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ABSTRACT 

The purpose of this study was to conduct data-driven research by employing learning 

analytics methodology and Big Data in learning management systems (LMSs), and then to 

identify and compare learners’ interaction patterns in different achievement groups through 

different course processes in Massive Private Online Courses (MPOCs). 

Learner interaction is the foundation of a successful online learning experience. However, 

the uncertainties about the temporal and sequential patterns of online interaction and the lack of 

knowledge about using dynamic interaction traces in LMSs have prevented research on ways to 

improve interactive qualities and learning effectiveness in online learning. Also, most research 

focuses on the most popular online learning organization form, Massive Open Online Courses 

(MOOCs), and little online learning research has been conducted to investigate learners’ 

interaction behaviors in another important online learning organization form: MPOCs.  

To fill these needs, the study pays attention to investigate the frequent and effective 

interaction patterns in different achievement groups as well as in different course processes, and 

attaches importance to LMS trace data (log data) in better serving learners and instructors in 

online learning. Further, the learning analytics methodology and techniques are introduced here 

into online interaction research.  

I assume that learners with different achievements express different interaction 

characteristics. Therefore, the hypotheses in this study are: 1) the interaction activity patterns of 

the high-achievement group and the low-achievement group are different; 2) in both groups, 

interaction activity patterns evolve through different course processes (such as the learning 

process and the exam process). The final purpose is to find interaction activity patterns that 

characterize the different achievement groups in specific MPOCs courses.  



 
 

Some learning analytics approaches, including Hidden Markov models (HMMs) and 

other related measures, are taken into account to identify frequently occurring interaction activity 

sequence patterns of High/Low achievement groups in the Learning/Exam processes under 

MPOCs settings. The results demonstrate that High-achievement learners especially focused on 

content learning, assignments, and quizzes to consolidate their knowledge construction in both 

Learning and Exam processes, while Low-achievement learners significantly did not perform the 

same. Further, High-achievement learners adjusted their learning strategies based on the goals of 

different course processes; Low-achievement learners were inactive in the learning process and 

opportunistic in the exam process. In addition, despite achievements or course processes, all 

learners were most interested in checking their performance statements, but they engaged little in 

forum discussion and group learning. In sum, the comparative analysis implies that certain 

interaction patterns may distinguish the High-achievement learners from the Low-achievement 

ones, and learners change their patterns more or less based on different course processes.  

This study provides an attempt to conduct learner interaction research by employing 

learning analytics techniques. In the short term, the results will give in-depth knowledge of the 

dynamic interaction patterns of MPOCs learners. In the long term, the results will help learners 

to gain insight into and evaluate their learning, help instructors identify at-risk learners and 

adjust instructional strategies, help developers and administrators to build recommendation 

systems based on objective and comprehensive information, all of which in turn will help to 

improve the achievements of all learner groups in specific MPOC courses. 
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CHAPTER 1: INTRODUCTION        

This study aims to conduct learning analytics techniques to decode the sequence patterns 

of interaction activities in different achievement MPOCs learner groups. The study fills a 

documented gap in learner interaction research in online learning and provides data-driven 

research trying to open the “black box” of learner interaction in MPOCs.  

Background of the Study  

Distance education is the education of students who may not always be physically present 

at a school (Kaplan & Haenlein, 2016). The arrival of the Internet in the late 1980’s marked 

distance education evolving into a new era: online learning. As the newest development in 

distance education, online learning has grown very fast over the past decades. By the fall of 

2013, nearly 30% of all postsecondary students were enrolled in some kind of online courses 

(Snyder, de Brey, & Dillow, 2016).  

Based on Learning Management Systems (LMSs) and Internet technology, online learning 

supports learners to involve in learning from anywhere and usually anytime (Labaree, 2004). It is 

a way of lifelong learning and provides the opportunity for individuals to build valuable life and 

professional skills (Inoue, 2007). With a consistently growing enrollment of online learning, all 

learners, whether inside or outside the walls of the college, gain the right to learn without the 

barriers of time and space (I. Elaine Allen & Seaman, 2016). According to advocates, online 

learning is an educational practice, based on the belief that all learners should have the 

opportunity to learn, and therefore they must be given the necessary support to learn (Wilson, 

2004).  

Advocates believe that with the support of advanced technology, a wide range of teaching 

and learning methods can be carried out in online learning to simulate face-to-face instruction; 
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and therefore, learners online are to learn the same content and to get at least the same learning 

achievements as learners in face-to-face instruction (M. Allen, Bourhis, Burrell, & Mabry, 2002; 

Bernard et al., 2004; Browning, 1999; Cavanaugh, 2001; McDonald, 2002; Russell, 1999). In the 

21st century, when the Internet is much more usable and the LMSs are more capable, advocates 

further insist that online learning can better support learners to learn effectively and to achieve 

their potential than before (I Elaine Allen & Seaman, 2010; Harish, 2013; Ni, 2013).  

It has to be confessed that advanced technology does bring a lot of benefits to online 

education. However, the learner is the center of instruction and learning, and education is a 

process of constructive interaction and convergent conceptual change (Koschmann, Myers, 

Feltovich, & Barrows, 1994; Vygotsky, 1978). Learners’ interaction is the nature of the 

educational experience (Garrison & Cleveland-Innes, 2005).  

Therefore, simply improving technology, making it available, and then requiring learners 

to use it does not necessarily guarantee successful learning experience in online settings 

(Larusson & White, 2014). There is a need, by employing new research methods, to investigate 

particular patterns and details of learners’ interaction, especially in different groups of massive 

online learners.  

Statement of the Problem 

To demonstrate a need for this study, several issues are now discussed: the importance of 

learner interaction in online learning, the paucity of identifying learner interaction patterns in 

real-time; the utility of employing the log data behind LMS interface, the need of using an 

academically sound methodology to analyze the temporal and sequential characteristics of 

interaction, and the paucity of in-depth research focusing on different learner groups in MPOCs.  
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The Importance of Learner Interaction in Online Learning 

Successful online learning depends on the collaborative efforts among institutions, 

administration, course designers, online instructors, online assistants, technical supporters, and 

other specialists (Clark & Mayer, 2016). However, learning is a process of interaction 

(Koschmann, Myers, Feltovich, & Barrows, 1994; Vygotsky, 1978).  

Interaction is a significant foundation of successful online learning, and an important way 

to discover the laws of online learning (Billings, Connors, & Skiba, 2001; Hong, Lai, & Holton, 

2003; Moore, 1989; Thurmond & Wambach, 2004; Wagner, 1994). Bates (1995) asserts that 

learners’ high-quality interaction with learning content, instructors, and fellow students is 

essential for effective learning (Bates, 1995). How much benefit learners academically, socially, 

and affectively from online experience depends greatly on the quality of interaction with content, 

instructors, peers and interface (Hillman, Willis, & Gunawardena, 1994; Moore, 1989). 

Especially, the characteristics, styles, patterns, and models of learners’ online interaction are 

central and critical to successfully perform in online learning.  

If institutions and providers do not grasp the characteristics of learner interaction, it is not 

easy for them to facilitate learners to have effective interaction with materials, instructors, and 

peers. Then, how could online learning be successful? Thus, there is a strong need to study the 

qualitative nature of online interaction, which will support high levels of learning (Garrison & 

Cleveland-Innes, 2005). 

The Limitations of Traditional Interaction Research in Online Learning 

As one of the pioneers and founders in distance education, Moore (1989) separated 

learner-centered interaction into three types: learner-content interaction, learner-instructor 

interaction, and learner-learner interaction (Moore, 1989). Further, Hillman and colleagues 
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(1994) discussed another type: learner-interface interaction (the process of manipulating tools to 

accomplish a task; it focuses on the access, skills, and attitudes necessary for successful 

technologically-mediated learning) (Hillman et al., 1994). 

Based on the literature, most of the previous research of online interaction is related to 

two streams: the factors that affect the four types of interaction, and the factors that are affected 

by the four types of interaction. Online interaction is the bridge to link these two streams; 

interaction is the center of the learning experience in online learning (Garrison & Cleveland-

Innes, 2005; Koschmann, Myers, Feltovich, & Barrows, 1994; Moore, 1989; Vygotsky, 1978). 

