the PPS problem directly with minimum iteration. We establish 

that the proposed approach always returns a feasible solution by selecting the MWIS for each 

time slot. The accuracy and computational speed of the MWIS algorithm in the heuristics 

configurations can guarantee the performance of the proposed approach. 

The seven weight factor arrangements, together with the eight MWIS algorithms from Chapter 3, 

are constructed into twenty-eight heuristics configurations for solving the PPS problem. These 

heuristics configurations are listed in Table 4-3. In the following Chapter 5, we test our approach 

on a real-world example from the literature, and further test instances are designed to exam the 

accuracy, robustness, and scalability of our approach. 
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Chapter 5. Computational Experiments 

In this chapter, we first want to verify the feasibility of the proposed approach for the Process 

Planning and Scheduling (PPS) problem on a real-world example. Secondly, we create a set of 

testing cases based on the structure of the real-world example but randomized sequencing 

constraints and resource combinations for further evaluation. The results obtained on all the test 

instances are reported and analyzed in terms of scalability, accuracy, and robustness. The 

scalability analysis shows how the proposed approach behaves on different sizes of the inputs. 

The accuracy refers to how likely the proposed approach can get to the optimum results. It can 

be measured by the average and maximum error rate on the tests. And the robustness ensures the 

error-free and bug-free on all the tests. 

Chapter 5 is organized as following sections: Section 5.1 provides the details of the 

implementation of the Integer Programming (IP) model for the PPS problem, so that the 

optimum solutions can be obtained. Section 5.2 describes the proposed approach with a real-

world problem from the literature. Section 5.3 discusses and analyzes the results of all the test 

instances. Section 5.4 gives the summary of Chapter 5. 

5.1 Integer Programming Model for Process Planning and Scheduling (PPS) Problem 

5.1.1 Implementation of Integer Programming (IP) Model 

In order to get the optimum solution to the PPS problem, the Integer Programming (IP) model is 

implemented and tested based on the mathematical modeling discussed in section 4.3. The IP 

model is implemented with python package “pyomo” in Python 3.7.5. The solver utilized in this 

implementation is “glpk (GNU Linear Programming Kit).”  
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Figure 5-1. Parts Information with Simplified Duration Information 

Assume that the best practice sequence of operations of four parts is given as Figure 5-1. Note 

that, we generalize the machines, tools and all other possible resources as 𝑟 number of resources, 

(𝑅1, 𝑅2, … , 𝑅𝑟). The input format, taking Part #1 operations as an example, is shown in Figure 5-

2.  

 

Figure 5-2. Input of Part #1 Operations 

Part #1: 
𝑇1,1[(𝑅1,𝑅2,𝑅3)2]

2
→

𝑇1,2[(𝑅1,𝑅2,𝑅3)2]

1
→

𝑇1,3[(𝑅1,𝑅2,𝑅3)1]

2
→

𝑇1,4[(𝑅4)1]

1
 

Part #2: 
𝑇2,1[(𝑅1,𝑅2,𝑅3)1]

1
→

𝑇2,2[(𝑅1)1𝑎𝑛𝑑(𝑅2,𝑅3)1]

2
→

𝑇2,3[(𝑅4)1]

1
 

Part #3: 
𝑇3,1[(𝑅1,𝑅2)1]

1
→ (

𝑇3,2𝑎[(𝑅1,𝑅2)2]

1
𝑇3,2𝑏[(𝑅3)1]

2

)

1

→
𝑇3,3[(𝑅3,𝑅4)1]

3
 

Part #4: 
𝑇4,1[(𝑅1,𝑅2,𝑅3)3]

1
→

𝑇4,2[(𝑅1,𝑅2,𝑅3)2]

2
→

𝑇4,3[(𝑅1,𝑅2,𝑅3)3]

1
→

𝑇4,4[(𝑅1,𝑅2,𝑅3)2]

1
→

𝑇4,5[(𝑅4)1]

1
 

Where, 𝑅1, 𝑅2, 𝑅3, 𝑅4  are the four different resources. For 
𝑇1,1[(𝑅1,𝑅2,𝑅3)2]

2
, it means that the 

first operation (task 𝑇1,1 ) of Part #1 requires any combination of two resources among 

(𝑅1, 𝑅2, 𝑅3) and the duration is 2 time slots. (

𝑇3,2𝑎[(𝑅1,𝑅2)2]

1
𝑇3,2𝑏[(𝑅3)1]

2

)

1

means that the task 𝑇3,2 can be 

processed with two task options 𝑇3,2𝑎 and 𝑇3,2𝑏 . 
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The inputs are then transformed into the dictionary shown as Figure 5-3 to fulfill the solver’s 

requirements. Each job is broken down into task-resource pairs associated with its duration and 

sequencing information. For tasks that require more than one resource, each required resource is 

generated as one task-resource pair instance.  

 

Figure 5-3. Inputs Dictionary Format for Package “pyomo” in Python 

The mathematical modeling of PPS problem from section 4.3 is transformed into the format for 

the python package “pyomo” as well as the solver “glpk”.  The new formulation is as below: 

(1) The variables 

• model.start = pyo.Var(PARTS, RESOURCES, domain = pyo.NonNegativeReals) 

• model.makespan = pyo.Var(domain=pyo.NonNegativeReals) 

• model.y = pyo.Var(PARTS,PARTS,RESOURCES, domain = pyo.Boolean) 
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(2) The objective 

• model.Obj = pyo.Objective(expr = model.makespan, sense = pyo.minimize) 

(3) The constraints 

For the instances of the same tasks but different resources, these instances must have the same 

start time.  

• model.cons.add(model.start[j,r] <= model.start[m,n]) 

• model.cons.add(model.start[m,n] <= model.start[j,r]) 

The makespan is the finishing time for all tasks. 

• model.cons.add(model.start[j,m] + TASKS[(j,m)]['dur'] <= model.makespan) 

For a task which requires a predecessor, it can only be scheduled after the predecessor is finished. 

• model.cons.add(model.start[j,m] >= model.start[k,n] + TASKS[(k,n)]['dur']) 

For the tasks who shares resources, they cannot be scheduled in the same time. 

• model.cons.add(model.start[j,m] + TASKS[(j,m)]['dur'] <= model.start[k,m] 

or 

model.cons.add(model.start[k,m] + TASKS[(k,m)]['dur'] <= model.start[j,m] 

5.1.2 Numerical Results of IP Model 

We introduce the Input Complexity Index (ICI) to measure the complexity of inputs. It is 

essentially a reference value describing the relative size of the possible number of combinations 

of results of the PPS problem. As discussed in Chapter 4, the PPS problem can be understood as 
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a conflicting graph so that we can utilize some parameters of this graph to calculate the ICI. The 

ICI can be defined as,  

𝐼𝐶𝐼 = |𝑃|
(
|𝑇|
|𝑃|
−1)
∗ |𝑁| ∗ |𝑂| ∗ |𝐷| 

Where, |𝑃| is the number of parts; |𝑇| is the number of tasks; |𝑂| is the total number of the 

options of the tasks. |𝐷| is the density of the conflicting graph, and |𝑁| is the number of nodes of 

the conflicting graph.  

The graph density is defined as follows (Diestel, 2006), 

𝐷 =
2|𝐸|

|𝑁|(|𝑁| − 1)
 

Where |𝐸| is the number of edges in the conflicting graph.  

IP is NP-complete on discrete problems, which means that its computation time should increase 

exponentially with the size of the inputs. To verify this hypothesis, we simulated 10 PPS 

problems considering a different number of parts and operations, as well as diverse information 

for operations. The results are shown in Table 5-1. In Table 5-1, each column describes the test 

ID, number of parts, number of tasks, number of edges, number of nods, graph density, number 

of options, ICI, 3-run average clock time in seconds, minimum makespan, respectively. Note that 

all computational experiments in this thesis are performed on a virtual server at Syracuse 

University. The CPU is Intel Xeon E5-2699 with a fixed maximum speed at 2.3 GHz, and the 

memory is 32 GB. All the implementations mentioned in this thesis are in single threading. 

Table 5-1. Integer Programming Model Numerical Results 

Test

-ID 

# of 

Parts 

# of 

Tasks 

# of 

Edges 

# of 

Nodes 

Graph 

Density 

# of 

options 

Input Complexity 

Index 

Clock 

Time (s) 

Minimum 

Makespan 

1 2 7 111 24 0.40 1 218.40 6.59 7 

2 3 10 227 35 0.38 2 3119.84 68.67 8 

3 3 11 307 37 0.46 1 2873.64 26.97 16 

4 4 12 315 41 0.38 2 8064 118.94 11 

5 4 12 390 41 0.48 2 9984 150.77 10 
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6 5 13 316 40 0.41 2 10640.80 643.77 7 

7 5 14 396 41 0.48 2 17938.30 5794.50 10 

8 5 14 504 45 0.51 2 20755.05 12196.93 10 

9 4 14 375 41 0.46 1 9600 213.92 18 

10 4 14 1074 63 0.55 1 17738.32 2959.31 18 

The computation time follows an exponential trendline with increasing input ICI in Figure 5-4, 

and the logarithmic computation time follows a straight trendline with increasing input ICI in 

Figure 5-5. It can be seen that the IP model follows an exponential complexity of the PPS 

problem. Although the solution of the IP model can provide the optimum solution to the PPS 

problem, the computational speed is unacceptable. But we can manipulate inputs based on the 

outputs of our approach, so that the outputs of our approach can be verified in terms of accuracy.   

 

Figure 5-4. Computation Time with Changing ICI 
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Figure 5-5. Logarithmic Computation Time with Changing ICI 

5.2 A Real-world Example Using the Proposed Approach 

Based on the case study from Zhang et al.’s work (Zhang et al., 2014) and combined with the 

details from Zhang et al.’s references (Chu & Gadh, 1996; Zhang et al., 2003; Li et al., 2005; Li 

& McMahon, 2007), we constructed a real-world PPS problem to verify our approach. The 

resources, machines, and cutting tools of a specific job shop are defined in Table 5-2. The four 

parts of the problem are shown in Figure 5-6. The relevant technical specifications of the four 

parts are defined in Tables 5-3 to 5-6.  

Table 5-2. The Resource of a Job Shop – Machines and Tools 

Types No. 

Machines  

Drilling press M1 

Three-axis vertical milling machine I M2 

Three-axis vertical milling machine II M3 

CNC three-axis vertical milling machine M4 
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Boring machine M5 

Cutting tools  

Drill 1 T1 

Drill 2 T2 

Drill 3 T3 

Drill 4 T4 

Tapping tool T5 

Mill 1 T6 

Mill 2 T7 

Mill 3 T8 

Reaming tool T9 

Boring tool T10 

Slot cutter T11 

Chamfer tool T12 

 

Figure 5-6. The description of 4 parts of PPS 

 

Part 4
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Table 5-3. The Technical Specifications for Part #1 

Features Operations Machine Candidates Tool Candidates Machining time for each 

candidate machine (s) 

F1 Milling (Oper1) M2, M3, M4 T6, T7, T8 40, 40, 30 

F2 Milling (Oper2) M2, M3, M4 T6, T7, T8 40, 40, 30 

F3 Milling (Oper3) M2, M3, M4 T6, T7, T8 20, 20, 15 

F4 Drilling (Oper4) M1, M2, M3, M4 T2 12, 10, 10, 7.5 

F5 Milling (Oper5) M2, M3, M4 T6, T7 35, 35, 26.25 

F6 Milling (Oper6) M2, M3, M4 T7, T8 15, 15, 11.25 

F7 Milling (Oper7) M2, M3, M4 T7, T8 30, 30, 22.5 

F8 Milling (Oper8) M1, M2, M3, M4 T2, T3, T4 21.6, 18, 18, 13.5 

 Reaming (Oper9) M2, M3, M4 T9 10, 10, 7.5 

 Boring (Oper10) M2, M3, M4, M5 T10 10, 10, 7.5, 12 

F9 Milling (Oper11) M2, M3, M4 T7, T8 15, 15, 11.25 

F10 Drilling (Oper12) M1, M2, M3, M4 T2, T3, T4 48, 40, 40, 30 

 Reaming (Oper13) M2, M3, M4 T9 25, 25, 18.75 

 Boring (Oper14) M2, M3, M4, M5 T10 25, 25, 18.75, 30 

F11 Milling (Oper15) M1, M2, M3, M4 T1 26.4, 22, 22, 16.5 

 Tapping (Oper16) M2, M3, M4 T5 20, 20, 15 

F12 Milling (Oper17) M2, M3, M4 T7, T8 16, 16, 12 

F13 Milling (Oper18) M2, M3, M4 T6, T7 35, 35, 26.25 

F14 Reaming (Oper19) M2, M3, M4 T9 12, 12, 9 

 Boring (Oper20) M2, M3, M4, M5 T10 12, 12, 9, 14.4 

 

Table 5-4. The Technical Specifications for Part #2 

Features Operations Machine Candidates Tool Candidates Machining time for each 

candidate machine (s) 

F1 Drilling (Oper1) M1, M2, M3, M4 T1 12, 10, 10, 7.5 

F2 Milling (Oper2) M2, M3, M4 T12 20, 20, 15 

F3 Milling (Oper3) M2, M3, M4 T5, T6, T11 18, 18, 13.5 

F4 Milling (Oper4) M2, M3, M4 T6, T7, T8 16, 16, 12 

F5 Milling (Oper5) M2, M3, M4 T6, T7, T8 15, 15, 11.25 

F6 Drilling (Oper6) M1, M2, M3, M4 T2 30, 25, 25, 18.75 

 Reaming (Oper7) M2, M3, M4 T9 25, 25, 18.75 

F7 Drilling (Oper8) M1, M2, M3, M4 T1 14.4, 12, 12, 9 

F8 Milling (Oper9) M2, M3, M4 T6, T7, T8 15, 15, 11.25 

F9 Drilling (Oper10) M1, M2, M3, M4 T1 9.6, 8, 8, 6 

F10 Milling (Oper11) M2, M3, M4 T6, T7, T8 10, 10, 7.5 

F11 Milling (Oper12) M2, M3, M4 T6, T7, T8 10, 10, 7.5 

F12 Drilling (Oper13) M1, M2, M3, M4 T1 9.6, 8, 8, 6 

F13 Milling (Oper14) M2, M3, M4 T6, T7, T8 16, 16, 12 

F14 Drilling (Oper15) M1, M2, M3, M4 T1 9.6, 8, 8, 6 

F15 Milling (Oper16) M1, M2, M3, M4 T6, T7, T8 36, 30, 30, 22.5 
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Table 5-5. The Technical Specifications for Part #3 

Features Operations Machine Candidates Tool Candidates Machining time for each 

candidate machine (s) 

F1 Milling (Oper1) M2, M3, M4 T6, T7, T8 20, 15, 20 

F2 Milling (Oper2) M2, M3, M4 T6, T7, T8 20, 15, 20 

F3 Milling (Oper3) M2, M3, M4 T6, T7, T8 15, 15, 11.25 

F4 Milling (Oper4) M1, M2, M3, M4 T2 15, 15, 11.25, 18 

F5 Milling (Oper5) M2, M3, M4 T6, T7, T8 15, 15, 11.25 

F6 Milling (Oper6) M2, M3, M4 T7, T8 15, 15, 11.25 

F7 Milling (Oper7) M2, M3, M4 T7, T8, T11 15, 15, 11.25 

F8 Milling (Oper8) M2, M3, M4 T6, T7, T8, T11 25, 25, 18.75 

F9 Drilling (Oper9) M1, M2, M3, M4 T2, T3, T4 30, 25, 25, 18.75 

 Reaming (Oper10) M2, M3, M4 T9 20, 20, 15 

 Boring (Oper11) M2, M3, M4, M5 T10 20, 20, 15, 24 

F10 Drilling (Oper12) M1, M2, M3, M4 T1 9.6, 8, 8, 6 

 Tapping (Oper13) M2, M3, M4 T5 8, 8, 6 

F11 Drilling (Oper14) M1, M2, M3, M4 T9 6, 5, 5, 3.75 

 

Table 5-6. The Technical Specifications for Part #4 

Features Operations Machine Candidates Tool Candidates Machining time for each 

candidate machine (s) 

F1 Milling (Oper1) M2, M4 T6, T9 12 

F2 Milling (Oper2) M2, M4 T9, T10 21 

F3 Milling (Oper3) M2, M4 T9 18 

F4 Milling (Oper4) M2, M4 T1, T9 27 

F5 Drilling (Oper5) M1, M2, M4 T2 20 

F6 Milling (Oper6) M2, M4 T1, T9 18 

F7 Drilling (Oper7) M1, M2, M4 T2 20 

 

We define each time slot (1TS) representing 15 time units. The top segment of Figure 5-8 

illustrates the best practice operation sequence of the four parts. All the operations are then 

transformed into the input format. Figure 5-7 shows the transformed operations of Part #1. There 

are 119 Unit Tasks for all the four parts. We can generate the conflicting graph, which has 47525 

edges and 580 nodes. For a problem in such a size, the heuristics configurations with faster 

approximation-based algorithms are preferred. 

Using the Heuristics #19, Algorithm A5 MWIS_SubCS_GWMIN and MWIS A3: MWIS 

Weights 3, and using the median length weight factor, 𝐿𝑊𝑐
𝑀 = 1. The schedule with the resource 
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allocations generated is shown in Figure 5-8. Table 5-7 shows the outputs of Heuristics #11 to 

Heuristics #28 on the real-world PPS problem. Among all the Heuristics tested, the Heuristics 

#19 achieved the optimum solution with 31 time slots. The results with an error rate of less than 

5% take 7000~11000 seconds of clock time for finishing the computation. 

 

Figure 5-7. Transformed Operations of Part #1 
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Figure 5-8. Schedule Created with Heuristics #19 
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Table 5-7. Outputs of Heuristics on Real-world PPS Problem 

Methods  Length Weight Minimum makespan 

(in time slots) 

Clock time 3-run 

average (s) 

Error Error 

rate 

Heuristics#11 LW=86 37 2533.453125 6 19.35% 

Heuristics#12 LW=86 33 9576.869792 2 6.45% 

Heuristics#13 LW=1 32 7474.770833 1 3.23% 

Heuristics#14 LW=86 33 2542.958333 2 6.45% 

Heuristics#15 LW=86 32 8680.5 1 3.23% 

Heuristics#16 LW=1 32 7131.817708 1 3.23% 

Heuristics#17 LW=1 33 2498.739583 2 6.45% 

Heuristics#18 LW=1 33 9011.416667 2 6.45% 

Heuristics#19 LW=1 31 6256.010417 0 0.00% 

Heuristics#20 LW=1 53 6122.572917 22 70.97% 

Heuristics#21 LW=1 36 23818.79167 5 16.13% 

Heuristics#22 LW=86 32 10684.86458 1 3.23% 

Heuristics#23 LW=0.001 52 4757.463542 21 67.74% 

Heuristics#24 LW=1 33 21079.84375 2 6.45% 

Heuristics#25 LW=86 35 9119.651042 4 12.90% 

Heuristics#26 LW=1 58 4884.520833 27 87.10% 

Heuristics#27 LW=0.001 35 19428.39583 4 12.90% 

Heuristics#28 LW=86 32 8462.151042 1 3.23% 

In Zhang et al.’s work (Zhang et al., 2014), they assume that tools are always available without 

causing any constraints. This assumption is based on the understanding that the machining tools 

are mostly available, but the machines are more critical resources in a flexible job shop. By 

removing the tools from the constraints, we formulate a lite version of the real-world PPS 

problem. The edge number is reduced to 8771, and the node number is reduced to 292 in the 

conflicting graph. Table 5-8 shows the outputs of Heuristics #11 to Heuristics #28 on this 

simplified real-world PPS problem. Note that the optimum solution for this instance is also 31 

time slots; it is calculated by manipulating the IP model in a trial and error fashion. The results 

with an error rate of less than 5% take less than 700 seconds clock time for finishing the 

computation. Although our approach almost doubles the computation time compare to Zhang et 

al.’s work, the runtime is still acceptable. We can say that our approach has acceptable 

practicability and feasibility on real-world PPS problem. To further justify this conclusion, the 

following section discusses the details regarding the scalability and accuracy of the proposed 
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approach. 

Table 5-8. Outputs of Heuristics on Real-world PPS Problem without Tool Constraints 

Methods  Length Weight Minimum makespan 

(in time slots) 

Clock time 3-run 

average (s) 

Error Error 

rate 

Heuristics#11 LW=86 37 147.2188 6 19.35% 

Heuristics#12 LW=1 35 704.8594 4 12.90% 

Heuristics#13 LW=86 33 521.4063 2 6.45% 

Heuristics#14 LW=1 33 134.8698 2 6.45% 

Heuristics#15 LW=1 32 671.2188 1 3.23% 

Heuristics#16 LW=1 35 467.6979 4 12.90% 

Heuristics#17 LW=1 34 124.8281 3 9.68% 

Heuristics#18 LW=1 32 686.7813 1 3.23% 

Heuristics#19 LW=1 34 449.1823 3 9.68% 

Heuristics#20 LW=1 43 287.8906 12 38.71% 

Heuristics#21 LW=0.001 35 1629.25 4 12.90% 

Heuristics#22 LW=86 32 580.8958 1 3.23% 

Heuristics#23 LW=1 43 293.9688 12 38.71% 

Heuristics#24 LW=0.001 35 1671.74 4 12.90% 

Heuristics#25 LW=1 31 591.6198 0 0.00% 

Heuristics#26 LW=1 43 283.3698 12 38.71% 

Heuristics#27 LW=1 36 1806.609 5 16.13% 

Heuristics#28 LW=1 33 598.1563 2 6.45% 

5.3 Results and Discussions on Test Instances 

We create nineteen test instances based on the structure of the real-world PPS example problem 

with randomized sequencing constraints and resource combinations. The detailed input 

information is in Appendix III. We run each heuristics configuration on each test instance for 

three times, and details of the results are shown in Appendix IV and Appendix V. Since our 

approach returns feasible results on all the test instances and the real-world example, we assume 

that our approach has a satisfactory robustness on similar types of the PPS problem. Then, the 

discussion is focusing on the scalability and accuracy. The scalability analysis shows how the 

proposed approach behaves on different size and variance of the inputs. It can be evaluated based 

on the computation time versus the different input sizes, node numbers, and edge numbers of the 

different conflicting graphs. The accuracy refers to how likely the proposed approach can get to 
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the optimum solution. It can be measured by the average and maximum error rate of all the test 

instances.  

5.3.1 Scalability 

The essential understanding of our approach to PPS problems, MWIS algorithms are the 

determinant of the computation speed of different heuristics configurations. For those heuristics 

configurations based on the same MWIS algorithm, the ones with more complex weight factor 

calculations are slower. But this difference is minimal. 

 

Figure 5-9. Computation Time with Node Number of Heuristics #1~10 
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edge number on Heuristics #1~10, respectively. The Heuristics #1~10, which are based on the 

two exact MWIS algorithms, Algorithm A1 MWIS and Algorithm A2 AMISL, are much slower 

than all other heuristics configurations. The computation time could be hours when there are 

about 140 nodes and 4000 edges, which could be much smaller than a typical PPS problem. 

Although the worst case of the two algorithms can be exponentially slow, the PPS problem 

considered here may not always be the worst case. As shown in Figure 5-9 and Figure 5-10, the 

Heuristics #1~10 match higher-order (order 4 or higher) polynomial trendlines, but they are 

faster than the exponential trendline.   

 

Figure 5-10. Computation Time with Edge Number of Heuristics #1~10 
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Figure 5-11. Computation Time with Node Number of Heuristics #11~28 
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Heuristics #21, Heuristics #24 and Heuristics #27, which utilizing Algorithm A4 

MWIS_CS_GWMIN and Algorithm A7 MWIS_CS_GWMIN2 are the slowest. The 

computational speed of these Heuristics follows the similar trendlines of the approximation 

MWIS algorithms, as discussed in Chapter 3. And Heuristics based on approximation MWIS 

algorithms are much feasible in the sense of computation time.  

 

 

Figure 5-12. Computation Time with Edge Number of Heuristics #11~28 
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summary of all the heuristics configurations on all tests is in Appendix IV. The detailed input 

information and the detailed results of each test instance is in Appendix III and Appendix V, 

respectively. 

 

Figure 5-13. The Average and Maximum Error Rate for All Heuristics Configurations 
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Assume 𝑇𝑆𝑜𝑝𝑡𝑖𝑚𝑢𝑚 is the minimum number of time slots need for the PPS problem on the test 

instance, and 𝑇𝑆 is the number of time slots found by our approach. The error rate is calculated 

using the function below. 

𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 =
𝑇𝑆 − 𝑇𝑆𝑜𝑝𝑡𝑖𝑚𝑢𝑚

𝑇𝑆𝑜𝑝𝑡𝑖𝑚𝑢𝑚
× 100% 

Note that the 𝑇𝑆𝑜𝑝𝑡𝑖𝑚𝑢𝑚 is calculated based on the IP model with manipulating inputs to get the 

optimum result with reasonable computation time, and the error rate of each heuristics 

configuration is calculated based on the best accuracy among the three different length weight 

factors. 

Let the threshold for heuristics configuration selection be the average error of less than 7% and 

the maximum error of less than 20%. For Heuristics #1-10 with the exact MWIS algorithms, 

from the best to the worst, Heuristics #2, Heuristics #8, Heuristics #5, Heuristics #3 and 

Heuristics #4 are satisfactory. For Heuristics #11-28 with the approximation MWIS algorithms, 

from the best to the worst, Heuristics #16, Heuristics #19, Heuristics #28, Heuristics #25, 

Heuristics #15, Heuristics #18, Heuristics #14, and Heuristics #17 are satisfactory.  

Based on the computational experiments in Chapter 3, the general accuracy of the MWIS 

algorithms can be listed below from the best accuracy to the worst: 

• Algorithm A1 MWIS 

• Algorithm A2 AMISL (same as Algorithm MWIS) 

• Algorithm A5 MWIS_SubCS_GWMIN 

• Algorithm A8 MWIS_SubCS_GWMIN2 

• Algorithm A4 MWIS_CS_GWMIN 

• Algorithm A3 GWMIN 
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• Algorithm A7 MWIS_CS_GWMIN2 

• Algorithm A6 GWMIN2  

Compare with the results shown in Figure 5-13, with the same weight factors assignment, a more 

accurate MWIS algorithm leads to a better accuracy output of the PPS problem. None of the 

satisfactory heuristics is using the least accurate MWIS algorithms, Algorithm A7 

MWIS_CS_GWMIN2 and A6 GWMIN2. In other words, while using the proposed approach for 

the PPS problem, a relatively accurate MWIS algorithm is required. This is the evidence of the 

necessity of the better accuracy MWIS algorithms proposed in Chapter 3. 

 

Figure 5-14. Details of Test Instances T24 

The above-mentioned heuristics configurations may not able to reach the optimum results on 

some of the test instances. These bad instances are T6, T11, T12, T13, T14, T17, T18, T19, T20, 

and T24. Figure 5-15 shows the average and maximum error rate for all heuristics configurations 

on these bad instances. These instances have concentrated resource requirements. Let us take the 

instance T24 (Figure 5-14) as an example. The jobs in the instances have a significant difference 

in the number of time slots for finishing. Also, the beginning Unit Tasks are concentrated on the 

resources 𝑅1, 𝑅2, and 𝑅3, and the ending Unit Tasks are concentrated on the resources 𝑅4. Since 

Job #1: 
T11[(R1,R2,R3)2]

2
→

T12[(R1,R2,R3)2]

1
→

T13[(R1,R2,R3)1]

2
→

T14[(R4)1]

3
 

Job #2: 
T21[(R1,R2,R3)1]

1
→

T22[(R1)1and(R2,R3)1]

2
→

T23[(R4)1]

3
 

Job #3: 
T31[(R1,R2)1]

1
→ (

T32a[(R1,R2)2]

1
T32b[(R3)1]

2

)

1

→
T33[(R3,R4)1]

3
 

Job #4: 
T41[(R1,R2,R3)2]

2
 

Job #5: 
T51[(R1,R2,R3)2]

2
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the MWIS algorithm tries to schedule as many nodes as possible, it may cause the ending Unit 

Tasks all leftover, but they cannot be processed on parallel machines. We iterate the three levels 

of length weight coefficient, median, high and low, as 𝐿𝑊𝑐
𝑀, 𝐿𝑊𝑐

𝐻 and 𝐿𝑊𝑐
𝐿, respectively with 

the proposed heuristics configurations to balance the length of each job and the concentrated 

resources requirements. So that the maximum error rate of each satisfactory heuristics 

configuration is not exceeding 20%.  

