
Syracuse University Syracuse University

SURFACE SURFACE

Dissertations - ALL SURFACE

August 2020

SOLVING PROCESS PLANNING AND SCHEDULING PROBLEMS SOLVING PROCESS PLANNING AND SCHEDULING PROBLEMS

USING THE CONCEPT OF MAXIMUM WEIGHTED INDEPENDENT USING THE CONCEPT OF MAXIMUM WEIGHTED INDEPENDENT

SET SET

Kai Sun
Syracuse University

Follow this and additional works at: https://surface.syr.edu/etd

 Part of the Engineering Commons

Recommended Citation Recommended Citation
Sun, Kai, "SOLVING PROCESS PLANNING AND SCHEDULING PROBLEMS USING THE CONCEPT OF
MAXIMUM WEIGHTED INDEPENDENT SET" (2020). Dissertations - ALL. 1277.
https://surface.syr.edu/etd/1277

This Dissertation is brought to you for free and open access by the SURFACE at SURFACE. It has been accepted for
inclusion in Dissertations - ALL by an authorized administrator of SURFACE. For more information, please contact
surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/etd
https://surface.syr.edu/
https://surface.syr.edu/etd?utm_source=surface.syr.edu%2Fetd%2F1277&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=surface.syr.edu%2Fetd%2F1277&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/etd/1277?utm_source=surface.syr.edu%2Fetd%2F1277&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Abstract

Process planning and scheduling (PPS) is an essential and practical topic but a very intractable

problem in manufacturing systems. Many research studies use iterative methods to solve such

problems; however, they cannot achieve satisfactory results in both quality and computational

speed. Other studies formulate scheduling problems as a graph coloring problem (GCP) or its

extensions, but these formulations are limited to certain types of scheduling problems. In this

dissertation, we propose a novel approach to formulate a general type of the PPS problem with

resource allocation and process planning integrated towards a typical objective, minimizing the

makespan. The PPS problem is formulated into an undirected weighted conflicting graph, where

nodes represent operations and their resources; edges represent constraints, and weight factors

are guidelines for the node selection at each time slot. Then, the Maximum Weighted

Independent Set (MWIS) problem, which considers a graph with weights assigned to nodes and

seeks to discover the “heaviest” independent set, that is, a set of nodes with maximum total

weight so that no two nodes in the set are connected by an edge, can be solved to find the best set

of operations with their desired resources for each discrete time slot.

This proposed approach solves the PPS problem directly (a direct method in computational

mathematics context). We establish that the proposed approach always returns a feasible

optimum or near-optimum solution to the PPS problem.

The performance of the proposed approach for the PPS problem depends on the accuracy and

computational speed of solving the MWIS problem. We propose a divide-and-conquer algorithm

structure with relatively low complexity for solving the MWIS problem. An exact MWIS

algorithm and an All Maximal Independent Set Listing (AMISL) algorithm are developed based

on this algorithm structure. The proposed algorithm structure can also be used to compose the

exact MWIS algorithm with existing approximation MWIS algorithms. This is an effective way

to improve the accuracy of existing approximation MWIS algorithms or improve the

computational speed of the exact MWIS algorithm.

All eight algorithms for the MWIS problem, the exact MWIS algorithm, the AMISL algorithm,

two approximation algorithms from the literature, and four composed algorithms, are tested on

the test instances based on the PPS application environment. The different configurations of the

proposed approach for solving the PPS problem are tested on a real-world PPS example and

further designated test instances to evaluate the scalability, accuracy, and robustness.

SOLVING PROCESS PLANNING AND SCHEDULING PROBLEMS USING THE

CONCEPT OF MAXIMUM WEIGHTED INDEPENDENT SET

by

Kai Sun

B.S., Hefei University of Technology, 2013

M.S., Syracuse University, 2015

Dissertation

Submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Mechanical and Aerospace Engineering.

Syracuse University

August 2020

Copyright © Kai Sun 2020

All Rights Reserved

iv

Acknowledgments

I would like to express my deepest gratitude to my advisor, Prof. Utpal Roy. His wisdom and

vision guided me and prepared me to be a better researcher. His patience and encouragement

carried me on through difficult times. This dissertation could not have been written without Prof.

Roy, who not only helped me sort out the technical details, but also carefully corrected the

language and phrasing. I appreciate Prof. Roy to provide all the opportunities for academia and

industrial exposure.

I would like to thank Prof. John F. Dannenhoffer, III, for his guidance since last summer. His

attitude towards science and vision impressed me and guided me in the right research direction.

His passion and enthusiasm towards research motivated and encouraged me to accomplish my

Ph.D. study. His valuable comments have been extremely helpful for improving my research.

I would like to thank Prof. Jack Graver for bringing me into the world of Graph Theory. His

knowledgeable lectures built a strong background and inspired me to develop new ideas. His

guidance and suggestions helped me build the bridge between mathematics and engineering.

I would like to thank Prof. Xiyuan Liu for serving in my Ph.D. committee from the beginning to

the end. Her knowledge and experiments are great fortune for the challenges in the past years

and the future. I would like to thank Prof. Young B. Moon for serving in my Ph.D. committee. I

learned a lot by attending his knowledgeable lectures, and his rigorous attitude to science sets up

the model for myself.

During the years of my Ph.D. study at Syracuse University, I received generous help from fellow

students and close friends. Especially my best friends Dr. Bicheng Zhu and Dr. Yueming Song,

who were always there to help me and keep my morale up. I would like to thank all past and

current members in Prof. Roy’s lab: Dr. Heng Zhang, Dr. Yunpeng Li, Dr. Hang Yin, Mr. Omar

Yaman, and Mr. Cheng Li for many helpful discussions. Special thanks go to Ms. Rui Hou, Dr.

Tianji Yang, and Mr. Zhuhui He for their friendship and support over the distance. I also want to

thank all my friends for their help and companionship in the past years.

Finally, I would like to thank my parents: my mother Ying Cao, my father Juwen Sun, for their

endless love, understanding, and support throughout all these years. I would not be here if it not

for you. Thank you for having faith in me during this challenging journey.

v

Contents

Abstract .. i

Acknowledgments ... iv

List of Tables ... vii

List of Figures .. viii

List of Abbreviations .. x

Chapter 1. Introduction... 1

1.1 Research Background .. 1
1.2 Research Objectives .. 3
1.3 Our Approach and Research Contributions .. 3
1.4 Outline of This Dissertation .. 5

Chapter 2. Literature Review .. 7

2.1 Maximum Weighted Independent Set (MWIS) Problem .. 7
2.2 Process Planning and Scheduling (PPS) Problem ... 11
2.3 Summary: Observation and Our Solutions.. 16

Chapter 3. Maximum Weighted Independent Set (MWIS) Algorithms 17

3.1 Introduction ... 17

3.2 Definitions and Notations ... 18
3.3 MWIS Algorithms ... 19
3.4 Construction of the Algorithms ... 31

3.5 Reducing the Complexity of the Algorithm Using Approximation Algorithms 36
3.5.1 Discussion on the Complexity.. 36

3.5.2 Merging Approximation Algorithms with the Proposed MWIS Algorithm 37
3.6 Computational Experiment on MWIS Algorithms ... 42
3.7 Summary ... 50

Chapter 4. Formulation of the Resources Constrained Process Planning and Scheduling

(PPS) Problem .. 52

4.1 Introduction ... 52
4.2 Process Planning and Scheduling Problem ... 54

4.2.1 Problem Description ... 54
4.2.2 Mathematical Formulation of the PPS Problem ... 57
4.2.3 Discussions on Formulating and Solving the PPS Problem via Conflicting Graph .. 60

vi

4.3 Generating the Conflicting Graph ... 61

4.4 Weight Factors Calculation and the Configurations of MWIS Algorithms 73

4.4.1 The Weights Calculation .. 73
4.4.2 Weight Factor Arrangements with MWIS Algorithms .. 77
4.4.3 Heuristics Configurations ... 83

4.5 Solving the Example Problem via the Proposed Approach .. 84
4.6 Summary ... 92

Chapter 5. Computational Experiments.. 94

5.1 Integer Programming Model for Process Planning and Scheduling (PPS) Problem 94
5.1.1 Implementation of Integer Programming (IP) Model .. 94

5.1.2 Numerical Results of IP Model .. 97
5.2 A Real-world Example Using the Proposed Approach ... 100

5.3 Results and Discussions on Test Instances ... 107
5.3.1 Scalability ... 108
5.3.2 Accuracy... 111

5.4 Summary ... 116

Chapter 6. Conclusions ... 119

6.1 Algorithms for Maximum Weighted Independent Set (MWIS) Problem 119
6.1.1 Development of MWIS Algorithms ... 119

6.1.2 Performance of MWIS Algorithms .. 120

6.2 Approach for Process Planning and Scheduling (PPS) Problem 122
6.3 Research Contribution ... 123
6.4 Future Work .. 124

6.4.1 Improvements and Extensions ... 125
6.4.2 Integration with the sPLM System ... 126

Appendices .. 128

Appendix I: An Example for Algorithm A1 on a Simple Graph .. 128
Appendix II: Test Details of MWIS Algorithms ... 138

Appendix III: PPS Test Instances.. 139

Appendix IV: The PPS Test Results Summary on Accuracy ... 156

Appendix V: The PPS Test Results... 159

References ... 212

VITA .. 224

vii

List of Tables

Table 4-1. Operation Information of Part 1-4 ... 54
Table 4-2. Unit Tasks and Nodes .. 76
Table 4-3. Heuristics Configurations .. 84
Table 4-4. Final Weight Factors Unit Task Candidates and Candidate Nodes via Heuristics #13 on the

Example Problem .. 86
Table 4-5. Outputs of the Heuristics Configurations on the Example PPS Problem 92
Table 5-1. Integer Programming Model Numerical Results ... 98
Table 5-2. The Resource of a Job Shop – Machines and Tools .. 100
Table 5-3. The Technical Specifications for Part #1 ... 102
Table 5-4. The Technical Specifications for Part #2 ... 102
Table 5-5. The Technical Specifications for Part #3 ... 103
Table 5-6. The Technical Specifications for Part #4 ... 103
Table 5-7. Outputs of Heuristics on Real-world PPS Problem ... 106
Table 5-8. Outputs of Heuristics on Real-world PPS Problem without Tool Constraints 107
Table 6-1. Comparing the New Approach with Other Methods* ... 124

viii

List of Figures

Figure 2-1. A Sample Interval Graph (Gardi, 2009) ... 10
Figure 2-2. Representation of the Process Plan adapted from Salehi and Bahreininejad (Salehi &

Bahreininejad, 2011) ... 12
Figure 3-1. Three Types of Connected Unit Substructures (CUSs) .. 21
Figure 3-2. Compare Set at Level Node ‘3’ .. 27
Figure 3-3. Preliminary Set at Level Node ‘3’ .. 29
Figure 3-4. The Node Adding Procedures .. 32
Figure 3-5. A sample graph with 9 vertices .. 36
Figure 3-6. The CSS at Level Node ‘1’ .. 37
Figure 3-7. Merging Approximation Algorithms with the MWIS Algorithm Structure 41
Figure 3-8. Computation Time with Node Number of Algorithms A1 and A2 .. 45
Figure 3-9. Computation Time with Edge Number of Algorithms A1 and A2 .. 45
Figure 3-10. Computation Time with Node Number of Algorithms A3 and A6 .. 46
Figure 3-11. Computation Time with Edge Number of Algorithms A3 and A6 .. 46
Figure 3-12a. Computation Time with Node Number of Algorithms A4, A5, A7 and A8 47
Figure 3-13b. Computation Time with Node Number of Algorithms A4, A5, A7 and A8 (zoom-in) 47
Figure 3-14a. Computation Time with Edge Number of Algorithms A4, A5, A7 and A8 48
Figure 3-15b. Computation Time with Edge Number of Algorithms A4, A5, A7 and A8 (zoom-in) 48
Figure 3-16. The Average and Maximum Error Rate for All Algorithms .. 50
Figure 3-17. Performance of the MWIS Algorithms .. 51
Figure 4-1. Illustration of the PPS Example Problem ... 56
Figure 4-2. Reformatted Parts Information ... 62
Figure 4-3. Interpretation for Operation Data Preparation.. 63
Figure 4-4. Tasks Information with Simplified Duration Information ... 65
Figure 4-5. Transformed Tasks Information in Unit Tasks .. 66
Figure 4-6. Scheduling Problem Input Format ... 67
Figure 4-7. The Conflict Graph of operations 𝑂2,1 → 𝑂2,2 of Part #2 and the operation 𝑂𝑖, 1 (𝑇𝑖, 1) of

Part #𝑖 .. 70
Figure 4-8. Conflict Graph for the Example Problem... 71
Figure 4-9. Graph Connection Details for the Example Problem ... 72
Figure 4-10. Updated Remaining Tasks Information for the Following Time Slot 87
Figure 4-11. Updated Remaining Conflicting Graph for the Following Time Slot 88
Figure 4-12. Updated Remaining Edge Connection Details for the Following Time Slot 89
Figure 4-13. Schedule Created with Heuristics #13.. 91
Figure 5-1. Parts Information with Simplified Duration Information ... 95
Figure 5-2. Input of Part #1 Operations .. 95
Figure 5-3. Inputs Dictionary Format for Package “pyomo” in Python ... 96
Figure 5-4. Computation Time with Changing ICI ... 99
Figure 5-5. Logarithmic Computation Time with Changing ICI .. 100
Figure 5-6. The description of 4 parts of PPS ... 101
Figure 5-7. Transformed Operations of Part #1 .. 104
Figure 5-8. Schedule Created with Heuristics #19.. 105
Figure 5-9. Computation Time with Node Number of Heuristics #1~10 ... 108
Figure 5-10. Computation Time with Edge Number of Heuristics #1~10 .. 109
Figure 5-11. Computation Time with Node Number of Heuristics #11~28 ... 110
Figure 5-12. Computation Time with Edge Number of Heuristics #11~28 .. 111
Figure 5-13. The Average and Maximum Error Rate for All Heuristics Configurations 112
Figure 5-14. Details of Test Instances T24 ... 114

ix

Figure 5-15. The Average and Maximum Error Rate on Bad Test Instances ... 116
Figure 5-16. Performance of the Heuristics Configurations ... 117
Figure 6-1. Data Analytics with the sPLM System .. 127

x

List of Abbreviations

AMISL All Maximal Independent Set Listing

AMIS All Maximal Independent Set

CIM Computer Integrated Manufacturing

CAD Computer-Aided Design

CAM Computer-Aided Manufacturing

CAPP Computer-Aided Process Planning

CSS Compare Set Subgraph

CUS Connected Unit Substructure

GCP Graph Coloring Problem

ICI Input Complexity Index

IP Integer Programming

MIS Maximal Independent Sets

MWIS Maximum Weighted Independent Set

PLM Produce Lifecycle Management

PPS Process Planning and Scheduling

PSS Preliminary Set Subgraph

SD Subgraphs Dictionary

SO Stochastic Optimization

sPLM Smart Product Lifecycle Management

1

Chapter 1. Introduction

In this chapter, an overview of the research performed in this dissertation is presented. The

chapter begins with an introduction of main topics of this research, (1) the Process Planning and

Scheduling (PPS) problem, and (2) the Maximum Weighted Independent Set (MWIS) problem.

The research objectives and contributions are then addressed. Lastly, this chapter is wrapped up

by outlining the structure of the overall dissertation.

1.1 Research Background

Process Planning and Scheduling (PPS) is to process a set of prismatic parts into completed

products effectively and economically in a manufacturing system. A prismatic part to be

produced is generally described by features. For each feature, one or more corresponding

operations are determined according to its feature geometry and available machining resources.

Each operation requires a selection of critical resources; some examples of these vital resources

include machines, tools, fixtures, or specially qualified technicians. The resource constraints are

that one critical resource cannot be occupied by more than one operation at the same time. There

are precedence relationship constraints among operations, according to the geometrical and

technological considerations. Process planning in PPS is the determination of an optimum

process plan, i.e., operations and their sequences, within the precedence relationship constraints

and resource constraints. The scheduling is the allocation of the resources in the machine shop

over time to manufacture the various parts (Zhang et al., 2003). One of the common objectives is

to find the feasible schedule with the earliest finishing time of all parts, or formally, minimizing

the makespan. PPS as one of the main functions of Computer-Aided Process Planning (CAPP)

system, it becomes more critical for the effective allocation and utilization of resources in

2

modern flexible manufacturing systems. However, seeking an optimum integrated solution

rapidly and effectively from all of the permutations, combinations of all of the tasks and

resources according to specified criteria is challenging for the decision-makers (Zhang et al.,

2014). Traditionally, such a problem is usually solved in a trial and error fashion using iterations,

for instance, generic algorithms (Alander, 2014; Milosevic et al., 2016) and metaheuristics

(Belfares et al., 2007; Bloechliger & Zufferey, 2013; Thevenin et al., 2018), or partially solved

as an operation sequencing problem with individual part (Salehi & Bahreininejad, 2011; Su et

al., 2018). However, such methodologies do not guarantee that an optimal solution is ever found,

and they are usually slow and highly uncertain. In this research, we focus on a general type of the

PPS problem with integrated resource allocation and process planning towards a typical

objective, minimizing the makespan.

Without being restricted to the widely used methodologies, we would like to attack the PPS

problem based on its nature. The nature of the PPS problem is to select a set of non-conflicting

tasks that can be processed with available resources in parallel for each discrete time period. If

tasks are represented as nodes, and the incompatibility between two tasks can be represented by

an edge, then, the solution space of the PPS problem can be abstracted as the combinations of

nodes in this conflicting graph. If a weight factor of each node can be introduced as the guideline

for the node selection process, it is exactly solving the Maximum Weighted Independent Set

(MWIS) problem.

The MWIS problem is one of the most important optimization problems in graph theory (Lovasz,

1994; Pardalos & Xue, 1994). It naturally arises in many applications, mainly in a scheduling

environment. It considers a graph with weights assigned to nodes and seeks to discover the

“heaviest” independent set, that is, a set of nodes with the maximum total weight so that no two

3

nodes in the set are connected by an edge. The exact solution to the MWIS problem on general

graphs is known to be NP-hard (Köhler & Mouatadid, 2016). Therefore, in order to utilize the

concept of the MWIS in our PPS application, low-complexity algorithms for solving the MWIS

problem that yields “good-quality” feasible solutions are desired.

1.2 Research Objectives

To overcome the drawbacks of the traditional methodologies for solving the PPS problem, the

objective of this research is to develop a new formulation of the PPS problem and solve it

using the concept of the MWIS problem. First, this new formulation shall integrate the two

parts of the PPS problem, process planning and scheduling. Second, a direct mothed, which is

solving the problem by a finite sequence of operations, is preferred for solving the PPS problem,

and at the same time, ensure a reasonable accuracy. Third, the new formulation of the PPS

problem shall be based on its nature, which is to select a set of non-conflicting tasks that can be

processed with the available resources in parallel for each time period. Fourth, since the MWIS

problem is a critical subproblem for solving the PPS problem by its nature, the “good-

performance” MWIS algorithms are required. Lastly, the new approach for the PPS problem

shall be tested and verified in terms of performance and feasibility.

1.3 Our Approach and Research Contributions

In this research, we propose a novel approach to formulate the PPS problem as a conflicting

weighted graph. In such a graph, tasks and their resources selections are represented as nodes,

the incompatibility between two tasks is represented by an edge. The solution space of the PPS

4

problem is abstracted as the combinations of the nodes in such a conflicting graph. If the weight

factor of each node is introduced to be the guideline for the node selection process, the process

schedule with resource allocations is generated by solving the MWIS problem for each discrete

time slot. Lastly, new MWIS algorithms are developed in order to solve the PPS problem

efficiently.

The contributions of our approach are in the following areas:

Contributions on the MWIS problem: The MWIS algorithms are the determinants of the

accuracy and computational speed in the proposed approach for the PPS problem. We propose a

divide and conquer algorithm structure with relatively low complexity for solving the MWIS

problem exactly. The proposed algorithm structure can also be used to improve the accuracy of

existing low-complexity approximation MWIS algorithms. A set of “good-performance” MWIS

algorithms are highlighted based on our PPS application. The detail of this contribution is

presented in Chapter 3.

Contributions on the PPS problem: Unlike the commonly used iterative methods (such as

generic algorithms and metaheuristics) or the mixed-integer programming approach, our

approach provides a different angle to address the PPS problem and shows advantages over other

approaches. The new approach requires minimum iteration. And it is guaranteed to return a

feasible solution due to the nature of solving the MWIS problem on a conflicting graph. The new

approach can be applied in a dynamic production environment, since the schedule of each time

slot is computed separately. With carefully defined weight factors and “good-performance”

MWIS algorithms, the new approach has satisfactory accuracy and computational speed. The

detail of the proposed approach for the PPS problem is presented in Chapter 4, and the detail of

computational experiments is presented in Chapter 5.

5

1.4 Outline of This Dissertation

The rest of this dissertation is organized as follows.

Chapter 2 provides a comprehensive literature review on the background, methodologies, and

applications related to this work. Two major topics are reviewed in detail: (1) the MWIS problem

and (2) the PPS problem. The findings, observations, and the proposed solutions based on the

literature survey has been further analyzed to uncover the potential opportunities for the

proposed new methodologies.

Chapter 3 discusses the development of new algorithms for the MWIS problem. These

algorithms are the core functions for solving the resource-constrained PPS problem in later

chapters. It starts with a quick introduction and the necessary graph theory background and

definitions. Then, the proposed algorithms are explained in detail, and a detailed algorithm

walkthrough is provided in Appendix I. Section 3.5 discusses merging the proposed MWIS

algorithm with approximation MWIS algorithms to reduce the complexity. Then, Section 3.6

presents some illustrative numerical results to assess the performance of the algorithms in the

context of the PPS application, and a set of “good-performance” algorithms are listed. Lastly,

section 3.7 concludes the chapter.

Chapter 4 proposes a novel approach to formulate and solve the resource-constrained PPS

problem via a conflicting graph. It starts with the introduction to the PPS problem. Then, the

mathematical formulation of the PPS problem is presented. Section 4.3 discusses how the

conflicting graph is generated, and Section 4.4 explains how to assign weight factors to the nodes

in the conflicting graph. Then, section 4.5 takes an example from the literature to illustrate the

proposed methodologies thoroughly. Lastly, section 4.6 concludes the chapter.

Chapter 5 presents the implementation and illustrative computational experiments of the integer

6

programming model described in Chapter 4 as the baseline for further testing. Then, we verify

the feasibility of the proposed approach for the PPS problem on a real-world example from

literature. And further test results are reported and analyzed in terms of scalability, accuracy, and

robustness. A set of satisfactory heuristics configurations are found based on the tests.

Chapter 6 concludes the dissertation and discusses the contributions of this research. Then,

possible future directions for improving and extending this work are discussed.

7

Chapter 2. Literature Review

In this chapter, a comprehensive literature review on the background, methodologies, and

applications related to this work is carried out. Two major topics are reviewed in detail: (1) the

Maximum Weighted Independent Set (MWIS) problem and (2) the Process Planning and

Scheduling (PPS) problem. As the conclusion of the review, the summary of findings,

observations, and the proposed solutions based on the literature survey are presented at last.

2.1 Maximum Weighted Independent Set (MWIS) Problem

As one of the most challenging problems in graph theory, the problem of finding the Maximum

Weighted Independent Set (MWIS) can be stated as follows: for a graph where each node is

assigned a weight, select a set of nodes, no two of which are adjacent, with the maximum

possible total weight (Huang, 2013). We name such a graph as a conflicting weighted graph. The

statement of the MWIS problem looks relatively simple; however, solving the MWIS problem on

general graphs is computationally difficult. It has been shown to be an NP-hard problem (Köhler

& Mouatadid, 2016), so it is unlikely to be solved in polynomial time.

One brute-force algorithm for exactly solving the MWIS problem amounts to checking all

Maximal Independent Sets (MIS) and picking one with the maximum total weight. It follows

that the MWIS problem is converted to the All Maximal Independent Sets (AMIS) listing

(AMISL) problem (or maximal cliques listing problem in the complement graph). A pioneering

work (Moon & Moser, 1965) has shown that any n-vertex graph has at most 3
𝑛

3 maximum

cliques. Many algorithms are now known for the clique (or independent set) listing problem

(Bron & Kerbosch, 1973; Loukakis & Tsouros, 1981; Johnson et al., 1988; Makino & Uno, 2004;

Eppstein, 2005; Tomita et al., 2006; Cazals & Karande, 2008). Among those algorithms, a

8

simple recursive backtracking algorithm (Bron & Kerbosch, 1973), Bron-Kerbosch algorithm

named after its inventors, has been reported as the most successful clique listing algorithm in

practice (Eppstein et al., 2010).

Other than the costly non-polynomial algorithm for the optimum solution on general graphs,

people naturally go to three types of solutions: (i) solutions for special cases, it is known to be

solvable in polynomial time in many cases including perfect graphs (Grotschel et al., 1993),

interval graphs (Grotschel et al., 1993), disk graphs (Matsui, 1998), claw-free graphs (Minty,

1980), fork-free graphs (Alekseev, 2004), trees (Chen et al., 1988), sparse random graphs (Karp

& Sipser, 1981; Czygrinow & Hanckowiak, 2006), circle graphs (Valiente, 2003), and growth-

bounded graphs (Gfeller & Vicari, 2007). The MWIS problem has been found to be solvable in

strongly polynomial time only on perfect graphs and their complements, on t-perfect graphs, and

on claw-free graphs (Schrijver, 2003). (ii) approximation algorithms, there has been extensive

work on approximating the MWIS (Halldorsson, 2004). The approximation can be achieved by

using a greedy strategy (Furer & Kasiviswanathan, 2007). Sakai et al. (Sakai et al., 2003)

investigated the performance guarantee of greedy algorithms to solve the MWIS problem. And

(iii) there has been extensive work in the literature proposing a variety of heuristics (Kako et al.,

2005). These specialized or heuristics algorithms have been developed for computing the exact

MWIS (Fomin et al., 2006; Babel, 1994; Ostergard, 2002; Tassiulas & Ephremides, 1992) for

limited types of graphs or graphs in general with certain trade-offs.

The Graph Coloring Problem (GCP) consists of assigning a single color (integer) to each vertex

of an undirected graph, such that no two adjacent vertices share the same color, intending to

minimize the number of colors (Tucker, 2012). The MWIS problem is a special case of the GCP,

when each node is associated with a weight factor with an optimization objective of finding the

9

set maximizing the total weight for each coloring terms of finding the optimum set of nodes for

each color. The GCP, MWIS, and AMISL problems arise in many application domains,

including resource allocation, scheduling, error-correcting coding, spatial statistics, and

communication networks. Modeling scheduling problems as such problems are particularly

relevant in the presence of incompatible entities to be scheduled, and multiple extensions of the

GCP have been proposed to cope with these scheduling environments. We summarize the four

scheduling problem formulations with GCP and its variations. Although these formulations are

not fitting very well in the resource-constrained Process Planning and Scheduling (PPS) problem

considered in this dissertation, but they are inspiring for us to develop our approach.

(1) The Class/Exam Scheduling Problem

The class scheduling problem, also named as the timetabling problem, can be stated as follows:

schedule a set of classes in a number of time slots such that no professor or student is required at

the same time. Constraints can be mapped onto GCP as follows. Let each class be represented by

a node. Attach two nodes by an edge if and only if there is a reason that the classes they

represent may not be offered at the same time. Initially, there are two such reasons for nodes to

be linked: either they are taught by the same instructor, or they are required by the same set of

students. Upon adding in the links, color the graph. Each color represents a time slot available on

a given timetable, so every node with the same color is offered at the same time. Similar

applications of this problem can be the scheduling of classes and exams in a university, the

scheduling of flights for an airline, and the scheduling of computing tasks to be run on a

multiprocessor machine (Dandashi & Al-Mouhamed, 2010; Miner et al., 1995).

(2) The Interval Graph Scheduling

An interval graph is the intersection graph of a set of intervals of a real line, that is, a graph

10

whose nodes correspond to intervals such that two nodes connected by an edge are associated

with intersecting intervals, as shown in Figure 2-1 (Gardi, 2009). The intervals are representing

the tasks, and the edges are indicating the incompatible tasks. The graph is then colored to find

the mutual exclusion tasks that can be processed by the same resources. The interval graph

scheduling and many variants of this problem have been extensively studied due to its numerous

applications (Krarup & De Werra, 1982; Blazewicz et al., 2001; Zais & Laguna, 2016).

Figure 2-1. A Sample Interval Graph (Gardi, 2009)

(3) The Scheduling of Wireless Network

In a wireless network, two wireless nodes that transmit at the same resource (frequency),

interfere with each other if they are located close-by. The scheduling problem is to decide which

nodes should transmit at the given resource so that there is no interference, and nodes with

longer queue length are given priority. If each node is given a weight equal to the queue length, it

is optimum to schedule the set of nodes with the highest total weight. If a conflicting weighted

graph is made, with an edge between each pair of interfering nodes, the scheduling problem is

exactly the MWIS problem. This type of scheduling problem is mostly found in wireless

communication applications (Tassiulas & Ephremides, 1992; Joo et al., 2013; Du & Zhang,

2016), but it is also applied in other types of applications (Duarte et al., 2015; Todosijevic &

Mladenovic, 2016; Hansen et al., 2017; Gainanov et al., 2018).

11

(4) Graph Multi-coloring

The graph multi-coloring problem is an extension of the GCP. In this case, a node coloring

corresponds to a sequence of colors (from the smallest to the largest). A node stands for a task,

and an edge indicates that two tasks represented by the two end nodes of the edge are

incompatible. Each color is a time slot, and each node must be assigned with a number of colors

as defined by the processing time of the job. The objective is to minimize the number of used

colors. Thevenin et al. apply this problem in a flow production environment (Thevenin et al.,

2018). The graph multi-coloring problem formulation is the closest formulation comparable to

our PPS problem. Still, it can only be applied in restricted conditions, such as each job requires

the resources continuously and no subtasks of each job.

2.2 Process Planning and Scheduling (PPS) Problem

A job shop manufacturing environment is characterized by the make-to-order operation and the

demands of small volumes with a large variety. Computer-aided process planning and scheduling

systems have been developed to effectively support it. Computer-aided process planning (CAPP)

is an essential interface between computer-aided design (CAD) and computer-aided

manufacturing (CAM) in the computer integrated manufacturing (CIM) environment.

The resource-constrained Process Planning and Scheduling (PPS) optimization problem can be

defined as follows: Assuming there is a set of machining jobs in a machine shop, each job is

referring to the production of a part. Each job consists of a set of machining operations (or tasks)

to create features for the finishing part. These machining operations are processed in a sequence,

which satisfies all the ordering constraints, and each operation requires specific combinations of

critical resources. Some examples of these critical resources include machines, tools, fixtures, or

12

special qualified technicians. One of the common objectives is to find a feasible schedule with

the earliest finishing time of all jobs. In other words, this goal is to create a process plan with

resource allocations minimizing the number of time slots needed to cover all operations.

Figure 2-2. Representation of the Process Plan adapted from Salehi and Bahreininejad (Salehi &

Bahreininejad, 2011)

Process planning and scheduling are usually complementary procedures. The former, process

planning, can be used to plan manufacturing resources and operations for a part to ensure the

application of good manufacturing practice and maintain the consistency of the desired

functional specifications of the part during its production processes. Process planning activities

include interpretation of design data, selection and sequencing of operations to manufacture the

part, selection of machines and cutting tools, determination of cutting parameters, choice of jigs

and fixtures, allocation of other resources required by the processes, and calculation of

machining times and costs. To clarify process planning, parts are represented by manufacturing

features. Figure 2-2 (Salehi & Bahreininejad, 2011) shows a part composed of 𝑚 features in

which each feature can be manufactured by one or more machining operations (𝑛 operations in

Part i

Feature Fi1 Feature Fim

Operation Oi1 Operation Oi2

Applicable machines

Applicable tools

Other applicable parameters

Applicable machines

Applicable tools

Other applicable parameters

Operation Oin

Applicable machines

Applicable tools

Other applicable parameters

13

total for the part). Each operation can be executed by several alternative plans if different

machines, cutting tools, or set-up plans are chosen for this operation (Case & Harun Wan, 2000;

Maropoulos & Baker, 2000). The latter, scheduling, specifies the schedule of manufacturing

resources on each operation of the parts according to the importance of jobs, availability of

resources and time constraints, and in the meantime, achieves the optimization objectives (Zhang

et al., 2003).

PPS problems vary in complexity. However, seeking an optimum solution rapidly and effectively

from all of the permutations, combinations of all of the tasks, manufacturing resources according

to specified criteria is very difficult for decision-makers. Lenstra et al. (Lenstra et al., 1977)

show that while some classical machine scheduling problems are efficiently solvable, others are

NP-hard.

Due to its importance, practicality, and difficulty, in the past decade, many research studies have

addressed the PPS problem. Traditionally, such a problem is usually solved in a trial and error

fashion adopting methods such as generic algorithms and metaheuristics (Alander, 2014;

Milosevic et al., 2016). These approaches include simulated annealing algorithm (Zhang et al.,

2003; Tiwari et al., 2006; Li & McMahon, 2007; Chan et al., 2009), tabu search algorithm (Yan

et al., 2003), agent-based approach (Shen et al., 2006; Wong et al., 2006), particle swarm

optimization algorithm (Guo et al., 2006) and genetic algorithm (Zhang et al., 1997; Morad &

Zalzala, 1999; Jia et al., 2002, 2003, 2007; Kim et al., 2003; Chan et al., 2005, 2006, 2008;

Moon & Seo, 2005; Li et al., 2005; Zhang & Yan, 2005; Chan et al., 2006; Zhang & Gen, 2010;

Salehi & Bahreininejad, 2011; Chaube et al., 2012; Qiao & Lv, 2012; Zhang et al., 2014).

Researchers also solved the PPS problem partially as an operation sequencing problem with

individual parts (Salehi & Bahreininejad, 2011; Su et al., 2018).

14

According to the discussions above, the integration and interactions of PPS are through an

iterative and empirical fashion. The process planning system first generates a reasonable process

plan for each part. Crucial processes in the system include determining suitable manufacturing

resources (such as machines and tools), selecting set-up plans, and sequencing machining

operations of the part. The scheduling system then specifies the schedule of manufacturing

resources on each operation (task) of the parts according to the importance of operations,

availability of resources, and time constraints. It is usually difficult to produce a satisfactory

result in a single iteration of the execution of the two systems. For the process planning system,

the decision of selecting machines and tools is usually made based on objectives to achieve the

minimal manufacturing cost and ensure the good manufacturability of a part. Not all the

generated process plans for a group of parts could be schedulable according to the time and

resource feasibility in a job shop. To overcome this issue, it is necessary iteratively to re-invoke

the process planning system to produce alternative plans for further trials until an acceptable

scheduling solution is obtained. However, the above iterative process brings forth two severe

problems in practical applications. First, it is quite tedious and time-consuming to search for a

feasible solution to meet the requirements of process planning and scheduling simultaneously,

and an overall optimized target is even more difficult to achieve. Meanwhile, the value of a

process plan can be severely discounted since the assumption that all resources are available

during the process planning stage might not be entirely valid in the scheduling stage. For

instance, the generated process plans sometimes cause some machines to be overloaded, further,

to create bottlenecks and restrict the capabilities of machines. Second, the PPS problem has vast

solution spaces due to its combinatorial nature. Each time period can schedule one of the feasible

operation sets, a feasible operation set can be any non-empty combination of feasible operations,

15

and each operation can be one instance among all the feasible combinations of the available

resources. The iteration-based approach needs to be carried out again and again in this vast

discrete solution space. Furthermore, the outputs of such methodologies are easily trapped at

local optimum, and the local optimum is hard to detect due to the combinatorial nature of such a

problem.

Modeling a PPS problem as a GCP is particularly relevant in the presence of incompatible jobs.

Multiple extensions of the GCP have been proposed to cope with these scheduling environments

(Epstein et al., 2009; Fukunaga et al., 2012; Werra et al., 2005; Giaro et al., 2009; Halldórsson et

al., 2004; Meuwly et al., 2010; Thevenin et al., 2018). As we identify in the previous section, the

structural nature of some scheduling problems makes graph coloring an attractive formulation.

Gamache et al. (Gamache et al., 2007) use graph coloring methods to determine a feasible

schedule for crew scheduling problems within the airline industry. Moreover, they propose a new

methodology to determine the existence of a feasible solution based on a graph coloring model

and a Tabu search algorithm (Thevenin et al., 2018). However, these methodologies often

require a specific application environment. For example, Blöchliger and Zufferey (Blöchliger &

Zufferey, 2013), Thevenin et al. (Thevenin et al., 2018) formulate the PPS problem as a graph

multi-coloring problem. They require that the production system uses continuous flow

production, and each job is leading to the end product with no resource change. And still, unlike

the particular case of the scheduling problem they are attempting, a typical PPS problem often

requires multiple operations to be performed with different resource selections for each job

following sequencing constraints. For those reasons, the graph multi-coloring formulations of the

PPS problem could be limited in terms of universality.

16

2.3 Summary: Observation and Our Solutions

An in-depth review of the MWIS problem and PPS problem has been carried out in this Chapter.

As a consequence, firstly, a closer integration of process planning and scheduling, is required.

More specifically, determining the operation processing order in a machine shop and allocation

of resources for each operation needs to be considered interactively. Secondly, a direct method or

a method with fewer iterations is desired to solve the PPS problem.

Starting with the nature of the PPS problem, we proposed a novel approach to formulate a

general type of the PPS problem with resource allocation and process planning integrated

towards a typical objective, minimizing the makespan. The PPS problem is formulated into an

undirected weighted conflicting graph. In this conflicting graph, nodes stand for operations and

their resources; edges stand for constraints; weight factors are the guidelines for the node

selection at each time slot. A variation of GCP, the MWIS problem, can be solved to find the

best set of operations with their desired resources for each discrete time slot. This proposed

approach can solve the problem directly, or it can be applied with few iterations for improving

the quality of results.

The performance of the proposed approach depends on the accuracy and computational speed of

the MWIS algorithms. We develop algorithms to compute the exact solution to the MWIS

problem, and by utilizing the structure of the exact MWIS algorithms, we can improve the

accuracy of existing MWIS approximation algorithms.

17

Chapter 3. Maximum Weighted Independent Set (MWIS) Algorithms

In this chapter, we propose new algorithms for solving the Maximum Weighted Independent Set

(MWIS) problem. These algorithms are the core functions for solving the resources constrained

Process Planning and Scheduling (PPS) problem in later chapters. Chapter 3 is organized in the

following sections: Section 3.1 is the summary of the content of the chapter. Section 3.2 provides

the necessary background and definitions of graph theory. Section 3.3 and Section 3.4 explain

the proposed approach in detail, and Appendix I illustrates the proposed algorithm with a simple

example. Section 3.5 discusses merging the proposed MWIS algorithm with approximation

MWIS algorithms to reduce the complexity. Then, Section 3.6 presents some illustrative

numerical results to assess the performance of the algorithms in the application context of the

proposed approach for the PPS problem. Lastly, section 3.7 concludes the chapter.

3.1 Introduction

The Maximum Weighted Independent Set (MWIS) problem considers a graph with weights

assigned to nodes and seeks to identify the “heaviest” independent set, that is, a set of nodes with

maximal total weight so that no two nodes in the set are connected by an edge. The MWIS

problem arises in many application domains, including resource allocation, scheduling, error-

correcting coding, spatial statistics, and communication networks. It has been shown to be

combinatorial hard (NP-Hard) (Köhler & Mouatadid, 2016), and there has been extensive work

in the literature proposing a variety of algorithms for solving the MWIS problem exactly or

approximately. In this dissertation, we propose novel hybrid heuristic algorithms in a divide and

conquer structure that yields optimum feasible solutions to the MWIS problem. We also solve

the All Maximal Independent Sets (AMIS) listing (AMISL) problem, which can be seen as the

subproblem of the MWIS problem in the same structure. Moreover, the proposed algorithm

structure enables us to utilize available approximation algorithms (e.g., GWMIN and GWMIN2

18

(Sakai et al., 2003)) as subfunctions to get optimum or near optimum feasible solutions but much

faster in computational speed. In the following chapters, we apply the proposed algorithms in the

resources constrained Process Planning and Scheduling (PPS) problem.

3.2 Definitions and Notations

Let 𝐺 = (𝑉, 𝐸) be a simple undirected graph with vertex set 𝑉 = {1,… , 𝑣}, and a set of edges 𝐸.

We denote by |𝐴| the cardinality of set 𝐴, so that the edge number of 𝐺 is |𝐸| and the node

number of 𝐺 is |𝑉|. Let 𝑥 ∈ 𝑉, the degree (valence) of 𝑥 is the number of edges with 𝑥 as an

endpoint. We denote the degree of 𝑥 by 𝑑𝐺(𝑥). Let 𝑁𝑒𝑖𝑔𝐺(𝑥) denote the set of neighbors of

vertex 𝑖 and 𝑁𝑒𝑖𝑔𝐺
+(𝑥) denote {𝑥} ∪ 𝑁𝑒𝑖𝑔𝐺(𝑥). 𝑑𝐺(𝑥) = |𝑁𝑒𝑖𝑔(𝑥)| is the degree of vertex 𝑥.

In the graph 𝐺, let 𝑆 ⊂ 𝑉 be any subset of vertices of 𝐺. Then, the induced subgraph 𝐼𝑛𝑑𝐺(𝑆) is

the graph whose vertex set is 𝑆 and whose edge set consists of all of the edges in 𝐸 that have

both endpoints in 𝑆 (Diestel, 2006). For a vertex 𝑘 ∈ 𝑉, let the complementary induced subgraph

𝐶_𝐼𝑛𝑑𝐺(𝑘) refers to the subgraph induced by all the node in 𝑉 except node 𝑘 , and the

complementary neighbor induced subgraph 𝐶_𝑁𝑒𝑖𝑔_𝐼𝑛𝑑𝐺 (𝑘) refers to the subgraph induced by

the non-neighbors of 𝑘, and 𝑘 is not in 𝐶_𝑁𝑒𝑖𝑔_𝐼𝑛𝑑𝐺 (𝑘).

In the graph 𝐺, assume there is a sequence of vertices and edges 𝑥0, 𝑒1, 𝑥1, 𝑒2,…, 𝑒𝑛, 𝑥𝑛, where,

for all 𝑖 = 1,… , 𝑛, 𝑥𝑖−1 and 𝑥𝑖 are the endpoints of 𝑒𝑖 is called a walk (𝑥0, 𝑥𝑛-walk) in G from 𝑥0

to 𝑥𝑛. A walk in which all edges are distinct is called a trail (𝑥0, 𝑥𝑛-trail) and a walk in which all

vertices are edges are distinct is called a path (𝑥0, 𝑥𝑛-path). The length of this walk, trail, or path

is 𝑛. The length of the shortest walk, trail, or path joining the vertex 𝑥 to the vertex 𝑦 is called

the distance from 𝑥 to 𝑦.

19

A connected, acyclic (no circuits) graph is called a tree. The components of an arbitrary acyclic

graph are trees, and an acyclic graph is called a forest.

In the graph 𝐺, a subset 𝐼 ⊆ 𝑉 is called an independent set (stable set, vertex packing) if the

edge set of the subgraph induced by 𝐼 is empty. An independent set is maximal (maximal

independent set) if it is not a subset of any larger-size independent set, and maximum

(maximum independent set) if there are no larger-size independent sets in the graph. The

independence number 𝛼(𝐺) (also called the stability number) is the cardinality of a maximum

independent set in 𝐺. For each node 𝑖 ∈ 𝑉, there is a positive weight 𝑤𝑖 > 0. A subset of 𝑉 can

be represented by binary variable 𝑥𝑖 , (1 ≤ 𝑖 ≤ |𝑉|), where 𝑥𝑖 is 1 if 𝑖 is in the subset and 0

otherwise. A subset is called an independent set if no two nodes in the subset are connected by

an edge. We are interested in finding the MWIS (Papadimitriou and Steiglitz, 1982), which can

be expressed as an integer program:

max ∑𝑤𝑖𝑥𝑖
𝑖

𝑠. 𝑡. 𝑥𝑘 + 𝑥𝑖 ≤ 1, (𝑘, 𝑖) ∈ 𝐸

𝑥𝑖 ∈ {0, 1}, 𝑖 ∈ 𝑉

3.3 MWIS Algorithms

The proposed approach for the MWIS problem and AMISL problem has two phases following a

divide and conquer structure: it starts by (a) removing nodes to get the induced subgraphs that

are simple enough for finding the MWIS; and then by (b) iteratively adding nodes back one at a

time, compare and merge to get the output. The first phase recursively partitions the graph into

complementary induced subgraphs by removing nodes (and the adjunct edges) one at a time

20

based on node removal heuristics. When induced subgraphs satisfy the desired patterns, these

induced subgraphs become simple enough to be solved for MWIS with one comparison. A

Preliminary Set (AMISL Preliminary Sets for the AMISL case) is found based on this

complementary induced subgraph. The second phase of the algorithm adds back the nodes (and

the adjunct edges) removed in the reversed sequence. At each adding, a Compare Set (AMISL

sets for the AMISL case) is found to compare with the Preliminary Set (AMISL Preliminary

Sets for the AMISL case). For the MWIS problem, the MWIS output set is the set with larger

total weights among the Preliminary Set and the Compare Set of the current graph in the node

adding process. For the AMISL problem, the AMISL output sets are the union of AMISL

Compare Sets and AMISL Preliminary Sets for the graph with the adding node. The algorithm

stops when all nodes (and the adjunct edges) are added back to the graph. With this brief

understanding of the proposed approach, we are going into the details in the following sections.

3.3.1 Phase I: Dividing

Three types of unit graph structures (shown in Figure 3-1) are defined as Connected Unit

Substructures (CUS). The three types of CUS are: (a) an isolated node; (b) a pair of two

connected nodes; and (c) a tree with a maximum diameter of 2 edges. Given an undirected

weighted graph Γ consists of 𝑛 different CUSs, 𝐶𝑈𝑆1 , 𝐶𝑈𝑆2 , …, 𝐶𝑈𝑆𝑖 , …, 𝐶𝑈𝑆𝑛 , 𝑖 ∈

{1,2, … , 𝑛}, and no edge between these CUSs. Define 𝑀𝑊𝐼S(Γ) as a set of nodes, and this set

has the maximum total weight in Γ . We denote the 𝑀𝑊𝐼S(Γ) as the MWIS of graph

Γ , 𝑀𝑊𝐼S(CUS1), 𝑀𝑊𝐼S(CUS2), …, 𝑀𝑊𝐼S(CUSi), …, 𝑀𝑊𝐼S(CUSn) as the MWISs of the

CUSs, respectively. The 𝐴𝑀𝐼S(Γ) is a set of all maximal independent sets in Γ. We denote the

 𝐴𝑀𝐼S(Γ) as the AMIS of graph Γ , 𝐴𝑀𝐼𝑆(𝐶𝑈𝑆1) , 𝐴𝑀𝐼𝑆(𝐶𝑈𝑆2) , …, 𝐴𝑀𝐼𝑆(𝐶𝑈𝑆𝑖) , …,

21

𝐴𝑀𝐼𝑆(𝐶𝑈𝑆𝑛) as the AMIS of the CUSs, respectively. We denote the maximal independent set as

𝑀𝐼𝑆𝐶𝑈𝑆𝑖
𝑘𝑖 , which is an element in 𝐴𝑀𝐼𝑆(𝐶𝑈𝑆𝑖) = {𝑀𝐼𝑆𝐶𝑈𝑆𝑖

1 , 𝑀𝐼𝑆𝐶𝑈𝑆𝑖
2 , … ,𝑀𝐼𝑆𝐶𝑈𝑆𝑖

𝑘𝑖 , … ,𝑀𝐼𝑆𝐶𝑈𝑆𝑖
𝑚𝑖 },

where 𝑘𝑖 ∈ {1, 2, … ,𝑚𝑖}.

No edges between

these nodes

Isolated

Node
A pair of two

connected nodes

The diameter

is <= 2 edges

Figure 3-1. Three Types of Connected Unit Substructures (CUSs)

Theorem 3-1: For Base Cases in Recurrence

Given a graph Γ that consists of 𝑛 different CUSs, 𝐶𝑈𝑆1 , 𝐶𝑈𝑆2, …, 𝐶𝑈𝑆𝑖 , …, 𝐶𝑈𝑆𝑛 , 𝑖 ∈
{1,2, … , 𝑛}, and no edge between these CUSs:

(i) For the MWIS problem, the 𝑀𝑊𝐼S(CUSi) can be found by one comparison in a

𝐶𝑈𝑆𝑖. The CUS with an isolated node can be considered as compared with an

empty node set. For the Γ that consists of multiple CUSs, the 𝑀𝑊𝐼S(Γ) is the

union of the MWIS of each CUS in Γ, or formally,

𝑀𝑊𝐼𝑆(𝛤) = 𝑀𝑊𝐼𝑆(𝐶𝑈𝑆1) ∪ 𝑀𝑊𝐼𝑆(𝐶𝑈𝑆2) ∪ …∪ 𝑀𝑊𝐼𝑆(𝐶𝑈𝑆𝑛)
(ii) For the AMISL problem, the 𝐴𝑀𝐼𝑆(𝐶𝑈𝑆𝑖) can be found by dividing the graph

into two independent node sets in a 𝐶𝑈𝑆𝑖. The CUS with an isolated node can be

considered as dividing the graph into two node sets (one of the two sets can be an

empty set, 𝜙). For the Γ that consists of multiple CUSs, each 𝐶𝑈𝑆𝑖 , 𝑖 ∈
{1,2, … , 𝑛} , in Γ has its 𝐴𝑀𝐼𝑆(𝐶𝑈𝑆𝑖) . The 𝐴𝑀𝐼S(Γ) of graph Γ is all the

combinations of the MISs of all the CUSs, note that only picking one of the MISs

from each CUS in one combination. For the 𝐴𝑀𝐼S(Γ) of graph Γ , 𝑘𝑖 ∈
{1, 2, … ,𝑚𝑖}, formally,

𝐴𝑀𝐼𝑆(𝛤) =

{

{𝑀𝐼𝑆𝐶𝑈𝑆1
1 , 𝑀𝐼𝑆𝐶𝑈𝑆2

1 , … ,𝑀𝐼𝑆𝐶𝑈𝑆𝑛
1 },

…,

{𝑀𝐼𝑆𝐶𝑈𝑆1
𝑘1 , … ,𝑀𝐼𝑆𝐶𝑈𝑆𝑖

𝑘𝑖 , … ,𝑀𝐼𝑆𝐶𝑈𝑆𝑛
𝑘𝑛 },

…,

{𝑀𝐼𝑆𝐶𝑈𝑆1
𝑚1 , … ,𝑀𝐼𝑆𝐶𝑈𝑆𝑖

𝑚𝑖 , … ,𝑀𝐼𝑆𝐶𝑈𝑆𝑛
𝑚𝑛 }

}

22

Proof of Corollary 3-1: In Corollary 3-1, the CUS in Γ in Theorem 3-1 is now a general

graph. In other words, the connected components in Γ is a general graph. Similar to the proof

of Theorem 3-1, because the MWISs or AMISs of these connected components in 𝛤 has no

conflict with nodes in a different connected component of 𝛤, so that Corollary 3-1 holds

which means that Theorem 3-1 also holds when CUS is a general graph. ∎

Corollary 3-1: The below statements in Theorem 3-1,

“For the Γ that consists of multiple CUSs,

(i) For the MWIS problem, the 𝑀𝑊𝐼S(Γ) is the union of the MWIS of each CUS in

Γ, or formally,

𝑀𝑊𝐼𝑆(𝛤) = 𝑀𝑊𝐼𝑆(𝐶𝑈𝑆1) ∪ 𝑀𝑊𝐼𝑆(𝐶𝑈𝑆2) ∪ …∪ 𝑀𝑊𝐼𝑆(𝐶𝑈𝑆𝑛)

(ii) For the AMISL problem, the 𝐴𝑀𝐼S(Γ) of graph Γ is all the combinations of the

MISs of all the CUSs, note that only picking one of the MISs from each CUS in

one combination. For the 𝐴𝑀𝐼S(Γ) of graph Γ, 𝑘𝑖 ∈ {1, 2, … ,𝑚𝑖}, formally,

𝐴𝑀𝐼𝑆(𝛤) =

{

{𝑀𝐼𝑆𝐶𝑈𝑆1
1 , 𝑀𝐼𝑆𝐶𝑈𝑆2

1 , … ,𝑀𝐼𝑆𝐶𝑈𝑆𝑛
1 },

…,

{𝑀𝐼𝑆𝐶𝑈𝑆1
𝑘1 , … ,𝑀𝐼𝑆𝐶𝑈𝑆𝑖

𝑘𝑖 , … ,𝑀𝐼𝑆𝐶𝑈𝑆𝑛
𝑘𝑛 },

…,

{𝑀𝐼𝑆𝐶𝑈𝑆1
𝑚1 , … ,𝑀𝐼𝑆𝐶𝑈𝑆𝑖

𝑚𝑖 , … ,𝑀𝐼𝑆𝐶𝑈𝑆𝑛
𝑚𝑛 }

}
”,

 also holds when the 𝐶𝑈𝑆 is a general graph.

Proof of Theorem 3-1:

(i) For the MWIS problem, the MWIS can be found by one comparison in a CUS,

because there are only two maximal independent sets in all the three types of

CUSs. Since Γ consists of multiple CUSs, and there are no edges between these

CUSs, the MWIS of each CUS does not have a conflict with the MWIS of another

CUS in Γ. Because the MWIS of each CUS in Γ is the independent set with the

possible maximum total weight, and MWISs of CUSs has no conflict with each

other. We can get the union of MWISs of CUSs in Γ as the MWIS of Γ. ∎

(ii) For the AMISL problem, the AMIS can be found by dividing a CUS into two

independent node set. Since Γ consists of multiple CUSs, and there are no edges

between these CUSs, the AMIS of each CUS does not have confliction with any

node of another CUS in Γ. Because the AMISs of different CUSs in Γ has no

confliction, get the union of the sets by choosing one set from the AMIS of each

CUS and find all combinations without repeating of such unions. The union of

each combination is one maximal independent set in the AMIS of Γ. ∎

23

Theorem 3-1 and Corollary 3-1 show that we are able to find the MWIS and AMIS of an induced

subgraph after partitioning it into a specific structure. In order to partition the graph to get an

induced subgraph as Γ described in Theorem 3-1, we need to proceed in two steps: (a) break all

the cycles in the graph, and (b) break the paths which are longer than 2 edges. In both steps, we

need to remove the nodes (and the adjunct edges) which satisfying specific rules. We denote

such a qualified node as a removed node.

Step 1: Break all cycles

First, we need to find a cycle basis of the given graph 𝐺 = (𝑉, 𝐸). For each node 𝑖 ∈ 𝑉 in 𝐺,

count the number of basic (fundamental) cycles it belongs to, we denote the count for node 𝑖 as

𝐶𝐺(𝑖). Then, we remove a node 𝑛 ∈ 𝑉 to get the complementary induced subgraph 𝐶_𝐼𝑛𝑑𝐺(𝑛),

where 𝐶𝐺(𝑛) is the maximum among all the 𝐶𝐺(𝑖). This process iterates until no cycle left in the

induced subgraph. This induced subgraph left is either a tree or a forest, since all the cycles are

broken by removing the node (and adjunct edges) belongs to the most cycles.

A basis for cycles of an undirected graph (Cycle Basis) is a minimal collection (a set of

fundamental cycles) of cycles such that any cycle in the graph can be written as a sum of cycles

in the Cycle Basis set (Diestel, 2012). Here summation of cycles is defined as “exclusive or” of

the edges. The algorithm for finding a cycle basis is adapted from algorithm CACM 491,

originally developed by K. Paton. For details on the algorithm and the production of the basic

cycles, Paton’s original paper (Paton, 1969) should be consulted. Paton also discusses two other

algorithms for basic cycle generation and contains performance statistics in the paper referred to.

The adopted basic (fundamental) cycles algorithm can be depicted as in Algorithm 3-1 (Paton,

1969).