Unfortunately, the previous research did not pay enough attention to investigate the details of 

online interaction itself. Learning is inherently a sequential process constructed by varieties of 

interaction (M. Chiu & Khoo, 2005), which can not be viewed as a sealed box. The sequential 

interaction events that happen repeatedly reveal the secret of how learning happens and why 

certain learning outcomes result (Compton-Lilly, 2013; Mercer, 2008).  

Interaction trace data in LMSs is the real-time record for all the interaction behaviors, 

which is the cumulation of the “lived experience” of online learners (Dringus, 2012). However, 

this experience is hidden behind the online media interface. In addition, the research methods of 

studying online interaction are still limited to traditional statistics and qualitative approaches, 

which are not appropriate to process large amounts of LMS trace data.   

Advances in data measurement and research methods drive significant advances in 

scientific investigations (Molenaar, 2014). For example, the invention of the microscope helped 

us observe and measure the details and processes that were previously unreachable, which 

resulted in great improvements in many research fields. Without fine-grained trace data and 
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advanced research methods, it is not easy to identify the details of online learners’ interaction, 

especially the patterns and characteristics in different online learner groups.        

The Utility of Attaching Importance to LMS Log Data 

Learning is a process of interaction, through which learners acquire meaningful skills and 

knowledge (L. Chen, 2004). However, in traditional face-to-face instruction, it is not convenient 

to collect and store the information of the interaction behavior, and it is not routine for 

researchers to trace and analyze such data. Thus, when online learning emerged as a new 

educational phenomenon, most researchers were still influenced by face-to-face instructional 

research and did not pay enough attention to the learner interaction trace recorded in LMSs. 

Previously, technological stagnation has limited our ability to collect and measure fine-

grained traces of learners in the learning process (Greene & Azevedo, 2010). Therefore, in 

traditional learning and instruction research, the concept of time and sequence of learning 

behaviors at the micro-level has not gained much attention. Most research often focuses on time 

nodes with long time spans, such as measuring data based on the timeline of pre-test and post-

test. As such, it is not realistic for researchers to collect the details and changes of interaction 

behaviors happening at the micro-level. 

Currently, the development of technology and LMSs greatly support researchers to gain 

interaction traces of the learning process in online settings, which provides an opportunity to 

investigate the temporal and sequential characteristics of interaction (Molenaar, 2014; Reimann, 

2009). In online learning, LMSs can capture and store large amounts of time-stamped learner 

interaction traces, such as the number and duration of online sessions, LMS tools accessed, 

messages read or posted, and content pages visited (Macfadyen & Dawson, 2010). These time-

stamped and sequential interaction traces accumulated by LMSs are generally called log data 
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(aka “Big Data”). Log data is captured in real-time and can be mined at any stage of online 

course progression (Bomatpalli, 2014).  

Different learners conduct the learning process with different interaction characteristics 

(L. Chen, 2004). One of the beliefs in this study is that certain interaction patterns may 

distinguish the high-achievement groups from the low-achievement ones. Why do some learners 

earn the high achievement, while others earn low achievement? Do different achievement groups 

conduct interaction differently throughout the whole learning process? What are the general 

interaction patterns of different achievement groups? Do learner interaction states change at 

different course processes? Although online learners’ lived experience is hidden behind the 

online media interface, it does need to be visualized and interpreted.   

 The comparison and interpretation of interaction patterns of different achievement 

groups may be useful to improve the understanding of learners’ learning, predict the achievement 

of learning outcomes, and inform support interventions on course design and resource allocation. 

It may be a new way to understand the secret of learning and then to improve the learning 

achievements of all the learners in online settings. In fact, a steadily growing group of 

researchers is interested in the questions that address how different interaction behaviors develop 

over time (Molenaar, 2014). With this growing focus on investigating the temporal and 

sequential characteristics of interaction in online learning, the analysis and interpretation of 

interaction patterns over time are becoming more necessary.  

Unfortunately, traditional statistical methods are not currently sufficient and effective in 

mining valuable interaction patterns from the sequential, meaningful, but massive log data in 

online learning. Without effective methods to decode the secret of the fine-grained log data in 

LMSs, it is completely unrealistic to deepen learner interaction research in online learning. 
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The Need for Applying Academically Sound Methods to Investigate Interaction 

Patterns 

Data and methods are complementary to each other (Pistilli, Willis III, & Campbell, 

2014). In order to investigate the effective interaction sequence patterns with MPOCs data, 

several questions have to be answered: What methods for analysis are available? What does a 

method of analysis even look like? What is the unit of analysis? How can researchers effectively 

organize log data? How does this information enrich learners’ learning experiences? (Larusson & 

White, 2014).  Traditional statistical methodology can neither well manipulate sequential log 

data nor precisely answer these important questions (Gibson & Ifenthaler, 2017).  

The goal of traditional statistics is to infer population parameters from small samples 

(Behrens & DiCerbo, 2014). Null hypothesis significance testing (NHST) is the most common 

strategy in statistical quantitative analysis. However, the logic of NHST is based on questions 

including whether there is a significant effect or not, and whether to support or discredit a priori 

speculations about some aspect of a population (Gibson & Ifenthaler, 2017). Therefore, it is hard 

to detect what ways data are related within what structures, and with what specific predictable 

bounded as well as changing sequences and sets of relationships (Gibson & Ifenthaler, 2017). 

However, in this study, the characteristics of log data and the research focuses are closely related 

to time sequence interaction traces, which means structures, relationships, and sequences of data 

are the primary consideration when selecting the appropriate research methods. 

Fortunately, the emergence of a new methodology, Learning analytics, has the potential 

to unlock the value of LMS log data (Macfadyen & Dawson, 2010). It is a data-driven process 

and emphasizes converting educational data into useful actions to foster learning (Chatti, 

Muslim, & Schroeder, 2017). Learning analytics focuses on analyzing and detecting patterns 
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within data sets, which provides a window into what actually takes place over the whole process 

when learners interact online (Larusson & White, 2014). In learning analytics, mining temporal 

and sequential pattern is the key to unlock the secret of learner interaction online (Baker & 

Inventado, 2016). 

To determine the most frequent, effective interaction sequences is one of the goals of 

learning analytics (Macfadyen, Dawson, Pardo, & Gaševic, 2014) which is also the purpose of 

this study.  

The Paucity of Learner Interaction Research in MPOCs 

Given the differences in providers, course structures and goals, there are different 

organization forms for institutions to manage learners in online learning, which produce different 

characteristics of LMS log data. The two widely known forms in online learning are MOOCs 

which means massive open online courses and SPOCs which means small private online courses: 

these two forms differ primarily in the sizes of the learner populations to which they cater 

(Kaplan & Haenlein, 2016).  

However, another important form, MPOCs, has been less discussed by researchers. An 

MPOC is a massive private online course designed on the model of SPOC in conventional online 

learning settings. MPOCs also offer a limited size of enrollment like SPOCs, but the size of 

online classes in MPOCs is big and the number of learners is massive. One example of MPOCs 

is a training program with 500,000 participants in about 5,000 online classes at Peking 

University in China (W. Guo, 2014). MPOCs produce rich, regulated, complete and centralized 

data full of interaction details through uninterrupted semesters, such as interaction patterns, 

engagement, and degree and mode of participation in online settings (Dawson, McWilliam, & 
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Tan, 2008). Further, most MPOCs cannot only accumulate relatively complete interaction data 

but also collect the learners’ demographic data and prior academic data (W. Guo, 2014).  

Given the extremely high dropout rate in MOOCs (Hew & Cheung, 2014; Khalil & 

Ebner, 2014; Koller, Ng, Do, & Chen, 2013) and small sizes of participants in SPOCs, MPOCs 

with high retention and formal organization may provide a more complete picture of learner 

interaction in online settings. In addition, learners in MPOCs are more engaged, active, persistent 

and goal-oriented, and therefore, their learning is more active and effective (W. Guo, 2014). 

Thus, researchers and organizations in online learning do not need to spend a lot of time on 

questions regarding retention or persistence; rather, the focus in MPOCs is directly to help as 

many as possible learners to facilitate their learning, improve effectiveness and achieve final 

learning purposes. Unfortunately, MOOCs have been the research hotspot in recent years, and 

less attention has been paid to MPOCs (Perna et al., 2014).  