Another interesting finding is that the Heuristics #14 and #17, which are using the approximation 

algorithms GWMIN, perform well on these bad test instances. The hypothesis is that the 

GWMIN generates the selection of the node with the maximum weight. This may avoid the 

concentrating resources blocking the optimum results. 

Based on the discussions on scalability and accuracy, the better heuristics configurations for the 

PPS problem are listed as below, 

• Heuristics #16, Algorithm MWIS_SubCS_GWMIN, MWIS A2: MWIS Weights 2 

• Heuristics #19, Algorithm MWIS_SubCS_GWMIN, MWIS A3: MWIS Weights 3 

• Heuristics #28, Algorithm MWIS_SubCS_GWMIN2, MWIS A3: MWIS Weights 3 

• Heuristics #25, Algorithm MWIS_SubCS_GWMIN2, MWIS A2: MWIS Weights 2 

• Heuristics #15, Algorithm MWIS_CS_GWMIN, MWIS A2: MWIS Weights 2 

• Heuristics #18, Algorithm MWIS_CS_GWMIN, MWIS A3: MWIS Weights 3 

• Heuristics #14, Algorithm GWMIN, MWIS A2: MWIS Weights 2 

• Heuristics #17, Algorithm GWMIN, MWIS A3: MWIS Weights 3 
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Figure 5-15. The Average and Maximum Error Rate on Bad Test Instances 

5.4 Summary 

In this chapter, we verify the practicability and feasibility of the proposed approach for the PPS 
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problem on a real-world example and further test instances. The implementation of our approach 

is error-free and bug-free on all the tests. The IP model described in Chapter 4 is implemented 

and tested. Although it is not feasible for solving the PPS problem at a realistic computational 

speed, it can be used to verify the optimum solution with conditions. 

 

Figure 5-16. Performance of the Heuristics Configurations 

The test results of all heuristics configurations on all test instances are reported and analyzed in 

terms of the scalability and accuracy. Figure 5-16 is the summary of the performance of the 

heuristics configurations. The test results also justify the statement that better accuracy and faster 

MWIS algorithms are desired for solving the PPS problem when using our approach. The 

satisfactory heuristics configurations for general cases are Heuristics #16, Heuristics #19, 

Heuristics #28, Heuristics #25, Heuristics #15, Heuristics #18, Heuristics #14, and Heuristics 
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#17 in an accuracy order. For the cases with limited size, some of the heuristics configurations 

using exact MWIS algorithms can also be considered. These heuristics configurations are 

Heuristics #2, Heuristics #8, Heuristics #5, Heuristics #3 and Heuristics #4. All these heuristics 

configurations considered as satisfactory have the average error of less than 7% and the 

maximum error of less than 20%. 
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Chapter 6. Conclusions 

This chapter concludes the dissertation and discusses the contributions and future work of this 

research. In particular, the two main contributions, (1) algorithms for the Maximum Weighted 

Independent Set (MWIS) problem and (2) a novel approach for the Process Planning and 

Scheduling (PPS) problem, are described in section 6.1 and section 6.2, respectively. The main 

research contributions are highlighted in section 6.3. Lastly, possible future directions for 

improving and extending the work presented in this dissertation are discussed in section 6.4. 

6.1 Algorithms for Maximum Weighted Independent Set (MWIS) Problem 

6.1.1 Development of MWIS Algorithms 

This research considers the MWIS problem on general graphs and develops algorithms for 

solving the MWIS problem in a divide and conquer structure. In order to reduce the complexity 

of the algorithm structure to the greatest extent, utility functions are developed or adopted; they 

are Algorithm 3-1: the basic cycles algorithm (Paton, 1969), Algorithm 3-2, the diameter 

algorithm (Takes & Kosters, 2011, 2013; Borassi et al., 2015), and Algorithm 3-3: the middle 

node algorithm. 

Based on the divide and conquer structure, two exact MWIS algorithms, Algorithm A1 MWIS 

and Algorithm A2 AMISL, are developed. Moreover, faster approximation algorithms can be 

composed based on Algorithm A1. In this case, the complexity of the proposed algorithm can be 

reduced, and the accuracy of approximation algorithms can be improved. We implement two 

approximation algorithms from literature, Algorithm A3 GWMIN and Algorithm A6 GWMIN2 



120 

 

(Sakai et al., 2003), and developed the following algorithms by merging them with Algorithm 

A1 to improve their accuracy. 

• Algorithm A4 MWIS_CS_GWMIN: it is an algorithm composed of Algorithm A1 and 

Algorithm A3. This algorithm computes Compare Sets based on the whole induced 

subgraph at each level using Algorithm A3 GWMIN. 

• Algorithm A5 MWIS_SubCS_GWMIN: it is an algorithm composed of Algorithm A1 

and Algorithm A3. This algorithm computes Compare Sets based on the induced CSSs, 

excluding the current removed node, using Algorithm A3 GWMIN. 

• Algorithm A7 MWIS_CS_GWMIN2: it is an algorithm composed of Algorithm A1 and 

Algorithm A6. This algorithm computes Compare Sets based on the whole induced 

subgraph at each level using Algorithm A6 GWMIN2. 

• Algorithm A8 MWIS_SubCS_GWMIN2: it is an algorithm composed of Algorithm A1 

and Algorithm A6. This algorithm computes Compare Sets based on the induced CSSs, 

excluding the current removed node, using Algorithm A6 GWMIN2. 

6.1.2 Performance of MWIS Algorithms 

All eight algorithms are tested on the test instances, which are based on the PPS application 

environment. The details of the test results are shown in Appendix II.  

Algorithms A1 and A2 are the two exact algorithms for computing the MWIS of a weighted 

undirected graph. They are of high complexity. The computation time can be hours when there 

are about 140 nodes and 4000 edges in the conflicting graph. Although the worst case of 

Algorithms A1 and A2 can be exponentially slow, the application scenarios of the PPS problem 

considered in this research may not always be the worst case. In the test instances, Algorithms 
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A1 and A2 match higher-order (order 4 or higher) polynomial trendlines, and they are actually 

faster than the exponential trendline.   

Algorithms A3 and A6 are low-complexity greedy algorithms for the MWIS problem from 

literature (Sakai et al., 2003). They are the fastest among the 8 algorithms discussed in this 

research. The computation time is less than half-second on all test instances. Algorithms A3 has 

a nearly linear or log-linear complexity on the test instances, and Algorithms A6 has a 

polynomial complexity. This difference in complexity is due to the different node-selecting 

functions of the two algorithms. 

Algorithms A4, A5, A7, and A8 are the composed approximation algorithms based on 

Algorithms A1. They are slower than the approximation algorithms from the literature, but still 

much faster compared to the two exact MWIS algorithms. The computation time is less than 45 

seconds on all the test instances. In general, a faster approximation algorithm leads to a faster 

composed algorithm; and while composing the algorithms, applying the approximation algorithm 

on smaller subgraphs leads to a faster composed algorithm. In terms of the accuracy of the 

MWIS algorithms, composing the approximation algorithms with Algorithms A1 can improve 

the accuracy. While composing, applying the approximation algorithm on smaller subgraphs, for 

our case, the induced CSSs, can achieve better accuracy. The general accuracy of the best five 

algorithms can be listed below from the best to the worst: 

• Algorithm A1 MWIS 

• Algorithm A2 AMISL (same as Algorithm MWIS) 

• Algorithm A5 MWIS_SubCS_GWMIN 

• Algorithm A8 MWIS_SubCS_GWMIN2 

• Algorithm A4 MWIS_CS_GWMIN 
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Note that all these algorithms considered satisfactory have the average error of less than 1% and 

the maximum error of less than 13% (The first four algorithms have the maximum error less than 

9%) on all test instances. 

6.2 Approach for Process Planning and Scheduling (PPS) Problem 

This dissertation considers a general type of PPS problem, and proposes a novel approach for 

formulating and solving the resource-constrained PPS optimization problem. In our approach, 

the two procedures, the resource selection and process scheduling, of the PPS problem are 

integrated. The PPS problem is formulated into an undirected weighted conflicting graph due to 

the nature of sequencing and resource constraints. A node in the conflicting graph represents one 

operation with one possible combination of its required resources during one time slot, and an 

edge indicates that there is a conflict between the two nodes at both ends of the edge. Each node 

in the graph is assigned with a weight factor as the guidance for the operation and resource 

selections to fulfill the optimization objective. The nodes with a higher possibility leading to the 

objective are given priority when generating the schedule. The schedule with resource 

allocations is generated by solving the MWIS problem of the graph. 

Twenty-eight heuristics configurations for solving the PPS problem are generated by combining 

the seven weight factor arrangements with the eight MWIS algorithms. With careful 

consideration on scalability and accuracy, the best heuristics configurations for the PPS problem 

are listed as below,  

• Heuristics #16, Algorithm MWIS_SubCS_GWMIN, MWIS A2: MWIS Weights 2 

• Heuristics #19, Algorithm MWIS_SubCS_GWMIN, MWIS A3: MWIS Weights 3 

• Heuristics #28, Algorithm MWIS_SubCS_GWMIN2, MWIS A3: MWIS Weights 3 
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• Heuristics #25, Algorithm MWIS_SubCS_GWMIN2, MWIS A2: MWIS Weights 2 

• Heuristics #15, Algorithm MWIS_CS_GWMIN, MWIS A2: MWIS Weights 2 

• Heuristics #18, Algorithm MWIS_CS_GWMIN, MWIS A3: MWIS Weights 3 

• Heuristics #14, Algorithm GWMIN, MWIS A2: MWIS Weights 2 

• Heuristics #17, Algorithm GWMIN, MWIS A3: MWIS Weights 3 

Note that all these heuristics configurations, which are considered satisfactory, have the average 

error of less than 7% and the maximum error of less than 20% on the test cases. 

6.3 Research Contribution 

The first main contribution is on the MWIS problem. This work proposes a divide and conquer 

algorithm structure with relatively low time complexity for solving the MWIS problem. The 

exact MWIS algorithm and All Maximal Independent Set Listing (AMISL) algorithm are 

developed based on this algorithm structure. The proposed algorithm structure can also be used 

to compose the exact MWIS algorithm with existing approximation MWIS algorithms for 

compromises on accuracy and computational speed. Utilizing existing approximation algorithms 

with the proposed algorithm structure is an effective way to improve the accuracy of existing 

approximation MWIS algorithms. All eight algorithms for the MWIS problem, the exact MWIS 

algorithm, the AMISL algorithm, two approximation algorithms from the literature, and four 

composed algorithms, are tested on the test instances based on the PPS application environment. 

A set of “good-performance” MWIS algorithms are highlighted based on the test results. 

The second main contribution is on the PPS problem. Unlike the commonly used iteration type 

of approaches, such as generic algorithms and metaheuristics, or the mixed-integer programming 

approaches, our approach provides a different angle to address the PPS problem and shows 
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advantages over other approaches as illustrated in Table 6-1. The PPS problem is formulated as a 

conflicting weighted graph and generating the integrated process schedule with resource 

allocation by solving the MWIS problem. This idea extends the universality of the formulation of 

the graph coloring based scheduling. The new approach requires minimum iteration. And it is 

guaranteed to return a feasible solution due to the nature of solving the MWIS problem on a 

conflicting weighted graph. The new approach computes the schedule of each time slot 

separately. We develop different weight factor calculation strategies and arrangements as the 

guidance for achieving the optimization objective. With carefully defined weight factors and 

“good-performance” MWIS algorithms, the new approach has satisfactory accuracy and 

computational speed. A set of “good-performance” heuristics configurations are found based on 

the test results. 

Table 6-1. Comparing the New Approach with Other Methods* 
Measurements Generic 

Algorithms 

Simulated 

Anneal 

Tabu 

Search 

Mixed-integer 

Programming 

Partial  

Solutions 

Graph 

Coloring 

Scheduling 

Accuracy = = = - + NA 

Computational speed = = = + = NA 

Universality - - = - NA + 

Dependence on iterations + + + + + NA 

Feasibility + + + = + NA 

Separated solutions of each 

time slot 

+ + + + + NA 

*‘+’: The new approach is better on the measurement compare with the other method. 

‘=’: The new approach is similar or potentially better compare with the other method. 

‘-’: The new approach is not as good as the other method. 

‘NA’: It is hard to compare the new approach with the other method. 

6.4 Future Work 

In this research, we attempt to address the two classic problems, the MWIS problem and the PPS 

problem in universality. As the review shown in Chapter 2, we can have broad applications by 

solving the two problems. In this section, we are focusing on (1) the potential improvements and 
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extensions of current work in the scheduling domain; and (2) integrating the solution to the PPS 

problem with Smart Manufacturing infrastructure, the Smart Product Lifecycle Management 

(sPLM) system.  

6.4.1 Improvements and Extensions 

To speed up the computation: 

For the MWIS algorithms, the divide and conquer algorithm structure can be transformed into 

multi-threading. Each connected subgraph after node removal are independent. The computation 

of the connected subgraphs can be assigned to different threads. 

For the formulation of the PPS problem, Unit Tasks of the operations that are constrained to be 

processed in the far future (a good number of time slots later) may have a very limited impact on 

the scheduling of earlier time slots. While generating the conflicting graph, we may only 

consider the most recent several Unit Tasks of each part so that the size of the conflicting graph 

can be reduced.   

To improve the accuracy: 

The current weight calculation and weight factor arrangements can be fine-tuned and closely- 

integrated with the MWIS algorithms based on the part and resource information to achieve 

better node selections. The examples can be specific heuristics for weight calculation, machine 

learning methods to optimize the value of the weight factor. 

Stochastic Optimization (SO) methods are optimization methods that generate and use random 

variables (Spall, 2003). This method can be applied to bring in probabilistic in the schedule 

generation process when solving the MWIS problem for each time slot. It enables the possibility 

of iteratively selecting different sets of nodes for each time slot. By applying this method, the 



126 

 

trapping of bad node selections may be avoided. 

To improve the universality: 

Our approach for the PPS problem can be easily implemented for a dynamic job taking 

environment by updating the conflicting graph for each time slot. The traditional approach 

requires taking consideration of known operations and iterates to get an optimum schedule for 

recent periods, which requires searching in a vast solution space. Unlike iteration-based 

approaches, the new approach computes the schedule of each time slot separately, which may 

only require partial operation information of each job. And for each time slot, the new approach 

tries to utilize the resources as much as possible by solving the MWIS problem. 

Our approach for the PPS problem can be easily implemented with the flexible operation 

sequencing constraints by updating the conflicting graph for each time slot. In this case, all the 

Unit Tasks that are not restricted by the sequencing constraints are considered as Unit Task 

Candidates to be selected by solving the MWIS problem.  

The conflicting weighted graph may be extended to a multi-connected graph, directed graph, 

weighted edges to represent more information for the optimization problem modeling. And 

further, we wish to improve the approach by, such as enabling the multi-objective optimization, 

introducing more variables for the details of the PPS problem, introducing probabilistic 

variables, and more. 

6.4.2 Integration with the sPLM System 

The sPLM system is developed in the Knowledge Engineering Laboratory at Syracuse 

University. It is a platform developed based on an open-source Product Lifecycle Management 

(PLM) system, Aras Innovator, to handle product lifecycle information to support decision-
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making processes (Li, 2018). Figure 6-1 shows that a lot of resource-constraint scheduling 

problems naturally arise in the application of the sPLM system as its prescriptive analytics 

capability (Sun et al., 2017). Prescriptive analytics, referred to as the “final frontier of analytic 

capabilities (Gartner, 2017),” it entails the application of mathematical and computational 

sciences and suggests decision options to take advantage of the results of descriptive and 

predictive analytics (Basu, 2013; Engel et al., 2012; Lepenioti, 2020). The scenario is that 

knowledge such as resource management, materials management, and product development from 

the sPLM system can be integrated and formulate into solution nodes and constraint edges for 

detailed and adaptive planning and scheduling. Such a conflicting graph can be used for solving 

different scheduling problems, like delivery planning, production planning, product development 

planning, and more. 

 

Figure 6-1. Data Analytics with the sPLM System 
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Appendices 

Appendix I: An Example for Algorithm A1 on a Simple Graph 

The exact MWIS algorithms described in section 3.4 is complex. In Appendix I, we walk 

through Algorithm A1 in detail with a simple example in Figure 1. A simple weighted graph 𝐺 

shown in Figure 1 is given, with the nodes, edges, and weights shown as the figure. Note that 

Algorithm A2 follows a similar process, but it is returning the AMIS at each step.  

All the step indexes used below are from Algorithm A1. 

In step (1.1), we need to perform step (1.1.1) to (1.1.5) to find and remove nodes and update the 

subgraphs dictionary (SD) accordingly:  

𝑆𝐷: {the 𝑟𝑒𝑚𝑜𝑣𝑎𝑙 𝑛𝑜𝑑𝑒: node sets of each 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡} 

The SD is in the format that each node removed (removed node) is the key, and node sets of each 

connected component in the induced subgraphs are the value of the key. The node removal 

process iterates until the induced subgraphs satisfy the Theorem 3-1 conditions.  

Perform step (1.1.1), to find the first removed node from the input graph; we need to find a cycle 

basis set of the input graph. Count the occurrence of each node in the cycle basis set; the first 

removed node is the node that has the most occurrences. Apply Algorithm 3-1, the cycle basis 

algorithm, to find a cycle basis set and count the number of cycles each node belongs to. The 

nodes and their counts are saved in a dictionary, “occurrence_dict”: {'1': 3, '0': 3', '3': 2, '4': 2, 2': 

1, '5': 1, '6': 0, '7': 0, '8': 0, '9': 0, '10': 0, '11': 0}. The occurrence of node ‘1’ and node ‘0’ both are 

3; we randomly pick node ‘1’ among them. Remove node ‘1’ and the adjunct edges, the induced 

subgraph is illustrated as Figure 2.  
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Figure 1. Simple graph for algorithm walk-through 

Perform step (1.1.2), update SD with the key-value pair, SD: {'1': [{'6'}, {'7'}, {'8'}, {'4', '2', '10', 

'9', '11', '5', '0', '3'}]}. After removing the node ‘1’, the induced subgraph has four connected 

components, we use the node sets to denote these components, they are {'6'}, {'7'}, {'8'}, and 

{'4', '2', '10', '9', '11', '5', '0', '3'}. 

 

Figure 2a (left) & 3-5b (right). Remove Node ‘1’ from the Graph and the Induced Subgraph 
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Preform step (1.1.3), for each connected subgraph, exam whether they satisfy the Theorem 3-1 

conditions. Among the four components, {'6'}, {'7'}, {'8'} satisfy the Theorem 3-1 conditions (in 

Figure 3-5b), but {'4', '2', '10', '9', '11', '5', '0', '3'} does not. 

 

Figure 3a (left) & 3-6b (right). Remove Node ‘2’ and the Induced Subgraph 

Preform step (1.1.4), the component subgraph, {'4', '2', '10', '9', '11', '5', '0', '3'}, does not satisfy 

the Theorem 3-1 conditions. Preform step (1.1.1), with the subgraph {'4', '2', '10', '9', '11', '5', '0', 

'3'}, apply Algorithm 3-1 to get current “occurrence_dict”: {'2': 1, '4': 1, '0': 1, '9': 0, '10': 0, '11': 

0, '3': 0, '5': 0}. The occurrence of node ‘2’, node ‘4’ and node ‘0’ are 1, we randomly pick node 

‘2’ among them. Remove node ‘2’ and the adjunct edges, the induced subgraph is illustrated as 

the Figure 3. 
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Figure 4. The induced subgraph after removing node ‘2’ 

 

Figure 5. The induced subgraph after removing node ‘0’ 

Preform step (1.1.2), update SD with the key-value pair, SD: {'1': [{'6'}, {'7'}, {'8'}, {'4', '2', '10', 

'9', '11', '5', '0', '3'}], '2': [{'4', '10', '9', '11', '5', '0', '3'}]}. Shown as the Figure 4, the induced 

subgraph {'4', '10', '9', '11', '5', '0', '3'} is connected. 

Preform step (1.1.3), to exam the induced subgraph. The induced subgraph {'4', '10', '9', '11', '5', 

'0', '3'} as-in Figure 4 does not satisfy the Theorem 3-1 conditions.  
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Perform step (1.1.4), by applying Algorithm 3-1, there is no cycle left in the graph {'4', '10', '9', 

'11', '5', '0', '3'}. Then, apply Algorithm 3-2, the diameter algorithm, this tree structure has a 

𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 = 4, which does not satisfy the Theorem 3-1 conditions. Go to step (1.1.1), with the 

graph {'4', '10', '9', '11', '5', '0', '3'}, apply Algorithm 3-3, the middle node algorithm, to get the 

middle node ‘0’ of the tree. Remove node ‘0’ and the adjunct edges, the induced subgraph is 

illustrated as Figure 5. 

Preform step (1.1.2), update SD with the key-value pair, SD: {'1': [{'6'}, {'7'}, {'8'}, {'9', '2', '5', 

'3', '4', '10', '11', '0'}], '2': [{'9', '5', '3', '4', '10', '11', '0'}], '0': [{'5', '3'}, {'10', '9', '11', '4'}]}. After 

removing the node ‘0’, the induced subgraph has two connected components, they are {'5', '3'}, 

and {'10', '9', '11', '4'}. 

 

Figure 6. The Preliminary Set at the level node ‘0’ 

Perform step (1.1.3), to exam the induced subgraph. According to step (1.1.4), the two connected 

components in the induced subgraph both satisfy the Theorem 3-1 conditions shown in Figure 6.  

Jump to step (1.1.5), when all subgraphs satisfy Theorem 3-1 conditions, return the latest SD: 

{'1': [{'6'}, {'7'}, {'8'}, {'9', '2', '5', '3', '4', '10', '11', '0'}], '2': [{'9', '5', '3', '4', '10', '11', '0'}], '0': 
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W10=1

W11=1
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[{'5', '3'}, {'10', '9', '11', '4'}]}. 

All the procedures in step (1.1) for node removal are finished here. 

Preform step (1.2), get the Preliminary Set from the induce subgraph according to the last key-

value pair in SD. The last key-value pair in SD is: {'0': [{'5', '3'}, {'10', '9', '11', '4'}]}, indicating 

that at the level of node ‘0’, there are two connected components {'5', '3'} and {'10', '9', '11', '4'}. 

And the Theorem 3-1 conditions are satisfied. According to Theorem 3-1, we can find the 

Preliminary Set for the induced subgraph with nodes {'5', '3', '10', '9', '11', '4'}. This induced 

subgraph is called the Preliminary Set Subgraph (PSS) at level node ‘0’. The Preliminary Set at 

the level node ‘0’ is {4,3} with a weight total 8.1, shown as Figure 6. 

 

Figure 7. The Compare Set at the level node ‘0’ 

Perform step (1.3), the ‘last key’ is node ‘0’. Add node ‘0’ to the induced subgraph (Figure 6) of 

step (1.2), the induced graph rolls back to Figure 4 or Figure 7. Then, follow the adding node 

heuristics to find the Compare Set at level node ‘0’. Remove the neighbors of node ‘0’ and the 

adjacent edges of node ‘0’ from Figure 7, this induced subgraph with nodes {'9', '5', '10', '11', '0'} 

is the Compare Set Subgraph (CSS) at the level removed node ‘0’. The Compare Set at the level 

node ‘0’ is {'5', '0', '11', '10', ‘9’} with a weight total 6, shown as Figure 7. 
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Figure 8. The MWIS at the level node ‘0’ 

Perform step (1.4), according to Theorem 3-2, get the set with maximum weighted total among 

the two sets: the Preliminary Set (Figure 6) and the Compare Set (Figure 7) at the level node ‘0’. 

The MWIS of the induced subgraph in Figure 8 with nodes {'0', '5', '3', '10', '9', '11', '4'} is {‘4’, 

‘3’}. We can say that at level node ‘0’, the Preliminary Set is {‘4’, ‘3’} with a total weight of 8.1 

as shown in Figure 8. 

 

Figure 9. The Compare Set at the level node ‘2’ 

Preform step (1.5), update the SD as {'1': [{'6'}, {'7'}, {'8'}, {'9', '2', '5', '3', '4', '10', '11', '0'}], '2': 

[{'9', '5', '3', '4', '10', '11', '0'}]}. 𝑆𝐷 ≠ ∅, go to step (1.2). The PSS at level node ‘2’ is the induced 

W9=1

W4=6.1

W10=1

W11=1

W0=1
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subgraph with nodes {'9', '5', '3', '4', '10', '11', '0'}. The Preliminary Set at level node ‘2’ is getting 

based on the previous step. The Preliminary Set at level node ‘2’ is the MWIS of the induced 

subgraph with node {'4', '10', '9', '11', '5', '0', '3’}, which is {'4', ‘3’}, and the total weights is 8.1. 

Preform step (1.3), the last key-value pair is the level node ‘2’. Get the Compare Set at level 

node ‘2’, follow the adding node heuristics. Then, the induced graph rolls back to Figure 3a. The 

CSS at level node ‘2’ is the induced subgraph with nodes {'9', '2', '5', '3', '10', '11'}. The Compare 

Set at level node ‘2’ is {'2', '3', '9', '10', '11’}. And the total weight is 9, shown as Figure 9.  

Preform step (1.4), since the total weight of the Compare Set is greater than that of the 

Preliminary Set at level node ‘2’, according to Theorem 3-2, the induced subgraph with nodes: 

{'4', '2', '10', '9', '11', '5', '0', '3’} at level node ‘2’ has its MWIS as {'2', '3', '9', '10', '11’}, the total 

weight is 9. 

 

Figure 10. The Preliminary Set at the level node ‘1’ 
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Figure 11. The Compare Set at the level node ‘1’ 

Perform step (1.5), update the SD as {'1': [{'6'}, {'7'}, {'8'}, {'9', '2', '5', '3', '4', '10', '11', '0'}]}. 

𝑆𝐷 ≠ ∅, go to step (1.2). The PSS at level node ‘1’ is the induced subgraph with nodes {'9', '5', 

'3', '4', '10', '11', '0', '6', '7', '8'}. The Preliminary Set at level node ‘1’ is based on the induce 

subgraph in the previous step. The induced subgraph at level node ‘1’ has four components: 

{'6'}, {'7'}, {'8'}, and {'9', '2', '5', '3', '4', '10', '11', '0'}. For the connected components, the induced 

subgraph with nodes {'4', '2', '10', '9', '11', '5', '0', '3’}, has its MWIS as {'2', '3', '9', '10', '11’}, the 

total weight is 9, same as the MWIS as level node ‘2’. According to the Theorem 3-1 and 

Corollary 3-1, the Preliminary Set at level node ‘1’ is the union of the MWIS of the four 

components with the node sets: {'6'}, {'7'}, {'8'}, and {'9', '2', '5', '3', '4', '10', '11', '0'}. The 

Preliminary Set at level node ‘1’ is {‘6’} ∪ {‘7’} ∪ {‘8’} ∪ {′2′, ′3′, ′9′, ′10′, ′11’}, which has a total 

weight of 12, shown as Figure 10. Perform step (1.3), the last key-value pair is the level node ‘1’. 

Get the Compare Set at level node ‘1’ follow the adding node heuristics. Then, the induced graph 

rolls back to Figure 2a. The CSS at level node ‘1’ is the induced subgraph with nodes {'1', '9', '2', 
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'10', '11'}. The Compare Set at level node ‘1’ is {'1', '2', '9', '10', '11’} with a total weight of 11.1, 

shown as Figure 11. Perform step (1.4), since the total weight of Preliminary Set is greater than 

that of Compare Set at level node ‘1’, according to Theorem 3-2, the induced subgraph with 

nodes: {'1', '6', '7', '8', '9', '2', '5', '3', '4', '10', '11', '0'} at level ‘1’ has its MWIS as {'6', '7', '8', '2', 

'3', '9', '10', '11’} the total weight is 12. 