24

Algorithm 3-1: The Basic Cycles Algorithm (Paton, 1969)

Step 2: Break the paths which are longer than 2 edges to reduce the diameter of the components

of the induced acyclic subgraph from step 1

If any of the connected components of the induced subgraph from step 1 has a diameter that is no

less than 3 edges, remove the node in the middle of the longest path in that connected component

of the graph. We name this node as the Middle Node of the path. For an odd path, the Middle

Node is the midpoint of the path; for an even path, the Middle Node is one of the two nodes in

the middle of the path. Algorithms 3-2 are adopted for checking the diameter, and Algorithms 3-

3 is implemented for finding the Middle Node, respectively.

The diameter is the maximum eccentricity. The eccentricity of a node 𝑣 is the maximum distance

from 𝑣 to all other nodes in 𝐺. If 𝐺 is disconnected, the eccentricity of a node 𝑣 is infinite. A

diameter algorithm adapted based on the work by F.W. Takes, and his colleagues (Takes &

Kosters, 2011; Takes & Kosters, 2013; Borassi et al., 2015) is applied here for computing the

diameters in step 2. For each connected component of 𝐺 , we utilize a function

Algorithm 3-1: The Basic Cycles Algorithm

Input:

A graph is finite, connected, undirected, and without loops or multiple edges.

Step 1:

Let vertex 1 be the root of the spanning tree. Start forming the spanning tree by

placing all edges of the form {1,𝑊} into the tree. At the same time, place all vertices

W into a push-down list called STACK.

Step 2:

Let Z be the last vertex added to STACK (i.e. the top of the stack). If STACK is

empty, then stop. If STACK is not empty, then remove Z from STACK and go to step

3.

Step 3:

Consider all edges {𝑍,𝑊} which have not been examined. If all edges have been

examined, go to step 2. Otherwise, for each edge {𝑍,𝑊} do the following:

a. If W is in the tree generate the basic cycle formed by adding {𝑍,𝑊} to the

tree and repeat step 3.

b. If W is not in the tree, add {𝑍,𝑊} to the tree, W to STACK, and repeat

step 3.

25

“single_source_shortest_path_length” from the python module “networkx” to

compute the shortest path lengths from each node to all reachable nodes. The maximum value of

the lengths found is the diameter of the connected component of 𝐺. We mark this algorithm as

Algorithm 3-2, the diameter algorithm.

The Algorithm 3-3: the middle node algorithm is developed in order to find the middle point in a

connected component of the induced acyclic subgraph. Since the input graph for finding the

middle node is either a tree or a forest, we iteratively remove the nodes 𝑥 (and the adjunct edges)

whose degrees satisfy 𝑑(𝑥) = 1 or 𝑑(𝑥) = 0. The last one node removed is the middle node, if

the path is odd. One of the last two nodes removed is one of the two middle nodes, if the path is

even. This middle node algorithm is implemented as below.

Algorithm 3-3: The Middle Node Algorithm

After the two steps of the node removal process, the induce subgraph satisfies the conditions as

described in Theorem 3-1. We name the node 𝑥 ∈ 𝑉 removed from 𝐺 as a removed node. The

complementary induced subgraph 𝐶_𝐼𝑛𝑑𝐺(𝑥) is called the induced subgraph at level node “𝑥.”

Algorithm 3-3: The Middle Node Algorithm

Input:

The input graph, a tree or forest, is finite, undirected, and without loops or multiple

edges. This input graph has at least ONE connected component whose diameter is

greater than 2 edges.

Step 1:

Get a dictionary of the degrees of nodes in the input graph, namely

“node_degree_dict”, using the node name as keys and the degree value as values.

Step 2:

Find the keys which have values as 0 or 1, remove these nodes from the input graph to

get the updated induced subgraph.

Step 3:

a. If the number of nodes in the updated induced subgraph is ZERO, the middle node

is a node in the input graph (from step 1). Return this middle node.

b. If the number of nodes in the updated induced subgraph is not ZERO, clean the

dictionary “node_degree_dict” and update the input graph with the updated

induced subgraph. Then, start from step 1.

26

All the removed nodes and the associated components are stored in a dictionary named

Subgraphs Dictionary (SD) with removed nodes as keys and the associated components as

values for recording this process.

The number of removed nodes determines the number of iterations in both node removal and

node adding processes so that we want to reduce the number of removed nodes to the greatest

extend. By using the Algorithm 3-1, the basic cycles algorithm, we can break the cycles as many

as possible at each removal so that we can reduce the graph to a tree with a minimum number of

nodes removed. And by removing the middle node of the trees using the Algorithm 3-2, the

diameter algorithm and Algorithm 3-3, the middle node algorithm, the diameter of the remaining

trees are minimized, which is also minimizing the number of the node removed.

3.3.2 Phase II: Adding Nodes and Conquering

We consider a collection of problems that involve finding a feasible subset of the input of

maximum weight. The input contains a collection of 𝑛 distinguished elements, each carrying an

associated nonnegative rational weight. Each set of distinguished elements uniquely induces a

candidate for a solution, which we assume is efficiently computable from the set. The weight of a

solution is the sum of the weights of the distinguished elements in the solution.

Halldorsson defines such a partitioning structure as the hereditary property (Halldorsson, 2000).

A property is said to be hereditary if whenever a set 𝑆 of distinguished element corresponds to a

feasible solution, any subset of 𝑆 also corresponds to a feasible solution. A property is semi-

hereditary if under the same circumstances, any subset 𝑆′ of 𝑆 uniquely induces a feasible

solution, possibly corresponding to a superset of 𝑆′. Theorem 3-2 is based on this partitioning

idea.

27

0 2
5

1

3

4

6

7

W3=4.5

W1=7

W0=2

W2=2

W4=7

W5=4

W6=4

W7=2

Figure 3-2. Compare Set at Level Node ‘3’

Theorem 3-2: For Recurrence

For a given graph 𝐺 = (𝑉, 𝐸) , remove one node 𝑛 ∈ 𝑉 (the removed node) to get the

complementary induced subgraph 𝐶_𝐼𝑛𝑑𝐺(𝑛). Let 𝑀𝑊𝐼𝑆(𝐺) denote the MWIS of graph 𝐺

and let 𝐴𝑀𝐼𝑆(𝐺) denote the AMIS of graph 𝐺.

(i) For the MWIS case, the 𝑀𝑊𝐼𝑆(𝐺) is either the 𝑀𝑊𝐼𝑆[𝐶_𝐼𝑛𝑑𝐺(𝑛)] or the

maximum weighted independent set that has node 𝑛 as an element in graph 𝐺,

{𝑛} ∪ 𝑀𝑊𝐼𝑆[𝐶_𝑁𝑒𝑖𝑔_𝐼𝑛𝑑𝐺(𝑛)] . We name the 𝑀𝑊𝐼𝑆[𝐶_𝐼𝑛𝑑𝐺(𝑛)] as the

Preliminary Set at level node 𝑛 , and the 𝐶_𝐼𝑛𝑑𝐺(𝑛) as the Preliminary Set

Subgraph (PSS) at level node 𝑛 . Similarly, we name the set {𝑛} ∪
𝑀𝑊𝐼𝑆[𝐶_𝑁𝑒𝑖𝑔_𝐼𝑛𝑑𝐺(𝑛)] as the Compare Set at level node 𝑛 , and the

𝐶_𝑁𝑒𝑖𝑔_𝐼𝑛𝑑𝐺(𝑛) with node 𝑛 as the Compare Set Subgraph (CSS) at level node

𝑛.

(ii) For the AMISL case, the AMIS of the complementary induced subgraph

𝐶_𝐼𝑛𝑑𝐺(𝑛) is formally 𝐴𝑀𝐼𝑆[𝐶_𝐼𝑛𝑑𝐺(𝑛)]. All maximal independent sets which

has node 𝑛 as an element in each of the all maximal independent sets in graph 𝐺 is

formally 𝐴𝑀𝐼𝑆[𝐼𝑛𝑑𝐺(𝑛) ∪ 𝐶𝑁𝑒𝑖𝑔𝐼𝑛𝑑𝐺
(𝑛) ∪ {𝑛}]. The all maximal independent set

of 𝐺, 𝐴𝑀𝐼𝑆(𝐺) , is the union of the 𝐴𝑀𝐼𝑆[𝐶_𝐼𝑛𝑑𝐺(𝑛)] and 𝐴𝑀𝐼𝑆[𝐼𝑛𝑑𝐺(𝑛) ∪
𝐶_𝑁𝑒𝑖𝑔_𝐼𝑛𝑑𝐺(𝑛) ∪ {𝑛}]. Note that if any maximal independent set in the AMISL

outputs is a subset of another set in AMISL output sets in the union process. The

subset is eliminated, since it is no longer a maximal independent set in the induced

subgraph with node 𝑛 . We name the 𝐴𝑀𝐼𝑆[𝐶_𝐼𝑛𝑑𝐺(𝑛)] as the AMISL

Preliminary Sets at level node 𝑛 . Similarly, we name the 𝐴𝑀𝐼𝑆[𝐼𝑛𝑑𝐺(𝑛) ∪
𝐶_𝑁𝑒𝑖𝑔_𝐼𝑛𝑑𝐺(𝑛) ∪ {𝑛}] as the AMISL Compare Sets at level node 𝑛.

28

Let’s take an example to explain Theorem 3-2. Given a weighted graph 𝐺3−2 as Figure 3-2, the

nodes, edges, node indexes, and weights associated is shown in the figure. Assuming node ‘3’ is

the removed node, according to Theorem 3-2, the Compare Set at level node ‘3’ is the node set

{‘0’, ‘3’, ‘6’} circled in red in Figure 3-2, and the Preliminary Set at level node ‘3’ is the node

set {‘0’, ‘2’, ‘5’, ‘6’} circled in red in Figure 3-3. The 𝑀𝑊𝐼𝑆(𝐺3−2) is either the set {‘0’, ‘3’,

‘6’} or {‘0’, ‘2’, ‘5’, ‘6’}. Since the set {‘0’, ‘2’, ‘5’, ‘6’} has a total weight 12 versus the total

weight of {‘0’, ‘3’, ‘6’}, which is 11, the 𝑀𝑊𝐼𝑆(𝐺3−2) is the set {‘0’, ‘2’, ‘5’, ‘6’}. In Figure 3-

2, the induced subgraph in blue circles is the CSS, which is the 𝐶_𝑁𝑒𝑖𝑔_𝐼𝑛𝑑𝐺({′3′}) plus node

‘3’. In Figure 3-3, the complementary induced subgraph, 𝐶_𝐼𝑛𝑑𝐺(𝑛) in the green circle is the

PSS at level node 𝑛.

Proof of Theorem 3-2: by contradiction

(Since the MWIS and AMISL algorithms follow the same structure, we only prove the

MWIS case here.) As the conditions described in Theorem 3-2, assuming all three statements

always hold:

1. The Preliminary Set is the MWIS of 𝐶_𝐼𝑛𝑑𝐺(𝑛), 𝑀𝑊𝐼𝑆[𝐶_𝐼𝑛𝑑𝐺(𝑛)];
2. The Compare Set is {𝑛} ∪ 𝑀𝑊𝐼𝑆[𝐶_𝑁𝑒𝑖𝑔_𝐼𝑛𝑑𝐺(𝑛)];
3. There exists an Assumption Set in 𝐺. The Assumption Set is a maximal independent

set that has a total weight greater than that of either the Preliminary Set or the

Compare Set.

In the same graph 𝐺, since the Assumption Set, a maximal independent set in 𝐺, has a total

weight greater than the total weight of the Compare set, and the Compare Set has the

maximum possible total weight of the maximal independent set has node 𝑛 as one element,

the Assumption Set cannot contain node 𝑛 as an element. Because the Preliminary Set has the

maximum possible total weight of the maximal independent set in the complementary

induced subgraph 𝐶_𝐼𝑛𝑑𝐺(𝑛) , so that the maximum possible total weight of a maximal

independent set without node 𝑛 as an element is equal to the total weight of the Preliminary

Set. Since the Assumption Set cannot contain node 𝑛 as an element, then it must be a

maximal independent set in the complementary induced subgraph 𝐶_𝐼𝑛𝑑𝐺(𝑛) and its total

weight is no greater than the total weight of the Preliminary Set. It is a Contradiction with

statement 3, which implies that such an Assumption Set does not exist. ∎

29

Figure 3-3. Preliminary Set at Level Node ‘3’

In order to further understand Theorem 3-2, suppose we decide to place a node 𝑣 into a given

maximum weighted independent set. It then suffices to search only in the non-neighborhood of

𝑣, 𝐶_𝑁𝑒𝑖𝑔_𝐼𝑛𝑑𝐺(𝑣), for the remaining nodes in the set. This suggests a natural heuristic, the

greedy method. We can specify its result formally as

𝑐ℎ𝑜𝑜𝑠𝑒: 𝑣 ∈ 𝑉

𝑀𝑊𝐼𝑆(𝐺) ← {′𝑣′} ∪ 𝑀𝑊𝐼𝑆[𝐶_𝑁𝑒𝑖𝑔_𝐼𝑛𝑑𝐺(𝑣)]

This rapid accumulation of an independent set by recursively looking at non-neighborhoods is

attractive. Yet it remains disconcerting to completely ignore the neighborhoods of the pivot

nodes, which may contain much larger weighted independent sets. Indeed, if we make a bad

choice of a pivot node, we may be left with a minuscule set of independent vertices where there

were plenty; thus, Greedy performs poorly in the worst case.

We are led to another rule for searching for an independent set. As before, choose a vertex and

search in the non-neighborhood of that node. But this time also searches in the neighborhood of

the pivot node, which makes the search area as 𝐶_𝐼𝑛𝑑𝐺(𝑣), and use whichever result has a

W1=7

W0=2

W2=2

W4=7

W5=4

W6=4

W7=2

0

4

1

2
5

6

7

30

heavier total weight. More formally,

𝑐ℎ𝑜𝑜𝑠𝑒: 𝑣 ∈ 𝑉

𝑀𝑊𝐼𝑆_𝐴𝑆(𝐺) ← max ({′𝑣′} ∪ 𝑀𝑊𝐼𝑆_𝐴𝑆[𝐶_𝑁𝑒𝑖𝑔_𝐼𝑛𝑑𝐺(𝑣)],𝑀𝑊𝐼𝑆_𝐴𝑆[𝐶_𝐼𝑛𝑑𝐺(𝑣)])

The discussions above are resulting Algorithm 3-4, MWIS algorithm structure (MWIS_AS), as

below:

Algorithm 3-4: MWIS Algorithm Structure

AMISL algorithm follows the same structure, but we need to define a particular function called

the Special Union. Assuming 𝑆𝑆1 and 𝑆𝑆2 are two sets of sets, the Special Union, 𝑆𝑝𝑒𝑐_ ∪

(𝑆𝑆1, 𝑆𝑆2), which is a set, which is the union of all the sets in 𝑆𝑆1 and 𝑆𝑆2, and no set in 𝑆𝑝𝑒𝑐_ ∪

(𝑆𝑆1, 𝑆𝑆2) is a subset of another set. This is resulting Algorithm 3-5, AMISL algorithm structure,

(AMISL_AS) as below:

Algorithm 3-5: AMISL Algorithm Structure

AMISL_AS (𝐺), 𝐺 is a weight undirected graph.

Begin

If 𝐺 = ∅, then return [∅]
Choose some 𝑣 ∈ 𝑉

[𝐴𝑀𝐼𝑆1]← 𝑨𝑴𝑰𝑺𝑳_𝑨𝑺[𝐶_𝐼𝑛𝑑𝐺(𝑣)]
[𝐴𝑀𝐼𝑆2]← 𝑨𝑴𝑰𝑺𝑳_𝑨𝑺[𝐶_𝑁𝑒𝑖𝑔_𝐼𝑛𝑑𝐺(𝑣) ∪ {′𝑣′}]
return (Spec_∪ (𝐴𝑀𝐼𝑆1, 𝐴𝑀𝐼𝑆2))

End

MWIS_AS (𝐺), 𝐺 is a weight undirected graph.

Begin

If 𝐺 = ∅, then return [∅]
Choose some 𝑣 ∈ 𝑉

[𝑀𝑊𝐼𝑆1]← 𝑴𝑾𝑰𝑺_𝑨𝑺[𝐶_𝐼𝑛𝑑𝐺(𝑣)]
[𝑀𝑊𝐼𝑆2]← 𝑴𝑾𝑰𝑺_𝑨𝑺[𝐶_𝑁𝑒𝑖𝑔_𝐼𝑛𝑑𝐺(𝑣) ∪ {′𝑣′}]
return (larger weight of (𝑀𝑊𝐼𝑆1,𝑀𝑊𝐼𝑆2))

End

31

3.4 Construction of the Algorithms

From Theorem 3-1, we illustrate that the base cases for the divide and conquer algorithm

structure. The base cases are constructed by removing nodes and the adjacent edges. We

iteratively remove one node at a time by maximizing the number of cycles that the node belongs

to in a cycle basis of the input graph or the current induced subgraph. Subgraphs dictionary (SD)

is used to record this procedure. In SD, each node removed is the key and node sets of the

connected components in the induced subgraphs as values of the keys, until the induced

subgraphs satisfy the Theorem 3-1 conditions.

The node adding procedures that are illustrated in Figure 3-4, is based on Algorithm 3-4 and

Algorithm 3-5. Assume there are 𝑚 removed nodes for computing the MWIS or AMIS of graph

𝐺, the CSS and the PSS denote the Compare Set Subgraph and the Preliminary Set Subgraph,

respectively. The MWIS algorithm or the AMISL algorithm needs to be executed on the CSS at

level node 𝑙 , 𝑙 ∈ {1,2, … , 𝑙, … ,𝑚} , with 𝑛𝑙 removed nodes to find the MWIS or the AMIS,

respectively.

For the MWIS case, according to Theorem 3-2 and Algorithm 3-4, we can get the desired MWIS

set by comparing the Compare Set and the Preliminary Set at each level of the removed node.

The MWIS found at each level of the removed node is recorded in the subgraph MWIS

dictionary (SMWISD): the current induced subgraph (the PSS plus the removed node at the

level) is the key, and the MWIS found is the value. The SMWISD is used for searching the

MWIS of the connected components, which is part of the Preliminary Set at the level.

For the AMISL case, according to Theorem 3-2 and Algorithm 3-5, we can get AMIS by

comparing and merging the AMISL Compare Sets and the AMISL Preliminary Sets at each level

of the removed node. The AMIS found at each level of the removed node is recorded in the

32

subgraph AMIS dictionary (SAMISD): the current induced subgraph (the PSS plus the removed

node at the level) is the key, and the AMIS found is the value. The SAMISD is used for

searching the AMIS of the connected components, which is part of the AMISL Preliminary Set

at the level.

G

CSS PSS

CSS PSS

CSS PSS

CSS PSS

...

1

2

3

m

n1 removed nodes

n2

n3

nm

m is the number of removed

nodes for computing the

MWIS/AMIS of G. The level

node, l l, m}.

...

CSS PSSl
nl

...

The MWIS/AMIS of PPS

are found by merging the

MWIS/AMIS of each

connected component of

the current induced

subgraph according to

the key-value pair in the

SD. These MWISs/AMISs

are found by searching

the SMWISD/SAMISD or

computed according to

Theorem 3-1

...
The Compare Set can be

computed by apply the

proposed MWIS or AMISL

algorithm on the CSS. Such

a linear recurrence leads to

exponential complexity

Figure 3-4. The Node Adding Procedures

33

Together with Corollary 3-1, recurrence can be set up by adding the removed nodes back to the

graph in the reverse order from the CUSs till getting the whole original graph. At each level of

the removed node, the Preliminary Set and the AMISL Preliminary Set can be found as follows.

For the MWIS case, we can get the Preliminary Set by aggregating the MWIS of each connected

component of the current induced subgraph (without the removed node) according to the key-

value pair in the SD. These MWISs are found by searching the SMWISD or computed according

to Theorem 3-1. For the AMISL case, following the Theorem 3-1 and Corollary 3-1, we can

merge the AMISs of all connected components of the current induced subgraph according to the

key-value pair in the SD to get the AMISL Preliminary Set. These AMISs are found by

searching the SAMISD or computed according to Theorem 3-1. While adding nodes back to get

the Compare Set and the AMISL Compare Set, we follow the node adding heuristics for finding

the Compare Set as below:

1. Get CSS, which is the induced subgraph by removing all neighbors of the removed node

added; the removed node is included in the CSS.

2. Get the MWIS or AMIS of the CSS.

3. If the CSS getting from (1) does not satisfy the Theorem 3-1 conditions, perform the

algorithm on this subgraph.

Thus, the Algorithm #1 MWIS (Algorithm A1) and Algorithm #2 AMISL (Algorithm A2) can

be constructed as below:

34

Algorithm A1 MWIS: A Hybrid Heuristic Algorithm for MWIS Problem

For better describing the algorithms we proposed in this section, we provide a walkthrough of

Algorithm A1 as well as all the terms in detail with a simple example in Appendix I. In the

following section, we discuss the complexity of the proposed algorithms, and the means to

improve the computational speed.

Algorithm A1 MWIS: A hybrid heuristic algorithm for MWIS problem

Input: a weighted graph 𝐺

Output: MWIS of graph 𝐺.

Initializing: subgraphs dictionary (SD) = {}; subgraph MWIS dictionary (SMWISD) = {};

‘last key’ vertex = null.

Begin:

(1.1) From step (1.1.1) to (1.1.5) Based on the input graph, find and remove the nodes one

at a time, based on the node removal procedures, and update the SD: each node

removed is the key and vertices sets of the connected components in the induced

subgraphs as values of the keys, until the induced subgraphs satisfy the Theorem 3-1

conditions.

(1.1.1) If the input graph satisfies the Theorem 3-1 conditions, go to step (1.2); if the input

graph does not satisfy the Theorem 3-1 conditions, remove a vertex (the key in SD)

and edges attached to it following the node removal steps in section 4.1, and get the

component subgraphs vertices set(s) (value with the key);

(1.1.2) Update SD with the key-value pair;

(1.1.3) For each connected subgraph, exam whether it satisfies the Theorem 3-1 conditions;

(1.1.4) For those who do not satisfy Theorem 3-1 conditions, input these subgraphs to step

(1.1.1); If the Theorem 3-1 conditions are satisfied, go to (1.1.5)

(1.1.5) When all subgraphs satisfy Theorem 3-1 conditions, return the latest SD and go to

step (1.2).

(1.2) Get the Preliminary Set by aggregating the MWIS of each connected component of

the induce subgraph according to the last key-value pair in SD. These MWISs are

found by searching the SMWISD or computed according to Theorem 3-1.

(1.3) If ‘last key’ vertex = null, Compare Set is ∅; if not add the ‘last key’ vertex to the

induced subgraph from (1.2) and follow the node adding heuristics to find the

Compare Set at the level ‘last key’.

(1.4) Get the set with maximum total weight among the two sets: Preliminary Set and

Compare Set at the level ‘last key’. This set is the MWIS at the level ‘last key’ (the

MWIS of the induced subgraph of the last level in SD). Update the SMWISD: the

current induced subgraph from (1.3) is the key, and the MWIS found is the value.

(1.5) Update SD by removing the last key-value pair. If the updated 𝑆𝐷 = {}, return the

MWIS from step (1.4); if not, go to step (1.2).

35

Algorithm A2 AMISL: A Hybrid Heuristic Algorithm for MWIS/AMISL Problem

Algorithm A2 AMISL: A hybrid heuristic algorithm for AMISL problem

Input: a weighted graph 𝐺

Output: MWIS of graph 𝐺.

Initializing: subgraphs dictionary (SD) = {}; subgraph AMIS dictionary (SAMISD) = {};

‘last key’ vertex = null.

Begin:

(2.1) From step (2.1.1) to (2.1.5) Based on the input graph, find and remove the vertices

one at a time, based on the vertices removal procedures, and update the SD: each

vertex removed is the key and vertices sets of the connected components in the

induced subgraphs as values of the keys, until the induced subgraphs satisfy the

Theorem 3-1 conditions.

(2.1.1) If the input graph satisfies the Theorem 3-1 conditions, go to step (2.2); if the input

graph does not satisfy the Theorem 3-1 conditions, remove a vertex (the key in SD)

and edges attached to it following the node removal steps in section 4.1, and get the

component subgraphs vertices set(s) (value with the key);

(2.1.2) Update SD with the key-value pair;

(2.1.3) For each connected subgraph, exam whether it satisfies the Theorem 3-1 conditions;

(2.1.4) For those who do not satisfy Theorem 3-1 conditions, input these subgraphs to step

(2.1.1); If the Theorem 3-1 conditions are satisfied, go to (2.1.5)

(2.1.5) When all subgraphs satisfy Theorem 3-1 conditions, return the latest SD and go to

step (2.2).

(2.2) Following the Theorem 3-1 and Corollary 3-1, merge the AMISs of all connected

components of the induce subgraph according to the last key-value pair in SD to get

the AMISL Preliminary Set. These AMISs are found by searching the SAMISD or

computed according to Theorem 3-1.

(2.3) If ‘last key’ vertex = null, Compare Set is ∅; if not add the ‘last key’ node to the

induced subgraph from (2.2) and follow the node adding heuristics to find AMISL

Compare Sets at the level ‘last key’.

(2.4) Get the Special Union of the two sets of sets: AMISL Preliminary Set and AMISL

Compare Set at the level ‘last key’. Note that if any maximal independent set in the

union is a subset of another set in this union process, eliminate this set from the union.

This union is the AMISL output at the level ‘last key’ (the AMIS set of the induced

subgraph of the last level in SD). Update the SAMISD: the current induced subgraph

from (2.3) is the key, and the AMIS found is the value.

(2.5) Update SD by removing the last key-value pair. If the updated 𝑆𝐷 = {}, return the

AMIS from step (2.4); if not, go to step (2.2).

(2.6) Find the MWIS based on the AMIS.

36

3.5 Reducing the Complexity of the Algorithm Using Approximation Algorithms

3.5.1 Discussion on the Complexity

The runtime of the proposed Algorithm A1 and A2 highly depends on the input graph. In the

Algorithm A1, the node adding procedures through step (1.2) to step (1.5), the Preliminary Sets

are computed based on the CUS, or they may inherit the MWIS of previous induced subgraph

before adding the node. By searching the dictionary, which stores the results of previous node

adding steps, computations for Preliminary Sets are at low cost. But computations for Compare

Sets may require executing Algorithm A1 on the CSSs according to the node adding heuristics.

This leads to exponential complexity.

Let us take the graph 𝐺3−5 in Figure 3-5 as an example to illustrate the complexity of the

proposed algorithm structure, to simplify the problem, assuming weights of the vertices are the

same as the vertex index.

0 1 2 3 4 5 6 7

1 2

8 Compare Set Subgraph at level node

 Preliminary Set Subgraph at level node

Removed Nodes

Figure 3-5. A sample graph with 9 vertices

Based on step (1.1) in Algorithm A1,

𝑆𝐷 = {′1′: [{′0′, ′8′}, {′2′, ′3′, ′4′, ′5′, ′6′, ′7′}], ′5′: [{′2′, ′3′, ′4′}, {′6′, ′7′}]}

37

At level node ‘5’, the Preliminary Set is {'2','4','7'} and the Compare Set is {'3','5','7'} in the

subgraph induced by nodes, {′5′, ′2′, ′3′, ′4′, ′6′, ′7′}. The MWIS as level node ‘5’ is {'3','5','7'}.

At level node ‘1’, based on the step (1.4), the Preliminary Set is the union the two MWIS of the

two induced subgraphs (in the blue boxes), 𝐼𝑛𝑑𝐺3−5({
′0′, ′8′}) and

𝐼𝑛𝑑𝐺3−5({′2′, ′3′, ′4′, ′5′, ′6′, ′7′}) . The MWIS of 𝐼𝑛𝑑𝐺3−5({
′0′, ′8′}) is simple to know. The

MWIS of 𝐼𝑛𝑑𝐺3−5({′2′, ′3′, ′4′, ′5′, ′6′, ′7′}) is the same as the MWIS at level node ‘5’, which is

{'3’, ‘5’, ‘7’}. But for the Compare Set, whenever the CSS does not satisfy the Theorem 3-2

conditions, we need to execute the Algorithm A1. Just like the CSS in the yellow boxes shown as

Figure 3-6, it requires to execute Algorithm A1 to get the Compare Set at level node ‘1’, which is

{'1’, ‘3’, ‘5’, ‘7’}. Such a linear recurrence leads to exponential complexity (Erickson, 2018).

Note that, since Algorithm A2 follows a similar structure, but it is returning the AMIS at each

step, the Algorithm A1 and A2 have the same complexity with the same input graph.

Figure 3-6. The CSS at Level Node ‘1’

3.5.2 Merging Approximation Algorithms with the Proposed MWIS Algorithm

Since calculations for the Compare Set slow down the execution of the proposed Algorithm A1

for the MWIS problem, we can speed up the computation by replacing Algorithm A1 on

computing MWIS for Compare Sets with fast MWIS approximation algorithms. To illustrate this

idea, we utilize two low complexity approximation algorithms to compute the Compare Set.

Sakai et al. (Sakai et al., 2003) discuss greedy algorithms for the MWIS problem (GMIN-type

1 3 4 5 6 7

1

38

algorithms). Two algorithms are the GMWIN and GMWIN2, which select a node of maximizing

a node selection function, then remove it and its neighbors from the graph, and iterates this

process on the remaining graph (induced subgraph) until no vertex remains. The set of selected

nodes is the desired independent set. Let 𝐺 = (𝑉, 𝐸,𝑊) be a simple undirected graph with node

set 𝑉, a set of edges 𝐸, and 𝑊 is a set of weight factors associated with element in 𝑉. Let 𝑢, 𝑣 ∈

𝑉, for each 𝑣𝑖 ∈ 𝑉 (0 ≤ 𝑖 ≤ |𝐼| − 1), the two node-selecting functions are:

(1) GWMIN: maximizing
𝑊𝑢

𝑑𝐺𝑖(𝑢)+1

(2) GWMIN2: maximizing
𝑊𝑢

∑ 𝑊𝑢𝑢∈𝑁𝑒𝑖𝑔𝐺𝑖
+ (𝑢)

Where, 𝐺𝑖 is the remaining graph. We refer to the two simple greedy algorithms as Algorithm A3

GMWIN and Algorithm A6 GMWIN2, which are using the GWMIN and GWMIN2 node

selection functions, respectively.

Let us consider the following framework of GMIN-type algorithms.

Algorithm A3 and A6. The Algorithm GWMIN and Algorithm GMWIN2

As approximation algorithms, we are interested to know the lower bound of their accuracy. Sakai

et al. (Sakai et al., 2003) proved the Theorem 3-3 and Theorem 3-4 as the lower bounds of the

accuracy of the two algorithms.

Algorithm A3 GMWIN and Algorithm A6 GMWIN2, GMIN-type Algorithm Framework

INPUT: A weighted graph G

OUTPUT: A maximal independent set in G

begin

𝐼: = ∅; 𝑖: = 0; 𝐺𝑖: = 𝐺;

while 𝑉(𝐺𝑖) ≠ ∅ do

Choose a node based on a node-selecting function, say 𝑣𝑖, in 𝐺𝑖;
𝐼: = 𝐼 ∪ {𝑣𝑖}; 𝐺𝑖 + 1:= 𝐺𝑖[𝑉(𝐺𝑖) − 𝑁𝑒𝑖𝑔(𝑣𝑖) + 𝐺𝑖(𝑣𝑖)];
𝑖: = 𝑖 + 1;

od

Output 𝐼;
end.

39

With the approximation algorithms ready, we employ two different methods to merge an

approximation algorithm with the proposed MWIS algorithm structure. Shown as Figure 3-7, in

the step (1.3) of Algorithm A1, we denote the whole induced subgraph 𝐺𝑙 at the level node ‘𝑙,’

which is the PPS at the level node ‘𝑙’ plus node ‘𝑙’ (with the attached edges) in the node adding

Proof of Theorem 3-4:

Let 𝐼 = {𝑣1, 𝑣2, … , 𝑣𝑡} be the independent set obtained by the algorithm. Let 𝑓𝐺(𝑣) =
𝑊𝑣/∑ 𝑊𝑢𝑢∈𝑁𝑒𝑖𝑔𝐺

+(𝑣) .

∑𝑊𝑣𝑖 ≥

𝑡

𝑖=1

∑(𝑓𝐺𝑖(𝑣𝑖) × ∑ 𝑊𝑢

𝑢∈𝑁𝑒𝑖𝑔𝐺𝑖
+ (𝑣𝑖)

)

𝑡

𝑖=1

≥ ∑ (∑ 𝑓𝐺𝑖(𝑣𝑖)𝑊𝑢𝑢∈𝑁𝑒𝑖𝑔𝐺𝑖
+ (𝑣𝑖)

)𝑡
𝑖=1 (from 𝑓𝐺𝑖(𝑣𝑖) ≥ 𝑓𝐺𝑖(𝑢)∀𝑢 ∈ 𝑉(𝐺𝑖))

≥ ∑ 𝑓𝐺(𝑣)𝑊𝑣𝑣∈𝑉(𝐺) (from 𝑓𝐺𝑖(𝑢) ≥ 𝑓𝐺(𝑢)∀𝑢 ∈ 𝑉(𝐺))

=∑
𝑊𝑣
2

∑ 𝑊𝑢𝑢∈𝑁𝑒𝑖𝑔𝐺
+(𝑣)𝑣∈𝑉

 ∎

Theorem 3-4. Algorithm A6 GWMIN2 outputs an independent set of weight at least

∑
𝑊𝑣
2

∑ 𝑊𝑢𝑢∈𝑁𝑒𝑖𝑔𝐺
+(𝑣)

𝑣∈𝑉 .

Proof of Theorem 3-3:

∑ 𝑊𝑣𝑖 ≥

|𝐼|−1

𝑖=0

∑ (∑
𝑊𝑢

𝑑𝐺𝑖(𝑢) + 1𝑢∈𝑁𝑒𝑖𝑔𝐺𝑖
+ (𝑣𝑖)

)

|𝐼|−1

𝑖=0

≥ ∑ (∑
𝑊𝑢

𝑑𝐺(𝑢) + 1
𝑢∈𝑁𝑒𝑖𝑔𝐺𝑖

+ (𝑣𝑖)

)

|𝐼|−1

𝑖=0

=∑
𝑊𝑣

𝑑𝐺(𝑣) + 1𝑣∈𝑉
 ∎

Theorem 3-3. Algorithm A3 GWMIN outputs an independent set of weight at least

∑
𝑊𝑣

𝑑𝐺(𝑣)+1
𝑣∈𝑉 .

40

processes. Based on this assumption, the CSS at the level node ‘𝑙’ is the induced subgraph of

𝐶_𝑁𝑒𝑖𝑔_𝐼𝑛𝑑𝐺𝑙(𝑙) plus the node ‘𝑙 ,’ 𝐶_𝑁𝑒𝑖𝑔_𝐼𝑛𝑑𝐺𝑙(𝑙) ∪ {′𝑙′}; the PPS is the complementary

induced subgraph 𝐶_𝐼𝑛𝑑𝐺𝑙(𝑙). We can either apply an approximation algorithm on the whole

induced subgraph 𝐺𝑙 or the 𝐶_𝑁𝑒𝑖𝑔_𝐼𝑛𝑑𝐺𝑙(𝑙) for computing an MWIS as the Compare Set at the

level node ‘𝑙.’ Formally, for the two approximation algorithms, GWMIN and GWMIN2, four

merged MWIS approximation algorithms are as follows:

(1) Algorithm A4 MWIS_CS_GWMIN: In the step (1.3) of Algorithm A1, when the CSSs

do not satisfy the Theorem 3-1 conditions, instead of executing the Algorithm A1 on the

CSSs, we compute Compare Sets based on the whole subgraph 𝐺𝑙 using Algorithm A3

GWMIN.

(2) Algorithm A5 MWIS_SubCS_GWMIN: In the step (1.3) of Algorithm A1, when the

CSSs do not satisfy the Theorem 3-1 conditions, we use Algorithm A3 GWMIN to

compute MWISs on the 𝐶_𝑁𝑒𝑖𝑔_𝐼𝑛𝑑𝐺𝑙(𝑙) , then plus node ‘ 𝑙 ’ for Compare Set

computations.

(3) Algorithm A7 MWIS_CS_GWMIN2: In the step (1.3) of Algorithm A1, when the CSSs

do not satisfy the Theorem 3-1 conditions, we compute Compare Sets based on the whole

subgraph 𝐺𝑙 using Algorithm A6 GWMIN2.

(4) Algorithm A8 MWIS_SubCS_GWMIN2: In the step (1.3) of Algorithm A1, when the

CSSs do not satisfy the Theorem 3-1 conditions, we use Algorithm A3 GWMIN2 to

compute MWISs on the 𝐶_𝑁𝑒𝑖𝑔_𝐼𝑛𝑑𝐺𝑙(𝑙) , then plus node ‘ 𝑙 ’ for Compare Set

computations.

41

G

CSS PSS

CSS PSS

CSS PSS

CSS PSS

...

1

2

3

m

n2

n3

nm

...
CSS PSSl

nl

...

...

Method#2: apply an

approximation

algorithm on the

induced CSS excluding

the removed node.

n1 removed nodes

There are two ways for

computing the Compare Sets

with approximation algorithms.

G1

G2

G3

Gl

Gm

Method#1: apply an

approximation

algorithm on the whole

induced subgraph Gl at

the level of the removed

node.

Figure 3-7. Merging Approximation Algorithms with the MWIS Algorithm Structure

According to Theorem 3-2, both composed MWIS approximation algorithms generate results no

42

worse than the lower bound of the original approximation algorithms. In Algorithm A5 and

Algorithm A8, the approximation algorithms are used on the 𝐶_𝑁𝑒𝑖𝑔_𝐼𝑛𝑑𝐺𝑙(𝑙) , compare to

Algorithm A4 and Algorithm A7, which are the approximation algorithms using the Algorithm

A3 GWMIN and Algorithm A6 GWMIN2 on the whole subgraph 𝐺𝑙, respectively. By definition,

the complementary neighbor induced subgraph, 𝐶_𝑁𝑒𝑖𝑔_𝐼𝑛𝑑𝐺𝑙(𝑙), is smaller than the whole

induced subgraph 𝐺𝑙, because the node 𝑛 and its neighbors are not included in 𝐶_𝑁𝑒𝑖𝑔_𝐼𝑛𝑑𝐺𝑙(𝑙).

Theoretically, the Algorithm A5 and Algorithm A8 should have better accuracy than the

Algorithm A4 and Algorithm A7, respectively. And the Algorithm A5 and Algorithm A8 should

have a faster computational speed than the Algorithm A4 and Algorithm A7, respectively. The

computational experiments in the following section also justify these conjectures.

3.6 Computational Experiment on MWIS Algorithms

According to the proposed approach for the Process Planning and Scheduling (PPS) problem

discussed in Chapter 4, conflicting weighted graphs are created to test the scalability and

accuracy of the algorithms in solving the PPS problem. Forty-three conflicting weighted graphs

are created based on randomized PPS problems, from 5 nodes and 6 edges to 161 nodes and

4718 edges. The scalability analysis shows how the algorithms behave on the test graphs. It can

be evaluated based on the computation time versus the different sizes of the test graphs, which

measures by the node numbers and edge numbers of the different conflicting graphs. The

accuracy refers to how likely the proposed approach can get to the optimum solution, MWIS. It

can be measured by the average and the maximum error rate of all the test instances. The details

of the results are shown in Appendix II.

43

Before we start the discussion on the scalability and accuracy, let us formally summarize all the

MWIS algorithms to be tested as below:

• Algorithm A1 MWIS: the proposed exact MWIS algorithm.

• Algorithm A2 AMISL: the proposed exact AMISL-based MWIS algorithm.

• Algorithm A3 GWMIN: the GWMIN approximation algorithm from literature.

• Algorithm A4 MWIS_CS_GWMIN: it is an algorithm composed of Algorithm A1 and

Algorithm A3. This algorithm computes Compare Sets based on the whole induced

subgraph at each level using Algorithm A3 GWMIN.

• Algorithm A5 MWIS_SubCS_GWMIN: it is an algorithm composed of Algorithm A1

and Algorithm A3. This algorithm computes Compare Sets based on the induced CSSs,

excluding the current removed node, using Algorithm A3 GWMIN.

• Algorithm A6 GWMIN2: the GWMIN2 approximation algorithm from literature.

• Algorithm A7 MWIS_CS_GWMIN2: it is an algorithm composed of Algorithm A1 and

Algorithm A6. This algorithm computes Compare Sets based on the whole induced

subgraph at each level using Algorithm A6 GWMIN2.

• Algorithm A8 MWIS_SubCS_GWMIN2: it is an algorithm composed of Algorithm A1

and Algorithm A6. This algorithm computes Compare Sets based on the induced CSSs,

excluding the current removed node, using Algorithm A6 GWMIN2.

The computation time of Algorithms A1 and A2 changing with node number and edge number is

shown in Figure 3-8 and Figure 3-9, respectively. Algorithms A1 and A2, as discussed in section

3.5, can be exponentially slow on certain graphs. The computation time can be hours when there

are about 140 nodes and 4000 edges. Although the worst case of the two algorithms can be

44

exponentially slow, the using scenarios of the PPS problem considered here may not always be

the worst case. Algorithms A1 and A2 match higher-order (order 4 or higher) polynomial

trendlines, but they are faster than the exponential trendline.

Figure 3-10 and Figure 3-11 show how the computation time changing with node number and

edge number on Algorithms A3 and A6, respectively. Algorithms A3 and A6 are the

approximation algorithms from literature, and they are the fastest among the 8 algorithms. The

computation time is less than one second on the test graphs. Algorithms A3 and A6 are in lower-

order polynomial complexity on the test graphs. The difference in the complexity of the two

algorithms is due to the different greedy functions of the two algorithms.

Figure 3-12 and Figure 3-13 show how the computation time is changing with node number and

edge number on Algorithms A4, A5, A7, and A8, respectively. Algorithms A4, A5, A7, and A8

are the composed algorithms based on Algorithm A1 structure with MWIS approximation

algorithms. They are slower than the approximation algorithms utilized, but they are still much

faster than the exact MWIS algorithms. The computation time is less than 45 seconds on the test

graphs. Algorithm A5 and A8 are faster than Algorithm A4 and A7, respectively. This result of

computational experiments matches the conjectures in section 3.5 that is the Compare Set

computation is based on a smaller subgraph. And the Algorithm A7 and A8 are faster than

Algorithm A4 and A5, respectively. This result also justifies that Algorithms A6 is faster than

Algorithms A3 when the graph is relatively small (less than 3500 edges and less than 135 nodes.)

45

Figure 3-8. Computation Time with Node Number of Algorithms A1 and A2

Figure 3-9. Computation Time with Edge Number of Algorithms A1 and A2

0

2000

4000

6000

8000

10000

12000

0 20 40 60 80 100 120 140 160

C
o

m
p

u
ta

ti
o

n
 T

im
e

(s
)

Node Number

Computation Time with Node Number of Algorithms A1 and A2

A1 A2 Poly. (A1) Expon. (A1) Poly. (A2)

0

2000

4000

6000

8000

10000

12000

0 500 1000 1500 2000 2500 3000 3500 4000 4500

C
o

m
p

u
ta

ti
o

n
 T

im
e

(s
)

Edge Number

Computation Time with Edge Number of Algorithms A1 and A2

A1 A2 Poly. (A1) Expon. (A1) Poly. (A2)

46

Figure 3-10. Computation Time with Node Number of Algorithms A3 and A6

Figure 3-11. Computation Time with Edge Number of Algorithms A3 and A6

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 20 40 60 80 100 120 140 160

C
o

m
p

u
ta

io
n

 T
im

e
(s

)

Node Number

Computation Time with Node Number of Algorithms A3 and A6

A3 A6 Poly. (A3) Poly. (A6)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 500 1000 1500 2000 2500 3000 3500 4000 4500

C
o

m
p

u
ta

ti
o

n
 T

im
e

(s
)

Edge Number

Computation Time with Edge Number of Algorithms A3 and A6

A3 A6 Poly. (A3) Poly. (A6)

47

Figure 3-12a. Computation Time with Node Number of Algorithms A4, A5, A7 and A8

Figure 3-13b. Computation Time with Node Number of Algorithms A4, A5, A7 and A8 (zoom-

in)

0

5

10

15

20

25

30

35

40

45

0 20 40 60 80 100 120 140 160

C
o

m
p

u
ta

ti
o

n
 T

im
e

(s
)

Node Number

Computation Time with Node Number of Algorithms A4, A5, A7
and A8

A4 A5 A7 A8 Poly. (A4) Poly. (A5) Poly. (A7) Poly. (A8)

0

1

2

3

4

5

6

7

4 14 24 34 44 54 64 74 84

C
o

m
p

u
ta

ti
o

n
 T

im
e

(s
)

Node Number

Computation Time with Node Number of Algorithms A4, A5, A7
and A8 (zoom-in)

A4 A5 A7 A8 Poly. (A4) Poly. (A5) Poly. (A7) Poly. (A8)

48

Figure 3-14a. Computation Time with Edge Number of Algorithms A4, A5, A7 and A8

Figure 3-15b. Computation Time with Edge Number of Algorithms A4, A5, A7 and A8 (zoom-

in)

0

5

10

15

20

25

30

35

40

45

0 500 1000 1500 2000 2500 3000 3500 4000 4500

C
o

m
p

u
ta

ti
o

n
 T

im
e

(s
)

Edge Number

Computation Time with Edge Number of Algorithms A4, A5, A7
and A8

A4 A5 A7 A8 Poly. (A4) Poly. (A5) Poly. (A7) Poly. (A8)

0

1

2

3

4

5

6

7

0 200 400 600 800 1000 1200 1400

C
o

m
p

u
ta

ti
o

n
 T

im
e

(s
)

Edge Number

Computation Time with Edge Number of Algorithms A4, A5, A7
and A8 (zoom-in)

A4 A5 A7 A8 Poly. (A4) Poly. (A5) Poly. (A7) Poly. (A8)

49

Figure 3-14 shows the average and maximum error rate of the algorithms. Assume 𝑊𝑜𝑝𝑡𝑖𝑚𝑢𝑚 is

the total weight of the optimum solution of the MWIS problem on the test graph, and 𝑊 is the

total weight of the MWIS set found by the algorithm. The weight error rate is calculated using

the function below.

𝑊𝑒𝑖𝑔ℎ𝑡 𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 =
𝑊 −𝑊𝑜𝑝𝑡𝑖𝑚𝑢𝑚

𝑊𝑜𝑝𝑡𝑖𝑚𝑢𝑚
× 100%

Note that the Algorithms A1 and A2 shall return optimum solutions with the same total weight.

And the test results justify this conjecture. This value is used as the baseline, 𝑊𝑜𝑝𝑡𝑖𝑚𝑢𝑚 for the

weight error rate calculation.

The general accuracy of the algorithms can be listed below from the best to the worst:

1. Algorithm A1 MWIS

2. Algorithm A2 AMISL (same as Algorithm MWIS)

3. Algorithm A5 MWIS_SubCS_GWMIN

4. Algorithm A8 MWIS_SubCS_GWMIN2

5. Algorithm A4 MWIS_CS_GWMIN

6. Algorithm A3 GWMIN

7. Algorithm A7 MWIS_CS_GWMIN2

8. Algorithm A6 GWMIN2

As listed above, merging the approximation algorithms with Algorithm A1 structure can improve

the accuracy. And the test results justify the statement that applying the approximation algorithm

on smaller subgraphs can achieve better accuracy, e.g., Algorithm A5 and A8 have better

accuracy than the Algorithm A4 and A7, respectively.

50

Figure 3-16. The Average and Maximum Error Rate for All Algorithms

3.7 Summary

In this chapter, we proposed new algorithms for exactly solving the MWIS problem. Moreover,

based on the structure of the proposed MWIS algorithms, fast approximation algorithms

GWMIN and GWMIN2 (Sakai et al., 2003) to are applied as a subfunction for finding sub-

solutions on subgraphs. The merged algorithms are much faster than the original Algorithm A1

MWIS, and the accuracy of the outputs is no worse than the overall output of the approximation

algorithm that is used as a subfunction. All the proposed algorithms and the approximation

algorithms from the literature are tested on the conflicting graphs created based on PPS

application scenarios. The overall performance of the algorithms is illustrated in Figure 3-17.

The general accuracy of the best five algorithms can be listed below from the best to the worst:

A1

A2

A3

A4

A5

A6

A7

A8

0.00%

0.00%

1.64%

0.57%

0.00%

19.56%

4.48%

0.93%

0.00%

0.00%

15.26%

12.41%

0.00%

73.58%

22.01%

8.92%

AVERAGE AND MAXIMUM ERROR RATE
FOR ALL HEURISTICS

MAX Error

Average Error

51

Algorithm A1 MWIS; Algorithm A2 AMISL (same as Algorithm MWIS); Algorithm A5

MWIS_SubCS_GWMIN; Algorithm A8 MWIS_SubCS_GWMIN2; Algorithm A4

MWIS_CS_GWMIN. Note that all these algorithms considered satisfactory have the average

error of less than 1% and the maximum error of less than 13% (The first four algorithms have the

maximum error less than 9%) on all test instances.

Figure 3-17. Performance of the MWIS Algorithms

We establish that we always obtain feasible solutions to the MWIS problem. And for all the

general graphs we have tested, solutions to the exact MWIS algorithms are always optimum. In

the following chapters, we apply the proposed algorithms for solving the resources constrained

Process Planning and Scheduling (PPS) problem.

B
et

te
r

A
cc

u
ra

cy

More Computation Time

A1
A2

52

Chapter 4. Formulation of the Resources Constrained Process Planning and

Scheduling (PPS) Problem

In this chapter, we propose a novel approach to formulate and solve the resource-constrained

Process Planning and Scheduling (PPS) optimization problem via a conflicting weighted graph.

Using our approach, an optimized process schedule can be generated by solving the Maximum

Weighted Independent Set (MWIS) problem using the proposed MWIS algorithms discussed in

Chapter 3. Chapter 4 is organized as the following sections: Section 4.1 is the introduction to the

PPS problem and the summary of the Chapter. Section 4.2 describes the PPS problem and

formulates the mathematical model. Section 4.3 discusses how the conflicting graph is generated

for the resource-constrained PPS problem. Section 4.4 explains how we configure the weight

factors of the nodes in the conflicting graph with the proposed MWIS algorithms to achieve the

optimization objective. Then, section 4.5 takes an example from the literature to illustrate the

proposed methodologies thoroughly. Lastly, section 4.6 concludes the Chapter.

4.1 Introduction

In this chapter, we propose a novel approach for formulating and solving the resource-

constrained Process Planning and Scheduling (PPS) optimization problem. The PPS problem can

be defined as follows. Assuming there is a set of machining jobs in a machine shop, each job is

referring to the production of a part. Each job consists of a set of machining operations (tasks) to

create features for the finishing part. These machining operations are processed in a sequence,

which satisfies all the ordering constraints, and each operation requires a particular combination

of critical resources. Some examples of these critical resources include machines, tools, fixtures,

or special qualified technicians. One of the common objectives is to find a feasible schedule with

the earliest finishing time of all jobs. In other words, this goal is to create a process plan with

resource allocations minimizing the number of time slots needed to cover all operations.

53

Based on the literature review in chapter 2, firstly, a closer integration of process planning and

scheduling is required. More specifically, the determination of the operation processing order in

a machine shop and the allocation of resources for each operation need to be considered

interactively. Secondly, non-iteration or light-iteration methodologies with satisfactory accuracy

are desired for the PPS problem. More specifically, the PPS problem is usually solved in a trial

and error fashion using methods such as generic algorithms and metaheuristics. However, such

methodologies do not guarantee an optimal solution is ever found, and they usually do not scale

well with complexity. Also, these methods operating on dynamic data sets is difficult, as

genomes begin to converge early on towards solutions which may no longer be valid for later

data.

In our approach, the two procedures, the resource selection and process scheduling, in the PPS

problem are integrated and formulated into an undirected weighted conflicting graph due to the

nature of sequencing and resource constraints. A node in the conflicting graph represents one

operation with one possible combination of its required resources during one time slot, and an

edge indicates that there is a conflict between the two nodes at both ends of the edge. Each node

in the graph is assigned with a weight factor as the guidance for the node selection process to

fulfill the optimization objective. The node with a higher possibility leading to the objective, is

given a larger weight, so that they are more likely to be selected when generating the schedule.

We utilize algorithms proposed in Chapter 3 to solve the Maximum Weighted Independent Set

(MWIS) problem to realize this node selection process to get the optimum or a near-optimum

solution. A simplified PPS example problem from the literature (Zhang et al., 2014) is employed

to illustrate the proposed approach.

54

4.2 Process Planning and Scheduling Problem

4.2.1 Problem Description

As an example of the PPS problem in a manufacturing system, there are four parts to be

processed by four machines with a number of tools. Each part requires several operations (four

parts have 4, 3, 3, and 4 operations, respectively), and each operation can be performed on at

least one available machine with different processing times. Table 4-1 shows the operation

information of the four parts. Each column describes the part ID, operation ID, successors,

operation name, machine candidates, tool candidates, and machining time, respectively. The

illustration of one feasible solution to this example problem is shown in Figure 4-2.

Table 4-1. Operation Information of Part 1-4

Part-ID Op-ID Successor Operations Machine Candidates Tool Candidates Machining time

(time unit)

Part 1 O1,1 O1,2, O1,3 Milling M2, M3, M4 T6, T7 40, 40, 30

 O1,2 O1,4 Milling M2, M3, M4 T6, T7 40, 40, 30

 O1,3 O1,4 Milling M2, M3, M4 T6, T7 20, 20, 15

 O1,4 - Drilling M1, M2, M3, M4 T2 12, 10, 10, 7.5

Part 2 O2,1 O2,2, O2,3 Drilling M1, M2, M3, M4 T1 12, 10, 10, 7.5

 O2,2 - Milling M2, M3, M4 T12 20, 20, 15

 O2,3 - Milling M2, M3, M4 T6, T7, T11 18, 18, 13.5

Part 3 O3,1 O3,2 Milling M2, M3, M4 T7, T8 20, 20, 15

 O3,2 - Milling M2, M3, M4 T7, T8 20, 20, 15

 O3,3 O3,2 Milling M2, M3, M4 T7, T8 15, 15, 11.25

Part 4 O4,1 O4,3 Milling M2, M3 T6, T9 12, 15

 O4,2 O4,4 Milling M2, M3 T9, T10 21, 18

 O4,3 - Milling M2, M3 T3 18, 25

 O4,4 - Milling M2, M3 T1, T3 27, 25

The PPS problem herein is to determine a process plan and schedule (Gantt chart is shown in the

lower part of Figure 4-1), which provides the information for decision-makers on how, when,

and in which sequence to allocate these operations of parts to suitable manufacturing resources

effectively. When determining the process plan, the best practice operation sequence should be

55

decided first. Then, manufacturing resources such as a machine and one tool should be assigned

to every operation. All the manufacturing resources are assumed available in this phase. The

determination of schedule is to decide the most appropriate moment to execute each operation

with competitive resources like machines, tools, and other possible critical resources. Precedence

constraints and resource constraints should be satisfied while determining the process plan and

schedule. Moreover, this process plan and schedule should also satisfy the optimization

objectives (in this case, minimizing the makespan) concurrently while maintaining the

feasibility.

The problem can be defined as follows:

(i) Part scheduling: determining how and when to allocate the manufacturing resources

to the parts and satisfying the best practice operation sequencing for all the parts.

(ii) Machine and tool selecting: determining the resource selection according to the

feature geometry and available machining resources.

The PPS problem subjects to the following assumptions:

A1. Each resource set (a set of resources needed for processing an operation) can only

handle one operation at each time;

A2. Each operation is completed before another operation is loaded;

A3. The sequence of the operations of each part complies with manufacturing constraints;

A4. All parts, machines, tools and other possible resources are available at time zero

simultaneously;

A5. Each operation is performed on a single resource set, and each resource can only be

occupied by one operation at a time;

56

A6. The time for setup change is considered as part of the operation. The time for a

machine change or a tool change follows the same assumption;

A7. Machines are continuously available for production.