In recent years, there have been some studies focusing on online interaction behaviors. 

But these studies were conducted with experimental or quasi-experimental conditions with few 

participants and a short time span. The data are from learners in primary schools, high schools, 

colleges, especially in MOOCs. The educational environments include collaborative learning, 

self-regulated learning, game-based learning, or concept mapping activities. However, none of 

these studies has tried to extract interaction patterns in MPOCs, in which interaction behaviors 

happen in daily online courses, supporting massive learners with regular learning behaviors 

through an entire semester in MPOCs settings. That is because the massive online learners, long-

term learning process, non-experimental environment, and huge data together present big 

challenges for researchers to analyze fine-grained interaction behaviors at the micro-level.  
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Therefore, to overcome this limitation, my study aims to find interaction patterns that can 

distinguish learners based on their interaction activities/actions in MPOCs settings. By 

employing learning analytics approaches, this study identifies the interaction behavior patterns at 

the activity level and compares patterns between different achievement groups in different course 

processes. Also, this study validates a set of theoretical assumptions in the research area of 

learning interaction and tests the effectiveness and stability of some learning analytics 

techniques. 

Research Questions 

It is assumed in this study that when participating in online learning, learners in the 

different achievement groups express different activity patterns. Also, learners’ interaction 

activity patterns change in different course processes. Therefore, Hypothesis 1 is that there are 

different activity patterns between high and low achievement groups. Hypothesis 2 is that 

activity patterns change as learners move from one process to another process, which can be 

detected by comparing interaction patterns in the different course processes. Thus, there are four 

research questions in this study: 

1. Are the interaction activity patterns of High-achievement learners’ group and Low-

achievement learners’ group the same or different in Learning weeks? 

2. Are the interaction activity patterns of High-achievement learners’ group and Low-

achievement learners’ group the same or different in Exam weeks? 

3. Does the interaction activity pattern of High-achievement learners’ group remain the 

same from Learning weeks to Exam weeks? 

4. Does the interaction activity pattern of Low-achievement learners’ group remain 

unchanged from Learning weeks to Exam weeks? 
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Definition of Key Terms 

LMS: Learning Management System (LMS) is a set of digital services commonly used in 

online learning and blended learning to plan, implement, and assess specific learning processes, 

such as launch learning content, keep track of learner progress, sequence learning objects, and 

report learners’ performances (Graf, Liu, & Kinshuk, 2010; Psaromiligkos, Orfanidou, Kytagias, 

& Zafiri, 2011). 

Moodle: Moodle is a free open source course management system designed to help 

educators create effective online learning communities, which has a flexible array of course 

activities such as forums, chats, quizzes, resources, choices, surveys, or assignments (Romero, 

González, Ventura, Del Jesús, & Herrera, 2009). The activities allowed by Moodle are mostly 

interactions between instructors and learners, among learners, and between learners and contents 

(Y. Park, Yu, & Jo, 2016). 

MOOC: A MOOC is an open-access online course (i.e., without specific participation 

restrictions) that allows for unlimited (massive) participation; many MOOCs provide interactive 

elements to encourage interactions among learners and between learners and the teaching staff, 

although the latter is not a defining requirement (Kaplan & Haenlein, 2016). 

MPOC: A MPOC is a massive private online course, which requires some form of formal 

enrollment with a competitive application process and charges a tuition fee in conventional 

online learning settings; the tuition in MPOCs is low, the size of online classes in MPOCs is big, 

and the number of learners is massive (W. Guo, 2014). 

High-achievement leaners: in this study, leaners with grade higher than or equal to C in 

the final exam are classified as high-achievement learners who will pass this course and continue 

to learning next step courses in their major. 
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Low-achievement leaners: in this study, leaners with grade lower than C in the final exam 

are classified as low-achievement learners who will reenroll and take this course again in the 

next semester instead of continuing learning next step courses in their major. 

Log data: In online learning, large amounts of time-stamped learner behaviors captured 

and stored in LMSs are generally called log data, such as the number and duration of online 

sessions, LMS tools accessed, messages read or posted, and content pages visited, which is the 

foundation of big data in education (Macfadyen & Dawson, 2010). 

Learning analytics: The measurement, collection, analysis, and reporting of data about 

learners and their contexts, for purposes of understanding and optimizing learning and the 

environments in which it occurs (Siemens & Long, 2011). 

Interaction activity: In this study, an interaction activity is defined as a sequence of 

learner interaction behaviors within one LMS module with learning and instructional meanings. 

For example, in Moodle, corresponding to the modules, interaction activities may include 

Introduction, Content, Forum, Quiz, Assignment, and so on. 

Interaction action: This is defined as the educationally meaningful typical behavior in an 

interaction activity such as view, delete, change, create, and so on.  

Interaction pattern: Learning is an “inherently sequential” process consisting of 

interaction behaviors, which cannot be viewed as a series of discrete activities (M. Chiu & Khoo, 

2005). The temporal dimension of interaction can help reveal the secret of learners’ thinking 

progression (Compton-Lilly, 2013). A set of specific interaction events that repeatedly happen is 

defined as an interaction pattern. It can help the researcher decode how learning happens and 

why certain learning outcomes result (Mercer, 2008) 
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Significance of the Study 

Learner interaction is one of the most important factors related to learning, which is the 

foundation of a successful learning experience, especially in online learning. However, decoding 

the sequence patterns of online interaction is the research weakness in many online learning 

studies. Further, learner interaction traces in LMSs logs and the learning analytics methodology, 

which is a valuable resource to identify interaction patterns in online learning, are also 

overlooked. Most researchers in online learning would not disagree that LMSs log data and 

learning analytics are really required because there is an on-going need to make the “black box” 

of learner interaction become visible, decode the secret of complex interaction behaviors, and 

help all the learners effectively achieve their learning purpose in online settings.  

In addition, most of the research in online learning is still restricted to the narrow context 

within specific retention issues in MOOCs. To date, little research has been conducted so far to 

understand how learners at different achievement levels learn in MPOCs, and how learners, 

instructors, institutions, and researchers can best support their learning process. Efforts to attract 

more research attention into MPOCs must focus on the learner interaction research and identify 

dynamic interaction patterns, such as the activity patterns and the action patterns in different 

achievement groups, and the development of interaction activities through different course 

processes.  

This study enables a new perspective of the data-driven research into online learning and 

makes it possible to gain highly detailed insight into learner interaction at the micro-level. In the 

short term, it is helpful to discover and compare dynamic interaction behaviors of different 

learner groups in MPOCs, and to determine which patterns are associated with better overall 

learning and which sequences are indicative of problems. In the long term, it is helpful to provide 
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an attempt to employ learning analytics to learner interaction research, to provide opportunities 

for learners to gain insight into and evaluate their own learning, to help instructors identify at-

risk learners and adjust instructional strategies, and to contribute to MPOCs institutional 

effectiveness, highlighting of MPOCs successes, and increasing organizational productivity.  
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CHAPTER 2: LITERATURE REVIEW  

This chapter reviews literature in the following areas: traditional interaction research in 

online learning, characteristics of LMS log data, learning analytics methodology and its 

application in interaction research, the paucity of comparative research of interaction in MPOCs, 

and ends with a summary showing the relationships and the gaps in the literature to actions taken 

in the present study.  

Traditional Learner Interaction Research in Online Learning 

This section provides a general review of the traditional research of online interaction; 

and discusses its limitations. 

Online Learner Interaction Theory 

The foundational theory helpful to investigate interaction in online learning is Moore’s 

transactional distance theory (Moore & Kearsley, 1996). In this theory, Moore postulated that 

distance is a pedagogical phenomenon, rather than a function of geographic separation; and he 

identified learner interactions by entities involved in each exchange: learner-content interaction, 

learner-instructor interaction, and learner-learner interaction (Woods & Baker, 2004). Although 

other types of interaction are often addressed by researchers from different perspectives, Moore’s 

three types are the most common and durable interaction types accepted by educators, 

researchers, and online learning participants (Northrup, Lee, & Burgess, 2002; Pham, University, 

& Dakich, 2014). 