 

Figure 12. The MWIS of graph 𝐺 

Perform step (1.5), update the SD, 𝑆𝐷 = ∅, return the MWIS of the original graph 𝐺. The MWIS 

is {'6', '7', '8', '2', '3', '9', '10', '11’}, the total weight is 12, shown as Figure 12. 
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Appendix II: Test Details of MWIS Algorithms 
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Appendix III: PPS Test Instances 

I. Testing 1: 

Job #1: 
T11[(R1,R2,R3)2]

2TS
→

T12[(R1,R2,R3)2]

1TS
→

T13[(R1,R2,R3)1]

2TS
→

T14[(R4)1]

1TS
 

Job #2: 
T21[(R1,R2,R3)1]

1TS
→

T22[(R1)1and(R2,R3)1]

2TS
→

T23[(R4)1]

1TS
 

 

II. Testing 2 

Job #1: 
T11[(R1,R2,R3)2]

2TS
→

T12[(R1,R2,R3)2]

1TS
→

T13[(R1,R2,R3)1]

2TS
→

T14[(R4)1]

1TS
 

Job #2: 
T21[(R1,R2,R3)1]

1TS
→

T22[(R1)1and(R2,R3)1]

2TS
→

T23[(R4)1]

1TS
 

Job #3: 
T31[(R1,R2)1]

1TS
→ (

T32a[(R1,R2)2]

1TS
T32b[(R3)1]

2TS

)

1

→
T33[(R3,R4)1]

3TS
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III. Testing 3 

Job #1: 
T11[(R1,R2,R3)2]

2TS
→

T12[(R1,R2,R3)2]

1TS
→

T13[(R1,R2,R3)1]

2TS
→

T14[(R1,R2,R3)3]

5TS
→

T15[(R4)1]

1TS
 

Job #2: 
T21[(R1,R2,R3)1]

1TS
→

T22[(R1,R2)1]

1TS
→

T23[(R1)1and(R2,R3)1]

2TS
→

T24[(R1,R2,R3)3]

5TS
→

T25[(R4)1]

1TS
 

Job #3: 
T31[(R1,R2,R3)3]

1TS
 

 

IV. Testing 4 

Job #1: 
T11[(R1,R2,R3)2]

2TS
→

T12[(R1,R2,R3)2]

1TS
→

T13[(R1,R2,R3)1]

2TS
→

T14[(R1,R2,R3)3]

5TS
→

T15[(R4)1]

1TS
 

Job #2: 
T21[(R1,R2,R3)1]

1TS
→

T22[(R1)1and(R2,R3)1]

2TS
→

T23[(R4)1]

1TS
 

Job #3: 
T31[(R1,R2)1]

1TS
→ (

T32a[(R1,R2)1]

1TS
T32b[(R3)1]

2TS

)

1

→
T33[(R3,R4)1]

3TS
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V. Testing 5 

Job #1: 
T11[(R1,R2,R3)2]

2TS
→

T12[(R1,R2,R3)2]

1TS
→

T13[(R1,R2,R3)1]

2TS
→

T14[(R4)1]

1TS
 

Job #2: 
T21[(R1,R2,R3)1]

1TS
→

T22[(R1)1and(R2,R3)1]

2TS
→

T23[(R4)1]

1TS
 

Job #3: 
T31[(R1,R2)1]

1TS
→ (

T32a[(R1,R2)1]

1TS
T32b[(R3)1]

2TS

)

1

→
T33[(R3,R4)1]

3TS
 

Job #4: 
T41[(R1,R2,R3)3]

5TS
 

 

VI. Testing 6 

Job #1: 
T11[(R1,R2,R3)2]

2TS
→

T12[(R1,R2,R3)2]

1TS
→

T13[(R1,R2,R3)1]

2TS
→

T14[(R4)1]

1TS
 

Job #2: 
T21[(R1,R2,R3)1]

1TS
→

T22[(R1)1and(R2,R3)1]

2TS
→

T23[(R4)1]

1TS
 

Job #3: 
T31[(R1,R2)1]

1TS
→ (

T32a[(R1,R2)1]

1TS
T32b[(R3)1]

2TS

)

1

→
T33[(R3,R4)1]

3TS
 

Job #4: 
T41[(R1,R2,R3)3]

1TS
 

Job #5: 
T51[(R1,R2,R3)1]

2TS
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VII. Testing 7 

Job #1: 
T11[(R1,R2,R3)2]

2TS
→

T12[(R1,R2,R3)2]

1TS
→

T13[(R1,R2,R3)1]

2TS
→

T14[(R4)1]

1TS
 

Job #2: 
T21[(R1,R2,R3)1]

1TS
→

T22[(R1)1and(R2,R3)1]

2TS
→

T23[(R4)1]

1TS
 

Job #3: 
T31[(R1,R2)1]

1TS
→ (

T32a[(R1,R2)2]

1TS
T32b[(R3)1]

2TS

)

1

→
T33[(R3,R4)1]

3TS
 

Job #4: 
T41[(R1,R2,R3)3]

1TS
→

T42[(R1,R2,R3)3]

2TS
 

Job #5: 
T51[(R1,R2,R3)3]

2TS
 

 

VIII. Testing 8 

Job #1: 
T11[(R1,R2,R3)2]

2TS
→

T12[(R1,R2,R3)2]

1TS
→

T13[(R1,R2,R3)1]

2TS
→

T14[(R4)1]

1TS
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Job #2: 
T21[(R1,R2,R3)1]

1TS
→

T22[(R1)1and(R2,R3)1]

2TS
→

T23[(R4)1]

1TS
 

Job #3: 
T31[(R1,R2)1]

1TS
→ (

T32a[(R1,R2)2]

1TS
T32b[(R3)1]

2TS

)

1

→
T33[(R3,R4)1]

3TS
 

Job #4: 
T41[(R1,R2,R3)3]

1TS
→

T42[(R1,R2,R3)2]

2TS
 

Job #5: 
T51[(R1,R2,R3)3]

2TS
 

 

IX． Testing 9 

Job #1: 
T11[(R1,R2,R3)2]

2TS
→

T12[(R1,R2,R3)2]

1TS
→

T13[(R1,R2,R3)1]

2TS
→

T14[(R1,R2,R3)3]

5TS
→

T15[(R4)1]

1TS
 

Job #2: 
T21[(R1,R2,R3)1]

1TS
→

T22[(R1,R2)1]

1TS
→

T23[(R1)1and(R2,R3)1]

2TS
→

T24[(R1,R2,R3)3]

5TS
→

T25[(R4)1]

1TS
 

Job #3: 
T31[(R1,R2,R3)3]

1TS
→

T32[(R4)1]

1TS
 

Job #4: 
T41[(R3)1and(R1,R2)1]

1TS
→

T42[(R4)1]

1TS
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X． Testing 10 

Job #1: 
T11[(R1,R2,R3)2]

2TS
→

T12[(R1,R2,R3)2]

1TS
→

T13[(R1,R2,R3)1]

2TS
→

T14[(R1,R2,R3)2]

5TS
→

T15[(R4)1]

1TS
 

Job #2: 
T21[(R1,R2,R3)1]

1TS
→

T22[(R1,R2)1]

1TS
→

T23[(R1)1and(R2,R3)1]

2TS
→

T24[(R1,R2,R3)2]

5TS
→

T25[(R4)1]

1TS
 

Job #3: 
T31[(R1,R2,R3)2]

1TS
→

T32[(R4)1]

1TS
 

Job #4: 
T41[(R3)1and(R1,R2)1]

1TS
→

T42[(R4)1]

1TS
 

 

XI． Testing 11 

Job #1: (

T1,1a[(M2, M3)1 and (T6,T7)1]

4TS
T1,1b[(M4)1 and (T6,T7)1]

3TS

)

1

→ (

T1,2a[(M2, M3)1 and (T6,T7)1]

4TS
T1,2b[(M4)1 and (T6,T7)1]

3TS

)

1

→ (
T1,3a[(M2, M3,M4)1 and (T6,T7)1]

2TS
)
1

→

(

T1,4a[(M1)1 and (T2)1]

2TS
T1,4b[(M2, M3,M4)1 and (T2)1]

1TS

)

1

 

Job #2: (

T2,1b[(M1)1 and (T1)1]

2TS
T2,1a[(M2, M3,M4)1 and (T1)1]

1TS

)

1

→ (
T2,2a[(M2, M3,M4)1 and (T12)1]

2TS
)
1

→ (
T2,3a[(M2, M3,M4)1 and (T6,T7,T11)1]

2TS
)
1

 

Job #3: (
T3,1a[(M2, M3,M4)1 and (T7,T8)1]

2TS
)
1

→ (
T3,2a[(M2, M3,M4)1 and (T7,T8)1]

2TS
)
1

→ (
T3,3a[(M2, M3,M4)1 and (T7,T8)1]

2TS
)
1

 

Job #4: (

T4,1a[(M2)1 and (T9,T10)1]

3TS
T4,1b[(M3)1 and (T9,T10)1]

2TS

)

1

→ (
T4,2a[(M2,M3)1 and (T1,T3)1]

3TS
)
1

→ (
T4,3a[(M2,M3)1 and (T6,T9)1]

2TS
)
1

→

(

T4,4a[(M2)1 and (T3)1]

2TS
T4,4b[(M3)1 and (T3)1]

3TS

)

1
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XII． Testing 12 

In test instance 12, the machine M5 is loaded as conflict with other resources. 

Job #1: (

T11a[(M2, M3)1 and (T6,T7,T8)1]

3TS
T11b[(M4)1 and (T6,T7,T8)1]

2TS

)

1

→ (

T12a[(M2, M3)1 and (T6,T7,T8)1]

3TS
T12b[(M4)1 and (T6,T7,T8)1]

2TS

)

1

→ (

T13a[(M2, M3)1 and (T6,T7,T8)1]

2TS
T13b[(M4)1 and (T6,T7,T8)1]

1TS

)

1

→

(

T14a[(M2, M3)1 and (T6,T7)1]

3TS
T14b[(M4)1 and (T6,T7)1]

2TS

)

1

→ (
T15a[(M2, M3,M4)1 and (T7,T8)1]

1TS
)
1

→ (
T16a[(M2, M3,M4)1 and (T7,T8)1]

1TS
)
1

→

(

T17a[(M2, M3)1 and (T6,T7)1]

3TS
T17b[(M4)1 and (T6,T7)1]

2TS

)

1

→ (
T18a[(M1,M2, M3,M4)1 and (T2)1]

1TS
)
1

→ (
T19a[(M2, M3,M4)1 and (T9)1]

2TS
)
1

→

(

T110a[(M1,M2, M3)1 and (T2,T3,T4)1]

3TS
T110b[(M4)1 and (T2,T3,T4)1]

2TS

)

1

→ (
T111a[(M2, M3,M4)1 and (T9)1]

2TS
)
1

→ (
T112a[(M2,M3, M4,M5)1 and (T10)1]

2TS
)
1

→

(
T113a[(M1,M2, M3,M4)1 and (T1)1]

2TS
)
1

→ (

T114a[(M2, M3)1 and (T5)1]

2TS
T114b[(M4)1 and (T5)1]

1TS

)

1

→ (

T115a[(M2, M3)1 and (T7,T8)1]

2TS
T115b[(M4)1 and (T7,T8)1]

1TS

)

1

→

(

T116a[(M1,M2, M3)1 and (T2,T3,T4)1]

2TS
T116b[(M4)1 and (T2,T3,T4)1]

1TS

)

1

→ (
T117a[(M2,M3, M4)1 and (T9)1]

1TS
)
1

→ (
T118a[(M2,M3, M4,M5)1 and (T10)1]

1TS
)
1

→

(
T119a[(M2,M3, M4)1 and (T9)1]

1TS
)
1

→ (
T112a[(M2,M3, M4,M5)1 and (T10)1]

1TS
)
1
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Job #2: (
T21a[(M2, M3,M4)1 and (T6,T7,T8)1]

1TS
)
1

→ (

T22a[(M1)1 and (T6,T7,T8)1]

3TS
T22b[(M2, M3,M4)1 and (T6,T7,T8)1]

2TS

)

1

→ (
T23a[(M2, M3,M4)1 and (T1)1]

1TS
)
1

→

(

T24a[(M2, M3)1 and (T5,T6,T11)1]

2TS
T24b[(M4)1 and (T5,T6,T11)1]

1TS

)

1

→ (
T25a[(M1,M2, M3,M4)1 and (T2)1]

2TS
)
1

→ (
T26a[(M2, M3,M4)1 and (T6,T7,T8)1]

1TS
)
1

→

(
T27a[(M2, M3,M4)1 and (T6,T7,T8)1]

1TS
)
1

→ (

T28a[(M2, M3)1 and (T6,T7,T8)1]

2TS
T28b[(M4)1 and (T6,T7,T8)1]

1TS

)

1

→ (
T210a[(M2, M3,M4)1 and (T6,T7,T8)1]

2TS
)
1

→

(
T211a[(M1,M2, M3,M4)1 and (T1)1]

2TS
)
1

→ (
T212a[(M1,M2, M3,M4)1 and (T1)1]

2TS
)
1

→ (

T213a[(M2, M3)1 and (T12)1]

2TS
T213b[(M4)1 and (T12)1]

1TS

)

1

→

(

T214a[(M2, M3)1 and (T6,T7,T8)1]

2TS
T214b[(M4)1 and (T6,T7,T8)1]

1TS

)

1

→ (
T215a[(M1,M2, M3,M4)1 and (T1)1]

1TS
)
1

→ (
T216a[(M1,M2, M3,M4)1 and (T1)1]

1TS
)
1

 

Job #3: (
T31a[(M1,M2, M3,M4)1 and (T2)1]

1TS
)
1

→ (
T32a[(M2, M3,M4)1 and (T6,T7,T8)1]

1TS
)
1

→ (

T33a[(M2,M4)1 and (T6,T7,T8)1]

2TS
T22b[(M3)1 and (T6,T7,T8)1]

1TS

)

1

→

(

T34a[(M2,M4)1 and (T6,T7,T8)1]

2TS
T34b[(M3)1 and (T6,T7,T8)1]

1TS

)

1

→ (
T35a[(M1,M2, M3,M4)1 and (T2,T3,T4)1]

2TS
)
1

→ (

T36a[(M2,M3)1 and (T9)1]

2TS
T36b[(M4)1 and (T9)1]

1TS

)

1

→

(

T37a[(M2,M3,M5)1 and (T10)1]

2TS
T37b[(M4)1 and (T10)1]

1TS

)

1

→ (
T38a[(M2, M3,M4)1 and (T6,T7,T8)1]

1TS
)
1

→ (
T39a[(M2, M3,M4)1 and (T7,T8,T11)1]

1TS
)
1

→

(
T310a[(M2, M3,M4)1 and (T6,T7,T8,T11)1]

2TS
)
1

→ (
T311a[(M2, M3,M4)1 and (T7,T8)1]

2TS
)
1

→ (
T312a[(M1,M2, M3,M4)1 and (T1)1]

1TS
)
1

→

(
T313a[(M2, M3,M4)1 and (T5)1]

1TS
)
1

→ (
T314a[(M1,M2, M3,M4)1 and (T9)1]

1TS
)
1

 

Job #4: (
T41a[(M2,M4)1 and (T9)1]

2TS
)
1

→ (
T42a[(M1, M2,M4)1 and (T2)1]

2TS
)
1

→ (
T43a[(M2,M4)1 and (T6,T9)1]

1TS
)
1

→

(
T44a[(M2,M4)1 and (T1,T9)1]

2TS
)
1

→ (
T45a[(M2,M4)1 and (T9,T10)1]

1TS
)
1

→ (
T46a[(M2,M4)1 and (T1,T9)1]

1TS
)
1

→

(
T47a[(M1,M2,M4)1 and (T2)1]

1TS
)
1

 

XIII． Testing 13 

Job #1: (

T11a[(M2, M3)1 and (T6,T7,T8)1]

3TS
T11b[(M4)1 and (T6,T7,T8)1]

2TS

)

1

→ (

T12a[(M2, M3)1 and (T6,T7,T8)1]

3TS
T12b[(M4)1 and (T6,T7,T8)1]

2TS

)

1

→ (

T13a[(M2, M3)1 and (T6,T7,T8)1]

2TS
T13b[(M4)1 and (T6,T7,T8)1]

1TS

)

1

→
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(

T14a[(M2, M3)1 and (T6,T7)1]

3TS
T14b[(M4)1 and (T6,T7)1]

2TS

)

1

→ (
T15a[(M2, M3,M4)1 and (T7,T8)1]

1TS
)
1

→ (
T16a[(M2, M3,M4)1 and (T7,T8)1]

1TS
)
1

→

(

T17a[(M2, M3)1 and (T6,T7)1]

3TS
T17b[(M4)1 and (T6,T7)1]

2TS

)

1

→ (
T18a[(M1,M2, M3,M4)1 and (T2)1]

1TS
)
1

→ (
T19a[(M2, M3,M4)1 and (T9)1]

2TS
)
1

→

(

T110a[(M1,M2, M3)1 and (T2,T3,T4)1]

3TS
T110b[(M4)1 and (T2,T3,T4)1]

2TS

)

1

→ (
T111a[(M2, M3,M4)1 and (T9)1]

2TS
)
1

→ (
T112a[(M2,M3, M4,M5)1 and (T10)1]

2TS
)
1

→

(
T113a[(M1,M2, M3,M4)1 and (T1)1]

2TS
)
1

→ (

T114a[(M2, M3)1 and (T5)1]

2TS
T114b[(M4)1 and (T5)1]

1TS

)

1

→ (

T115a[(M2, M3)1 and (T7,T8)1]

2TS
T115b[(M4)1 and (T7,T8)1]

1TS

)

1

→

(

T116a[(M1,M2, M3)1 and (T2,T3,T4)1]

2TS
T116b[(M4)1 and (T2,T3,T4)1]

1TS

)

1

→ (
T117a[(M2,M3, M4)1 and (T9)1]

1TS
)
1

→ (
T118a[(M2,M3, M4,M5)1 and (T10)1]

1TS
)
1

→

(
T119a[(M2,M3, M4)1 and (T9)1]

1TS
)
1

→ (
T112a[(M2,M3, M4,M5)1 and (T10)1]

1TS
)
1

 

Job #2: (
T21a[(M2, M3,M4)1 and (T6,T7,T8)1]

1TS
)
1

→ (

T22a[(M1)1 and (T6,T7,T8)1]

3TS
T22b[(M2, M3,M4)1 and (T6,T7,T8)1]

2TS

)

1

→ (
T23a[(M2, M3,M4)1 and (T1)1]

1TS
)
1

→

(

T24a[(M2, M3)1 and (T5,T6,T11)1]

2TS
T24b[(M4)1 and (T5,T6,T11)1]

1TS

)

1

→ (
T25a[(M1,M2, M3,M4)1 and (T2)1]

2TS
)
1

→ (
T26a[(M2, M3,M4)1 and (T6,T7,T8)1]

1TS
)
1

→

(
T27a[(M2, M3,M4)1 and (T6,T7,T8)1]

1TS
)
1

→ (

T28a[(M2, M3)1 and (T6,T7,T8)1]

2TS
T28b[(M4)1 and (T6,T7,T8)1]

1TS

)

1

→ (
T210a[(M2, M3,M4)1 and (T6,T7,T8)1]

2TS
)
1

→

(
T211a[(M1,M2, M3,M4)1 and (T1)1]

2TS
)
1

→ (
T212a[(M1,M2, M3,M4)1 and (T1)1]

2TS
)
1

→ (

T213a[(M2, M3)1 and (T12)1]

2TS
T213b[(M4)1 and (T12)1]

1TS

)

1

→

(

T214a[(M2, M3)1 and (T6,T7,T8)1]

2TS
T214b[(M4)1 and (T6,T7,T8)1]

1TS

)

1

→ (
T215a[(M1,M2, M3,M4)1 and (T1)1]

1TS
)
1

→ (
T216a[(M1,M2, M3,M4)1 and (T1)1]

1TS
)
1

 

Job #3: (
T31a[(M1,M2, M3,M4)1 and (T2)1]

1TS
)
1

→ (
T32a[(M2, M3,M4)1 and (T6,T7,T8)1]

1TS
)
1

→ (

T33a[(M2,M4)1 and (T6,T7,T8)1]

2TS
T22b[(M3)1 and (T6,T7,T8)1]

1TS

)

1

→

(

T34a[(M2,M4)1 and (T6,T7,T8)1]

2TS
T34b[(M3)1 and (T6,T7,T8)1]

1TS

)

1

→ (
T35a[(M1,M2, M3,M4)1 and (T2,T3,T4)1]

2TS
)
1

→ (

T36a[(M2,M3)1 and (T9)1]

2TS
T36b[(M4)1 and (T9)1]

1TS

)

1

→

(

T37a[(M2,M3,M5)1 and (T10)1]

2TS
T37b[(M4)1 and (T10)1]

1TS

)

1

→ (
T38a[(M2, M3,M4)1 and (T6,T7,T8)1]

1TS
)
1

→ (
T39a[(M2, M3,M4)1 and (T7,T8,T11)1]

1TS
)
11

→
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(
T310a[(M2, M3,M4)1 and (T6,T7,T8,T11)1]

2TS
)
1

→ (
T311a[(M2, M3,M4)1 and (T7,T8)1]

2TS
)
1

→ (
T312a[(M1,M2, M3,M4)1 and (T1)1]

1TS
)
1

→

(
T313a[(M2, M3,M4)1 and (T5)1]

1TS
)
1

→ (
T314a[(M1,M2, M3,M4)1 and (T9)1]

1TS
)
1

 

Job #4: (
T41a[(M2,M4)1 and (T9)1]

2TS
)
1

→ (
T42a[(M1, M2,M4)1 and (T2)1]

2TS
)
1

→ (
T43a[(M2,M4)1 and (T6,T9)1]

1TS
)
1

→

(
T44a[(M2,M4)1 and (T1,T9)1]

2TS
)
1

→ (
T45a[(M2,M4)1 and (T9,T10)1]

1TS
)
1

→ (
T46a[(M2,M4)1 and (T1,T9)1]

1TS
)
1

→

(
T47a[(M1,M2,M4)1 and (T2)1]

1TS
)
1

 

XIV． Testing 14 

Job #1: (

T11a[(M2, M3)1]

3TS
T11b[(M4)1]

2TS

)

1

→ (

T12a[(M2, M3)1 ]

3TS
T12b[(M4)1]

2TS

)

1

→ (

T13a[(M2, M3)1]

2TS
T13b[(M4)1]

1TS

)

1

→ (

T14a[(M2, M3)1]

3TS
T14b[(M4)1]

2TS

)

1

→ (
T15a[(M2, M3,M4)1]

1TS
)
1

→

(
T16a[(M2, M3,M4)1]

1TS
)
1

→ (

T17a[(M2, M3)1]

3TS
T17b[(M4)1]

2TS

)

1

→ (
T18a[(M1,M2, M3,M4)1]

1TS
)
1

→ (
T19a[(M2, M3,M4)1]

2TS
)
1

→

(

T110a[(M1,M2, M3)1]

3TS
T110b[(M4)1]

2TS

)

1

→ (
T111a[(M2, M3,M4)1]

2TS
)
1

→ (
T112a[(M2,M3, M4,M5)1]

2TS
)
1

→ (
T113a[(M1,M2, M3,M4)1]

2TS
)
1

→

(

T114a[(M2, M3)1]

2TS
T114b[(M4)1]

1TS

)

1

→ (

T115a[(M2, M3)1]

2TS
T115b[(M4)1]

1TS

)

1

→ (

T116a[(M1,M2, M3)1]

2TS
T116b[(M4)1]

1TS

)

1

→ (
T117a[(M2,M3, M4)1]

1TS
)
1

→

(
T118a[(M2,M3, M4,M5)1]

1TS
)
1

→ (
T119a[(M2,M3, M4)1]

1TS
)
1

→ (
T112a[(M2,M3, M4,M5)1]

1TS
)
1

 

Job #2: (
T21a[(M2, M3,M4)1]

1TS
)
1

→ (

T22a[(M1)1]

3TS
T22b[(M2, M3,M4)1]

2TS

)

1

→ (
T23a[(M2, M3,M4)1]

1TS
)
1

→ (

T24a[(M2, M3)1]

2TS
T24b[(M4)1]

1TS

)

1

→

(
T25a[(M1,M2, M3,M4)1]

2TS
)
1

→ (
T26a[(M2, M3,M4)1]

1TS
)
1

→ (
T27a[(M2, M3,M4)1]

1TS
)
1

→ (

T28a[(M2, M3)1]

2TS
T28b[(M4)1]

1TS

)

1

→

(
T210a[(M2, M3,M4)1]

2TS
)
1

→ (
T211a[(M1,M2, M3,M4)1]

2TS
)
1

→ (
T212a[(M1,M2, M3,M4)1]

2TS
)
1

→ (

T213a[(M2, M3)1]

2TS
T213b[(M4)1]

1TS

)

1

→

(

T214a[(M2, M3)1]

2TS
T214b[(M4)1 ]

1TS

)

1

→ (
T215a[(M1,M2, M3,M4)1]

1TS
)
1

→ (
T216a[(M1,M2, M3,M4)1]

1TS
)
1

 

Job #3: (
T31a[(M1,M2, M3,M4)1]

1TS
)
1

→ (
T32a[(M2, M3,M4)1]

1TS
)
1

→ (

T33a[(M2,M4)1]

2TS
T22b[(M3)1]

1TS

)

1

→ (

T34a[(M2,M4)1]

2TS
T34b[(M3)1]

1TS

)

1

→
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(
T35a[(M1,M2, M3,M4)1]

2TS
)
1

→ (

T36a[(M2,M3)1]

2TS
T36b[(M4)1]

1TS

)

1

→ (

T37a[(M2,M3,M5)1]

2TS
T37b[(M4)1]

1TS

)

1

→ (
T38a[(M2, M3,M4)1]

1TS
)
1

→ (
T39a[(M2, M3,M4)1]

1TS
)
1

→

(
T310a[(M2, M3,M4)1]

2TS
)
1

→ (
T311a[(M2, M3,M4)1]

2TS
)
1

→ (
T312a[(M1,M2, M3,M4)1]

1TS
)
1

→ (
T313a[(M2, M3,M4)1]

1TS
)
1

→

(
T314a[(M1,M2, M3,M4)1]

1TS
)
1

 

Job #4: (
T41a[(M2,M4)1]

2TS
)
1

→ (
T42a[(M1, M2,M4)1]

2TS
)
1

→ (
T43a[(M2,M4)1]

1TS
)
1

→ (
T44a[(M2,M4)1]

2TS
)
1

→ (
T45a[(M2,M4)1]

1TS
)
1

→

(
T46a[(M2,M4)1]

1TS
)
1

→ (
T47a[(M1,M2,M4)1]

1TS
)
1

 

XV． Testing 15 

Job #1: 
T11[(R1,R2,R3)2]

2TS
→

T12[(R1,R2,R3)1]

2TS
→

T13[(R1,R2,R3)2]

5TS
→

T14[(R4)1]

1TS
 

Job #2: 
T21[(R1,R2,R3)1]

1TS
→

T22[(R1,R2)1]

1TS
→

T23[(R1)1and(R2,R3)1]

2TS
→

T24[(R1,R2,R3)2]

5TS
→

T25[(R4)1]

1TS
 

Job #3: 
T31[(R1,R2,R3)2]

1TS
→

T32[(R4)1]

1TS
 

Job #4: 
T41[(R3)1and(R1,R2)1]

1TS
→

T42[(R4)1]

1TS
 

 

XVI． Testing 16 

Job #1: 
T11[(R1,R2,R3)2]

2TS
→

T12[(R1,R2,R3)2]

1TS
→

T13[(R1,R2,R3)1]

2TS
→

T14[(R4)1]

1TS
 

Job #2: 
T21[(R1,R2,R3)1]

1TS
→

T22[(R1)1and(R2,R3)1]

2TS
→

T23[(R4)1]

1TS
 

Job #3: 
T31[(R1,R2)1]

1TS
→ (

T32a[(R1,R2)2]

1TS
T32b[(R3)1]

2TS

)

1

→
T33[(R3,R4)1]

3TS
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Job #4: 
T41[(R1,R2,R3)3]

1TS
→

T42[(R1,R2,R3)2]