Figure 4-1. Illustration of the PPS Example Problem

M1

M2

M3

M4

O2,1 : 12

O1,1 : 40 O3,2 : 20 O2,2 : 20 O2,3 : 18

O3,3 :

11.25

O4,2 : 18 O4,4 : 25 O4,1 : 15 O4,3 : 25

O3,1 : 15

20 40

O1,2 : 30 O1,3 : 15
O1,4 :

7.5

60 80 98

T9

T10

T11

T12

O2,1 : 12

O1,1 : 40

O3,2 : 20

O2,2 : 20

O2,3 : 18

O3,3 :

11.25

O4,2 : 18

O4,4 : 25

O4,1 : 15

O4,3 : 25

O3,1 : 15

20 40

O1,2 : 30

O1,3 : 15

O1,4 :

7.5

60 80 98

T8

T7

T6

T5

T3

T2

T1

Part #1: O1,1 O1,2 O1,3 O1,4

O2,1 O2,2 O2,3

O3,3 O3,1 O3,2

O4,2 O4,4 O4,1 O4,3Part #2:

Part #3:

Part #4:

57

As for the constraints, there are precedence constraints among the operations of each part. These

precedence relationships must not be violated in the manufacturing process. For example, a best

practice operation sequence of 14 operations from example PPS problem is shown as in the top

part of Figure 4-1. According to this operation sequence, the manufacturing resources can be

specified (machines, tools, and other possible critical resources), and then, the schedule can be

determined.

4.2.2 Mathematical Formulation of the PPS Problem

Many important and frequently-used objectives in both literature and real-life are applied in the

PPS problem. To name a few, there are minimizing the makespan, variation of workload for each

machine, minimizing cost, maximizing capacity utilization, delivery dates, or profit

optimizations. In this work, we are focusing on minimizing the makespan as the main objective

for our solution to the PPS problem. Minimizing the makespan means that the manufacturing

system can get high production in a limited period. Or, in other words, the earliest time for

finishing all the planned parts. The mathematical model of the problem is expressed in the

following notations:

Indices

𝑖, 𝑘: indices of part, (𝑖, 𝑘 = 1, 2, . . . , 𝐼).

𝑗, ℎ: indices of operation for part 𝑖, (𝑗, ℎ = 1, 2, . . . , 𝐽𝑖).

𝑚: index of machine, (𝑚 = 1, 2, . . . , 𝑀).

𝑙: index of tool, (𝑙 = 1, 2, . . . , 𝐿).

58

Parameters

𝐼: number of parts.

𝐽𝑖: number of operations for part 𝑖.

𝑀: number of machines.

𝐿: number of tools.

𝑂𝑖: set of operations for part 𝑖, 𝑂𝑖 = {𝑜𝑖,𝑗 | 𝑗 = 1, 2, . . . , 𝐽𝑖}.

𝑜𝑖,𝑗: the 𝑗th operation of part 𝑖.

𝑚𝑚: the 𝑚th machine.

𝑡𝑙: the 𝑙th tool.

𝑀𝑖,𝑗: a set of machines that can process 𝑜𝑖,𝑗.

𝐿𝑖,𝑗: a set of tools that can process 𝑜𝑖,𝑗.

𝐴𝑚: a set of operations that can be processed on machine 𝑚.

𝐴𝑙: a set of operations that can be processed with tool 𝑙.

𝑟𝑖,𝑗,ℎ: precedence constraints. if 𝑜𝑖,𝑗 is predecessor of 𝑜𝑖,ℎ, 𝑟𝑖,𝑗,ℎ = 1; otherwise, 0.

𝑡𝑚,𝑖,𝑗
𝑃 : processing time of 𝑜𝑖,𝑗 by machine 𝑚. All the process related time such as setup

time, tool and machine change time are integrated with 𝑡𝑚,𝑖,𝑗
𝑃 .

𝑡𝑚,𝑖,𝑗
𝐶 : completion time of 𝑜𝑖,𝑗 by machine 𝑚, it should satisfy the inequality 𝑡𝑚′,𝑖,(𝑗−1)

𝐶 +

𝑡𝑚,𝑖,𝑗
𝑃 ≤ 𝑡𝑚,𝑖,𝑗

𝐶 that means for every operation, its direct predecessor’s completion time

plus its processing time might be shorter than its completion time.

Decision variables

𝑥𝑚,𝑖,𝑗
𝑀 = {

1, 𝑖𝑓 𝑜𝑖,𝑗 𝑖𝑠 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑒𝑑 𝑏𝑦 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑚,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (1)

59

𝑥𝑙,𝑖,𝑗
𝐿 = {

1, 𝑖𝑓 𝑜𝑖,𝑗 𝑖𝑠 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑒𝑑 𝑏𝑦 𝑡𝑜𝑜𝑙 𝑙,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2)

𝑦𝑖,𝑗,𝑘,ℎ = {
1, 𝑖𝑓 𝑜𝑖,𝑗 𝑖𝑠 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑒𝑑 𝑜𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑟𝑖𝑔ℎ𝑡 𝑏𝑒𝑓𝑜𝑟𝑒 𝑜𝑘,ℎ,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3)

Ω(𝑋, 𝑌) = {
1, 𝑖𝑓 𝑋 ≠ 𝑌,
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4)

The mathematical model for minimization of makespan can be formulated as the following the

mixed-integer programming model:

min 𝑡𝑀 = max
𝑚,𝑖,𝑗

{𝑡𝑚,𝑖,𝑗
𝐶 } (5)

𝑠. 𝑡. (𝑡𝑚,𝑘,ℎ
𝐶 − 𝑡𝑚,𝑘,ℎ

𝑃 − 𝑡𝑚,𝑖,𝑗
𝐶) ∗ 𝑥𝑚,𝑖,𝑗

𝑀 ∗ 𝑥𝑚,𝑘,ℎ
𝑀 ∗ 𝑦𝑖,𝑗,𝑘,ℎ = 0, ∀(𝑖, 𝑗), (𝑘, ℎ),𝑚 (6)

𝑠. 𝑡. (𝑡𝑚,𝑘,ℎ
𝐶 − 𝑡𝑚,𝑘,ℎ

𝑃 − 𝑡𝑚,𝑖,𝑗
𝐶) ∗ 𝑥𝑙,𝑖,𝑗

𝐿 ∗ 𝑥𝑙,𝑘,ℎ
𝐿 ∗ 𝑦𝑖,𝑗,𝑘,ℎ = 0, ∀(𝑖, 𝑗), (𝑘, ℎ), 𝑙 (7)

𝑟𝑖,𝑗,ℎ ∗ 𝑦𝑖,ℎ,𝑖,𝑗 = 0, ∀(𝑖, 𝑗), ℎ (8)

𝑦𝑖,𝑗,𝑖,𝑗 = 0, ∀(𝑖, 𝑗) (9)

∑ 𝑥𝑚,𝑖,𝑗
𝑀𝑀

𝑚−1 = 1 , ∀(𝑖, 𝑗) (10)

∑ 𝑥𝑙,𝑖,𝑗
𝐿𝐿

𝑙−1 = 1 , ∀(𝑖, 𝑗) (11)

𝑥𝑚,𝑖,𝑗
𝑀 = 0, ∀(𝑖, 𝑗) ∉ 𝐴𝑚, ∀𝑚 (12)

𝑥𝑙,𝑖,𝑗
𝐿 = 0, ∀(𝑖, 𝑗) ∉ 𝐴𝑙 , ∀𝑙 (13)

𝑦𝑖,𝑗,𝑘,ℎ ∈ {0,1}, ∀(𝑖, 𝑗), (𝑘, ℎ) (14)

𝑥𝑚,𝑖,𝑗
𝑀 ∈ {0,1}, ∀𝑚, (𝑖, 𝑗) (15)

𝑥𝑙,𝑖,𝑗
𝐿 ∈ {0,1}, ∀𝑙, (𝑖, 𝑗) (16)

𝑡𝑚,𝑖,𝑗
𝐶 ≥ 0, ∀𝑚, (𝑖, 𝑗) (17)

𝑡𝑚,𝑖,𝑗
𝑃 ≥ 0, ∀𝑚, (𝑖, 𝑗) (18)

60

Firstly, the objective function for the PPS problem. Equation (5) illustrates the objective

function, which is the minimization of makespan 𝑡𝑀 . Makespan 𝑡𝑀 is the last operation’s

finishing time, i.e., the maximization of completion time among all the operations. Secondly, the

sequencing constraints. Equations (6) and (7) imposes that any machine or tool cannot be

selected for one operation until the predecessor is completed. The precedence constraint is

defined as Equation (8). Equation (9) ensures the feasible operation sequence. Thirdly, the

incompatible resource constraints. The feasible resource selection is defined by Equations (10)

and (11). Equation (10) ensures that one operation is only performed on a single machine, and

Equation (11) ensures that one operation requires only one tool. Equation (12) and (13) denotes

that the assignment of machine and tool for each operation should be selected from the available

machine candidates and tool candidates. Lastly, Equations (14), (15), (16), (17) and (18) impose

nonnegative condition.

4.2.3 Discussions on Formulating and Solving the PPS Problem via Conflicting Graph

Based on previous discussions, there are mainly two types of constraints, the sequencing

constraints and the incompatible recourse constraints. The former ensures the best practice

operation sequence for each part, and the latter ensures no resource conflict for operations

scheduled in parallel. Since the operation sequence of the parts is usually predefined, the PPS

problem can be considered as selecting the best set of feasible operations that can be processed in

parallel during every discrete time period. The feasible operations refer to the operations that can

be scheduled for the current time period without resource and precedence conflicts. Usually,

there is more than one set of feasible operations can be selected for the current time period. The

best set of feasible operations refers to that by scheduling the best set of feasible operations for

61

the current time period, the global optimization objective, minimizing the makespan, is most

likely to achieve. If we consider each operation-resource pair (the operation along with one

combination of the required resources during a unit discrete time period) as a node, and apply the

edges to represent the constraints, a conflicting graph can be generated for the PPS problem.

Furthermore, with a weight factor assigned to each operation-resource node as the guidance for

selecting the best set of feasible operations, solving the PPS problem becomes solving the MWIS

problem for each unit discrete time period. The output of the PPS problem is a combination of

the best sets of feasible operations of each unit discrete time period. In the following sections, we

discuss how the conflicting graph is generated, how the weight factor is calculated and assigned,

and how we generate the optimal or near-optimal solution for the example problem, as shown in

Figure 4-1.

4.3 Generating the Conflicting Graph

Based on previous discussions, the PPS problem can be naturally represented as a conflicting

graph. Then, the optimization is to find and schedule the best qualified Maximal Independent Set

(MIS) for each time period, so that an optimal processing schedule can be constructed. In this

section, we discuss how to construct the conflicting graph. There are two steps to construct the

conflicting graph, Step 1, Operation Data Preparation, and Step 2, Generating the Conflicting

Graph.

Step 1. Operation Data Preparation

Before we start to generate the conflicting graph, let us reformulate all operations of the parts

that need to be produced. In this step, we need three types of information on the operations of the

parts, they are (1) the best practice operation sequence, (2) the resource options of each

62

operation, and (3) the processing time of each operation with each of its resource combinations.

The top part of Figure 4-1 illustrates the best practice operation sequence of each part. And from

Table 4-1, we understand machine candidates, tool candidates, and machining time associated

with the machines, respectively. With this information, we can reformulate the operation

information of the parts as Figure 4-2.

Figure 4-2. Reformatted Parts Information

Part #1: 𝑂1,1 → 𝑂1,2 → 𝑂1,3 → 𝑂1,4

(

T1,1a[(M2, M3)1 and (T6, T7)1]

40
T1,1b[(M4)1 and (T6, T7)1]

30

)

1

→ (

T1,2a[(M2, M3)1 and (T6, T7)1]

40
T1,2b[(M4)1 and (T6, T7)1]

30

)

1

→ (

T1,3a[(M2, M3)1 and (T6, T7)1]

20
T1,3b[(M4)1 and (T6, T7)1]

15

)

1

→

(

T1,4a[(M1)1 and (T2)1]

12
T1,4b[(M2,𝑀3)1 and (T2)1]

10
T1,4c[(M4)1 and (T2)1]

7.5)

1

Part #2: 𝑂2,1 → 𝑂2,2 → 𝑂2,3

(

T2,1a[(M1)1 and (T1)1]

12
T2,1b[(M2,𝑀3)1 and (T1)1]

10
T2,1c[(M4)1 and (T1)1]

7.5)

1

→ (

T2,2a[(M2, M3)1 and (T12)1]

20
T2,2b[(M4)1 and (T12)1]

15

)

1

→ (

T2,3a[(M2, M3)1 and (T5,T6,T11)1]

18
T2,3b[(M4)1 and (T5,T6,T11)1]

13.5

)

1

Part #3: 𝑂3,3 → 𝑂3,1 → 𝑂3,2

 (

T3,1a[(M2, M3)1 and (T7,T8)1]

15
T3,1b[(M4)1 and (T7,T8)1]

11.25

)

1

→ (

T3,2a[(M2, M3)1 and (T7,T8)1]

20
T3,2b[(M4)1 and (T7,T8)1]

15

)

1

→ (

T3,3a[(M2, M3)1 and (T7,T8)1]

20
T3,3b[(M4)1 and (T7,T8)1]

15

)

1

Part #4: 𝑂4,2 → 𝑂4,4 → 𝑂4,1 → 𝑂4,3

 (

T4,1a[(M2)1 and (T9,T10)1]

21
T4,1b[(M3)1 and (T9,T10)1]

18

)

1

→ (

T4,2a[(M2)1 and (T1,T3)1]

27
T4,2b[(M3)1 and (T1,T3)1]

25

)

1

→ (

T4,3a[(M2)1 and (T6,T9)1]

12
T4,3b[(M3)1 and (T6,T9)1]

15

)

1

→

(

T4,4a[(M2)1 and (T3)1]

18
T4,4b[(M3)1 and (T3)1]

25

)

1

63

Figure 4-3. Interpretation for Operation Data Preparation

As described in Figure 4-3, it can be interpreted as the four operations for Part #1 need to be

processed in the sequence of 𝑂1,1 → 𝑂1,2 → 𝑂1,3 → 𝑂1,4. Each operation of each part is corresponding

to a detailed task unit. For instance, the first operation 𝑂1,1is corresponding to the detailed task

unit, (

T1,1a[(M2, M3)1 and (T6,T7)1]

40
T1,1b[(M4)1 and (T6,T7)1]

30

)

1

, which means that operation 𝑂1,1 can be processed with one of

the two task options, 𝑇1,1𝑎 and 𝑇1,1𝑏. The 𝑇1,1𝑎 and 𝑇1,1𝑏 here indicate that we can choose one of

the options “𝑎” or “𝑏” for the operation 𝑂1,1 as the first operation (task) to produce part #1. The

task 𝑇1,1𝑎 has its detail resource information,
T1,1a[(M2, M3)1 and (T6,T7)1]

40
. It means that for the task

option 𝑇1,1𝑎 , it requires one of the machines among (M2, M3) and one of the tools among

(𝑇6, 𝑇7). And the duration of task option 𝑇1,1𝑎 is 40 time units.

Each operation with its resource selection needs a certain period of time to process; we can

simplify the problem by fitting the processing time of an operation into a discrete number of time

slots. For example, if an operation 𝑜𝑚,𝑛 requires 35 time units to finish, and we define each time

slot (1TS) stands for 10 time units. Therefore, the operation 𝑜𝑚,𝑛 needs 4 time slots (4TS) to

process. Based on this assumption, we can translate Figure 4-2 to Figure 4-4 with the simplified

64

processing time (duration) information.

Since we want to use the node in the conflicting graph to represent a task with its resource

instance, while choosing the best qualified MIS of nodes, tasks with different durations may

cause unbalanced conflicting constraints. Because a long duration task only causes one

conflicting count with another conflicting task. In order to capture all the possible constraints, as

well as simplify the weight factor calculation and fulfill different weights factor assignment

strategies, we want to ensure every node in the conflicting graph stands for one task with one

combination instance of its required resources for one time slot. Based on the task information in

Figure 4-4, we break down all tasks into single time slots. We name a task that is broken down in

such a way as a Unit Task. For example,
T1,1a−1[(M2, M3)1 and (T6,T7)1]

1𝑇𝑆
 is a Unit Task, it can be

marked as T1,1a−1, which means that it is the first Unit Task of option “a” in part #1 operations.

According to the details of T1,1a−1, it requires one of the machines among (M2, M3) and one of

the tools among (𝑇6, 𝑇7) . Based on the information from Figure 4-4, the transformed tasks

information in Unit Tasks is shown in Figure 4-5. The information in Figure 4-5 can be

formulated into a dictionary for the implementation of the proposed approach. The format is

shown in Figure 4-6 below; there are 47 Unit Tasks after breaking up. In the next step, we

discuss how we can generate the nodes and edges for generating the conflicting graph for the

PPS problem.

65

Figure 4-4. Tasks Information with Simplified Duration Information

Part #1: 𝑂1,1 → 𝑂1,2 → 𝑂1,3 → 𝑂1,4

(

T1,1a[(M2, M3)1 and (T6, T7)1]

4𝑇𝑆
T1,1b[(M4)1 and (T6, T7)1]

3𝑇𝑆

)

1

→ (

T1,2a[(M2, M3)1 and (T6, T7)1]

4𝑇𝑆
T1,2b[(M4)1 and (T6, T7)1]

3𝑇𝑆

)

1

→ (
T1,3a[(M2, M3, M4)1 and (T6, T7)1]

2𝑇𝑆
)

1

→ (

T1,4a[(M1)1 and (T2)1]

2𝑇𝑆
T1,4b[(M2, M3, M4)1 and (T2)1]

1𝑇𝑆

)

1

Part #2: 𝑂2,1 → 𝑂2,2 → 𝑂2,3

(

T2,1b[(M1)1 and (T1)1]

2𝑇𝑆
T2,1a[(M2, M3, M4)1 and (T1)1]

1𝑇𝑆

)

1

→ (
T2,2a[(M2, M3, M4)1 and (T12)1]

2𝑇𝑆
)

1

→ (
T2,3a[(M2, M3, M4)1 and (T6, T7, T11)1]

2𝑇𝑆
)

1

Part #3: 𝑂3,3 → 𝑂3,1 → 𝑂3,2

(
T3,1a[(M2, M3, M4)1 and (T7, T8)1]

2𝑇𝑆
)

1

→ (
T3,2a[(M2, M3, M4)1 and (T7, T8)1]

2𝑇𝑆
)

1

→ (
T3,3a[(M2, M3, M4)1 and (T7, T8)1]

2𝑇𝑆
)

1

Part #4: 𝑂4,2 → 𝑂4,4 → 𝑂4,1 → 𝑂4,3

(

T4,1a[(M2)1 and (T9, T10)1]

3𝑇𝑆
T4,1b[(M3)1 and (T9, T10)1]

2𝑇𝑆

)

1

→ (
T4,2a[(M2, M3)1 and (T1, T3)1]

3𝑇𝑆
)

1

→ (
T4,3a[(M2, M3)1 and (T6, T9)1]

2𝑇𝑆
)

1

→ (

T4,4a[(M2)1 and (T3)1]

2𝑇𝑆
T4,4b[(M3)1 and (T3)1]

3𝑇𝑆

)

1

66

Figure 4-5. Transformed Tasks Information in Unit Tasks

Part #1: 𝑂1,1 → 𝑂1,2 → 𝑂1,3 → 𝑂1,4

(

T1,1a−1[(M2, M3)1 and (T6, T7)1]

1𝑇𝑆
→
T1,1a−2[(M2, M3)1 and (T6 , T7)1]

1𝑇𝑆
→
T1,1a−3[(M2 , M3)1 and (T6 , T7)1]

1𝑇𝑆
→
T1,1a−4[(M2, M3)1 and (T6, T7)1]

1𝑇𝑆
T1,1b−1[(M4)1 and (T6 , T7)1]

1𝑇𝑆
→
T1,1b−2[(M4)1 and (T6, T7)1]

1𝑇𝑆
→
T1,1b−3[(M4)1 and (T6 , T7)1]

1𝑇𝑆

)

1

→ (

T1,2a−1[(M2 , M3)1 and (T6 , T7)1]

1𝑇𝑆
→
T1,2a−2[(M2, M3)1 and (T6, T7)1]

1𝑇𝑆
→
T1,2a−3[(M2, M3)1 and (T6 , T7)1]

1𝑇𝑆
→
T1,2a−4[(M2, M3)1 and (T6, T7)1]

1𝑇𝑆
T1,2b−1[(M4)1 and (T6 , T7)1]

1𝑇𝑆
→
T1,2b−2[(M4)1 and (T6, T7)1]

1𝑇𝑆
→
T1,2b−3[(M4)1 and (T6, T7)1]

1𝑇𝑆

)

1

→ (
T1,3a−1[(M2, M3, M4)1 and (T6 , T7)1]

1𝑇𝑆
→
T1,3a−2[(M2 , M3, M4)1 and (T6, T7)1]

1𝑇𝑆
)

1

→ (

T1,4a−1[(M1)1 and (T2)1]

1𝑇𝑆
→
T1,4a−2[(M1)1 and (T2)1]

1𝑇𝑆
T1,4b[(M2, M3, M4)1 and (T2)1]

1𝑇𝑆

)

1

Part #2: 𝑂2,1 → 𝑂2,2 → 𝑂2,3

(

T2,1b−1[(M1)1 and (T1)1]

1𝑇𝑆
→
T2,1b−2[(M1)1 and (T1)1]

1𝑇𝑆
T2,1a[(M2, M3, M4)1 and (T1)1]

1𝑇𝑆

)

1

→ (
T2,2a−1[(M2, M3, M4)1 and (T12)1]

1𝑇𝑆
→
T2,2a−2[(M2, M3, M4)1 and (T12)1]

1𝑇𝑆
)

1

→ (
T2,3a−1[(M2, M3, M4)1 and (T5 , T6, T11)1]

1𝑇𝑆
→
T2,3a−2[(M2, M3, M4)1 and (T6 , T7 , T11)1]

1𝑇𝑆
)

1

Part #3: 𝑂3,3 → 𝑂3,1 → 𝑂3,2

(
T3,1a−1[(M2, M3, M4)1 and (T7 , T8)1]

1𝑇𝑆
→
T3,1a−2[(M2, M3, M4)1 and (T7 , T8)1]

1𝑇𝑆
)

1

→ (
T3,2a−1[(M2, M3, M4)1 and (T7, T8)1]

1𝑇𝑆
→
T3,2a−2[(M2, M3, M4)1 and (T7 , T8)1]

1𝑇𝑆
)

1

→ (
T3,3a−1[(M2, M3, M4)1 and (T7, T8)1]

1𝑇𝑆
→
T3,3a−2[(M2, M3, M4)1 and (T7 , T8)1]

1𝑇𝑆
)

1

Part #4: 𝑂4,2 → 𝑂4,4 → 𝑂4,1 → 𝑂4,3

(

T4,1a−1[(M2)1 and (T9 , T10)1]

1𝑇𝑆
→
T4,1a−2[(M2)1 and (T9 , T10)1]

1𝑇𝑆
→
T4,1a−3[(M2)1 and (T9 , T10)1]

1𝑇𝑆
T4,1b−1[(M3)1 and (T9, T10)1]

1𝑇𝑆
→
T4,1b−2[(M3)1 and (T9, T10)1]

1𝑇𝑆

)

1

→ (
T4,2a−1[(M2, M3)1 and (T1, T3)1]

1𝑇𝑆
→
T4,2a−2[(M2, M3)1 and (T1, T3)1]

1𝑇𝑆
→
T4,2a−3[(M2, M3)1 and (T1 , T3)1]

1𝑇𝑆
)

1

→ (
T4,3a−1[(M2, M3)1 and (T6 , T9)1]

1𝑇𝑆
→
T4,3a−2[(M2, M3)1 and (T6, T9)1]

1𝑇𝑆
)

1

→ (

T4,4a−1[(M2)1 and (T3)1]

1𝑇𝑆
→
T4,4a − 2[(M2)1 and (T3)1]

1𝑇𝑆
T4,4b−1[(M3)1 and (T3)1]

1𝑇𝑆
→
T4,4b−2[(M3)1 and (T3)1]

1𝑇𝑆
→
T4,4b−3[(M3)1 and (T3)1]

1𝑇𝑆

)

1

67

Figure 4-6. Scheduling Problem Input Format

68

Step 2. Generating Nodes and Edges of the Conflicting Graph

A conflicting graph consists of two essentials, the nodes and edges. A node is representing one

possible resource combination instance of a Unit Task. And the edges are representing the

resource constraints of the instances of the Unit Tasks.

Step 2.1 Generating the Nodes

In order to explain how to generate nodes for the conflicting graph, let us take a Unit Task

example from Figure 4-5, T2,1b−1, which is the first Unit Task in option “b” of the first operation

in part #2 production processes. Based on the details,
T2,1b−1[(M1)1 and (T1)1]

1𝑇𝑆
, of this Unit Task, it

can be represented by one node, because it only has one possible resource instance, machine 𝑀1

and tool 𝑇1. On the same idea, all the nodes stand for all the possible resource instance of all the

Unit Tasks can be generated for the conflicting graph. The node details of the example problem

are shown in the first two columns in Figure 4-9.

Step 2.2 Generating the Edges

We developed the following four rules for generating edges in the conflicting graph.

(1) For any two nodes from the same Unit Task, they are connected by an edge. It implies the

constraint that for each Unit Task, it can only be scheduled once.

(2) For any two nodes from the same operation, if they belong to different task options, they

are connected by an edge. It implies the constraint that for each operation, we can only

schedule it with only one task option.

(3) For any two nodes from the same operation and the same task option, but different Unit

69

Task, if their resources are not the same, they are connected by an edge. It implies the

constraint that once an operation is started, the resources have been selected cannot be

changed until it is finished.

(4) For the nodes from different parts, if any of their resources is the same, they are

connected by an edge. It implies the resource constraints that one resource can be

occupied by only one operation during the same time period.

Besides the rules mentioned above, note that there are no edges between the nodes of two

different operations for the same part because they cannot be scheduled in the same time slot,

and the selection has no effect on each other. This situation is ensured by the weight assignment

strategies, which are discussed in detail in the following sections.

To better illustrate the rules for generating the edges of the conflicting graph, let us take the two

operations 𝑂2,1 → 𝑂2,2 (𝑇2,1 → 𝑇2,2) of Part #2 from the example problem plus a given operation

𝑂𝑖,1 (𝑇𝑖,1) of Part #𝑖, tasks details are shown as below:

(

T2,1a[(M2, M3, M4)1 and (T1)1]

1𝑇𝑆
T2,1b−1[(M1)1 and (T1)1]

1𝑇𝑆
→
T2,1b−2[(M1)1 and (T1)1]

1𝑇𝑆

)

1

→ (
T2,2a−1[(M2, M3, M4)1 and (T12)1]

1𝑇𝑆
→
T2,2a−2[(M2, M3, M4)1 and (T12)1]

1𝑇𝑆
)

1

And

(
T𝑖,1a−1[(M4)1 and (T6)1]

1𝑇𝑆
)

1

A conflict graph can be constructed, as shown in Figure 4-7. The colors differentiate the Unit

Tasks, and the numbers on edges indicate the rule used while generating the edges.

70

T2,1a-1[(M2, T1)2]

T2,1b-1[(M1, T1)2] T2,1b-2[(M1, T1)2]

T2,1a-1[(M3, T1)2](1)

T2,2a-1[(M2, T12)2]

T2,2a-1[(M3, T12)2]

T2,2a-1[(M4, T12)2]

T2,2a-2[(M2, T12)2]

T2,2a-2[(M3, T12)2]

T2,2a-2[(M4, T12)2]
(1

)
(1

)

(1
)

(1
)

(1
)(1

)

T2,1a-1[(M4, T1)2]

Ti,1a-1[(M4, T6)2]

Figure 4-7. The Conflict Graph of operations 𝑂2,1 → 𝑂2,2 of Part #2 and the operation 𝑂𝑖,1 (𝑇𝑖,1)
of Part #𝑖

On the same idea, a conflicting graph for all four parts in the example problem is constructed as

Figure 4-8. The graph has 161 nodes and 4718 edges. The node labels and the connection details

of the conflicting graph are shown in Figure 4-9. For example, the node ‘0’ represents

T1,1a−1(𝑀2, 𝑇6) , which is one of the resource selections of the Unit Task,

T1,1a−1[(M2, M3)1 and (T6,T7)1]

1𝑇𝑆
. Note that the color clusters in Figure 4-9 are for differentiating

different operations. With the conflicting graph ready, in the next section, we explain how we

generate weights for Unit Tasks and how we assign weight factors to nodes so that the MWIS

algorithms can be configured to schedule the nodes to achieve the objective of minimizing the

makespan for the PPS problem.

71

Figure 4-8. Conflict Graph for the Example Problem

72

Figure 4-9. Graph Connection Details for the Example Problem

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

 T11a-1(M2, T6) 0 1

 T11a-1(M2, T7) 1

 T11a-1(M3, T6) 2 1

 T11a-1(M3, T7) 3 1

 T11a-2(M2, T6) 4 1

 T11a-2(M2, T7) 5 1

 T11a-2(M3, T6) 6 1

 T11a-2(M3, T7) 7 1

 T11a-3(M2, T6) 8 1

 T11a-3(M2, T7) 9 1

 T11a-3(M3, T6) 10 1

 T11a-3(M3, T7) 11 1

 T11a-4(M2, T6) 12 1

 T11a-4(M2, T7) 13 1

 T11a-4(M3, T6) 14 1

 T11a-4(M3, T7) 15 1

 T11b-1(M4, T6) 16 1

 T11b-1(M4, T7) 17 1

 T11b-2(M4, T6) 18 1

 T11b-2(M4, T7) 19 1

 T11b-3(M4, T6) 20 1

 T11b-3(M4, T7) 21 1

 T12a-1(M2, T6) 22 1

 T12a-1(M2, T7) 23 1

 T12a-1(M3, T6) 24 1

 T12a-1(M3, T7) 25 1

 T12a-2(M2, T6) 26 1

 T12a-2(M2, T7) 27 1

 T12a-2(M3, T6) 28 1

 T12a-2(M3, T7) 29 1

 T12a-3(M2, T6) 30 1

 T12a-3(M2, T7) 31 1

 T12a-3(M3, T6) 32 1

 T12a-3(M3, T7) 33 1

 T12a-4(M2, T6) 34 1

 T12a-4(M2, T7) 35 1

 T12a-4(M3, T6) 36 1

 T12a-4(M3, T7) 37 1

 T12b-1(M4, T6) 38 1

 T12b-1(M4, T7) 39 1

 T12b-2(M4, T6) 40 1

 T12b-2(M4, T7) 41 1

 T12b-3(M4, T6) 42 1

 T12b-3(M4, T7) 43 1

 T13a-1(M2, T6) 44 1

 T13a-1(M2, T7) 45 1

 T13a-1(M3, T6) 46 1

 T13a-1(M3, T7) 47 1

 T13a-1(M4, T6) 48 1

 T13a-1(M4, T7) 49 1

 T13a-2(M2, T6) 50 1

 T13a-2(M2, T7) 51 1

 T13a-2(M3, T6) 52 1

 T13a-2(M3, T7) 53 1

 T13a-2(M4, T6) 54 1

 T13a-2(M4, T7) 55 1

 T14a-1(M1, T2) 56 1 1 1 1 1

 T14a-2(M1, T2) 57 1 1 1 1 1

 T14b-1(M2, T2) 58 1

 T14b-1(M3, T2) 59 1

 T14b-1(M4, T2) 60 1

 T21a-1(M2, T1) 61 1

 T21a-1(M3, T1) 62 1

 T21a-1(M4, T1) 63 1

 T21b-1(M1, T1) 64 1 1 1 1 1 1

 T21b-2(M1, T1) 65 1 1 1 1 1

 T22a-1(M2, T12) 66 1

 T22a-1(M3, T12) 67 1

 T22a-1(M4, T12) 68 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T22a-2(M2, T12) 69 1

 T22a-2(M3, T12) 70 1

 T22a-2(M4, T12) 71 1 1 1 1 1 1 1 1 1 1 1 1

 T23a-1(M2, T6) 72 1

 T23a-1(M2, T7) 73 1

 T23a-1(M2, T11) 74 1

 T23a-1(M3, T6) 75 1

 T23a-1(M3, T7) 76 1

 T23a-1(M3, T11) 77 1

 T23a-1(M4, T6) 78 1

 T23a-1(M4, T7) 79 1

 T23a-1(M4, T11) 80 1

 T23a-2(M2, T6) 81 1

 T23a-2(M2, T7) 82 1

 T23a-2(M2, T11) 83 1

 T23a-2(M3, T6) 84 1

 T23a-2(M3, T7) 85 1

 T23a-2(M3, T11) 86 1

 T23a-2(M4, T6) 87 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T23a-2(M4, T7) 88 1

 T23a-2(M4, T11) 89 1 1 1 1 1 1 1 1 1 1 1 1

 T31a-1(M2, T7) 90 1

 T31a-1(M2, T8) 91 1

 T31a-1(M3, T7) 92 1

 T31a-1(M3, T8) 93 1

 T31a-1(M4, T7) 94 1 1 1 1 1 1

 T31a-1(M4, T8) 95 1 1 1 1 1

 T31a-2(M2, T7) 96 1

 T31a-2(M2, T8) 97 1

 T31a-2(M3, T7) 98 1

 T31a-2(M3, T8) 99 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T31a-2(M4, T7) 100 1

 T31a-2(M4, T8) 101

 T32a-1(M2, T7) 102 1

 T32a-1(M2, T8) 103 1

 T32a-1(M3, T7) 104 1

 T32a-1(M3, T8) 105 1

 T32a-1(M4, T7) 106 1 1 1 1 1 1

 T32a-1(M4, T8) 107 1 1 1 1 1

 T32a-2(M2, T7) 108 1 1 1 1 1

 T32a-2(M2, T8) 109 1

 T32a-2(M3, T7) 110 1

 T32a-2(M3, T8) 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T32a-2(M4, T7) 112 1

 T32a-2(M4, T8) 113

 T33a-1(M2, T7) 114 1

 T33a-1(M2, T8) 115 1

 T33a-1(M3, T7) 116 1

 T33a-1(M3, T8) 117 1

 T33a-1(M4, T7) 118 1 1 1 1 1 1

 T33a-1(M4, T8) 119 1 1 1 1 1

 T33a-2(M2, T7) 120 1

 T33a-2(M2, T8) 121 1

 T33a-2(M3, T7) 122 1

 T33a-2(M3, T8) 123 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T33a-2(M4, T7) 124 1

 T33a-2(M4, T8) 125

 T41b-1(M3, T9) 126 1 1 1 1 1 1 1 1

 T41b-1(M3, T10) 127 1 1 1 1 1 1 1

 T41b-2(M3, T9) 128 1 1 1 1 1 1 1

 T41b-2(M3, T10) 129 1 1 1 1 1 1

 T41a-1(M2, T9) 130 1 1 1

 T41a-1(M2, T10) 131 1 1

 T41a-2(M2, T9) 132 1 1

 T41a-2(M2, T10) 133 1

 T41a-3(M2, T9) 134 1

 T41a-3(M2, T10) 135

 T42a-1(M2, T1) 136 1 1 1 1 1 1 1 1 1

 T42a-1(M2, T3) 137 1 1 1 1 1 1 1 1

 T42a-1(M3, T1) 138 1 1 1 1 1 1 1

 T42a-1(M2, T3) 139 1 1 1 1 1 1

 T42a-2(M2, T1) 140 1 1 1 1 1 1

 T42a-2(M2, T3) 141 1 1 1 1 1

 T42a-2(M3, T1) 142 1 1 1 1

 T42a-2(M3, T3) 143 1 1 1

 T42a-3(M2, T1) 144 1 1 1

 T42a-3(M2, T3) 145 1 1

 T42a-3(M3, T1) 146 1

 T42a-3(M3, T3) 147

 T43a-1(M2, T6) 148 1 1 1 1 1 1

 T43a-1(M2, T9) 149 1 1 1 1 1

 T43a-1(M3, T6) 150 1 1 1 1

 T43a-1(M3, T9) 151 1 1 1

 T43a-2(M2, T6) 152 1 1 1

 T43a-2(M2, T9) 153 1 1

 T43a-2(M3, T6) 154 1

 T43a-2(M3, T9) 155

 T44b-1(M3, T3) 156 1 1

 T44b-2(M3, T3) 157 1 1

 T44b-3(M3, T3) 158 1 1

 T44a-1(M2, T3) 159

 T44a-2(M2, T3) 160

73

4.4 Weight Factors Calculation and the Configurations of MWIS Algorithms

With the problem formulated as a conflicting graph, our goal is to find the nodes to schedule for

each time slot towards the objective of minimizing the total number of required time slots to

finish all the operations. The weight factors assigned to nodes of the conflicting graph are used

as the guidance for task and resource selections towards the optimal solution of the PPS problem.

From Figure 4-4, only the node from the first Unit Task of each option of each part can be

scheduled for the current time slot. We name such a Unit Task as a Unit Task Candidate, and the

nodes from Unit Task Candidates as Candidate Nodes. The simple idea is that we want to

schedule as much as possible Unit Task Candidates at each time slot, and we want to ensure that

these scheduled Unit Task Candidates have the most constraints for the rest of Unit Tasks.

Because once a Unit Task is scheduled for the current time slot, it is removed from the graph of

the following procedures. By doing so, we can remove as many as possible Candidate Nodes at

each time slot, and if we can ensure that by removing those nodes, we can remove the most

constraints for the remaining Unit Tasks. By discharging the constraints at each time slot, we

have more freedom to schedule more Unit Task Candidates in the following time slots. In this

sense, we can achieve the optimal or near-optimal result of the PPS problem. In order to execute

this idea, we developed a set of heuristics to generate the weights and configure these heuristics

with MWIS algorithms discussed in Chapter 3. We are focusing on the weights calculation and

the MWIS algorithm configurations for the PPS problem in the following discussions of this

section. In Chapter 5, computational experiments are performed on both a real-world case and

randomized cases to exam the proposed approach.

4.4.1 The Weights Calculation

74

From the edges generating rules, Candidate Nodes, which are not compatible due to constraints,

are connected. In other words, they are not independent. By applying the MWIS algorithms, we

can find the most weighted set of independent candidate nodes, which can be scheduled for the

current time slot. We assume that the nodes belong to the same Unit Task should have the same

weights. Then, the weight of a Unit Task can be determined based on the conflicting condition of

this Unit Task among all Unit Tasks remaining. We can calculate the weights for all Unit Tasks

remaining and configure the weight factors for Unit Tasks Candidates with different MWIS

algorithms.

We define two types of weight to describe the conflicting condition of a Unit Task.

1. The Unit Task connection weight,

𝑊𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛(𝑇𝑝,𝑡, 𝑇𝑝′,𝑡′)

2. The Unit Task length weight,

𝑊𝑙𝑒𝑛𝑔𝑡ℎ(𝑇𝑝,𝑡)

Where the two Unit Tasks, 𝑇𝑝,𝑡 and 𝑇𝑝′,𝑡′, belong to two different parts, 𝑃𝑝 and 𝑃𝑝′ . 𝑝 ≠

𝑝′ , 𝑡 ∈ [1, 𝑡𝑝_𝑚𝑎𝑥] , 𝑡′ ∈ [1, 𝑡′𝑝′_𝑚𝑎𝑥] , 𝑝 & 𝑝′ ∈ [1, 𝑝𝑚𝑎𝑥] , where 𝑡𝑝_𝑚𝑎𝑥 is the last Unit

Task (the task with the greatest index) in part 𝑃𝑝 and 𝑡′𝑝′_𝑚𝑎𝑥 is the last Unit Task in part

𝑃𝑝′. 𝑝𝑚𝑎𝑥 is the index of the last part (the part with the greatest index).

The Unit Task connection weight, 𝑊𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛(𝑇𝑝,𝑡, 𝑇𝑝′,𝑡′) , is based on the connection rate

between two Unit Tasks 𝑇𝑝,𝑡 and 𝑇𝑝′,𝑡′ from different parts 𝑃𝑝 and 𝑃𝑝′ . Being inspired by the

graph density definition. Let 𝑁(𝑇𝑝,𝑡) be a set of 𝑛(𝑇𝑝,𝑡) number of nodes from the Unit Task 𝑇𝑝,𝑡,

and 𝑒(𝑇𝑝,𝑡, 𝑇𝑝′,𝑡′) is the number of edges between set 𝑁(𝑇𝑝,𝑡) and set 𝑁(𝑇𝑝′,𝑡′). Then, we have

the Unit Task connection weights:

75

𝑊𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛(𝑇𝑝,𝑡, 𝑇𝑝′,𝑡′) =
𝑒(𝑇𝑝,𝑡, 𝑇𝑝′,𝑡′)

𝑛(𝑇𝑝,𝑡) ∗ 𝑛(𝑇𝑝′,𝑡′)

The Unit Task length weight, 𝑊𝑙𝑒𝑛𝑔𝑡ℎ(𝑇𝑝,𝑡), is the length weight coefficient, 𝐿𝑊𝑐, multiply by

the number, 𝑟(𝑇𝑝,𝑡), of remaining time slots needed to finish part 𝑃𝑝. Where we have:

𝑊𝑙𝑒𝑛𝑔𝑡ℎ(𝑇𝑝,𝑡) = 𝐿𝑊𝑐 ∗ 𝑟(𝑇𝑝,𝑡)

Note that the length weight coefficient, 𝐿𝑊𝑐, is used to describe the level priority given to a Unit

Task based on the number of time slots remaining for finishing the part individually. Based on

our testing, we define three levels of length weight coefficient, median, high and low, as 𝐿𝑊𝑐
𝑀,

𝐿𝑊𝑐
𝐻 and 𝐿𝑊𝑐

𝐿 respectively. And they are defined as follows:

• Let 𝐿𝑊𝑐
𝑀 = 1, to keep the length weight coefficient in the same scale as the Unit Task

connection weight. In this case, the resource constraints and sequencing constraints are

considered as equal while selecting nodes.

• Let 𝐿𝑊𝑐
𝐻 = 𝑝𝑚𝑎𝑥 + ∑ 𝑟(𝑇𝑝,1)

𝑝=𝑝𝑚𝑎𝑥
𝑝=1 , which is the total number of time slots of all the

parts, to ensure the parts need more remaining time slots are given priority.

• 𝐿𝑊𝑐
𝐿 = 0.01, to keep the length weight coefficient a minimum effect on node selection.

In this case, the resource constraints are more emphasized compare to the sequencing

constraints while selecting nodes.

The total weight, 𝑊𝑡𝑜𝑡𝑎𝑙(𝑇𝑝,𝑡), of the nodes of a Unit Task, 𝑇𝑝,𝑡, is the sum of the Unit Task

connection weight between itself and all other Unit Tasks of different parts, plus the Unit Task

length weight. Formally,

𝑊𝑡𝑜𝑡𝑎𝑙(𝑇𝑝,𝑡) = 𝑊𝑙𝑒𝑛𝑔𝑡ℎ(𝑇𝑝,𝑡) + ∑ 𝑊𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛(𝑇𝑝,𝑡, 𝑇𝑝′,𝑡′)

𝑝′=𝑝𝑚𝑎𝑥,𝑡
′=𝑡𝑝_𝑚𝑎𝑥

𝑝′=1,𝑡′=1

76

Note that the total weight, 𝑊𝑡𝑜𝑡𝑎𝑙(𝑇𝑝,𝑡), as the initial weight value, its purpose is to describe the

conflicts that a Unit Task can possibly cause in a PPS problem. The final weight factors need to

be configured with the MWIS algorithms for solving the PPS problem. An instance of the

weights of the example problem can be calculated as Table 4-2 below. Each column describes

the part ID, operation ID, Unit Tasks, nodes, and the value of the initial weights, respectively.

Note that in Table 4-2, we choose to use the high length weight coefficient, 𝐿𝑊𝑐
𝐻 = 32.

Table 4-2. Unit Tasks and Nodes

Part-ID Op-ID Unit Tasks Nodes Initial Weights

Part 1 O1,1 T1,1a-1 0, 1, 2, 3 157.097

 T1,1a-2 4, 5, 6, 7 141.097

 T1,1a-3 8, 9, 10, 11 125.097

 T1,1a-4 12, 13, 14, 15 117.097

 T1,1b-1 16, 17 154.722

 T1,1b-2 18, 19 138.722

 T1,1b-3 20, 21 122.722

 O1,2 T1,2a-1 22, 23, 24, 25 101.097

 T1,2a-2 26, 27, 28, 29 85.097

 T1,2a-3 30, 31, 32, 33 69.097

 T1,2a-4 34, 35, 36, 37 61.097

 T1,2b-1 38, 39 98.722

 T1,2b-2 40, 41 82.722

 T1,2b-3 42, 43 66.722

 O1,3 T1,3a-1 44, 45, 46, 47, 48, 49 88.611

 T1,3a-2 50, 51, 52, 53, 54, 55 56.611

 O1,4 T1,4a-1 56 8.5

 T1,4a-2 57 0.5

 T1,4b-1 58, 59, 60 11.417

Part 2 O2,1 T2,1a-1 61, 62, 63 76.750

 T2,1b-1 64 73.25

 T2,1b-2 65 65.25

 O2,2 T2,2a-1 66, 67, 68 104.499

 T2,2a-2 69, 70, 71 72.499

 O2,3 T2,3a-1 72, 73, 74, 75, 76, 77, 78, 79, 80 43.389

 T2,3a-2 81, 82, 83, 84, 85, 86, 87, 88, 89 11.389

Part 3 O3,3 T3,1a-1 90, 91, 92, 93, 94, 95 169.722

 T3,1a-2 96, 97, 98, 99, 100, 101 137.722

 O3,1 T3,2a-1 102, 103, 104, 105, 106, 107 105.722

 T3,2a-2 108, 109, 110, 111, 112, 113 73.722

 O3,2 T3,3a-1 114, 115, 116, 117, 118, 119 41.722

 T3,3a-2 120, 121, 122, 123, 124, 125 9.722

Part 4 O4,2 T4,1b-1 126, 127 147.167

 T4,1b-2 128, 129 131.167

 T4,1a-1 130, 131 147.167

77

 T4,1a-2 132, 133 131.167

 T4,1a-3 134, 135 123.167

 O4,4 T4,2a-1 136, 137, 138, 139 215.0

 T4,2a-2 140, 141, 142, 143 183.0

 T4,2a-3 144, 145, 146, 147 151.0

 O4,1 T4,3a-1 148, 149, 150, 151 120.139

 T4,3a-2 152, 153, 154, 155 88.139

 O4,3 T4,4b-1 156 27.167

 T4,4b-2 157 11.167

 T4,4b-3 158 3.167

 T4,4a-1 159 27.168

 T4,4a-2 160 11.167

4.4.2 Weight Factor Arrangements with MWIS Algorithms

We have calculated the weight factors for the Unit Tasks, and now we explain how to finalize the

weight factors with the MWIS algorithms. We developed three weight factor arrangements for

the MWIS-based algorithms and seven weight factor arrangements for the AMISL-based

algorithms. The weight factor arrangements, together with the MWIS algorithms, make twenty-

eight different heuristics configurations for solving the PPS problem.

Before we start to talk about the weight factor arrangements, let us first recall the eight MWIS

algorithms from Chapter 3. These algorithms are:

• Algorithm A1 MWIS: the proposed exact MWIS algorithm.

• Algorithm A2 AMISL: the proposed exact AMISL-based MWIS algorithm.

• Algorithm A3 GWMIN: the GWMIN approximation algorithm from literature.

• Algorithm A4 MWIS_CS_GWMIN: it is an algorithm composed of Algorithm A1 and

Algorithm A3. This algorithm computes Compare Sets based on the whole induced

subgraph at each level using Algorithm A3 GWMIN.

• Algorithm A5 MWIS_SubCS_GWMIN: it is an algorithm composed of Algorithm A1

and Algorithm A3. This algorithm computes Compare Sets based on the induced CSSs,

78

excluding the current removed node, using Algorithm A3 GWMIN.

• Algorithm A6 GWMIN2: the GWMIN2 approximation algorithm from literature.

• Algorithm A7 MWIS_CS_GWMIN2: it is an algorithm composed of Algorithm A1 and

Algorithm A6. This algorithm computes Compare Sets based on the whole induced

subgraph at each level using Algorithm A6 GWMIN2.

• Algorithm A8 MWIS_SubCS_GWMIN2: it is an algorithm composed of Algorithm A1

and Algorithm A6. This algorithm computes Compare Sets based on the induced CSSs,

excluding the current removed node, using Algorithm A6 GWMIN2.

The algorithms list above except Algorithm A2 AMISL are MWIS-based algorithms; they

require the weights of all nodes to be positive (≥ 0) to make valid comparations in steps so that

the final MWIS can be calculated. In this case, the flexibility of weight arrangements is limited,

but this is easy to apply approximation strategies to reduce the complexity to speed up the

computation. However, Algorithm A2 AMISL first look for all the Maximal Independent Sets

(MIS), then get the set with the maximum total weight. In this case, the negative and zero

weights are allowed. But Algorithm A2 AMISL may have an unreasonable complexity when

there is a large number of large size MISs. Algorithm A2 AMISL is also hard to applied

approximation strategies. The details of the three weight factor arrangements for the MWIS

based algorithms and the seven weight factor arrangements for the AMISL based MWIS

algorithms are discussed below. The idea is that while searching for the nodes for the current

time slot, the Unit Tasks that can only be scheduled a good number of time slots later may have

limited impact. Based on this idea, the wright factor arrangements are created by only checking

different limited numbers of steps ahead and aiming to find the best set of the nodes for the

79

current time slot to achieve the objective of minimizing the makespan.