Learner-content interaction. Moore (1989) described it as “the process of intellectually 

interacting with the content that results in changes in the learner’s understanding, the learner’s 

perspective, or the cognitive structures of the learner’s mind” (Moore, 1989, p. 2). A variation of 

learner-content interaction is learner-self interaction, which examines the learner’s reaction to the 
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content and asserts that their reflections and inner-dialogue (called “self-talk”) are related to the 

learning process (Soo & Bonk, 1998). Another variation is learner-information interaction (Sabry 

& Baldwin, 2003), which accounts for information specific to the course material as well as 

information relevant to the learning task but not specific to the content, such as learning how to 

conduct a Web search when creating a Webquest about something (Wanstreet, 2006). 

Learner-instructor interaction. It refers to two-way communication between the 

instructor and learners in the course (Moore & Kearsley, 1996). The instructor seeks “to 

stimulate or at least maintain the student’s interest in what is to be taught, to motivate the student 

to learn, to enhance and maintain the learner’s interest, including self-direction and self-

motivation” (Moore, 1989, p. 2). Learner-instructor interaction may be synchronous such as 

through the telephone, videoconferencing and chats, or asynchronous such as through 

correspondence, e-mail and discussion boards (Abrami, Bernard, Bures, Borokhovski, & Tamim, 

2011). 

Learner-learner Interaction. It involves a two-way reciprocal communication among 

learners, with or without the presence of an instructor (Moore, 1989). This type of interaction 

encourages experimentation, sharing of ideas, increased and more distributed participation, and 

collaborative thinking (Bouhnik & Marcus, 2006; Jonassen & Kwon, 2001; Trentin, 1998). 

Engaging in peer interaction propels learners to construct ideas deeply, gain social and emotional 

support, and increases achievement (Anderson, 2003; Haythornthwaite, 2001). 

Learner-interface interaction. Though Moore’s (1989) theory of interaction can be 

applied to both face-to-face and online environments, most research using the framework has 

been related to online learning. To address the particular concerns in online learning, scholars 

began to revisit the original interaction theory and additional dimensions of interaction were 
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introduced (Northrup et al., 2002; Pham et al., 2014). Hillman, Willis, and Gunawardena (1994) 

proposed a new dimension of interaction: learner-interface interaction, which is the interaction 

that takes place between a learner and the technology used to mediate a particular online learning 

process; the mediation technology may include specific technologies, platforms, applications, 

and course templates to interact with course content, instructors and classmates (Hillman et al., 

1994; Lehtinen, 2002; Wanstreet, 2006).  

Later in 2003, Thurmond summed up the essence of previous research and defined the 

concept of learner interaction in online learning (Thurmond, 2003). He clarified learner 

interaction as “… the learner’s engagement with the course content, other learners, the instructor, 

and the technological medium used in the course. True interactions with other learners, the 

instructor, and the technology results in a reciprocal exchange of information. The exchange of 

information is intended to enhance knowledge development in the learning 

environment. …Ultimately, the goal of the interaction is to increase understanding of the course 

content or mastery of the defined goals” (Thurmond, 2003, p. 4). 

Traditional Research on Online Interaction  

Research Related to Learner-content Interaction 

Interaction plays a critical role in the learning process. In online learning, interaction with 

the course content (learner-content interaction) is especially important because it can contribute 

to successful learning outcomes and course completion (Zimmerman, 2012). Thus, many 

researchers put their sights on the factors influencing learner-content interaction.  

Leasure and colleagues (2000) found that self-direction of learners can influence their 

interaction with course content (Leasure, Davis, & Thievon, 2000). They conducted quantitative 

research to compare learner outcomes in an undergraduate research course taught using both 
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online learning and traditional teaching. The results showed that learners who reported that they 

were self-directed and had the ability to maintain their own pace and avoid procrastination were 

most suited to online learning (Leasure et al., 2000). Online discussion is also helpful for learner-

content interaction, Swan (2001) found that active discussion among learners can help learners 

perceive greater learning. In online discussions, learners refine the learning content by 

communicating with others in the discussions (Swan, 2001). Lack of time to participate in course 

work has been identified as a barrier to learner content interaction (Atack & Rankin, 2002). The 

learners who did not have time to access the content at work indicated that their work 

environment probably was not an ideal environment for learner-content interactions (Atack & 

Rankin, 2002). Reisetter, LaPointe, and Korcuska (2007) focused on the online experiences of 

graduate learners. Learners perceived that course materials such as the learner-content variables 

were mediated through the teacher’s organization and presentations (Reisetter, LaPointe, & 

Korcuska, 2007). 

Information presented in multiple forms is also an important factor influencing learner-

content interaction (Clark & Mayer, 2016; O. C. Park & Etgen, 2000). In addition, Zhang (2005) 

conducted an empirical study, which revealed that when a multimedia e-learning environment 

offered more learner-content interaction, learning performance and learner satisfaction could be 

improved. The multimedia includes the forms such as video + slides, video + slides + lecture 

notes, audio + slides, and slides + lecture notes (Zhang, 2005). 

On the other hand, some researchers focus on the influences of learner-content 

interaction. Thurmond and Wambach (2004) pointed out that when learners have more 

continuous interaction with the content in a Web-based course, this may contribute to more 

learning and overall greater satisfaction with the course (Thurmond & Wambach, 2004). Swan 
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(2001) found that clarity of design significantly influenced learners’ satisfaction and perceived 

learning. If learning content is presented using a similar format, it is easier for learners to 

perceive learning (Swan, 2001). Zimmerman (2012) examined the relationship between learner-

content interaction and course grade to determine if this interaction type is a contributing success 

factor. The study concluded that learners who spent more time interacting with course content 

achieve higher grades than those who spent less time with the content (Zimmerman, 2012). 

Research Related to Learner-instructor Interaction 

Many studies indicated that learners agreed that timely, prompt feedback from their 

instructor contributed to positive perceptions of learner-instructor interactions (Thurmond, 2003; 

Vrasidas & McIsaac, 1999).  

Sargeant and colleagues (2006) used a purposive sampling method to conduct a 

qualitative study to explore instructor roles in enhancing online learning through interpersonal 

interaction. They suggested that instructors require enhanced skills to engage learners in 

meaningful interaction and to overcome the transactional distance of online learning (Sargeant, 

Curran, Allen, Jarvis‐Selinger, & Ho, 2006). Muhirwa (2009) found multiple obstacles to 

quality learner-instructor interaction, including lack of instructor presence, ill-prepared local 

tutors, poor social dynamics, learner-learner conflict, learner-instructor conflict, and learner 

withdrawal and resignation (Muhirwa, 2009). Skog (2010) summarized several important 

components that are important to learner-instructor interaction: discussions where the teacher 

also comments, not just the learners; meaningful instructor comments and feedback; good 

discussion prompts; and allowing discussions to facilitate the needs of the learners (Skog, 2010). 

On the other side, learner-instructor interaction impacts greatly on learners’ performance 

and satisfaction. There is a positive relationship between the amount of learner interaction with 
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the instructor and learners’ level of perceived learning (Fredericksen, Pickett, Shea, Pelz, & 

Swan, 2000). Additionally, learners perceived more interaction with their instructor the more 

their course grade depended on their participation (Swan, 2001). Dennen and colleagues (2007) 

reported that learner performance is more likely tied to instructor actions that are focused on 

course content and provide both proactive (models, expectations) and reactive (feedback) 

information to learners about their ability to demonstrate knowledge of course material (Dennen, 

Aubteen Darabi, & Smith, 2007). Kang and Im (2013) found factors such as instructional 

communication, instructional support and management of learning materials, guidance and 

facilitating learning, and presence of instructors can predict the learner’s outcomes in the online 

learning environment. These instructor behaviors also predicted students’ perceived learning 

achievement and satisfaction better than factors related to social interaction. (M. Kang & Im, 

2013). 

Research Related to Learner-learner Interaction 

Findings regarding learner-learner interaction indicated that learners who interacted more 

in online learning may perceive greater learning. Also, teamwork or collaborative learning is the 

most general form of learner-learner interaction, which is intended to promote understanding the 

course content and stimulate critical thinking (Hay, Hodgkinson, Peltier, & Drago, 2004; Palloff 

& Pratt, 2002). Smyth (2011) presented a model that distinguishes between planned learner-

content interaction and learner-learner interaction. The results suggested that a blend of planned 

and non-planned learner-learner interaction is worthwhile (Smyth, 2011). Online discussion is 

the most general learner-learner interaction in online learning, which is because of its relation to 

the development of participatory citizenship, critical thinking, and community (Huang, 2014; 

Larson & Keiper, 2002).  
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Research Related to Learner-interface Interaction 

Sinha, Khreisat, and Sharma (2009) described how learner-interface interaction promotes 

active learning. Results indicated that technologies facilitate the creation of a non-threatening, 

flexible, and challenging learning environment (Sinha, Khreisat, & Sharma, 2009). 