2TS
 

Job #5: 
T51[(R1,R2,R3)3]

2TS
→

T52[(R1,R2,R3,R5)2]

1TS
 

XVII． Testing 17 

Job #1: (

T1,1a[(M2, M3)1 and (T6,T7)1]

4TS
T1,1b[(M4)1 and (T6,T7)1]

3TS

)

1

→ (

T1,2a[(M2, M3)1 and (T6,T7)1]

4TS
T1,2b[(M4)1 and (T6,T7)1]

3TS

)

1

→ (
T1,3a[(M2, M3,M4)1 and (T6,T7)1]

2TS
)
1

→

(
T1,4a[(M4)1 and (T2)1]

1TS
)
1

 

Job #2: (

T2,1b[(M1)1 and (T1)1]

2TS
T2,1a[(M2, M3,M4)1 and (T1)1]

1TS

)

1

→ (
T2,2a[(M2, M3,M4)1 and (T12)1]

2TS
)
1

→ (
T2,3a[(M2, M3,M4)1 and (T11)1]

2TS
)
1

 

Job #3: (
T3,1a[(M2, M3,M4)1 and (T7)1]

2TS
)
1

→ (
T3,2a[(M2, M3,M4)1 and (T7)1]

2TS
)
1

→ (
T3,3a[(M2, M3,M4)1 and (T7)1]

2TS
)
1

 

Job #4: (

T4,1a[(M2)1 and (T9)1]

3TS
T4,1b[(M3)1 and (T9)1]

2TS

)

1

→ (
T4,2a[(M2,M3)1 and (T1,T3)1]

3TS
)
1

→ (
T4,3a[(M2,M3)1 and (T6,T9)1]

2TS
)
1

→

(

T4,4a[(M2)1 and (T3)1]

2TS
T4,4b[(M3)1 and (T3)1]

3TS

)

1

 

 

XVIII． Testing 18 
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Job #1: (

T1,1a[(M2, M3)1 and (T6,T7)1]

4TS
T1,1b[(M4)1 and (T6,T7)1]

3TS

)

1

→ (

T1,2a[(M2, M3)1 and (T6,T7)1]

4TS
T1,2b[(M4)1 and (T6,T7)1]

3TS

)

1

→ (
T1,3a[(M2, M3,M4)1 and (T6,T7)1]

2TS
)
1

→

(
T1,4a[(M4)1 and (T2)1]

1TS
)
1

 

Job #2: (

T2,1b[(M1)1 and (T1)1]

2TS
T2,1a[(M2, M3,M4)1 and (T1)1]

1TS

)

1

→ (
T2,2a[(M2, M3,M4)1 and (T12)1]

2TS
)
1

→ (
T2,3a[(M2, M3,M4)1 and (T6,T7,T11)1]

2TS
)
1

 

Job #3: (
T3,1a[(M2, M3,M4)1 and (T7)1]

2TS
)
1

→ (
T3,2a[(M2, M3,M4)1 and (T7)1]

2TS
)
1

→ (
T3,3a[(M2, M3,M4)1 and (T7)1]

2TS
)
1

 

Job #4: (

T4,1a[(M2)1 and (T9)1]

3TS
T4,1b[(M3)1 and (T9)1]

2TS

)

1

→ (
T4,2a[(M2,M3)1 and (T1,T3)1]

3TS
)
1

→ (
T4,3a[(M2,M3)1 and (T6,T9)1]

2TS
)
1

→

(

T4,4a[(M2)1 and (T3)1]

2TS
T4,4b[(M3)1 and (T3)1]

3TS

)

1

 

 

XIX． Testing 19 

Job #1: (

T1,1a[(M2)1 and (T6,T7)1]

4TS
T1,1b[(M4)1 and (T6,T7)1]

3TS

)

1

→ (
T1,2a[(M4)1 and (T6,T7)1]

2TS
)
1

→ (
T1,3a[(M2, M3,M4)1 and (T6,T7)1]

2TS
)
1

→

(
T1,4a[(M4)1 and (T2)1]

1TS
)
1

 

Job #2: (
T2,1a[(M2, M3,M4)1 and (T1)1]

2TS
)
1

→ (
T2,2a[(M2, M3,M4)1 and (T12)1]

2TS
)
1

→ (
T2,3a[(M2)1 and (T11)1]

2TS
)
1
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Job #3: (
T3,1a[(M2, M3,M4)1 and (T7)1]

2TS
)
1

→ (
T3,2a[(M2, M3,M4)1 and (T7)1]

2TS
)
1

→ (
T3,3a[(M2, M3,M4)1 and (T7)1]

2TS
)
1

 

Job #4: (
T4,1a[(M3)1 and (T9)1]

1TS
)
1

→ (
T4,2a[(M2,M3)1 and (T1,T3)1]

3TS
)
1

→ (
T4,3a[(M2,M3)1 and (T6,T9)1]

2TS
)
1

→

(

T4,4a[(M2)1 and (T3)1]

2TS
T4,4b[(M3)1 and (T3)1]

3TS

)

1

 

 

XX． Testing 20 

Job #1: 
T11[(R1,R2,R3)2]

2
→

T12[(R1,R2,R3)2]

1
→

T13[(R1,R2,R3)1]

2
→

T14[(R4)1]

1
 

Job #2: 
T21[(R1,R2,R3)1]

1
→

T22[(R1)1and(R2,R3)1]

2
→

T23[(R4)1]

1
 

Job #3: 
T31[(R1,R2)1]

1
→ (

T32a[(R1,R2)2]

1
T32b[(R3)1]

2

)

1

→
T33[(R3,R4)1]

3
 

Job #4: 
T41[(R1,R2,R3)2]

2
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XXI． Testing 21 

Job #1: 
T11[(R1,R2,R3)2]

2
→

T12[(R1,R2,R3)2]

1
→

T13[(R1,R2,R3)1]

2
→

T14[(R4)1]

1
 

Job #2: 
T21[(R1,R2,R3)1]

1
→

T22[(R1)1and(R2,R3)1]

2
→

T23[(R4)1]

1
 

Job #3: 
T31[(R1,R2)1]

1
→ (

T32a[(R1,R2)2]

1
T32b[(R3)1]

2

)

1

→
T33[(R3,R4)1]

3
 

Job #4: 
T41[(R1,R2,R3)2]

2
 

Job #5: 
T51[(R1,R2,R3)2]

2
 

 

XXII. Testing 22 

Job #1: 
T11[(R1,R2,R3)2]

2
→

T12[(R1,R2,R3)2]

1
→

T13[(R1,R2,R3)1]

2
→

T14[(R4)1]

3
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Job #2: 
T21[(R1,R2,R3)1]

1
→

T22[(R1)1and(R2,R3)1]

2
→

T23[(R4)1]

3
 

Job #3: 
T31[(R1,R2)1]

1
→ (

T32a[(R1,R2)2]

1
T32b[(R3)1]

2

)

1

→
T33[(R3,R4)1]

3
 

 

XXIII. Testing 23 

Job #1: 
T11[(R1,R2,R3)2]

2
→

T12[(R1,R2,R3)2]

1
→

T13[(R1,R2,R3)1]

2
→

T14[(R4)1]

3
 

Job #2: 
T21[(R1,R2,R3)1]

1
→

T22[(R1)1and(R2,R3)1]

2
→

T23[(R4)1]

3
 

Job #3: 
T31[(R1,R2)1]

1
→ (

T32a[(R1,R2)2]

1
T32b[(R3)1]

2

)

1

→
T33[(R3,R4)1]

3
 

Job #4: 
T41[(R1,R2,R3)2]

2
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XXIV. Testing 24 

Job #1: 
T11[(R1,R2,R3)2]

2
→

T12[(R1,R2,R3)2]

1
→

T13[(R1,R2,R3)1]

2
→

T14[(R4)1]

3
 

Job #2: 
T21[(R1,R2,R3)1]

1
→

T22[(R1)1and(R2,R3)1]

2
→

T23[(R4)1]

3
 

Job #3: 
T31[(R1,R2)1]

1
→ (

T32a[(R1,R2)2]

1
T32b[(R3)1]

2

)

1

→
T33[(R3,R4)1]

3
 

Job #4: 
T41[(R1,R2,R3)2]

2
 

Job #5: 
T51[(R1,R2,R3)2]

2
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Appendix IV: The PPS Test Results Summary on Accuracy 

Test Accuracy Summary (best among three length weight coefficients) 

Heuristics Error Sum Min Error Max Error Standard Deviation Average Error 

H2 76.79% 0.00% 14.29% 0.053831568 3.66% 

H8 82.67% 0.00% 14.29% 0.053362191 3.94% 

H16 96.14% 0.00% 14.29% 0.053670139 4.01% 

H5 89.29% 0.00% 14.29% 0.056434276 4.25% 

H19 106.14% 0.00% 20.00% 0.061793045 4.42% 

H3 99.29% 0.00% 20.00% 0.065083392 4.73% 

H28 116.46% 0.00% 20.00% 0.067476508 4.85% 

H25 120.48% 0.00% 14.29% 0.056689463 5.02% 

H15 128.05% 0.00% 14.29% 0.05304635 5.34% 

H4 115.17% 0.00% 14.29% 0.055658769 5.48% 

H18 140.37% 0.00% 18.18% 0.058554961 5.85% 

H14 142.73% 0.00% 20.00% 0.057587423 5.95% 

H17 145.96% 0.00% 14.29% 0.050042525 6.08% 

H1 149.29% 0.00% 30.00% 0.093683853 7.11% 

H13 172.19% 0.00% 30.00% 0.091927199 7.17% 

H24 173.32% 0.00% 30.00% 0.082203899 7.22% 

H12 178.46% 0.00% 30.00% 0.076173156 7.44% 

H22 182.19% 0.00% 30.00% 0.090793192 7.59% 

H6 167.31% 0.00% 28.57% 0.072708516 7.97% 

H11 193.94% 0.00% 20.00% 0.072219182 8.08% 

H9 190.72% 0.00% 28.57% 0.061908107 9.08% 

H27 221.95% 0.00% 40.00% 0.108238797 9.25% 

H10 210.56% 0.00% 28.57% 0.055782302 10.03% 

H21 274.45% 0.00% 30.00% 0.097020496 11.44% 

H7 342.98% 0.00% 40.00% 0.116260159 16.33% 

H23 695.72% 5.56% 67.74% 0.17776048 28.99% 

H20 711.26% 5.56% 70.97% 0.182550518 29.64% 

H26 768.71% 5.56% 87.10% 0.226693545 32.03% 

 

Test Accuracy Summary (different length weight coefficients) 

Heuristics Length Weight Error Sum Min Error Max Error Standard Deviation Average Error 

H1 LW median 146.79% 0.00% 30.00% 0.116101709 7.73% 

H1 LW high 66.79% 0.00% 14.29% 0.054035859 3.52% 

H1 LW low 379.65% 0.00% 50.00% 0.215917236 19.98% 

H2 LW median 116.79% 0.00% 20.00% 0.079669269 6.15% 

H2 LW high 96.79% 0.00% 20.00% 0.073307066 5.09% 
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H2 LW low 425.39% 0.00% 60.00% 0.20627864 22.39% 

H3 LW median 82.34% 0.00% 14.29% 0.063872671 4.33% 

H3 LW high 96.79% 0.00% 20.00% 0.073307066 5.09% 

H3 LW low 337.89% 0.00% 50.00% 0.199032284 17.78% 

H4 LW median 132.67% 0.00% 30.00% 0.107201134 6.98% 

H4 LW high 72.67% 0.00% 14.29% 0.05359337 3.82% 

H4 LW low 377.15% 0.00% 60.00% 0.227042888 19.85% 

H5 LW median 132.67% 0.00% 20.00% 0.090325798 6.98% 

H5 LW high 92.67% 0.00% 20.00% 0.06424635 4.88% 

H5 LW low 467.89% 0.00% 60.00% 0.211785288 24.63% 

H6 LW median 239.09% 0.00% 28.57% 0.103530837 12.58% 

H6 LW high 157.31% 0.00% 28.57% 0.074081227 8.28% 

H6 LW low 503.60% 0.00% 60.00% 0.21305678 26.51% 

H7 LW median 274.65% 0.00% 40.00% 0.117823431 14.46% 

H7 LW high 264.65% 0.00% 40.00% 0.11744188 13.93% 

H7 LW low 423.74% 0.00% 60.00% 0.213851589 22.30% 

H8 LW median 72.67% 0.00% 14.29% 0.05359337 3.82% 

H8 LW high 92.67% 0.00% 20.00% 0.06424635 4.88% 

H8 LW low 266.55% 0.00% 50.00% 0.194635336 14.03% 

H9 LW median 168.06% 0.00% 28.57% 0.066280593 8.85% 

H9 LW high 157.31% 0.00% 28.57% 0.074081227 8.28% 

H9 LW low 453.60% 0.00% 50.00% 0.188410498 23.87% 

H10 LW median 238.06% 0.00% 28.57% 0.120058681 12.53% 

H10 LW high 177.15% 0.00% 28.57% 0.069662802 9.32% 

H10 LW low 487.89% 0.00% 60.00% 0.204165627 25.68% 

H11 LW median 275.40% 0.00% 40.00% 0.132007015 14.49% 

H11 LW high 201.21% 0.00% 36.36% 0.102077836 10.59% 

H11 LW low 371.62% 0.00% 42.86% 0.166448838 19.56% 

H12 LW median 219.18% 0.00% 40.00% 0.127558102 11.54% 

H12 LW high 144.00% 0.00% 18.18% 0.06672139 7.58% 

H12 LW low 393.70% 0.00% 42.86% 0.129630104 20.72% 

H13 LW median 194.71% 0.00% 42.86% 0.137130947 10.25% 

H13 LW high 89.69% 0.00% 14.29% 0.062333895 4.72% 

H13 LW low 325.46% 0.00% 50.00% 0.146692817 17.13% 

H14 LW median 209.92% 0.00% 30.00% 0.104197662 11.05% 

H14 LW high 151.82% 0.00% 30.00% 0.089640345 7.99% 

H14 LW low 319.95% 0.00% 40.00% 0.157068297 16.84% 

H15 LW median 205.23% 0.00% 40.00% 0.112344169 10.80% 

H15 LW high 114.64% 0.00% 18.18% 0.059177995 6.03% 

H15 LW low 418.39% 0.00% 50.00% 0.126877852 22.02% 

H16 LW median 146.14% 0.00% 20.00% 0.094973115 7.69% 

H16 LW high 106.14% 0.00% 20.00% 0.06475161 5.59% 

H16 LW low 423.45% 0.00% 50.00% 0.130585361 22.29% 
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H17 LW median 192.74% 0.00% 30.00% 0.090580368 10.14% 

H17 LW high 147.55% 0.00% 18.18% 0.063333126 7.77% 

H17 LW low 233.49% 0.00% 30.00% 0.114784161 12.29% 

H18 LW median 161.10% 0.00% 40.00% 0.100517064 8.48% 

H18 LW high 132.16% 0.00% 28.57% 0.076243832 6.96% 

H18 LW low 340.30% 0.00% 40.00% 0.106109163 17.91% 

H19 LW median 104.92% 0.00% 14.29% 0.06548711 5.52% 

H19 LW high 125.82% 0.00% 20.00% 0.071838329 6.62% 

H19 LW low 347.65% 0.00% 50.00% 0.18967755 18.30% 

H20 LW median 534.04% 5.56% 70.97% 0.193136428 28.11% 

H20 LW high 567.68% 5.56% 80.65% 0.214868683 29.88% 

H20 LW low 553.39% 5.56% 80.65% 0.21783028 29.13% 

H21 LW median 242.68% 0.00% 30.00% 0.11708745 12.77% 

H21 LW high 184.85% 0.00% 20.00% 0.077665972 9.73% 

H21 LW low 365.80% 0.00% 30.00% 0.092706741 19.25% 

H22 LW median 277.62% 0.00% 50.00% 0.191346926 14.61% 

H22 LW high 99.69% 0.00% 14.29% 0.062348484 5.25% 

H22 LW low 375.14% 0.00% 50.00% 0.166974759 19.74% 

H23 LW median 580.58% 5.56% 87.10% 0.232079338 30.56% 

H23 LW high 580.58% 5.56% 87.10% 0.232079338 30.56% 

H23 LW low 518.50% 5.56% 67.74% 0.186594926 27.29% 

H24 LW median 201.95% 0.00% 22.58% 0.085814202 10.63% 

H24 LW high 159.04% 0.00% 20.00% 0.067677392 8.37% 

H24 LW low 353.30% 0.00% 30.00% 0.101758463 18.59% 

H25 LW median 162.59% 0.00% 20.00% 0.094948821 8.56% 

H25 LW high 142.27% 0.00% 20.00% 0.071557047 7.49% 

H25 LW low 408.11% 0.00% 50.00% 0.144216269 21.48% 

H26 LW median 580.58% 5.56% 87.10% 0.232079338 30.56% 

H26 LW high 580.58% 5.56% 87.10% 0.232079338 30.56% 

H26 LW low 571.49% 5.56% 87.10% 0.233725333 30.08% 

H27 LW median 233.95% 0.00% 30.00% 0.113169757 12.31% 

H27 LW high 219.46% 0.00% 28.57% 0.108478598 11.55% 

H27 LW low 325.79% 0.00% 30.00% 0.105947041 17.15% 

H28 LW median 128.47% 0.00% 14.29% 0.07665969 6.76% 

H28 LW high 149.69% 0.00% 20.00% 0.103908679 7.88% 

H28 LW low 360.55% 0.00% 50.00% 0.175904418 18.98% 
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Appendix V: The PPS Test Results 

Test Instances T1 

Job Number 2 

Operation Number 7 

Edge Number 111 

Node Number 24 

Total Length 10 

Average Length 1.428571429 

Optimum Time Slot 7 

 LWs Makespan Computation Time (s) Difference Error Rate 

IP  7 6.590471577 0 0.00% 

H1 LW=1 7 0.171875 0 0.00% 

H1 LW=10 7 0.171875 0 0.00% 

H1 LW=0.001 8 0.234375 1 14.29% 

H2 LW=1 7 0.140625 0 0.00% 

H2 LW=10 7 0.140625 0 0.00% 

H2 LW=0.001 8 0.15625 1 14.29% 

H3 LW=1 7 0.140625 0 0.00% 

H3 LW=10 7 0.15625 0 0.00% 

H3 LW=0.001 8 0.15625 1 14.29% 

H4 LW=1 7 0.125 0 0.00% 

H4 LW=10 7 0.125 0 0.00% 

H4 LW=0.001 8 0.140625 1 14.29% 

H5 LW=1 7 0.125 0 0.00% 

H5 LW=10 7 0.140625 0 0.00% 

H5 LW=0.001 8 0.125 1 14.29% 

H6 LW=1 8 0.140625 1 14.29% 

H6 LW=10 7 0.140625 0 0.00% 

H6 LW=0.001 8 0.140625 1 14.29% 

H7 LW=1 8 0.15625 1 14.29% 

H7 LW=10 8 0.140625 1 14.29% 

H7 LW=0.001 8 0.140625 1 14.29% 

H8 LW=1 7 0.125 0 0.00% 

H8 LW=10 7 0.15625 0 0.00% 

H8 LW=0.001 8 0.125 1 14.29% 

H9 LW=1 8 0.140625 1 14.29% 

H9 LW=10 7 0.125 0 0.00% 

H9 LW=0.001 8 0.125 1 14.29% 

H10 LW=1 8 0.140625 1 14.29% 

H10 LW=10 8 0.171875 1 14.29% 

H10 LW=0.001 9 0.171875 2 28.57% 

H11 LW=1 7 0.015625 0 0.00% 

H11 LW=10 7 0.03125 0 0.00% 

H11 LW=0.001 7 0.015625 0 0.00% 

H12 LW=1 7 0.078125 0 0.00% 

H12 LW=10 7 0.09375 0 0.00% 
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H12 LW=0.001 8 0.09375 1 14.29% 

H13 LW=1 7 0.078125 0 0.00% 

H13 LW=10 7 0.09375 0 0.00% 

H13 LW=0.001 8 0.09375 1 14.29% 

H14 LW=1 7 0.015625 0 0.00% 

H14 LW=10 7 0.015625 0 0.00% 

H14 LW=0.001 7 0.015625 0 0.00% 

H15 LW=1 7 0.078125 0 0.00% 

H15 LW=10 7 0.078125 0 0.00% 

H15 LW=0.001 8 0.109375 1 14.29% 

H16 LW=1 7 0.0625 0 0.00% 

H16 LW=10 7 0.078125 0 0.00% 

H16 LW=0.001 8 0.09375 1 14.29% 

H17 LW=1 7 0.015625 0 0.00% 

H17 LW=10 7 0.015625 0 0.00% 

H17 LW=0.001 7 0.015625 0 0.00% 

H18 LW=1 7 0.078125 0 0.00% 

H18 LW=10 7 0.09375 0 0.00% 

H18 LW=0.001 8 0.09375 1 14.29% 

H19 LW=1 7 0.078125 0 0.00% 

H19 LW=10 7 0.078125 0 0.00% 

H19 LW=0.001 8 0.09375 1 14.29% 

H20 LW=1 8 0.015625 1 14.29% 

H20 LW=10 8 0.015625 1 14.29% 

H20 LW=0.001 8 0.015625 1 14.29% 

H21 LW=1 7 0.09375 0 0.00% 

H21 LW=10 7 0.078125 0 0.00% 

H21 LW=0.001 8 0.09375 1 14.29% 

H22 LW=1 7 0.078125 0 0.00% 

H22 LW=10 7 0.078125 0 0.00% 

H22 LW=0.001 8 0.078125 1 14.29% 

H23 LW=1 8 0.015625 1 14.29% 

H23 LW=10 8 0.015625 1 14.29% 

H23 LW=0.001 8 0.015625 1 14.29% 

H24 LW=1 7 0.09375 0 0.00% 

H24 LW=10 7 0.09375 0 0.00% 

H24 LW=0.001 8 0.21875 1 14.29% 

H25 LW=1 7 0.078125 0 0.00% 

H25 LW=10 7 0.09375 0 0.00% 

H25 LW=0.001 8 0.09375 1 14.29% 

H26 LW=1 8 0.015625 1 14.29% 

H26 LW=10 8 0.015625 1 14.29% 

H26 LW=0.001 8 0.03125 1 14.29% 

H27 LW=1 7 0.078125 0 0.00% 

H27 LW=10 7 0.09375 0 0.00% 

H27 LW=0.001 8 0.09375 1 14.29% 

H28 LW=1 7 0.078125 0 0.00% 
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H28 LW=10 7 0.09375 0 0.00% 

H28 LW=0.001 8 0.078125 1 14.29% 

 

Test Instances T2 

Job Number 3 

Operation Number 10 

Edge Number 227 

Node Number 35 

Total Length 15.5 

Average Length 1.55 

Optimum Time Slot 8 

 LWs Makespan Computation Time (s) Difference Error Rate 

IP  8 68.6741747 0 0.00% 

H1 LW=1 9 1.078125 1 12.50% 

H1 LW=15.5 9 1.09375 1 12.50% 

H1 LW=0.001 9 1.078125 1 12.50% 

H2 LW=1 9 1.078125 1 12.50% 

H2 LW=15.5 9 1.015625 1 12.50% 

H2 LW=0.001 8 1.078125 0 0.00% 

H3 LW=1 9 0.984375 1 12.50% 

H3 LW=15.5 9 1.0625 1 12.50% 

H3 LW=0.001 9 1.28125 1 12.50% 

H4 LW=1 9 0.953125 1 12.50% 

H4 LW=15.5 9 0.984375 1 12.50% 

H4 LW=0.001 9 0.953125 1 12.50% 

H5 LW=1 9 0.96875 1 12.50% 

H5 LW=15.5 9 1 1 12.50% 

H5 LW=0.001 10 1.1875 2 25.00% 

H6 LW=1 8 1.03125 0 0.00% 

H6 LW=15.5 9 1.078125 1 12.50% 

H6 LW=0.001 9 1.046875 1 12.50% 

H7 LW=1 8 1.0625 0 0.00% 

H7 LW=15.5 8 1.0625 0 0.00% 

H7 LW=0.001 8 1.125 0 0.00% 

H8 LW=1 9 0.953125 1 12.50% 

H8 LW=15.5 9 0.96875 1 12.50% 

H8 LW=0.001 8 0.984375 0 0.00% 

H9 LW=1 9 1.015625 1 12.50% 

H9 LW=15.5 9 0.984375 1 12.50% 
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H9 LW=0.001 9 1.046875 1 12.50% 

H10 LW=1 9 0.953125 1 12.50% 

H10 LW=15.5 9 0.953125 1 12.50% 

H10 LW=0.001 9 1.046875 1 12.50% 

H11 LW=1 8 0.046875 0 0.00% 

H11 LW=15.5 9 0.046875 1 12.50% 

H11 LW=0.001 11 0.046875 3 37.50% 

H12 LW=1 8 0.421875 0 0.00% 

H12 LW=15.5 9 0.3125 1 12.50% 

H12 LW=0.001 9 0.296875 1 12.50% 

H13 LW=1 9 0.21875 1 12.50% 

H13 LW=15.5 9 0.234375 1 12.50% 

H13 LW=0.001 9 0.21875 1 12.50% 

H14 LW=1 8 0.046875 0 0.00% 

H14 LW=15.5 8 0.046875 0 0.00% 

H14 LW=0.001 8 0.046875 0 0.00% 

H15 LW=1 9 0.3125 1 12.50% 

H15 LW=15.5 9 0.296875 1 12.50% 

H15 LW=0.001 9 0.328125 1 12.50% 

H16 LW=1 9 0.21875 1 12.50% 

H16 LW=15.5 9 0.21875 1 12.50% 

H16 LW=0.001 8 0.234375 0 0.00% 

H17 LW=1 9 0.046875 1 12.50% 

H17 LW=15.5 9 0.046875 1 12.50% 

H17 LW=0.001 8 0.046875 0 0.00% 

H18 LW=1 9 0.4375 1 12.50% 

H18 LW=15.5 9 0.265625 1 12.50% 

H18 LW=0.001 9 0.359375 1 12.50% 

H19 LW=1 9 0.234375 1 12.50% 

H19 LW=15.5 9 0.25 1 12.50% 

H19 LW=0.001 8 0.265625 0 0.00% 

H20 LW=1 9 0.046875 1 12.50% 

H20 LW=15.5 9 0.046875 1 12.50% 

H20 LW=0.001 9 0.046875 1 12.50% 

H21 LW=1 9 0.296875 1 12.50% 

H21 LW=15.5 9 0.265625 1 12.50% 

H21 LW=0.001 9 0.25 1 12.50% 

H22 LW=1 9 0.265625 1 12.50% 

H22 LW=15.5 9 0.21875 1 12.50% 

H22 LW=0.001 9 0.21875 1 12.50% 

H23 LW=1 9 0.046875 1 12.50% 

H23 LW=15.5 9 0.046875 1 12.50% 
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H23 LW=0.001 9 0.046875 1 12.50% 

H24 LW=1 9 0.25 1 12.50% 

H24 LW=15.5 9 0.28125 1 12.50% 

H24 LW=0.001 8 0.296875 0 0.00% 

H25 LW=1 9 0.234375 1 12.50% 

H25 LW=15.5 9 0.265625 1 12.50% 

H25 LW=0.001 8 0.265625 0 0.00% 

H26 LW=1 9 0.0625 1 12.50% 

H26 LW=15.5 9 0.046875 1 12.50% 

H26 LW=0.001 9 0.046875 1 12.50% 

H27 LW=1 9 0.265625 1 12.50% 

H27 LW=15.5 9 0.234375 1 12.50% 

H27 LW=0.001 8 0.28125 0 0.00% 

H28 LW=1 9 0.21875 1 12.50% 

H28 LW=15.5 9 0.28125 1 12.50% 

H28 LW=0.001 8 0.265625 0 0.00% 

 