(1) The weight factor arrangements for MWIS based algorithms

For the MWIS based algorithms, we assign weight factors to the Candidate Nodes of Unit Task

Candidates according to the three arrangements described below. Then, a small positive value

(for instance, 0.0000001) is assigned to the non-candidate nodes. With the weight factors ready,

we can apply one of the seven MWIS-based algorithms to find the set of Candidate Nodes with

the maximum total weight with the maximum number of nodes. For this setup, the Candidate

Nodes associated with the most uncommon resources for the non-candidate nodes are scheduled

for the current time slot. So that there are fewer conflicts for the following time slots if the

operations scheduled for the current time slot must be continued for more time slots. The Unit

Tasks Candidates with the associated resources represented by the set of nodes are scheduled for

the current time slot. The three weight factor arrangements are as follows:

(1.1) MWIS A1: MWIS Weights 1

In each time slot, for each 𝑝 ∈ [1, 𝑝𝑚𝑎𝑥], assign weight factors to the Unit Task Candidates,

𝑇𝑝,𝑡𝑚𝑖𝑛
𝐶 , which is the first Unit Task, 𝑇𝑝,𝑡𝑚𝑖𝑛 , that can be scheduled for part 𝑃𝑝. The value of

weight factors of the candidate nodes in 𝑇𝑝,𝑡𝑚𝑖𝑛
𝐶 is the weight of 𝑇𝑝,𝑡𝑚𝑖𝑛 , as the equation below,

𝑊𝑀𝑊𝐼𝑆_𝐴1_𝑐𝑜𝑛𝑑𝑖𝑑𝑎𝑡𝑒(𝑇𝑝,𝑡𝑚𝑖𝑛
𝐶) = 𝑊𝑡𝑜𝑡𝑎𝑙(𝑇𝑝,𝑡𝑚𝑖𝑛)

(1.2) MWIS A2: MWIS Weights 2

In each time slot, for each 𝑝 ∈ [1, 𝑝𝑚𝑎𝑥], assign weight factors to the Unit Task Candidates,

𝑇𝑝,𝑡𝑚𝑖𝑛
𝐶 . The value of weight factors of the Candidate Nodes in 𝑇𝑝,𝑡𝑚𝑖𝑛

𝐶 is the sum of the weights

80

of 𝑇𝑝,𝑡𝑚𝑖𝑛 and 𝑇𝑝,(𝑡𝑚𝑖𝑛+1) , where 𝑇𝑝,(𝑡𝑚𝑖𝑛+1) is the following Unit Task of 𝑇𝑝,𝑡𝑚𝑖𝑛 , as the

equation below,

𝑊𝑀𝑊𝐼𝑆_𝐴2_𝑐𝑜𝑛𝑑𝑖𝑑𝑎𝑡𝑒(𝑇𝑝,𝑡𝑚𝑖𝑛
𝐶) = 𝑊𝑡𝑜𝑡𝑎𝑙(𝑇𝑝,𝑡𝑚𝑖𝑛) +𝑊𝑡𝑜𝑡𝑎𝑙(𝑇𝑝,𝑡𝑚𝑖𝑛+1)

(1.3) MWIS A3: MWIS Weights 3

In each time slot, for each 𝑝 ∈ [1, 𝑝𝑚𝑎𝑥], assign weight factors to the Unit Task Candidates,

𝑇𝑝,𝑡𝑚𝑖𝑛
𝐶 . The value of weight factors of the Candidate Nodes in 𝑇𝑝,𝑡𝑚𝑖𝑛

𝐶 is the sum of the weights

of 𝑇𝑝,𝑡𝑚𝑖𝑛 , 𝑇𝑝,(𝑡𝑚𝑖𝑛+1) and 𝑇𝑝,(𝑡𝑚𝑖𝑛+2) , where 𝑇𝑝,(𝑡𝑚𝑖𝑛+2) is the following Unit Task of

𝑇𝑝,(𝑡𝑚𝑖𝑛+1), as the equation below,

𝑊𝑀𝑊𝐼𝑆_𝐴3_𝑐𝑜𝑛𝑑𝑖𝑑𝑎𝑡𝑒(𝑇𝑝,𝑡𝑚𝑖𝑛
𝐶) = 𝑊𝑡𝑜𝑡𝑎𝑙(𝑇𝑝,𝑡𝑚𝑖𝑛) +𝑊𝑡𝑜𝑡𝑎𝑙(𝑇𝑝,𝑡𝑚𝑖𝑛+1) +𝑊𝑡𝑜𝑡𝑎𝑙(𝑇𝑝,𝑡𝑚𝑖𝑛+2)

(2) The weight factor arrangements for Algorithm A2 AMISL

For the AMISL based algorithms, we assign weight factors to the nodes indicated by the seven

different weight factor arrangements described below. Then, a small negative value (for instance,

-0.0000001) is assigned to the unaddressed nodes. With the weight factors ready, applied

Algorithm A2 AMISL to find the set of Candidate Nodes with the maximum total weight with

the minimum number of nodes. For this setup, the Candidate Nodes associated with the most

common resources for the unaddressed nodes are scheduled for the current time slot, so that the

most constraints are removed for the following time slots by scheduling such a set of Candidate

Nodes. The Unit Tasks Candidates with the associated resources represented by the set of nodes

are scheduled for the current time slot. The seven weight factor arrangements are as follows:

(2.1) AMISL A1: AMISL Weights 1

81

In each time slot, for each 𝑝 ∈ [1, 𝑝𝑚𝑎𝑥], assign weight factors to the Unit Task Candidates,

𝑇𝑝,𝑡𝑚𝑖𝑛
𝐶 . The value of weight factors of the Candidate Nodes in 𝑇𝑝,𝑡𝑚𝑖𝑛

𝐶 is the weight of 𝑇𝑝,𝑡𝑚𝑖𝑛 , as

the equation below,

𝑊𝐴𝑀𝐼𝑆𝐿_𝐴1_𝑐𝑜𝑛𝑑𝑖𝑑𝑎𝑡𝑒(𝑇𝑝,𝑡𝑚𝑖𝑛
𝐶) = 𝑊𝑡𝑜𝑡𝑎𝑙(𝑇𝑝,𝑡𝑚𝑖𝑛)

(2.2) AMISL A2: AMISL Weights 2 Aggregation

In each time slot, for each 𝑝 ∈ [1, 𝑝𝑚𝑎𝑥], assign weight factors to the Unit Task Candidates,

𝑇𝑝,𝑡𝑚𝑖𝑛
𝐶 . The value of weight factors of the Candidate Nodes in 𝑇𝑝,𝑡𝑚𝑖𝑛

𝐶 is the sum of the weights

of 𝑇𝑝,𝑡𝑚𝑖𝑛 and 𝑇𝑝,(𝑡𝑚𝑖𝑛+1) , where 𝑇𝑝,(𝑡𝑚𝑖𝑛+1) is the following Unit Task of 𝑇𝑝,𝑡𝑚𝑖𝑛 , as the

equation below,

𝑊𝐴𝑀𝐼𝑆𝐿_𝐴2_𝑐𝑜𝑛𝑑𝑖𝑑𝑎𝑡𝑒(𝑇𝑝,𝑡𝑚𝑖𝑛
𝐶) = 𝑊𝑡𝑜𝑡𝑎𝑙(𝑇𝑝,𝑡𝑚𝑖𝑛) +𝑊𝑡𝑜𝑡𝑎𝑙(𝑇𝑝,𝑡𝑚𝑖𝑛+1)

(2.3) AMISL A3: AMISL Weights 2 Aggregation + Non-aggregation

In each time slot, for each 𝑝 ∈ [1, 𝑝𝑚𝑎𝑥], assign weight factors to the Unit Task Candidates,

𝑇𝑝,𝑡𝑚𝑖𝑛
𝐶 , and the following Unit Task, 𝑇𝑝,(𝑡𝑚𝑖𝑛+1). The value of weight factors of the Candidate

Nodes in 𝑇𝑝,𝑡𝑚𝑖𝑛
𝐶 is the sum of the weights of 𝑇𝑝,𝑡𝑚𝑖𝑛 and 𝑇𝑗,(𝑡𝑚𝑖𝑛+1), as the equation below,

𝑊𝐴𝑀𝐼𝑆𝐿_𝐴3_𝑐𝑜𝑛𝑑𝑖𝑑𝑎𝑡𝑒(𝑇𝑝,𝑡𝑚𝑖𝑛
𝐶) = 𝑊𝑡𝑜𝑡𝑎𝑙(𝑇𝑝,𝑡𝑚𝑖𝑛) +𝑊𝑡𝑜𝑡𝑎𝑙(𝑇𝑝,𝑡𝑚𝑖𝑛+1)

The value of weight factors of nodes in 𝑇𝑝,𝑡𝑚𝑖𝑛+1 is the weight of 𝑇𝑝,𝑡𝑚𝑖𝑛+1 , as the equation

below,

𝑊𝐴𝑀𝐼𝑆𝐿_𝐴3_𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔(𝑇𝑝,𝑡𝑚𝑖𝑛+1) = 𝑊𝑡𝑜𝑡𝑎𝑙(𝑇𝑝,𝑡𝑚𝑖𝑛+1)

(2.4) AMISL A4: AMISL Weights 2 Non-aggregation

82

In each time slot, for each 𝑝 ∈ [1, 𝑝𝑚𝑎𝑥], assign weight factors to the Unit Task Candidates,

𝑇𝑝,𝑡𝑚𝑖𝑛
𝐶 , and the following Unit Task, 𝑇𝑝,(𝑡𝑚𝑖𝑛+1). The value of weight factors of the Candidate

Nodes in 𝑇𝑝,𝑡𝑚𝑖𝑛
𝐶 is the weight of 𝑇𝑝,𝑡𝑚𝑖𝑛 , as the equation below,

𝑊𝐴𝑀𝐼𝑆𝐿_𝐴4_𝑐𝑜𝑛𝑑𝑖𝑑𝑎𝑡𝑒(𝑇𝑝,𝑡𝑚𝑖𝑛
𝐶) = 𝑊𝑡𝑜𝑡𝑎𝑙(𝑇𝑝,𝑡𝑚𝑖𝑛)

The value of weight factors of nodes in 𝑇𝑝,𝑡𝑚𝑖𝑛+1 is the weight of 𝑇𝑝,𝑡𝑚𝑖𝑛+1 , as the equation

below,

𝑊𝐴𝑀𝐼𝑆𝐿_𝐴4_𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔(𝑇𝑝,𝑡𝑚𝑖𝑛+1) = 𝑊𝑡𝑜𝑡𝑎𝑙(𝑇𝑝,𝑡𝑚𝑖𝑛+1)

(2.5) AMISL A5: AMISL Weights 3 Aggregation

In each time slot, for each 𝑝 ∈ [1, 𝑝𝑚𝑎𝑥], assign weight factors to the Unit Task Candidates,

𝑇𝑝,𝑡𝑚𝑖𝑛
𝐶 . The value of weight factors of the Candidate Nodes in 𝑇𝑝,𝑡𝑚𝑖𝑛

𝐶 is the sum of the weights

of 𝑇𝑝,𝑡𝑚𝑖𝑛, 𝑇𝑝,(𝑡𝑚𝑖𝑛+1) and 𝑇𝑝,(𝑡𝑚𝑖𝑛+2), as the equation below,

𝑊𝐴𝑀𝐼𝑆𝐿_𝐴5_𝑐𝑜𝑛𝑑𝑖𝑑𝑎𝑡𝑒(𝑇𝑝,𝑡𝑚𝑖𝑛
𝐶) = 𝑊𝑡𝑜𝑡𝑎𝑙(𝑇𝑝,𝑡𝑚𝑖𝑛) +𝑊𝑡𝑜𝑡𝑎𝑙(𝑇𝑝,𝑡𝑚𝑖𝑛+1) +𝑊𝑡𝑜𝑡𝑎𝑙(𝑇𝑝,𝑡𝑚𝑖𝑛+2)

(2.6) AMISL A6: AMISL Weights 3 Aggregation + Non-aggregation

In each time slot, for each 𝑝 ∈ [1, 𝑝𝑚𝑎𝑥], assign weight factors to the Unit Task Candidates,

𝑇𝑝,𝑡𝑚𝑖𝑛
𝐶 , and the two following Unit Tasks, 𝑇𝑝,(𝑡𝑚𝑖𝑛+1) and 𝑇𝑝,(𝑡𝑚𝑖𝑛+2) . The value of weight

factors of the Candidate Nodes in 𝑇𝑝,𝑡𝑚𝑖𝑛
𝐶 is the sum of the weights of 𝑇𝑝,𝑡𝑚𝑖𝑛 , 𝑇𝑝,(𝑡𝑚𝑖𝑛+1) and

𝑇𝑝,(𝑡𝑚𝑖𝑛+2), as the equation below,

𝑊𝑀𝑊𝐼𝑆_𝐴6_𝑐𝑜𝑛𝑑𝑖𝑑𝑎𝑡𝑒(𝑇𝑝,𝑡𝑚𝑖𝑛
𝐶) = 𝑊𝑡𝑜𝑡𝑎𝑙(𝑇𝑝,𝑡𝑚𝑖𝑛) +𝑊𝑡𝑜𝑡𝑎𝑙(𝑇𝑝,𝑡𝑚𝑖𝑛+1) +𝑊𝑡𝑜𝑡𝑎𝑙(𝑇𝑝,𝑡𝑚𝑖𝑛+2)

The value of weight factors of nodes in 𝑇𝑝,𝑡𝑚𝑖𝑛+1 is the weight of 𝑇𝑝,𝑡𝑚𝑖𝑛+1 , as the equation

below,

83

𝑊𝐴𝑀𝐼𝑆𝐿_𝐴6_𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔(𝑇𝑝,𝑡𝑚𝑖𝑛+1) = 𝑊𝑡𝑜𝑡𝑎𝑙(𝑇𝑝,𝑡𝑚𝑖𝑛+1)

The value of weight factors of nodes in 𝑇𝑝,𝑡𝑚𝑖𝑛+2 is the weight of 𝑇𝑝,𝑡𝑚𝑖𝑛+2 , as the equation

below,

𝑊𝐴𝑀𝐼𝑆𝐿_𝐴6_𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔_𝑡𝑤𝑜(𝑇𝑝,𝑡𝑚𝑖𝑛+2) = 𝑊𝑡𝑜𝑡𝑎𝑙(𝑇𝑝,𝑡𝑚𝑖𝑛+2)

(2.7) AMISL A7: AMISL Weights 3 Non-aggregation

In each time slot, for each 𝑝 ∈ [1, 𝑝𝑚𝑎𝑥], assign weight factors to the Unit Task Candidates,

𝑇𝑝,𝑡𝑚𝑖𝑛
𝐶 , and the two following Unit Tasks, 𝑇𝑝,(𝑡𝑚𝑖𝑛+1) and 𝑇𝑝,(𝑡𝑚𝑖𝑛+2) . The value of weight

factors of the Candidate Nodes in 𝑇𝑝,𝑡𝑚𝑖𝑛
𝐶 is the weights of 𝑇𝑝,𝑡𝑚𝑖𝑛, as the equation below,

𝑊𝑀𝑊𝐼𝑆_𝐴7_𝑐𝑜𝑛𝑑𝑖𝑑𝑎𝑡𝑒(𝑇𝑝,𝑡𝑚𝑖𝑛
𝐶) = 𝑊𝑡𝑜𝑡𝑎𝑙(𝑇𝑝,𝑡𝑚𝑖𝑛)

The value of weight factors of nodes in 𝑇𝑝,𝑡𝑚𝑖𝑛+1 is the weight of 𝑇𝑝,𝑡𝑚𝑖𝑛+1 , as the equation

below,

𝑊𝐴𝑀𝐼𝑆𝐿_𝐴7_𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔(𝑇𝑝,𝑡𝑚𝑖𝑛+1) = 𝑊𝑡𝑜𝑡𝑎𝑙(𝑇𝑝,𝑡𝑚𝑖𝑛+1)

The value of weight factors of nodes in 𝑇𝑝,𝑡𝑚𝑖𝑛+2 is the weight of 𝑇𝑝,𝑡𝑚𝑖𝑛+2 , as the equation

below,

𝑊𝐴𝑀𝐼𝑆𝐿_𝐴7_𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔_𝑡𝑤𝑜(𝑇𝑝,𝑡𝑚𝑖𝑛+2) = 𝑊𝑡𝑜𝑡𝑎𝑙(𝑇𝑝,𝑡𝑚𝑖𝑛+2)

4.4.3 Heuristics Configurations

The eight MWIS algorithms, together with the ten weight arrangements, can be configured into

twenty-eight heuristics configurations for solving the PPS problem. The heuristics configurations

are shown in Table 4-3. Each column describes the heuristics configuration ID, algorithm ID,

weight arrangement strategies, whether it is an MWIS-based algorithm and whether it is an

84

approximation algorithm, respectively.

Table 4-3. Heuristics Configurations

Heuristics-ID Algorithm-ID Weight arrangement strategies MWIS

based?

Appr?

1 A1 MWIS MWIS A1: MWIS Weights 1 Yes No

2 A1 MWIS MWIS A2: MWIS Weights 2 Yes No

3 A1 MWIS MWIS A3: MWIS Weights 3 Yes No

4 A2 AMISL AMISL A1: AMISL Weights 1 No No

5 A2 AMISL AMISL A2: AMISL Weights 2 Agg No No

6 A2 AMISL AMISL A3: AMISL Weights 2 Agg + Nagg No No

7 A2 AMISL AMISL A4: AMISL Weights 2 Nagg No No

8 A2 AMISL AMISL A5: AMISL Weights 3 Agg No No

9 A2 AMISL AMISL A6: AMISL Weights 3 Agg + Nagg No No

10 A2 AMISL AMISL A7: AMISL Weights 3 Nagg No No

11 A3 GWMIN MWIS A1: MWIS Weights 1 Yes Yes

12 A4 MWIS_CS_GWMIN MWIS A1: MWIS Weights 1 Yes Yes

13 A5 MWIS_SubCS_GWMIN MWIS A1: MWIS Weights 1 Yes Yes

14 A3 GWMIN MWIS A2: MWIS Weights 2 Yes Yes

15 A4 MWIS_CS_GWMIN MWIS A2: MWIS Weights 2 Yes Yes

16 A5 MWIS_SubCS_GWMIN MWIS A2: MWIS Weights 2 Yes Yes

17 A3 GWMIN MWIS A3: MWIS Weights 3 Yes Yes

18 A4 MWIS_CS_GWMIN MWIS A3: MWIS Weights 3 Yes Yes

19 A5 MWIS_SubCS_GWMIN MWIS A3: MWIS Weights 3 Yes Yes

20 A6 GWMIN2 MWIS A1: MWIS Weights 1 Yes Yes

21 A7 MWIS_CS_GWMIN2 MWIS A1: MWIS Weights 1 Yes Yes

22 A8 MWIS_SubCS_GWMIN2 MWIS A1: MWIS Weights 1 Yes Yes

23 A6 GWMIN2 MWIS A2: MWIS Weights 2 Yes Yes

24 A7 MWIS_CS_GWMIN2 MWIS A2: MWIS Weights 2 Yes Yes

25 A8 MWIS_SubCS_GWMIN2 MWIS A2: MWIS Weights 2 Yes Yes

26 A6 GWMIN2 MWIS A3: MWIS Weights 3 Yes Yes

27 A7 MWIS_CS_GWMIN2 MWIS A3: MWIS Weights 3 Yes Yes

28 A8 MWIS_SubCS_GWMIN2 MWIS A3: MWIS Weights 3 Yes Yes

4.5 Solving the Example Problem via the Proposed Approach

In this section, we summarize the proposed method for solving the PPS problem with the

example PPS problem described at the beginning of this chapter. The major steps of the proposed

approach are described below:

Step #1: Prepare the input information.

In step one, we reformat the operation information with the best practice operation sequence and

simplify the problem by breaking down the processing time into time slots. The operation

85

information of the four parts in the example problem is reformatted as Figure 4-2 based on

operation sequencing constraints shown as the top part of Figure 4-1. Figure 4-4 can be

transformed based on Figure 4-2 by breaking down the operations into Unit Tasks. Here, the

processing time for each Unit Task is one time slot, which stands for 10 time units.

Step #2: Generate the conflicting graph for the PPS problem.

In step two, the nodes for the conflict graph is generated based on the different possible resource

selections for each Unit Task. And the edges of the conflicting graph are generated based on the

constraints. Figure 4-8 is the conflicting graph for the example problem, which has 4718 edges

and 161 nodes, and Figure 4-9 shows the details of the edges.

Step #3: Based on the selected heuristics configuration, arrange weight factors and compute the

MWIS.

In step three, we select Heuristics #13, which assigns weight factors as MWIS A1: MWIS

Weights 1 and uses Algorithm A5 MWIS_SubCS_GWMIN to compute the MWIS for the nodes

to schedule for the current time slot. Note that we choose to use the high length weight

coefficient, 𝐿𝑊𝑐
𝐻, which 𝐿𝑊𝑐

𝐻 = 32 for the example problem. The final weight factors at the

first time slot for the Unit Task Candidates and Candidate Nodes of the example problem are

shown in Table 4-4. Each column describes the part ID, operation ID, Unit Tasks, nodes of the

Unit Tasks and the Final weight factors, respectively. The MWIS found by Heuristics #13 is the

node set, ['0', '4', '8', '12', '22', '26', '30', '34', '44', '50', '139', '143', '147', '126', '128', '151', '155',

'156', '157', '158', '58', '95', '101', '107', '113', '119', '125', '64', '65']. It means that the Unit Task

Candidates with their resources, T1,1a−1[(M2)1 and (T6)1] , T2,1b−1[(M1)1 and (T1)1] ,

T3,1a−1[(M4)1 and (T8)1] and T4,1b−1[(M3)1 and (T9)1], are scheduled for the current time slot.

Step #4: Update the remaining Unit Tasks and the conflicting graph

86

In step four, remove the Unit Tasks that have been scheduled and remove the Unit Tasks that

cannot be scheduled because of the constraints that no changing resources is allowed before an

operation is finished. Then, update the conflicting graph and the weight factors. Figure 4-10 is

the updated task information for the remaining Unit Tasks. And the updated remaining

conflicting graph, the node labels, and edge connection details for the following time slot are

shown as Figure 4-11 and Figure 4-12, respectively.

Table 4-4. Final Weight Factors Unit Task Candidates and Candidate Nodes via Heuristics

#13 on the Example Problem

Part-ID Op-ID Unit Tasks Nodes Final Weights

Part 1 O1,1 T1,1a-1 0, 1, 2, 3 157.097

 T1,1a-2 4, 5, 6, 7 141.097

 T1,1a-3 8, 9, 10, 11 125.097

 T1,1a-4 12, 13, 14, 15 117.097

 T1,1b-1 16, 17 154.722

 T1,1b-2 18, 19 138.722

 T1,1b-3 20, 21 122.722

Part 2 O2,1 T2,1a-1 61, 62, 63 76.750

 T2,1b-1 64 73.25

 T2,1b-2 65 65.25

Part 3 O3,3 T3,1a-1 90, 91, 92, 93, 94, 95 169.722

 T3,1a-2 96, 97, 98, 99, 100, 101 137.722

Part 4 O4,2 T4,1b-1 126, 127 147.167

 T4,1b-2 128, 129 131.167

 T4,1a-1 130, 131 147.167

 T4,1a-2 132, 133 131.167

 T4,1a-3 134, 135 123.167

87

Figure 4-10. Updated Remaining Tasks Information for the Following Time Slot

Job #1: 𝑂11 → 𝑂12 → 𝑂13 → 𝑂14

(
T11a−2[(M2, M3)1 and (T6 , T7)1]

1𝑇𝑆
→
T11a−3[(M2, M3)1 and (T6 , T7)1]

1𝑇𝑆
→
T11a−4[(M2, M3)1 and (T6 , T7)1]

1𝑇𝑆
)

1

→ (

T12a−1[(M2, M3)1 and (T6, T7)1]

1𝑇𝑆
→
T12a−2[(M2, M3)1 and (T6, T7)1]

1𝑇𝑆
→
T12a−3[(M2, M3)1 and (T6, T7)1]

1𝑇𝑆
→
T12a−4[(M2, M3)1 and (T6, T7)1]

1𝑇𝑆
T12b−1[(M4)1 and (T6 , T7)1]

1𝑇𝑆
→
T12b−2[(M4)1 and (T6, T7)1]

1𝑇𝑆
→
T12b−3[(M4)1 and (T6, T7)1]

1𝑇𝑆

)

1

→ (
T13a−1[(M2, M3, M4)1 and (T6 , T7)1]

1𝑇𝑆
→
T13a−2[(M2 , M3, M4)1 and (T6, T7)1]

1𝑇𝑆
)

1

→ (

T14a−1[(M1)1 and (T2)1]

1𝑇𝑆
→
T14a−2[(M1)1 and (T2)1]

1𝑇𝑆
T14b[(M2 , M3, M4)1 and (T2)1]

1𝑇𝑆

)

1

Job #2: 𝑂21 → 𝑂22 → 𝑂23

(
T21b−2[(M1)1 and (T1)1]

1𝑇𝑆
)1 → (

T22a−1[(M2, M3, M4)1 and (T12)1]

1𝑇𝑆
→
T22a−2[(M2, M3, M4)1 and (T12)1]

1𝑇𝑆
)

1

→ (
T23a−1[(M2, M3, M4)1 and (T5 , T6, T11)1]

1𝑇𝑆
→
T23a−2[(M2, M3, M4)1 and (T6, T7 , T11)1]

1𝑇𝑆
)

1

Job #3: 𝑂33 → 𝑂31 → 𝑂32

(
T31a−2[(M2, M3, M4)1 and (T7 , T8)1]

1𝑇𝑆
)

1

→ (
T32a−1[(M2, M3, M4)1 and (T7, T8)1]

1𝑇𝑆
→
T32a−2[(M2 , M3, M4)1 and (T7, T8)1]

1𝑇𝑆
)

1

→ (
T33a−1[(M2, M3, M4)1 and (T7 , T8)1]

1𝑇𝑆
→
T33a−2[(M2, M3, M4)1 and (T7, T8)1]

1𝑇𝑆
)

1

Job #4: 𝑂42 → 𝑂44 → 𝑂41 → 𝑂43

(
T41b−2[(M3)1 and (T9, T10)1]

1𝑇𝑆
)

1

→ (
T42a−1[(M2, M3)1 and (T1 , T3)1]

1𝑇𝑆
→
T42a−2[(M2, M3)1 and (T1 , T3)1]

1𝑇𝑆
→
T42a−3[(M2, M3)1 and (T1, T3)1]

1𝑇𝑆
)

1

→ (
T43a−1[(M2 , M3)1 and (T6 , T9)1]

1𝑇𝑆
→
T43a−2[(M2, M3)1 and (T6, T9)1]

1𝑇𝑆
)

1

→ (

T44a−1[(M2)1 and (T3)1]

1𝑇𝑆
→
T44a − 2[(M2)1 and (T3)1]

1𝑇𝑆
T44b−1[(M3)1 and (T3)1]

1𝑇𝑆
→
T44b−2[(M3)1 and (T3)1]

1𝑇𝑆
→
T44b−3[(M3)1 and (T3)1]

1𝑇𝑆

)

1

88

Figure 4-11. Updated Remaining Conflicting Graph for the Following Time Slot

89

Figure 4-12. Updated Remaining Edge Connection Details for the Following Time Slot

4 5 6 7 8 9 10 11 12 13 14 15 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 128 129 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

 T11a-2(M2, T6) 4 1

 T11a-2(M2, T7) 5 1

 T11a-2(M3, T6) 6 1

 T11a-2(M3, T7) 7 1

 T11a-3(M2, T6) 8 1

 T11a-3(M2, T7) 9 1

 T11a-3(M3, T6) 10 1

 T11a-3(M3, T7) 11 1

 T11a-4(M2, T6) 12 1

 T11a-4(M2, T7) 13 1

 T11a-4(M3, T6) 14 1

 T11a-4(M3, T7) 15 1

 T12a-1(M2, T6) 22 1

 T12a-1(M2, T7) 23 1

 T12a-1(M3, T6) 24 1

 T12a-1(M3, T7) 25 1

 T12a-2(M2, T6) 26 1

 T12a-2(M2, T7) 27 1

 T12a-2(M3, T6) 28 1

 T12a-2(M3, T7) 29 1

 T12a-3(M2, T6) 30 1

 T12a-3(M2, T7) 31 1

 T12a-3(M3, T6) 32 1

 T12a-3(M3, T7) 33 1

 T12a-4(M2, T6) 34 1

 T12a-4(M2, T7) 35 1

 T12a-4(M3, T6) 36 1

 T12a-4(M3, T7) 37 1

 T12b-1(M4, T6) 38 1

 T12b-1(M4, T7) 39 1

 T12b-2(M4, T6) 40 1

 T12b-2(M4, T7) 41 1

 T12b-3(M4, T6) 42 1

 T12b-3(M4, T7) 43 1

 T13a-1(M2, T6) 44 1

 T13a-1(M2, T7) 45 1

 T13a-1(M3, T6) 46 1

 T13a-1(M3, T7) 47 1

 T13a-1(M4, T6) 48 1

 T13a-1(M4, T7) 49 1

 T13a-2(M2, T6) 50 1

 T13a-2(M2, T7) 51 1

 T13a-2(M3, T6) 52 1

 T13a-2(M3, T7) 53 1

 T13a-2(M4, T6) 54 1

 T13a-2(M4, T7) 55 1

 T14a-1(M1, T2) 56 1 1 1 1

 T14a-2(M1, T2) 57 1 1 1 1

 T14b-1(M2, T2) 58 1

 T14b-1(M3, T2) 59 1

 T14b-1(M4, T2) 60 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T21b-2(M1, T1) 65 1 1 1 1 1

 T22a-1(M2, T12) 66 1

 T22a-1(M3, T12) 67 1

 T22a-1(M4, T12) 68 1 1 1 1 1 1 1 1 1 1 1 1

 T22a-2(M2, T12) 69 1

 T22a-2(M3, T12) 70 1

 T22a-2(M4, T12) 71 1 1 1 1 1 1 1 1 1 1

 T23a-1(M2, T6) 72 1

 T23a-1(M2, T7) 73 1

 T23a-1(M2, T11) 74 1

 T23a-1(M3, T6) 75 1

 T23a-1(M3, T7) 76 1

 T23a-1(M3, T11) 77 1

 T23a-1(M4, T6) 78 1

 T23a-1(M4, T7) 79 1

 T23a-1(M4, T11) 80 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T23a-2(M2, T6) 81 1

 T23a-2(M2, T7) 82 1

 T23a-2(M2, T11) 83 1

 T23a-2(M3, T6) 84 1

 T23a-2(M3, T7) 85 1

 T23a-2(M3, T11) 86 1

 T23a-2(M4, T6) 87 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T23a-2(M4, T7) 88 1

 T23a-2(M4, T11) 89 1 1 1 1 1 1 1 1 1 1

 T31a-2(M2, T7) 96 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T31a-2(M2, T8) 97 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T31a-2(M3, T7) 98 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T31a-2(M3, T8) 99 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T31a-2(M4, T7) 100 1

 T31a-2(M4, T8) 101

 T32a-1(M2, T7) 102 1

 T32a-1(M2, T8) 103 1

 T32a-1(M3, T7) 104 1

 T32a-1(M3, T8) 105 1

 T32a-1(M4, T7) 106 1 1 1 1 1 1

 T32a-1(M4, T8) 107 1 1 1 1 1

 T32a-2(M2, T7) 108 1 1 1 1 1

 T32a-2(M2, T8) 109 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T32a-2(M3, T7) 110 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T32a-2(M3, T8) 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T32a-2(M4, T7) 112 1

 T32a-2(M4, T8) 113

 T33a-1(M2, T7) 114 1

 T33a-1(M2, T8) 115 1

 T33a-1(M3, T7) 116 1

 T33a-1(M3, T8) 117 1

 T33a-1(M4, T7) 118 1 1 1 1 1 1

 T33a-1(M4, T8) 119 1 1 1 1 1

 T33a-2(M2, T7) 120 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T33a-2(M2, T8) 121 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T33a-2(M3, T7) 122 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T33a-2(M3, T8) 123 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 T33a-2(M4, T7) 124 1

 T33a-2(M4, T8) 125

 T41b-2(M3, T9) 128 1

 T41b-2(M3, T10) 129

 T42a-1(M2, T1) 136 1 1 1 1 1 1 1 1 1

 T42a-1(M2, T3) 137 1 1 1 1 1 1 1 1

 T42a-1(M3, T1) 138 1 1 1 1 1 1 1

 T42a-1(M2, T3) 139 1 1 1 1 1 1

 T42a-2(M2, T1) 140 1 1 1 1 1 1

 T42a-2(M2, T3) 141 1 1 1 1 1

 T42a-2(M3, T1) 142 1 1 1 1

 T42a-2(M3, T3) 143 1 1 1

 T42a-3(M2, T1) 144 1 1 1

 T42a-3(M2, T3) 145 1 1

 T42a-3(M3, T1) 146 1

 T42a-3(M3, T3) 147

 T43a-1(M2, T6) 148 1 1 1 1 1 1

 T43a-1(M2, T9) 149 1 1 1 1 1

 T43a-1(M3, T6) 150 1 1 1 1

 T43a-1(M3, T9) 151 1 1 1

 T43a-2(M2, T6) 152 1 1 1

 T43a-2(M2, T9) 153 1 1

 T43a-2(M3, T6) 154 1

 T43a-2(M3, T9) 155

 T44b-1(M3, T3) 156 1 1

 T44b-2(M3, T3) 157 1 1

 T44b-3(M3, T3) 158 1 1

 T44a-1(M2, T3) 159

 T44a-2(M2, T3) 160

90

Step #5: Checking the ending condition

In step five, we need to make a judgment. If there is at least one remaining Unit Task, go to step

#3. If there is no remaining Unit Task, the PPS problem computation is finished, and the output

schedule is the combination of Unit Task Candidates and Candidate Nodes found at each time

slot.

The results of the example problem with Heuristics #13 is illustrated in Figure 4-13. Our

approach can get to a near-optimal solution finishing in 107.5 time unit compare to the optimum

solution finishing in 98 time units, which is a 9.69% error. The computation of our approach

takes about 20 seconds, which is much faster (seconds versus days) compare to the optimum

solutions using integer programming.

Table 4-5 shows the performance of our approach in terms of accuracy and computation time.

Each column describes the heuristics ID, the minimum makespan in a number of time slots,

average clock time in 3-run, whether it is an approximation algorithm, error in a number of time

slots, and error rate, respectively. The accuracy is the error rate by comparing the result of my

approach with the optimal solution, and computation time is the clock time taken to finish the

computation. For the example problem, we can get a near-optimal in seconds with a minimum

10% error but much faster. In the following chapter, we test our approach on a real-world

example from the literature, and further test cases are designed to exam the accuracy, robustness,

and scalability of our approach.

91

Figure 4-13. Schedule Created with Heuristics #13

Part #1: O1,1 O1,2 O1,3 O1,4

O2,1 O2,2 O2,3

O3,3 O3,1 O3,2

O4,2 O4,4 O4,1 O4,3
Part #2:

Part #3:

Part #4:

T9

T10

T11

T12

2TS 4TS 6TS 8TS 10TS

T8

T7

T6

T5

T3

T2

T1

11TS

O1,1 : 4TS

O2,1 : 2TS

O3,3 : 2TS

O4,2 : 2TS

O3,1 : 2TS

O4,4 : 3TS

O1,2 : 4TS

O2,2 : 2TS

O4,1 : 2TS

O2,3 : 2TS

O3,2 : 2TS

O4,3 : 2TS

O1,3 : 2TS

O1,4 :

1TS

M1

M2

M3

M4

O2,1 : 2TS

O1,1 : 4TS

O3,2 : 2TS

O2,2 : 2TS O2,3 : 2TSO3,3 : 2TS

O4,2 : 2TS O4,4 : 3TS O4,1 : 2TS

O4,3 : 2TS

O3,1 : 2TS

2TS 4TS

O1,2 : 4TS

O1,3 : 2TS

O1,4 :

1TS

6TS 8TS 10TS 11TS

92

Table 4-5. Outputs of the Heuristics Configurations on the Example PPS Problem
Methods Minimum makespan

(in time slots)

Clock time,

3-run average

Is approx? Error Error rate

Heuristics#1 11 11768.55 No 1 10%

Heuristics#2 11 14392.62 No 1 10%

Heuristics#3 11 13370.07 No 1 10%

Heuristics#4 11 13344.73 No 1 10%

Heuristics#5 11 10904.36 No 1 10%

Heuristics#6 11 12042.11 No 1 10%

Heuristics#7 14 11942.88 No 4 40%

Heuristics#8 11 10178.87 No 1 10%

Heuristics#9 11 10496.09 No 1 10%

Heuristics#10 11 10833.84 No 1 10%

Heuristics#11 12 8.75 Yes 2 20%

Heuristics#12 11 38.73 Yes 1 10%

Heuristics#13 11 26.02 Yes 1 10%

Heuristics#14 11 9.23 Yes 1 10%

Heuristics#15 11 39.22 Yes 1 10%

Heuristics#16 11 28.09 Yes 1 10%

Heuristics#17 11 9.16 Yes 1 10%

Heuristics#18 11 37.66 Yes 1 10%

Heuristics#19 11 26.74 Yes 1 10%

Heuristics#20 14 9.99 Yes 4 40%

Heuristics#21 11 43.34 Yes 1 10%

Heuristics#22 11 27.02 Yes 1 10%

Heuristics#23 14 9.78 Yes 4 40%

Heuristics#24 11 41.62 Yes 1 10%

Heuristics#25 11 27.59 Yes 1 10%

Heuristics#26 14 9.91 Yes 4 40%

Heuristics#27 11 40.42 Yes 1 10%

Heuristics#28 11 28.64 Yes 1 10%

4.6 Summary

In this chapter, we propose a novel approach to formulate a general type of PPS problem with

integrated resource allocation and process planning towards a typical objective, minimizing the

makespan. The PPS problem is formulated into an undirect weighted conflicting graph due to its

nature of resource and sequence constraints. In this conflicting graph, nodes stand for operations

and their resources; edges stand for constraints, and weight factors are the guidelines for the node

selection at each time slot. A variation of the GCP, the MWIS problem, can be solved to find the

best set of operations with their desired resources at each discrete time slot.

93

This proposed approach solves the PPS problem directly with minimum iteration. We establish

that the proposed approach always returns a feasible solution by selecting the MWIS for each

time slot. The accuracy and computational speed of the MWIS algorithm in the heuristics

configurations can guarantee the performance of the proposed approach.

The seven weight factor arrangements, together with the eight MWIS algorithms from Chapter 3,

are constructed into twenty-eight heuristics configurations for solving the PPS problem. These

heuristics configurations are listed in Table 4-3. In the following Chapter 5, we test our approach

on a real-world example from the literature, and further test instances are designed to exam the

accuracy, robustness, and scalability of our approach.

94

Chapter 5. Computational Experiments

In this chapter, we first want to verify the feasibility of the proposed approach for the Process

Planning and Scheduling (PPS) problem on a real-world example. Secondly, we create a set of

testing cases based on the structure of the real-world example but randomized sequencing

constraints and resource combinations for further evaluation. The results obtained on all the test

instances are reported and analyzed in terms of scalability, accuracy, and robustness. The

scalability analysis shows how the proposed approach behaves on different sizes of the inputs.

The accuracy refers to how likely the proposed approach can get to the optimum results. It can

be measured by the average and maximum error rate on the tests. And the robustness ensures the

error-free and bug-free on all the tests.

Chapter 5 is organized as following sections: Section 5.1 provides the details of the

implementation of the Integer Programming (IP) model for the PPS problem, so that the

optimum solutions can be obtained. Section 5.2 describes the proposed approach with a real-

world problem from the literature. Section 5.3 discusses and analyzes the results of all the test

instances. Section 5.4 gives the summary of Chapter 5.

5.1 Integer Programming Model for Process Planning and Scheduling (PPS) Problem

5.1.1 Implementation of Integer Programming (IP) Model

In order to get the optimum solution to the PPS problem, the Integer Programming (IP) model is

implemented and tested based on the mathematical modeling discussed in section 4.3. The IP

model is implemented with python package “pyomo” in Python 3.7.5. The solver utilized in this

implementation is “glpk (GNU Linear Programming Kit).”

95

Figure 5-1. Parts Information with Simplified Duration Information

Assume that the best practice sequence of operations of four parts is given as Figure 5-1. Note

that, we generalize the machines, tools and all other possible resources as 𝑟 number of resources,

(𝑅1, 𝑅2, … , 𝑅𝑟). The input format, taking Part #1 operations as an example, is shown in Figure 5-

2.

Figure 5-2. Input of Part #1 Operations

Part #1:
𝑇1,1[(𝑅1,𝑅2,𝑅3)2]

2
→

𝑇1,2[(𝑅1,𝑅2,𝑅3)2]

1
→

𝑇1,3[(𝑅1,𝑅2,𝑅3)1]

2
→

𝑇1,4[(𝑅4)1]

1

Part #2:
𝑇2,1[(𝑅1,𝑅2,𝑅3)1]

1
→

𝑇2,2[(𝑅1)1𝑎𝑛𝑑(𝑅2,𝑅3)1]

2
→

𝑇2,3[(𝑅4)1]

1

Part #3:
𝑇3,1[(𝑅1,𝑅2)1]

1
→ (

𝑇3,2𝑎[(𝑅1,𝑅2)2]

1
𝑇3,2𝑏[(𝑅3)1]

2

)

1

→
𝑇3,3[(𝑅3,𝑅4)1]

3

Part #4:
𝑇4,1[(𝑅1,𝑅2,𝑅3)3]

1
→

𝑇4,2[(𝑅1,𝑅2,𝑅3)2]

2
→

𝑇4,3[(𝑅1,𝑅2,𝑅3)3]

1
→

𝑇4,4[(𝑅1,𝑅2,𝑅3)2]

1
→

𝑇4,5[(𝑅4)1]

1

Where, 𝑅1, 𝑅2, 𝑅3, 𝑅4 are the four different resources. For
𝑇1,1[(𝑅1,𝑅2,𝑅3)2]

2
, it means that the

first operation (task 𝑇1,1) of Part #1 requires any combination of two resources among

(𝑅1, 𝑅2, 𝑅3) and the duration is 2 time slots. (

𝑇3,2𝑎[(𝑅1,𝑅2)2]

1
𝑇3,2𝑏[(𝑅3)1]

2

)

1

means that the task 𝑇3,2 can be

processed with two task options 𝑇3,2𝑎 and 𝑇3,2𝑏 .

96

The inputs are then transformed into the dictionary shown as Figure 5-3 to fulfill the solver’s

requirements. Each job is broken down into task-resource pairs associated with its duration and

sequencing information. For tasks that require more than one resource, each required resource is

generated as one task-resource pair instance.

Figure 5-3. Inputs Dictionary Format for Package “pyomo” in Python

The mathematical modeling of PPS problem from section 4.3 is transformed into the format for

the python package “pyomo” as well as the solver “glpk”. The new formulation is as below:

(1) The variables

• model.start = pyo.Var(PARTS, RESOURCES, domain = pyo.NonNegativeReals)

• model.makespan = pyo.Var(domain=pyo.NonNegativeReals)

• model.y = pyo.Var(PARTS,PARTS,RESOURCES, domain = pyo.Boolean)

97

(2) The objective

• model.Obj = pyo.Objective(expr = model.makespan, sense = pyo.minimize)

(3) The constraints

For the instances of the same tasks but different resources, these instances must have the same

start time.

• model.cons.add(model.start[j,r] <= model.start[m,n])

• model.cons.add(model.start[m,n] <= model.start[j,r])

The makespan is the finishing time for all tasks.

• model.cons.add(model.start[j,m] + TASKS[(j,m)]['dur'] <= model.makespan)

For a task which requires a predecessor, it can only be scheduled after the predecessor is finished.

• model.cons.add(model.start[j,m] >= model.start[k,n] + TASKS[(k,n)]['dur'])

For the tasks who shares resources, they cannot be scheduled in the same time.

• model.cons.add(model.start[j,m] + TASKS[(j,m)]['dur'] <= model.start[k,m]

or

model.cons.add(model.start[k,m] + TASKS[(k,m)]['dur'] <= model.start[j,m]

5.1.2 Numerical Results of IP Model

We introduce the Input Complexity Index (ICI) to measure the complexity of inputs. It is

essentially a reference value describing the relative size of the possible number of combinations

of results of the PPS problem. As discussed in Chapter 4, the PPS problem can be understood as

98

a conflicting graph so that we can utilize some parameters of this graph to calculate the ICI. The

ICI can be defined as,

𝐼𝐶𝐼 = |𝑃|
(
|𝑇|
|𝑃|
−1)
∗ |𝑁| ∗ |𝑂| ∗ |𝐷|

Where, |𝑃| is the number of parts; |𝑇| is the number of tasks; |𝑂| is the total number of the

options of the tasks. |𝐷| is the density of the conflicting graph, and |𝑁| is the number of nodes of

the conflicting graph.

The graph density is defined as follows (Diestel, 2006),

𝐷 =
2|𝐸|

|𝑁|(|𝑁| − 1)

Where |𝐸| is the number of edges in the conflicting graph.

IP is NP-complete on discrete problems, which means that its computation time should increase

exponentially with the size of the inputs. To verify this hypothesis, we simulated 10 PPS

problems considering a different number of parts and operations, as well as diverse information

for operations. The results are shown in Table 5-1. In Table 5-1, each column describes the test

ID, number of parts, number of tasks, number of edges, number of nods, graph density, number

of options, ICI, 3-run average clock time in seconds, minimum makespan, respectively. Note that

all computational experiments in this thesis are performed on a virtual server at Syracuse

University. The CPU is Intel Xeon E5-2699 with a fixed maximum speed at 2.3 GHz, and the

memory is 32 GB. All the implementations mentioned in this thesis are in single threading.

Table 5-1. Integer Programming Model Numerical Results

Test

-ID

of

Parts

of

Tasks

of

Edges

of

Nodes

Graph

Density

of

options

Input Complexity

Index

Clock

Time (s)

Minimum

Makespan

1 2 7 111 24 0.40 1 218.40 6.59 7

2 3 10 227 35 0.38 2 3119.84 68.67 8

3 3 11 307 37 0.46 1 2873.64 26.97 16

4 4 12 315 41 0.38 2 8064 118.94 11

5 4 12 390 41 0.48 2 9984 150.77 10

99

6 5 13 316 40 0.41 2 10640.80 643.77 7

7 5 14 396 41 0.48 2 17938.30 5794.50 10

8 5 14 504 45 0.51 2 20755.05 12196.93 10

9 4 14 375 41 0.46 1 9600 213.92 18

10 4 14 1074 63 0.55 1 17738.32 2959.31 18

The computation time follows an exponential trendline with increasing input ICI in Figure 5-4,

and the logarithmic computation time follows a straight trendline with increasing input ICI in

Figure 5-5. It can be seen that the IP model follows an exponential complexity of the PPS

problem. Although the solution of the IP model can provide the optimum solution to the PPS

problem, the computational speed is unacceptable. But we can manipulate inputs based on the

outputs of our approach, so that the outputs of our approach can be verified in terms of accuracy.

Figure 5-4. Computation Time with Changing ICI

0

2000

4000

6000

8000

10000

12000

14000

0 5000 10000 15000 20000 25000

C
o

m
p

u
ta

ti
o

n
 T

im
e

(s
)

Input Complexity Index

Computation Time with Changing Input Complexity

Clock Time (s) Expon. (Clock Time (s))

100

Figure 5-5. Logarithmic Computation Time with Changing ICI

5.2 A Real-world Example Using the Proposed Approach

Based on the case study from Zhang et al.’s work (Zhang et al., 2014) and combined with the

details from Zhang et al.’s references (Chu & Gadh, 1996; Zhang et al., 2003; Li et al., 2005; Li

& McMahon, 2007), we constructed a real-world PPS problem to verify our approach. The

resources, machines, and cutting tools of a specific job shop are defined in Table 5-2. The four

parts of the problem are shown in Figure 5-6. The relevant technical specifications of the four

parts are defined in Tables 5-3 to 5-6.

Table 5-2. The Resource of a Job Shop – Machines and Tools

Types No.

Machines

Drilling press M1

Three-axis vertical milling machine I M2

Three-axis vertical milling machine II M3

CNC three-axis vertical milling machine M4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 5000 10000 15000 20000 25000

lo
g1

0
 o

f
(C

o
m

p
u

ta
ti

o
n

 T
im

e
(s

))

Input Complexity Index

Logarithm of Computation Time with Changing Input Complexity

log10 of Computation Time Linear (log10 of Computation Time)

101

Boring machine M5

Cutting tools

Drill 1 T1

Drill 2 T2

Drill 3 T3

Drill 4 T4

Tapping tool T5

Mill 1 T6

Mill 2 T7

Mill 3 T8

Reaming tool T9

Boring tool T10

Slot cutter T11

Chamfer tool T12

Figure 5-6. The description of 4 parts of PPS

Part 4

102

Table 5-3. The Technical Specifications for Part #1

Features Operations Machine Candidates Tool Candidates Machining time for each

candidate machine (s)

F1 Milling (Oper1) M2, M3, M4 T6, T7, T8 40, 40, 30

F2 Milling (Oper2) M2, M3, M4 T6, T7, T8 40, 40, 30

F3 Milling (Oper3) M2, M3, M4 T6, T7, T8 20, 20, 15

F4 Drilling (Oper4) M1, M2, M3, M4 T2 12, 10, 10, 7.5

F5 Milling (Oper5) M2, M3, M4 T6, T7 35, 35, 26.25

F6 Milling (Oper6) M2, M3, M4 T7, T8 15, 15, 11.25

F7 Milling (Oper7) M2, M3, M4 T7, T8 30, 30, 22.5

F8 Milling (Oper8) M1, M2, M3, M4 T2, T3, T4 21.6, 18, 18, 13.5

 Reaming (Oper9) M2, M3, M4 T9 10, 10, 7.5

 Boring (Oper10) M2, M3, M4, M5 T10 10, 10, 7.5, 12

F9 Milling (Oper11) M2, M3, M4 T7, T8 15, 15, 11.25

F10 Drilling (Oper12) M1, M2, M3, M4 T2, T3, T4 48, 40, 40, 30

 Reaming (Oper13) M2, M3, M4 T9 25, 25, 18.75

 Boring (Oper14) M2, M3, M4, M5 T10 25, 25, 18.75, 30

F11 Milling (Oper15) M1, M2, M3, M4 T1 26.4, 22, 22, 16.5

 Tapping (Oper16) M2, M3, M4 T5 20, 20, 15

F12 Milling (Oper17) M2, M3, M4 T7, T8 16, 16, 12

F13 Milling (Oper18) M2, M3, M4 T6, T7 35, 35, 26.25

F14 Reaming (Oper19) M2, M3, M4 T9 12, 12, 9

 Boring (Oper20) M2, M3, M4, M5 T10 12, 12, 9, 14.4

Table 5-4. The Technical Specifications for Part #2

Features Operations Machine Candidates Tool Candidates Machining time for each

candidate machine (s)

F1 Drilling (Oper1) M1, M2, M3, M4 T1 12, 10, 10, 7.5

F2 Milling (Oper2) M2, M3, M4 T12 20, 20, 15

F3 Milling (Oper3) M2, M3, M4 T5, T6, T11 18, 18, 13.5

F4 Milling (Oper4) M2, M3, M4 T6, T7, T8 16, 16, 12

F5 Milling (Oper5) M2, M3, M4 T6, T7, T8 15, 15, 11.25

F6 Drilling (Oper6) M1, M2, M3, M4 T2 30, 25, 25, 18.75

 Reaming (Oper7) M2, M3, M4 T9 25, 25, 18.75

F7 Drilling (Oper8) M1, M2, M3, M4 T1 14.4, 12, 12, 9

F8 Milling (Oper9) M2, M3, M4 T6, T7, T8 15, 15, 11.25

F9 Drilling (Oper10) M1, M2, M3, M4 T1 9.6, 8, 8, 6

F10 Milling (Oper11) M2, M3, M4 T6, T7, T8 10, 10, 7.5

F11 Milling (Oper12) M2, M3, M4 T6, T7, T8 10, 10, 7.5

F12 Drilling (Oper13) M1, M2, M3, M4 T1 9.6, 8, 8, 6

F13 Milling (Oper14) M2, M3, M4 T6, T7, T8 16, 16, 12

F14 Drilling (Oper15) M1, M2, M3, M4 T1 9.6, 8, 8, 6

F15 Milling (Oper16) M1, M2, M3, M4 T6, T7, T8 36, 30, 30, 22.5

103

Table 5-5. The Technical Specifications for Part #3

Features Operations Machine Candidates Tool Candidates Machining time for each

candidate machine (s)

F1 Milling (Oper1) M2, M3, M4 T6, T7, T8 20, 15, 20

F2 Milling (Oper2) M2, M3, M4 T6, T7, T8 20, 15, 20

F3 Milling (Oper3) M2, M3, M4 T6, T7, T8 15, 15, 11.25

F4 Milling (Oper4) M1, M2, M3, M4 T2 15, 15, 11.25, 18

F5 Milling (Oper5) M2, M3, M4 T6, T7, T8 15, 15, 11.25

F6 Milling (Oper6) M2, M3, M4 T7, T8 15, 15, 11.25

F7 Milling (Oper7) M2, M3, M4 T7, T8, T11 15, 15, 11.25

F8 Milling (Oper8) M2, M3, M4 T6, T7, T8, T11 25, 25, 18.75

F9 Drilling (Oper9) M1, M2, M3, M4 T2, T3, T4 30, 25, 25, 18.75

 Reaming (Oper10) M2, M3, M4 T9 20, 20, 15

 Boring (Oper11) M2, M3, M4, M5 T10 20, 20, 15, 24

F10 Drilling (Oper12) M1, M2, M3, M4 T1 9.6, 8, 8, 6

 Tapping (Oper13) M2, M3, M4 T5 8, 8, 6

F11 Drilling (Oper14) M1, M2, M3, M4 T9 6, 5, 5, 3.75

Table 5-6. The Technical Specifications for Part #4

Features Operations Machine Candidates Tool Candidates Machining time for each

candidate machine (s)

F1 Milling (Oper1) M2, M4 T6, T9 12

F2 Milling (Oper2) M2, M4 T9, T10 21

F3 Milling (Oper3) M2, M4 T9 18

F4 Milling (Oper4) M2, M4 T1, T9 27

F5 Drilling (Oper5) M1, M2, M4 T2 20

F6 Milling (Oper6) M2, M4 T1, T9 18

F7 Drilling (Oper7) M1, M2, M4 T2 20

We define each time slot (1TS) representing 15 time units. The top segment of Figure 5-8

illustrates the best practice operation sequence of the four parts. All the operations are then

transformed into the input format. Figure 5-7 shows the transformed operations of Part #1. There

are 119 Unit Tasks for all the four parts. We can generate the conflicting graph, which has 47525

edges and 580 nodes. For a problem in such a size, the heuristics configurations with faster

approximation-based algorithms are preferred.

Using the Heuristics #19, Algorithm A5 MWIS_SubCS_GWMIN and MWIS A3: MWIS

Weights 3, and using the median length weight factor, 𝐿𝑊𝑐
𝑀 = 1. The schedule with the resource

104

allocations generated is shown in Figure 5-8. Table 5-7 shows the outputs of Heuristics #11 to

Heuristics #28 on the real-world PPS problem. Among all the Heuristics tested, the Heuristics

#19 achieved the optimum solution with 31 time slots. The results with an error rate of less than

5% take 7000~11000 seconds of clock time for finishing the computation.

Figure 5-7. Transformed Operations of Part #1

105

Figure 5-8. Schedule Created with Heuristics #19

P
a
rt #

1
:

O
1
,1

O
1
,2

O
1
,3

O
1
,5

O
2
,5

O
2
,16

O
2
,1

O
3
,4

O
3
,5

O
3
,1

O
4
,3

O
4
,5

O
4
,1

O
4
,4

P
a
rt #

2
:

P
a
rt #

3
:

P
a
rt #

4
:

O
1
,6

O
1
,11

O
1
,18

O
1
,4

O
1
,7

O
1
,12

O
1
,13

O
1
,14

O
1
,15

O
1
,16

O
1
,17

O
1
,8

O
1
,10

O
1
,19

O
1
,20

O
2
,3

O
2
,6

O
2
,9

O
2
,11

O
2
,14

O
2
,7

O
2
,12

O
2
,13

O
2
,15

O
2
,2

O
2
,4

O
2
,8

O
2
,10

O
3
,2

O
3
,9

O
3
,10

O
3
,11

O
3
,3

O
3
,7

O
3
,8

O
3
,6

O
3
,12

O
3
,13

O
3
,14

O
4
,2

O
4
,6

O
4
,7

O
1
,9

M
1

M
2

M
3

M
4

O
2

,5 :

1
T

SO
1

,1 : 2
T

S

O
4

,3 : 2
T

S
O

4
,5 : 2

T
S

2
T

S
4
T

S
6

T
S

8
T

S
1
0
T

S

O
3

,4 :

1
T

S

1
2
T

S
1
4
T

S
1
6
T

S
1
8

T
S

2
0
T

S
2
2
T

S
2
4
T

S
2
6
T

S
2
8

T
S

3
0
T

S
3
1

T
S

O
2

,4 : 2
T

S

O
2

,1
6 : 3

T
S

O
3

,5 :

1
T

S

O
3

,1 :

1
T

S

O
3

,2 :

1
T

S

O
1

,2 : 2
T

S

M
5

O
3

,9 : 2
T

S

O
4

,1 :

3
T

S
O

4
,4 : 2

T
S

O
2

,1 :

1
T

S
O

2
,3 : 2

T
S

O
1

,3 :

1
T

S
O

1
,5 : 2

T
S

O
1

,6 :

1
T

S O
2

,6 : 2
T

S

O
1

,1
1 :

1
T

S

O
3

,1
0 : 2

T
S

O
4

,2 : 2
T

S

O
4

,6 : 2
T

S

O
2

,9 :

1
T

S

O
2

,1
1 :

1
T

S

O
1

,1
7 : 2

T
S

O
3

,1
1 : 2

T
S

O
1

,4 :

1
T

S

O
3

,3 :

1
T

S

O
2

,1
4 :

1
T

S

O
4

,7 : 2
T

S

O
2

,7 : 2
T

S

O
1

,7 : 2
T

S

O
3

,7 :

1
T

S
O

3
,8 : 2

T
S

O
2

,1
2 :

1
T

S

O
1

,1
2 : 3

T
S

O
3

,6 :

1
T

S

O
2

,1
3 :

1
T

S

O
2

,1
5 :

1
T

S

O
1

,1
3 : 2

T
S

O
3

,1
2 :

1
T

S

O
2

,2 :

1
T

S

O
3

,1
3 :

1
T

S

O
3

,1
4 :

1
T

S

O
1

,1
4 : 2

T
S

O
2

,8 :

1
T

S

O
1

,1
5 : 2

T
S

O
2

,1
0 :

1
T

S

O
1

,1
6 :

1
T

S

O
1

,1
7 :

1
T

S

O
1

,8 : 2
T

S
O

1
,1

0 :

1
T

S

O
1

,9 :

1
T

S

O
1

,1
9 :

1
T

S

O
1

,2
0 :

1
T

S

T
8

T
9

T
1
0

T
1
1

O
2

,5 :

1
T

SO
1

,1 : 2
T

S

O
4

,3 : 2
T

S

O
4

,5 : 2
T

S

2
T

S
4
T

S
6

T
S

8
T

S
1
0
T

S

O
3

,4 :

1
T

S

1
2
T

S
1

4
T

S
1

6
T

S
1
8

T
S

2
0
T

S
2

2
T

S
2
4
T

S
2
6
T

S
2
8

T
S

3
0
T

S
3
1

T
S

O
2

,4 : 2
T

S
O

2
,1

6 : 3
T

S

O
3

,5 :

1
T

S

O
3

,1 :

1
T

S

O
3

,2 :

1
T

S

O
1

,2 : 2
T

S

T
1
2

O
3

,9 : 2
T

S

O
4

,1 :

3
T

S
O

4
,4 : 2

T
S

O
2

,1 :

1
T

S

O
2

,3 : 2
T

S

O
1

,3 :

1
T

S
O

1
,5 : 2

T
S

O
1

,6 :

1
T

S O
2

,6 : 2
T

S

O
1

,1
1 :

1
T

S

O
3

,1
0 : 2

T
S

O
4

,2 : 2
T

S

O
4

,6 : 2
T

S

O
2

,9 :

1
T

S

O
2

,1
1 :

1
T

S

O
1

,1
7 : 2

T
S

O
3

,1
1 : 2

T
S

O
1

,4 :

1
T

S

O
3

,3 :

1
T

S

O
2

,1
4 :

1
T

S

O
4

,7 : 2
T

S

O
2

,7 : 2
T

S

O
1

,7 : 2
T

S

O
3

,7 :

1
T

S
O

3
,8 : 2

T
S

O
2

,1
2 :

1
T

S

O
1

,1
2 : 3

T
S

O
3

,6 :

1
T

S

O
2

,1
3 :

1
T

S

O
2

,1
5 :

1
T

S

O
1

,1
3 : 2

T
S

O
3

,1
2 :

1
T

S

O
2

,2 :

1
T

S

O
3

,1
3 :

1
T

S

O
3

,1
4 :

1
T

SO
1

,1
4 : 2

T
S

O
2

,8 :

1
T

S
O

1
,1

5 : 2
T

S
O

2
,1

0 :

1
T

S

O
1

,1
6 :

1
T

S

O
1

,1
7 :

1
T

S

O
1

,8 : 2
T

S

O
1

,1
0 :

1
T

S

O
1

,9 :

1
T

S

O
1

,1
9 :

1
T

S

O
1

,2
0 :

1
T

S

T
7

T
6

T
5

T
4

T
3

T
2

T
1

106

Table 5-7. Outputs of Heuristics on Real-world PPS Problem

Methods Length Weight Minimum makespan

(in time slots)

Clock time 3-run

average (s)

Error Error

rate

Heuristics#11 LW=86 37 2533.453125 6 19.35%

Heuristics#12 LW=86 33 9576.869792 2 6.45%

Heuristics#13 LW=1 32 7474.770833 1 3.23%

Heuristics#14 LW=86 33 2542.958333 2 6.45%

Heuristics#15 LW=86 32 8680.5 1 3.23%

Heuristics#16 LW=1 32 7131.817708 1 3.23%

Heuristics#17 LW=1 33 2498.739583 2 6.45%

Heuristics#18 LW=1 33 9011.416667 2 6.45%

Heuristics#19 LW=1 31 6256.010417 0 0.00%

Heuristics#20 LW=1 53 6122.572917 22 70.97%

Heuristics#21 LW=1 36 23818.79167 5 16.13%

Heuristics#22 LW=86 32 10684.86458 1 3.23%

Heuristics#23 LW=0.001 52 4757.463542 21 67.74%

Heuristics#24 LW=1 33 21079.84375 2 6.45%

Heuristics#25 LW=86 35 9119.651042 4 12.90%

Heuristics#26 LW=1 58 4884.520833 27 87.10%

Heuristics#27 LW=0.001 35 19428.39583 4 12.90%

Heuristics#28 LW=86 32 8462.151042 1 3.23%

In Zhang et al.’s work (Zhang et al., 2014), they assume that tools are always available without

causing any constraints. This assumption is based on the understanding that the machining tools

are mostly available, but the machines are more critical resources in a flexible job shop. By

removing the tools from the constraints, we formulate a lite version of the real-world PPS

problem. The edge number is reduced to 8771, and the node number is reduced to 292 in the

conflicting graph. Table 5-8 shows the outputs of Heuristics #11 to Heuristics #28 on this

simplified real-world PPS problem. Note that the optimum solution for this instance is also 31

time slots; it is calculated by manipulating the IP model in a trial and error fashion. The results

with an error rate of less than 5% take less than 700 seconds clock time for finishing the

computation. Although our approach almost doubles the computation time compare to Zhang et

al.’s work, the runtime is still acceptable. We can say that our approach has acceptable

practicability and feasibility on real-world PPS problem. To further justify this conclusion, the

following section discusses the details regarding the scalability and accuracy of the proposed

107

approach.