Jung and colleagues (2002) empirically tested learner-interface interaction in an online 

course. The study investigated the effect that online settings had on the learners’ satisfaction, 

participation, and attitude towards online learning (Jung, Choi, Lim, & Leem, 2002). Researchers 

asserted that learner-interface interaction would help learners in deep and meaningful learner-

content interactions (Zimmerman, 2012). 

On the other hand, there are also many factors that impact on learner-interface interaction 

in online learning. Learners’ experiences with information technology can affect their online 

learning (Leasure et al., 2000) and improve their technology skills (Atack & Rankin, 2002). 

Learners’ perception regarding technology also impacts on learner-interface interaction (Daley et 

al., 2001).  

In addition, Swan (2004) studied the effects of course interfaces on learner learning in the 

online environment. It shows that particular media and combinations of media are more 

supportive of online learning than others, as are specific instructional sequences and particular 

navigational interfaces (Swan, 2004). Muhirwa (2009) found obstacles to quality learner-

interface interaction which include frequent Internet disconnections, limited learner access to 

computers, learner unfamiliarity with typing and computer technology, and ineffective technical 

support (Muhirwa, 2009).  
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Discussions  

Most studies mentioned above are before and around 2010, which ranged over a variety 

of topics related to the four traditional types of learner interaction in online learning. The 

literature revealed two main streams of thought related to how researchers conduct learner 

interaction research in online learning.  

In the first stream, researchers have paid much attention to identifying factors that affect 

each particular type of learner interaction. Such factors could be called “factors affecting 

interaction”. Different factors impact differently on four types of learner interaction. Factors such 

as self-direction, online discussion, time constraints, and information presented in multiple forms 

influence learner-content interaction. A comfortable learning environment, instructor actions 

relative to course content, guidance and promptness in discussions, interpersonal communication 

with a learner, individualized corrective feedback, and support of learning materials management 

influence learner-instructor interaction. Social isolation, collaboration, a blend of planned and 

non-planned interaction and online discussion influence learner-learner interaction. Finally, 

computer experience, learner perception regarding technology, inconvenience and poor accessing 

of content, technology obstacles and interface navigation influence learner-interface interaction. 

In the second stream, researchers have focused on factors affected by a different type of 

learner interaction, which can be called “factors being affected by interaction”. Generally, the 

four types of learner interaction impact greatly on the satisfaction, quality, retention, 

performance and final achievement of learners’ online learning (Kuo, Walker, Belland, & 

Schroder, 2014).  

It has to be confessed that the two research streams clarify the logical line from “factors 

affecting interaction” to learner interaction to “factors being affected by interaction”, which 
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strongly supports the belief from many scholars that interaction is the center of learning 

experience in online learning (Garrison & Cleveland-Innes, 2005; Koschmann et al., 1994; 

Moore, 1989; Vygotsky, 1978). 

Unfortunately, these two streams related to learner interaction in online learning, no 

matter whether factors affecting learner interaction or factors affected by learner interaction, did 

not focus on learner interaction itself. In other words, most of the studies did not investigate 

learners’ interaction behavior at a micro-level. Thus, such studies can not answer questions such 

as: Are there sequential patterns of learner interaction in online learning? Do different 

achievement groups conduct interaction differently? Do learners’ interaction patterns change 

with different course processes? 

The learner is the center of education, and constructive learner interaction has been 

discussed as the nature of learning and a primary focus in the study of online learning (L. Chen, 

2004; Garrison & Cleveland-Innes, 2005; Koschmann et al., 1994; Moore, 1989; Vygotsky, 

1978; Zimmerman, 2012). Such opinions reflect the fundamental principles generally accepted in 

today’s educational area, especially in online learning. However, if we do not know how learners, 

in real-time, conduct their interaction at the micro-level, how could we identify effective 

interaction patterns from high-achievement groups as well as weak patterns from low-

achievement groups? How could we clarify the changes in interaction patterns in different course 

processes? How could we facilitate learners to achieve the final goals of online courses, and 

improve learner’s performance in essence? Therefore, this study focuses on learner interaction 

itself and aims to decode the secret of how learners interact in online learning. 

The necessary precondition for identifying the interaction details of learners’ in online 

settings is to find useful sources of data recording the information of interaction in real-time. 
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However, based on the literature above, the data in previous studies were typically collected from 

learners’ course grades or scores, evaluations of performance based on learning goals, self-

reported surveys/questionnaires, or interviews, all of which are not closely related to the details 

of interaction in real-time. Further, most of the researchers employed traditional quantitative 

methods (statistics) and qualitative methods to analyze the data and conduct their research. 

Therefore, in order to focus on the interaction itself and investigate interaction patterns in online 

learning, data indicating temporal and sequential interaction traces is really needed. Fortunately, 

LMSs provide abundant data with all the sequential information of learner interaction in real-

time. The prior task of taking advantage of the rich data from LMSs is to know the foundation of 

data in LMSs: log data. 

LMS Log Data Presenting Interaction Traces at the Micro-level 

Two Types of Interaction Data Recorded by LMSs 

To effectively investigate learning and instruction, Chung (2014) clarifies three levels of 

data useful for understanding learner performance. At the highest macro-level of aggregation is 

system-level data, the data housed in a student information system (SIS) (Chung, 2014). These 

data reflect the indicators which are very important to an institution. For example, in a university, 

the system-level data include learners’ course-taking information, course grades, high school 

information, and demographic information (Chung, 2014). These kinds of data can help answer 

questions about system-level issues such as retention rates, graduation rates, and time to degree.  

The second level is individual-level data generated by traditional education 

measurements, such as total score on an achievement test, scores on a learning task, or scores on 

items in a test (Chung, 2014). Previously, data at this level has been regarded as the finest grain-

size used in education. But, in recent years, there have been data at an even finer level of detail in 
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technology-based applications, such as data in LMSs and mobile applications (APPs) (Chung, 

2014). 

Researchers defined this kind of data as “transaction-level data”, which reflects learners’ 

interaction with a digital system where the interaction may be an end in itself (e.g., the action a 

learner performs) or a means to an end (e.g., the act of uploading an assignment) (Chung, 2014). 

These interactions are increasingly becoming data sources about learners’ temporal choices on 

learning tasks and are captured and stored in a log format suitable for analyses of learning and 

instruction (Chung, 2014).  

When concentrating on learner interaction, Chung (2014) also proposed two dimensions: 

outcome measures and process measures. Outcome measures address whether learners were able 

to complete the task, while process measures address what learners were doing throughout the 

task. In the first dimension, performance on the task itself is an index of investigation; this 

approach for performance assessments in online learning is transformed from traditional face-to-

face education. The second approach, process measures, is to derive meaningful measures from 

learners’ interaction with the technology-based system as they attempt to accomplish the learning 

objectives (Chung, 2014).  

Similarly, Pinnell and colleagues (2017) pointed out two types of data metrics in 

education: metrics that record learning outcomes, and metrics that record real-time interaction 

behaviors in learning processes which may or may not lead to learning outcomes. Learning 

outcome metrics include metrics such as human-evaluated or computer-evaluated competency 

scores, evaluations of achievement based on learning goals, self-reported surveys, interviews, 

and other metrics, which can be easily recorded or captured in online settings as well as 

traditional instruction settings. Process metrics record real-time interaction behaviors including 
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fine-grained learner behaviors in LMSs with frequency, time, and duration (Pinnell, Paulmani, & 

Kumar, 2017).  