Test Instances T103 

Job Number 3 

Operation Number 11 

Edge Number 307 

Node Number 37 

Total Length 22 

Average Length 2 

Optimum Time Slot 16 

 LWs Makespan Computation Time (s) Difference Error Rate 

IP  16 26.96629721 0 0.00% 

H1 LW=1 16 1.28125 0 0.00% 

H1 LW=22 16 1.296875 0 0.00% 

H1 LW=0.001 19 2.25 3 18.75% 

H2 LW=1 16 1.28125 0 0.00% 

H2 LW=22 16 1.28125 0 0.00% 

H2 LW=0.001 19 1.296875 3 18.75% 

H3 LW=1 16 1.234375 0 0.00% 

H3 LW=22 16 1.15625 0 0.00% 

H3 LW=0.001 19 1.25 3 18.75% 

H4 LW=1 16 1.296875 0 0.00% 

H4 LW=22 16 1.109375 0 0.00% 

H4 LW=0.001 17 2.125 1 6.25% 
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H5 LW=1 16 1.09375 0 0.00% 

H5 LW=22 16 1.375 0 0.00% 

H5 LW=0.001 17 1.265625 1 6.25% 

H6 LW=1 18 1.015625 2 12.50% 

H6 LW=22 18 1.0625 2 12.50% 

H6 LW=0.001 19 1.109375 3 18.75% 

H7 LW=1 18 1.203125 2 12.50% 

H7 LW=22 18 1.203125 2 12.50% 

H7 LW=0.001 18 1.15625 2 12.50% 

H8 LW=1 16 1.390625 0 0.00% 

H8 LW=22 16 1.109375 0 0.00% 

H8 LW=0.001 17 1.203125 1 6.25% 

H9 LW=1 18 1.3125 2 12.50% 

H9 LW=22 18 1.1875 2 12.50% 

H9 LW=0.001 19 1.140625 3 18.75% 

H10 LW=1 18 1.0625 2 12.50% 

H10 LW=22 18 1.078125 2 12.50% 

H10 LW=0.001 19 1.140625 3 18.75% 

H11 LW=1 16 0.078125 0 0.00% 

H11 LW=22 16 0.078125 0 0.00% 

H11 LW=0.001 17 0.078125 1 6.25% 

H12 LW=1 16 0.546875 0 0.00% 

H12 LW=22 16 0.515625 0 0.00% 

H12 LW=0.001 19 0.625 3 18.75% 

H13 LW=1 16 0.390625 0 0.00% 

H13 LW=22 16 0.34375 0 0.00% 

H13 LW=0.001 19 0.53125 3 18.75% 

H14 LW=1 16 0.0625 0 0.00% 

H14 LW=22 16 0.078125 0 0.00% 

H14 LW=0.001 16 0.0625 0 0.00% 

H15 LW=1 16 0.53125 0 0.00% 

H15 LW=22 16 0.5 0 0.00% 

H15 LW=0.001 19 0.46875 3 18.75% 

H16 LW=1 16 0.359375 0 0.00% 

H16 LW=22 16 0.40625 0 0.00% 

H16 LW=0.001 19 0.40625 3 18.75% 

H17 LW=1 16 0.0625 0 0.00% 

H17 LW=22 16 0.09375 0 0.00% 

H17 LW=0.001 16 0.0625 0 0.00% 

H18 LW=1 16 0.46875 0 0.00% 

H18 LW=22 16 0.546875 0 0.00% 

H18 LW=0.001 19 0.5625 3 18.75% 



165 

 

H19 LW=1 16 0.375 0 0.00% 

H19 LW=22 16 0.375 0 0.00% 

H19 LW=0.001 19 0.40625 3 18.75% 

H20 LW=1 18 0.09375 2 12.50% 

H20 LW=22 18 0.15625 2 12.50% 

H20 LW=0.001 18 0.078125 2 12.50% 

H21 LW=1 16 0.4375 0 0.00% 

H21 LW=22 16 0.40625 0 0.00% 

H21 LW=0.001 19 0.609375 3 18.75% 

H22 LW=1 16 0.359375 0 0.00% 

H22 LW=22 16 0.375 0 0.00% 

H22 LW=0.001 19 0.609375 3 18.75% 

H23 LW=1 18 0.078125 2 12.50% 

H23 LW=22 18 0.09375 2 12.50% 

H23 LW=0.001 18 0.09375 2 12.50% 

H24 LW=1 16 0.484375 0 0.00% 

H24 LW=22 16 0.390625 0 0.00% 

H24 LW=0.001 19 0.453125 3 18.75% 

H25 LW=1 16 0.34375 0 0.00% 

H25 LW=22 16 0.359375 0 0.00% 

H25 LW=0.001 19 0.421875 3 18.75% 

H26 LW=1 18 0.078125 2 12.50% 

H26 LW=22 18 0.078125 2 12.50% 

H26 LW=0.001 18 0.09375 2 12.50% 

H27 LW=1 16 0.421875 0 0.00% 

H27 LW=22 16 0.453125 0 0.00% 

H27 LW=0.001 19 0.5 3 18.75% 

H28 LW=1 16 0.375 0 0.00% 

H28 LW=22 16 0.390625 0 0.00% 

H28 LW=0.001 19 0.390625 3 18.75% 

 

Test Instances T4 

Job Number 4 

Operation Number 12 

Edge Number 315 

Node Number 41 

Total Length 20.5 

Average Length 1.708333333 

Optimum Time Slot 11 
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 LWs Makespan Computation Time (s) Difference Error Rate 

IP  11 118.9429157 0 0.00% 

H1 LW=1 11 1.859375 0 0.00% 

H1 LW=20.5 11 2.140625 0 0.00% 

H1 LW=0.001 14 2.09375 3 27.27% 

H2 LW=1 11 1.75 0 0.00% 

H2 LW=20.5 11 1.75 0 0.00% 

H2 LW=0.001 14 2.171875 3 27.27% 

H3 LW=1 11 2.015625 0 0.00% 

H3 LW=20.5 11 1.75 0 0.00% 

H3 LW=0.001 14 2.046875 3 27.27% 

H4 LW=1 11 1.90625 0 0.00% 

H4 LW=20.5 11 1.890625 0 0.00% 

H4 LW=0.001 14 2.03125 3 27.27% 

H5 LW=1 11 1.96875 0 0.00% 

H5 LW=20.5 11 1.90625 0 0.00% 

H5 LW=0.001 14 2 3 27.27% 

H6 LW=1 13 1.9375 2 18.18% 

H6 LW=20.5 13 1.84375 2 18.18% 

H6 LW=0.001 14 1.953125 3 27.27% 

H7 LW=1 13 2.140625 2 18.18% 

H7 LW=20.5 13 2.1875 2 18.18% 

H7 LW=0.001 14 2.109375 3 27.27% 

H8 LW=1 11 1.78125 0 0.00% 

H8 LW=20.5 11 1.84375 0 0.00% 

H8 LW=0.001 14 2.078125 3 27.27% 

H9 LW=1 12 1.78125 1 9.09% 

H9 LW=20.5 13 1.953125 2 18.18% 

H9 LW=0.001 14 2.078125 3 27.27% 

H10 LW=1 12 1.921875 1 9.09% 

H10 LW=20.5 13 1.859375 2 18.18% 

H10 LW=0.001 14 1.984375 3 27.27% 

H11 LW=1 12 0.09375 1 9.09% 

H11 LW=20.5 15 0.203125 4 36.36% 

H11 LW=0.001 14 0.078125 3 27.27% 

H12 LW=1 12 0.375 1 9.09% 

H12 LW=20.5 13 0.4375 2 18.18% 

H12 LW=0.001 14 0.578125 3 27.27% 

H13 LW=1 11 0.359375 0 0.00% 

H13 LW=20.5 11 0.390625 0 0.00% 

H13 LW=0.001 14 0.421875 3 27.27% 

H14 LW=1 12 0.078125 1 9.09% 

H14 LW=20.5 13 0.09375 2 18.18% 
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H14 LW=0.001 14 0.09375 3 27.27% 

H15 LW=1 12 0.453125 1 9.09% 

H15 LW=20.5 13 0.453125 2 18.18% 

H15 LW=0.001 14 0.640625 3 27.27% 

H16 LW=1 11 0.34375 0 0.00% 

H16 LW=20.5 11 0.390625 0 0.00% 

H16 LW=0.001 14 0.4375 3 27.27% 

H17 LW=1 12 0.078125 1 9.09% 

H17 LW=20.5 13 0.09375 2 18.18% 

H17 LW=0.001 14 0.078125 3 27.27% 

H18 LW=1 13 0.453125 2 18.18% 

H18 LW=20.5 13 0.546875 2 18.18% 

H18 LW=0.001 14 0.671875 3 27.27% 

H19 LW=1 11 0.375 0 0.00% 

H19 LW=20.5 11 0.34375 0 0.00% 

H19 LW=0.001 14 0.4375 3 27.27% 

H20 LW=1 14 0.09375 3 27.27% 

H20 LW=20.5 14 0.09375 3 27.27% 

H20 LW=0.001 14 0.09375 3 27.27% 

H21 LW=1 11 0.40625 0 0.00% 

H21 LW=20.5 11 0.5 0 0.00% 

H21 LW=0.001 13 0.40625 2 18.18% 

H22 LW=1 11 0.3125 0 0.00% 

H22 LW=20.5 11 0.3125 0 0.00% 

H22 LW=0.001 14 0.390625 3 27.27% 

H23 LW=1 14 0.09375 3 27.27% 

H23 LW=20.5 14 0.109375 3 27.27% 

H23 LW=0.001 13 0.078125 2 18.18% 

H24 LW=1 11 0.4375 0 0.00% 

H24 LW=20.5 11 0.421875 0 0.00% 

H24 LW=0.001 13 0.421875 2 18.18% 

H25 LW=1 11 0.3125 0 0.00% 

H25 LW=20.5 11 0.328125 0 0.00% 

H25 LW=0.001 14 0.375 3 27.27% 

H26 LW=1 14 0.09375 3 27.27% 

H26 LW=20.5 14 0.109375 3 27.27% 

H26 LW=0.001 13 0.0625 2 18.18% 

H27 LW=1 11 0.421875 0 0.00% 

H27 LW=20.5 11 0.46875 0 0.00% 

H27 LW=0.001 13 0.421875 2 18.18% 

H28 LW=1 11 0.359375 0 0.00% 

H28 LW=20.5 11 0.328125 0 0.00% 

H28 LW=0.001 14 0.421875 3 27.27% 
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Test Instances T5 

Job Number 4 

Operation Number 12 

Edge Number 390 

Node Number 41 

Total Length 20.5 

Average Length 1.708333333 

Optimum Time Slot 10 

 LWs Makespan Computation Time (s) Difference Error Rate 

IP  10 150.7721189 0 0.00% 

H1 LW=1 10 2.296875 0 0.00% 

H1 LW=20.5 10 2.78125 0 0.00% 

H1 LW=0.001 10 2.421875 0 0.00% 

H2 LW=1 10 2.21875 0 0.00% 

H2 LW=20.5 12 2.671875 2 200.00% 

H2 LW=0.001 12 2.15625 2 200.00% 

H3 LW=1 10 2.125 0 0.00% 

H3 LW=20.5 12 2.171875 2 200.00% 

H3 LW=0.001 10 2.1875 0 0.00% 

H4 LW=1 10 2.109375 0 0.00% 

H4 LW=20.5 10 2.078125 0 0.00% 

H4 LW=0.001 10 2.21875 0 0.00% 

H5 LW=1 10 2.25 0 0.00% 

H5 LW=20.5 12 2.21875 2 200.00% 

H5 LW=0.001 12 1.890625 2 200.00% 

H6 LW=1 12 2.171875 2 200.00% 

H6 LW=20.5 11 1.9375 1 100.00% 

H6 LW=0.001 13 2.28125 3 300.00% 

H7 LW=1 12 2.53125 2 200.00% 

H7 LW=20.5 12 2.640625 2 200.00% 

H7 LW=0.001 14 2.453125 4 400.00% 

H8 LW=1 10 2.0625 0 0.00% 

H8 LW=20.5 12 2.125 2 200.00% 

H8 LW=0.001 10 2.265625 0 0.00% 

H9 LW=1 11 2.0625 1 100.00% 

H9 LW=20.5 11 1.859375 1 100.00% 

H9 LW=0.001 13 2.125 3 300.00% 

H10 LW=1 11 2 1 100.00% 

H10 LW=20.5 11 1.921875 1 100.00% 

H10 LW=0.001 13 2.078125 3 300.00% 
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H11 LW=1 13 0.109375 3 300.00% 

H11 LW=20.5 11 0.109375 1 100.00% 

H11 LW=0.001 11 0.09375 1 100.00% 

H12 LW=1 14 0.90625 4 400.00% 

H12 LW=20.5 11 0.5 1 100.00% 

H12 LW=0.001 14 0.765625 4 400.00% 

H13 LW=1 10 0.4375 0 0.00% 

H13 LW=20.5 10 0.4375 0 0.00% 

H13 LW=0.001 10 0.484375 0 0.00% 

H14 LW=1 13 0.09375 3 300.00% 

H14 LW=20.5 13 0.15625 3 300.00% 

H14 LW=0.001 11 0.09375 1 100.00% 

H15 LW=1 14 0.921875 4 400.00% 

H15 LW=20.5 11 0.703125 1 100.00% 

H15 LW=0.001 13 0.703125 3 300.00% 

H16 LW=1 10 0.453125 0 0.00% 

H16 LW=20.5 12 0.484375 2 200.00% 

H16 LW=0.001 12 0.4375 2 200.00% 

H17 LW=1 13 0.109375 3 300.00% 

H17 LW=20.5 11 0.09375 1 100.00% 

H17 LW=0.001 13 0.125 3 300.00% 

H18 LW=1 14 0.8125 4 400.00% 

H18 LW=20.5 11 0.625 1 100.00% 

H18 LW=0.001 12 0.578125 2 200.00% 

H19 LW=1 10 0.421875 0 0.00% 

H19 LW=20.5 12 0.46875 2 200.00% 

H19 LW=0.001 10 0.4375 0 0.00% 

H20 LW=1 13 0.109375 3 300.00% 

H20 LW=20.5 13 0.09375 3 300.00% 

H20 LW=0.001 13 0.09375 3 300.00% 

H21 LW=1 11 0.5625 1 100.00% 

H21 LW=20.5 11 0.53125 1 100.00% 

H21 LW=0.001 12 0.484375 2 200.00% 

H22 LW=1 10 0.375 0 0.00% 

H22 LW=20.5 10 0.390625 0 0.00% 

H22 LW=0.001 10 0.40625 0 0.00% 

H23 LW=1 13 0.09375 3 300.00% 

H23 LW=20.5 13 0.109375 3 300.00% 

H23 LW=0.001 13 0.109375 3 300.00% 

H24 LW=1 12 0.546875 2 200.00% 

H24 LW=20.5 11 0.765625 1 100.00% 

H24 LW=0.001 12 0.5 2 200.00% 

H25 LW=1 10 0.375 0 0.00% 
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H25 LW=20.5 12 0.40625 2 200.00% 

H25 LW=0.001 12 0.375 2 200.00% 

H26 LW=1 13 0.09375 3 300.00% 

H26 LW=20.5 13 0.09375 3 300.00% 

H26 LW=0.001 13 0.09375 3 300.00% 

H27 LW=1 13 0.5625 3 300.00% 

H27 LW=20.5 11 0.578125 1 100.00% 

H27 LW=0.001 12 0.59375 2 200.00% 

H28 LW=1 10 0.359375 0 0.00% 

H28 LW=20.5 12 0.421875 2 200.00% 

H28 LW=0.001 10 0.390625 0 0.00% 

 

Test Instances T6 

Job Number 5 

Operation Number 13 

Edge Number 316 

Node Number 40 

Total Length 17.5 

Average Length 1.346153846 

Optimum Time Slot 7 

 LWs Makespan Computation Time (s) Difference Error Rate 

IP  7 643.7664479 0 0.00% 

H1 LW=1 8 1.609375 1 14.29% 

H1 LW=17.5 8 1.9375 1 14.29% 

H1 LW=0.001 10 1.984375 3 42.86% 

H2 LW=1 8 1.484375 1 14.29% 

H2 LW=17.5 8 1.84375 1 14.29% 

H2 LW=0.001 10 1.5625 3 42.86% 

H3 LW=1 8 1.59375 1 14.29% 

H3 LW=17.5 8 1.84375 1 14.29% 

H3 LW=0.001 10 1.53125 3 42.86% 

H4 LW=1 8 1.390625 1 14.29% 

H4 LW=17.5 8 1.921875 1 14.29% 

H4 LW=0.001 10 1.65625 3 42.86% 

H5 LW=1 8 1.640625 1 14.29% 

H5 LW=17.5 8 1.65625 1 14.29% 

H5 LW=0.001 10 1.53125 3 42.86% 

H6 LW=1 9 1.671875 2 28.57% 

H6 LW=17.5 9 1.46875 2 28.57% 

H6 LW=0.001 9 1.734375 2 28.57% 
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H7 LW=1 9 1.828125 2 28.57% 

H7 LW=17.5 9 1.78125 2 28.57% 

H7 LW=0.001 9 1.765625 2 28.57% 

H8 LW=1 8 1.375 1 14.29% 

H8 LW=17.5 8 1.65625 1 14.29% 

H8 LW=0.001 10 1.390625 3 42.86% 

H9 LW=1 9 1.515625 2 28.57% 

H9 LW=17.5 9 1.5 2 28.57% 

H9 LW=0.001 9 1.84375 2 28.57% 

H10 LW=1 9 1.46875 2 28.57% 

H10 LW=17.5 9 1.4375 2 28.57% 

H10 LW=0.001 9 1.859375 2 28.57% 

H11 LW=1 9 0.0625 2 28.57% 

H11 LW=17.5 8 0.0625 1 14.29% 

H11 LW=0.001 10 0.046875 3 42.86% 

H12 LW=1 8 0.421875 1 14.29% 

H12 LW=17.5 8 0.453125 1 14.29% 

H12 LW=0.001 10 0.53125 3 42.86% 

H13 LW=1 10 0.421875 3 42.86% 

H13 LW=17.5 8 0.390625 1 14.29% 

H13 LW=0.001 10 0.375 3 42.86% 

H14 LW=1 9 0.0625 2 28.57% 

H14 LW=17.5 8 0.09375 1 14.29% 

H14 LW=0.001 8 0.0625 1 14.29% 

H15 LW=1 8 0.5 1 14.29% 

H15 LW=17.5 8 0.53125 1 14.29% 

H15 LW=0.001 10 0.46875 3 42.86% 

H16 LW=1 8 0.359375 1 14.29% 

H16 LW=17.5 8 0.359375 1 14.29% 

H16 LW=0.001 10 0.40625 3 42.86% 

H17 LW=1 9 0.0625 2 28.57% 

H17 LW=17.5 8 0.09375 1 14.29% 

H17 LW=0.001 8 0.0625 1 14.29% 

H18 LW=1 8 0.484375 1 14.29% 

H18 LW=17.5 9 0.40625 2 28.57% 

H18 LW=0.001 9 0.578125 2 28.57% 

H19 LW=1 8 0.375 1 14.29% 

H19 LW=17.5 8 0.375 1 14.29% 

H19 LW=0.001 10 0.40625 3 42.86% 

H20 LW=1 8 0.0625 1 14.29% 

H20 LW=17.5 9 0.0625 2 28.57% 

H20 LW=0.001 8 0.078125 1 14.29% 

H21 LW=1 9 0.546875 2 28.57% 



172 

 

H21 LW=17.5 8 0.4375 1 14.29% 

H21 LW=0.001 9 0.59375 2 28.57% 

H22 LW=1 10 0.375 3 42.86% 

H22 LW=17.5 8 0.328125 1 14.29% 

H22 LW=0.001 10 0.375 3 42.86% 

H23 LW=1 9 0.0625 2 28.57% 

H23 LW=17.5 9 0.0625 2 28.57% 

H23 LW=0.001 8 0.0625 1 14.29% 

H24 LW=1 8 0.46875 1 14.29% 

H24 LW=17.5 8 0.578125 1 14.29% 

H24 LW=0.001 9 0.390625 2 28.57% 

H25 LW=1 8 0.328125 1 14.29% 

H25 LW=17.5 8 0.359375 1 14.29% 

H25 LW=0.001 8 0.359375 1 14.29% 

H26 LW=1 9 0.0625 2 28.57% 

H26 LW=17.5 9 0.0625 2 28.57% 

H26 LW=0.001 9 0.0625 2 28.57% 

H27 LW=1 8 0.421875 1 14.29% 

H27 LW=17.5 9 0.453125 2 28.57% 

H27 LW=0.001 8 0.5 1 14.29% 

H28 LW=1 8 0.578125 1 14.29% 

H28 LW=17.5 8 0.359375 1 14.29% 

H28 LW=0.001 10 0.390625 3 42.86% 

 

 

Test Instances T7 

Job Number 5 

Operation Number 14 

Edge Number 396 

Node Number 41 

Total Length 20.5 

Average Length 1.464285714 

Optimum Time Slot 10 

 LWs Makespan Computation Time (s) Difference Error Rate 

IP  10 5794.495398 0 0.00% 

H1 LW=1 10 1.90625 0 0.00% 

H1 LW=20.5 10 1.96875 0 0.00% 

H1 LW=0.001 10 1.921875 0 0.00% 

H2 LW=1 10 1.890625 0 0.00% 
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H2 LW=20.5 10 1.8125 0 0.00% 

H2 LW=0.001 12 1.734375 2 20.00% 

H3 LW=1 10 1.8125 0 0.00% 

H3 LW=20.5 10 1.921875 0 0.00% 

H3 LW=0.001 10 1.9375 0 0.00% 

H4 LW=1 10 1.828125 0 0.00% 

H4 LW=20.5 10 1.859375 0 0.00% 

H4 LW=0.001 10 1.859375 0 0.00% 

H5 LW=1 10 1.8125 0 0.00% 

H5 LW=20.5 10 1.84375 0 0.00% 

H5 LW=0.001 12 1.625 2 20.00% 

H6 LW=1 12 1.859375 2 20.00% 

H6 LW=20.5 11 1.671875 1 10.00% 

H6 LW=0.001 14 2.15625 4 40.00% 

H7 LW=1 12 1.96875 2 20.00% 

H7 LW=20.5 12 2.03125 2 20.00% 

H7 LW=0.001 14 2.203125 4 40.00% 

H8 LW=1 10 1.78125 0 0.00% 

H8 LW=20.5 10 1.921875 0 0.00% 

H8 LW=0.001 10 1.75 0 0.00% 

H9 LW=1 11 1.59375 1 10.00% 

H9 LW=20.5 11 1.671875 1 10.00% 

H9 LW=0.001 13 2 3 30.00% 

H10 LW=1 11 2.234375 1 10.00% 

H10 LW=20.5 11 1.90625 1 10.00% 

H10 LW=0.001 13 2.140625 3 30.00% 

H11 LW=1 11 0.09375 1 10.00% 

H11 LW=20.5 11 0.109375 1 10.00% 

H11 LW=0.001 11 0.15625 1 10.00% 

H12 LW=1 10 0.65625 0 0.00% 

H12 LW=20.5 10 0.703125 0 0.00% 

H12 LW=0.001 10 0.53125 0 0.00% 

H13 LW=1 10 0.4375 0 0.00% 

H13 LW=20.5 10 0.421875 0 0.00% 

H13 LW=0.001 10 0.390625 0 0.00% 

H14 LW=1 11 0.09375 1 10.00% 

H14 LW=20.5 12 0.09375 2 20.00% 

H14 LW=0.001 11 0.109375 1 10.00% 

H15 LW=1 10 0.65625 0 0.00% 

H15 LW=20.5 10 0.65625 0 0.00% 

H15 LW=0.001 12 0.640625 2 20.00% 

H16 LW=1 10 0.421875 0 0.00% 

H16 LW=20.5 10 0.546875 0 0.00% 
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H16 LW=0.001 12 0.703125 2 20.00% 

H17 LW=1 11 0.09375 1 10.00% 

H17 LW=20.5 11 0.109375 1 10.00% 

H17 LW=0.001 11 0.109375 1 10.00% 

H18 LW=1 10 0.578125 0 0.00% 

H18 LW=20.5 10 0.609375 0 0.00% 

H18 LW=0.001 14 0.984375 4 40.00% 

H19 LW=1 10 0.40625 0 0.00% 

H19 LW=20.5 10 0.484375 0 0.00% 

H19 LW=0.001 10 0.546875 0 0.00% 

H20 LW=1 12 0.09375 2 20.00% 

H20 LW=20.5 12 0.09375 2 20.00% 

H20 LW=0.001 12 0.09375 2 20.00% 

H21 LW=1 12 0.546875 2 20.00% 

H21 LW=20.5 12 0.546875 2 20.00% 

H21 LW=0.001 12 0.5 2 20.00% 

H22 LW=1 10 0.40625 0 0.00% 

H22 LW=20.5 10 0.390625 0 0.00% 

H22 LW=0.001 10 0.421875 0 0.00% 

H23 LW=1 12 0.109375 2 20.00% 

H23 LW=20.5 12 0.09375 2 20.00% 

H23 LW=0.001 12 0.109375 2 20.00% 

H24 LW=1 12 0.609375 2 20.00% 

H24 LW=20.5 12 0.5625 2 20.00% 

H24 LW=0.001 12 0.5 2 20.00% 

H25 LW=1 10 0.40625 0 0.00% 

H25 LW=20.5 10 0.4375 0 0.00% 

H25 LW=0.001 12 0.4375 2 20.00% 

H26 LW=1 12 0.109375 2 20.00% 

H26 LW=20.5 12 0.09375 2 20.00% 

H26 LW=0.001 12 0.09375 2 20.00% 

H27 LW=1 12 0.578125 2 20.00% 

H27 LW=20.5 12 0.5 2 20.00% 

H27 LW=0.001 12 0.59375 2 20.00% 

H28 LW=1 10 0.484375 0 0.00% 

H28 LW=20.5 10 0.40625 0 0.00% 

H28 LW=0.001 10 0.421875 0 0.00% 

 

Test Instances T8 

Job Number 5 
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Operation Number 14 

Edge Number 504 

Node Number 45 

Total Length 20.5 

Average Length 1.464285714 

Optimum Time Slot 10 

 LWs Makespan Computation Time (s) Difference Error Rate 

IP  10 12196.93827 0 0.00% 

H1 LW=1 10 3.8125 0 0.00% 

H1 LW=20.5 10 3.546875 0 0.00% 

H1 LW=0.001 10 3.5625 0 0.00% 

H2 LW=1 12 3.109375 2 20.00% 

H2 LW=20.5 10 3.21875 0 0.00% 

H2 LW=0.001 12 3.890625 2 20.00% 

H3 LW=1 10 3.546875 0 0.00% 

H3 LW=20.5 10 3.671875 0 0.00% 

H3 LW=0.001 10 3.703125 0 0.00% 

H4 LW=1 10 3.609375 0 0.00% 

H4 LW=20.5 10 3.625 0 0.00% 

H4 LW=0.001 10 3.390625 0 0.00% 

H5 LW=1 12 3.375 2 20.00% 

H5 LW=20.5 10 3.3125 0 0.00% 

H5 LW=0.001 13 3.984375 3 30.00% 

H6 LW=1 12 3.578125 2 20.00% 

H6 LW=20.5 11 3.015625 1 10.00% 

H6 LW=0.001 14 3.90625 4 40.00% 

H7 LW=1 12 3.84375 2 20.00% 

H7 LW=20.5 12 3.75 2 20.00% 

H7 LW=0.001 12 3.78125 2 20.00% 

H8 LW=1 10 3.578125 0 0.00% 

H8 LW=20.5 10 3.296875 0 0.00% 

H8 LW=0.001 10 3.484375 0 0.00% 

H9 LW=1 11 3.21875 1 10.00% 

H9 LW=20.5 11 2.984375 1 10.00% 

H9 LW=0.001 13 4.046875 3 30.00% 

H10 LW=1 11 3.1875 1 10.00% 

H10 LW=20.5 11 2.96875 1 10.00% 

H10 LW=0.001 13 4.0625 3 30.00% 

H11 LW=1 11 0.140625 1 10.00% 

H11 LW=20.5 11 0.125 1 10.00% 

H11 LW=0.001 11 0.171875 1 10.00% 

H12 LW=1 11 0.96875 1 10.00% 

H12 LW=20.5 11 0.984375 1 10.00% 

H12 LW=0.001 12 1.09375 2 20.00% 
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H13 LW=1 10 0.671875 0 0.00% 