Table 5-8. Outputs of Heuristics on Real-world PPS Problem without Tool Constraints

Methods Length Weight Minimum makespan

(in time slots)

Clock time 3-run

average (s)

Error Error

rate

Heuristics#11 LW=86 37 147.2188 6 19.35%

Heuristics#12 LW=1 35 704.8594 4 12.90%

Heuristics#13 LW=86 33 521.4063 2 6.45%

Heuristics#14 LW=1 33 134.8698 2 6.45%

Heuristics#15 LW=1 32 671.2188 1 3.23%

Heuristics#16 LW=1 35 467.6979 4 12.90%

Heuristics#17 LW=1 34 124.8281 3 9.68%

Heuristics#18 LW=1 32 686.7813 1 3.23%

Heuristics#19 LW=1 34 449.1823 3 9.68%

Heuristics#20 LW=1 43 287.8906 12 38.71%

Heuristics#21 LW=0.001 35 1629.25 4 12.90%

Heuristics#22 LW=86 32 580.8958 1 3.23%

Heuristics#23 LW=1 43 293.9688 12 38.71%

Heuristics#24 LW=0.001 35 1671.74 4 12.90%

Heuristics#25 LW=1 31 591.6198 0 0.00%

Heuristics#26 LW=1 43 283.3698 12 38.71%

Heuristics#27 LW=1 36 1806.609 5 16.13%

Heuristics#28 LW=1 33 598.1563 2 6.45%

5.3 Results and Discussions on Test Instances

We create nineteen test instances based on the structure of the real-world PPS example problem

with randomized sequencing constraints and resource combinations. The detailed input

information is in Appendix III. We run each heuristics configuration on each test instance for

three times, and details of the results are shown in Appendix IV and Appendix V. Since our

approach returns feasible results on all the test instances and the real-world example, we assume

that our approach has a satisfactory robustness on similar types of the PPS problem. Then, the

discussion is focusing on the scalability and accuracy. The scalability analysis shows how the

proposed approach behaves on different size and variance of the inputs. It can be evaluated based

on the computation time versus the different input sizes, node numbers, and edge numbers of the

different conflicting graphs. The accuracy refers to how likely the proposed approach can get to

108

the optimum solution. It can be measured by the average and maximum error rate of all the test

instances.

5.3.1 Scalability

The essential understanding of our approach to PPS problems, MWIS algorithms are the

determinant of the computation speed of different heuristics configurations. For those heuristics

configurations based on the same MWIS algorithm, the ones with more complex weight factor

calculations are slower. But this difference is minimal.

Figure 5-9. Computation Time with Node Number of Heuristics #1~10

Figure 5-9 and Figure 5-10 show how the computation time is changing with node number and

0

2000

4000

6000

8000

10000

12000

14000

20 40 60 80 100 120 140 160

C
lo

ck
 T

im
e

(s
)

Node Number

Computation Time with Node Number of Heuristics #1~10

H1 H2 H3 H4 H5 H6

H7 H8 H9 H10 Poly. (H1) Expon. (H1)

Poly. (H2) Poly. (H3) Poly. (H4) Poly. (H5) Poly. (H6) Poly. (H7)

Poly. (H8) Poly. (H9) Poly. (H10)

109

edge number on Heuristics #1~10, respectively. The Heuristics #1~10, which are based on the

two exact MWIS algorithms, Algorithm A1 MWIS and Algorithm A2 AMISL, are much slower

than all other heuristics configurations. The computation time could be hours when there are

about 140 nodes and 4000 edges, which could be much smaller than a typical PPS problem.

Although the worst case of the two algorithms can be exponentially slow, the PPS problem

considered here may not always be the worst case. As shown in Figure 5-9 and Figure 5-10, the

Heuristics #1~10 match higher-order (order 4 or higher) polynomial trendlines, but they are

faster than the exponential trendline.

Figure 5-10. Computation Time with Edge Number of Heuristics #1~10

0

2000

4000

6000

8000

10000

12000

14000

-200 300 800 1300 1800 2300 2800 3300 3800 4300 4800

C
lo

ck
 T

im
e

(s
)

Edge Number

Computation Time with Edge Number of Heuristics #1~10

H1 H2 H3 H4 H5 H6

H7 H8 H9 H10 Poly. (H1) Expon. (H1)

Poly. (H2) Poly. (H3) Poly. (H4) Poly. (H5) Poly. (H6) Poly. (H7)

Poly. (H8) Poly. (H9) Poly. (H10)

110

Figure 5-11. Computation Time with Node Number of Heuristics #11~28

For Heuristics #11~28, how the computation time is changing with node number and edge

number is represented in Figure 5-11 and Figure 5-12, respectively. The Heuristics #11~28 are

based on the approximation MWIS algorithms, GWMIN, GWMIN2, and their combinations.

Heuristics #11, Heuristics #14, Heuristics #17, Heuristics #20, Heuristics #23, and Heuristics

#26, which utilizing the Algorithm A3 GWMIN and Algorithm A6 GWMIN2 are the fastest.

Heuristics #13, Heuristics #16, Heuristics #19, Heuristics #22, Heuristics #25 and Heuristics

#28, which utilizing Algorithm A5 MWIS_SubCS_GWMIN and Algorithm A8

MWIS_SubCS_GWMIN2 are following. Heuristics #12, Heuristics #15, Heuristics #18,

0

5

10

15

20

25

30

35

40

45

20 40 60 80 100 120 140 160

C
lo

ck
 T

im
e

(s
)

Node Number

Computation Time with Node Number of Heuristics #11~28

H11 H12 H13 H14 H15 H16

H17 H18 H19 H20 H21 H22

H23 H24 H25 H26 H27 H28

Poly. (H11) Poly. (H12) Poly. (H13) Poly. (H20) Poly. (H21) Poly. (H22)

111

Heuristics #21, Heuristics #24 and Heuristics #27, which utilizing Algorithm A4

MWIS_CS_GWMIN and Algorithm A7 MWIS_CS_GWMIN2 are the slowest. The

computational speed of these Heuristics follows the similar trendlines of the approximation

MWIS algorithms, as discussed in Chapter 3. And Heuristics based on approximation MWIS

algorithms are much feasible in the sense of computation time.

Figure 5-12. Computation Time with Edge Number of Heuristics #11~28

5.3.2 Accuracy

Figure 5-13 shows the average and maximum error rate for all heuristics configurations. The

detailed information of the Heuristics configurations is as Table 4-3. The detailed accuracy

0

5

10

15

20

25

30

35

40

45

0 500 1000 1500 2000 2500 3000 3500 4000 4500

C
lo

ck
 T

im
e

(s
)

Edge Number

Computation Time With Edge Number of Hueristics #11~28

H11 H12 H13 H14 H15 H16

H17 H18 H19 H20 H21 H22

H23 H24 H25 H26 H27 H28

Poly. (H11) Poly. (H12) Poly. (H13) Poly. (H20) Poly. (H21) Poly. (H22)

112

summary of all the heuristics configurations on all tests is in Appendix IV. The detailed input

information and the detailed results of each test instance is in Appendix III and Appendix V,

respectively.

Figure 5-13. The Average and Maximum Error Rate for All Heuristics Configurations

H2

H8

H16

H5

H19

H3

H28

H25

H15

H4

H18

H14

H17

H1

H13

H24

H12

H22

H6

H11

H9

H27

H10

H21

H7

H23

H20

H26

14.29%

14.29%

14.29%

14.29%

20.00%

20.00%

20.00%

14.29%

14.29%

14.29%

18.18%

20.00%

14.29%

30.00%

30.00%

30.00%

30.00%

30.00%

28.57%

20.00%

28.57%

40.00%

28.57%

30.00%

40.00%

67.74%

70.97%

87.10%

3.66%

3.94%

4.01%

4.25%

4.42%

4.73%

4.85%

5.02%

5.34%

5.48%

5.85%

5.95%

6.08%

7.11%

7.17%

7.22%

7.44%

7.59%

7.97%

8.08%

9.08%

9.25%

10.03%

11.44%

16.33%

28.99%

29.64%

32.03%

ERROR RATE FOR ALL HEURISTICS

Heuristics Average Error

Heuristics Max Error

113

Assume 𝑇𝑆𝑜𝑝𝑡𝑖𝑚𝑢𝑚 is the minimum number of time slots need for the PPS problem on the test

instance, and 𝑇𝑆 is the number of time slots found by our approach. The error rate is calculated

using the function below.

𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 =
𝑇𝑆 − 𝑇𝑆𝑜𝑝𝑡𝑖𝑚𝑢𝑚

𝑇𝑆𝑜𝑝𝑡𝑖𝑚𝑢𝑚
× 100%

Note that the 𝑇𝑆𝑜𝑝𝑡𝑖𝑚𝑢𝑚 is calculated based on the IP model with manipulating inputs to get the

optimum result with reasonable computation time, and the error rate of each heuristics

configuration is calculated based on the best accuracy among the three different length weight

factors.

Let the threshold for heuristics configuration selection be the average error of less than 7% and

the maximum error of less than 20%. For Heuristics #1-10 with the exact MWIS algorithms,

from the best to the worst, Heuristics #2, Heuristics #8, Heuristics #5, Heuristics #3 and

Heuristics #4 are satisfactory. For Heuristics #11-28 with the approximation MWIS algorithms,

from the best to the worst, Heuristics #16, Heuristics #19, Heuristics #28, Heuristics #25,

Heuristics #15, Heuristics #18, Heuristics #14, and Heuristics #17 are satisfactory.

Based on the computational experiments in Chapter 3, the general accuracy of the MWIS

algorithms can be listed below from the best accuracy to the worst:

• Algorithm A1 MWIS

• Algorithm A2 AMISL (same as Algorithm MWIS)

• Algorithm A5 MWIS_SubCS_GWMIN

• Algorithm A8 MWIS_SubCS_GWMIN2

• Algorithm A4 MWIS_CS_GWMIN

• Algorithm A3 GWMIN

114

• Algorithm A7 MWIS_CS_GWMIN2

• Algorithm A6 GWMIN2

Compare with the results shown in Figure 5-13, with the same weight factors assignment, a more

accurate MWIS algorithm leads to a better accuracy output of the PPS problem. None of the

satisfactory heuristics is using the least accurate MWIS algorithms, Algorithm A7

MWIS_CS_GWMIN2 and A6 GWMIN2. In other words, while using the proposed approach for

the PPS problem, a relatively accurate MWIS algorithm is required. This is the evidence of the

necessity of the better accuracy MWIS algorithms proposed in Chapter 3.

Figure 5-14. Details of Test Instances T24

The above-mentioned heuristics configurations may not able to reach the optimum results on

some of the test instances. These bad instances are T6, T11, T12, T13, T14, T17, T18, T19, T20,

and T24. Figure 5-15 shows the average and maximum error rate for all heuristics configurations

on these bad instances. These instances have concentrated resource requirements. Let us take the

instance T24 (Figure 5-14) as an example. The jobs in the instances have a significant difference

in the number of time slots for finishing. Also, the beginning Unit Tasks are concentrated on the

resources 𝑅1, 𝑅2, and 𝑅3, and the ending Unit Tasks are concentrated on the resources 𝑅4. Since

Job #1:
T11[(R1,R2,R3)2]

2
→

T12[(R1,R2,R3)2]

1
→

T13[(R1,R2,R3)1]

2
→

T14[(R4)1]

3

Job #2:
T21[(R1,R2,R3)1]

1
→

T22[(R1)1and(R2,R3)1]

2
→

T23[(R4)1]

3

Job #3:
T31[(R1,R2)1]

1
→ (

T32a[(R1,R2)2]

1
T32b[(R3)1]

2

)

1

→
T33[(R3,R4)1]

3

Job #4:
T41[(R1,R2,R3)2]

2

Job #5:
T51[(R1,R2,R3)2]

2

115

the MWIS algorithm tries to schedule as many nodes as possible, it may cause the ending Unit

Tasks all leftover, but they cannot be processed on parallel machines. We iterate the three levels

of length weight coefficient, median, high and low, as 𝐿𝑊𝑐
𝑀, 𝐿𝑊𝑐

𝐻 and 𝐿𝑊𝑐
𝐿, respectively with

the proposed heuristics configurations to balance the length of each job and the concentrated

resources requirements. So that the maximum error rate of each satisfactory heuristics

configuration is not exceeding 20%.

Another interesting finding is that the Heuristics #14 and #17, which are using the approximation

algorithms GWMIN, perform well on these bad test instances. The hypothesis is that the

GWMIN generates the selection of the node with the maximum weight. This may avoid the

concentrating resources blocking the optimum results.

Based on the discussions on scalability and accuracy, the better heuristics configurations for the

PPS problem are listed as below,

• Heuristics #16, Algorithm MWIS_SubCS_GWMIN, MWIS A2: MWIS Weights 2

• Heuristics #19, Algorithm MWIS_SubCS_GWMIN, MWIS A3: MWIS Weights 3

• Heuristics #28, Algorithm MWIS_SubCS_GWMIN2, MWIS A3: MWIS Weights 3

• Heuristics #25, Algorithm MWIS_SubCS_GWMIN2, MWIS A2: MWIS Weights 2

• Heuristics #15, Algorithm MWIS_CS_GWMIN, MWIS A2: MWIS Weights 2

• Heuristics #18, Algorithm MWIS_CS_GWMIN, MWIS A3: MWIS Weights 3

• Heuristics #14, Algorithm GWMIN, MWIS A2: MWIS Weights 2

• Heuristics #17, Algorithm GWMIN, MWIS A3: MWIS Weights 3

116

Figure 5-15. The Average and Maximum Error Rate on Bad Test Instances

5.4 Summary

In this chapter, we verify the practicability and feasibility of the proposed approach for the PPS

H14

H15

H18

H16

H17

H25

H2

H8

H19

H28

H5

H6

H24

H3

H12

H4

H11

H9

H10

H13

H22

H27

H1

H21

H7

H23

H20

H26

14.29%

14.29%

14.29%

14.29%

14.29%

14.29%

14.29%

14.29%

20.00%

20.00%

14.29%

28.57%

30.00%

20.00%

30.00%

14.29%

20.00%

28.57%

28.57%

30.00%

30.00%

40.00%

30.00%

30.00%

40.00%

67.74%

70.97%

87.10%

6.43%

6.84%

7.09%

7.40%

7.45%

7.64%

7.68%

7.68%

8.16%

8.19%

8.93%

9.11%

9.49%

9.93%

10.72%

10.93%

11.14%

12.36%

12.36%

13.25%

13.25%

14.00%

14.93%

17.27%

17.36%

38.15%

38.65%

43.77%

ERROR RATE FOR BAD TEST INSTANCES

Heuristics Average Error

Heuristics Max Error

117

problem on a real-world example and further test instances. The implementation of our approach

is error-free and bug-free on all the tests. The IP model described in Chapter 4 is implemented

and tested. Although it is not feasible for solving the PPS problem at a realistic computational

speed, it can be used to verify the optimum solution with conditions.

Figure 5-16. Performance of the Heuristics Configurations

The test results of all heuristics configurations on all test instances are reported and analyzed in

terms of the scalability and accuracy. Figure 5-16 is the summary of the performance of the

heuristics configurations. The test results also justify the statement that better accuracy and faster

MWIS algorithms are desired for solving the PPS problem when using our approach. The

satisfactory heuristics configurations for general cases are Heuristics #16, Heuristics #19,

Heuristics #28, Heuristics #25, Heuristics #15, Heuristics #18, Heuristics #14, and Heuristics

H
ig

h
er

 E
r
ro

r
 R

a
te

More Computation Time

118

#17 in an accuracy order. For the cases with limited size, some of the heuristics configurations

using exact MWIS algorithms can also be considered. These heuristics configurations are

Heuristics #2, Heuristics #8, Heuristics #5, Heuristics #3 and Heuristics #4. All these heuristics

configurations considered as satisfactory have the average error of less than 7% and the

maximum error of less than 20%.

119

Chapter 6. Conclusions

This chapter concludes the dissertation and discusses the contributions and future work of this

research. In particular, the two main contributions, (1) algorithms for the Maximum Weighted

Independent Set (MWIS) problem and (2) a novel approach for the Process Planning and

Scheduling (PPS) problem, are described in section 6.1 and section 6.2, respectively. The main

research contributions are highlighted in section 6.3. Lastly, possible future directions for

improving and extending the work presented in this dissertation are discussed in section 6.4.

6.1 Algorithms for Maximum Weighted Independent Set (MWIS) Problem

6.1.1 Development of MWIS Algorithms

This research considers the MWIS problem on general graphs and develops algorithms for

solving the MWIS problem in a divide and conquer structure. In order to reduce the complexity

of the algorithm structure to the greatest extent, utility functions are developed or adopted; they

are Algorithm 3-1: the basic cycles algorithm (Paton, 1969), Algorithm 3-2, the diameter

algorithm (Takes & Kosters, 2011, 2013; Borassi et al., 2015), and Algorithm 3-3: the middle

node algorithm.

Based on the divide and conquer structure, two exact MWIS algorithms, Algorithm A1 MWIS

and Algorithm A2 AMISL, are developed. Moreover, faster approximation algorithms can be

composed based on Algorithm A1. In this case, the complexity of the proposed algorithm can be

reduced, and the accuracy of approximation algorithms can be improved. We implement two

approximation algorithms from literature, Algorithm A3 GWMIN and Algorithm A6 GWMIN2

120

(Sakai et al., 2003), and developed the following algorithms by merging them with Algorithm

A1 to improve their accuracy.

• Algorithm A4 MWIS_CS_GWMIN: it is an algorithm composed of Algorithm A1 and

Algorithm A3. This algorithm computes Compare Sets based on the whole induced

subgraph at each level using Algorithm A3 GWMIN.

• Algorithm A5 MWIS_SubCS_GWMIN: it is an algorithm composed of Algorithm A1

and Algorithm A3. This algorithm computes Compare Sets based on the induced CSSs,

excluding the current removed node, using Algorithm A3 GWMIN.

• Algorithm A7 MWIS_CS_GWMIN2: it is an algorithm composed of Algorithm A1 and

Algorithm A6. This algorithm computes Compare Sets based on the whole induced

subgraph at each level using Algorithm A6 GWMIN2.

• Algorithm A8 MWIS_SubCS_GWMIN2: it is an algorithm composed of Algorithm A1

and Algorithm A6. This algorithm computes Compare Sets based on the induced CSSs,

excluding the current removed node, using Algorithm A6 GWMIN2.

6.1.2 Performance of MWIS Algorithms

All eight algorithms are tested on the test instances, which are based on the PPS application

environment. The details of the test results are shown in Appendix II.

Algorithms A1 and A2 are the two exact algorithms for computing the MWIS of a weighted

undirected graph. They are of high complexity. The computation time can be hours when there

are about 140 nodes and 4000 edges in the conflicting graph. Although the worst case of

Algorithms A1 and A2 can be exponentially slow, the application scenarios of the PPS problem

considered in this research may not always be the worst case. In the test instances, Algorithms

121

A1 and A2 match higher-order (order 4 or higher) polynomial trendlines, and they are actually

faster than the exponential trendline.

Algorithms A3 and A6 are low-complexity greedy algorithms for the MWIS problem from

literature (Sakai et al., 2003). They are the fastest among the 8 algorithms discussed in this

research. The computation time is less than half-second on all test instances. Algorithms A3 has

a nearly linear or log-linear complexity on the test instances, and Algorithms A6 has a

polynomial complexity. This difference in complexity is due to the different node-selecting

functions of the two algorithms.

Algorithms A4, A5, A7, and A8 are the composed approximation algorithms based on

Algorithms A1. They are slower than the approximation algorithms from the literature, but still

much faster compared to the two exact MWIS algorithms. The computation time is less than 45

seconds on all the test instances. In general, a faster approximation algorithm leads to a faster

composed algorithm; and while composing the algorithms, applying the approximation algorithm

on smaller subgraphs leads to a faster composed algorithm. In terms of the accuracy of the

MWIS algorithms, composing the approximation algorithms with Algorithms A1 can improve

the accuracy. While composing, applying the approximation algorithm on smaller subgraphs, for

our case, the induced CSSs, can achieve better accuracy. The general accuracy of the best five

algorithms can be listed below from the best to the worst:

• Algorithm A1 MWIS

• Algorithm A2 AMISL (same as Algorithm MWIS)

• Algorithm A5 MWIS_SubCS_GWMIN

• Algorithm A8 MWIS_SubCS_GWMIN2

• Algorithm A4 MWIS_CS_GWMIN

122

Note that all these algorithms considered satisfactory have the average error of less than 1% and

the maximum error of less than 13% (The first four algorithms have the maximum error less than

9%) on all test instances.

6.2 Approach for Process Planning and Scheduling (PPS) Problem

This dissertation considers a general type of PPS problem, and proposes a novel approach for

formulating and solving the resource-constrained PPS optimization problem. In our approach,

the two procedures, the resource selection and process scheduling, of the PPS problem are

integrated. The PPS problem is formulated into an undirected weighted conflicting graph due to

the nature of sequencing and resource constraints. A node in the conflicting graph represents one

operation with one possible combination of its required resources during one time slot, and an

edge indicates that there is a conflict between the two nodes at both ends of the edge. Each node

in the graph is assigned with a weight factor as the guidance for the operation and resource

selections to fulfill the optimization objective. The nodes with a higher possibility leading to the

objective are given priority when generating the schedule. The schedule with resource

allocations is generated by solving the MWIS problem of the graph.

Twenty-eight heuristics configurations for solving the PPS problem are generated by combining

the seven weight factor arrangements with the eight MWIS algorithms. With careful

consideration on scalability and accuracy, the best heuristics configurations for the PPS problem

are listed as below,

• Heuristics #16, Algorithm MWIS_SubCS_GWMIN, MWIS A2: MWIS Weights 2

• Heuristics #19, Algorithm MWIS_SubCS_GWMIN, MWIS A3: MWIS Weights 3

• Heuristics #28, Algorithm MWIS_SubCS_GWMIN2, MWIS A3: MWIS Weights 3

123

• Heuristics #25, Algorithm MWIS_SubCS_GWMIN2, MWIS A2: MWIS Weights 2

• Heuristics #15, Algorithm MWIS_CS_GWMIN, MWIS A2: MWIS Weights 2

• Heuristics #18, Algorithm MWIS_CS_GWMIN, MWIS A3: MWIS Weights 3

• Heuristics #14, Algorithm GWMIN, MWIS A2: MWIS Weights 2

• Heuristics #17, Algorithm GWMIN, MWIS A3: MWIS Weights 3

Note that all these heuristics configurations, which are considered satisfactory, have the average

error of less than 7% and the maximum error of less than 20% on the test cases.

6.3 Research Contribution

The first main contribution is on the MWIS problem. This work proposes a divide and conquer

algorithm structure with relatively low time complexity for solving the MWIS problem. The

exact MWIS algorithm and All Maximal Independent Set Listing (AMISL) algorithm are

developed based on this algorithm structure. The proposed algorithm structure can also be used

to compose the exact MWIS algorithm with existing approximation MWIS algorithms for

compromises on accuracy and computational speed. Utilizing existing approximation algorithms

with the proposed algorithm structure is an effective way to improve the accuracy of existing

approximation MWIS algorithms. All eight algorithms for the MWIS problem, the exact MWIS

algorithm, the AMISL algorithm, two approximation algorithms from the literature, and four

composed algorithms, are tested on the test instances based on the PPS application environment.

A set of “good-performance” MWIS algorithms are highlighted based on the test results.

The second main contribution is on the PPS problem. Unlike the commonly used iteration type

of approaches, such as generic algorithms and metaheuristics, or the mixed-integer programming

approaches, our approach provides a different angle to address the PPS problem and shows

124

advantages over other approaches as illustrated in Table 6-1. The PPS problem is formulated as a

conflicting weighted graph and generating the integrated process schedule with resource

allocation by solving the MWIS problem. This idea extends the universality of the formulation of

the graph coloring based scheduling. The new approach requires minimum iteration. And it is

guaranteed to return a feasible solution due to the nature of solving the MWIS problem on a

conflicting weighted graph. The new approach computes the schedule of each time slot

separately. We develop different weight factor calculation strategies and arrangements as the

guidance for achieving the optimization objective. With carefully defined weight factors and

“good-performance” MWIS algorithms, the new approach has satisfactory accuracy and

computational speed. A set of “good-performance” heuristics configurations are found based on

the test results.

Table 6-1. Comparing the New Approach with Other Methods*
Measurements Generic

Algorithms

Simulated

Anneal

Tabu

Search

Mixed-integer

Programming

Partial

Solutions

Graph

Coloring

Scheduling

Accuracy = = = - + NA

Computational speed = = = + = NA

Universality - - = - NA +

Dependence on iterations + + + + + NA

Feasibility + + + = + NA

Separated solutions of each

time slot

+ + + + + NA

*‘+’: The new approach is better on the measurement compare with the other method.

‘=’: The new approach is similar or potentially better compare with the other method.

‘-’: The new approach is not as good as the other method.

‘NA’: It is hard to compare the new approach with the other method.

6.4 Future Work

In this research, we attempt to address the two classic problems, the MWIS problem and the PPS

problem in universality. As the review shown in Chapter 2, we can have broad applications by

solving the two problems. In this section, we are focusing on (1) the potential improvements and

125

extensions of current work in the scheduling domain; and (2) integrating the solution to the PPS

problem with Smart Manufacturing infrastructure, the Smart Product Lifecycle Management

(sPLM) system.

6.4.1 Improvements and Extensions

To speed up the computation:

For the MWIS algorithms, the divide and conquer algorithm structure can be transformed into

multi-threading. Each connected subgraph after node removal are independent. The computation

of the connected subgraphs can be assigned to different threads.

For the formulation of the PPS problem, Unit Tasks of the operations that are constrained to be

processed in the far future (a good number of time slots later) may have a very limited impact on

the scheduling of earlier time slots. While generating the conflicting graph, we may only

consider the most recent several Unit Tasks of each part so that the size of the conflicting graph

can be reduced.

To improve the accuracy:

The current weight calculation and weight factor arrangements can be fine-tuned and closely-

integrated with the MWIS algorithms based on the part and resource information to achieve

better node selections. The examples can be specific heuristics for weight calculation, machine

learning methods to optimize the value of the weight factor.

Stochastic Optimization (SO) methods are optimization methods that generate and use random

variables (Spall, 2003). This method can be applied to bring in probabilistic in the schedule

generation process when solving the MWIS problem for each time slot. It enables the possibility

of iteratively selecting different sets of nodes for each time slot. By applying this method, the

126

trapping of bad node selections may be avoided.

To improve the universality:

Our approach for the PPS problem can be easily implemented for a dynamic job taking

environment by updating the conflicting graph for each time slot. The traditional approach

requires taking consideration of known operations and iterates to get an optimum schedule for

recent periods, which requires searching in a vast solution space. Unlike iteration-based

approaches, the new approach computes the schedule of each time slot separately, which may

only require partial operation information of each job. And for each time slot, the new approach

tries to utilize the resources as much as possible by solving the MWIS problem.

Our approach for the PPS problem can be easily implemented with the flexible operation

sequencing constraints by updating the conflicting graph for each time slot. In this case, all the

Unit Tasks that are not restricted by the sequencing constraints are considered as Unit Task

Candidates to be selected by solving the MWIS problem.

The conflicting weighted graph may be extended to a multi-connected graph, directed graph,

weighted edges to represent more information for the optimization problem modeling. And

further, we wish to improve the approach by, such as enabling the multi-objective optimization,

introducing more variables for the details of the PPS problem, introducing probabilistic

variables, and more.

6.4.2 Integration with the sPLM System

The sPLM system is developed in the Knowledge Engineering Laboratory at Syracuse

University. It is a platform developed based on an open-source Product Lifecycle Management

(PLM) system, Aras Innovator, to handle product lifecycle information to support decision-

127

making processes (Li, 2018). Figure 6-1 shows that a lot of resource-constraint scheduling

problems naturally arise in the application of the sPLM system as its prescriptive analytics

capability (Sun et al., 2017). Prescriptive analytics, referred to as the “final frontier of analytic

capabilities (Gartner, 2017),” it entails the application of mathematical and computational

sciences and suggests decision options to take advantage of the results of descriptive and

predictive analytics (Basu, 2013; Engel et al., 2012; Lepenioti, 2020). The scenario is that

knowledge such as resource management, materials management, and product development from

the sPLM system can be integrated and formulate into solution nodes and constraint edges for

detailed and adaptive planning and scheduling. Such a conflicting graph can be used for solving

different scheduling problems, like delivery planning, production planning, product development

planning, and more.

Figure 6-1. Data Analytics with the sPLM System

128

Appendices

Appendix I: An Example for Algorithm A1 on a Simple Graph

The exact MWIS algorithms described in section 3.4 is complex. In Appendix I, we walk

through Algorithm A1 in detail with a simple example in Figure 1. A simple weighted graph 𝐺

shown in Figure 1 is given, with the nodes, edges, and weights shown as the figure. Note that

Algorithm A2 follows a similar process, but it is returning the AMIS at each step.

All the step indexes used below are from Algorithm A1.

In step (1.1), we need to perform step (1.1.1) to (1.1.5) to find and remove nodes and update the

subgraphs dictionary (SD) accordingly:

𝑆𝐷: {the 𝑟𝑒𝑚𝑜𝑣𝑎𝑙 𝑛𝑜𝑑𝑒: node sets of each 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡}

The SD is in the format that each node removed (removed node) is the key, and node sets of each

connected component in the induced subgraphs are the value of the key. The node removal

process iterates until the induced subgraphs satisfy the Theorem 3-1 conditions.

Perform step (1.1.1), to find the first removed node from the input graph; we need to find a cycle

basis set of the input graph. Count the occurrence of each node in the cycle basis set; the first

removed node is the node that has the most occurrences. Apply Algorithm 3-1, the cycle basis

algorithm, to find a cycle basis set and count the number of cycles each node belongs to. The

nodes and their counts are saved in a dictionary, “occurrence_dict”: {'1': 3, '0': 3', '3': 2, '4': 2, 2':

1, '5': 1, '6': 0, '7': 0, '8': 0, '9': 0, '10': 0, '11': 0}. The occurrence of node ‘1’ and node ‘0’ both are

3; we randomly pick node ‘1’ among them. Remove node ‘1’ and the adjunct edges, the induced

subgraph is illustrated as Figure 2.

129

Figure 1. Simple graph for algorithm walk-through

Perform step (1.1.2), update SD with the key-value pair, SD: {'1': [{'6'}, {'7'}, {'8'}, {'4', '2', '10',

'9', '11', '5', '0', '3'}]}. After removing the node ‘1’, the induced subgraph has four connected

components, we use the node sets to denote these components, they are {'6'}, {'7'}, {'8'}, and

{'4', '2', '10', '9', '11', '5', '0', '3'}.

Figure 2a (left) & 3-5b (right). Remove Node ‘1’ from the Graph and the Induced Subgraph

130

Preform step (1.1.3), for each connected subgraph, exam whether they satisfy the Theorem 3-1

conditions. Among the four components, {'6'}, {'7'}, {'8'} satisfy the Theorem 3-1 conditions (in

Figure 3-5b), but {'4', '2', '10', '9', '11', '5', '0', '3'} does not.

Figure 3a (left) & 3-6b (right). Remove Node ‘2’ and the Induced Subgraph

Preform step (1.1.4), the component subgraph, {'4', '2', '10', '9', '11', '5', '0', '3'}, does not satisfy

the Theorem 3-1 conditions. Preform step (1.1.1), with the subgraph {'4', '2', '10', '9', '11', '5', '0',

'3'}, apply Algorithm 3-1 to get current “occurrence_dict”: {'2': 1, '4': 1, '0': 1, '9': 0, '10': 0, '11':

0, '3': 0, '5': 0}. The occurrence of node ‘2’, node ‘4’ and node ‘0’ are 1, we randomly pick node

‘2’ among them. Remove node ‘2’ and the adjunct edges, the induced subgraph is illustrated as

the Figure 3.

131

Figure 4. The induced subgraph after removing node ‘2’

Figure 5. The induced subgraph after removing node ‘0’

Preform step (1.1.2), update SD with the key-value pair, SD: {'1': [{'6'}, {'7'}, {'8'}, {'4', '2', '10',

'9', '11', '5', '0', '3'}], '2': [{'4', '10', '9', '11', '5', '0', '3'}]}. Shown as the Figure 4, the induced

subgraph {'4', '10', '9', '11', '5', '0', '3'} is connected.

Preform step (1.1.3), to exam the induced subgraph. The induced subgraph {'4', '10', '9', '11', '5',

'0', '3'} as-in Figure 4 does not satisfy the Theorem 3-1 conditions.

132

Perform step (1.1.4), by applying Algorithm 3-1, there is no cycle left in the graph {'4', '10', '9',

'11', '5', '0', '3'}. Then, apply Algorithm 3-2, the diameter algorithm, this tree structure has a

𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 = 4, which does not satisfy the Theorem 3-1 conditions. Go to step (1.1.1), with the

graph {'4', '10', '9', '11', '5', '0', '3'}, apply Algorithm 3-3, the middle node algorithm, to get the

middle node ‘0’ of the tree. Remove node ‘0’ and the adjunct edges, the induced subgraph is

illustrated as Figure 5.

Preform step (1.1.2), update SD with the key-value pair, SD: {'1': [{'6'}, {'7'}, {'8'}, {'9', '2', '5',

'3', '4', '10', '11', '0'}], '2': [{'9', '5', '3', '4', '10', '11', '0'}], '0': [{'5', '3'}, {'10', '9', '11', '4'}]}. After

removing the node ‘0’, the induced subgraph has two connected components, they are {'5', '3'},

and {'10', '9', '11', '4'}.

Figure 6. The Preliminary Set at the level node ‘0’

Perform step (1.1.3), to exam the induced subgraph. According to step (1.1.4), the two connected

components in the induced subgraph both satisfy the Theorem 3-1 conditions shown in Figure 6.

Jump to step (1.1.5), when all subgraphs satisfy Theorem 3-1 conditions, return the latest SD:

{'1': [{'6'}, {'7'}, {'8'}, {'9', '2', '5', '3', '4', '10', '11', '0'}], '2': [{'9', '5', '3', '4', '10', '11', '0'}], '0':

W9=1

W10=1

W11=1

W4=6.1

W3=2

W5=2

133

[{'5', '3'}, {'10', '9', '11', '4'}]}.

All the procedures in step (1.1) for node removal are finished here.

Preform step (1.2), get the Preliminary Set from the induce subgraph according to the last key-

value pair in SD. The last key-value pair in SD is: {'0': [{'5', '3'}, {'10', '9', '11', '4'}]}, indicating

that at the level of node ‘0’, there are two connected components {'5', '3'} and {'10', '9', '11', '4'}.

And the Theorem 3-1 conditions are satisfied. According to Theorem 3-1, we can find the

Preliminary Set for the induced subgraph with nodes {'5', '3', '10', '9', '11', '4'}. This induced

subgraph is called the Preliminary Set Subgraph (PSS) at level node ‘0’. The Preliminary Set at

the level node ‘0’ is {4,3} with a weight total 8.1, shown as Figure 6.

Figure 7. The Compare Set at the level node ‘0’

Perform step (1.3), the ‘last key’ is node ‘0’. Add node ‘0’ to the induced subgraph (Figure 6) of

step (1.2), the induced graph rolls back to Figure 4 or Figure 7. Then, follow the adding node

heuristics to find the Compare Set at level node ‘0’. Remove the neighbors of node ‘0’ and the

adjacent edges of node ‘0’ from Figure 7, this induced subgraph with nodes {'9', '5', '10', '11', '0'}

is the Compare Set Subgraph (CSS) at the level removed node ‘0’. The Compare Set at the level

node ‘0’ is {'5', '0', '11', '10', ‘9’} with a weight total 6, shown as Figure 7.

W9=1

W4=6.1

W10=1

W11=1

W0=1

W3=2

W5=2

134

Figure 8. The MWIS at the level node ‘0’

Perform step (1.4), according to Theorem 3-2, get the set with maximum weighted total among

the two sets: the Preliminary Set (Figure 6) and the Compare Set (Figure 7) at the level node ‘0’.

The MWIS of the induced subgraph in Figure 8 with nodes {'0', '5', '3', '10', '9', '11', '4'} is {‘4’,

‘3’}. We can say that at level node ‘0’, the Preliminary Set is {‘4’, ‘3’} with a total weight of 8.1

as shown in Figure 8.

Figure 9. The Compare Set at the level node ‘2’

Preform step (1.5), update the SD as {'1': [{'6'}, {'7'}, {'8'}, {'9', '2', '5', '3', '4', '10', '11', '0'}], '2':

[{'9', '5', '3', '4', '10', '11', '0'}]}. 𝑆𝐷 ≠ ∅, go to step (1.2). The PSS at level node ‘2’ is the induced

W9=1

W4=6.1

W10=1

W11=1

W0=1

W3=2
W5=2

135

subgraph with nodes {'9', '5', '3', '4', '10', '11', '0'}. The Preliminary Set at level node ‘2’ is getting

based on the previous step. The Preliminary Set at level node ‘2’ is the MWIS of the induced

subgraph with node {'4', '10', '9', '11', '5', '0', '3’}, which is {'4', ‘3’}, and the total weights is 8.1.

Preform step (1.3), the last key-value pair is the level node ‘2’. Get the Compare Set at level

node ‘2’, follow the adding node heuristics. Then, the induced graph rolls back to Figure 3a. The

CSS at level node ‘2’ is the induced subgraph with nodes {'9', '2', '5', '3', '10', '11'}. The Compare

Set at level node ‘2’ is {'2', '3', '9', '10', '11’}. And the total weight is 9, shown as Figure 9.

Preform step (1.4), since the total weight of the Compare Set is greater than that of the

Preliminary Set at level node ‘2’, according to Theorem 3-2, the induced subgraph with nodes:

{'4', '2', '10', '9', '11', '5', '0', '3’} at level node ‘2’ has its MWIS as {'2', '3', '9', '10', '11’}, the total

weight is 9.

Figure 10. The Preliminary Set at the level node ‘1’

136

Figure 11. The Compare Set at the level node ‘1’

Perform step (1.5), update the SD as {'1': [{'6'}, {'7'}, {'8'}, {'9', '2', '5', '3', '4', '10', '11', '0'}]}.

𝑆𝐷 ≠ ∅, go to step (1.2). The PSS at level node ‘1’ is the induced subgraph with nodes {'9', '5',

'3', '4', '10', '11', '0', '6', '7', '8'}. The Preliminary Set at level node ‘1’ is based on the induce

subgraph in the previous step. The induced subgraph at level node ‘1’ has four components:

{'6'}, {'7'}, {'8'}, and {'9', '2', '5', '3', '4', '10', '11', '0'}. For the connected components, the induced

subgraph with nodes {'4', '2', '10', '9', '11', '5', '0', '3’}, has its MWIS as {'2', '3', '9', '10', '11’}, the

total weight is 9, same as the MWIS as level node ‘2’. According to the Theorem 3-1 and

Corollary 3-1, the Preliminary Set at level node ‘1’ is the union of the MWIS of the four

components with the node sets: {'6'}, {'7'}, {'8'}, and {'9', '2', '5', '3', '4', '10', '11', '0'}. The

Preliminary Set at level node ‘1’ is {‘6’} ∪ {‘7’} ∪ {‘8’} ∪ {′2′, ′3′, ′9′, ′10′, ′11’}, which has a total

weight of 12, shown as Figure 10. Perform step (1.3), the last key-value pair is the level node ‘1’.

Get the Compare Set at level node ‘1’ follow the adding node heuristics. Then, the induced graph

rolls back to Figure 2a. The CSS at level node ‘1’ is the induced subgraph with nodes {'1', '9', '2',

137

'10', '11'}. The Compare Set at level node ‘1’ is {'1', '2', '9', '10', '11’} with a total weight of 11.1,

shown as Figure 11. Perform step (1.4), since the total weight of Preliminary Set is greater than

that of Compare Set at level node ‘1’, according to Theorem 3-2, the induced subgraph with

nodes: {'1', '6', '7', '8', '9', '2', '5', '3', '4', '10', '11', '0'} at level ‘1’ has its MWIS as {'6', '7', '8', '2',

'3', '9', '10', '11’} the total weight is 12.

Figure 12. The MWIS of graph 𝐺

Perform step (1.5), update the SD, 𝑆𝐷 = ∅, return the MWIS of the original graph 𝐺. The MWIS

is {'6', '7', '8', '2', '3', '9', '10', '11’}, the total weight is 12, shown as Figure 12.

W9=1

W1=4.1

W4=6.1

W2=4

W10=1

W11=1

W6=1

W7=1

W8=1

W0=1

W3=2

W5=2

138

Appendix II: Test Details of MWIS Algorithms

139

Appendix III: PPS Test Instances

I. Testing 1:

Job #1:
T11[(R1,R2,R3)2]

2TS
→

T12[(R1,R2,R3)2]

1TS
→

T13[(R1,R2,R3)1]

2TS
→

T14[(R4)1]

1TS

Job #2:
T21[(R1,R2,R3)1]

1TS
→

T22[(R1)1and(R2,R3)1]

2TS
→

T23[(R4)1]

1TS

II. Testing 2

Job #1:
T11[(R1,R2,R3)2]

2TS
→

T12[(R1,R2,R3)2]

1TS
→

T13[(R1,R2,R3)1]

2TS
→

T14[(R4)1]

1TS

Job #2:
T21[(R1,R2,R3)1]

1TS
→

T22[(R1)1and(R2,R3)1]

2TS
→

T23[(R4)1]

1TS

Job #3:
T31[(R1,R2)1]

1TS
→ (

T32a[(R1,R2)2]

1TS
T32b[(R3)1]

2TS

)

1

→
T33[(R3,R4)1]

3TS

140

III. Testing 3

Job #1:
T11[(R1,R2,R3)2]

2TS
→

T12[(R1,R2,R3)2]

1TS
→

T13[(R1,R2,R3)1]

2TS
→

T14[(R1,R2,R3)3]

5TS
→

T15[(R4)1]

1TS

Job #2:
T21[(R1,R2,R3)1]

1TS
→

T22[(R1,R2)1]

1TS
→

T23[(R1)1and(R2,R3)1]

2TS
→

T24[(R1,R2,R3)3]

5TS
→

T25[(R4)1]

1TS

Job #3:
T31[(R1,R2,R3)3]

1TS

IV. Testing 4

Job #1:
T11[(R1,R2,R3)2]

2TS
→

T12[(R1,R2,R3)2]

1TS
→

T13[(R1,R2,R3)1]

2TS
→

T14[(R1,R2,R3)3]

5TS
→

T15[(R4)1]

1TS

Job #2:
T21[(R1,R2,R3)1]

1TS
→

T22[(R1)1and(R2,R3)1]

2TS
→

T23[(R4)1]

1TS

Job #3:
T31[(R1,R2)1]

1TS
→ (

T32a[(R1,R2)1]

1TS
T32b[(R3)1]

2TS

)

1

→
T33[(R3,R4)1]

3TS

141

V. Testing 5

Job #1:
T11[(R1,R2,R3)2]

2TS
→

T12[(R1,R2,R3)2]

1TS
→

T13[(R1,R2,R3)1]

2TS
→

T14[(R4)1]

1TS

Job #2:
T21[(R1,R2,R3)1]

1TS
→

T22[(R1)1and(R2,R3)1]

2TS
→

T23[(R4)1]

1TS

Job #3:
T31[(R1,R2)1]

1TS
→ (

T32a[(R1,R2)1]

1TS
T32b[(R3)1]

2TS

)

1

→
T33[(R3,R4)1]

3TS

Job #4:
T41[(R1,R2,R3)3]

5TS

VI. Testing 6

Job #1:
T11[(R1,R2,R3)2]

2TS
→

T12[(R1,R2,R3)2]

1TS
→

T13[(R1,R2,R3)1]

2TS
→

T14[(R4)1]

1TS

Job #2:
T21[(R1,R2,R3)1]

1TS
→

T22[(R1)1and(R2,R3)1]

2TS
→

T23[(R4)1]

1TS

Job #3:
T31[(R1,R2)1]

1TS
→ (

T32a[(R1,R2)1]

1TS
T32b[(R3)1]

2TS

)

1

→
T33[(R3,R4)1]

3TS

Job #4:
T41[(R1,R2,R3)3]

1TS

Job #5:
T51[(R1,R2,R3)1]

2TS

142

VII. Testing 7

Job #1:
T11[(R1,R2,R3)2]

2TS
→

T12[(R1,R2,R3)2]

1TS
→

T13[(R1,R2,R3)1]

2TS
→

T14[(R4)1]

1TS

Job #2:
T21[(R1,R2,R3)1]

1TS
→

T22[(R1)1and(R2,R3)1]

2TS
→

T23[(R4)1]

1TS

Job #3:
T31[(R1,R2)1]

1TS
→ (

T32a[(R1,R2)2]

1TS
T32b[(R3)1]

2TS

)

1

→
T33[(R3,R4)1]

3TS

Job #4:
T41[(R1,R2,R3)3]

1TS
→

T42[(R1,R2,R3)3]

2TS

Job #5:
T51[(R1,R2,R3)3]

2TS

VIII. Testing 8

Job #1:
T11[(R1,R2,R3)2]

2TS
→

T12[(R1,R2,R3)2]

1TS
→

T13[(R1,R2,R3)1]

2TS
→

T14[(R4)1]

1TS

143

Job #2:
T21[(R1,R2,R3)1]

1TS
→

T22[(R1)1and(R2,R3)1]

2TS
→

T23[(R4)1]

1TS

Job #3:
T31[(R1,R2)1]

1TS
→ (

T32a[(R1,R2)2]

1TS
T32b[(R3)1]

2TS

)

1

→
T33[(R3,R4)1]

3TS

Job #4:
T41[(R1,R2,R3)3]

1TS
→

T42[(R1,R2,R3)2]

2TS

Job #5:
T51[(R1,R2,R3)3]

2TS

IX． Testing 9

Job #1:
T11[(R1,R2,R3)2]

2TS
→

T12[(R1,R2,R3)2]

1TS
→

T13[(R1,R2,R3)1]

2TS
→

T14[(R1,R2,R3)3]

5TS
→

T15[(R4)1]

1TS

Job #2:
T21[(R1,R2,R3)1]

1TS
→

T22[(R1,R2)1]

1TS
→

T23[(R1)1and(R2,R3)1]

2TS
→

T24[(R1,R2,R3)3]

5TS
→

T25[(R4)1]

1TS

Job #3:
T31[(R1,R2,R3)3]

1TS
→

T32[(R4)1]

1TS

Job #4:
T41[(R3)1and(R1,R2)1]

1TS
→

T42[(R4)1]

1TS

144

X． Testing 10

Job #1:
T11[(R1,R2,R3)2]

2TS
→

T12[(R1,R2,R3)2]

1TS
→

T13[(R1,R2,R3)1]

2TS
→

T14[(R1,R2,R3)2]

5TS
→

T15[(R4)1]

1TS

Job #2:
T21[(R1,R2,R3)1]

1TS
→

T22[(R1,R2)1]

1TS
→

T23[(R1)1and(R2,R3)1]

2TS
→

T24[(R1,R2,R3)2]

5TS
→

T25[(R4)1]

1TS

Job #3:
T31[(R1,R2,R3)2]

1TS
→

T32[(R4)1]

1TS

Job #4:
T41[(R3)1and(R1,R2)1]

1TS
→

T42[(R4)1]

1TS

XI． Testing 11

Job #1: (

T1,1a[(M2, M3)1 and (T6,T7)1]

4TS
T1,1b[(M4)1 and (T6,T7)1]

3TS

)

1

→ (

T1,2a[(M2, M3)1 and (T6,T7)1]

4TS
T1,2b[(M4)1 and (T6,T7)1]

3TS

)

1

→ (
T1,3a[(M2, M3,M4)1 and (T6,T7)1]

2TS
)
1

→

(

T1,4a[(M1)1 and (T2)1]

2TS
T1,4b[(M2, M3,M4)1 and (T2)1]

1TS

)

1

Job #2: (

T2,1b[(M1)1 and (T1)1]

2TS
T2,1a[(M2, M3,M4)1 and (T1)1]

1TS

)

1

→ (
T2,2a[(M2, M3,M4)1 and (T12)1]

2TS
)
1

→ (
T2,3a[(M2, M3,M4)1 and (T6,T7,T11)1]

2TS
)
1

Job #3: (
T3,1a[(M2, M3,M4)1 and (T7,T8)1]

2TS
)
1

→ (
T3,2a[(M2, M3,M4)1 and (T7,T8)1]

2TS
)
1

→ (
T3,3a[(M2, M3,M4)1 and (T7,T8)1]

2TS
)
1

Job #4: (

T4,1a[(M2)1 and (T9,T10)1]

3TS
T4,1b[(M3)1 and (T9,T10)1]

2TS

)

1

→ (
T4,2a[(M2,M3)1 and (T1,T3)1]

3TS
)
1

→ (
T4,3a[(M2,M3)1 and (T6,T9)1]

2TS
)
1

→

(

T4,4a[(M2)1 and (T3)1]

2TS
T4,4b[(M3)1 and (T3)1]

3TS

)

1

145

XII． Testing 12

In test instance 12, the machine M5 is loaded as conflict with other resources.