Based on the discussions of previous researchers, in this study, I clarify educational data 

into two types: a static outcome dimension, and a dynamic process dimension. The first type of 

data includes the system-level data, the individual-level data, and the outcome measures data 

proposed by Chuang (2014) as well as the learning outcome metrics proposed by Pinnell and 

colleagues (2017). This kind of data records static outcomes of learning and learners’ 

demographic information. The second type of data includes transaction-level data and the 

process-measures data proposed by Chuang (2014) and the learning process metrics proposed by 

Pinnell and colleagues (2017), which are related to the dynamic process of learning and 

instruction. As the foundation of educational big data, the database in LMSs not only maintains 

the demographic information of learners and the contents they get, but also serves to track and 

structure all the interaction events in the learning and instruction processes (Talavera & 

Gaudioso, 2004). Such functions are supported by various tools and techniques.  

Various tools are defined for carrying out different course projects supporting learners to 

interact with content, instructor, and peers to conduct meaningful learning (Fernández, Peralta, 

Benítez, & Herrera, 2014). Take Moodle, a broadly used LMS by online institutions, as an 

example, Moodle has a flexible array of module activities to create (Romero, Ventura, & García, 

2008): five types of static course material (a text page, a web page, a link to anything on the 

Web, a view into one of the course’s directories and a label that displays any text or image), six 

types of interactive course material (assignments, choice, journal, lesson, quiz, and survey) and 

five kinds of activities where learners interact with instructors and each other (chat, forum, 

glossary, wiki, and workshop). Further, the techniques that support LMSs include content 
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creation and delivery solutions, synchronous and asynchronous communications, and multimedia 

streaming, capture, and playback systems, all of which provide great infrastructure support for 

online learning (Brooks, Greer, & Gutwin, 2014). Therefore, the interaction behaviors recorded 

by log data are various, such as: reading texts, using study guides, watching instructional videos, 

interacting with multimedia, participating in simulations, searching for information, completing 

assignments, working on projects, and interacting through the telephone, video-conferencing, 

chats, e-mail, and discussion boards (Abrami et al., 2011).  

In general, the difference between interaction activities in LMSs and those activities in 

traditional instruction settings is that online interactions can be tracked by time sequences 

through the whole learning process, and LMSs offer various filters depending on parameters 

such as participants, date, time, and type of activity (Pardo, 2014), which automatically record 

interaction events with complete details that can not be effectively collected in traditional 

settings, such as who, when, where, what, and how (Pinnell et al., 2017). Such fine-grained data 

serve to detect patterns that are tightly coupled with the structure and topic of the activities in 

online learning, which shows the great potential to clarify the complexity of interaction behavior 

and improve online learning (Pardo, 2014).   

Chung (2014) insisted that the more the dynamic process measures target learners’ 

behavior directly relevant to achieving the outcome, the higher the measures’ diagnostic value 

and their potential to predict the outcomes (Chung, 2014). Therefore, we need to clarify the 

particular characteristics of dynamic process data and employ effective methods to leverage 

them. 
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Temporal and Sequential Characteristics of Interaction Events  

In traditional psychology, learning is regarded as a basically unobservable process, taking 

place in the human brain, an invisible process observed only indirectly by measuring learning 

outcomes (Reimann, 2009). However, more and more researchers emphasize that learning is not 

only an outcome but also a dynamic process full of interaction events (Koschmann, 2001; 

Molenaar, 2014; Reimann, 2009; Stahl, 2010), which is substantially different from the 

psychological notion of learning. Besides, Reimann (2009) pointed that for both views of 

learning, the socio-cultural as well as the individual-cognitive, the nature of learning process 

remains temporal and sequential: Learning unfolds sequentially over time (Gokhale, 1995; 

Greene & Azevedo, 2010; Reimann, 2009; Vygotsky, 1978; Zheng, Xing, & Zhu, 2019).  

A temporal and sequential conceptualization emphasizes that every interaction event is 

identified with the specific time and sequence characteristics. (Molenaar, 2014). Time comes into 

present quantitative terms of the interaction event such as durations, rates of change; while 

sequence also matters because human learning, both self-learning and collaborative learning, is 

inherently cumulative, how the sequences in the learning process are encountered affects how 

and what humans learn (Reimann, 2009; Ritter, Nerb, Lehtinen, & O’Shea, 2007).  

This conceptual change indicates that traditional measurement, self-report data, has little 

relation with the dynamic learner behavior during learning (Molenaar, 2014; Veenman, 2011). 

When interaction and learning are distributed over multiple sessions or contexts, it is difficult to 

establish the internal validity of our studies (Chung, 2014; Molenaar, 2014; Reimann, 2009). For 

example, in a long-term process, noncontrolled factors will come into play with a higher 

probability than is the case for short-term learning, and interaction events become more frequent, 

which results in qualitative changes in learning (Reimann, 2009). Small differences can have 
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large effects. Both the nature of the data, as well as the nature of the underlying processes, make 

it impossible to employ traditional methods to collect massive and precise interaction data in 

real-time (Pistilli et al., 2014; Reimann, 2009; You, 2016). Therefore, this limitation of 

collecting, organizing, analyzing and presenting data with traditional measurements leads to 

strong doubt that self-reported data, such as survey, questionnaire, interview, can properly 

represent actual learning behaviors in online settings (W. W. Guo, 2010; Pistilli et al., 2014; You, 

2016).  

In addition, traditional statistical methods have relatively limited interpretative power and 

latency validity in analyzing dynamic process data (Behrens & DiCerbo, 2014; Daniel, 2017). In 

the last 100 years, the most prominent statistical frameworks centered primarily around the 

problem of inferring population parameters from small samples (Behrens & DiCerbo, 2014). The 

classical research practices from these frameworks include 1) linear research steps, 2) a restricted 

number of possible research designs, and 3) a limited number of research strategies (Cohen, 

Manion, & Morrison, 2011; Creswell, 2008; Gibson & Ifenthaler, 2017). Null hypothesis 

significance testing (NHST) is the most common strategy in statistical quantitative analysis. 

Variables are attributes of fixed entities defined by measurement (e.g., with a scale) or by a 

coding schema and a counting procedure (Reimann, 2009). Dependent variables and independent 

variables are the most common terms in NHST analyses. The logic of NHST is based on the 

question of whether there is a significant effect or not between variables, and whether to support 

or discredit a priori speculations about some aspect of a population based on a small size of 

sample (Gibson & Ifenthaler, 2017). Therefore, some researchers name this kind of analysis as 

the variable-based approach which focuses on the analysis of variance between independent and 

dependent variable(s) (Molenaar, 2014; Reimann, 2009).  
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However, temporal and sequential analysis of interaction events is innate to our intuitive 

understanding of learning, and the conceptualization of this understanding entails a deviation 

from the NHST research paradigm. This is because it is hard for this NHST approach to answer 

the questions such as, in what ways data are related, within what structures, and with what 

specific predictable boundaries as well as changing sequences and sets of relationships (Gibson 

& Ifenthaler, 2017).  

Molenaar (2014) emphasized and took the research of Kuvalja and colleagues (2014) as 

an example to illustrate that data measurement and research methods should match with each 

other. By employing three different methods, Kuvalja and colleagues (2014) compared the 

patterns of self-directed speech use during a planning task in typically developing children and 

matched peers with specific language impairment. The results from the t-pattern analysis 

revealed that qualitative differences between these two groups in their use of self-directed 

speech, but the same results were not detected by the other two methods (frequency analysis, and 

lag sequential analysis) (Kuvalja et al., 2014; Magnusson, 2000; Molenaar, 2014). This example 

indicates that without proper approaches to analyze dynamic process data, existing differences 

between groups of learners cannot be effectively detected (Molenaar, 2014). 

The discussions above point towards the conclusion that traditional measurement and 

research methods cannot mine the temporal and sequential information embedded in the 

interaction data tracked by LMSs. It reduces the explanatory power of the analysis and limits the 

validity of the research conclusions (Molenaar, 2014). Therefore, advances in how such temporal 

and sequential data are conceptualized and how to employ effective techniques to discover 

structure, relationships and sequential patterns from them are the innovative trends in the 

analysis of online learning. 
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Learning Analytics for Online Interaction Research 

Advances in the accuracy of data measurements deepen the understanding of the 

phenomena being observed. Take the innovation of the microscope as an example: As the 

resolving power of the instrument has increased, so have significant advances in a scientific 

investigation (Chung, 2014; Laesecke, 2002). We are now approaching a similar potential in the 

measurement of learners’ learning processes using technology-based devices such as LMSs and 

APPs. Data from these devices record fine-grained information about what learners do as well as 

capture the context surrounding the behavior, which allows decoding learning processes and 

states that were previously invisible. The analysis of interaction events is driven by the 

realization that, without careful attention to temporal and sequential characteristics, we are 

reducing the significance of our research and are unable to explain important aspects of learning 

and instruction. Fortunately, as a new methodology in educational research, learning analytics 

focuses on the development of methods for analyzing and detecting patterns within data 

collected from educational settings and leverages those methods to support the learning 

experience (Larusson & White, 2014).  