H13 LW=20.5 10 0.703125 0 0.00% 

H13 LW=0.001 10 0.75 0 0.00% 

H14 LW=1 11 0.15625 1 10.00% 

H14 LW=20.5 11 0.140625 1 10.00% 

H14 LW=0.001 14 0.15625 4 40.00% 

H15 LW=1 13 1.34375 3 30.00% 

H15 LW=20.5 11 0.875 1 10.00% 

H15 LW=0.001 12 0.90625 2 20.00% 

H16 LW=1 12 0.703125 2 20.00% 

H16 LW=20.5 10 0.6875 0 0.00% 

H16 LW=0.001 12 0.828125 2 20.00% 

H17 LW=1 11 0.140625 1 10.00% 

H17 LW=20.5 11 0.140625 1 10.00% 

H17 LW=0.001 11 0.15625 1 10.00% 

H18 LW=1 11 1.296875 1 10.00% 

H18 LW=20.5 11 0.828125 1 10.00% 

H18 LW=0.001 11 1 1 10.00% 

H19 LW=1 10 0.703125 0 0.00% 

H19 LW=20.5 10 0.671875 0 0.00% 

H19 LW=0.001 10 0.703125 0 0.00% 

H20 LW=1 12 0.140625 2 20.00% 

H20 LW=20.5 12 0.15625 2 20.00% 

H20 LW=0.001 12 0.125 2 20.00% 

H21 LW=1 11 0.78125 1 10.00% 

H21 LW=20.5 11 0.84375 1 10.00% 

H21 LW=0.001 12 0.953125 2 20.00% 

H22 LW=1 10 0.625 0 0.00% 

H22 LW=20.5 10 0.75 0 0.00% 

H22 LW=0.001 10 0.625 0 0.00% 

H23 LW=1 12 0.140625 2 20.00% 

H23 LW=20.5 12 0.140625 2 20.00% 

H23 LW=0.001 12 0.125 2 20.00% 

H24 LW=1 12 0.90625 2 20.00% 

H24 LW=20.5 11 0.78125 1 10.00% 

H24 LW=0.001 12 0.984375 2 20.00% 

H25 LW=1 12 0.625 2 20.00% 

H25 LW=20.5 10 0.65625 0 0.00% 

H25 LW=0.001 12 0.703125 2 20.00% 

H26 LW=1 12 0.15625 2 20.00% 

H26 LW=20.5 12 0.140625 2 20.00% 

H26 LW=0.001 12 0.125 2 20.00% 

H27 LW=1 10 0.828125 0 0.00% 

H27 LW=20.5 11 0.734375 1 10.00% 
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H27 LW=0.001 10 0.90625 0 0.00% 

H28 LW=1 10 0.703125 0 0.00% 

H28 LW=20.5 10 0.625 0 0.00% 

H28 LW=0.001 10 0.71875 0 0.00% 

 

Test Instances T9 

Job Number 4 

Operation Number 14 

Edge Number 375 

Node Number 41 

Total Length 25 

Average Length 1.785714286 

Optimum Time Slot 18 

 LWs Makespan Computation Time (s) Difference Error Rate 

IP  18 213.9238512 0 0.00% 

H1 LW=1 18 1.71875 0 0.00% 

H1 LW=25 18 1.71875 0 0.00% 

H1 LW=0.001 20 3.046875 2 11.11% 

H2 LW=1 18 1.65625 0 0.00% 

H2 LW=25 18 1.609375 0 0.00% 

H2 LW=0.001 20 2.328125 2 11.11% 

H3 LW=1 19 1.625 1 5.56% 

H3 LW=25 18 1.671875 0 0.00% 

H3 LW=0.001 20 1.640625 2 11.11% 

H4 LW=1 18 1.546875 0 0.00% 

H4 LW=25 18 1.59375 0 0.00% 

H4 LW=0.001 20 2.4375 2 11.11% 

H5 LW=1 18 1.671875 0 0.00% 

H5 LW=25 18 1.65625 0 0.00% 

H5 LW=0.001 20 1.9375 2 11.11% 

H6 LW=1 19 1.40625 1 5.56% 

H6 LW=25 19 1.484375 1 5.56% 

H6 LW=0.001 20 1.4375 2 11.11% 

H7 LW=1 19 1.640625 1 5.56% 

H7 LW=25 19 1.6875 1 5.56% 

H7 LW=0.001 19 1.609375 1 5.56% 

H8 LW=1 18 1.6875 0 0.00% 

H8 LW=25 18 1.578125 0 0.00% 

H8 LW=0.001 18 1.578125 0 0.00% 

H9 LW=1 19 1.421875 1 5.56% 
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H9 LW=25 19 1.421875 1 5.56% 

H9 LW=0.001 20 1.390625 2 11.11% 

H10 LW=1 19 1.359375 1 5.56% 

H10 LW=25 19 1.375 1 5.56% 

H10 LW=0.001 20 1.40625 2 11.11% 

H11 LW=1 18 0.109375 0 0.00% 

H11 LW=25 18 0.109375 0 0.00% 

H11 LW=0.001 18 0.15625 0 0.00% 

H12 LW=1 18 0.6875 0 0.00% 

H12 LW=25 18 0.859375 0 0.00% 

H12 LW=0.001 18 0.859375 0 0.00% 

H13 LW=1 18 0.59375 0 0.00% 

H13 LW=25 18 0.578125 0 0.00% 

H13 LW=0.001 20 0.734375 2 11.11% 

H14 LW=1 18 0.109375 0 0.00% 

H14 LW=25 18 0.125 0 0.00% 

H14 LW=0.001 18 0.140625 0 0.00% 

H15 LW=1 18 0.734375 0 0.00% 

H15 LW=25 18 0.75 0 0.00% 

H15 LW=0.001 18 0.828125 0 0.00% 

H16 LW=1 18 0.65625 0 0.00% 

H16 LW=25 18 0.546875 0 0.00% 

H16 LW=0.001 20 0.65625 2 11.11% 

H17 LW=1 18 0.125 0 0.00% 

H17 LW=25 18 0.109375 0 0.00% 

H17 LW=0.001 18 0.109375 0 0.00% 

H18 LW=1 18 0.78125 0 0.00% 

H18 LW=25 18 0.75 0 0.00% 

H18 LW=0.001 19 0.6875 1 5.56% 

H19 LW=1 19 0.59375 1 5.56% 

H19 LW=25 18 0.578125 0 0.00% 

H19 LW=0.001 20 0.65625 2 11.11% 

H20 LW=1 20 0.140625 2 11.11% 

H20 LW=25 20 0.140625 2 11.11% 

H20 LW=0.001 20 0.140625 2 11.11% 

H21 LW=1 18 0.625 0 0.00% 

H21 LW=25 18 0.703125 0 0.00% 

H21 LW=0.001 20 0.9375 2 11.11% 

H22 LW=1 18 0.5625 0 0.00% 

H22 LW=25 18 0.546875 0 0.00% 

H22 LW=0.001 20 0.6875 2 11.11% 

H23 LW=1 20 0.140625 2 11.11% 

H23 LW=25 20 0.140625 2 11.11% 
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H23 LW=0.001 20 0.140625 2 11.11% 

H24 LW=1 18 0.625 0 0.00% 

H24 LW=25 18 0.671875 0 0.00% 

H24 LW=0.001 20 0.78125 2 11.11% 

H25 LW=1 18 0.59375 0 0.00% 

H25 LW=25 18 0.546875 0 0.00% 

H25 LW=0.001 20 0.625 2 11.11% 

H26 LW=1 20 0.140625 2 11.11% 

H26 LW=25 20 0.140625 2 11.11% 

H26 LW=0.001 20 0.140625 2 11.11% 

H27 LW=1 19 0.734375 1 5.56% 

H27 LW=25 18 0.65625 0 0.00% 

H27 LW=0.001 20 0.765625 2 11.11% 

H28 LW=1 19 0.578125 1 5.56% 

H28 LW=25 18 0.53125 0 0.00% 

H28 LW=0.001 20 0.59375 2 11.11% 

 

Test Instances T10 

Job Number 4 

Operation Number 14 

Edge Number 1074 

Node Number 63 

Total Length 25 

Average Length 1.785714286 

Optimum Time Slot 18 

 LWs Makespan Computation Time (s) Difference Error Rate 

IP  18 2959.314596 0 0.00% 

H1 LW=1 18 10.21875 0 0.00% 

H1 LW=25 18 10.484375 0 0.00% 

H1 LW=0.001 20 8.453125 2 11.11% 

H2 LW=1 18 10.171875 0 0.00% 

H2 LW=25 18 10.265625 0 0.00% 

H2 LW=0.001 20 8.078125 2 11.11% 

H3 LW=1 18 10.40625 0 0.00% 

H3 LW=25 18 9.953125 0 0.00% 

H3 LW=0.001 20 11.296875 2 11.11% 

H4 LW=1 18 7.890625 0 0.00% 

H4 LW=25 18 7.71875 0 0.00% 

H4 LW=0.001 20 6.609375 2 11.11% 

H5 LW=1 18 7.8125 0 0.00% 
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H5 LW=25 18 7.546875 0 0.00% 

H5 LW=0.001 20 6.703125 2 11.11% 

H6 LW=1 18 8.484375 0 0.00% 

H6 LW=25 18 8.453125 0 0.00% 

H6 LW=0.001 20 8.78125 2 11.11% 

H7 LW=1 19 9.828125 1 5.56% 

H7 LW=25 19 9.953125 1 5.56% 

H7 LW=0.001 19 9.78125 1 5.56% 

H8 LW=1 18 7.859375 0 0.00% 

H8 LW=25 18 8.203125 0 0.00% 

H8 LW=0.001 18 8.46875 0 0.00% 

H9 LW=1 19 8.203125 1 5.56% 

H9 LW=25 18 8.25 0 0.00% 

H9 LW=0.001 20 8.671875 2 11.11% 

H10 LW=1 19 8.28125 1 5.56% 

H10 LW=25 19 8.6875 1 5.56% 

H10 LW=0.001 20 8.78125 2 11.11% 

H11 LW=1 18 0.625 0 0.00% 

H11 LW=25 18 0.640625 0 0.00% 

H11 LW=0.001 18 0.515625 0 0.00% 

H12 LW=1 18 3.609375 0 0.00% 

H12 LW=25 18 3.890625 0 0.00% 

H12 LW=0.001 20 4.171875 2 11.11% 

H13 LW=1 18 3.078125 0 0.00% 

H13 LW=25 18 3.09375 0 0.00% 

H13 LW=0.001 20 3.609375 2 11.11% 

H14 LW=1 18 0.640625 0 0.00% 

H14 LW=25 18 0.609375 0 0.00% 

H14 LW=0.001 18 0.65625 0 0.00% 

H15 LW=1 18 3.671875 0 0.00% 

H15 LW=25 18 3.5 0 0.00% 

H15 LW=0.001 20 4.046875 2 11.11% 

H16 LW=1 18 3.375 0 0.00% 

H16 LW=25 18 3.046875 0 0.00% 

H16 LW=0.001 20 3.609375 2 11.11% 

H17 LW=1 18 0.640625 0 0.00% 

H17 LW=25 18 0.640625 0 0.00% 

H17 LW=0.001 18 0.734375 0 0.00% 

H18 LW=1 18 3.796875 0 0.00% 

H18 LW=25 18 3.59375 0 0.00% 

H18 LW=0.001 20 4.03125 2 11.11% 

H19 LW=1 18 3.5 0 0.00% 

H19 LW=25 18 3.203125 0 0.00% 
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H19 LW=0.001 20 3.59375 2 11.11% 

H20 LW=1 19 0.78125 1 5.56% 

H20 LW=25 19 0.703125 1 5.56% 

H20 LW=0.001 19 0.6875 1 5.56% 

H21 LW=1 18 3.71875 0 0.00% 

H21 LW=25 18 3.84375 0 0.00% 

H21 LW=0.001 20 4.65625 2 11.11% 

H22 LW=1 18 3.0625 0 0.00% 

H22 LW=25 18 3.1875 0 0.00% 

H22 LW=0.001 20 3.390625 2 11.11% 

H23 LW=1 19 0.796875 1 5.56% 

H23 LW=25 19 0.703125 1 5.56% 

H23 LW=0.001 19 0.671875 1 5.56% 

H24 LW=1 18 3.65625 0 0.00% 

H24 LW=25 18 3.6875 0 0.00% 

H24 LW=0.001 20 4.015625 2 11.11% 

H25 LW=1 18 3.234375 0 0.00% 

H25 LW=25 18 3.046875 0 0.00% 

H25 LW=0.001 20 3.53125 2 11.11% 

H26 LW=1 19 0.6875 1 5.56% 

H26 LW=25 19 0.671875 1 5.56% 

H26 LW=0.001 19 0.71875 1 5.56% 

H27 LW=1 18 3.703125 0 0.00% 

H27 LW=25 18 3.53125 0 0.00% 

H27 LW=0.001 20 3.90625 2 11.11% 

H28 LW=1 18 3.359375 0 0.00% 

H28 LW=25 18 3.234375 0 0.00% 

H28 LW=0.001 20 3.578125 2 11.11% 

 

Test Instances T11 

Job Number 4 

Operation Number 14 

Edge Number 4718 

Node Number 161 

Total Length 32 

Average Length 2.285714286 

Optimum Time Slot 10 

 LWs Makespan Computation Time (s) Difference Error Rate 

IP  10  0 0.00% 

H1 LW=1 13 11553.51563 3 30.00% 
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H1 LW=32 11 13094.35938 1 10.00% 

H1 LW=0.001 15 10657.78125 5 50.00% 

H2 LW=1 11 14337.90625 1 10.00% 

H2 LW=32 11 14001.375 1 10.00% 

H2 LW=0.001 16 14838.57813 6 60.00% 

H3 LW=1 11 14707.34375 1 10.00% 

H3 LW=32 11 12879.375 1 10.00% 

H3 LW=0.001 15 12523.5 5 50.00% 

H4 LW=1 13 10329.75 3 30.00% 

H4 LW=32 11 14309.79688 1 10.00% 

H4 LW=0.001 16 15394.65625 6 60.00% 

H5 LW=1 11 9859.75 1 10.00% 

H5 LW=32 11 13247.4375 1 10.00% 

H5 LW=0.001 16 9605.890625 6 60.00% 

H6 LW=1 11 12772.60938 1 10.00% 

H6 LW=32 11 11499.90625 1 10.00% 

H6 LW=0.001 16 11853.82813 6 60.00% 

H7 LW=1 14 11999.90625 4 40.00% 

H7 LW=32 14 12030.14063 4 40.00% 

H7 LW=0.001 16 11798.59375 6 60.00% 

H8 LW=1 11 10411.01563 1 10.00% 

H8 LW=32 11 10112.26563 1 10.00% 

H8 LW=0.001 15 10013.32813 5 50.00% 

H9 LW=1 11 10395.29688 1 10.00% 

H9 LW=32 11 10427.29688 1 10.00% 

H9 LW=0.001 15 10665.67188 5 50.00% 

H10 LW=1 11 11059.375 1 10.00% 

H10 LW=32 11 10856.64063 1 10.00% 

H10 LW=0.001 16 10585.51563 6 60.00% 

H11 LW=1 14 8.828125 4 40.00% 

H11 LW=32 12 8.515625 2 20.00% 

H11 LW=0.001 12 8.90625 2 20.00% 

H12 LW=1 13 34.90625 3 30.00% 

H12 LW=32 11 40.75 1 10.00% 

H12 LW=0.001 14 40.53125 4 40.00% 

H13 LW=1 13 25.875 3 30.00% 

H13 LW=32 11 25.671875 1 10.00% 

H13 LW=0.001 15 26.5 5 50.00% 

H14 LW=1 11 9.984375 1 10.00% 

H14 LW=32 11 8.375 1 10.00% 

H14 LW=0.001 12 9.328125 2 20.00% 

H15 LW=1 11 42.15625 1 10.00% 

H15 LW=32 11 34.484375 1 10.00% 
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H15 LW=0.001 15 41.03125 5 50.00% 

H16 LW=1 11 26.640625 1 10.00% 

H16 LW=32 11 27.671875 1 10.00% 

H16 LW=0.001 15 29.96875 5 50.00% 

H17 LW=1 11 9.71875 1 10.00% 

H17 LW=32 11 8.28125 1 10.00% 

H17 LW=0.001 12 9.46875 2 20.00% 

H18 LW=1 11 37.65625 1 10.00% 

H18 LW=32 11 34.03125 1 10.00% 

H18 LW=0.001 13 41.296875 3 30.00% 

H19 LW=1 11 26.953125 1 10.00% 

H19 LW=32 11 26.03125 1 10.00% 

H19 LW=0.001 15 27.234375 5 50.00% 

H20 LW=1 14 9.96875 4 40.00% 

H20 LW=32 14 10.0625 4 40.00% 

H20 LW=0.001 14 9.953125 4 40.00% 

H21 LW=1 13 41.578125 3 30.00% 

H21 LW=32 11 41.234375 1 10.00% 

H21 LW=0.001 13 47.21875 3 30.00% 

H22 LW=1 15 26.234375 5 50.00% 

H22 LW=32 11 28.546875 1 10.00% 

H22 LW=0.001 15 26.28125 5 50.00% 

H23 LW=1 14 9.8125 4 40.00% 

H23 LW=32 14 9.65625 4 40.00% 

H23 LW=0.001 14 9.875 4 40.00% 

H24 LW=1 11 42.5625 1 10.00% 

H24 LW=32 11 39.796875 1 10.00% 

H24 LW=0.001 13 42.515625 3 30.00% 

H25 LW=1 11 28.734375 1 10.00% 

H25 LW=32 11 27.4375 1 10.00% 

H25 LW=0.001 15 26.609375 5 50.00% 

H26 LW=1 14 9.9375 4 40.00% 

H26 LW=32 14 10 4 40.00% 

H26 LW=0.001 14 9.796875 4 40.00% 

H27 LW=1 11 42.8125 1 10.00% 

H27 LW=32 11 39.765625 1 10.00% 

H27 LW=0.001 13 38.671875 3 30.00% 

H28 LW=1 11 30.359375 1 10.00% 

H28 LW=32 11 27.6875 1 10.00% 

H28 LW=0.001 15 27.875 5 50.00% 
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Test Instances T12 

Job Number 4 

Operation Number 57 

Edge Number 47525 

Node Number 580 

Total Length 86 

Average Length 1.50877193 

Optimum Time Slot 31 

 LWs Makespan Computation Time (s) Difference Error Rate 

IP  31  0 0.00% 

H11 LW=1 38 2501 7 22.58% 

H11 LW=86 37 2411.671875 6 19.35% 

H11 LW=0.001 38 2687.6875 7 22.58% 

H12 LW=1 34 9969.859375 3 9.68% 

H12 LW=86 33 8504.421875 2 6.45% 

H12 LW=0.001 37 10256.32813 6 19.35% 

H13 LW=1 32 8147.390625 1 3.23% 

H13 LW=86 32 7004.375 1 3.23% 

H13 LW=0.001 32 7272.546875 1 3.23% 

H14 LW=1 35 2677.015625 4 12.90% 

H14 LW=86 33 2374.625 2 6.45% 

H14 LW=0.001 36 2577.234375 5 16.13% 

H15 LW=1 33 9168.5 2 6.45% 

H15 LW=86 32 7903.546875 1 3.23% 

H15 LW=0.001 36 8969.453125 5 16.13% 

H16 LW=1 32 6906.96875 1 3.23% 

H16 LW=86 32 7000.03125 1 3.23% 

H16 LW=0.001 37 7488.453125 6 19.35% 

H17 LW=1 33 2150.1875 2 6.45% 

H17 LW=86 33 2093.34375 2 6.45% 

H17 LW=0.001 35 3252.6875 4 12.90% 

H18 LW=1 33 9931.984375 2 6.45% 

H18 LW=86 33 7721.515625 2 6.45% 

H18 LW=0.001 34 9380.75 3 9.68% 

H19 LW=1 31 6177.3125 0 0.00% 

H19 LW=86 33 6301.890625 2 6.45% 

H19 LW=0.001 35 6288.828125 4 12.90% 

H20 LW=1 53 6128.140625 22 70.97% 

H20 LW=86 56 5938.296875 25 80.65% 

H20 LW=0.001 56 6301.28125 25 80.65% 

H21 LW=1 36 20880.75 5 16.13% 

H21 LW=86 37 21900.95313 6 19.35% 

H21 LW=0.001 40 28674.67188 9 29.03% 
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H22 LW=1 34 11985.40625 3 9.68% 

H22 LW=86 32 9632.203125 1 3.23% 

H22 LW=0.001 34 10436.98438 3 9.68% 

H23 LW=1 58 4466.6875 27 87.10% 

H23 LW=86 58 4620.953125 27 87.10% 

H23 LW=0.001 52 5184.75 21 67.74% 

H24 LW=1 33 20058.78125 2 6.45% 

H24 LW=86 33 21194.48438 2 6.45% 

H24 LW=0.001 37 21986.26563 6 19.35% 

H25 LW=1 36 9253.5625 5 16.13% 

H25 LW=86 35 8798.78125 4 12.90% 

H25 LW=0.001 38 9306.609375 7 22.58% 

H26 LW=1 58 4614.734375 27 87.10% 

H26 LW=86 58 4707.15625 27 87.10% 

H26 LW=0.001 58 5331.671875 27 87.10% 

H27 LW=1 37 17892.21875 6 19.35% 

H27 LW=86 36 19486.51563 5 16.13% 

H27 LW=0.001 35 20906.45313 4 12.90% 

H28 LW=1 34 8111.1875 3 9.68% 

H28 LW=86 32 8122.296875 1 3.23% 

H28 LW=0.001 37 9152.96875 6 19.35% 

 

Test Instances T13 

Job Number 4 

Operation Number 57 

Edge Number 47633 

Node Number 580 

Total Length 86 

Average Length 1.50877193 

Optimum Time Slot 31 

 LWs Makespan Computation Time (s) Difference Error Rate 

IP  31  0 0.00% 

H11 LW=1 38 2555.5625 7 22.58% 

H11 LW=86 37 2431.875 6 19.35% 

H11 LW=0.001 38 3024.703125 7 22.58% 

H12 LW=1 32 7894.75 1 3.23% 

H12 LW=86 34 7605.375 3 9.68% 

H12 LW=0.001 34 8863.046875 3 9.68% 

H13 LW=1 32 6516.875 1 3.23% 

H13 LW=86 32 6480.6875 1 3.23% 
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H13 LW=0.001 34 6980.90625 3 9.68% 

H14 LW=1 35 3097.09375 4 12.90% 

H14 LW=86 33 2909.953125 2 6.45% 

H14 LW=0.001 36 4097.328125 5 16.13% 

H15 LW=1 34 6263.28125 3 9.68% 

H15 LW=86 32 6604.0625 1 3.23% 

H15 LW=0.001 37 7961.96875 6 19.35% 

H16 LW=1 32 6055.234375 1 3.23% 

H16 LW=86 32 6209.828125 1 3.23% 

H16 LW=0.001 37 6458.78125 6 19.35% 

H17 LW=1 33 2345.40625 2 6.45% 

H17 LW=86 33 2359.234375 2 6.45% 

H17 LW=0.001 35 2957.5 4 12.90% 

H18 LW=1 33 8316.875 2 6.45% 

H18 LW=86 32 6929.484375 1 3.23% 

H18 LW=0.001 36 8736.875 5 16.13% 

H19 LW=1 35 5559.6875 4 12.90% 

H19 LW=86 35 5452.921875 4 12.90% 

H19 LW=0.001 34 7270.5 3 9.68% 

H20 LW=1 53 5720.671875 22 70.97% 

H20 LW=86 56 6045.25 25 80.65% 

H20 LW=0.001 56 5775.15625 25 80.65% 

H21 LW=1 36 21790.65625 5 16.13% 

H21 LW=86 37 22983.1875 6 19.35% 

H21 LW=0.001 37 21964.4375 6 19.35% 

H22 LW=1 35 10497.15625 4 12.90% 

H22 LW=86 33 9999.671875 2 6.45% 

H22 LW=0.001 34 11175.8125 3 9.68% 

H23 LW=1 58 5497.21875 27 87.10% 

H23 LW=86 58 5661.234375 27 87.10% 

H23 LW=0.001 52 5821.46875 21 67.74% 

H24 LW=1 38 23343.67188 7 22.58% 

H24 LW=86 34 24148.5625 3 9.68% 

H24 LW=0.001 40 23059.95313 9 29.03% 

H25 LW=1 34 10292.59375 3 9.68% 

H25 LW=86 34 10522.64063 3 9.68% 

H25 LW=0.001 37 11597.5625 6 19.35% 

H26 LW=1 58 4279.9375 27 87.10% 

H26 LW=86 58 4436.140625 27 87.10% 

H26 LW=0.001 58 4797.375 27 87.10% 

H27 LW=1 36 21057.03125 5 16.13% 

H27 LW=86 36 21589.09375 5 16.13% 

H27 LW=0.001 40 25291.04688 9 29.03% 
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H28 LW=1 31 8146 0 0.00% 

H28 LW=86 32 8133.625 1 3.23% 

H28 LW=0.001 34 7839.28125 3 9.68% 

 

Test Instances T14 

Job Number 4 

Operation Number 57 

Edge Number 8771 

Node Number 292 

Total Length 86 

Average Length 1.50877193 

Optimum Time Slot 31 

 LWs Makespan Computation Time (s) Difference Error Rate 

IP  31  0 0.00% 

H11 LW=1 38 151.34375 7 22.58% 

H11 LW=86 37 137.6875 6 19.35% 

H11 LW=0.001 38 152.625 7 22.58% 

H12 LW=1 35 722.203125 4 12.90% 

H12 LW=86 35 665.703125 4 12.90% 

H12 LW=0.001 36 726.671875 5 16.13% 

H13 LW=1 35 534.671875 4 12.90% 

H13 LW=86 33 509.703125 2 6.45% 

H13 LW=0.001 35 519.84375 4 12.90% 

H14 LW=1 33 130.53125 2 6.45% 

H14 LW=86 33 131.625 2 6.45% 

H14 LW=0.001 36 142.453125 5 16.13% 

H15 LW=1 32 643.828125 1 3.23% 

H15 LW=86 32 626.5625 1 3.23% 

H15 LW=0.001 36 743.265625 5 16.13% 

H16 LW=1 35 456.046875 4 12.90% 

H16 LW=86 35 457.515625 4 12.90% 

H16 LW=0.001 37 489.53125 6 19.35% 

H17 LW=1 34 123.078125 3 9.68% 

H17 LW=86 34 122.140625 3 9.68% 

H17 LW=0.001 36 129.265625 5 16.13% 

H18 LW=1 32 613.40625 1 3.23% 

H18 LW=86 32 706.359375 1 3.23% 

H18 LW=0.001 33 740.578125 2 6.45% 

H19 LW=1 34 431.609375 3 9.68% 

H19 LW=86 34 449.515625 3 9.68% 



188 

 

H19 LW=0.001 34 466.421875 3 9.68% 

H20 LW=1 43 286.25 12 38.71% 

H20 LW=86 43 284.109375 12 38.71% 

H20 LW=0.001 43 293.3125 12 38.71% 

H21 LW=1 37 1727.375 6 19.35% 

H21 LW=86 37 1675.9375 6 19.35% 

H21 LW=0.001 35 1484.4375 4 12.90% 

H22 LW=1 34 600.234375 3 9.68% 

H22 LW=86 32 582.46875 1 3.23% 

H22 LW=0.001 36 559.984375 5 16.13% 

H23 LW=1 43 287.78125 12 38.71% 

H23 LW=86 43 294.59375 12 38.71% 

H23 LW=0.001 43 299.53125 12 38.71% 

H24 LW=1 36 1776.796875 5 16.13% 

H24 LW=86 36 1734.140625 5 16.13% 

H24 LW=0.001 35 1504.28125 4 12.90% 

H25 LW=1 31 670.125 0 0.00% 

H25 LW=86 35 562.609375 4 12.90% 

H25 LW=0.001 37 542.125 6 19.35% 

H26 LW=1 43 273.828125 12 38.71% 

H26 LW=86 43 281.421875 12 38.71% 

H26 LW=0.001 43 294.859375 12 38.71% 

H27 LW=1 36 1833.34375 5 16.13% 

H27 LW=86 36 1840.421875 5 16.13% 

H27 LW=0.001 36 1746.0625 5 16.13% 

H28 LW=1 33 599.5 2 6.45% 

H28 LW=86 33 604.6875 2 6.45% 

H28 LW=0.001 36 590.28125 5 16.13% 

 