Job #1: (

T11a[(M2, M3)1 and (T6,T7,T8)1]

3TS
T11b[(M4)1 and (T6,T7,T8)1]

2TS

)

1

→ (

T12a[(M2, M3)1 and (T6,T7,T8)1]

3TS
T12b[(M4)1 and (T6,T7,T8)1]

2TS

)

1

→ (

T13a[(M2, M3)1 and (T6,T7,T8)1]

2TS
T13b[(M4)1 and (T6,T7,T8)1]

1TS

)

1

→

(

T14a[(M2, M3)1 and (T6,T7)1]

3TS
T14b[(M4)1 and (T6,T7)1]

2TS

)

1

→ (
T15a[(M2, M3,M4)1 and (T7,T8)1]

1TS
)
1

→ (
T16a[(M2, M3,M4)1 and (T7,T8)1]

1TS
)
1

→

(

T17a[(M2, M3)1 and (T6,T7)1]

3TS
T17b[(M4)1 and (T6,T7)1]

2TS

)

1

→ (
T18a[(M1,M2, M3,M4)1 and (T2)1]

1TS
)
1

→ (
T19a[(M2, M3,M4)1 and (T9)1]

2TS
)
1

→

(

T110a[(M1,M2, M3)1 and (T2,T3,T4)1]

3TS
T110b[(M4)1 and (T2,T3,T4)1]

2TS

)

1

→ (
T111a[(M2, M3,M4)1 and (T9)1]

2TS
)
1

→ (
T112a[(M2,M3, M4,M5)1 and (T10)1]

2TS
)
1

→

(
T113a[(M1,M2, M3,M4)1 and (T1)1]

2TS
)
1

→ (

T114a[(M2, M3)1 and (T5)1]

2TS
T114b[(M4)1 and (T5)1]

1TS

)

1

→ (

T115a[(M2, M3)1 and (T7,T8)1]

2TS
T115b[(M4)1 and (T7,T8)1]

1TS

)

1

→

(

T116a[(M1,M2, M3)1 and (T2,T3,T4)1]

2TS
T116b[(M4)1 and (T2,T3,T4)1]

1TS

)

1

→ (
T117a[(M2,M3, M4)1 and (T9)1]

1TS
)
1

→ (
T118a[(M2,M3, M4,M5)1 and (T10)1]

1TS
)
1

→

(
T119a[(M2,M3, M4)1 and (T9)1]

1TS
)
1

→ (
T112a[(M2,M3, M4,M5)1 and (T10)1]

1TS
)
1

146

Job #2: (
T21a[(M2, M3,M4)1 and (T6,T7,T8)1]

1TS
)
1

→ (

T22a[(M1)1 and (T6,T7,T8)1]

3TS
T22b[(M2, M3,M4)1 and (T6,T7,T8)1]

2TS

)

1

→ (
T23a[(M2, M3,M4)1 and (T1)1]

1TS
)
1

→

(

T24a[(M2, M3)1 and (T5,T6,T11)1]

2TS
T24b[(M4)1 and (T5,T6,T11)1]

1TS

)

1

→ (
T25a[(M1,M2, M3,M4)1 and (T2)1]

2TS
)
1

→ (
T26a[(M2, M3,M4)1 and (T6,T7,T8)1]

1TS
)
1

→

(
T27a[(M2, M3,M4)1 and (T6,T7,T8)1]

1TS
)
1

→ (

T28a[(M2, M3)1 and (T6,T7,T8)1]

2TS
T28b[(M4)1 and (T6,T7,T8)1]

1TS

)

1

→ (
T210a[(M2, M3,M4)1 and (T6,T7,T8)1]

2TS
)
1

→

(
T211a[(M1,M2, M3,M4)1 and (T1)1]

2TS
)
1

→ (
T212a[(M1,M2, M3,M4)1 and (T1)1]

2TS
)
1

→ (

T213a[(M2, M3)1 and (T12)1]

2TS
T213b[(M4)1 and (T12)1]

1TS

)

1

→

(

T214a[(M2, M3)1 and (T6,T7,T8)1]

2TS
T214b[(M4)1 and (T6,T7,T8)1]

1TS

)

1

→ (
T215a[(M1,M2, M3,M4)1 and (T1)1]

1TS
)
1

→ (
T216a[(M1,M2, M3,M4)1 and (T1)1]

1TS
)
1

Job #3: (
T31a[(M1,M2, M3,M4)1 and (T2)1]

1TS
)
1

→ (
T32a[(M2, M3,M4)1 and (T6,T7,T8)1]

1TS
)
1

→ (

T33a[(M2,M4)1 and (T6,T7,T8)1]

2TS
T22b[(M3)1 and (T6,T7,T8)1]

1TS

)

1

→

(

T34a[(M2,M4)1 and (T6,T7,T8)1]

2TS
T34b[(M3)1 and (T6,T7,T8)1]

1TS

)

1

→ (
T35a[(M1,M2, M3,M4)1 and (T2,T3,T4)1]

2TS
)
1

→ (

T36a[(M2,M3)1 and (T9)1]

2TS
T36b[(M4)1 and (T9)1]

1TS

)

1

→

(

T37a[(M2,M3,M5)1 and (T10)1]

2TS
T37b[(M4)1 and (T10)1]

1TS

)

1

→ (
T38a[(M2, M3,M4)1 and (T6,T7,T8)1]

1TS
)
1

→ (
T39a[(M2, M3,M4)1 and (T7,T8,T11)1]

1TS
)
1

→

(
T310a[(M2, M3,M4)1 and (T6,T7,T8,T11)1]

2TS
)
1

→ (
T311a[(M2, M3,M4)1 and (T7,T8)1]

2TS
)
1

→ (
T312a[(M1,M2, M3,M4)1 and (T1)1]

1TS
)
1

→

(
T313a[(M2, M3,M4)1 and (T5)1]

1TS
)
1

→ (
T314a[(M1,M2, M3,M4)1 and (T9)1]

1TS
)
1

Job #4: (
T41a[(M2,M4)1 and (T9)1]

2TS
)
1

→ (
T42a[(M1, M2,M4)1 and (T2)1]

2TS
)
1

→ (
T43a[(M2,M4)1 and (T6,T9)1]

1TS
)
1

→

(
T44a[(M2,M4)1 and (T1,T9)1]

2TS
)
1

→ (
T45a[(M2,M4)1 and (T9,T10)1]

1TS
)
1

→ (
T46a[(M2,M4)1 and (T1,T9)1]

1TS
)
1

→

(
T47a[(M1,M2,M4)1 and (T2)1]

1TS
)
1

XIII． Testing 13

Job #1: (

T11a[(M2, M3)1 and (T6,T7,T8)1]

3TS
T11b[(M4)1 and (T6,T7,T8)1]

2TS

)

1

→ (

T12a[(M2, M3)1 and (T6,T7,T8)1]

3TS
T12b[(M4)1 and (T6,T7,T8)1]

2TS

)

1

→ (

T13a[(M2, M3)1 and (T6,T7,T8)1]

2TS
T13b[(M4)1 and (T6,T7,T8)1]

1TS

)

1

→

147

(

T14a[(M2, M3)1 and (T6,T7)1]

3TS
T14b[(M4)1 and (T6,T7)1]

2TS

)

1

→ (
T15a[(M2, M3,M4)1 and (T7,T8)1]

1TS
)
1

→ (
T16a[(M2, M3,M4)1 and (T7,T8)1]

1TS
)
1

→

(

T17a[(M2, M3)1 and (T6,T7)1]

3TS
T17b[(M4)1 and (T6,T7)1]

2TS

)

1

→ (
T18a[(M1,M2, M3,M4)1 and (T2)1]

1TS
)
1

→ (
T19a[(M2, M3,M4)1 and (T9)1]

2TS
)
1

→

(

T110a[(M1,M2, M3)1 and (T2,T3,T4)1]

3TS
T110b[(M4)1 and (T2,T3,T4)1]

2TS

)

1

→ (
T111a[(M2, M3,M4)1 and (T9)1]

2TS
)
1

→ (
T112a[(M2,M3, M4,M5)1 and (T10)1]

2TS
)
1

→

(
T113a[(M1,M2, M3,M4)1 and (T1)1]

2TS
)
1

→ (

T114a[(M2, M3)1 and (T5)1]

2TS
T114b[(M4)1 and (T5)1]

1TS

)

1

→ (

T115a[(M2, M3)1 and (T7,T8)1]

2TS
T115b[(M4)1 and (T7,T8)1]

1TS

)

1

→

(

T116a[(M1,M2, M3)1 and (T2,T3,T4)1]

2TS
T116b[(M4)1 and (T2,T3,T4)1]

1TS

)

1

→ (
T117a[(M2,M3, M4)1 and (T9)1]

1TS
)
1

→ (
T118a[(M2,M3, M4,M5)1 and (T10)1]

1TS
)
1

→

(
T119a[(M2,M3, M4)1 and (T9)1]

1TS
)
1

→ (
T112a[(M2,M3, M4,M5)1 and (T10)1]

1TS
)
1

Job #2: (
T21a[(M2, M3,M4)1 and (T6,T7,T8)1]

1TS
)
1

→ (

T22a[(M1)1 and (T6,T7,T8)1]

3TS
T22b[(M2, M3,M4)1 and (T6,T7,T8)1]

2TS

)

1

→ (
T23a[(M2, M3,M4)1 and (T1)1]

1TS
)
1

→

(

T24a[(M2, M3)1 and (T5,T6,T11)1]

2TS
T24b[(M4)1 and (T5,T6,T11)1]

1TS

)

1

→ (
T25a[(M1,M2, M3,M4)1 and (T2)1]

2TS
)
1

→ (
T26a[(M2, M3,M4)1 and (T6,T7,T8)1]

1TS
)
1

→

(
T27a[(M2, M3,M4)1 and (T6,T7,T8)1]

1TS
)
1

→ (

T28a[(M2, M3)1 and (T6,T7,T8)1]

2TS
T28b[(M4)1 and (T6,T7,T8)1]

1TS

)

1

→ (
T210a[(M2, M3,M4)1 and (T6,T7,T8)1]

2TS
)
1

→

(
T211a[(M1,M2, M3,M4)1 and (T1)1]

2TS
)
1

→ (
T212a[(M1,M2, M3,M4)1 and (T1)1]

2TS
)
1

→ (

T213a[(M2, M3)1 and (T12)1]

2TS
T213b[(M4)1 and (T12)1]

1TS

)

1

→

(

T214a[(M2, M3)1 and (T6,T7,T8)1]

2TS
T214b[(M4)1 and (T6,T7,T8)1]

1TS

)

1

→ (
T215a[(M1,M2, M3,M4)1 and (T1)1]

1TS
)
1

→ (
T216a[(M1,M2, M3,M4)1 and (T1)1]

1TS
)
1

Job #3: (
T31a[(M1,M2, M3,M4)1 and (T2)1]

1TS
)
1

→ (
T32a[(M2, M3,M4)1 and (T6,T7,T8)1]

1TS
)
1

→ (

T33a[(M2,M4)1 and (T6,T7,T8)1]

2TS
T22b[(M3)1 and (T6,T7,T8)1]

1TS

)

1

→

(

T34a[(M2,M4)1 and (T6,T7,T8)1]

2TS
T34b[(M3)1 and (T6,T7,T8)1]

1TS

)

1

→ (
T35a[(M1,M2, M3,M4)1 and (T2,T3,T4)1]

2TS
)
1

→ (

T36a[(M2,M3)1 and (T9)1]

2TS
T36b[(M4)1 and (T9)1]

1TS

)

1

→

(

T37a[(M2,M3,M5)1 and (T10)1]

2TS
T37b[(M4)1 and (T10)1]

1TS

)

1

→ (
T38a[(M2, M3,M4)1 and (T6,T7,T8)1]

1TS
)
1

→ (
T39a[(M2, M3,M4)1 and (T7,T8,T11)1]

1TS
)
11

→

148

(
T310a[(M2, M3,M4)1 and (T6,T7,T8,T11)1]

2TS
)
1

→ (
T311a[(M2, M3,M4)1 and (T7,T8)1]

2TS
)
1

→ (
T312a[(M1,M2, M3,M4)1 and (T1)1]

1TS
)
1

→

(
T313a[(M2, M3,M4)1 and (T5)1]

1TS
)
1

→ (
T314a[(M1,M2, M3,M4)1 and (T9)1]

1TS
)
1

Job #4: (
T41a[(M2,M4)1 and (T9)1]

2TS
)
1

→ (
T42a[(M1, M2,M4)1 and (T2)1]

2TS
)
1

→ (
T43a[(M2,M4)1 and (T6,T9)1]

1TS
)
1

→

(
T44a[(M2,M4)1 and (T1,T9)1]

2TS
)
1

→ (
T45a[(M2,M4)1 and (T9,T10)1]

1TS
)
1

→ (
T46a[(M2,M4)1 and (T1,T9)1]

1TS
)
1

→

(
T47a[(M1,M2,M4)1 and (T2)1]

1TS
)
1

XIV． Testing 14

Job #1: (

T11a[(M2, M3)1]

3TS
T11b[(M4)1]

2TS

)

1

→ (

T12a[(M2, M3)1]

3TS
T12b[(M4)1]

2TS

)

1

→ (

T13a[(M2, M3)1]

2TS
T13b[(M4)1]

1TS

)

1

→ (

T14a[(M2, M3)1]

3TS
T14b[(M4)1]

2TS

)

1

→ (
T15a[(M2, M3,M4)1]

1TS
)
1

→

(
T16a[(M2, M3,M4)1]

1TS
)
1

→ (

T17a[(M2, M3)1]

3TS
T17b[(M4)1]

2TS

)

1

→ (
T18a[(M1,M2, M3,M4)1]

1TS
)
1

→ (
T19a[(M2, M3,M4)1]

2TS
)
1

→

(

T110a[(M1,M2, M3)1]

3TS
T110b[(M4)1]

2TS

)

1

→ (
T111a[(M2, M3,M4)1]

2TS
)
1

→ (
T112a[(M2,M3, M4,M5)1]

2TS
)
1

→ (
T113a[(M1,M2, M3,M4)1]

2TS
)
1

→

(

T114a[(M2, M3)1]

2TS
T114b[(M4)1]

1TS

)

1

→ (

T115a[(M2, M3)1]

2TS
T115b[(M4)1]

1TS

)

1

→ (

T116a[(M1,M2, M3)1]

2TS
T116b[(M4)1]

1TS

)

1

→ (
T117a[(M2,M3, M4)1]

1TS
)
1

→

(
T118a[(M2,M3, M4,M5)1]

1TS
)
1

→ (
T119a[(M2,M3, M4)1]

1TS
)
1

→ (
T112a[(M2,M3, M4,M5)1]

1TS
)
1

Job #2: (
T21a[(M2, M3,M4)1]

1TS
)
1

→ (

T22a[(M1)1]

3TS
T22b[(M2, M3,M4)1]

2TS

)

1

→ (
T23a[(M2, M3,M4)1]

1TS
)
1

→ (

T24a[(M2, M3)1]

2TS
T24b[(M4)1]

1TS

)

1

→

(
T25a[(M1,M2, M3,M4)1]

2TS
)
1

→ (
T26a[(M2, M3,M4)1]

1TS
)
1

→ (
T27a[(M2, M3,M4)1]

1TS
)
1

→ (

T28a[(M2, M3)1]

2TS
T28b[(M4)1]

1TS

)

1

→

(
T210a[(M2, M3,M4)1]

2TS
)
1

→ (
T211a[(M1,M2, M3,M4)1]

2TS
)
1

→ (
T212a[(M1,M2, M3,M4)1]

2TS
)
1

→ (

T213a[(M2, M3)1]

2TS
T213b[(M4)1]

1TS

)

1

→

(

T214a[(M2, M3)1]

2TS
T214b[(M4)1]

1TS

)

1

→ (
T215a[(M1,M2, M3,M4)1]

1TS
)
1

→ (
T216a[(M1,M2, M3,M4)1]

1TS
)
1

Job #3: (
T31a[(M1,M2, M3,M4)1]

1TS
)
1

→ (
T32a[(M2, M3,M4)1]

1TS
)
1

→ (

T33a[(M2,M4)1]

2TS
T22b[(M3)1]

1TS

)

1

→ (

T34a[(M2,M4)1]

2TS
T34b[(M3)1]

1TS

)

1

→

149

(
T35a[(M1,M2, M3,M4)1]

2TS
)
1

→ (

T36a[(M2,M3)1]

2TS
T36b[(M4)1]

1TS

)

1

→ (

T37a[(M2,M3,M5)1]

2TS
T37b[(M4)1]

1TS

)

1

→ (
T38a[(M2, M3,M4)1]

1TS
)
1

→ (
T39a[(M2, M3,M4)1]

1TS
)
1

→

(
T310a[(M2, M3,M4)1]

2TS
)
1

→ (
T311a[(M2, M3,M4)1]

2TS
)
1

→ (
T312a[(M1,M2, M3,M4)1]

1TS
)
1

→ (
T313a[(M2, M3,M4)1]

1TS
)
1

→

(
T314a[(M1,M2, M3,M4)1]

1TS
)
1

Job #4: (
T41a[(M2,M4)1]

2TS
)
1

→ (
T42a[(M1, M2,M4)1]

2TS
)
1

→ (
T43a[(M2,M4)1]

1TS
)
1

→ (
T44a[(M2,M4)1]

2TS
)
1

→ (
T45a[(M2,M4)1]

1TS
)
1

→

(
T46a[(M2,M4)1]

1TS
)
1

→ (
T47a[(M1,M2,M4)1]

1TS
)
1

XV． Testing 15

Job #1:
T11[(R1,R2,R3)2]

2TS
→

T12[(R1,R2,R3)1]

2TS
→

T13[(R1,R2,R3)2]

5TS
→

T14[(R4)1]

1TS

Job #2:
T21[(R1,R2,R3)1]

1TS
→

T22[(R1,R2)1]

1TS
→

T23[(R1)1and(R2,R3)1]

2TS
→

T24[(R1,R2,R3)2]

5TS
→

T25[(R4)1]

1TS

Job #3:
T31[(R1,R2,R3)2]

1TS
→

T32[(R4)1]

1TS

Job #4:
T41[(R3)1and(R1,R2)1]

1TS
→

T42[(R4)1]

1TS

XVI． Testing 16

Job #1:
T11[(R1,R2,R3)2]

2TS
→

T12[(R1,R2,R3)2]

1TS
→

T13[(R1,R2,R3)1]

2TS
→

T14[(R4)1]

1TS

Job #2:
T21[(R1,R2,R3)1]

1TS
→

T22[(R1)1and(R2,R3)1]

2TS
→

T23[(R4)1]

1TS

Job #3:
T31[(R1,R2)1]

1TS
→ (

T32a[(R1,R2)2]

1TS
T32b[(R3)1]

2TS

)

1

→
T33[(R3,R4)1]

3TS

150

Job #4:
T41[(R1,R2,R3)3]

1TS
→

T42[(R1,R2,R3)2]

2TS

Job #5:
T51[(R1,R2,R3)3]

2TS
→

T52[(R1,R2,R3,R5)2]

1TS

XVII． Testing 17

Job #1: (

T1,1a[(M2, M3)1 and (T6,T7)1]

4TS
T1,1b[(M4)1 and (T6,T7)1]

3TS

)

1

→ (

T1,2a[(M2, M3)1 and (T6,T7)1]

4TS
T1,2b[(M4)1 and (T6,T7)1]

3TS

)

1

→ (
T1,3a[(M2, M3,M4)1 and (T6,T7)1]

2TS
)
1

→

(
T1,4a[(M4)1 and (T2)1]

1TS
)
1

Job #2: (

T2,1b[(M1)1 and (T1)1]

2TS
T2,1a[(M2, M3,M4)1 and (T1)1]

1TS

)

1

→ (
T2,2a[(M2, M3,M4)1 and (T12)1]

2TS
)
1

→ (
T2,3a[(M2, M3,M4)1 and (T11)1]

2TS
)
1

Job #3: (
T3,1a[(M2, M3,M4)1 and (T7)1]

2TS
)
1

→ (
T3,2a[(M2, M3,M4)1 and (T7)1]

2TS
)
1

→ (
T3,3a[(M2, M3,M4)1 and (T7)1]

2TS
)
1

Job #4: (

T4,1a[(M2)1 and (T9)1]

3TS
T4,1b[(M3)1 and (T9)1]

2TS

)

1

→ (
T4,2a[(M2,M3)1 and (T1,T3)1]

3TS
)
1

→ (
T4,3a[(M2,M3)1 and (T6,T9)1]

2TS
)
1

→

(

T4,4a[(M2)1 and (T3)1]

2TS
T4,4b[(M3)1 and (T3)1]

3TS

)

1

XVIII． Testing 18

151

Job #1: (

T1,1a[(M2, M3)1 and (T6,T7)1]

4TS
T1,1b[(M4)1 and (T6,T7)1]

3TS

)

1

→ (

T1,2a[(M2, M3)1 and (T6,T7)1]

4TS
T1,2b[(M4)1 and (T6,T7)1]

3TS

)

1

→ (
T1,3a[(M2, M3,M4)1 and (T6,T7)1]

2TS
)
1

→

(
T1,4a[(M4)1 and (T2)1]

1TS
)
1

Job #2: (

T2,1b[(M1)1 and (T1)1]

2TS
T2,1a[(M2, M3,M4)1 and (T1)1]

1TS

)

1

→ (
T2,2a[(M2, M3,M4)1 and (T12)1]

2TS
)
1

→ (
T2,3a[(M2, M3,M4)1 and (T6,T7,T11)1]

2TS
)
1

Job #3: (
T3,1a[(M2, M3,M4)1 and (T7)1]

2TS
)
1

→ (
T3,2a[(M2, M3,M4)1 and (T7)1]

2TS
)
1

→ (
T3,3a[(M2, M3,M4)1 and (T7)1]

2TS
)
1

Job #4: (

T4,1a[(M2)1 and (T9)1]

3TS
T4,1b[(M3)1 and (T9)1]

2TS

)

1

→ (
T4,2a[(M2,M3)1 and (T1,T3)1]

3TS
)
1

→ (
T4,3a[(M2,M3)1 and (T6,T9)1]

2TS
)
1

→

(

T4,4a[(M2)1 and (T3)1]

2TS
T4,4b[(M3)1 and (T3)1]

3TS

)

1

XIX． Testing 19

Job #1: (

T1,1a[(M2)1 and (T6,T7)1]

4TS
T1,1b[(M4)1 and (T6,T7)1]

3TS

)

1

→ (
T1,2a[(M4)1 and (T6,T7)1]

2TS
)
1

→ (
T1,3a[(M2, M3,M4)1 and (T6,T7)1]

2TS
)
1

→

(
T1,4a[(M4)1 and (T2)1]

1TS
)
1

Job #2: (
T2,1a[(M2, M3,M4)1 and (T1)1]

2TS
)
1

→ (
T2,2a[(M2, M3,M4)1 and (T12)1]

2TS
)
1

→ (
T2,3a[(M2)1 and (T11)1]

2TS
)
1

152

Job #3: (
T3,1a[(M2, M3,M4)1 and (T7)1]

2TS
)
1

→ (
T3,2a[(M2, M3,M4)1 and (T7)1]

2TS
)
1

→ (
T3,3a[(M2, M3,M4)1 and (T7)1]

2TS
)
1

Job #4: (
T4,1a[(M3)1 and (T9)1]

1TS
)
1

→ (
T4,2a[(M2,M3)1 and (T1,T3)1]

3TS
)
1

→ (
T4,3a[(M2,M3)1 and (T6,T9)1]

2TS
)
1

→

(

T4,4a[(M2)1 and (T3)1]

2TS
T4,4b[(M3)1 and (T3)1]

3TS

)

1

XX． Testing 20

Job #1:
T11[(R1,R2,R3)2]

2
→

T12[(R1,R2,R3)2]

1
→

T13[(R1,R2,R3)1]

2
→

T14[(R4)1]

1

Job #2:
T21[(R1,R2,R3)1]

1
→

T22[(R1)1and(R2,R3)1]

2
→

T23[(R4)1]

1

Job #3:
T31[(R1,R2)1]

1
→ (

T32a[(R1,R2)2]

1
T32b[(R3)1]

2

)

1

→
T33[(R3,R4)1]

3

Job #4:
T41[(R1,R2,R3)2]

2

153

XXI． Testing 21

Job #1:
T11[(R1,R2,R3)2]

2
→

T12[(R1,R2,R3)2]

1
→

T13[(R1,R2,R3)1]

2
→

T14[(R4)1]

1

Job #2:
T21[(R1,R2,R3)1]

1
→

T22[(R1)1and(R2,R3)1]

2
→

T23[(R4)1]

1

Job #3:
T31[(R1,R2)1]

1
→ (

T32a[(R1,R2)2]

1
T32b[(R3)1]

2

)

1

→
T33[(R3,R4)1]

3

Job #4:
T41[(R1,R2,R3)2]

2

Job #5:
T51[(R1,R2,R3)2]

2

XXII. Testing 22

Job #1:
T11[(R1,R2,R3)2]

2
→

T12[(R1,R2,R3)2]

1
→

T13[(R1,R2,R3)1]

2
→

T14[(R4)1]

3

154

Job #2:
T21[(R1,R2,R3)1]

1
→

T22[(R1)1and(R2,R3)1]

2
→

T23[(R4)1]

3

Job #3:
T31[(R1,R2)1]

1
→ (

T32a[(R1,R2)2]

1
T32b[(R3)1]

2

)

1

→
T33[(R3,R4)1]

3

XXIII. Testing 23

Job #1:
T11[(R1,R2,R3)2]

2
→

T12[(R1,R2,R3)2]

1
→

T13[(R1,R2,R3)1]

2
→

T14[(R4)1]

3

Job #2:
T21[(R1,R2,R3)1]

1
→

T22[(R1)1and(R2,R3)1]

2
→

T23[(R4)1]

3

Job #3:
T31[(R1,R2)1]

1
→ (

T32a[(R1,R2)2]

1
T32b[(R3)1]

2

)

1

→
T33[(R3,R4)1]

3

Job #4:
T41[(R1,R2,R3)2]

2

155

XXIV. Testing 24

Job #1:
T11[(R1,R2,R3)2]

2
→

T12[(R1,R2,R3)2]

1
→

T13[(R1,R2,R3)1]

2
→

T14[(R4)1]

3

Job #2:
T21[(R1,R2,R3)1]

1
→

T22[(R1)1and(R2,R3)1]

2
→

T23[(R4)1]

3

Job #3:
T31[(R1,R2)1]

1
→ (

T32a[(R1,R2)2]

1
T32b[(R3)1]

2

)

1

→
T33[(R3,R4)1]

3

Job #4:
T41[(R1,R2,R3)2]

2

Job #5:
T51[(R1,R2,R3)2]

2

156

Appendix IV: The PPS Test Results Summary on Accuracy

Test Accuracy Summary (best among three length weight coefficients)

Heuristics Error Sum Min Error Max Error Standard Deviation Average Error

H2 76.79% 0.00% 14.29% 0.053831568 3.66%

H8 82.67% 0.00% 14.29% 0.053362191 3.94%

H16 96.14% 0.00% 14.29% 0.053670139 4.01%

H5 89.29% 0.00% 14.29% 0.056434276 4.25%

H19 106.14% 0.00% 20.00% 0.061793045 4.42%

H3 99.29% 0.00% 20.00% 0.065083392 4.73%

H28 116.46% 0.00% 20.00% 0.067476508 4.85%

H25 120.48% 0.00% 14.29% 0.056689463 5.02%

H15 128.05% 0.00% 14.29% 0.05304635 5.34%

H4 115.17% 0.00% 14.29% 0.055658769 5.48%

H18 140.37% 0.00% 18.18% 0.058554961 5.85%

H14 142.73% 0.00% 20.00% 0.057587423 5.95%

H17 145.96% 0.00% 14.29% 0.050042525 6.08%

H1 149.29% 0.00% 30.00% 0.093683853 7.11%

H13 172.19% 0.00% 30.00% 0.091927199 7.17%

H24 173.32% 0.00% 30.00% 0.082203899 7.22%

H12 178.46% 0.00% 30.00% 0.076173156 7.44%

H22 182.19% 0.00% 30.00% 0.090793192 7.59%

H6 167.31% 0.00% 28.57% 0.072708516 7.97%

H11 193.94% 0.00% 20.00% 0.072219182 8.08%

H9 190.72% 0.00% 28.57% 0.061908107 9.08%

H27 221.95% 0.00% 40.00% 0.108238797 9.25%

H10 210.56% 0.00% 28.57% 0.055782302 10.03%

H21 274.45% 0.00% 30.00% 0.097020496 11.44%

H7 342.98% 0.00% 40.00% 0.116260159 16.33%

H23 695.72% 5.56% 67.74% 0.17776048 28.99%

H20 711.26% 5.56% 70.97% 0.182550518 29.64%

H26 768.71% 5.56% 87.10% 0.226693545 32.03%

Test Accuracy Summary (different length weight coefficients)

Heuristics Length Weight Error Sum Min Error Max Error Standard Deviation Average Error