A pivotal difference to the variable-centered NHST method is that learning analytics does 

not start by framing the constructs in terms of variables as fixed entities with varying attributes. 

(Poole, van de Ven, Dooley, & Holmes, 2000; Reimann, 2009). Learning analytics is an event-

based approach, which looks at the development and change of events and analyzes the dynamic 

relations between them over a long time (Baker & Inventado, 2016; Gibson & Ifenthaler, 2017; 

Larusson & White, 2014; Molenaar, 2014). Consistency and change of the patterns in learning 

behaviors can be investigated by specifying these temporal and sequential characteristics 

(Molenaar, 2014; Schmitz, 2006). Thus, it ameliorates the risks of confirmation bias that are 



32 
 

 
 

inherent in traditional statistics; and it is possible to discover structural patterns that might be 

missed in traditional statistics with only a single theoretical construct, pre-test and post-test data 

points, or pre-selected hypothesis being tested (Ocumpaugh, Baker, Gowda, Heffernan, & 

Heffernan, 2014).  

The methods of learning analytics are divided into prediction modeling, relationship 

mining, structure discovery, distillation of data for human judgment, and discovery with models 

(Baker & Inventado, 2016).  

Prediction modeling is to develop a model to infer a single aspect of the data (the 

predicted variable) from some combination of other aspects of the data (predictor variables). In 

learning analytics, classification and regression are the most common types of prediction models 

as well as latent knowledge estimation (Baker & Inventado, 2016). 

Relationship mining is to discover relationships between variables in a dataset with 

another large number of variables. This may take the form of attempting to find variable(s) most 

strongly associated with a single variable of particular interest, or may take the form of 

attempting to discover which relationships between any two variables are strongest (Baker & 

Inventado, 2016). Baker and Siemens (2014) identified four common relationship mining types 

in learning analytics: correlation mining, association rule mining, sequential pattern mining, and 

causal data mining (Baker & Siemens, 2014). 

Structure discovery attempts to use algorithms to find structure in the data without a 

priori idea of what should be found (Baker & Inventado, 2016). Common approaches to structure 

discovery in learning analytics include clustering, factor analysis, social network analysis, and 

domain structure discovery (Baker & Siemens, 2014).  
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Data distilled for human judgment in learning analytics serve two key purposes: 

identification and classification (Baker & Inventado, 2016). The methods of learning analytics 

are information visualization methods (Baker & Siemens, 2014). For example, a learning curve 

displays the number of opportunities to practice a skill on the X-axis, and displays performance 

(such as percent correct or time taken to respond) on the Y-axis (Baker, 2010); instructors can 

incorporate those data quickly into instructional strategies.  

In discovery with models, a model of a phenomenon is developed via prediction, 

clustering, or in some cases knowledge engineering; this model is then used as a component in a 

second analysis or model, for example in Prediction or Relationship mining (Baker & Siemens, 

2014). In the case of learning analytics, one common use is when an initial model’s predictions 

(which represent predicted variables in the original model) become predictor variables in a new 

prediction model (Baker & Inventado, 2016).  

Based on the general review of the approaches above, we can see learning analytics is a 

specific methodology to answer the questions deriving from LMSs log data, such as those ones 

mentioned above: what ways data are related within structures, and with what specific 

predictable bounded as well as changing sequences and sets of relationships (Gibson & 

Ifenthaler, 2017). 

Over the last 10 years, there has been a continued increase in observing learning behavior 

and analyzing the data generated by learners’ interaction with digital devices in LMSs. The 

techniques of learning analytics help target instructional and curricular resources to facilitate 

learners to achieve specific learning goals. The goal of learning analytics is to enable instructors 

and institutions to tailor the educational experiences of individual learners in near real-time.  
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Interaction Research with Learning Analytics Methodology 

Interaction Research with Data from Discourse, Video, and Brainwave  

As evidenced in the literature, a lot of research on the temporality and sequence analysis 

has investigated the distribution patterns of discourse, video data, and brainwave data. In 

addition, most of the studies have been carried out in collaborative learning environments.  

M. Chiu and Khoo (2005) collected 3,104 speaker turns from 80 middle school learners 

in 20 collaborative groups (M. Chiu & Khoo, 2005). These learners worked on an algebra word 

problem in groups of 4 learners each. Each group was videotaped for one learning session, and 

distinct time periods existed within each session. During each session, researchers observed a 

stream of sequential behavior, and then this stream of sequential behavior was parsed into 

discrete behaviors. The hypothesis of their study was that the general class of phenomena of 

current events was being affected by recent past events (and also by non-time-dependent 

characteristics). Two research assistants coded each speaker turn for the following: correctness, 

speaker’s mathematics status, and evaluation of the previous speaker. Researchers tested the 

hypothesis and investigated the sequential processes of these time-series data through four 

different methods: conditional probabilities, sequential analysis, Logit, and dynamic multilevel 

analysis (DMA). Particularly, they illustrated that except for DMA, all the other three methods 

failed to address heterogeneity across time or across groups (M. Chiu & Khoo, 2005). 

To gain an in-depth understanding of the features and limitations of the digital guide 

systems in a museum-learning context, Sung and colleagues (2010) conducted sequential 

analysis and frequency analysis to identify features determining different behavioral interaction 

patterns (Sung, Hou, Liu, & Chang, 2010). The learning behaviors recorded on video of 65 

elementary-school learners in 3 groups with different learning strategies: a mobile guide with 
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problem-solving strategy, an audio-visual mobile guide, and a paper-based learning-sheet guide. 

Researchers first coded the behaviors in the video, and then analyzed learning-related discussion 

content. Behavioral interaction patterns were determined by comparing the features and 

limitations of the different types of guides. They found that the learners in the problem-solving 

mobile guide group showed a higher level of two-way interactions with their peers and the 

exhibits, as well as more learning-related discussions (Sung et al., 2010). Therefore, relevant 

design suggestions for teachers, researchers, and guide-systems developers were provided that 

can better guide learners in interacting with peers and exhibitions.  

Chu and colleagues (2016) proposed a novel data mining method to detect and analyze 

frequent learning discussion patterns in MOOCs forums. The data were collected from the 

content of the 400 questions and answers from the forum for the course “Programming for 

Everybody (Getting started with Python)”; the learning interaction discussion was constructed as 

a tree-structured pattern. LIP-Miner algorithm was designed to analyze learners’ and instructors’ 

interactions to find frequent interaction patterns. Finally, the results proved that the proposed 

algorithm can find interesting learning interaction patterns in MOOCs forums (Chu, Wang, & 

Kuo, 2016).  

To examine how temporal sequences of regulated learning events emerge during different 

stages of collaborative learning, Malmberg and colleagues (2017) conducted a temporal and 

sequential analysis based on twenty-two hours of video data during a two-month didactics 

course. The participants were teacher education learners who collaborated in three-member 

groups. The video data were collected to follow how sequences of regulated learning events, 

along with task execution, emerged within the six groups as their collaboration advanced. 

Qualitative content analysis and lag sequential analysis were used to analyze the data. The results 
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showed that the groups engaged mostly in co-regulated planning and monitoring, and 

metacognitive monitoring played a facilitative role in the progress of task execution (Malmberg, 

Järvelä, & Järvenoja, 2017). Also, task execution provided grounding for socially shared 

planning and regulation to occur (Malmberg et al., 2017). 