Test Instances T15 

Job Number 4 

Operation Number 13 

Edge Number 989 

Node Number 60 

Total Length 24 

Average Length 1.846153846 

Optimum Time Slot 17 

 LWs Makespan Computation Time (s) Difference Error Rate 

IP  17 989.2135717 0 0.00% 

H1 LW=1 17 6.828125 0 0.00% 



189 

 

H1 LW=24 17 7.125 0 0.00% 

H1 LW=0.001 19 7.8125 2 11.76% 

H2 LW=1 17 6.4375 0 0.00% 

H2 LW=24 17 6.1875 0 0.00% 

H2 LW=0.001 17 6.40625 0 0.00% 

H3 LW=1 17 6.40625 0 0.00% 

H3 LW=24 17 6.53125 0 0.00% 

H3 LW=0.001 17 6.78125 0 0.00% 

H4 LW=1 18 6.59375 1 5.88% 

H4 LW=24 18 5.609375 1 5.88% 

H4 LW=0.001 19 6.328125 2 11.76% 

H5 LW=1 18 6.265625 1 5.88% 

H5 LW=24 18 5.703125 1 5.88% 

H5 LW=0.001 17 6.34375 0 0.00% 

H6 LW=1 17 5.28125 0 0.00% 

H6 LW=24 17 5.90625 0 0.00% 

H6 LW=0.001 17 5.59375 0 0.00% 

H7 LW=1 17 6.59375 0 0.00% 

H7 LW=24 17 6.671875 0 0.00% 

H7 LW=0.001 17 6.53125 0 0.00% 

H8 LW=1 18 5.953125 1 5.88% 

H8 LW=24 18 5.8125 1 5.88% 

H8 LW=0.001 18 6.0625 1 5.88% 

H9 LW=1 17 5.640625 0 0.00% 

H9 LW=24 17 5.515625 0 0.00% 

H9 LW=0.001 17 5.15625 0 0.00% 

H10 LW=1 17 5.421875 0 0.00% 

H10 LW=24 17 5.4375 0 0.00% 

H10 LW=0.001 17 5.484375 0 0.00% 

H11 LW=1 17 0.5 0 0.00% 

H11 LW=24 17 0.5 0 0.00% 

H11 LW=0.001 17 0.515625 0 0.00% 

H12 LW=1 17 2.890625 0 0.00% 

H12 LW=24 17 2.890625 0 0.00% 

H12 LW=0.001 19 3.421875 2 11.76% 

H13 LW=1 17 2.296875 0 0.00% 

H13 LW=24 17 2.3125 0 0.00% 

H13 LW=0.001 19 2.9375 2 11.76% 

H14 LW=1 17 0.5 0 0.00% 

H14 LW=24 17 0.5 0 0.00% 

H14 LW=0.001 17 0.5 0 0.00% 

H15 LW=1 17 2.734375 0 0.00% 

H15 LW=24 17 2.84375 0 0.00% 
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H15 LW=0.001 17 2.65625 0 0.00% 

H16 LW=1 17 2.1875 0 0.00% 

H16 LW=24 17 2.15625 0 0.00% 

H16 LW=0.001 17 2.1875 0 0.00% 

H17 LW=1 17 0.5 0 0.00% 

H17 LW=24 17 0.5 0 0.00% 

H17 LW=0.001 17 0.453125 0 0.00% 

H18 LW=1 17 2.9375 0 0.00% 

H18 LW=24 17 2.84375 0 0.00% 

H18 LW=0.001 17 3.421875 0 0.00% 

H19 LW=1 17 2.421875 0 0.00% 

H19 LW=24 17 2.390625 0 0.00% 

H19 LW=0.001 17 2.25 0 0.00% 

H20 LW=1 18 0.515625 1 5.88% 

H20 LW=24 18 0.515625 1 5.88% 

H20 LW=0.001 18 0.5625 1 5.88% 

H21 LW=1 17 2.90625 0 0.00% 

H21 LW=24 17 2.90625 0 0.00% 

H21 LW=0.001 17 2.8125 0 0.00% 

H22 LW=1 17 2.390625 0 0.00% 

H22 LW=24 17 2.328125 0 0.00% 

H22 LW=0.001 19 3.109375 2 11.76% 

H23 LW=1 18 0.53125 1 5.88% 

H23 LW=24 18 0.5625 1 5.88% 

H23 LW=0.001 18 0.53125 1 5.88% 

H24 LW=1 17 3.125 0 0.00% 

H24 LW=24 17 3.125 0 0.00% 

H24 LW=0.001 17 2.875 0 0.00% 

H25 LW=1 17 2.375 0 0.00% 

H25 LW=24 17 2.3125 0 0.00% 

H25 LW=0.001 17 2.359375 0 0.00% 

H26 LW=1 18 0.5 1 5.88% 

H26 LW=24 18 0.5 1 5.88% 

H26 LW=0.001 18 0.578125 1 5.88% 

H27 LW=1 17 3.046875 0 0.00% 

H27 LW=24 17 3.015625 0 0.00% 

H27 LW=0.001 17 3.75 0 0.00% 

H28 LW=1 17 2.34375 0 0.00% 

H28 LW=24 17 2.359375 0 0.00% 

H28 LW=0.001 17 2.40625 0 0.00% 
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Test Instances T16 

Job Number 5 

Operation Number 15 

Edge Number 689 

Node Number 51 

Total Length 21.5 

Average Length 1.433333333 

Optimum Time Slot 10 

 LWs Makespan Computation Time (s) Difference Error Rate 

IP  10  0 0.00% 

H1 LW=1 11 5.90625 1 10.00% 

H1 LW=21.5 10 6.015625 0 0.00% 

H1 LW=0.001 11 5.875 1 10.00% 

H2 LW=1 12 5.125 2 20.00% 

H2 LW=21.5 10 5.40625 0 0.00% 

H2 LW=0.001 12 5.375 2 20.00% 

H3 LW=1 10 5.421875 0 0.00% 

H3 LW=21.5 10 5.5625 0 0.00% 

H3 LW=0.001 11 5.625 1 10.00% 

H4 LW=1 10 5.5 0 0.00% 

H4 LW=21.5 10 5.5 0 0.00% 

H4 LW=0.001 11 5.40625 1 10.00% 

H5 LW=1 12 4.953125 2 20.00% 

H5 LW=21.5 10 5.3125 0 0.00% 

H5 LW=0.001 13 5.796875 3 30.00% 

H6 LW=1 12 5.625 2 20.00% 

H6 LW=21.5 11 4.734375 1 10.00% 

H6 LW=0.001 14 5.5 4 40.00% 

H7 LW=1 12 5.875 2 20.00% 

H7 LW=21.5 12 5.921875 2 20.00% 

H7 LW=0.001 12 6.125 2 20.00% 

H8 LW=1 10 5.46875 0 0.00% 

H8 LW=21.5 10 5.4375 0 0.00% 

H8 LW=0.001 11 5.296875 1 10.00% 

H9 LW=1 11 4.765625 1 10.00% 

H9 LW=21.5 11 4.890625 1 10.00% 

H9 LW=0.001 13 5.640625 3 30.00% 

H10 LW=1 11 4.84375 1 10.00% 

H10 LW=21.5 11 4.625 1 10.00% 

H10 LW=0.001 13 5.453125 3 30.00% 

H11 LW=1 11 0.234375 1 10.00% 

H11 LW=21.5 12 0.25 2 20.00% 

H11 LW=0.001 11 0.265625 1 10.00% 
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H12 LW=1 12 1.4375 2 20.00% 

H12 LW=21.5 11 1.953125 1 10.00% 

H12 LW=0.001 12 1.546875 2 20.00% 

H13 LW=1 11 1.15625 1 10.00% 

H13 LW=21.5 10 1.15625 0 0.00% 

H13 LW=0.001 11 1.21875 1 10.00% 

H14 LW=1 12 0.265625 2 20.00% 

H14 LW=21.5 12 0.234375 2 20.00% 

H14 LW=0.001 14 0.25 4 40.00% 

H15 LW=1 12 1.953125 2 20.00% 

H15 LW=21.5 11 1.515625 1 10.00% 

H15 LW=0.001 13 1.765625 3 30.00% 

H16 LW=1 10 1.125 0 0.00% 

H16 LW=21.5 10 1.15625 0 0.00% 

H16 LW=0.001 13 1.3125 3 30.00% 

H17 LW=1 12 0.28125 2 20.00% 

H17 LW=21.5 12 0.265625 2 20.00% 

H17 LW=0.001 11 0.25 1 10.00% 

H18 LW=1 11 1.609375 1 10.00% 

H18 LW=21.5 11 1.53125 1 10.00% 

H18 LW=0.001 11 2.0625 1 10.00% 

H19 LW=1 10 1.125 0 0.00% 

H19 LW=21.5 10 1.171875 0 0.00% 

H19 LW=0.001 11 1.234375 1 10.00% 

H20 LW=1 14 0.265625 4 40.00% 

H20 LW=21.5 14 0.234375 4 40.00% 

H20 LW=0.001 14 0.234375 4 40.00% 

H21 LW=1 12 1.21875 2 20.00% 

H21 LW=21.5 11 1.234375 1 10.00% 

H21 LW=0.001 12 1.34375 2 20.00% 

H22 LW=1 12 1.15625 2 20.00% 

H22 LW=21.5 11 1.140625 1 10.00% 

H22 LW=0.001 12 1.125 2 20.00% 

H23 LW=1 14 0.25 4 40.00% 

H23 LW=21.5 14 0.25 4 40.00% 

H23 LW=0.001 14 0.25 4 40.00% 

H24 LW=1 12 1.34375 2 20.00% 

H24 LW=21.5 11 1.203125 1 10.00% 

H24 LW=0.001 12 1.46875 2 20.00% 

H25 LW=1 12 1.046875 2 20.00% 

H25 LW=21.5 11 1 1 10.00% 

H25 LW=0.001 12 1.078125 2 20.00% 

H26 LW=1 14 0.234375 4 40.00% 
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H26 LW=21.5 14 0.25 4 40.00% 

H26 LW=0.001 14 0.234375 4 40.00% 

H27 LW=1 12 1.25 2 20.00% 

H27 LW=21.5 11 1.1875 1 10.00% 

H27 LW=0.001 12 1.296875 2 20.00% 

H28 LW=1 12 1.125 2 20.00% 

H28 LW=21.5 11 1.109375 1 10.00% 

H28 LW=0.001 12 1.140625 2 20.00% 

 

 

Test Instances T17 

Job Number 4 

Operation Number 14 

Edge Number 2184 

Node Number 110 

Total Length 31.5 

Average Length 2.25 

Optimum Time Slot 10 

 LWs Makespan Computation Time (s) Difference Error Rate 

IP  10  0 0.00% 

H1 LW=1 12 500.90625 2 20.00% 

H1 LW=31.5 11 495.59375 1 10.00% 

H1 LW=0.001 16 528.09375 6 60.00% 

H2 LW=1 11 497 1 10.00% 

H2 LW=31.5 12 486.21875 2 20.00% 

H2 LW=0.001 16 521.765625 6 60.00% 

H3 LW=1 12 510.8125 2 20.00% 

H3 LW=31.5 12 514.25 2 20.00% 

H3 LW=0.001 16 530.171875 6 60.00% 

H4 LW=1 12 458.328125 2 20.00% 

H4 LW=31.5 11 455.265625 1 10.00% 

H4 LW=0.001 16 493.21875 6 60.00% 

H5 LW=1 11 439.5 1 10.00% 

H5 LW=31.5 11 452.453125 1 10.00% 

H5 LW=0.001 16 479.78125 6 60.00% 

H6 LW=1 12 454.046875 2 20.00% 

H6 LW=31.5 11 450.9375 1 10.00% 

H6 LW=0.001 16 487.25 6 60.00% 

H7 LW=1 12 456.703125 2 20.00% 
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H7 LW=31.5 12 475.203125 2 20.00% 

H7 LW=0.001 16 504.796875 6 60.00% 

H8 LW=1 11 451.640625 1 10.00% 

H8 LW=31.5 11 457.84375 1 10.00% 

H8 LW=0.001 11 494.109375 1 10.00% 

H9 LW=1 11 455.59375 1 10.00% 

H9 LW=31.5 11 461.234375 1 10.00% 

H9 LW=0.001 16 512.53125 6 60.00% 

H10 LW=1 14 492.71875 4 40.00% 

H10 LW=31.5 11 452.484375 1 10.00% 

H10 LW=0.001 16 491.03125 6 60.00% 

H11 LW=1 13 2.765625 3 30.00% 

H11 LW=31.5 10 1.796875 0 0.00% 

H11 LW=0.001 13 2.359375 3 30.00% 

H12 LW=1 13 12.140625 3 30.00% 

H12 LW=31.5 12 9.765625 2 20.00% 

H12 LW=0.001 13 9.171875 3 30.00% 

H13 LW=1 12 6.46875 2 20.00% 

H13 LW=31.5 12 6.734375 2 20.00% 

H13 LW=0.001 13 7.546875 3 30.00% 

H14 LW=1 13 2.21875 3 30.00% 

H14 LW=31.5 10 1.84375 0 0.00% 

H14 LW=0.001 13 2.234375 3 30.00% 

H15 LW=1 12 9.921875 2 20.00% 

H15 LW=31.5 11 8.015625 1 10.00% 

H15 LW=0.001 13 11.234375 3 30.00% 

H16 LW=1 12 6.359375 2 20.00% 

H16 LW=31.5 11 6.375 1 10.00% 

H16 LW=0.001 13 7.4375 3 30.00% 

H17 LW=1 11 1.9375 1 10.00% 

H17 LW=31.5 10 1.8125 0 0.00% 

H17 LW=0.001 12 1.9375 2 20.00% 

H18 LW=1 11 9.515625 1 10.00% 

H18 LW=31.5 11 9.15625 1 10.00% 

H18 LW=0.001 13 8.765625 3 30.00% 

H19 LW=1 12 7.0625 2 20.00% 

H19 LW=31.5 12 6.609375 2 20.00% 

H19 LW=0.001 12 6.890625 2 20.00% 

H20 LW=1 12 2.421875 2 20.00% 

H20 LW=31.5 12 2.421875 2 20.00% 

H20 LW=0.001 12 2.515625 2 20.00% 

H21 LW=1 14 10.796875 4 40.00% 

H21 LW=31.5 12 10.359375 2 20.00% 
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H21 LW=0.001 14 10.734375 4 40.00% 

H22 LW=1 15 7.03125 5 50.00% 

H22 LW=31.5 11 6.1875 1 10.00% 

H22 LW=0.001 15 6.84375 5 50.00% 

H23 LW=1 12 2.484375 2 20.00% 

H23 LW=31.5 12 2.515625 2 20.00% 

H23 LW=0.001 12 2.4375 2 20.00% 

H24 LW=1 12 9.4375 2 20.00% 

H24 LW=31.5 12 9.59375 2 20.00% 

H24 LW=0.001 14 10.546875 4 40.00% 

H25 LW=1 11 6.5625 1 10.00% 

H25 LW=31.5 12 6.78125 2 20.00% 

H25 LW=0.001 15 6.984375 5 50.00% 

H26 LW=1 12 2.546875 2 20.00% 

H26 LW=31.5 12 2.453125 2 20.00% 

H26 LW=0.001 12 2.421875 2 20.00% 

H27 LW=1 12 9.875 2 20.00% 

H27 LW=31.5 12 9.125 2 20.00% 

H27 LW=0.001 12 9.125 2 20.00% 

H28 LW=1 12 6.734375 2 20.00% 

H28 LW=31.5 12 12 2 20.00% 

H28 LW=0.001 15 7.09375 5 50.00% 

 

Test Instances T18 

Job Number 4 

Operation Number 14 

Edge Number 3108 

Node Number 126 

Total Length 31.5 

Average Length 2.25 

Optimum Time Slot 10 

 LWs Makespan Computation Time (s) Difference Error Rate 

IP  10  0 0.00% 

H1 LW=1 13 1354.8125 3 30.00% 

H1 LW=31.5 11 1413.015625 1 10.00% 

H1 LW=0.001 16 1339.40625 6 60.00% 

H2 LW=1 11 1036.546875 1 10.00% 

H2 LW=31.5 11 1047.0625 1 10.00% 

H2 LW=0.001 15 1047.59375 5 50.00% 

H3 LW=1 11 988.296875 1 10.00% 
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H3 LW=31.5 11 1021.28125 1 10.00% 

H3 LW=0.001 15 1027.6875 5 50.00% 

H4 LW=1 13 939.53125 3 30.00% 

H4 LW=31.5 11 946.796875 1 10.00% 

H4 LW=0.001 16 940.5 6 60.00% 

H5 LW=1 11 989.84375 1 10.00% 

H5 LW=31.5 11 939.4375 1 10.00% 

H5 LW=0.001 16 936.671875 6 60.00% 

H6 LW=1 13 955.3125 3 30.00% 

H6 LW=31.5 11 967.953125 1 10.00% 

H6 LW=0.001 16 1024.765625 6 60.00% 

H7 LW=1 13 1025.21875 3 30.00% 

H7 LW=31.5 13 1012.78125 3 30.00% 

H7 LW=0.001 16 1023.578125 6 60.00% 

H8 LW=1 11 971.671875 1 10.00% 

H8 LW=31.5 11 976.546875 1 10.00% 

H8 LW=0.001 15 975.328125 5 50.00% 

H9 LW=1 11 996.578125 1 10.00% 

H9 LW=31.5 11 990.40625 1 10.00% 

H9 LW=0.001 15 987.546875 5 50.00% 

H10 LW=1 14 1006.203125 4 40.00% 

H10 LW=31.5 11 1005.4375 1 10.00% 

H10 LW=0.001 16 1018.65625 6 60.00% 

H11 LW=1 13 4.15625 3 30.00% 

H11 LW=31.5 10 3.671875 0 0.00% 

H11 LW=0.001 15 4.1875 5 50.00% 

H12 LW=1 13 17.5625 3 30.00% 

H12 LW=31.5 10 14.8125 0 0.00% 

H12 LW=0.001 14 14.265625 4 40.00% 

H13 LW=1 13 11.59375 3 30.00% 

H13 LW=31.5 11 11.65625 1 10.00% 

H13 LW=0.001 14 11.75 4 40.00% 

H14 LW=1 11 4.390625 1 10.00% 

H14 LW=31.5 10 3.609375 0 0.00% 

H14 LW=0.001 13 4.234375 3 30.00% 

H15 LW=1 11 21.71875 1 10.00% 

H15 LW=31.5 10 20.484375 0 0.00% 

H15 LW=0.001 13 14.65625 3 30.00% 

H16 LW=1 13 12.1875 3 30.00% 

H16 LW=31.5 11 11.515625 1 10.00% 

H16 LW=0.001 14 11.453125 4 40.00% 

H17 LW=1 11 4.15625 1 10.00% 

H17 LW=31.5 11 4.046875 1 10.00% 
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H17 LW=0.001 14 3.640625 4 40.00% 

H18 LW=1 10 14.109375 0 0.00% 

H18 LW=31.5 10 15.640625 0 0.00% 

H18 LW=0.001 13 15.78125 3 30.00% 

H19 LW=1 11 11.25 1 10.00% 

H19 LW=31.5 11 10.984375 1 10.00% 

H19 LW=0.001 16 12.890625 6 60.00% 

H20 LW=1 14 5.796875 4 40.00% 

H20 LW=31.5 14 5.8125 4 40.00% 

H20 LW=0.001 14 5.8125 4 40.00% 

H21 LW=1 11 15.84375 1 10.00% 

H21 LW=31.5 11 16.25 1 10.00% 

H21 LW=0.001 11 16.140625 1 10.00% 

H22 LW=1 15 11.40625 5 50.00% 

H22 LW=31.5 12 12.46875 2 20.00% 

H22 LW=0.001 15 11.53125 5 50.00% 

H23 LW=1 14 5.8125 4 40.00% 

H23 LW=31.5 14 6.125 4 40.00% 

H23 LW=0.001 14 5.890625 4 40.00% 

H24 LW=1 11 15.890625 1 10.00% 

H24 LW=31.5 11 15.921875 1 10.00% 

H24 LW=0.001 11 16.1875 1 10.00% 

H25 LW=1 13 11.234375 3 30.00% 

H25 LW=31.5 11 10.828125 1 10.00% 

H25 LW=0.001 15 11.296875 5 50.00% 

H26 LW=1 14 5.9375 4 40.00% 

H26 LW=31.5 14 5.9375 4 40.00% 

H26 LW=0.001 14 5.875 4 40.00% 

H27 LW=1 14 16.40625 4 40.00% 

H27 LW=31.5 14 16.625 4 40.00% 

H27 LW=0.001 14 16.625 4 40.00% 

H28 LW=1 12 11.34375 2 20.00% 

H28 LW=31.5 14 11.71875 4 40.00% 

H28 LW=0.001 15 11.21875 5 50.00% 

 

Test Instances T19 

Job Number 4 

Operation Number 14 

Edge Number 1387 

Node Number 89 
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Total Length 30 

Average Length 2.142857143 

Optimum Time Slot 10 

 LWs Makespan Computation Time (s) Difference Error Rate 

IP  10  0 0.00% 

H1 LW=1 13 109.265625 3 30.00% 

H1 LW=30 11 108.609375 1 10.00% 

H1 LW=0.001 15 119.40625 5 50.00% 

H2 LW=1 12 107.890625 2 20.00% 

H2 LW=30 11 105.5 1 10.00% 

H2 LW=0.001 15 119.21875 5 50.00% 

H3 LW=1 11 112.71875 1 10.00% 

H3 LW=30 11 107.65625 1 10.00% 

H3 LW=0.001 13 115.390625 3 30.00% 

H4 LW=1 12 110.203125 2 20.00% 

H4 LW=30 11 105.203125 1 10.00% 

H4 LW=0.001 15 114.421875 5 50.00% 

H5 LW=1 13 114.375 3 30.00% 

H5 LW=30 11 108.703125 1 10.00% 

H5 LW=0.001 15 116.0625 5 50.00% 

H6 LW=1 12 115.328125 2 20.00% 

H6 LW=30 11 112.5625 1 10.00% 

H6 LW=0.001 15 118.328125 5 50.00% 

H7 LW=1 12 121.015625 2 20.00% 

H7 LW=30 11 114.25 1 10.00% 

H7 LW=0.001 13 115.828125 3 30.00% 

H8 LW=1 11 110.125 1 10.00% 

H8 LW=30 11 106.734375 1 10.00% 

H8 LW=0.001 15 115.671875 5 50.00% 

H9 LW=1 11 110.15625 1 10.00% 

H9 LW=30 11 111.96875 1 10.00% 

H9 LW=0.001 15 118.8125 5 50.00% 

H10 LW=1 12 114.46875 2 20.00% 

H10 LW=30 11 112.515625 1 10.00% 

H10 LW=0.001 15 119.59375 5 50.00% 

H11 LW=1 11 1.078125 1 10.00% 

H11 LW=30 11 1.09375 1 10.00% 

H11 LW=0.001 15 1.125 5 50.00% 

H12 LW=1 11 4.9375 1 10.00% 

H12 LW=30 11 5.234375 1 10.00% 

H12 LW=0.001 12 4.5 2 20.00% 

H13 LW=1 13 3.96875 3 30.00% 

H13 LW=30 11 3.65625 1 10.00% 
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H13 LW=0.001 12 4.046875 2 20.00% 

H14 LW=1 12 1.125 2 20.00% 

H14 LW=30 11 1.03125 1 10.00% 

H14 LW=0.001 15 1.125 5 50.00% 

H15 LW=1 12 4.71875 2 20.00% 

H15 LW=30 11 4.703125 1 10.00% 

H15 LW=0.001 13 4.9375 3 30.00% 

H16 LW=1 12 3.46875 2 20.00% 

H16 LW=30 11 3.78125 1 10.00% 

H16 LW=0.001 13 3.96875 3 30.00% 

H17 LW=1 12 1.046875 2 20.00% 

H17 LW=30 11 1.078125 1 10.00% 

H17 LW=0.001 11 0.984375 1 10.00% 

H18 LW=1 12 4.796875 2 20.00% 

H18 LW=30 11 4.984375 1 10.00% 

H18 LW=0.001 12 4.75 2 20.00% 

H19 LW=1 11 3.6875 1 10.00% 

H19 LW=30 11 3.609375 1 10.00% 

H19 LW=0.001 15 4.21875 5 50.00% 

H20 LW=1 14 1.203125 4 40.00% 

H20 LW=30 14 1.296875 4 40.00% 

H20 LW=0.001 14 1.21875 4 40.00% 

H21 LW=1 11 5.40625 1 10.00% 

H21 LW=30 11 4.6875 1 10.00% 

H21 LW=0.001 13 4.53125 3 30.00% 

H22 LW=1 12 3.4375 2 20.00% 

H22 LW=30 11 3.640625 1 10.00% 

H22 LW=0.001 12 3.375 2 20.00% 

H23 LW=1 14 1.21875 4 40.00% 

H23 LW=30 14 1.203125 4 40.00% 

H23 LW=0.001 14 1.171875 4 40.00% 

H24 LW=1 11 5.28125 1 10.00% 

H24 LW=30 11 4.296875 1 10.00% 

H24 LW=0.001 13 4.015625 3 30.00% 

H25 LW=1 12 3.359375 2 20.00% 

H25 LW=30 11 3.390625 1 10.00% 

H25 LW=0.001 12 3.203125 2 20.00% 

H26 LW=1 14 1.15625 4 40.00% 

H26 LW=30 14 1.28125 4 40.00% 

H26 LW=0.001 14 1.296875 4 40.00% 

H27 LW=1 11 4.5 1 10.00% 

H27 LW=30 11 4.65625 1 10.00% 

H27 LW=0.001 13 4.453125 3 30.00% 
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H28 LW=1 11 3.5 1 10.00% 

H28 LW=30 11 3.640625 1 10.00% 

H28 LW=0.001 12 3.390625 2 20.00% 

 

Test Instances T20 

Job Number 4 

Operation Number 11 

Edge Number 387 

Node Number 41 

Total Length 17.5 

Average Length 1.590909091 

Optimum Time Slot 8 

 LWs Makespan Computation Time (s) Difference Error Rate 

IP  8 241.4488821 0 0.00% 

H1 LW=1 9 1.796875 1 12.50% 

H1 LW=17.5 9 1.78125 1 12.50% 

H1 LW=0.001 10 1.953125 2 25.00% 

H2 LW=1 9 1.921875 1 12.50% 

H2 LW=17.5 9 1.6875 1 12.50% 

H2 LW=0.001 10 1.8125 2 25.00% 

H3 LW=1 9 1.6875 1 12.50% 

H3 LW=17.5 9 1.703125 1 12.50% 

H3 LW=0.001 9 1.96875 1 12.50% 

H4 LW=1 9 1.78125 1 12.50% 

H4 LW=17.5 9 1.640625 1 12.50% 

H4 LW=0.001 10 1.765625 2 25.00% 

H5 LW=1 9 1.875 1 12.50% 

H5 LW=17.5 9 1.828125 1 12.50% 

H5 LW=0.001 10 2.171875 2 25.00% 

H6 LW=1 9 1.859375 1 12.50% 

H6 LW=17.5 9 1.609375 1 12.50% 

H6 LW=0.001 10 2.1875 2 25.00% 

H7 LW=1 10 2.046875 2 25.00% 

H7 LW=17.5 10 2.078125 2 25.00% 

H7 LW=0.001 10 2.046875 2 25.00% 

H8 LW=1 9 1.609375 1 12.50% 

H8 LW=17.5 9 1.609375 1 12.50% 

H8 LW=0.001 9 1.890625 1 12.50% 

H9 LW=1 9 1.625 1 12.50% 

H9 LW=17.5 9 1.625 1 12.50% 
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H9 LW=0.001 9 1.625 1 12.50% 