H1 LW median 146.79% 0.00% 30.00% 0.116101709 7.73%

H1 LW high 66.79% 0.00% 14.29% 0.054035859 3.52%

H1 LW low 379.65% 0.00% 50.00% 0.215917236 19.98%

H2 LW median 116.79% 0.00% 20.00% 0.079669269 6.15%

H2 LW high 96.79% 0.00% 20.00% 0.073307066 5.09%

157

H2 LW low 425.39% 0.00% 60.00% 0.20627864 22.39%

H3 LW median 82.34% 0.00% 14.29% 0.063872671 4.33%

H3 LW high 96.79% 0.00% 20.00% 0.073307066 5.09%

H3 LW low 337.89% 0.00% 50.00% 0.199032284 17.78%

H4 LW median 132.67% 0.00% 30.00% 0.107201134 6.98%

H4 LW high 72.67% 0.00% 14.29% 0.05359337 3.82%

H4 LW low 377.15% 0.00% 60.00% 0.227042888 19.85%

H5 LW median 132.67% 0.00% 20.00% 0.090325798 6.98%

H5 LW high 92.67% 0.00% 20.00% 0.06424635 4.88%

H5 LW low 467.89% 0.00% 60.00% 0.211785288 24.63%

H6 LW median 239.09% 0.00% 28.57% 0.103530837 12.58%

H6 LW high 157.31% 0.00% 28.57% 0.074081227 8.28%

H6 LW low 503.60% 0.00% 60.00% 0.21305678 26.51%

H7 LW median 274.65% 0.00% 40.00% 0.117823431 14.46%

H7 LW high 264.65% 0.00% 40.00% 0.11744188 13.93%

H7 LW low 423.74% 0.00% 60.00% 0.213851589 22.30%

H8 LW median 72.67% 0.00% 14.29% 0.05359337 3.82%

H8 LW high 92.67% 0.00% 20.00% 0.06424635 4.88%

H8 LW low 266.55% 0.00% 50.00% 0.194635336 14.03%

H9 LW median 168.06% 0.00% 28.57% 0.066280593 8.85%

H9 LW high 157.31% 0.00% 28.57% 0.074081227 8.28%

H9 LW low 453.60% 0.00% 50.00% 0.188410498 23.87%

H10 LW median 238.06% 0.00% 28.57% 0.120058681 12.53%

H10 LW high 177.15% 0.00% 28.57% 0.069662802 9.32%

H10 LW low 487.89% 0.00% 60.00% 0.204165627 25.68%

H11 LW median 275.40% 0.00% 40.00% 0.132007015 14.49%

H11 LW high 201.21% 0.00% 36.36% 0.102077836 10.59%

H11 LW low 371.62% 0.00% 42.86% 0.166448838 19.56%

H12 LW median 219.18% 0.00% 40.00% 0.127558102 11.54%

H12 LW high 144.00% 0.00% 18.18% 0.06672139 7.58%

H12 LW low 393.70% 0.00% 42.86% 0.129630104 20.72%

H13 LW median 194.71% 0.00% 42.86% 0.137130947 10.25%

H13 LW high 89.69% 0.00% 14.29% 0.062333895 4.72%

H13 LW low 325.46% 0.00% 50.00% 0.146692817 17.13%

H14 LW median 209.92% 0.00% 30.00% 0.104197662 11.05%

H14 LW high 151.82% 0.00% 30.00% 0.089640345 7.99%

H14 LW low 319.95% 0.00% 40.00% 0.157068297 16.84%

H15 LW median 205.23% 0.00% 40.00% 0.112344169 10.80%

H15 LW high 114.64% 0.00% 18.18% 0.059177995 6.03%

H15 LW low 418.39% 0.00% 50.00% 0.126877852 22.02%

H16 LW median 146.14% 0.00% 20.00% 0.094973115 7.69%

H16 LW high 106.14% 0.00% 20.00% 0.06475161 5.59%

H16 LW low 423.45% 0.00% 50.00% 0.130585361 22.29%

158

H17 LW median 192.74% 0.00% 30.00% 0.090580368 10.14%

H17 LW high 147.55% 0.00% 18.18% 0.063333126 7.77%

H17 LW low 233.49% 0.00% 30.00% 0.114784161 12.29%

H18 LW median 161.10% 0.00% 40.00% 0.100517064 8.48%

H18 LW high 132.16% 0.00% 28.57% 0.076243832 6.96%

H18 LW low 340.30% 0.00% 40.00% 0.106109163 17.91%

H19 LW median 104.92% 0.00% 14.29% 0.06548711 5.52%

H19 LW high 125.82% 0.00% 20.00% 0.071838329 6.62%

H19 LW low 347.65% 0.00% 50.00% 0.18967755 18.30%

H20 LW median 534.04% 5.56% 70.97% 0.193136428 28.11%

H20 LW high 567.68% 5.56% 80.65% 0.214868683 29.88%

H20 LW low 553.39% 5.56% 80.65% 0.21783028 29.13%

H21 LW median 242.68% 0.00% 30.00% 0.11708745 12.77%

H21 LW high 184.85% 0.00% 20.00% 0.077665972 9.73%

H21 LW low 365.80% 0.00% 30.00% 0.092706741 19.25%

H22 LW median 277.62% 0.00% 50.00% 0.191346926 14.61%

H22 LW high 99.69% 0.00% 14.29% 0.062348484 5.25%

H22 LW low 375.14% 0.00% 50.00% 0.166974759 19.74%

H23 LW median 580.58% 5.56% 87.10% 0.232079338 30.56%

H23 LW high 580.58% 5.56% 87.10% 0.232079338 30.56%

H23 LW low 518.50% 5.56% 67.74% 0.186594926 27.29%

H24 LW median 201.95% 0.00% 22.58% 0.085814202 10.63%

H24 LW high 159.04% 0.00% 20.00% 0.067677392 8.37%

H24 LW low 353.30% 0.00% 30.00% 0.101758463 18.59%

H25 LW median 162.59% 0.00% 20.00% 0.094948821 8.56%

H25 LW high 142.27% 0.00% 20.00% 0.071557047 7.49%

H25 LW low 408.11% 0.00% 50.00% 0.144216269 21.48%

H26 LW median 580.58% 5.56% 87.10% 0.232079338 30.56%

H26 LW high 580.58% 5.56% 87.10% 0.232079338 30.56%

H26 LW low 571.49% 5.56% 87.10% 0.233725333 30.08%

H27 LW median 233.95% 0.00% 30.00% 0.113169757 12.31%

H27 LW high 219.46% 0.00% 28.57% 0.108478598 11.55%

H27 LW low 325.79% 0.00% 30.00% 0.105947041 17.15%

H28 LW median 128.47% 0.00% 14.29% 0.07665969 6.76%

H28 LW high 149.69% 0.00% 20.00% 0.103908679 7.88%

H28 LW low 360.55% 0.00% 50.00% 0.175904418 18.98%

159

Appendix V: The PPS Test Results

Test Instances T1

Job Number 2

Operation Number 7

Edge Number 111

Node Number 24

Total Length 10

Average Length 1.428571429

Optimum Time Slot 7

 LWs Makespan Computation Time (s) Difference Error Rate

IP 7 6.590471577 0 0.00%

H1 LW=1 7 0.171875 0 0.00%

H1 LW=10 7 0.171875 0 0.00%

H1 LW=0.001 8 0.234375 1 14.29%

H2 LW=1 7 0.140625 0 0.00%

H2 LW=10 7 0.140625 0 0.00%

H2 LW=0.001 8 0.15625 1 14.29%

H3 LW=1 7 0.140625 0 0.00%

H3 LW=10 7 0.15625 0 0.00%

H3 LW=0.001 8 0.15625 1 14.29%

H4 LW=1 7 0.125 0 0.00%

H4 LW=10 7 0.125 0 0.00%

H4 LW=0.001 8 0.140625 1 14.29%

H5 LW=1 7 0.125 0 0.00%

H5 LW=10 7 0.140625 0 0.00%

H5 LW=0.001 8 0.125 1 14.29%

H6 LW=1 8 0.140625 1 14.29%

H6 LW=10 7 0.140625 0 0.00%

H6 LW=0.001 8 0.140625 1 14.29%

H7 LW=1 8 0.15625 1 14.29%

H7 LW=10 8 0.140625 1 14.29%

H7 LW=0.001 8 0.140625 1 14.29%

H8 LW=1 7 0.125 0 0.00%

H8 LW=10 7 0.15625 0 0.00%

H8 LW=0.001 8 0.125 1 14.29%

H9 LW=1 8 0.140625 1 14.29%

H9 LW=10 7 0.125 0 0.00%

H9 LW=0.001 8 0.125 1 14.29%

H10 LW=1 8 0.140625 1 14.29%

H10 LW=10 8 0.171875 1 14.29%

H10 LW=0.001 9 0.171875 2 28.57%

H11 LW=1 7 0.015625 0 0.00%

H11 LW=10 7 0.03125 0 0.00%

H11 LW=0.001 7 0.015625 0 0.00%

H12 LW=1 7 0.078125 0 0.00%

H12 LW=10 7 0.09375 0 0.00%

160

H12 LW=0.001 8 0.09375 1 14.29%

H13 LW=1 7 0.078125 0 0.00%

H13 LW=10 7 0.09375 0 0.00%

H13 LW=0.001 8 0.09375 1 14.29%

H14 LW=1 7 0.015625 0 0.00%

H14 LW=10 7 0.015625 0 0.00%

H14 LW=0.001 7 0.015625 0 0.00%

H15 LW=1 7 0.078125 0 0.00%

H15 LW=10 7 0.078125 0 0.00%

H15 LW=0.001 8 0.109375 1 14.29%

H16 LW=1 7 0.0625 0 0.00%

H16 LW=10 7 0.078125 0 0.00%

H16 LW=0.001 8 0.09375 1 14.29%

H17 LW=1 7 0.015625 0 0.00%

H17 LW=10 7 0.015625 0 0.00%

H17 LW=0.001 7 0.015625 0 0.00%

H18 LW=1 7 0.078125 0 0.00%

H18 LW=10 7 0.09375 0 0.00%

H18 LW=0.001 8 0.09375 1 14.29%

H19 LW=1 7 0.078125 0 0.00%

H19 LW=10 7 0.078125 0 0.00%

H19 LW=0.001 8 0.09375 1 14.29%

H20 LW=1 8 0.015625 1 14.29%

H20 LW=10 8 0.015625 1 14.29%

H20 LW=0.001 8 0.015625 1 14.29%

H21 LW=1 7 0.09375 0 0.00%

H21 LW=10 7 0.078125 0 0.00%

H21 LW=0.001 8 0.09375 1 14.29%

H22 LW=1 7 0.078125 0 0.00%

H22 LW=10 7 0.078125 0 0.00%

H22 LW=0.001 8 0.078125 1 14.29%

H23 LW=1 8 0.015625 1 14.29%

H23 LW=10 8 0.015625 1 14.29%

H23 LW=0.001 8 0.015625 1 14.29%

H24 LW=1 7 0.09375 0 0.00%

H24 LW=10 7 0.09375 0 0.00%

H24 LW=0.001 8 0.21875 1 14.29%

H25 LW=1 7 0.078125 0 0.00%

H25 LW=10 7 0.09375 0 0.00%

H25 LW=0.001 8 0.09375 1 14.29%

H26 LW=1 8 0.015625 1 14.29%

H26 LW=10 8 0.015625 1 14.29%

H26 LW=0.001 8 0.03125 1 14.29%

H27 LW=1 7 0.078125 0 0.00%

H27 LW=10 7 0.09375 0 0.00%

H27 LW=0.001 8 0.09375 1 14.29%

H28 LW=1 7 0.078125 0 0.00%

161

H28 LW=10 7 0.09375 0 0.00%

H28 LW=0.001 8 0.078125 1 14.29%

Test Instances T2

Job Number 3

Operation Number 10

Edge Number 227

Node Number 35

Total Length 15.5

Average Length 1.55

Optimum Time Slot 8

 LWs Makespan Computation Time (s) Difference Error Rate

IP 8 68.6741747 0 0.00%

H1 LW=1 9 1.078125 1 12.50%

H1 LW=15.5 9 1.09375 1 12.50%

H1 LW=0.001 9 1.078125 1 12.50%

H2 LW=1 9 1.078125 1 12.50%

H2 LW=15.5 9 1.015625 1 12.50%

H2 LW=0.001 8 1.078125 0 0.00%

H3 LW=1 9 0.984375 1 12.50%

H3 LW=15.5 9 1.0625 1 12.50%

H3 LW=0.001 9 1.28125 1 12.50%

H4 LW=1 9 0.953125 1 12.50%

H4 LW=15.5 9 0.984375 1 12.50%

H4 LW=0.001 9 0.953125 1 12.50%

H5 LW=1 9 0.96875 1 12.50%

H5 LW=15.5 9 1 1 12.50%

H5 LW=0.001 10 1.1875 2 25.00%

H6 LW=1 8 1.03125 0 0.00%

H6 LW=15.5 9 1.078125 1 12.50%

H6 LW=0.001 9 1.046875 1 12.50%

H7 LW=1 8 1.0625 0 0.00%

H7 LW=15.5 8 1.0625 0 0.00%

H7 LW=0.001 8 1.125 0 0.00%

H8 LW=1 9 0.953125 1 12.50%

H8 LW=15.5 9 0.96875 1 12.50%

H8 LW=0.001 8 0.984375 0 0.00%

H9 LW=1 9 1.015625 1 12.50%

H9 LW=15.5 9 0.984375 1 12.50%

162

H9 LW=0.001 9 1.046875 1 12.50%

H10 LW=1 9 0.953125 1 12.50%

H10 LW=15.5 9 0.953125 1 12.50%

H10 LW=0.001 9 1.046875 1 12.50%

H11 LW=1 8 0.046875 0 0.00%

H11 LW=15.5 9 0.046875 1 12.50%

H11 LW=0.001 11 0.046875 3 37.50%

H12 LW=1 8 0.421875 0 0.00%

H12 LW=15.5 9 0.3125 1 12.50%

H12 LW=0.001 9 0.296875 1 12.50%

H13 LW=1 9 0.21875 1 12.50%

H13 LW=15.5 9 0.234375 1 12.50%

H13 LW=0.001 9 0.21875 1 12.50%

H14 LW=1 8 0.046875 0 0.00%

H14 LW=15.5 8 0.046875 0 0.00%

H14 LW=0.001 8 0.046875 0 0.00%

H15 LW=1 9 0.3125 1 12.50%

H15 LW=15.5 9 0.296875 1 12.50%

H15 LW=0.001 9 0.328125 1 12.50%

H16 LW=1 9 0.21875 1 12.50%

H16 LW=15.5 9 0.21875 1 12.50%

H16 LW=0.001 8 0.234375 0 0.00%

H17 LW=1 9 0.046875 1 12.50%

H17 LW=15.5 9 0.046875 1 12.50%

H17 LW=0.001 8 0.046875 0 0.00%

H18 LW=1 9 0.4375 1 12.50%

H18 LW=15.5 9 0.265625 1 12.50%

H18 LW=0.001 9 0.359375 1 12.50%

H19 LW=1 9 0.234375 1 12.50%

H19 LW=15.5 9 0.25 1 12.50%

H19 LW=0.001 8 0.265625 0 0.00%

H20 LW=1 9 0.046875 1 12.50%

H20 LW=15.5 9 0.046875 1 12.50%

H20 LW=0.001 9 0.046875 1 12.50%

H21 LW=1 9 0.296875 1 12.50%

H21 LW=15.5 9 0.265625 1 12.50%

H21 LW=0.001 9 0.25 1 12.50%

H22 LW=1 9 0.265625 1 12.50%

H22 LW=15.5 9 0.21875 1 12.50%

H22 LW=0.001 9 0.21875 1 12.50%

H23 LW=1 9 0.046875 1 12.50%

H23 LW=15.5 9 0.046875 1 12.50%

163

H23 LW=0.001 9 0.046875 1 12.50%

H24 LW=1 9 0.25 1 12.50%

H24 LW=15.5 9 0.28125 1 12.50%

H24 LW=0.001 8 0.296875 0 0.00%

H25 LW=1 9 0.234375 1 12.50%

H25 LW=15.5 9 0.265625 1 12.50%

H25 LW=0.001 8 0.265625 0 0.00%

H26 LW=1 9 0.0625 1 12.50%

H26 LW=15.5 9 0.046875 1 12.50%

H26 LW=0.001 9 0.046875 1 12.50%

H27 LW=1 9 0.265625 1 12.50%

H27 LW=15.5 9 0.234375 1 12.50%

H27 LW=0.001 8 0.28125 0 0.00%

H28 LW=1 9 0.21875 1 12.50%

H28 LW=15.5 9 0.28125 1 12.50%

H28 LW=0.001 8 0.265625 0 0.00%

Test Instances T103

Job Number 3

Operation Number 11

Edge Number 307

Node Number 37

Total Length 22

Average Length 2

Optimum Time Slot 16

 LWs Makespan Computation Time (s) Difference Error Rate

IP 16 26.96629721 0 0.00%

H1 LW=1 16 1.28125 0 0.00%

H1 LW=22 16 1.296875 0 0.00%

H1 LW=0.001 19 2.25 3 18.75%

H2 LW=1 16 1.28125 0 0.00%

H2 LW=22 16 1.28125 0 0.00%

H2 LW=0.001 19 1.296875 3 18.75%

H3 LW=1 16 1.234375 0 0.00%

H3 LW=22 16 1.15625 0 0.00%

H3 LW=0.001 19 1.25 3 18.75%

H4 LW=1 16 1.296875 0 0.00%

H4 LW=22 16 1.109375 0 0.00%

H4 LW=0.001 17 2.125 1 6.25%

164

H5 LW=1 16 1.09375 0 0.00%

H5 LW=22 16 1.375 0 0.00%

H5 LW=0.001 17 1.265625 1 6.25%

H6 LW=1 18 1.015625 2 12.50%

H6 LW=22 18 1.0625 2 12.50%

H6 LW=0.001 19 1.109375 3 18.75%

H7 LW=1 18 1.203125 2 12.50%

H7 LW=22 18 1.203125 2 12.50%

H7 LW=0.001 18 1.15625 2 12.50%

H8 LW=1 16 1.390625 0 0.00%

H8 LW=22 16 1.109375 0 0.00%

H8 LW=0.001 17 1.203125 1 6.25%

H9 LW=1 18 1.3125 2 12.50%

H9 LW=22 18 1.1875 2 12.50%

H9 LW=0.001 19 1.140625 3 18.75%

H10 LW=1 18 1.0625 2 12.50%

H10 LW=22 18 1.078125 2 12.50%

H10 LW=0.001 19 1.140625 3 18.75%

H11 LW=1 16 0.078125 0 0.00%

H11 LW=22 16 0.078125 0 0.00%

H11 LW=0.001 17 0.078125 1 6.25%

H12 LW=1 16 0.546875 0 0.00%

H12 LW=22 16 0.515625 0 0.00%

H12 LW=0.001 19 0.625 3 18.75%

H13 LW=1 16 0.390625 0 0.00%

H13 LW=22 16 0.34375 0 0.00%

H13 LW=0.001 19 0.53125 3 18.75%

H14 LW=1 16 0.0625 0 0.00%

H14 LW=22 16 0.078125 0 0.00%

H14 LW=0.001 16 0.0625 0 0.00%

H15 LW=1 16 0.53125 0 0.00%

H15 LW=22 16 0.5 0 0.00%

H15 LW=0.001 19 0.46875 3 18.75%

H16 LW=1 16 0.359375 0 0.00%

H16 LW=22 16 0.40625 0 0.00%

H16 LW=0.001 19 0.40625 3 18.75%

H17 LW=1 16 0.0625 0 0.00%

H17 LW=22 16 0.09375 0 0.00%

H17 LW=0.001 16 0.0625 0 0.00%

H18 LW=1 16 0.46875 0 0.00%

H18 LW=22 16 0.546875 0 0.00%

H18 LW=0.001 19 0.5625 3 18.75%

165

H19 LW=1 16 0.375 0 0.00%

H19 LW=22 16 0.375 0 0.00%

H19 LW=0.001 19 0.40625 3 18.75%

H20 LW=1 18 0.09375 2 12.50%

H20 LW=22 18 0.15625 2 12.50%

H20 LW=0.001 18 0.078125 2 12.50%

H21 LW=1 16 0.4375 0 0.00%

H21 LW=22 16 0.40625 0 0.00%

H21 LW=0.001 19 0.609375 3 18.75%

H22 LW=1 16 0.359375 0 0.00%

H22 LW=22 16 0.375 0 0.00%

H22 LW=0.001 19 0.609375 3 18.75%

H23 LW=1 18 0.078125 2 12.50%

H23 LW=22 18 0.09375 2 12.50%

H23 LW=0.001 18 0.09375 2 12.50%

H24 LW=1 16 0.484375 0 0.00%

H24 LW=22 16 0.390625 0 0.00%

H24 LW=0.001 19 0.453125 3 18.75%

H25 LW=1 16 0.34375 0 0.00%

H25 LW=22 16 0.359375 0 0.00%

H25 LW=0.001 19 0.421875 3 18.75%

H26 LW=1 18 0.078125 2 12.50%

H26 LW=22 18 0.078125 2 12.50%

H26 LW=0.001 18 0.09375 2 12.50%

H27 LW=1 16 0.421875 0 0.00%

H27 LW=22 16 0.453125 0 0.00%

H27 LW=0.001 19 0.5 3 18.75%

H28 LW=1 16 0.375 0 0.00%

H28 LW=22 16 0.390625 0 0.00%

H28 LW=0.001 19 0.390625 3 18.75%

Test Instances T4

Job Number 4

Operation Number 12

Edge Number 315

Node Number 41

Total Length 20.5

Average Length 1.708333333

Optimum Time Slot 11

166

 LWs Makespan Computation Time (s) Difference Error Rate

IP 11 118.9429157 0 0.00%

H1 LW=1 11 1.859375 0 0.00%

H1 LW=20.5 11 2.140625 0 0.00%

H1 LW=0.001 14 2.09375 3 27.27%

H2 LW=1 11 1.75 0 0.00%

H2 LW=20.5 11 1.75 0 0.00%

H2 LW=0.001 14 2.171875 3 27.27%

H3 LW=1 11 2.015625 0 0.00%

H3 LW=20.5 11 1.75 0 0.00%

H3 LW=0.001 14 2.046875 3 27.27%

H4 LW=1 11 1.90625 0 0.00%

H4 LW=20.5 11 1.890625 0 0.00%

H4 LW=0.001 14 2.03125 3 27.27%

H5 LW=1 11 1.96875 0 0.00%

H5 LW=20.5 11 1.90625 0 0.00%

H5 LW=0.001 14 2 3 27.27%

H6 LW=1 13 1.9375 2 18.18%

H6 LW=20.5 13 1.84375 2 18.18%

H6 LW=0.001 14 1.953125 3 27.27%

H7 LW=1 13 2.140625 2 18.18%

H7 LW=20.5 13 2.1875 2 18.18%

H7 LW=0.001 14 2.109375 3 27.27%

H8 LW=1 11 1.78125 0 0.00%

H8 LW=20.5 11 1.84375 0 0.00%

H8 LW=0.001 14 2.078125 3 27.27%

H9 LW=1 12 1.78125 1 9.09%

H9 LW=20.5 13 1.953125 2 18.18%

H9 LW=0.001 14 2.078125 3 27.27%

H10 LW=1 12 1.921875 1 9.09%

H10 LW=20.5 13 1.859375 2 18.18%

H10 LW=0.001 14 1.984375 3 27.27%

H11 LW=1 12 0.09375 1 9.09%

H11 LW=20.5 15 0.203125 4 36.36%

H11 LW=0.001 14 0.078125 3 27.27%

H12 LW=1 12 0.375 1 9.09%

H12 LW=20.5 13 0.4375 2 18.18%

H12 LW=0.001 14 0.578125 3 27.27%

H13 LW=1 11 0.359375 0 0.00%

H13 LW=20.5 11 0.390625 0 0.00%

H13 LW=0.001 14 0.421875 3 27.27%

H14 LW=1 12 0.078125 1 9.09%

H14 LW=20.5 13 0.09375 2 18.18%

167

H14 LW=0.001 14 0.09375 3 27.27%

H15 LW=1 12 0.453125 1 9.09%

H15 LW=20.5 13 0.453125 2 18.18%

H15 LW=0.001 14 0.640625 3 27.27%

H16 LW=1 11 0.34375 0 0.00%

H16 LW=20.5 11 0.390625 0 0.00%

H16 LW=0.001 14 0.4375 3 27.27%

H17 LW=1 12 0.078125 1 9.09%

H17 LW=20.5 13 0.09375 2 18.18%

H17 LW=0.001 14 0.078125 3 27.27%

H18 LW=1 13 0.453125 2 18.18%

H18 LW=20.5 13 0.546875 2 18.18%

H18 LW=0.001 14 0.671875 3 27.27%

H19 LW=1 11 0.375 0 0.00%

H19 LW=20.5 11 0.34375 0 0.00%

H19 LW=0.001 14 0.4375 3 27.27%

H20 LW=1 14 0.09375 3 27.27%

H20 LW=20.5 14 0.09375 3 27.27%

H20 LW=0.001 14 0.09375 3 27.27%

H21 LW=1 11 0.40625 0 0.00%

H21 LW=20.5 11 0.5 0 0.00%

H21 LW=0.001 13 0.40625 2 18.18%

H22 LW=1 11 0.3125 0 0.00%

H22 LW=20.5 11 0.3125 0 0.00%

H22 LW=0.001 14 0.390625 3 27.27%

H23 LW=1 14 0.09375 3 27.27%

H23 LW=20.5 14 0.109375 3 27.27%

H23 LW=0.001 13 0.078125 2 18.18%

H24 LW=1 11 0.4375 0 0.00%

H24 LW=20.5 11 0.421875 0 0.00%

H24 LW=0.001 13 0.421875 2 18.18%

H25 LW=1 11 0.3125 0 0.00%

H25 LW=20.5 11 0.328125 0 0.00%

H25 LW=0.001 14 0.375 3 27.27%

H26 LW=1 14 0.09375 3 27.27%

H26 LW=20.5 14 0.109375 3 27.27%

H26 LW=0.001 13 0.0625 2 18.18%

H27 LW=1 11 0.421875 0 0.00%

H27 LW=20.5 11 0.46875 0 0.00%

H27 LW=0.001 13 0.421875 2 18.18%

H28 LW=1 11 0.359375 0 0.00%

H28 LW=20.5 11 0.328125 0 0.00%

H28 LW=0.001 14 0.421875 3 27.27%

168

Test Instances T5

Job Number 4

Operation Number 12

Edge Number 390

Node Number 41

Total Length 20.5

Average Length 1.708333333

Optimum Time Slot 10

 LWs Makespan Computation Time (s) Difference Error Rate

IP 10 150.7721189 0 0.00%

H1 LW=1 10 2.296875 0 0.00%

H1 LW=20.5 10 2.78125 0 0.00%

H1 LW=0.001 10 2.421875 0 0.00%

H2 LW=1 10 2.21875 0 0.00%

H2 LW=20.5 12 2.671875 2 200.00%

H2 LW=0.001 12 2.15625 2 200.00%

H3 LW=1 10 2.125 0 0.00%

H3 LW=20.5 12 2.171875 2 200.00%

H3 LW=0.001 10 2.1875 0 0.00%

H4 LW=1 10 2.109375 0 0.00%

H4 LW=20.5 10 2.078125 0 0.00%

H4 LW=0.001 10 2.21875 0 0.00%

H5 LW=1 10 2.25 0 0.00%

H5 LW=20.5 12 2.21875 2 200.00%

H5 LW=0.001 12 1.890625 2 200.00%

H6 LW=1 12 2.171875 2 200.00%

H6 LW=20.5 11 1.9375 1 100.00%

H6 LW=0.001 13 2.28125 3 300.00%

H7 LW=1 12 2.53125 2 200.00%

H7 LW=20.5 12 2.640625 2 200.00%

H7 LW=0.001 14 2.453125 4 400.00%

H8 LW=1 10 2.0625 0 0.00%

H8 LW=20.5 12 2.125 2 200.00%

H8 LW=0.001 10 2.265625 0 0.00%

H9 LW=1 11 2.0625 1 100.00%

H9 LW=20.5 11 1.859375 1 100.00%

H9 LW=0.001 13 2.125 3 300.00%

H10 LW=1 11 2 1 100.00%

H10 LW=20.5 11 1.921875 1 100.00%

H10 LW=0.001 13 2.078125 3 300.00%

169

H11 LW=1 13 0.109375 3 300.00%

H11 LW=20.5 11 0.109375 1 100.00%

H11 LW=0.001 11 0.09375 1 100.00%

H12 LW=1 14 0.90625 4 400.00%

H12 LW=20.5 11 0.5 1 100.00%

H12 LW=0.001 14 0.765625 4 400.00%

H13 LW=1 10 0.4375 0 0.00%

H13 LW=20.5 10 0.4375 0 0.00%

H13 LW=0.001 10 0.484375 0 0.00%

H14 LW=1 13 0.09375 3 300.00%

H14 LW=20.5 13 0.15625 3 300.00%

H14 LW=0.001 11 0.09375 1 100.00%

H15 LW=1 14 0.921875 4 400.00%

H15 LW=20.5 11 0.703125 1 100.00%

H15 LW=0.001 13 0.703125 3 300.00%

H16 LW=1 10 0.453125 0 0.00%

H16 LW=20.5 12 0.484375 2 200.00%

H16 LW=0.001 12 0.4375 2 200.00%

H17 LW=1 13 0.109375 3 300.00%

H17 LW=20.5 11 0.09375 1 100.00%

H17 LW=0.001 13 0.125 3 300.00%

H18 LW=1 14 0.8125 4 400.00%

H18 LW=20.5 11 0.625 1 100.00%

H18 LW=0.001 12 0.578125 2 200.00%

H19 LW=1 10 0.421875 0 0.00%

H19 LW=20.5 12 0.46875 2 200.00%

H19 LW=0.001 10 0.4375 0 0.00%

H20 LW=1 13 0.109375 3 300.00%

H20 LW=20.5 13 0.09375 3 300.00%

H20 LW=0.001 13 0.09375 3 300.00%

H21 LW=1 11 0.5625 1 100.00%

H21 LW=20.5 11 0.53125 1 100.00%

H21 LW=0.001 12 0.484375 2 200.00%

H22 LW=1 10 0.375 0 0.00%

H22 LW=20.5 10 0.390625 0 0.00%

H22 LW=0.001 10 0.40625 0 0.00%

H23 LW=1 13 0.09375 3 300.00%

H23 LW=20.5 13 0.109375 3 300.00%

H23 LW=0.001 13 0.109375 3 300.00%

H24 LW=1 12 0.546875 2 200.00%

H24 LW=20.5 11 0.765625 1 100.00%

H24 LW=0.001 12 0.5 2 200.00%

H25 LW=1 10 0.375 0 0.00%

170

H25 LW=20.5 12 0.40625 2 200.00%

H25 LW=0.001 12 0.375 2 200.00%

H26 LW=1 13 0.09375 3 300.00%

H26 LW=20.5 13 0.09375 3 300.00%

H26 LW=0.001 13 0.09375 3 300.00%

H27 LW=1 13 0.5625 3 300.00%

H27 LW=20.5 11 0.578125 1 100.00%

H27 LW=0.001 12 0.59375 2 200.00%

H28 LW=1 10 0.359375 0 0.00%

H28 LW=20.5 12 0.421875 2 200.00%

H28 LW=0.001 10 0.390625 0 0.00%

Test Instances T6

Job Number 5

Operation Number 13

Edge Number 316

Node Number 40

Total Length 17.5

Average Length 1.346153846

Optimum Time Slot 7

 LWs Makespan Computation Time (s) Difference Error Rate

IP 7 643.7664479 0 0.00%

H1 LW=1 8 1.609375 1 14.29%

H1 LW=17.5 8 1.9375 1 14.29%

H1 LW=0.001 10 1.984375 3 42.86%

H2 LW=1 8 1.484375 1 14.29%

H2 LW=17.5 8 1.84375 1 14.29%

H2 LW=0.001 10 1.5625 3 42.86%

H3 LW=1 8 1.59375 1 14.29%

H3 LW=17.5 8 1.84375 1 14.29%

H3 LW=0.001 10 1.53125 3 42.86%

H4 LW=1 8 1.390625 1 14.29%

H4 LW=17.5 8 1.921875 1 14.29%

H4 LW=0.001 10 1.65625 3 42.86%

H5 LW=1 8 1.640625 1 14.29%

H5 LW=17.5 8 1.65625 1 14.29%

H5 LW=0.001 10 1.53125 3 42.86%

H6 LW=1 9 1.671875 2 28.57%

H6 LW=17.5 9 1.46875 2 28.57%

H6 LW=0.001 9 1.734375 2 28.57%

171

H7 LW=1 9 1.828125 2 28.57%

H7 LW=17.5 9 1.78125 2 28.57%

H7 LW=0.001 9 1.765625 2 28.57%

H8 LW=1 8 1.375 1 14.29%

H8 LW=17.5 8 1.65625 1 14.29%

H8 LW=0.001 10 1.390625 3 42.86%

H9 LW=1 9 1.515625 2 28.57%

H9 LW=17.5 9 1.5 2 28.57%

H9 LW=0.001 9 1.84375 2 28.57%

H10 LW=1 9 1.46875 2 28.57%

H10 LW=17.5 9 1.4375 2 28.57%

H10 LW=0.001 9 1.859375 2 28.57%

H11 LW=1 9 0.0625 2 28.57%

H11 LW=17.5 8 0.0625 1 14.29%

H11 LW=0.001 10 0.046875 3 42.86%

H12 LW=1 8 0.421875 1 14.29%

H12 LW=17.5 8 0.453125 1 14.29%

H12 LW=0.001 10 0.53125 3 42.86%

H13 LW=1 10 0.421875 3 42.86%

H13 LW=17.5 8 0.390625 1 14.29%

H13 LW=0.001 10 0.375 3 42.86%

H14 LW=1 9 0.0625 2 28.57%

H14 LW=17.5 8 0.09375 1 14.29%

H14 LW=0.001 8 0.0625 1 14.29%

H15 LW=1 8 0.5 1 14.29%

H15 LW=17.5 8 0.53125 1 14.29%

H15 LW=0.001 10 0.46875 3 42.86%

H16 LW=1 8 0.359375 1 14.29%

H16 LW=17.5 8 0.359375 1 14.29%

H16 LW=0.001 10 0.40625 3 42.86%

H17 LW=1 9 0.0625 2 28.57%

H17 LW=17.5 8 0.09375 1 14.29%

H17 LW=0.001 8 0.0625 1 14.29%

H18 LW=1 8 0.484375 1 14.29%

H18 LW=17.5 9 0.40625 2 28.57%

H18 LW=0.001 9 0.578125 2 28.57%

H19 LW=1 8 0.375 1 14.29%

H19 LW=17.5 8 0.375 1 14.29%

H19 LW=0.001 10 0.40625 3 42.86%

H20 LW=1 8 0.0625 1 14.29%

H20 LW=17.5 9 0.0625 2 28.57%

H20 LW=0.001 8 0.078125 1 14.29%

H21 LW=1 9 0.546875 2 28.57%

172

H21 LW=17.5 8 0.4375 1 14.29%

H21 LW=0.001 9 0.59375 2 28.57%

H22 LW=1 10 0.375 3 42.86%

H22 LW=17.5 8 0.328125 1 14.29%

H22 LW=0.001 10 0.375 3 42.86%

H23 LW=1 9 0.0625 2 28.57%

H23 LW=17.5 9 0.0625 2 28.57%

H23 LW=0.001 8 0.0625 1 14.29%

H24 LW=1 8 0.46875 1 14.29%

H24 LW=17.5 8 0.578125 1 14.29%

H24 LW=0.001 9 0.390625 2 28.57%

H25 LW=1 8 0.328125 1 14.29%

H25 LW=17.5 8 0.359375 1 14.29%

H25 LW=0.001 8 0.359375 1 14.29%

H26 LW=1 9 0.0625 2 28.57%

H26 LW=17.5 9 0.0625 2 28.57%

H26 LW=0.001 9 0.0625 2 28.57%

H27 LW=1 8 0.421875 1 14.29%

H27 LW=17.5 9 0.453125 2 28.57%

H27 LW=0.001 8 0.5 1 14.29%

H28 LW=1 8 0.578125 1 14.29%

H28 LW=17.5 8 0.359375 1 14.29%

H28 LW=0.001 10 0.390625 3 42.86%

Test Instances T7

Job Number 5

Operation Number 14

Edge Number 396

Node Number 41

Total Length 20.5

Average Length 1.464285714

Optimum Time Slot 10

 LWs Makespan Computation Time (s) Difference Error Rate

IP 10 5794.495398 0 0.00%

H1 LW=1 10 1.90625 0 0.00%

H1 LW=20.5 10 1.96875 0 0.00%

H1 LW=0.001 10 1.921875 0 0.00%

H2 LW=1 10 1.890625 0 0.00%

173

H2 LW=20.5 10 1.8125 0 0.00%

H2 LW=0.001 12 1.734375 2 20.00%

H3 LW=1 10 1.8125 0 0.00%

H3 LW=20.5 10 1.921875 0 0.00%

H3 LW=0.001 10 1.9375 0 0.00%

H4 LW=1 10 1.828125 0 0.00%

H4 LW=20.5 10 1.859375 0 0.00%

H4 LW=0.001 10 1.859375 0 0.00%

H5 LW=1 10 1.8125 0 0.00%

H5 LW=20.5 10 1.84375 0 0.00%

H5 LW=0.001 12 1.625 2 20.00%

H6 LW=1 12 1.859375 2 20.00%

H6 LW=20.5 11 1.671875 1 10.00%

H6 LW=0.001 14 2.15625 4 40.00%

H7 LW=1 12 1.96875 2 20.00%

H7 LW=20.5 12 2.03125 2 20.00%

H7 LW=0.001 14 2.203125 4 40.00%

H8 LW=1 10 1.78125 0 0.00%

H8 LW=20.5 10 1.921875 0 0.00%

H8 LW=0.001 10 1.75 0 0.00%

H9 LW=1 11 1.59375 1 10.00%

H9 LW=20.5 11 1.671875 1 10.00%

H9 LW=0.001 13 2 3 30.00%

H10 LW=1 11 2.234375 1 10.00%

H10 LW=20.5 11 1.90625 1 10.00%

H10 LW=0.001 13 2.140625 3 30.00%

H11 LW=1 11 0.09375 1 10.00%

H11 LW=20.5 11 0.109375 1 10.00%

H11 LW=0.001 11 0.15625 1 10.00%

H12 LW=1 10 0.65625 0 0.00%

H12 LW=20.5 10 0.703125 0 0.00%

H12 LW=0.001 10 0.53125 0 0.00%

H13 LW=1 10 0.4375 0 0.00%

H13 LW=20.5 10 0.421875 0 0.00%

H13 LW=0.001 10 0.390625 0 0.00%

H14 LW=1 11 0.09375 1 10.00%

H14 LW=20.5 12 0.09375 2 20.00%

H14 LW=0.001 11 0.109375 1 10.00%

H15 LW=1 10 0.65625 0 0.00%

H15 LW=20.5 10 0.65625 0 0.00%

H15 LW=0.001 12 0.640625 2 20.00%

H16 LW=1 10 0.421875 0 0.00%

H16 LW=20.5 10 0.546875 0 0.00%

174

H16 LW=0.001 12 0.703125 2 20.00%

H17 LW=1 11 0.09375 1 10.00%

H17 LW=20.5 11 0.109375 1 10.00%

H17 LW=0.001 11 0.109375 1 10.00%

H18 LW=1 10 0.578125 0 0.00%

H18 LW=20.5 10 0.609375 0 0.00%

H18 LW=0.001 14 0.984375 4 40.00%

H19 LW=1 10 0.40625 0 0.00%

H19 LW=20.5 10 0.484375 0 0.00%

H19 LW=0.001 10 0.546875 0 0.00%

H20 LW=1 12 0.09375 2 20.00%

H20 LW=20.5 12 0.09375 2 20.00%

H20 LW=0.001 12 0.09375 2 20.00%

H21 LW=1 12 0.546875 2 20.00%

H21 LW=20.5 12 0.546875 2 20.00%

H21 LW=0.001 12 0.5 2 20.00%

H22 LW=1 10 0.40625 0 0.00%

H22 LW=20.5 10 0.390625 0 0.00%

H22 LW=0.001 10 0.421875 0 0.00%

H23 LW=1 12 0.109375 2 20.00%

H23 LW=20.5 12 0.09375 2 20.00%

H23 LW=0.001 12 0.109375 2 20.00%

H24 LW=1 12 0.609375 2 20.00%

H24 LW=20.5 12 0.5625 2 20.00%

H24 LW=0.001 12 0.5 2 20.00%

H25 LW=1 10 0.40625 0 0.00%

H25 LW=20.5 10 0.4375 0 0.00%

H25 LW=0.001 12 0.4375 2 20.00%

H26 LW=1 12 0.109375 2 20.00%

H26 LW=20.5 12 0.09375 2 20.00%

H26 LW=0.001 12 0.09375 2 20.00%

H27 LW=1 12 0.578125 2 20.00%

H27 LW=20.5 12 0.5 2 20.00%

H27 LW=0.001 12 0.59375 2 20.00%

H28 LW=1 10 0.484375 0 0.00%

H28 LW=20.5 10 0.40625 0 0.00%

H28 LW=0.001 10 0.421875 0 0.00%

Test Instances T8

Job Number 5

175

Operation Number 14

Edge Number 504

Node Number 45

Total Length 20.5

Average Length 1.464285714

Optimum Time Slot 10

 LWs Makespan Computation Time (s) Difference Error Rate

IP 10 12196.93827 0 0.00%

H1 LW=1 10 3.8125 0 0.00%

H1 LW=20.5 10 3.546875 0 0.00%

H1 LW=0.001 10 3.5625 0 0.00%

H2 LW=1 12 3.109375 2 20.00%

H2 LW=20.5 10 3.21875 0 0.00%

H2 LW=0.001 12 3.890625 2 20.00%

H3 LW=1 10 3.546875 0 0.00%

H3 LW=20.5 10 3.671875 0 0.00%

H3 LW=0.001 10 3.703125 0 0.00%

H4 LW=1 10 3.609375 0 0.00%

H4 LW=20.5 10 3.625 0 0.00%

H4 LW=0.001 10 3.390625 0 0.00%

H5 LW=1 12 3.375 2 20.00%

H5 LW=20.5 10 3.3125 0 0.00%

H5 LW=0.001 13 3.984375 3 30.00%

H6 LW=1 12 3.578125 2 20.00%

H6 LW=20.5 11 3.015625 1 10.00%

H6 LW=0.001 14 3.90625 4 40.00%

H7 LW=1 12 3.84375 2 20.00%

H7 LW=20.5 12 3.75 2 20.00%

H7 LW=0.001 12 3.78125 2 20.00%

H8 LW=1 10 3.578125 0 0.00%

H8 LW=20.5 10 3.296875 0 0.00%

H8 LW=0.001 10 3.484375 0 0.00%

H9 LW=1 11 3.21875 1 10.00%

H9 LW=20.5 11 2.984375 1 10.00%

H9 LW=0.001 13 4.046875 3 30.00%

H10 LW=1 11 3.1875 1 10.00%

H10 LW=20.5 11 2.96875 1 10.00%

H10 LW=0.001 13 4.0625 3 30.00%

H11 LW=1 11 0.140625 1 10.00%

H11 LW=20.5 11 0.125 1 10.00%

H11 LW=0.001 11 0.171875 1 10.00%

H12 LW=1 11 0.96875 1 10.00%

H12 LW=20.5 11 0.984375 1 10.00%

H12 LW=0.001 12 1.09375 2 20.00%

176

H13 LW=1 10 0.671875 0 0.00%

H13 LW=20.5 10 0.703125 0 0.00%

H13 LW=0.001 10 0.75 0 0.00%

H14 LW=1 11 0.15625 1 10.00%

H14 LW=20.5 11 0.140625 1 10.00%

H14 LW=0.001 14 0.15625 4 40.00%

H15 LW=1 13 1.34375 3 30.00%

H15 LW=20.5 11 0.875 1 10.00%

H15 LW=0.001 12 0.90625 2 20.00%

H16 LW=1 12 0.703125 2 20.00%

H16 LW=20.5 10 0.6875 0 0.00%

H16 LW=0.001 12 0.828125 2 20.00%

H17 LW=1 11 0.140625 1 10.00%

H17 LW=20.5 11 0.140625 1 10.00%

H17 LW=0.001 11 0.15625 1 10.00%

H18 LW=1 11 1.296875 1 10.00%

H18 LW=20.5 11 0.828125 1 10.00%

H18 LW=0.001 11 1 1 10.00%

H19 LW=1 10 0.703125 0 0.00%

H19 LW=20.5 10 0.671875 0 0.00%

H19 LW=0.001 10 0.703125 0 0.00%

H20 LW=1 12 0.140625 2 20.00%

H20 LW=20.5 12 0.15625 2 20.00%

H20 LW=0.001 12 0.125 2 20.00%

H21 LW=1 11 0.78125 1 10.00%

H21 LW=20.5 11 0.84375 1 10.00%

H21 LW=0.001 12 0.953125 2 20.00%

H22 LW=1 10 0.625 0 0.00%

H22 LW=20.5 10 0.75 0 0.00%

H22 LW=0.001 10 0.625 0 0.00%

H23 LW=1 12 0.140625 2 20.00%

H23 LW=20.5 12 0.140625 2 20.00%

H23 LW=0.001 12 0.125 2 20.00%

H24 LW=1 12 0.90625 2 20.00%

H24 LW=20.5 11 0.78125 1 10.00%

H24 LW=0.001 12 0.984375 2 20.00%

H25 LW=1 12 0.625 2 20.00%

H25 LW=20.5 10 0.65625 0 0.00%

H25 LW=0.001 12 0.703125 2 20.00%

H26 LW=1 12 0.15625 2 20.00%

H26 LW=20.5 12 0.140625 2 20.00%

H26 LW=0.001 12 0.125 2 20.00%

H27 LW=1 10 0.828125 0 0.00%

H27 LW=20.5 11 0.734375 1 10.00%

177

H27 LW=0.001 10 0.90625 0 0.00%

H28 LW=1 10 0.703125 0 0.00%

H28 LW=20.5 10 0.625 0 0.00%

H28 LW=0.001 10 0.71875 0 0.00%

Test Instances T9

Job Number 4

Operation Number 14

Edge Number 375

Node Number 41

Total Length 25

Average Length 1.785714286

Optimum Time Slot 18

 LWs Makespan Computation Time (s) Difference Error Rate

IP 18 213.9238512 0 0.00%

H1 LW=1 18 1.71875 0 0.00%

H1 LW=25 18 1.71875 0 0.00%

H1 LW=0.001 20 3.046875 2 11.11%

H2 LW=1 18 1.65625 0 0.00%

H2 LW=25 18 1.609375 0 0.00%

H2 LW=0.001 20 2.328125 2 11.11%

H3 LW=1 19 1.625 1 5.56%

H3 LW=25 18 1.671875 0 0.00%

H3 LW=0.001 20 1.640625 2 11.11%

H4 LW=1 18 1.546875 0 0.00%

H4 LW=25 18 1.59375 0 0.00%

H4 LW=0.001 20 2.4375 2 11.11%

H5 LW=1 18 1.671875 0 0.00%

H5 LW=25 18 1.65625 0 0.00%

H5 LW=0.001 20 1.9375 2 11.11%

H6 LW=1 19 1.40625 1 5.56%

H6 LW=25 19 1.484375 1 5.56%

H6 LW=0.001 20 1.4375 2 11.11%

H7 LW=1 19 1.640625 1 5.56%

H7 LW=25 19 1.6875 1 5.56%

H7 LW=0.001 19 1.609375 1 5.56%

H8 LW=1 18 1.6875 0 0.00%

H8 LW=25 18 1.578125 0 0.00%

H8 LW=0.001 18 1.578125 0 0.00%

H9 LW=1 19 1.421875 1 5.56%

178

H9 LW=25 19 1.421875 1 5.56%

H9 LW=0.001 20 1.390625 2 11.11%

H10 LW=1 19 1.359375 1 5.56%

H10 LW=25 19 1.375 1 5.56%

H10 LW=0.001 20 1.40625 2 11.11%

H11 LW=1 18 0.109375 0 0.00%

H11 LW=25 18 0.109375 0 0.00%

H11 LW=0.001 18 0.15625 0 0.00%

H12 LW=1 18 0.6875 0 0.00%

H12 LW=25 18 0.859375 0 0.00%

H12 LW=0.001 18 0.859375 0 0.00%

H13 LW=1 18 0.59375 0 0.00%

H13 LW=25 18 0.578125 0 0.00%

H13 LW=0.001 20 0.734375 2 11.11%

H14 LW=1 18 0.109375 0 0.00%

H14 LW=25 18 0.125 0 0.00%

H14 LW=0.001 18 0.140625 0 0.00%

H15 LW=1 18 0.734375 0 0.00%

H15 LW=25 18 0.75 0 0.00%

H15 LW=0.001 18 0.828125 0 0.00%

H16 LW=1 18 0.65625 0 0.00%

H16 LW=25 18 0.546875 0 0.00%

H16 LW=0.001 20 0.65625 2 11.11%

H17 LW=1 18 0.125 0 0.00%

H17 LW=25 18 0.109375 0 0.00%

H17 LW=0.001 18 0.109375 0 0.00%

H18 LW=1 18 0.78125 0 0.00%

H18 LW=25 18 0.75 0 0.00%

H18 LW=0.001 19 0.6875 1 5.56%

H19 LW=1 19 0.59375 1 5.56%

H19 LW=25 18 0.578125 0 0.00%

H19 LW=0.001 20 0.65625 2 11.11%

H20 LW=1 20 0.140625 2 11.11%

H20 LW=25 20 0.140625 2 11.11%

H20 LW=0.001 20 0.140625 2 11.11%

H21 LW=1 18 0.625 0 0.00%

H21 LW=25 18 0.703125 0 0.00%

H21 LW=0.001 20 0.9375 2 11.11%

H22 LW=1 18 0.5625 0 0.00%

H22 LW=25 18 0.546875 0 0.00%

H22 LW=0.001 20 0.6875 2 11.11%

H23 LW=1 20 0.140625 2 11.11%

H23 LW=25 20 0.140625 2 11.11%

179

H23 LW=0.001 20 0.140625 2 11.11%

H24 LW=1 18 0.625 0 0.00%

H24 LW=25 18 0.671875 0 0.00%

H24 LW=0.001 20 0.78125 2 11.11%

H25 LW=1 18 0.59375 0 0.00%

H25 LW=25 18 0.546875 0 0.00%

H25 LW=0.001 20 0.625 2 11.11%

H26 LW=1 20 0.140625 2 11.11%

H26 LW=25 20 0.140625 2 11.11%

H26 LW=0.001 20 0.140625 2 11.11%

H27 LW=1 19 0.734375 1 5.56%

H27 LW=25 18 0.65625 0 0.00%

H27 LW=0.001 20 0.765625 2 11.11%

H28 LW=1 19 0.578125 1 5.56%

H28 LW=25 18 0.53125 0 0.00%

H28 LW=0.001 20 0.59375 2 11.11%

Test Instances T10

Job Number 4

Operation Number 14

Edge Number 1074

Node Number 63

Total Length 25

Average Length 1.785714286

Optimum Time Slot 18

 LWs Makespan Computation Time (s) Difference Error Rate

IP 18 2959.314596 0 0.00%

H1 LW=1 18 10.21875 0 0.00%

H1 LW=25 18 10.484375 0 0.00%

H1 LW=0.001 20 8.453125 2 11.11%

H2 LW=1 18 10.171875 0 0.00%

H2 LW=25 18 10.265625 0 0.00%

H2 LW=0.001 20 8.078125 2 11.11%

H3 LW=1 18 10.40625 0 0.00%

H3 LW=25 18 9.953125 0 0.00%

H3 LW=0.001 20 11.296875 2 11.11%

H4 LW=1 18 7.890625 0 0.00%

H4 LW=25 18 7.71875 0 0.00%

H4 LW=0.001 20 6.609375 2 11.11%

H5 LW=1 18 7.8125 0 0.00%

180

H5 LW=25 18 7.546875 0 0.00%

H5 LW=0.001 20 6.703125 2 11.11%

H6 LW=1 18 8.484375 0 0.00%

H6 LW=25 18 8.453125 0 0.00%

H6 LW=0.001 20 8.78125 2 11.11%

H7 LW=1 19 9.828125 1 5.56%

H7 LW=25 19 9.953125 1 5.56%

H7 LW=0.001 19 9.78125 1 5.56%

H8 LW=1 18 7.859375 0 0.00%

H8 LW=25 18 8.203125 0 0.00%

H8 LW=0.001 18 8.46875 0 0.00%

H9 LW=1 19 8.203125 1 5.56%

H9 LW=25 18 8.25 0 0.00%

H9 LW=0.001 20 8.671875 2 11.11%

H10 LW=1 19 8.28125 1 5.56%

H10 LW=25 19 8.6875 1 5.56%

H10 LW=0.001 20 8.78125 2 11.11%

H11 LW=1 18 0.625 0 0.00%

H11 LW=25 18 0.640625 0 0.00%

H11 LW=0.001 18 0.515625 0 0.00%

H12 LW=1 18 3.609375 0 0.00%

H12 LW=25 18 3.890625 0 0.00%

H12 LW=0.001 20 4.171875 2 11.11%

H13 LW=1 18 3.078125 0 0.00%

H13 LW=25 18 3.09375 0 0.00%

H13 LW=0.001 20 3.609375 2 11.11%

H14 LW=1 18 0.640625 0 0.00%

H14 LW=25 18 0.609375 0 0.00%

H14 LW=0.001 18 0.65625 0 0.00%

H15 LW=1 18 3.671875 0 0.00%

H15 LW=25 18 3.5 0 0.00%

H15 LW=0.001 20 4.046875 2 11.11%

H16 LW=1 18 3.375 0 0.00%

H16 LW=25 18 3.046875 0 0.00%

H16 LW=0.001 20 3.609375 2 11.11%

H17 LW=1 18 0.640625 0 0.00%

H17 LW=25 18 0.640625 0 0.00%

H17 LW=0.001 18 0.734375 0 0.00%

H18 LW=1 18 3.796875 0 0.00%

H18 LW=25 18 3.59375 0 0.00%

H18 LW=0.001 20 4.03125 2 11.11%

H19 LW=1 18 3.5 0 0.00%

H19 LW=25 18 3.203125 0 0.00%

181

H19 LW=0.001 20 3.59375 2 11.11%

H20 LW=1 19 0.78125 1 5.56%

H20 LW=25 19 0.703125 1 5.56%

H20 LW=0.001 19 0.6875 1 5.56%

H21 LW=1 18 3.71875 0 0.00%

H21 LW=25 18 3.84375 0 0.00%

H21 LW=0.001 20 4.65625 2 11.11%

H22 LW=1 18 3.0625 0 0.00%

H22 LW=25 18 3.1875 0 0.00%

H22 LW=0.001 20 3.390625 2 11.11%

H23 LW=1 19 0.796875 1 5.56%

H23 LW=25 19 0.703125 1 5.56%

H23 LW=0.001 19 0.671875 1 5.56%

H24 LW=1 18 3.65625 0 0.00%

H24 LW=25 18 3.6875 0 0.00%

H24 LW=0.001 20 4.015625 2 11.11%

H25 LW=1 18 3.234375 0 0.00%

H25 LW=25 18 3.046875 0 0.00%

H25 LW=0.001 20 3.53125 2 11.11%

H26 LW=1 19 0.6875 1 5.56%

H26 LW=25 19 0.671875 1 5.56%

H26 LW=0.001 19 0.71875 1 5.56%

H27 LW=1 18 3.703125 0 0.00%

H27 LW=25 18 3.53125 0 0.00%

H27 LW=0.001 20 3.90625 2 11.11%

H28 LW=1 18 3.359375 0 0.00%

H28 LW=25 18 3.234375 0 0.00%

H28 LW=0.001 20 3.578125 2 11.11%

Test Instances T11

Job Number 4

Operation Number 14

Edge Number 4718

Node Number 161

Total Length 32

Average Length 2.285714286

Optimum Time Slot 10

 LWs Makespan Computation Time (s) Difference Error Rate

IP 10 0 0.00%

H1 LW=1 13 11553.51563 3 30.00%

182

H1 LW=32 11 13094.35938 1 10.00%

H1 LW=0.001 15 10657.78125 5 50.00%

H2 LW=1 11 14337.90625 1 10.00%

H2 LW=32 11 14001.375 1 10.00%

H2 LW=0.001 16 14838.57813 6 60.00%

H3 LW=1 11 14707.34375 1 10.00%

H3 LW=32 11 12879.375 1 10.00%

H3 LW=0.001 15 12523.5 5 50.00%

H4 LW=1 13 10329.75 3 30.00%

H4 LW=32 11 14309.79688 1 10.00%

H4 LW=0.001 16 15394.65625 6 60.00%

H5 LW=1 11 9859.75 1 10.00%

H5 LW=32 11 13247.4375 1 10.00%

H5 LW=0.001 16 9605.890625 6 60.00%

H6 LW=1 11 12772.60938 1 10.00%

H6 LW=32 11 11499.90625 1 10.00%

H6 LW=0.001 16 11853.82813 6 60.00%

H7 LW=1 14 11999.90625 4 40.00%

H7 LW=32 14 12030.14063 4 40.00%

H7 LW=0.001 16 11798.59375 6 60.00%

H8 LW=1 11 10411.01563 1 10.00%

H8 LW=32 11 10112.26563 1 10.00%

H8 LW=0.001 15 10013.32813 5 50.00%

H9 LW=1 11 10395.29688 1 10.00%

H9 LW=32 11 10427.29688 1 10.00%

H9 LW=0.001 15 10665.67188 5 50.00%

H10 LW=1 11 11059.375 1 10.00%

H10 LW=32 11 10856.64063 1 10.00%

H10 LW=0.001 16 10585.51563 6 60.00%

H11 LW=1 14 8.828125 4 40.00%

H11 LW=32 12 8.515625 2 20.00%

H11 LW=0.001 12 8.90625 2 20.00%

H12 LW=1 13 34.90625 3 30.00%

H12 LW=32 11 40.75 1 10.00%

H12 LW=0.001 14 40.53125 4 40.00%

H13 LW=1 13 25.875 3 30.00%

H13 LW=32 11 25.671875 1 10.00%

H13 LW=0.001 15 26.5 5 50.00%

H14 LW=1 11 9.984375 1 10.00%

H14 LW=32 11 8.375 1 10.00%

H14 LW=0.001 12 9.328125 2 20.00%

H15 LW=1 11 42.15625 1 10.00%

H15 LW=32 11 34.484375 1 10.00%

183

H15 LW=0.001 15 41.03125 5 50.00%

H16 LW=1 11 26.640625 1 10.00%

H16 LW=32 11 27.671875 1 10.00%

H16 LW=0.001 15 29.96875 5 50.00%

H17 LW=1 11 9.71875 1 10.00%

H17 LW=32 11 8.28125 1 10.00%

H17 LW=0.001 12 9.46875 2 20.00%

H18 LW=1 11 37.65625 1 10.00%

H18 LW=32 11 34.03125 1 10.00%

H18 LW=0.001 13 41.296875 3 30.00%

H19 LW=1 11 26.953125 1 10.00%

H19 LW=32 11 26.03125 1 10.00%

H19 LW=0.001 15 27.234375 5 50.00%

H20 LW=1 14 9.96875 4 40.00%

H20 LW=32 14 10.0625 4 40.00%

H20 LW=0.001 14 9.953125 4 40.00%

H21 LW=1 13 41.578125 3 30.00%

H21 LW=32 11 41.234375 1 10.00%

H21 LW=0.001 13 47.21875 3 30.00%

H22 LW=1 15 26.234375 5 50.00%

H22 LW=32 11 28.546875 1 10.00%

H22 LW=0.001 15 26.28125 5 50.00%

H23 LW=1 14 9.8125 4 40.00%

H23 LW=32 14 9.65625 4 40.00%

H23 LW=0.001 14 9.875 4 40.00%

H24 LW=1 11 42.5625 1 10.00%

H24 LW=32 11 39.796875 1 10.00%

H24 LW=0.001 13 42.515625 3 30.00%

H25 LW=1 11 28.734375 1 10.00%

H25 LW=32 11 27.4375 1 10.00%

H25 LW=0.001 15 26.609375 5 50.00%

H26 LW=1 14 9.9375 4 40.00%

H26 LW=32 14 10 4 40.00%

H26 LW=0.001 14 9.796875 4 40.00%

H27 LW=1 11 42.8125 1 10.00%

H27 LW=32 11 39.765625 1 10.00%

H27 LW=0.001 13 38.671875 3 30.00%

H28 LW=1 11 30.359375 1 10.00%

H28 LW=32 11 27.6875 1 10.00%

H28 LW=0.001 15 27.875 5 50.00%

184

Test Instances T12

Job Number 4

Operation Number 57

Edge Number 47525

Node Number 580

Total Length 86

Average Length 1.50877193

Optimum Time Slot 31

 LWs Makespan Computation Time (s) Difference Error Rate

IP 31 0 0.00%

H11 LW=1 38 2501 7 22.58%

H11 LW=86 37 2411.671875 6 19.35%

H11 LW=0.001 38 2687.6875 7 22.58%

H12 LW=1 34 9969.859375 3 9.68%

H12 LW=86 33 8504.421875 2 6.45%

H12 LW=0.001 37 10256.32813 6 19.35%

H13 LW=1 32 8147.390625 1 3.23%

H13 LW=86 32 7004.375 1 3.23%

H13 LW=0.001 32 7272.546875 1 3.23%

H14 LW=1 35 2677.015625 4 12.90%

H14 LW=86 33 2374.625 2 6.45%

H14 LW=0.001 36 2577.234375 5 16.13%

H15 LW=1 33 9168.5 2 6.45%

H15 LW=86 32 7903.546875 1 3.23%

H15 LW=0.001 36 8969.453125 5 16.13%

H16 LW=1 32 6906.96875 1 3.23%

H16 LW=86 32 7000.03125 1 3.23%

H16 LW=0.001 37 7488.453125 6 19.35%

H17 LW=1 33 2150.1875 2 6.45%

H17 LW=86 33 2093.34375 2 6.45%

H17 LW=0.001 35 3252.6875 4 12.90%

H18 LW=1 33 9931.984375 2 6.45%

H18 LW=86 33 7721.515625 2 6.45%

H18 LW=0.001 34 9380.75 3 9.68%

H19 LW=1 31 6177.3125 0 0.00%

H19 LW=86 33 6301.890625 2 6.45%

H19 LW=0.001 35 6288.828125 4 12.90%

H20 LW=1 53 6128.140625 22 70.97%

H20 LW=86 56 5938.296875 25 80.65%

H20 LW=0.001 56 6301.28125 25 80.65%

H21 LW=1 36 20880.75 5 16.13%

H21 LW=86 37 21900.95313 6 19.35%

H21 LW=0.001 40 28674.67188 9 29.03%

185

H22 LW=1 34 11985.40625 3 9.68%

H22 LW=86 32 9632.203125 1 3.23%

H22 LW=0.001 34 10436.98438 3 9.68%

H23 LW=1 58 4466.6875 27 87.10%

H23 LW=86 58 4620.953125 27 87.10%

H23 LW=0.001 52 5184.75 21 67.74%

H24 LW=1 33 20058.78125 2 6.45%

H24 LW=86 33 21194.48438 2 6.45%

H24 LW=0.001 37 21986.26563 6 19.35%

H25 LW=1 36 9253.5625 5 16.13%

H25 LW=86 35 8798.78125 4 12.90%

H25 LW=0.001 38 9306.609375 7 22.58%

H26 LW=1 58 4614.734375 27 87.10%

H26 LW=86 58 4707.15625 27 87.10%

H26 LW=0.001 58 5331.671875 27 87.10%

H27 LW=1 37 17892.21875 6 19.35%

H27 LW=86 36 19486.51563 5 16.13%

H27 LW=0.001 35 20906.45313 4 12.90%

H28 LW=1 34 8111.1875 3 9.68%

H28 LW=86 32 8122.296875 1 3.23%

H28 LW=0.001 37 9152.96875 6 19.35%

Test Instances T13

Job Number 4

Operation Number 57

Edge Number 47633

Node Number 580

Total Length 86

Average Length 1.50877193

Optimum Time Slot 31

 LWs Makespan Computation Time (s) Difference Error Rate

IP 31 0 0.00%

H11 LW=1 38 2555.5625 7 22.58%

H11 LW=86 37 2431.875 6 19.35%

H11 LW=0.001 38 3024.703125 7 22.58%

H12 LW=1 32 7894.75 1 3.23%

H12 LW=86 34 7605.375 3 9.68%

H12 LW=0.001 34 8863.046875 3 9.68%

H13 LW=1 32 6516.875 1 3.23%

H13 LW=86 32 6480.6875 1 3.23%

186

H13 LW=0.001 34 6980.90625 3 9.68%

H14 LW=1 35 3097.09375 4 12.90%

H14 LW=86 33 2909.953125 2 6.45%

H14 LW=0.001 36 4097.328125 5 16.13%

H15 LW=1 34 6263.28125 3 9.68%

H15 LW=86 32 6604.0625 1 3.23%

H15 LW=0.001 37 7961.96875 6 19.35%

H16 LW=1 32 6055.234375 1 3.23%

H16 LW=86 32 6209.828125 1 3.23%

H16 LW=0.001 37 6458.78125 6 19.35%

H17 LW=1 33 2345.40625 2 6.45%

H17 LW=86 33 2359.234375 2 6.45%

H17 LW=0.001 35 2957.5 4 12.90%

H18 LW=1 33 8316.875 2 6.45%

H18 LW=86 32 6929.484375 1 3.23%

H18 LW=0.001 36 8736.875 5 16.13%

H19 LW=1 35 5559.6875 4 12.90%

H19 LW=86 35 5452.921875 4 12.90%

H19 LW=0.001 34 7270.5 3 9.68%

H20 LW=1 53 5720.671875 22 70.97%

H20 LW=86 56 6045.25 25 80.65%

H20 LW=0.001 56 5775.15625 25 80.65%

H21 LW=1 36 21790.65625 5 16.13%

H21 LW=86 37 22983.1875 6 19.35%

H21 LW=0.001 37 21964.4375 6 19.35%

H22 LW=1 35 10497.15625 4 12.90%

H22 LW=86 33 9999.671875 2 6.45%

H22 LW=0.001 34 11175.8125 3 9.68%

H23 LW=1 58 5497.21875 27 87.10%

H23 LW=86 58 5661.234375 27 87.10%

H23 LW=0.001 52 5821.46875 21 67.74%

H24 LW=1 38 23343.67188 7 22.58%

H24 LW=86 34 24148.5625 3 9.68%

H24 LW=0.001 40 23059.95313 9 29.03%

H25 LW=1 34 10292.59375 3 9.68%

H25 LW=86 34 10522.64063 3 9.68%

H25 LW=0.001 37 11597.5625 6 19.35%

H26 LW=1 58 4279.9375 27 87.10%

H26 LW=86 58 4436.140625 27 87.10%

H26 LW=0.001 58 4797.375 27 87.10%

H27 LW=1 36 21057.03125 5 16.13%

H27 LW=86 36 21589.09375 5 16.13%

H27 LW=0.001 40 25291.04688 9 29.03%

187

H28 LW=1 31 8146 0 0.00%

H28 LW=86 32 8133.625 1 3.23%

H28 LW=0.001 34 7839.28125 3 9.68%

Test Instances T14

Job Number 4

Operation Number 57

Edge Number 8771

Node Number 292

Total Length 86

Average Length 1.50877193

Optimum Time Slot 31

 LWs Makespan Computation Time (s) Difference Error Rate

IP 31 0 0.00%

H11 LW=1 38 151.34375 7 22.58%

H11 LW=86 37 137.6875 6 19.35%

H11 LW=0.001 38 152.625 7 22.58%

H12 LW=1 35 722.203125 4 12.90%

H12 LW=86 35 665.703125 4 12.90%

H12 LW=0.001 36 726.671875 5 16.13%

H13 LW=1 35 534.671875 4 12.90%

H13 LW=86 33 509.703125 2 6.45%

H13 LW=0.001 35 519.84375 4 12.90%

H14 LW=1 33 130.53125 2 6.45%

H14 LW=86 33 131.625 2 6.45%

H14 LW=0.001 36 142.453125 5 16.13%

H15 LW=1 32 643.828125 1 3.23%

H15 LW=86 32 626.5625 1 3.23%

H15 LW=0.001 36 743.265625 5 16.13%

H16 LW=1 35 456.046875 4 12.90%

H16 LW=86 35 457.515625 4 12.90%

H16 LW=0.001 37 489.53125 6 19.35%

H17 LW=1 34 123.078125 3 9.68%

H17 LW=86 34 122.140625 3 9.68%

H17 LW=0.001 36 129.265625 5 16.13%

H18 LW=1 32 613.40625 1 3.23%

H18 LW=86 32 706.359375 1 3.23%

H18 LW=0.001 33 740.578125 2 6.45%

H19 LW=1 34 431.609375 3 9.68%

H19 LW=86 34 449.515625 3 9.68%

188

H19 LW=0.001 34 466.421875 3 9.68%

H20 LW=1 43 286.25 12 38.71%

H20 LW=86 43 284.109375 12 38.71%

H20 LW=0.001 43 293.3125 12 38.71%

H21 LW=1 37 1727.375 6 19.35%

H21 LW=86 37 1675.9375 6 19.35%

H21 LW=0.001 35 1484.4375 4 12.90%

H22 LW=1 34 600.234375 3 9.68%

H22 LW=86 32 582.46875 1 3.23%

H22 LW=0.001 36 559.984375 5 16.13%

H23 LW=1 43 287.78125 12 38.71%

H23 LW=86 43 294.59375 12 38.71%

H23 LW=0.001 43 299.53125 12 38.71%

H24 LW=1 36 1776.796875 5 16.13%

H24 LW=86 36 1734.140625 5 16.13%

H24 LW=0.001 35 1504.28125 4 12.90%

H25 LW=1 31 670.125 0 0.00%

H25 LW=86 35 562.609375 4 12.90%

H25 LW=0.001 37 542.125 6 19.35%

H26 LW=1 43 273.828125 12 38.71%

H26 LW=86 43 281.421875 12 38.71%

H26 LW=0.001 43 294.859375 12 38.71%

H27 LW=1 36 1833.34375 5 16.13%

H27 LW=86 36 1840.421875 5 16.13%

H27 LW=0.001 36 1746.0625 5 16.13%

H28 LW=1 33 599.5 2 6.45%

H28 LW=86 33 604.6875 2 6.45%

H28 LW=0.001 36 590.28125 5 16.13%

Test Instances T15

Job Number 4

Operation Number 13

Edge Number 989

Node Number 60

Total Length 24

Average Length 1.846153846

Optimum Time Slot 17

 LWs Makespan Computation Time (s) Difference Error Rate

IP 17 989.2135717 0 0.00%

H1 LW=1 17 6.828125 0 0.00%

189

H1 LW=24 17 7.125 0 0.00%

H1 LW=0.001 19 7.8125 2 11.76%

H2 LW=1 17 6.4375 0 0.00%

H2 LW=24 17 6.1875 0 0.00%

H2 LW=0.001 17 6.40625 0 0.00%

H3 LW=1 17 6.40625 0 0.00%

H3 LW=24 17 6.53125 0 0.00%

H3 LW=0.001 17 6.78125 0 0.00%

H4 LW=1 18 6.59375 1 5.88%

H4 LW=24 18 5.609375 1 5.88%

H4 LW=0.001 19 6.328125 2 11.76%

H5 LW=1 18 6.265625 1 5.88%

H5 LW=24 18 5.703125 1 5.88%

H5 LW=0.001 17 6.34375 0 0.00%

H6 LW=1 17 5.28125 0 0.00%

H6 LW=24 17 5.90625 0 0.00%

H6 LW=0.001 17 5.59375 0 0.00%

H7 LW=1 17 6.59375 0 0.00%

H7 LW=24 17 6.671875 0 0.00%

H7 LW=0.001 17 6.53125 0 0.00%

H8 LW=1 18 5.953125 1 5.88%

H8 LW=24 18 5.8125 1 5.88%

H8 LW=0.001 18 6.0625 1 5.88%

H9 LW=1 17 5.640625 0 0.00%

H9 LW=24 17 5.515625 0 0.00%

H9 LW=0.001 17 5.15625 0 0.00%

H10 LW=1 17 5.421875 0 0.00%

H10 LW=24 17 5.4375 0 0.00%

H10 LW=0.001 17 5.484375 0 0.00%

H11 LW=1 17 0.5 0 0.00%

H11 LW=24 17 0.5 0 0.00%

H11 LW=0.001 17 0.515625 0 0.00%

H12 LW=1 17 2.890625 0 0.00%

H12 LW=24 17 2.890625 0 0.00%

H12 LW=0.001 19 3.421875 2 11.76%

H13 LW=1 17 2.296875 0 0.00%

H13 LW=24 17 2.3125 0 0.00%

H13 LW=0.001 19 2.9375 2 11.76%

H14 LW=1 17 0.5 0 0.00%

H14 LW=24 17 0.5 0 0.00%

H14 LW=0.001 17 0.5 0 0.00%

H15 LW=1 17 2.734375 0 0.00%

H15 LW=24 17 2.84375 0 0.00%

190

H15 LW=0.001 17 2.65625 0 0.00%

H16 LW=1 17 2.1875 0 0.00%

H16 LW=24 17 2.15625 0 0.00%

H16 LW=0.001 17 2.1875 0 0.00%

H17 LW=1 17 0.5 0 0.00%

H17 LW=24 17 0.5 0 0.00%

H17 LW=0.001 17 0.453125 0 0.00%

H18 LW=1 17 2.9375 0 0.00%

H18 LW=24 17 2.84375 0 0.00%

H18 LW=0.001 17 3.421875 0 0.00%

H19 LW=1 17 2.421875 0 0.00%

H19 LW=24 17 2.390625 0 0.00%

H19 LW=0.001 17 2.25 0 0.00%

H20 LW=1 18 0.515625 1 5.88%

H20 LW=24 18 0.515625 1 5.88%

H20 LW=0.001 18 0.5625 1 5.88%

H21 LW=1 17 2.90625 0 0.00%

H21 LW=24 17 2.90625 0 0.00%

H21 LW=0.001 17 2.8125 0 0.00%

H22 LW=1 17 2.390625 0 0.00%

H22 LW=24 17 2.328125 0 0.00%

H22 LW=0.001 19 3.109375 2 11.76%

H23 LW=1 18 0.53125 1 5.88%

H23 LW=24 18 0.5625 1 5.88%

H23 LW=0.001 18 0.53125 1 5.88%

H24 LW=1 17 3.125 0 0.00%

H24 LW=24 17 3.125 0 0.00%

H24 LW=0.001 17 2.875 0 0.00%

H25 LW=1 17 2.375 0 0.00%

H25 LW=24 17 2.3125 0 0.00%

H25 LW=0.001 17 2.359375 0 0.00%

H26 LW=1 18 0.5 1 5.88%

H26 LW=24 18 0.5 1 5.88%

H26 LW=0.001 18 0.578125 1 5.88%

H27 LW=1 17 3.046875 0 0.00%

H27 LW=24 17 3.015625 0 0.00%

H27 LW=0.001 17 3.75 0 0.00%

H28 LW=1 17 2.34375 0 0.00%

H28 LW=24 17 2.359375 0 0.00%

H28 LW=0.001 17 2.40625 0 0.00%

191

Test Instances T16

Job Number 5

Operation Number 15

Edge Number 689

Node Number 51

Total Length 21.5

Average Length 1.433333333

Optimum Time Slot 10

 LWs Makespan Computation Time (s) Difference Error Rate

IP 10 0 0.00%

H1 LW=1 11 5.90625 1 10.00%

H1 LW=21.5 10 6.015625 0 0.00%

H1 LW=0.001 11 5.875 1 10.00%

H2 LW=1 12 5.125 2 20.00%

H2 LW=21.5 10 5.40625 0 0.00%

H2 LW=0.001 12 5.375 2 20.00%

H3 LW=1 10 5.421875 0 0.00%

H3 LW=21.5 10 5.5625 0 0.00%

H3 LW=0.001 11 5.625 1 10.00%

H4 LW=1 10 5.5 0 0.00%

H4 LW=21.5 10 5.5 0 0.00%

H4 LW=0.001 11 5.40625 1 10.00%

H5 LW=1 12 4.953125 2 20.00%

H5 LW=21.5 10 5.3125 0 0.00%

H5 LW=0.001 13 5.796875 3 30.00%

H6 LW=1 12 5.625 2 20.00%

H6 LW=21.5 11 4.734375 1 10.00%

H6 LW=0.001 14 5.5 4 40.00%

H7 LW=1 12 5.875 2 20.00%

H7 LW=21.5 12 5.921875 2 20.00%

H7 LW=0.001 12 6.125 2 20.00%

H8 LW=1 10 5.46875 0 0.00%

H8 LW=21.5 10 5.4375 0 0.00%

H8 LW=0.001 11 5.296875 1 10.00%

H9 LW=1 11 4.765625 1 10.00%

H9 LW=21.5 11 4.890625 1 10.00%

H9 LW=0.001 13 5.640625 3 30.00%

H10 LW=1 11 4.84375 1 10.00%

H10 LW=21.5 11 4.625 1 10.00%

H10 LW=0.001 13 5.453125 3 30.00%

H11 LW=1 11 0.234375 1 10.00%

H11 LW=21.5 12 0.25 2 20.00%

H11 LW=0.001 11 0.265625 1 10.00%

192

H12 LW=1 12 1.4375 2 20.00%

H12 LW=21.5 11 1.953125 1 10.00%

H12 LW=0.001 12 1.546875 2 20.00%

H13 LW=1 11 1.15625 1 10.00%

H13 LW=21.5 10 1.15625 0 0.00%

H13 LW=0.001 11 1.21875 1 10.00%

H14 LW=1 12 0.265625 2 20.00%

H14 LW=21.5 12 0.234375 2 20.00%

H14 LW=0.001 14 0.25 4 40.00%

H15 LW=1 12 1.953125 2 20.00%

H15 LW=21.5 11 1.515625 1 10.00%

H15 LW=0.001 13 1.765625 3 30.00%

H16 LW=1 10 1.125 0 0.00%

H16 LW=21.5 10 1.15625 0 0.00%

H16 LW=0.001 13 1.3125 3 30.00%

H17 LW=1 12 0.28125 2 20.00%

H17 LW=21.5 12 0.265625 2 20.00%

H17 LW=0.001 11 0.25 1 10.00%

H18 LW=1 11 1.609375 1 10.00%

H18 LW=21.5 11 1.53125 1 10.00%

H18 LW=0.001 11 2.0625 1 10.00%

H19 LW=1 10 1.125 0 0.00%

H19 LW=21.5 10 1.171875 0 0.00%

H19 LW=0.001 11 1.234375 1 10.00%

H20 LW=1 14 0.265625 4 40.00%

H20 LW=21.5 14 0.234375 4 40.00%

H20 LW=0.001 14 0.234375 4 40.00%

H21 LW=1 12 1.21875 2 20.00%

H21 LW=21.5 11 1.234375 1 10.00%

H21 LW=0.001 12 1.34375 2 20.00%

H22 LW=1 12 1.15625 2 20.00%

H22 LW=21.5 11 1.140625 1 10.00%

H22 LW=0.001 12 1.125 2 20.00%