H10 LW=1 9 1.625 1 12.50% 

H10 LW=17.5 9 1.59375 1 12.50% 

H10 LW=0.001 11 2.265625 3 37.50% 

H11 LW=1 10 0.09375 2 25.00% 

H11 LW=17.5 9 0.078125 1 12.50% 

H11 LW=0.001 13 0.09375 5 62.50% 

H12 LW=1 10 0.8125 2 25.00% 

H12 LW=17.5 9 0.65625 1 12.50% 

H12 LW=0.001 12 1.046875 4 50.00% 

H13 LW=1 9 0.390625 1 12.50% 

H13 LW=17.5 9 0.40625 1 12.50% 

H13 LW=0.001 10 0.4375 2 25.00% 

H14 LW=1 8 0.09375 0 0.00% 

H14 LW=17.5 9 0.09375 1 12.50% 

H14 LW=0.001 10 0.09375 2 25.00% 

H15 LW=1 9 0.65625 1 12.50% 

H15 LW=17.5 9 0.640625 1 12.50% 

H15 LW=0.001 10 0.75 2 25.00% 

H16 LW=1 9 0.46875 1 12.50% 

H16 LW=17.5 9 0.390625 1 12.50% 

H16 LW=0.001 10 0.4375 2 25.00% 

H17 LW=1 8 0.09375 0 0.00% 

H17 LW=17.5 9 0.09375 1 12.50% 

H17 LW=0.001 8 0.09375 0 0.00% 

H18 LW=1 9 0.609375 1 12.50% 

H18 LW=17.5 9 0.578125 1 12.50% 

H18 LW=0.001 9 0.703125 1 12.50% 

H19 LW=1 9 0.40625 1 12.50% 

H19 LW=17.5 9 0.40625 1 12.50% 

H19 LW=0.001 9 0.46875 1 12.50% 

H20 LW=1 10 0.09375 2 25.00% 

H20 LW=17.5 11 0.109375 3 37.50% 

H20 LW=0.001 10 0.09375 2 25.00% 

H21 LW=1 9 0.59375 1 12.50% 

H21 LW=17.5 9 0.46875 1 12.50% 

H21 LW=0.001 10 0.546875 2 25.00% 

H22 LW=1 9 0.375 1 12.50% 

H22 LW=17.5 9 0.375 1 12.50% 

H22 LW=0.001 10 0.421875 2 25.00% 

H23 LW=1 10 0.09375 2 25.00% 

H23 LW=17.5 11 0.09375 3 37.50% 

H23 LW=0.001 10 0.109375 2 25.00% 
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H24 LW=1 9 0.53125 1 12.50% 

H24 LW=17.5 9 0.453125 1 12.50% 

H24 LW=0.001 8 0.515625 0 0.00% 

H25 LW=1 9 0.4375 1 12.50% 

H25 LW=17.5 9 0.375 1 12.50% 

H25 LW=0.001 10 0.4375 2 25.00% 

H26 LW=1 11 0.109375 3 37.50% 

H26 LW=17.5 11 0.09375 3 37.50% 

H26 LW=0.001 10 0.109375 2 25.00% 

H27 LW=1 9 0.484375 1 12.50% 

H27 LW=17.5 9 0.4375 1 12.50% 

H27 LW=0.001 9 0.546875 1 12.50% 

H28 LW=1 9 0.390625 1 12.50% 

H28 LW=17.5 9 0.390625 1 12.50% 

H28 LW=0.001 9 0.46875 1 12.50% 

 

Test Instances T21 

Job Number 5 

Operation Number 12 

Edge Number 583 

Node Number 47 

Total Length 19.5 

Average Length 1.625 

Optimum Time Slot 9 

 LWs Makespan Computation Time (s) Difference Error Rate 

IP  9 1903.757093 0 0.00% 

H1 LW=1 9 3.796875 0 0.00% 

H1 LW=19.5 9 3.796875 0 0.00% 

H1 LW=0.001 12 4 3 33.33% 

H2 LW=1 10 4.0625 1 11.11% 

H2 LW=19.5 9 3.609375 0 0.00% 

H2 LW=0.001 12 3.8125 3 33.33% 

H3 LW=1 9 3.671875 0 0.00% 

H3 LW=19.5 9 3.53125 0 0.00% 

H3 LW=0.001 10 4.109375 1 11.11% 

H4 LW=1 9 3.515625 0 0.00% 

H4 LW=19.5 9 3.546875 0 0.00% 

H4 LW=0.001 12 3.59375 3 33.33% 

H5 LW=1 11 4 2 22.22% 

H5 LW=19.5 9 3.578125 0 0.00% 
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H5 LW=0.001 12 4.15625 3 33.33% 

H6 LW=1 12 4.015625 3 33.33% 

H6 LW=19.5 9 3.46875 0 0.00% 

H6 LW=0.001 12 4.1875 3 33.33% 

H7 LW=1 12 4.46875 3 33.33% 

H7 LW=19.5 12 4.40625 3 33.33% 

H7 LW=0.001 12 4.171875 3 33.33% 

H8 LW=1 9 3.484375 0 0.00% 

H8 LW=19.5 9 3.484375 0 0.00% 

H8 LW=0.001 10 4.46875 1 11.11% 

H9 LW=1 9 3.515625 0 0.00% 

H9 LW=19.5 9 3.515625 0 0.00% 

H9 LW=0.001 10 4.671875 1 11.11% 

H10 LW=1 9 3.484375 0 0.00% 

H10 LW=19.5 9 3.515625 0 0.00% 

H10 LW=0.001 10 3.84375 1 11.11% 

H11 LW=1 10 0.171875 1 11.11% 

H11 LW=19.5 9 0.171875 0 0.00% 

H11 LW=0.001 15 0.1875 6 66.67% 

H12 LW=1 10 1.6875 1 11.11% 

H12 LW=19.5 9 1.203125 0 0.00% 

H12 LW=0.001 14 1.6875 5 55.56% 

H13 LW=1 9 0.671875 0 0.00% 

H13 LW=19.5 9 0.6875 0 0.00% 

H13 LW=0.001 12 0.78125 3 33.33% 

H14 LW=1 10 0.15625 1 11.11% 

H14 LW=19.5 9 0.171875 0 0.00% 

H14 LW=0.001 12 0.171875 3 33.33% 

H15 LW=1 9 1.171875 0 0.00% 

H15 LW=19.5 9 0.953125 0 0.00% 

H15 LW=0.001 12 1.203125 3 33.33% 

H16 LW=1 10 0.796875 1 11.11% 

H16 LW=19.5 9 0.6875 0 0.00% 

H16 LW=0.001 12 0.84375 3 33.33% 

H17 LW=1 10 0.171875 1 11.11% 

H17 LW=19.5 9 0.171875 0 0.00% 

H17 LW=0.001 10 0.1875 1 11.11% 

H18 LW=1 9 1.046875 0 0.00% 

H18 LW=19.5 9 1.203125 0 0.00% 

H18 LW=0.001 9 1.09375 0 0.00% 

H19 LW=1 9 0.65625 0 0.00% 

H19 LW=19.5 9 0.75 0 0.00% 

H19 LW=0.001 10 0.78125 1 11.11% 
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H20 LW=1 11 0.1875 2 22.22% 

H20 LW=19.5 13 0.203125 4 44.44% 

H20 LW=0.001 11 0.265625 2 22.22% 

H21 LW=1 9 0.859375 0 0.00% 

H21 LW=19.5 9 1.03125 0 0.00% 

H21 LW=0.001 12 0.859375 3 33.33% 

H22 LW=1 9 0.71875 0 0.00% 

H22 LW=19.5 9 0.6875 0 0.00% 

H22 LW=0.001 12 0.765625 3 33.33% 

H23 LW=1 11 0.234375 2 22.22% 

H23 LW=19.5 19 0.203125 10 111.11% 

H23 LW=0.001 11 0.1875 2 22.22% 

H24 LW=1 10 1.171875 1 11.11% 

H24 LW=19.5 9 0.953125 0 0.00% 

H24 LW=0.001 12 1.171875 3 33.33% 

H25 LW=1 10 0.765625 1 11.11% 

H25 LW=19.5 10 0.8125 1 11.11% 

H25 LW=0.001 12 0.90625 3 33.33% 

H26 LW=1 11 0.1875 2 22.22% 

H26 LW=19.5 13 0.203125 4 44.44% 

H26 LW=0.001 11 0.203125 2 22.22% 

H27 LW=1 9 0.90625 0 0.00% 

H27 LW=19.5 9 1 0 0.00% 

H27 LW=0.001 10 1.171875 1 11.11% 

H28 LW=1 9 0.671875 0 0.00% 

H28 LW=19.5 9 0.671875 0 0.00% 

H28 LW=0.001 10 0.75 1 11.11% 

 

Test Instances T22 

Job Number 3 

Operation Number 10 

Edge Number 247 

Node Number 39 

Total Length 19.5 

Average Length 1.95 

Optimum Time Slot 10 

 LWs Makespan Computation Time (s) Difference Error Rate 

IP  10 61.10258196 0 0.00% 

H1 LW=1 13 1.28125 3 30.00% 

H1 LW=19.5 13 1.296875 3 30.00% 
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H1 LW=0.001 13 1.28125 3 30.00% 

H2 LW=1 13 1.25 3 30.00% 

H2 LW=19.5 13 1.21875 3 30.00% 

H2 LW=0.001 10 1.265625 0 0.00% 

H3 LW=1 10 1.296875 0 0.00% 

H3 LW=19.5 13 1.296875 3 30.00% 

H3 LW=0.001 11 1.3125 1 10.00% 

H4 LW=1 11 1.4375 1 10.00% 

H4 LW=19.5 11 1.421875 1 10.00% 

H4 LW=0.001 13 1.1875 3 30.00% 

H5 LW=1 10 1.40625 0 0.00% 

H5 LW=19.5 11 1.4375 1 10.00% 

H5 LW=0.001 11 1.4375 1 10.00% 

H6 LW=1 10 1.453125 0 0.00% 

H6 LW=19.5 11 1.4375 1 10.00% 

H6 LW=0.001 11 1.234375 1 10.00% 

H7 LW=1 10 1.703125 0 0.00% 

H7 LW=19.5 10 1.671875 0 0.00% 

H7 LW=0.001 10 1.296875 0 0.00% 

H8 LW=1 10 1.421875 0 0.00% 

H8 LW=19.5 11 1.4375 1 10.00% 

H8 LW=0.001 11 1.21875 1 10.00% 

H9 LW=1 11 1.4375 1 10.00% 

H9 LW=19.5 11 1.421875 1 10.00% 

H9 LW=0.001 11 1.234375 1 10.00% 

H10 LW=1 11 1.53125 1 10.00% 

H10 LW=19.5 11 1.546875 1 10.00% 

H10 LW=0.001 12 1.4375 2 20.00% 

H11 LW=1 11 0.078125 1 10.00% 

H11 LW=19.5 11 0.078125 1 10.00% 

H11 LW=0.001 11 0.0625 1 10.00% 

H12 LW=1 11 0.53125 1 10.00% 

H12 LW=19.5 13 0.4375 3 30.00% 

H12 LW=0.001 13 0.390625 3 30.00% 

H13 LW=1 13 0.296875 3 30.00% 

H13 LW=19.5 13 0.328125 3 30.00% 

H13 LW=0.001 13 0.296875 3 30.00% 

H14 LW=1 11 0.0625 1 10.00% 

H14 LW=19.5 11 0.0625 1 10.00% 

H14 LW=0.001 12 0.0625 2 20.00% 

H15 LW=1 13 0.421875 3 30.00% 

H15 LW=19.5 11 0.5625 1 10.00% 

H15 LW=0.001 10 0.40625 0 0.00% 
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H16 LW=1 13 0.375 3 30.00% 

H16 LW=19.5 13 0.328125 3 30.00% 

H16 LW=0.001 10 0.3125 0 0.00% 

H17 LW=1 11 0.0625 1 10.00% 

H17 LW=19.5 11 0.0625 1 10.00% 

H17 LW=0.001 12 0.078125 2 20.00% 

H18 LW=1 10 0.5 0 0.00% 

H18 LW=19.5 13 0.375 3 30.00% 

H18 LW=0.001 12 0.546875 2 20.00% 

H19 LW=1 10 0.296875 0 0.00% 

H19 LW=19.5 13 0.3125 3 30.00% 

H19 LW=0.001 11 0.34375 1 10.00% 

H20 LW=1 13 0.078125 3 30.00% 

H20 LW=19.5 13 0.0625 3 30.00% 

H20 LW=0.001 13 0.078125 3 30.00% 

H21 LW=1 13 0.359375 3 30.00% 

H21 LW=19.5 13 0.390625 3 30.00% 

H21 LW=0.001 13 0.359375 3 30.00% 

H22 LW=1 13 0.359375 3 30.00% 

H22 LW=19.5 13 0.296875 3 30.00% 

H22 LW=0.001 13 0.296875 3 30.00% 

H23 LW=1 13 0.078125 3 30.00% 

H23 LW=19.5 13 0.0625 3 30.00% 

H23 LW=0.001 13 0.078125 3 30.00% 

H24 LW=1 13 0.390625 3 30.00% 

H24 LW=19.5 13 0.4375 3 30.00% 

H24 LW=0.001 10 0.375 0 0.00% 

H25 LW=1 13 0.296875 3 30.00% 

H25 LW=19.5 13 0.296875 3 30.00% 

H25 LW=0.001 10 0.296875 0 0.00% 

H26 LW=1 13 0.0625 3 30.00% 

H26 LW=19.5 13 0.078125 3 30.00% 

H26 LW=0.001 13 0.078125 3 30.00% 

H27 LW=1 10 0.375 0 0.00% 

H27 LW=19.5 13 0.34375 3 30.00% 

H27 LW=0.001 10 0.390625 0 0.00% 

H28 LW=1 10 0.28125 0 0.00% 

H28 LW=19.5 13 0.28125 3 30.00% 

H28 LW=0.001 11 0.34375 1 10.00% 
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Test Instances T23 

Job Number 4 

Operation Number 11 

Edge Number 407 

Node Number 45 

Total Length 21.5 

Average Length 1.954545 

Optimum Time Slot 10 

 LWs Makespan Computation Time (s) Difference Error Rate 

IP  10 239.8401689 0 0.00% 

H1 LW=1 11 2.96875 1 10.00% 

H1 LW=21.5 11 2.890625 1 10.00% 

H1 LW=0.001 12 1.65625 2 20.00% 

H2 LW=1 10 2.140625 0 0.00% 

H2 LW=21.5 13 1.78125 3 30.00% 

H2 LW=0.001 12 1.515625 2 20.00% 

H3 LW=1 13 1.765625 3 30.00% 

H3 LW=21.5 13 1.8125 3 30.00% 

H3 LW=0.001 10 2.109375 0 0.00% 

H4 LW=1 11 2.53125 1 10.00% 

H4 LW=21.5 11 2.546875 1 10.00% 

H4 LW=0.001 12 1.40625 2 20.00% 

H5 LW=1 10 2.453125 0 0.00% 

H5 LW=21.5 11 2.53125 1 10.00% 

H5 LW=0.001 12 1.640625 2 20.00% 

H6 LW=1 10 2.546875 0 0.00% 

H6 LW=21.5 11 2.484375 1 10.00% 

H6 LW=0.001 12 1.703125 2 20.00% 

H7 LW=1 10 2.75 0 0.00% 

H7 LW=21.5 10 2.75 0 0.00% 

H7 LW=0.001 13 1.65625 3 30.00% 

H8 LW=1 10 2.53125 0 0.00% 

H8 LW=21.5 11 2.546875 1 10.00% 

H8 LW=0.001 10 1.984375 0 0.00% 

H9 LW=1 11 2.53125 1 10.00% 

H9 LW=21.5 11 2.46875 1 10.00% 

H9 LW=0.001 13 1.671875 3 30.00% 

H10 LW=1 11 2.625 1 10.00% 

H10 LW=21.5 11 2.578125 1 10.00% 

H10 LW=0.001 13 1.796875 3 30.00% 

H11 LW=1 11 0.140625 1 10.00% 

H11 LW=21.5 11 0.125 1 10.00% 

H11 LW=0.001 13 0.125 3 30.00% 
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H12 LW=1 11 0.84375 1 10.00% 

H12 LW=21.5 11 0.859375 1 10.00% 

H12 LW=0.001 13 0.671875 3 30.00% 

H13 LW=1 11 0.671875 1 10.00% 

H13 LW=21.5 11 0.71875 1 10.00% 

H13 LW=0.001 12 0.578125 2 20.00% 

H14 LW=1 11 0.125 1 10.00% 

H14 LW=21.5 11 0.171875 1 10.00% 

H14 LW=0.001 14 0.125 4 40.00% 

H15 LW=1 10 0.78125 0 0.00% 

H15 LW=21.5 11 0.953125 1 10.00% 

H15 LW=0.001 13 0.65625 3 30.00% 

H16 LW=1 10 0.59375 0 0.00% 

H16 LW=21.5 13 0.515625 3 30.00% 

H16 LW=0.001 12 0.609375 2 20.00% 

H17 LW=1 12 0.125 2 20.00% 

H17 LW=21.5 11 0.125 1 10.00% 

H17 LW=0.001 12 0.125 2 20.00% 

H18 LW=1 13 0.609375 3 30.00% 

H18 LW=21.5 13 0.703125 3 30.00% 

H18 LW=0.001 10 0.828125 0 0.00% 

H19 LW=1 13 0.484375 3 30.00% 

H19 LW=21.5 13 0.5625 3 30.00% 

H19 LW=0.001 10 0.578125 0 0.00% 

H20 LW=1 15 0.125 5 50.00% 

H20 LW=21.5 15 0.140625 5 50.00% 

H20 LW=0.001 15 0.140625 5 50.00% 

H21 LW=1 13 0.59375 3 30.00% 

H21 LW=21.5 13 0.5625 3 30.00% 

H21 LW=0.001 13 0.640625 3 30.00% 

H22 LW=1 11 0.671875 1 10.00% 

H22 LW=21.5 11 0.65625 1 10.00% 

H22 LW=0.001 12 0.5625 2 20.00% 

H23 LW=1 15 0.140625 5 50.00% 

H23 LW=21.5 15 0.140625 5 50.00% 

H23 LW=0.001 15 0.125 5 50.00% 

H24 LW=1 10 0.734375 0 0.00% 

H24 LW=21.5 13 0.65625 3 30.00% 

H24 LW=0.001 12 0.65625 2 20.00% 

H25 LW=1 10 0.5625 0 0.00% 

H25 LW=21.5 13 0.484375 3 30.00% 

H25 LW=0.001 12 0.609375 2 20.00% 

H26 LW=1 15 0.140625 5 50.00% 
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H26 LW=21.5 15 0.140625 5 50.00% 

H26 LW=0.001 15 0.140625 5 50.00% 

H27 LW=1 13 0.5625 3 30.00% 

H27 LW=21.5 13 0.65625 3 30.00% 

H27 LW=0.001 10 0.734375 0 0.00% 

H28 LW=1 13 0.484375 3 30.00% 

H28 LW=21.5 13 0.546875 3 30.00% 

H28 LW=0.001 10 0.5625 0 0.00% 

 

Test Instances T24 

Job Number 5 

Operation Number 12 

Edge Number 603 

Node Number 51 

Total Length 23.5 

Average Length 1.958333 

Optimum Time Slot 10 

 LWs Makespan Computation Time (s) Difference Error Rate 

IP  10 1286.021558 0 0.00% 

H1 LW=1 13 4.125 3 30.00% 

H1 LW=23.5 13 4.34375 3 30.00% 

H1 LW=0.001 14 3.15625 4 40.00% 

H2 LW=1 11 4.390625 1 10.00% 

H2 LW=23.5 13 4.140625 3 30.00% 

H2 LW=0.001 14 2.875 4 40.00% 

H3 LW=1 13 3.890625 3 30.00% 

H3 LW=23.5 13 3.875 3 30.00% 

H3 LW=0.001 11 4.375 1 10.00% 

H4 LW=1 11 5.390625 1 10.00% 

H4 LW=23.5 11 5.40625 1 10.00% 

H4 LW=0.001 14 3.03125 4 40.00% 

H5 LW=1 11 4.71875 1 10.00% 

H5 LW=23.5 11 5.234375 1 10.00% 

H5 LW=0.001 14 3.84375 4 40.00% 

H6 LW=1 11 4.796875 1 10.00% 

H6 LW=23.5 11 5.390625 1 10.00% 

H6 LW=0.001 14 3.78125 4 40.00% 

H7 LW=1 12 6.21875 2 20.00% 

H7 LW=23.5 12 6.46875 2 20.00% 

H7 LW=0.001 14 3.796875 4 40.00% 
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H8 LW=1 11 5.421875 1 10.00% 

H8 LW=23.5 11 5.421875 1 10.00% 

H8 LW=0.001 11 4.90625 1 10.00% 

H9 LW=1 11 5.1875 1 10.00% 

H9 LW=23.5 11 5.28125 1 10.00% 

H9 LW=0.001 14 4.734375 4 40.00% 

H10 LW=1 11 5.40625 1 10.00% 

H10 LW=23.5 11 5.265625 1 10.00% 

H10 LW=0.001 13 3.625 3 30.00% 

H11 LW=1 11 0.234375 1 10.00% 

H11 LW=23.5 11 0.203125 1 10.00% 

H11 LW=0.001 15 0.234375 5 50.00% 

H12 LW=1 13 1.140625 3 30.00% 

H12 LW=23.5 13 1.234375 3 30.00% 

H12 LW=0.001 15 1.28125 5 50.00% 

H13 LW=1 13 0.84375 3 30.00% 

H13 LW=23.5 13 0.859375 3 30.00% 

H13 LW=0.001 14 0.921875 4 40.00% 

H14 LW=1 13 0.203125 3 30.00% 

H14 LW=23.5 11 0.21875 1 10.00% 

H14 LW=0.001 16 0.234375 6 60.00% 

H15 LW=1 11 1.515625 1 10.00% 

H15 LW=23.5 13 0.953125 3 30.00% 

H15 LW=0.001 14 1.515625 4 40.00% 

H16 LW=1 11 0.953125 1 10.00% 

H16 LW=23.5 13 0.890625 3 30.00% 

H16 LW=0.001 14 1.109375 4 40.00% 

H17 LW=1 13 0.203125 3 30.00% 

H17 LW=23.5 11 0.21875 1 10.00% 

H17 LW=0.001 12 0.234375 2 20.00% 

H18 LW=1 13 1.25 3 30.00% 

H18 LW=23.5 13 1.078125 3 30.00% 

H18 LW=0.001 11 1.515625 1 10.00% 

H19 LW=1 13 0.828125 3 30.00% 

H19 LW=23.5 13 0.84375 3 30.00% 

H19 LW=0.001 11 0.953125 1 10.00% 

H20 LW=1 15 0.25 5 50.00% 

H20 LW=23.5 17 0.265625 7 70.00% 

H20 LW=0.001 15 0.25 5 50.00% 

H21 LW=1 13 1.5625 3 30.00% 

H21 LW=23.5 13 1.609375 3 30.00% 

H21 LW=0.001 14 1.21875 4 40.00% 

H22 LW=1 13 0.890625 3 30.00% 
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H22 LW=23.5 13 1 3 30.00% 

H22 LW=0.001 14 0.9375 4 40.00% 

H23 LW=1 15 0.25 5 50.00% 

H23 LW=23.5 17 0.265625 7 70.00% 

H23 LW=0.001 15 0.25 5 50.00% 

H24 LW=1 13 1.59375 3 30.00% 

H24 LW=23.5 13 1.4375 3 30.00% 

H24 LW=0.001 14 1.484375 4 40.00% 

H25 LW=1 11 1 1 10.00% 

H25 LW=23.5 13 0.921875 3 30.00% 

H25 LW=0.001 14 1.078125 4 40.00% 

H26 LW=1 17 0.28125 7 70.00% 

H26 LW=23.5 17 0.296875 7 70.00% 

H26 LW=0.001 17 0.296875 7 70.00% 

H27 LW=1 13 1.3125 3 30.00% 

H27 LW=23.5 13 1.125 3 30.00% 

H27 LW=0.001 13 1.53125 3 30.00% 

H28 LW=1 13 0.84375 3 30.00% 

H28 LW=23.5 13 0.859375 3 30.00% 

H28 LW=0.001 11 1 1 10.00% 
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School of Mechanical and Automobile Engineering, Hefei University of Technology 

                                                                                                                                                                                             

 

PROFESSIONAL EXPERIENCE 

College of Engineering & Computer Science, Syracuse University 

Teaching Assistant Fellowship 09/2018 - 05/2020 

Teaching and tutoring in courses/labs: 

• MAE 284: Introduction to CAD 

• MAE 333: Data Analysis for Engineers 

• MEE 431: Manufacturing Processes  

• MAE 548: Engineering Economics and Technology Valuation 

Research Assistant Fellowship 05/2017 - 12/2017 

Development and customization of product life-cycle management system (Aras 

Innovator) for Filtertech, Inc. (Sponsored by the CASE center at Syracuse University) 

Research Assistant 10/2016 - 3/2017 

Projects: 

• Development of Integrated System for Design Operation for UAVs 

• Development of Educational and Training Materials for Unmanned Aerial Systems 

(UAS) 

Graduate Assistant 09/2015 - 05/2017  

Teaching and tutoring in courses/labs: 

• MAE 184: Engineering Graphics and CAD 

• MEE 571: Computer-Aided Design 

• MFE 639: CAD/CAM Systems 

• MFE 692: Design for Manufacturing 

UsPLM, Inc. 

Mechanical & Research Engineer Internship 05/2018 - 08/2018 

Development of digital twin for the drone fleet management, web-based flight simulation 
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and analysis in 3D virtual reality. 

Filtertech, Inc. 

Research Assistant Internship 06/2016 - 08/2016 

Development and customization of product life-cycle management system (Aras 

Innovator) with graphical analysis tools. 
                                                                                                                                                                                                

 

ACADEMIC PUBILICATIONS 

1. Sun, K., & Roy, U. (to be submitted). An algorithm structure for solving maximum weighted 

independent set problem. Discrete Applied Mathematics. 

2. Sun, K., & Roy, U. (to be submitted). Solving the process planning and scheduling problem 

via maximum weighted independent set. Discrete Applied Mathematics.  

3. Sun, K., Li, Y. & Roy, U. (2017). A PLM-based data analytics approach for improving 

product development lead time in an engineer-to-order manufacturing firm, Mathematical 

Modelling of Engineering Problems, Vol. 4, No. 2, June 2017, pp. 69-74. DOI: 

10.18280/mmep.040201 
                                                                                                                                                                                                

 

PROJECTS 

(a) “Development of the Data Analytics Services for Smart Product Design and Manufacturing 

Activities Based on a Smart Product Lifecycle Management Platform,” funded by the 

National Institute of Standards & Technology (NIST); 

(b) “Developing a unified lifecycle management platform for smart manufacturing systems, an 

essential tool for cyber-manufacturing for Filtertech Co.,” funded by the CASE (Center for 

Advanced Systems and Engineering) Center at Syracuse University; 

(c) “Development of Integrated System for Design Operation for UAVs,” funded by the New 

York State Department of Economic Development (through Gryphon Sensors and SU). 

(d) “Development of Educational and Training Materials for Unmanned Aerial Systems (UAS),” 

funded by the New York State Department of Economic Development (through Gryphon 

Sensors and SU); 

(e) “Optimizing the Task Assignments of Designers for Concurrent Projects in Filtertech Inc,” 

funded by the SyracuseCoE (New York State's Center of Excellence in Environmental and 

Energy Systems); 

(f) “Digital Twin Development for the UsPLM Drone Fleet Management Solution,” (worked as 

an intern with the UsPLM, Inc. through CASE Center). 
                                                                                                                                                                                                       

 

PROFESSIONAL SKILLS 

• CAD/CAM: SolidWorks, CATIA V5, PTC CREO, SolidCAM, Fusion 360 

• Modeling and Simulation: Star-CCM+, Pointwise, Matlab, Arena, AnyLogic 

• Data Analytics: Python, R, KNIME, RapidMiner 

• Programming: Python, C#, JavaScript, HTML, C/C++ 

• Languages: English, Mandarin 
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