H23 LW=1 14 0.25 4 40.00%

H23 LW=21.5 14 0.25 4 40.00%

H23 LW=0.001 14 0.25 4 40.00%

H24 LW=1 12 1.34375 2 20.00%

H24 LW=21.5 11 1.203125 1 10.00%

H24 LW=0.001 12 1.46875 2 20.00%

H25 LW=1 12 1.046875 2 20.00%

H25 LW=21.5 11 1 1 10.00%

H25 LW=0.001 12 1.078125 2 20.00%

H26 LW=1 14 0.234375 4 40.00%

193

H26 LW=21.5 14 0.25 4 40.00%

H26 LW=0.001 14 0.234375 4 40.00%

H27 LW=1 12 1.25 2 20.00%

H27 LW=21.5 11 1.1875 1 10.00%

H27 LW=0.001 12 1.296875 2 20.00%

H28 LW=1 12 1.125 2 20.00%

H28 LW=21.5 11 1.109375 1 10.00%

H28 LW=0.001 12 1.140625 2 20.00%

Test Instances T17

Job Number 4

Operation Number 14

Edge Number 2184

Node Number 110

Total Length 31.5

Average Length 2.25

Optimum Time Slot 10

 LWs Makespan Computation Time (s) Difference Error Rate

IP 10 0 0.00%

H1 LW=1 12 500.90625 2 20.00%

H1 LW=31.5 11 495.59375 1 10.00%

H1 LW=0.001 16 528.09375 6 60.00%

H2 LW=1 11 497 1 10.00%

H2 LW=31.5 12 486.21875 2 20.00%

H2 LW=0.001 16 521.765625 6 60.00%

H3 LW=1 12 510.8125 2 20.00%

H3 LW=31.5 12 514.25 2 20.00%

H3 LW=0.001 16 530.171875 6 60.00%

H4 LW=1 12 458.328125 2 20.00%

H4 LW=31.5 11 455.265625 1 10.00%

H4 LW=0.001 16 493.21875 6 60.00%

H5 LW=1 11 439.5 1 10.00%

H5 LW=31.5 11 452.453125 1 10.00%

H5 LW=0.001 16 479.78125 6 60.00%

H6 LW=1 12 454.046875 2 20.00%

H6 LW=31.5 11 450.9375 1 10.00%

H6 LW=0.001 16 487.25 6 60.00%

H7 LW=1 12 456.703125 2 20.00%

194

H7 LW=31.5 12 475.203125 2 20.00%

H7 LW=0.001 16 504.796875 6 60.00%

H8 LW=1 11 451.640625 1 10.00%

H8 LW=31.5 11 457.84375 1 10.00%

H8 LW=0.001 11 494.109375 1 10.00%

H9 LW=1 11 455.59375 1 10.00%

H9 LW=31.5 11 461.234375 1 10.00%

H9 LW=0.001 16 512.53125 6 60.00%

H10 LW=1 14 492.71875 4 40.00%

H10 LW=31.5 11 452.484375 1 10.00%

H10 LW=0.001 16 491.03125 6 60.00%

H11 LW=1 13 2.765625 3 30.00%

H11 LW=31.5 10 1.796875 0 0.00%

H11 LW=0.001 13 2.359375 3 30.00%

H12 LW=1 13 12.140625 3 30.00%

H12 LW=31.5 12 9.765625 2 20.00%

H12 LW=0.001 13 9.171875 3 30.00%

H13 LW=1 12 6.46875 2 20.00%

H13 LW=31.5 12 6.734375 2 20.00%

H13 LW=0.001 13 7.546875 3 30.00%

H14 LW=1 13 2.21875 3 30.00%

H14 LW=31.5 10 1.84375 0 0.00%

H14 LW=0.001 13 2.234375 3 30.00%

H15 LW=1 12 9.921875 2 20.00%

H15 LW=31.5 11 8.015625 1 10.00%

H15 LW=0.001 13 11.234375 3 30.00%

H16 LW=1 12 6.359375 2 20.00%

H16 LW=31.5 11 6.375 1 10.00%

H16 LW=0.001 13 7.4375 3 30.00%

H17 LW=1 11 1.9375 1 10.00%

H17 LW=31.5 10 1.8125 0 0.00%

H17 LW=0.001 12 1.9375 2 20.00%

H18 LW=1 11 9.515625 1 10.00%

H18 LW=31.5 11 9.15625 1 10.00%

H18 LW=0.001 13 8.765625 3 30.00%

H19 LW=1 12 7.0625 2 20.00%

H19 LW=31.5 12 6.609375 2 20.00%

H19 LW=0.001 12 6.890625 2 20.00%

H20 LW=1 12 2.421875 2 20.00%

H20 LW=31.5 12 2.421875 2 20.00%

H20 LW=0.001 12 2.515625 2 20.00%

H21 LW=1 14 10.796875 4 40.00%

H21 LW=31.5 12 10.359375 2 20.00%

195

H21 LW=0.001 14 10.734375 4 40.00%

H22 LW=1 15 7.03125 5 50.00%

H22 LW=31.5 11 6.1875 1 10.00%

H22 LW=0.001 15 6.84375 5 50.00%

H23 LW=1 12 2.484375 2 20.00%

H23 LW=31.5 12 2.515625 2 20.00%

H23 LW=0.001 12 2.4375 2 20.00%

H24 LW=1 12 9.4375 2 20.00%

H24 LW=31.5 12 9.59375 2 20.00%

H24 LW=0.001 14 10.546875 4 40.00%

H25 LW=1 11 6.5625 1 10.00%

H25 LW=31.5 12 6.78125 2 20.00%

H25 LW=0.001 15 6.984375 5 50.00%

H26 LW=1 12 2.546875 2 20.00%

H26 LW=31.5 12 2.453125 2 20.00%

H26 LW=0.001 12 2.421875 2 20.00%

H27 LW=1 12 9.875 2 20.00%

H27 LW=31.5 12 9.125 2 20.00%

H27 LW=0.001 12 9.125 2 20.00%

H28 LW=1 12 6.734375 2 20.00%

H28 LW=31.5 12 12 2 20.00%

H28 LW=0.001 15 7.09375 5 50.00%

Test Instances T18

Job Number 4

Operation Number 14

Edge Number 3108

Node Number 126

Total Length 31.5

Average Length 2.25

Optimum Time Slot 10

 LWs Makespan Computation Time (s) Difference Error Rate

IP 10 0 0.00%

H1 LW=1 13 1354.8125 3 30.00%

H1 LW=31.5 11 1413.015625 1 10.00%

H1 LW=0.001 16 1339.40625 6 60.00%

H2 LW=1 11 1036.546875 1 10.00%

H2 LW=31.5 11 1047.0625 1 10.00%

H2 LW=0.001 15 1047.59375 5 50.00%

H3 LW=1 11 988.296875 1 10.00%

196

H3 LW=31.5 11 1021.28125 1 10.00%

H3 LW=0.001 15 1027.6875 5 50.00%

H4 LW=1 13 939.53125 3 30.00%

H4 LW=31.5 11 946.796875 1 10.00%

H4 LW=0.001 16 940.5 6 60.00%

H5 LW=1 11 989.84375 1 10.00%

H5 LW=31.5 11 939.4375 1 10.00%

H5 LW=0.001 16 936.671875 6 60.00%

H6 LW=1 13 955.3125 3 30.00%

H6 LW=31.5 11 967.953125 1 10.00%

H6 LW=0.001 16 1024.765625 6 60.00%

H7 LW=1 13 1025.21875 3 30.00%

H7 LW=31.5 13 1012.78125 3 30.00%

H7 LW=0.001 16 1023.578125 6 60.00%

H8 LW=1 11 971.671875 1 10.00%

H8 LW=31.5 11 976.546875 1 10.00%

H8 LW=0.001 15 975.328125 5 50.00%

H9 LW=1 11 996.578125 1 10.00%

H9 LW=31.5 11 990.40625 1 10.00%

H9 LW=0.001 15 987.546875 5 50.00%

H10 LW=1 14 1006.203125 4 40.00%

H10 LW=31.5 11 1005.4375 1 10.00%

H10 LW=0.001 16 1018.65625 6 60.00%

H11 LW=1 13 4.15625 3 30.00%

H11 LW=31.5 10 3.671875 0 0.00%

H11 LW=0.001 15 4.1875 5 50.00%

H12 LW=1 13 17.5625 3 30.00%

H12 LW=31.5 10 14.8125 0 0.00%

H12 LW=0.001 14 14.265625 4 40.00%

H13 LW=1 13 11.59375 3 30.00%

H13 LW=31.5 11 11.65625 1 10.00%

H13 LW=0.001 14 11.75 4 40.00%

H14 LW=1 11 4.390625 1 10.00%

H14 LW=31.5 10 3.609375 0 0.00%

H14 LW=0.001 13 4.234375 3 30.00%

H15 LW=1 11 21.71875 1 10.00%

H15 LW=31.5 10 20.484375 0 0.00%

H15 LW=0.001 13 14.65625 3 30.00%

H16 LW=1 13 12.1875 3 30.00%

H16 LW=31.5 11 11.515625 1 10.00%

H16 LW=0.001 14 11.453125 4 40.00%

H17 LW=1 11 4.15625 1 10.00%

H17 LW=31.5 11 4.046875 1 10.00%

197

H17 LW=0.001 14 3.640625 4 40.00%

H18 LW=1 10 14.109375 0 0.00%

H18 LW=31.5 10 15.640625 0 0.00%

H18 LW=0.001 13 15.78125 3 30.00%

H19 LW=1 11 11.25 1 10.00%

H19 LW=31.5 11 10.984375 1 10.00%

H19 LW=0.001 16 12.890625 6 60.00%

H20 LW=1 14 5.796875 4 40.00%

H20 LW=31.5 14 5.8125 4 40.00%

H20 LW=0.001 14 5.8125 4 40.00%

H21 LW=1 11 15.84375 1 10.00%

H21 LW=31.5 11 16.25 1 10.00%

H21 LW=0.001 11 16.140625 1 10.00%

H22 LW=1 15 11.40625 5 50.00%

H22 LW=31.5 12 12.46875 2 20.00%

H22 LW=0.001 15 11.53125 5 50.00%

H23 LW=1 14 5.8125 4 40.00%

H23 LW=31.5 14 6.125 4 40.00%

H23 LW=0.001 14 5.890625 4 40.00%

H24 LW=1 11 15.890625 1 10.00%

H24 LW=31.5 11 15.921875 1 10.00%

H24 LW=0.001 11 16.1875 1 10.00%

H25 LW=1 13 11.234375 3 30.00%

H25 LW=31.5 11 10.828125 1 10.00%

H25 LW=0.001 15 11.296875 5 50.00%

H26 LW=1 14 5.9375 4 40.00%

H26 LW=31.5 14 5.9375 4 40.00%

H26 LW=0.001 14 5.875 4 40.00%

H27 LW=1 14 16.40625 4 40.00%

H27 LW=31.5 14 16.625 4 40.00%

H27 LW=0.001 14 16.625 4 40.00%

H28 LW=1 12 11.34375 2 20.00%

H28 LW=31.5 14 11.71875 4 40.00%

H28 LW=0.001 15 11.21875 5 50.00%

Test Instances T19

Job Number 4

Operation Number 14

Edge Number 1387

Node Number 89

198

Total Length 30

Average Length 2.142857143

Optimum Time Slot 10

 LWs Makespan Computation Time (s) Difference Error Rate

IP 10 0 0.00%

H1 LW=1 13 109.265625 3 30.00%

H1 LW=30 11 108.609375 1 10.00%

H1 LW=0.001 15 119.40625 5 50.00%

H2 LW=1 12 107.890625 2 20.00%

H2 LW=30 11 105.5 1 10.00%

H2 LW=0.001 15 119.21875 5 50.00%

H3 LW=1 11 112.71875 1 10.00%

H3 LW=30 11 107.65625 1 10.00%

H3 LW=0.001 13 115.390625 3 30.00%

H4 LW=1 12 110.203125 2 20.00%

H4 LW=30 11 105.203125 1 10.00%

H4 LW=0.001 15 114.421875 5 50.00%

H5 LW=1 13 114.375 3 30.00%

H5 LW=30 11 108.703125 1 10.00%

H5 LW=0.001 15 116.0625 5 50.00%

H6 LW=1 12 115.328125 2 20.00%

H6 LW=30 11 112.5625 1 10.00%

H6 LW=0.001 15 118.328125 5 50.00%

H7 LW=1 12 121.015625 2 20.00%

H7 LW=30 11 114.25 1 10.00%

H7 LW=0.001 13 115.828125 3 30.00%

H8 LW=1 11 110.125 1 10.00%

H8 LW=30 11 106.734375 1 10.00%

H8 LW=0.001 15 115.671875 5 50.00%

H9 LW=1 11 110.15625 1 10.00%

H9 LW=30 11 111.96875 1 10.00%

H9 LW=0.001 15 118.8125 5 50.00%

H10 LW=1 12 114.46875 2 20.00%

H10 LW=30 11 112.515625 1 10.00%

H10 LW=0.001 15 119.59375 5 50.00%

H11 LW=1 11 1.078125 1 10.00%

H11 LW=30 11 1.09375 1 10.00%

H11 LW=0.001 15 1.125 5 50.00%

H12 LW=1 11 4.9375 1 10.00%

H12 LW=30 11 5.234375 1 10.00%

H12 LW=0.001 12 4.5 2 20.00%

H13 LW=1 13 3.96875 3 30.00%

H13 LW=30 11 3.65625 1 10.00%

199

H13 LW=0.001 12 4.046875 2 20.00%

H14 LW=1 12 1.125 2 20.00%

H14 LW=30 11 1.03125 1 10.00%

H14 LW=0.001 15 1.125 5 50.00%

H15 LW=1 12 4.71875 2 20.00%

H15 LW=30 11 4.703125 1 10.00%

H15 LW=0.001 13 4.9375 3 30.00%

H16 LW=1 12 3.46875 2 20.00%

H16 LW=30 11 3.78125 1 10.00%

H16 LW=0.001 13 3.96875 3 30.00%

H17 LW=1 12 1.046875 2 20.00%

H17 LW=30 11 1.078125 1 10.00%

H17 LW=0.001 11 0.984375 1 10.00%

H18 LW=1 12 4.796875 2 20.00%

H18 LW=30 11 4.984375 1 10.00%

H18 LW=0.001 12 4.75 2 20.00%

H19 LW=1 11 3.6875 1 10.00%

H19 LW=30 11 3.609375 1 10.00%

H19 LW=0.001 15 4.21875 5 50.00%

H20 LW=1 14 1.203125 4 40.00%

H20 LW=30 14 1.296875 4 40.00%

H20 LW=0.001 14 1.21875 4 40.00%

H21 LW=1 11 5.40625 1 10.00%

H21 LW=30 11 4.6875 1 10.00%

H21 LW=0.001 13 4.53125 3 30.00%

H22 LW=1 12 3.4375 2 20.00%

H22 LW=30 11 3.640625 1 10.00%

H22 LW=0.001 12 3.375 2 20.00%

H23 LW=1 14 1.21875 4 40.00%

H23 LW=30 14 1.203125 4 40.00%

H23 LW=0.001 14 1.171875 4 40.00%

H24 LW=1 11 5.28125 1 10.00%

H24 LW=30 11 4.296875 1 10.00%

H24 LW=0.001 13 4.015625 3 30.00%

H25 LW=1 12 3.359375 2 20.00%

H25 LW=30 11 3.390625 1 10.00%

H25 LW=0.001 12 3.203125 2 20.00%

H26 LW=1 14 1.15625 4 40.00%

H26 LW=30 14 1.28125 4 40.00%

H26 LW=0.001 14 1.296875 4 40.00%

H27 LW=1 11 4.5 1 10.00%

H27 LW=30 11 4.65625 1 10.00%

H27 LW=0.001 13 4.453125 3 30.00%

200

H28 LW=1 11 3.5 1 10.00%

H28 LW=30 11 3.640625 1 10.00%

H28 LW=0.001 12 3.390625 2 20.00%

Test Instances T20

Job Number 4

Operation Number 11

Edge Number 387

Node Number 41

Total Length 17.5

Average Length 1.590909091

Optimum Time Slot 8

 LWs Makespan Computation Time (s) Difference Error Rate

IP 8 241.4488821 0 0.00%

H1 LW=1 9 1.796875 1 12.50%

H1 LW=17.5 9 1.78125 1 12.50%

H1 LW=0.001 10 1.953125 2 25.00%

H2 LW=1 9 1.921875 1 12.50%

H2 LW=17.5 9 1.6875 1 12.50%

H2 LW=0.001 10 1.8125 2 25.00%

H3 LW=1 9 1.6875 1 12.50%

H3 LW=17.5 9 1.703125 1 12.50%

H3 LW=0.001 9 1.96875 1 12.50%

H4 LW=1 9 1.78125 1 12.50%

H4 LW=17.5 9 1.640625 1 12.50%

H4 LW=0.001 10 1.765625 2 25.00%

H5 LW=1 9 1.875 1 12.50%

H5 LW=17.5 9 1.828125 1 12.50%

H5 LW=0.001 10 2.171875 2 25.00%

H6 LW=1 9 1.859375 1 12.50%

H6 LW=17.5 9 1.609375 1 12.50%

H6 LW=0.001 10 2.1875 2 25.00%

H7 LW=1 10 2.046875 2 25.00%

H7 LW=17.5 10 2.078125 2 25.00%

H7 LW=0.001 10 2.046875 2 25.00%

H8 LW=1 9 1.609375 1 12.50%

H8 LW=17.5 9 1.609375 1 12.50%

H8 LW=0.001 9 1.890625 1 12.50%

H9 LW=1 9 1.625 1 12.50%

H9 LW=17.5 9 1.625 1 12.50%

201

H9 LW=0.001 9 1.625 1 12.50%

H10 LW=1 9 1.625 1 12.50%

H10 LW=17.5 9 1.59375 1 12.50%

H10 LW=0.001 11 2.265625 3 37.50%

H11 LW=1 10 0.09375 2 25.00%

H11 LW=17.5 9 0.078125 1 12.50%

H11 LW=0.001 13 0.09375 5 62.50%

H12 LW=1 10 0.8125 2 25.00%

H12 LW=17.5 9 0.65625 1 12.50%

H12 LW=0.001 12 1.046875 4 50.00%

H13 LW=1 9 0.390625 1 12.50%

H13 LW=17.5 9 0.40625 1 12.50%

H13 LW=0.001 10 0.4375 2 25.00%

H14 LW=1 8 0.09375 0 0.00%

H14 LW=17.5 9 0.09375 1 12.50%

H14 LW=0.001 10 0.09375 2 25.00%

H15 LW=1 9 0.65625 1 12.50%

H15 LW=17.5 9 0.640625 1 12.50%

H15 LW=0.001 10 0.75 2 25.00%

H16 LW=1 9 0.46875 1 12.50%

H16 LW=17.5 9 0.390625 1 12.50%

H16 LW=0.001 10 0.4375 2 25.00%

H17 LW=1 8 0.09375 0 0.00%

H17 LW=17.5 9 0.09375 1 12.50%

H17 LW=0.001 8 0.09375 0 0.00%

H18 LW=1 9 0.609375 1 12.50%

H18 LW=17.5 9 0.578125 1 12.50%

H18 LW=0.001 9 0.703125 1 12.50%

H19 LW=1 9 0.40625 1 12.50%

H19 LW=17.5 9 0.40625 1 12.50%

H19 LW=0.001 9 0.46875 1 12.50%

H20 LW=1 10 0.09375 2 25.00%

H20 LW=17.5 11 0.109375 3 37.50%

H20 LW=0.001 10 0.09375 2 25.00%

H21 LW=1 9 0.59375 1 12.50%

H21 LW=17.5 9 0.46875 1 12.50%

H21 LW=0.001 10 0.546875 2 25.00%

H22 LW=1 9 0.375 1 12.50%

H22 LW=17.5 9 0.375 1 12.50%

H22 LW=0.001 10 0.421875 2 25.00%

H23 LW=1 10 0.09375 2 25.00%

H23 LW=17.5 11 0.09375 3 37.50%

H23 LW=0.001 10 0.109375 2 25.00%

202

H24 LW=1 9 0.53125 1 12.50%

H24 LW=17.5 9 0.453125 1 12.50%

H24 LW=0.001 8 0.515625 0 0.00%

H25 LW=1 9 0.4375 1 12.50%

H25 LW=17.5 9 0.375 1 12.50%

H25 LW=0.001 10 0.4375 2 25.00%

H26 LW=1 11 0.109375 3 37.50%

H26 LW=17.5 11 0.09375 3 37.50%

H26 LW=0.001 10 0.109375 2 25.00%

H27 LW=1 9 0.484375 1 12.50%

H27 LW=17.5 9 0.4375 1 12.50%

H27 LW=0.001 9 0.546875 1 12.50%

H28 LW=1 9 0.390625 1 12.50%

H28 LW=17.5 9 0.390625 1 12.50%

H28 LW=0.001 9 0.46875 1 12.50%

Test Instances T21

Job Number 5

Operation Number 12

Edge Number 583

Node Number 47

Total Length 19.5

Average Length 1.625

Optimum Time Slot 9

 LWs Makespan Computation Time (s) Difference Error Rate

IP 9 1903.757093 0 0.00%

H1 LW=1 9 3.796875 0 0.00%

H1 LW=19.5 9 3.796875 0 0.00%

H1 LW=0.001 12 4 3 33.33%

H2 LW=1 10 4.0625 1 11.11%

H2 LW=19.5 9 3.609375 0 0.00%

H2 LW=0.001 12 3.8125 3 33.33%

H3 LW=1 9 3.671875 0 0.00%

H3 LW=19.5 9 3.53125 0 0.00%

H3 LW=0.001 10 4.109375 1 11.11%

H4 LW=1 9 3.515625 0 0.00%

H4 LW=19.5 9 3.546875 0 0.00%

H4 LW=0.001 12 3.59375 3 33.33%

H5 LW=1 11 4 2 22.22%

H5 LW=19.5 9 3.578125 0 0.00%

203

H5 LW=0.001 12 4.15625 3 33.33%

H6 LW=1 12 4.015625 3 33.33%

H6 LW=19.5 9 3.46875 0 0.00%

H6 LW=0.001 12 4.1875 3 33.33%

H7 LW=1 12 4.46875 3 33.33%

H7 LW=19.5 12 4.40625 3 33.33%

H7 LW=0.001 12 4.171875 3 33.33%

H8 LW=1 9 3.484375 0 0.00%

H8 LW=19.5 9 3.484375 0 0.00%

H8 LW=0.001 10 4.46875 1 11.11%

H9 LW=1 9 3.515625 0 0.00%

H9 LW=19.5 9 3.515625 0 0.00%

H9 LW=0.001 10 4.671875 1 11.11%

H10 LW=1 9 3.484375 0 0.00%

H10 LW=19.5 9 3.515625 0 0.00%

H10 LW=0.001 10 3.84375 1 11.11%

H11 LW=1 10 0.171875 1 11.11%

H11 LW=19.5 9 0.171875 0 0.00%

H11 LW=0.001 15 0.1875 6 66.67%

H12 LW=1 10 1.6875 1 11.11%

H12 LW=19.5 9 1.203125 0 0.00%

H12 LW=0.001 14 1.6875 5 55.56%

H13 LW=1 9 0.671875 0 0.00%

H13 LW=19.5 9 0.6875 0 0.00%

H13 LW=0.001 12 0.78125 3 33.33%

H14 LW=1 10 0.15625 1 11.11%

H14 LW=19.5 9 0.171875 0 0.00%

H14 LW=0.001 12 0.171875 3 33.33%

H15 LW=1 9 1.171875 0 0.00%

H15 LW=19.5 9 0.953125 0 0.00%

H15 LW=0.001 12 1.203125 3 33.33%

H16 LW=1 10 0.796875 1 11.11%

H16 LW=19.5 9 0.6875 0 0.00%

H16 LW=0.001 12 0.84375 3 33.33%

H17 LW=1 10 0.171875 1 11.11%

H17 LW=19.5 9 0.171875 0 0.00%

H17 LW=0.001 10 0.1875 1 11.11%

H18 LW=1 9 1.046875 0 0.00%

H18 LW=19.5 9 1.203125 0 0.00%

H18 LW=0.001 9 1.09375 0 0.00%

H19 LW=1 9 0.65625 0 0.00%

H19 LW=19.5 9 0.75 0 0.00%

H19 LW=0.001 10 0.78125 1 11.11%

204

H20 LW=1 11 0.1875 2 22.22%

H20 LW=19.5 13 0.203125 4 44.44%

H20 LW=0.001 11 0.265625 2 22.22%

H21 LW=1 9 0.859375 0 0.00%

H21 LW=19.5 9 1.03125 0 0.00%

H21 LW=0.001 12 0.859375 3 33.33%

H22 LW=1 9 0.71875 0 0.00%

H22 LW=19.5 9 0.6875 0 0.00%

H22 LW=0.001 12 0.765625 3 33.33%

H23 LW=1 11 0.234375 2 22.22%

H23 LW=19.5 19 0.203125 10 111.11%

H23 LW=0.001 11 0.1875 2 22.22%

H24 LW=1 10 1.171875 1 11.11%

H24 LW=19.5 9 0.953125 0 0.00%

H24 LW=0.001 12 1.171875 3 33.33%

H25 LW=1 10 0.765625 1 11.11%

H25 LW=19.5 10 0.8125 1 11.11%

H25 LW=0.001 12 0.90625 3 33.33%

H26 LW=1 11 0.1875 2 22.22%

H26 LW=19.5 13 0.203125 4 44.44%

H26 LW=0.001 11 0.203125 2 22.22%

H27 LW=1 9 0.90625 0 0.00%

H27 LW=19.5 9 1 0 0.00%

H27 LW=0.001 10 1.171875 1 11.11%

H28 LW=1 9 0.671875 0 0.00%

H28 LW=19.5 9 0.671875 0 0.00%

H28 LW=0.001 10 0.75 1 11.11%

Test Instances T22

Job Number 3

Operation Number 10

Edge Number 247

Node Number 39

Total Length 19.5

Average Length 1.95

Optimum Time Slot 10

 LWs Makespan Computation Time (s) Difference Error Rate

IP 10 61.10258196 0 0.00%

H1 LW=1 13 1.28125 3 30.00%

H1 LW=19.5 13 1.296875 3 30.00%

205

H1 LW=0.001 13 1.28125 3 30.00%

H2 LW=1 13 1.25 3 30.00%

H2 LW=19.5 13 1.21875 3 30.00%

H2 LW=0.001 10 1.265625 0 0.00%

H3 LW=1 10 1.296875 0 0.00%

H3 LW=19.5 13 1.296875 3 30.00%

H3 LW=0.001 11 1.3125 1 10.00%

H4 LW=1 11 1.4375 1 10.00%

H4 LW=19.5 11 1.421875 1 10.00%

H4 LW=0.001 13 1.1875 3 30.00%

H5 LW=1 10 1.40625 0 0.00%

H5 LW=19.5 11 1.4375 1 10.00%

H5 LW=0.001 11 1.4375 1 10.00%

H6 LW=1 10 1.453125 0 0.00%

H6 LW=19.5 11 1.4375 1 10.00%

H6 LW=0.001 11 1.234375 1 10.00%

H7 LW=1 10 1.703125 0 0.00%

H7 LW=19.5 10 1.671875 0 0.00%

H7 LW=0.001 10 1.296875 0 0.00%

H8 LW=1 10 1.421875 0 0.00%

H8 LW=19.5 11 1.4375 1 10.00%

H8 LW=0.001 11 1.21875 1 10.00%

H9 LW=1 11 1.4375 1 10.00%

H9 LW=19.5 11 1.421875 1 10.00%

H9 LW=0.001 11 1.234375 1 10.00%

H10 LW=1 11 1.53125 1 10.00%

H10 LW=19.5 11 1.546875 1 10.00%

H10 LW=0.001 12 1.4375 2 20.00%

H11 LW=1 11 0.078125 1 10.00%

H11 LW=19.5 11 0.078125 1 10.00%

H11 LW=0.001 11 0.0625 1 10.00%

H12 LW=1 11 0.53125 1 10.00%

H12 LW=19.5 13 0.4375 3 30.00%

H12 LW=0.001 13 0.390625 3 30.00%

H13 LW=1 13 0.296875 3 30.00%

H13 LW=19.5 13 0.328125 3 30.00%

H13 LW=0.001 13 0.296875 3 30.00%

H14 LW=1 11 0.0625 1 10.00%

H14 LW=19.5 11 0.0625 1 10.00%

H14 LW=0.001 12 0.0625 2 20.00%

H15 LW=1 13 0.421875 3 30.00%

H15 LW=19.5 11 0.5625 1 10.00%

H15 LW=0.001 10 0.40625 0 0.00%

206

H16 LW=1 13 0.375 3 30.00%

H16 LW=19.5 13 0.328125 3 30.00%

H16 LW=0.001 10 0.3125 0 0.00%

H17 LW=1 11 0.0625 1 10.00%

H17 LW=19.5 11 0.0625 1 10.00%

H17 LW=0.001 12 0.078125 2 20.00%

H18 LW=1 10 0.5 0 0.00%

H18 LW=19.5 13 0.375 3 30.00%

H18 LW=0.001 12 0.546875 2 20.00%

H19 LW=1 10 0.296875 0 0.00%

H19 LW=19.5 13 0.3125 3 30.00%

H19 LW=0.001 11 0.34375 1 10.00%

H20 LW=1 13 0.078125 3 30.00%

H20 LW=19.5 13 0.0625 3 30.00%

H20 LW=0.001 13 0.078125 3 30.00%

H21 LW=1 13 0.359375 3 30.00%

H21 LW=19.5 13 0.390625 3 30.00%

H21 LW=0.001 13 0.359375 3 30.00%

H22 LW=1 13 0.359375 3 30.00%

H22 LW=19.5 13 0.296875 3 30.00%

H22 LW=0.001 13 0.296875 3 30.00%

H23 LW=1 13 0.078125 3 30.00%

H23 LW=19.5 13 0.0625 3 30.00%

H23 LW=0.001 13 0.078125 3 30.00%

H24 LW=1 13 0.390625 3 30.00%

H24 LW=19.5 13 0.4375 3 30.00%

H24 LW=0.001 10 0.375 0 0.00%

H25 LW=1 13 0.296875 3 30.00%

H25 LW=19.5 13 0.296875 3 30.00%

H25 LW=0.001 10 0.296875 0 0.00%

H26 LW=1 13 0.0625 3 30.00%

H26 LW=19.5 13 0.078125 3 30.00%

H26 LW=0.001 13 0.078125 3 30.00%

H27 LW=1 10 0.375 0 0.00%

H27 LW=19.5 13 0.34375 3 30.00%

H27 LW=0.001 10 0.390625 0 0.00%

H28 LW=1 10 0.28125 0 0.00%

H28 LW=19.5 13 0.28125 3 30.00%

H28 LW=0.001 11 0.34375 1 10.00%

207

Test Instances T23

Job Number 4

Operation Number 11

Edge Number 407

Node Number 45

Total Length 21.5

Average Length 1.954545

Optimum Time Slot 10

 LWs Makespan Computation Time (s) Difference Error Rate

IP 10 239.8401689 0 0.00%

H1 LW=1 11 2.96875 1 10.00%

H1 LW=21.5 11 2.890625 1 10.00%

H1 LW=0.001 12 1.65625 2 20.00%

H2 LW=1 10 2.140625 0 0.00%

H2 LW=21.5 13 1.78125 3 30.00%

H2 LW=0.001 12 1.515625 2 20.00%

H3 LW=1 13 1.765625 3 30.00%

H3 LW=21.5 13 1.8125 3 30.00%

H3 LW=0.001 10 2.109375 0 0.00%

H4 LW=1 11 2.53125 1 10.00%

H4 LW=21.5 11 2.546875 1 10.00%

H4 LW=0.001 12 1.40625 2 20.00%

H5 LW=1 10 2.453125 0 0.00%

H5 LW=21.5 11 2.53125 1 10.00%

H5 LW=0.001 12 1.640625 2 20.00%

H6 LW=1 10 2.546875 0 0.00%

H6 LW=21.5 11 2.484375 1 10.00%

H6 LW=0.001 12 1.703125 2 20.00%

H7 LW=1 10 2.75 0 0.00%

H7 LW=21.5 10 2.75 0 0.00%

H7 LW=0.001 13 1.65625 3 30.00%

H8 LW=1 10 2.53125 0 0.00%

H8 LW=21.5 11 2.546875 1 10.00%

H8 LW=0.001 10 1.984375 0 0.00%

H9 LW=1 11 2.53125 1 10.00%

H9 LW=21.5 11 2.46875 1 10.00%

H9 LW=0.001 13 1.671875 3 30.00%

H10 LW=1 11 2.625 1 10.00%

H10 LW=21.5 11 2.578125 1 10.00%

H10 LW=0.001 13 1.796875 3 30.00%

H11 LW=1 11 0.140625 1 10.00%

H11 LW=21.5 11 0.125 1 10.00%

H11 LW=0.001 13 0.125 3 30.00%

208

H12 LW=1 11 0.84375 1 10.00%

H12 LW=21.5 11 0.859375 1 10.00%

H12 LW=0.001 13 0.671875 3 30.00%

H13 LW=1 11 0.671875 1 10.00%

H13 LW=21.5 11 0.71875 1 10.00%

H13 LW=0.001 12 0.578125 2 20.00%

H14 LW=1 11 0.125 1 10.00%

H14 LW=21.5 11 0.171875 1 10.00%

H14 LW=0.001 14 0.125 4 40.00%

H15 LW=1 10 0.78125 0 0.00%

H15 LW=21.5 11 0.953125 1 10.00%

H15 LW=0.001 13 0.65625 3 30.00%

H16 LW=1 10 0.59375 0 0.00%

H16 LW=21.5 13 0.515625 3 30.00%

H16 LW=0.001 12 0.609375 2 20.00%

H17 LW=1 12 0.125 2 20.00%

H17 LW=21.5 11 0.125 1 10.00%

H17 LW=0.001 12 0.125 2 20.00%

H18 LW=1 13 0.609375 3 30.00%

H18 LW=21.5 13 0.703125 3 30.00%

H18 LW=0.001 10 0.828125 0 0.00%

H19 LW=1 13 0.484375 3 30.00%

H19 LW=21.5 13 0.5625 3 30.00%

H19 LW=0.001 10 0.578125 0 0.00%

H20 LW=1 15 0.125 5 50.00%

H20 LW=21.5 15 0.140625 5 50.00%

H20 LW=0.001 15 0.140625 5 50.00%

H21 LW=1 13 0.59375 3 30.00%

H21 LW=21.5 13 0.5625 3 30.00%

H21 LW=0.001 13 0.640625 3 30.00%

H22 LW=1 11 0.671875 1 10.00%

H22 LW=21.5 11 0.65625 1 10.00%

H22 LW=0.001 12 0.5625 2 20.00%

H23 LW=1 15 0.140625 5 50.00%

H23 LW=21.5 15 0.140625 5 50.00%

H23 LW=0.001 15 0.125 5 50.00%

H24 LW=1 10 0.734375 0 0.00%

H24 LW=21.5 13 0.65625 3 30.00%

H24 LW=0.001 12 0.65625 2 20.00%

H25 LW=1 10 0.5625 0 0.00%

H25 LW=21.5 13 0.484375 3 30.00%

H25 LW=0.001 12 0.609375 2 20.00%

H26 LW=1 15 0.140625 5 50.00%

209

H26 LW=21.5 15 0.140625 5 50.00%

H26 LW=0.001 15 0.140625 5 50.00%

H27 LW=1 13 0.5625 3 30.00%

H27 LW=21.5 13 0.65625 3 30.00%

H27 LW=0.001 10 0.734375 0 0.00%

H28 LW=1 13 0.484375 3 30.00%

H28 LW=21.5 13 0.546875 3 30.00%

H28 LW=0.001 10 0.5625 0 0.00%

Test Instances T24

Job Number 5

Operation Number 12

Edge Number 603

Node Number 51

Total Length 23.5

Average Length 1.958333

Optimum Time Slot 10

 LWs Makespan Computation Time (s) Difference Error Rate

IP 10 1286.021558 0 0.00%

H1 LW=1 13 4.125 3 30.00%

H1 LW=23.5 13 4.34375 3 30.00%

H1 LW=0.001 14 3.15625 4 40.00%

H2 LW=1 11 4.390625 1 10.00%

H2 LW=23.5 13 4.140625 3 30.00%

H2 LW=0.001 14 2.875 4 40.00%

H3 LW=1 13 3.890625 3 30.00%

H3 LW=23.5 13 3.875 3 30.00%

H3 LW=0.001 11 4.375 1 10.00%

H4 LW=1 11 5.390625 1 10.00%

H4 LW=23.5 11 5.40625 1 10.00%

H4 LW=0.001 14 3.03125 4 40.00%

H5 LW=1 11 4.71875 1 10.00%

H5 LW=23.5 11 5.234375 1 10.00%

H5 LW=0.001 14 3.84375 4 40.00%

H6 LW=1 11 4.796875 1 10.00%

H6 LW=23.5 11 5.390625 1 10.00%

H6 LW=0.001 14 3.78125 4 40.00%

H7 LW=1 12 6.21875 2 20.00%

H7 LW=23.5 12 6.46875 2 20.00%

H7 LW=0.001 14 3.796875 4 40.00%

210

H8 LW=1 11 5.421875 1 10.00%

H8 LW=23.5 11 5.421875 1 10.00%

H8 LW=0.001 11 4.90625 1 10.00%

H9 LW=1 11 5.1875 1 10.00%

H9 LW=23.5 11 5.28125 1 10.00%

H9 LW=0.001 14 4.734375 4 40.00%

H10 LW=1 11 5.40625 1 10.00%

H10 LW=23.5 11 5.265625 1 10.00%

H10 LW=0.001 13 3.625 3 30.00%

H11 LW=1 11 0.234375 1 10.00%

H11 LW=23.5 11 0.203125 1 10.00%

H11 LW=0.001 15 0.234375 5 50.00%

H12 LW=1 13 1.140625 3 30.00%

H12 LW=23.5 13 1.234375 3 30.00%

H12 LW=0.001 15 1.28125 5 50.00%

H13 LW=1 13 0.84375 3 30.00%

H13 LW=23.5 13 0.859375 3 30.00%

H13 LW=0.001 14 0.921875 4 40.00%

H14 LW=1 13 0.203125 3 30.00%

H14 LW=23.5 11 0.21875 1 10.00%

H14 LW=0.001 16 0.234375 6 60.00%

H15 LW=1 11 1.515625 1 10.00%

H15 LW=23.5 13 0.953125 3 30.00%

H15 LW=0.001 14 1.515625 4 40.00%

H16 LW=1 11 0.953125 1 10.00%

H16 LW=23.5 13 0.890625 3 30.00%

H16 LW=0.001 14 1.109375 4 40.00%

H17 LW=1 13 0.203125 3 30.00%

H17 LW=23.5 11 0.21875 1 10.00%

H17 LW=0.001 12 0.234375 2 20.00%

H18 LW=1 13 1.25 3 30.00%

H18 LW=23.5 13 1.078125 3 30.00%

H18 LW=0.001 11 1.515625 1 10.00%

H19 LW=1 13 0.828125 3 30.00%

H19 LW=23.5 13 0.84375 3 30.00%

H19 LW=0.001 11 0.953125 1 10.00%

H20 LW=1 15 0.25 5 50.00%

H20 LW=23.5 17 0.265625 7 70.00%

H20 LW=0.001 15 0.25 5 50.00%

H21 LW=1 13 1.5625 3 30.00%

H21 LW=23.5 13 1.609375 3 30.00%

H21 LW=0.001 14 1.21875 4 40.00%

H22 LW=1 13 0.890625 3 30.00%

211

H22 LW=23.5 13 1 3 30.00%

H22 LW=0.001 14 0.9375 4 40.00%

H23 LW=1 15 0.25 5 50.00%

H23 LW=23.5 17 0.265625 7 70.00%

H23 LW=0.001 15 0.25 5 50.00%

H24 LW=1 13 1.59375 3 30.00%

H24 LW=23.5 13 1.4375 3 30.00%

H24 LW=0.001 14 1.484375 4 40.00%

H25 LW=1 11 1 1 10.00%

H25 LW=23.5 13 0.921875 3 30.00%

H25 LW=0.001 14 1.078125 4 40.00%

H26 LW=1 17 0.28125 7 70.00%

H26 LW=23.5 17 0.296875 7 70.00%

H26 LW=0.001 17 0.296875 7 70.00%

H27 LW=1 13 1.3125 3 30.00%

H27 LW=23.5 13 1.125 3 30.00%

H27 LW=0.001 13 1.53125 3 30.00%

H28 LW=1 13 0.84375 3 30.00%

H28 LW=23.5 13 0.859375 3 30.00%

H28 LW=0.001 11 1 1 10.00%

212

References

Alander, J. T. (2014). An Indexed Bibliography of Genetic Algorithms in Operations Research,

Report Series No. 94-1-OR, Retrieved from http://www.uva.fi/~TAU/reports/report94-

1/gaORbib.pdf

Alekseev, V. E. (2004). Polynomial algorithm for finding the largest independent sets in graphs

without forks. Discrete Applied Mathematics, vol. 135, no. 1–3, pp. 3–16.

Babel, L. (1994). A fast algorithm for the maximum weight clique problem. Computing, 52 (1),

31–38.

Basu, A. T. A. N. U. (2013). Five pillars of prescriptive analytics success. Analytics magazine,

8, 8–12.

Belfares, L., Klibi, W., Lo, N. & Guitouni, A. (2007). Multi-objectives tabu search based

algorithm for progressive resource allocation. European Journal of Operational Research,

177, 1779–1799.

Blazewicz, J., Ecker, K.H., Pesch, E., Schmidt, G. & Weglarz, J. (2001). Scheduling Computer

and Manufacturing Processes, 2nd edition, Springer-Verlag, Berlin, Germany.

Bloechliger, I. & Zufferey, N. (2013). Multi-coloring and Project-scheduling with

Incompatibility and Assignment Costs. Annals of Operations Research, 211, 83-101.

Borassi, M., Crescenzi, P., Habib, M., Kosters, W.A., Marino, A. & Takes, F.W. (2015). Fast

Graph Diameter and Radius BFS-Based Computation in (Weakly Connected) Real-World

Graphs. Theoretical Computer Science, 586, 59-80. DOI:

https://doi.org/10.1016/j.tcs.2015.02.033.

213

Bron, C. & Kerbosch, J. (1973). Algorithm 457: Finding all cliques of an undirected graph.

Communications of the ACM, 16, 575–577.

Case, K. & Wan Harun, W. A. (2000). Feature-based representation for manufacturing planning.

International Journal of Production Research, 38 (17), 4285–4300.

Cazals, F. & Karande, C. (2008). A note on the problem of reporting maximal cliques.

Theoretical Computer Science, 407 (1-3), 564 - 568.

Chan, F. T. S., Chung, S. H. & Chan, P. L. Y. (2005). An adaptive genetic algorithm with

dominated genes for distributed scheduling problems. Expert Systems with Applications, 29

(2), 364–371.

Chan, F. T. S., Chung, S. H. & Chan, P. L. Y. (2006). Application of genetic algorithms with

dominant genes in a distributed scheduling problem in flexible manufacturing systems.

International Journal of Production Research, 44 (3), 523–543.

Chan, F. T. S., Chung, S. H. & Chan, P. L. Y. (2008). An introduction of dominant genes in

genetic algorithm for FMS. International Journal of Production Research, 46 (16), 4369–

4390.

Chan, F. T. S., Kumar, V. & Tiwari, M. K. (2009). The relevance of outsourcing and leagile

strategies in performance optimization of an integrated process planning and scheduling

model. International Journal of Production Research, 47(1), 119–142.

Chaube, A., Benyouef, L. & Tiwari, M. K. (2012). An adapted NSGA-2 based dynamic process

plan generation for a reconfigurable manufacturing system. Journal of Intelligent

Manufacturing, 23 (4), 1141–1155.

Chen, G. H., Kuo, M. T. & Sheu, J. P. (1988). An optimal time algorithm for finding a maximum

214

weight independent set in a tree. BIT Numerical Mathematics, 28 (2), 353–356.

Chu, C. P. & Gadh, R. (1996). Feature-based approach for set-up minimization of process design

from product design. Computer-Aided Design, 26 (5), 321-332.

Czygrinow, A. & Hanckowiak, M. (2006). Distributed algorithms for weighted problems in

sparse graphs. Journal of Discrete Algorithms, 4 (4), 588–607.

Dandashi, A. & Al-Mouhamed, M. (2010). Graph Coloring for Class Scheduling. ACS/IEEE

International Conference on Computer Systems and Applications - AICCSA 2010, 1, 1-4.

De Werra, D., Demange, M., Monnot, J. & Paschos, V. T. (2005). A hypocoloring model for

batch scheduling, Discrete Applied Mathematics, 146 (2005), 3–26.

Diestel, R. (2006), Graph Theory, Graduate texts in mathematics, 173, Springer-Verlag, 3–4,

ISBN 9783540261834.

Diestel, R. (2012), "1.9 Some linear algebra", Graph Theory, Graduate Texts in Mathematics.

173, Springer, 23–28.

Du, P. & Zhang, Y. (2016). A New Distributed Approximation Algorithm for the Maximum

Weight Independent Set Problem, Mathematical Problems in Engineering, Volume 2016,

Article ID 9790629, 10 pages, DOI: http://dx.doi.org/10.1155/2016/9790629.

Duarte, A., Pantrigo, J., Pardo, E. & Mladenovic, N. (2015). Multi-objective variable

neighborhood search: An application to combinatorial optimization problems. Journal of

Global Optimization, 63 (3), 515–536. DOI: https://doi.org/10.1007/s10898-014-0213-z.

Engel, Y., Etzion, O. & Feldman, Z. (2012). A basic model for proactive event-driven

computing. Proceedings of the 6th ACM international conference on distributed event-based

systems - DEBS’ 12.

http://dx.doi.org/10.1155/2016/9790629

215

Eppstein, D. (2005). All maximal independent sets and dynamic dominance for sparse graphs.

Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms, SODA

'05, pages 451-459, Philadelphia, PA, USA. Society for Industrial and Applied Mathematics.

Eppstein, D., Lffler, M. & Strash, D. (2010). Listing all maximal cliques in sparse graphs in

near-optimal time. In Cheong, O., Chwa, K.-Y., and Park, K., editors, Algorithms and

Computation, volume 6506 of Lecture Notes in Computer Science, pages 403-414. Springer

Berlin / Heidelberg.

Epstein, L., Halldórsson, M. M., Levin, A. & Shachnai, H. (2009). Weighted sum coloring in

batch scheduling of conflicting jobs. Algorithmica, 55 (2009), 643–665.

Erickson, J. (2018). Solving recurrences. Lecture notes. Retrieved from

https://jeffe.cs.illinois.edu/teaching/algorithms/notes/99-recurrences.pdf

Fomin, F. V., Gaspers, S. & Saurabh, S. (2006). Branching and treewidth based exact algorithms.

Algorithms and Computation, Editor, Asano, T. 4288 of Lecture Notes in Computer Science,

16–25, Springer, New York, NY, USA.

Furer, M. & Kasiviswanathan, S. (2007). Algorithms for counting 2-SAT solutions and colorings

with applications. Proceedings of the 3rd International Conference on Algorithmic Aspects in

Information and Management (AAIM ’07), 47–57.

Fukunaga, T., Halldórsson, M. M. & Nagamochi, H. (2007). ‘‘Rent-or-buy’’ scheduling and cost

coloring problems. Proceedings of the 27th Int. Conference on Foundations of Software

Technology and Theoretical Computer Science, Springer-Verlag, Berlin, Heidelberg, 84-95.

Gainanov D. N., Mladenovic, NENAD & Rasskazova, V. A. (2018) Maximum independent set

in planning freight railway transportation Front. Engineering Management, 5 (4), 499–506.

216

DOI: https://doi.org/10.15302/J-FEM-2018031.

Gamache, M., Hertz, A. & Ouellet, J.O. (2007). A graph coloring model for a feasibility problem

in monthly crew scheduling with preferential bidding. Computers & Operations Research, 34

(8), 2384-2395.

Gardi, F. (2009). Mutual exclusion scheduling with interval graphs or related classes, Part I.

Discrete Applied Mathematics, 157, 19-35.

Gartner. (2017). Planning guide for data and analytics. Last Accessed: 10 May 2020

https://www.gartner.com/en/documents/3471553/2017-planning-guide-for-data-and-

analytics.

Gfeller, B. & Vicari, E. (2007). A randomized distributed algorithm for the maximal independent

set problem in growth-bounded graphs. Proceedings of the 26th Annual ACM Symposium on

Principles of Distributed Computing (PODC ’07), 53–60, Portland, Ore, USA. DOI:

https://doi.org/10.1145/1281100.1281111.

Giaro, K., Kubale, M. & Obszarski, P. (2009) A graph coloring approach to scheduling of

multiprocessor tasks on dedicated machines with availability constraints, Discrete Applied

Mathematics, 157 (2009), 3625–3630.

Grotschel, M., Lovasz, L. & Schrijver, A. (1993). Geometric Algorithms and Combinatorial

Optimization, Springer, Berlin, Germany.

Guo, Y. W., Mileham, A. R., Owen, G. W. & Li, W. D. (2006). Operation sequencing

optimization using a particle swarm optimization approach, Proceedings of the Institution of

Mechanical Engineers, Part B: Journal of Engineering Manufacture, 220 (12), 1945-1958.

Hansen, P., Mladenovic, N., Todosijevic, R. & Hanafi, S. (2017). Variable neighborhood search:

217

basics and variants. European Journal on Computational Optimization, 5 (3), 423–454. DOI:

https://doi.org/10.1007/s13675-016-0075-x

Halldorsson, M. M. (2000). Approximations of Weighted Independent Set and Hereditary Subset

Problems. Journal of Graph Algorithms and Applications, 4 (1), 1-16.

Halldorsson, M. M. (2004). Approximations of independent sets in graphs. Approximation

Algorithms for Combinatorial Optimization, 24–45, Springer, Berlin, Germany.

Halldórsson, M. M. & Kortsarz, G. (2004). Multicoloring: Problems and techniques. Editors,

Fiala, J., Koubek, V. & Kratochvíl, J., Mathematical Foundations of Computer Science.

Lecture Notes in Computer Science, volume 3153, Springer, Berlin, Heidelberg, New York,

21–45.

Huang, F. (2013). On the maximum weighted independent Set Problem with Applications in

Wireless Sensor Networks, PhD Thesis, Boston University.

Hansen, P., Mladenovic, N., Todosijevic, R. & Hanafi, S. (2017). Variable neighborhood search:

basics and variants. European Journal on Computational Optimization, 5(3), 423–454.

Jia, H. Z., Fuh, J. Y. H., Nee, A. Y. C. & Zheng, Y. F. (2002). Web-based multi-functional

scheduling system for a distributed manufacturing environment. Concurrent Engineering, 10

(1), 27–39.

Jia, H. Z., Fuh, J. Y. H., Nee, A. Y. C. & Zhang, Y. F. (2007). Integration of genetic algorithm

and Gantt chart for job shop scheduling in distributed manufacturing systems. Computers and

Industrial Engineering, 53 (2), 313–320.

Jia, H. Z., Nee, A. Y. C., Fuh, J. Y. H. & Zhang, Y. F. (2003). A modified genetic algorithm for

distributed scheduling problems. Journal of Intelligent Manufacturing, 14 (3), 351–362.

218

Johnson, D. S., Yannakakis, M. & Papadimitriou, C. H. (1988). On generating all maximal

independent sets. Information Processing Letters, 27 (3), 119 - 123.

Joo, C., Lin, X., Ryu, J. & Shroff, N. B. (2013). Distributed Greedy Approximation to Maximum

Weighted Independent Set for Scheduling with Fading Channels IEEE/ACM Transactions on

Networking, 24, 3, 1476–1488. DOI: https://doi.org/10.1109/TNET.2015.2417861.

Kako, A., Ono, T., Hirata, T. & Halldsson, M. (2005). Approximation algorithms for the

weighted independent set problem. Proceedings of the 31st International Workshop on

Graph-Theoretic Concepts in Computer Science, 341–350.

Karp, R. & Sipser, M. (1981). Maximummatchings in sparse random graphs. Proceedings of the

Annual IEEE Symposium on Foundations of Computer Science (FOCS ’81), 364–375, Los

Alamitos, California, USA.

Kim, Y. K., Park, K. & Ko, J. (2003). A symbiotic evolutionary algorithm for the integration of

process planning and job shop scheduling. Computers and Operations Research, 30, 1151–

1171.

Köhler, E. & Mouatadid, L. (2016). A linear time algorithm to compute a maximum weighted

independent set on cocomparability graphs. Information Processing Letters, 116 (6), 391-

395.

Krarup, J. & De Werra, D. (1982). Chromatic optimization: Limitations, objectives, uses,

references. European Journal of Operational Research, 11, 1-19.

Lepenioti, K., Bousdekis, A., Apostolou, D. & Mentzas, G. (2020). Prescriptive analytics:

Literature review and research challenges. International Journal of Information Management,

50 (2020), 57-70. DOI: 10.1016/j.ijinfomgt.2019.04.003.

219

Li, L., Fuh, J., Zhang, Y. & Nee, A. (2005). Application of genetic algorithm to computer-aided

process planning in distributed manufacturing environments. Robotics and Computer

Integrated Manufacturing, 21 (6), 568–578.

Li, W. & McMahon, C. (2007). A simulated annealing-based optimization approach for

integrated process planning and scheduling. International Journal of Computer Integrated

Manufacturing, 20 (1), 80–95.

Li, X., Gao, L. & Wen, X. (2013). Application of an efficient modified particle swarm

optimization algorithm for process planning. The International Journal of Advanced

Manufacturing Technology, 67 (5-8), 1355-1369.

Li, Y. (2018). A smart products lifecycle management (sPLM) framework-modeling for

conceptualization, interoperability, and modularity. PhD Thesis, Syracuse University.

Loukakis, E. & Tsouros, C. (1981). A depth first search algorithm to generate the family of

maximal independent sets of a graph lexicographically. Computing 27, 349–366. DOI:

https://doi.org/10.1007/BF02277184

Lovasz, L. (1994). Stable set and polynomials. Discrete Mathematics, 124, 137–153.

Makino, K. & Uno, T. (2004). New algorithms for enumerating all maximal cliques. In Hagerup,

T. and Katajainen, J., editors, Algorithm Theory - SWAT 2004, volume 3111 of Lecture

Notes in Computer Science, pages 260-272. Springer Berlin/Heidelberg.

Maropoulos, P. G. & Baker, R. P. (2000). Integration of tool selection with design (part 1.

Feature creation and selection of operations and tools). Journal of Material Process

Technology, 107, 127–134.

Marx, D. (2004). Graph coloring problems and their applications in scheduling. John Von

220

Neuman PhD students conference, 48, 11–16.

Matsui, T. (1998). Approximation algorithms for maximum independent set problems and

fractional coloring problems on unit disk graphs. Proceedings of the Japan Conference on

Discrete and Computational Geometry (JCDCG ’98), 194–200, Tokyo, Japan.

Meuwly, F. X., Ries, B. & Zufferey, N. (2010). Solution methods for a scheduling problem with

incompatibility and precedence constraints. Algorithmic Operations Research, 5 (2010), 75–

85.

Milosevic, M., Lukic, D., Durdev, M., Vukman, J. & Antic, A. (2016). Genetic algorithms in

integrated process planning and scheduling – a state of the art review. Proceedings in

Manufacturing Systems, 11 (2), 83‒88.

Miner, S.K., Elmohamed, S. & Yau, H. W. (1995). Optimizing Timetabling Solutions using

Graph Coloring. NPAC, Syracuse University.

Minty, G. J. (1980). On maximal independent sets of vertices in claw-free graphs. Journal of

Combinatorial Theory, Series B, 28 (3), 284–304.

Moon, C. & Seo, Y. (2005). Evolutionary algorithm for advanced process planning and

scheduling in a multi-plant. Computers and Industrial Engineering, 48, 311–325.

Moon, J. W. and Moser, L. (1965). On Cliques in Graphs. Israel Journal of Mathematics, 3, 23-

28. DOI: http://dx.doi.org/10.1007/BF02760024.

Morad, N. & Zalzala, A. M. S. (1999). Genetic algorithms in integrated process planning and

scheduling. Journal of IntelligentManufacturing, 10 (2), 169–179.

Ostergard, P. R. (2002). A fast algorithm for the maximum clique problem. Discrete Applied

Mathematics, 120 (1–3), 197–207.

http://dx.doi.org/10.1007/BF02760024

221

Papadimitriou, C. H. & Steiglitz, K. (1982). Combinatorial Optimization: Algorithms and

Complexity, Prentice-Hall, 1982.

Pardalos, P. M. & Xue, J. (1994). The maximum clique problem. Journal of Global

Optimization, 4, 301–328.

Paton, K. (1969). An Algorithm for Finding a Fundamental Set of Cycles of a Graph,

Communications of the ACM 12, 9, 514-518.

Qiao, L. & Lv, S. (2012). An improved genetic algorithm for integrated process planning and

scheduling. International Journal of Advanced Manufacturing Technology, 58 (5), 727–740.

Sakai, S., Togasaki, M. & Yamazaki, K. (2003). A note on greedy algorithms for the maximum

weighted independent set problem, Discrete Applied Mathematics, 126, 313-322.

Salehi, M. & Bahreininejad, A. (2011). Optimization process planning using hybrid genetic

algorithm and intelligent search for job shop machining. Journal of Intelligent

Manufacturing, 22 (4), 643–652. DOI: 10.1007/s10845-010-0382-7.

Sharma, G., Shroff, N. B. & Mazumdar, R. R. (2006). On the Complexity of Scheduling in

Wireless Networks. ACM MOBICOM.

Spall, J. C. (2003). Introduction to Stochastic Search and Optimization. Wiley. ISBN 978-0-471-

33052-3.

Su, Y., Chu, X., Chen, D. & Sun, X. (2018). A genetic algorithm for operation sequencing in

CAPP using edge selection based encoding strategy. Journal of Intelligent Manufacturing,

29:313–332.

Sun, K., Li, Y. & Roy, U. (2017). A PLM-based data analytics approach for improving product

development lead time in an engineer-to-order manufacturing firm. Mathematical Modelling

222

of Engineering Problems, 4 (2), 69-74. DOI: 10.18280/mmep.040201.

Takes, F. W. & Kosters, W.A. (2011). Determining the Diameter of Small World, Networks.

Proceedings of the 20th ACM International Conference on Information and Knowledge

Management (CIKM 2011), 1191-1196. DOI: https://doi.org/10.1145/2063576.2063748.

Takes, F. W. & Kosters, W.A. (2013). Computing the Eccentricity Distribution of Large Graphs.

Algorithms, 6(1), 100-118. DOI: https://doi.org/10.3390/a6010100.

Tassiulas, L. & Ephremides, A. (1992). Stability properties of constrained queueing systems and

scheduling policies for maximal throughput in multihop radio networks. IEEE Transactions

on Automatic Control, 37 (12), 1936-1948.

Thevenin, S., Zufferey, N. & Potvin, J. (2018). Graph multi-coloring for a job scheduling

application. Discrete Applied Mathematics, 234, 218–235

Todosijevic, R. & Mladenovic, N. (2016). Nested general variable neighborhood search for the

periodic maintenance problem. European Journal of Operational Research, 252 (2), 385–396.

Tomita, E., Tanaka, A. & Takahashi, H. (2006). The worst-case time complexity for generating

all maximal cliques and computational experiments. Theoretical Computer Science, 363 (1),

28-42.

Tucker, A. (2012). Applied Combinatorics. John Wiley & Sons, Inc, 6th edition.

Valiente, G. (2003). A New Simple Algorithm for the Maximum-Weight Independent Set

Problem on Circle Graphs. In: Ibaraki T., Katoh N., Ono H. (eds) Algorithms and

Computation. ISAAC 2003. Lecture Notes in Computer Science, vol 2906. Springer, Berlin,

Heidelberg.

Weisstein, E. W. (2020). Graph Diameter. MathWorld--A Wolfram Web Resource, Retrieved

223

from http://mathworld.wolfram.com/GraphDiameter.html.

Zais, M. & Laguna, M. (2016). A graph coloring approach to the deployment scheduling and unit

assignment problem. Journal of Scheduling, 19, 73–90. DOI: 10.1007/s10951-015-0434-0

Zhang, F., Zhang, Y. & Nee, A. (1997). Using genetic algorithms in process planning for job

shop machining. IEEE Transactions on Evolutionary Computation, 1 (4), 278–289.

Zhang, W. & Gen, M. (2010). Process planning and scheduling in distributed manufacturing

system using multiobjective genetic algorithm. IEEJ Transactions on Electrical and

Electronic Engineering, 5 (1), 62–72.

Zhang, W., Gen, M. & Jo, J. (2014). Hybrid sampling strategy-based multi-objective

evolutionary algorithm for process planning and scheduling problem. Journal of Intelligent

Manufacturing 25, 881–897.

Zhang, X. & Yan, H. (2005). Integrated optimization of production planning and scheduling for

a kind of job-shop. International Journal of Advanced Manufacturing Technology, 26 (7),

876–886.

Zhang, Y. F., Saravanan, A. N. & Fuh, J. Y. H. (2003). Integration of process planning and

scheduling by exploring the flexibility of process planning. International Journal of

Production Research, 41 (3), 611-628. DOI: 10.1080/0020754021000037874.

224

VITA

KAI SUN

211 Lafayette Road, Apt 607 Email: kasun@syr.edu

Syracuse, NY 13205 Phone: +1 315-751-5150

EDUCATION

Doctor of Philosophy in Mechanical Engineering 08/2015 – 08/2020

College of Engineering & Computer Science, Syracuse University

Master of Science in Mechanical & Aerospace Engineering 09/2013 - 05/2015

College of Engineering & Computer Science, Syracuse University

Bachelor of Engineering in Vehicle Engineering 09/2009 - 07/2013

School of Mechanical and Automobile Engineering, Hefei University of Technology

PROFESSIONAL EXPERIENCE

College of Engineering & Computer Science, Syracuse University

Teaching Assistant Fellowship 09/2018 - 05/2020

Teaching and tutoring in courses/labs:

• MAE 284: Introduction to CAD

• MAE 333: Data Analysis for Engineers

• MEE 431: Manufacturing Processes

• MAE 548: Engineering Economics and Technology Valuation

Research Assistant Fellowship 05/2017 - 12/2017

Development and customization of product life-cycle management system (Aras

Innovator) for Filtertech, Inc. (Sponsored by the CASE center at Syracuse University)

Research Assistant 10/2016 - 3/2017

Projects:

• Development of Integrated System for Design Operation for UAVs

• Development of Educational and Training Materials for Unmanned Aerial Systems

(UAS)

Graduate Assistant 09/2015 - 05/2017

Teaching and tutoring in courses/labs:

• MAE 184: Engineering Graphics and CAD

• MEE 571: Computer-Aided Design

• MFE 639: CAD/CAM Systems

• MFE 692: Design for Manufacturing

UsPLM, Inc.

Mechanical & Research Engineer Internship 05/2018 - 08/2018

Development of digital twin for the drone fleet management, web-based flight simulation

225

and analysis in 3D virtual reality.

Filtertech, Inc.

Research Assistant Internship 06/2016 - 08/2016

Development and customization of product life-cycle management system (Aras

Innovator) with graphical analysis tools.

ACADEMIC PUBILICATIONS

1. Sun, K., & Roy, U. (to be submitted). An algorithm structure for solving maximum weighted

independent set problem. Discrete Applied Mathematics.

2. Sun, K., & Roy, U. (to be submitted). Solving the process planning and scheduling problem

via maximum weighted independent set. Discrete Applied Mathematics.

3. Sun, K., Li, Y. & Roy, U. (2017). A PLM-based data analytics approach for improving

product development lead time in an engineer-to-order manufacturing firm, Mathematical

Modelling of Engineering Problems, Vol. 4, No. 2, June 2017, pp. 69-74. DOI:

10.18280/mmep.040201

PROJECTS

(a) “Development of the Data Analytics Services for Smart Product Design and Manufacturing

Activities Based on a Smart Product Lifecycle Management Platform,” funded by the

National Institute of Standards & Technology (NIST);

(b) “Developing a unified lifecycle management platform for smart manufacturing systems, an

essential tool for cyber-manufacturing for Filtertech Co.,” funded by the CASE (Center for

Advanced Systems and Engineering) Center at Syracuse University;

(c) “Development of Integrated System for Design Operation for UAVs,” funded by the New

York State Department of Economic Development (through Gryphon Sensors and SU).

(d) “Development of Educational and Training Materials for Unmanned Aerial Systems (UAS),”

funded by the New York State Department of Economic Development (through Gryphon

Sensors and SU);

(e) “Optimizing the Task Assignments of Designers for Concurrent Projects in Filtertech Inc,”

funded by the SyracuseCoE (New York State's Center of Excellence in Environmental and

Energy Systems);

(f) “Digital Twin Development for the UsPLM Drone Fleet Management Solution,” (worked as

an intern with the UsPLM, Inc. through CASE Center).

PROFESSIONAL SKILLS

• CAD/CAM: SolidWorks, CATIA V5, PTC CREO, SolidCAM, Fusion 360

• Modeling and Simulation: Star-CCM+, Pointwise, Matlab, Arena, AnyLogic

• Data Analytics: Python, R, KNIME, RapidMiner

• Programming: Python, C#, JavaScript, HTML, C/C++

• Languages: English, Mandarin

	SOLVING PROCESS PLANNING AND SCHEDULING PROBLEMS USING THE CONCEPT OF MAXIMUM WEIGHTED INDEPENDENT SET
	Recommended Citation

	Solving Process Planning and Scheduling Problem Using the Concept of MWIS