Similarly, to emphasize that collaborative learning is actualized through evolving 

dialogues, B. Chen and colleagues (2017) uncovered sequential patterns that distinguish 

“productive” threads of knowledge-building discourse. The database was based on learners’ 

discourse from Grade 1 to 6, which was first coded for the posts’ contribution types and 

discussion threads’ productivity. Two different techniques, Lag Sequential Analysis (LSA) and 

Frequent Sequence Mining (FSM), were employed to identify the sequential patterns which aim 

to distinguish productive threads. LSA indicated that threads that were characterized by mere 

opinion-giving did not achieve much progress, while threads having more transitions among 

questioning, obtaining information, working with information, and theorizing was more 

productive. The results of FSM uncovered productive threads distinguishing frequent sequences 

involving sustained theorizing, integrated use of evidence, and problematization of proposed 

theories (B. Chen, Resendes, Chai, & Hong, 2017).  

In 2019, Zheng and colleagues examined sequences of both self- and socially shared 

activities in the online chats and logs of learners, and how the sequences influenced group 

performance (Zheng et al., 2019). The data were from 156 learners completing a STEM task in a 

computer-supported collaborative learning (CSCL) environment in high school and college. 

They were randomly assigned to groups of three and asked to solve four tasks of increasing 

complexity in a virtual learning environment designed to teach learners about electronics. The 

results revealed that successful groups demonstrated more frequent and more diverse regulatory 
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activities than the less successful ones. Also, the successful groups were most likely to start with 

self-executing and end with socially shared monitoring, while the less successful group was most 

likely to start with executing and end with self-executing. In addition, the timing of socially 

shared monitoring influences the success of collaborative learning (Zheng et al., 2019).  

Interaction Research with Log Data 

Another line of research has focused on revealing a bigger picture of sequential patterns 

by investigating log files that learners left in LMSs.  

Soller and Lesgold (2007) employed HMMs to model the process of a collaborative 

learning process in order to have a fine-grained sequential analysis of group activity and 

collaboration (Soller & Lesgold, 2007). They presented the collaborative learning process from 

multiple perspectives, which focus on the behaviors driving explanation, critiques, sharing, and 

motivation. The desired goal was to better understand the interaction and to provide advice or 

support to learners. They discussed five different computational approaches for modeling 

collaborative learning: Finite State Machines, Rule Learners, Decision Trees, Plan Recognition, 

and Hidden Markov Models; and particularly illustrated the Hidden Markov modeling approach 

in detail. The result showed that the Hidden Markov model performs significantly better than 

statistical analysis in recognizing the knowledge sharer and the knowledge recipients when 

learners exchange new knowledge during learning activities. 

Nesbit and colleagues (2007) collected log files generated by 103 university learners in 

their self-regulated learning using gStudy. gStudy is a software application developed by the 

researchers, which supports learners to create and link notes, highlight and label text and images, 

construct glossaries and concept maps, exchange information objects through a chat interface, 

and perform other operations on multimedia content. With the support of gStudy, researchers 
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used log parsing and data mining methods to identify coherent learning actions from the complex 

series of low-level events and detect sequential patterns common to a group of participants that 

may be interspersed with unrelated actions (Nesbit, Zhou, Xu, & Winne, 2007).  

Perera and colleagues (2009) focused on collaborative learning and employed clustering 

and sequential pattern mining to investigate interaction trace data of online collaborative 

learning. There were 43 learners in 7 groups who participated in the collaborative teamwork in 

an online project management system called TRAC; the interaction data were recorded from 

mirroring and feedback tools in TRAC. The researchers aimed to exploit these data to support 

mirroring by presenting useful high-level views of information about the group, and the desired 

patterns characterizing the behavior of strong groups. The goal was to enable the groups and 

their facilitators to see relevant aspects of the group’s operation and provide feedback if these 

were more likely to be associated with positive or negative outcomes and where the problems are 

(Perera, Kay, Koprinska, Yacef, & Zaïane, 2009). Researchers first used k-means clustering to 

cluster similar teams and similar learners and then employed a modified version of the 

Generalized Sequential Pattern mining algorithm to identify the important interaction patterns 

associated with success. They extracted patterns from three sessions: group and author session, 

task sequence, and resource session. For each set of results, they sorted the patterns first on 

support, then on length, and compared the results across groups; finally, they identified which 

patterns were most frequent in certain groups and least frequent in other groups. Patterns 

distinguishing the stronger groups from the weaker groups were extracted, which help 

researchers gain insights into success factors, such as leadership and group interaction and 

providing promising indications. In addition, patterns indicating good individual practices were 

also identified. The results suggested the effectiveness of identifying effective and poor practices 
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early, advising groups at the start of learning, and providing remediation in time. In their study, 

all groups improved their achievements by observation and emulation of the interaction patterns 

from stronger groups (Dilhan Perera et al., 2009). 

Jeong and colleagues (2010) conducted an exploratory sequence analysis by applying the 

Hidden Markov model approach to investigate learners’ learning behaviors and the evolution of 

interaction activity of different learner groups in an asynchronous online learning environment. 

The environment was derived from the STAR Legacy Cycle which is a software shell designed 

to organize learning activities as an inquiry cycle; the learners of this system are adult 

professionals, who took this course as a degree requirement or for professional certification. 

Researchers hypothesized that learners in different performance groups will employ different 

learning behavior patterns (and likely, different strategies); further, learners’ behavior patterns 

will evolve as they study different course content (Jeong, Biswas, Johnson, & Howard, 2010). 

Therefore, they decided to focus on examining the differences in behaviors between the high and 

the low performers on the system in order to provide insights on how learning behaviors relate to 

performance (Jeong et al., 2010). The learners were divided into high performers and low 

performers based on the posttest scores. The learning process based on the STAR Legacy Cycle 

was represented in modules: Challenge (C), presenting problem descriptions; Initial Thoughts 

(T), learners’ initial thoughts providing; Resources (R), learning about the problem; Self-

Assessment (A), answering assessment questions; Wrap-up (W), reviewing and concluding. The 

analysis focused on the six types of transition behaviors learners made among the five modules: 

linear (L), jumping (J), retrying (R), searching (S), transitioning (T), and backtracking (B). After 

preprocessing the data, activity sequences were arranged in the format consisting of a series of 

transition-context pairs such as AR-Linear, RR-Linear, RR-Retrying, and so on. A Hidden 
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Markov model approach was employed to investigate the difference between the two 

performance groups and how the learning behaviors in each group evolved in different course 

process. The results demonstrated that high-performing learners had more linear learning 

behaviors and that their behaviors remained consistent across different course processes (Jeong 

et al., 2010). 

Martinez and colleagues (2011) reported a study to analyze frequent sequential patterns 

of collaborative learning activity around an interactive tabletop named Digital Mysteries. The 

goal was to discover which frequent sequences of actions differentiate high achieving from low 

achieving groups. Eighteen elementary school learners took part in the study, forming 6 groups 

of 3 participants; every action of participants on the tabletop was logged and all sessions were 

video recorded. Six groups of participants generated a total of 12 logged sessions. The raw data 

were coded as a series of Events, where Event=(Time, Author, Action, Object). The possible 

actions that can be performed on the data slips are: moving, enlarging to maximum size, resizing 

to medium size, shrinking, rotating, making unions with other data slips, add data slip to a group 

and remove a data slip from a group (Martinez, Yacef, Kay, Kharrufa, & Al-Qaraghuli, 2011). 

Out of the 12 logged sessions by 6 groups, 5 were coded as low achieving groups, 5 as high 

achieving groups and 2 as average groups. Researchers focused on the 10 sessions that clearly 

showed evidence of low or high achievement. They explored two pre-processing approaches. 

The first method went straight into the sequence mining, and the second method compacted 

similar contiguous actions before applying the sequence mining. After pre-processing the data 

and conducting sequence mining to determine frequent patterns, researchers employed 

hierarchical agglomerative clustering technique (Witten & Frank, 1999) to cluster similar 

frequent patterns determined by sequence mining (Martinez et al., 2011). The results from both 
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of the two methods indicated that learners of high achieving groups tried to interact and 

externalize their thinking. These students tended to read all the slips to get clues about the 

mystery and parallel interactions were clearly observed along with engagement in conversations. 

On the other hand, learners of low achieving groups tended to simply move or rotate the data 

slips, make unions with other slips or add slips to a group (Martinez et al., 2011).  

Kinnebrew and colleagues (2013) employed a contextualized and differential sequence 

mining method to assess and compare the interaction behaviors of 40 8th grade learners in online 

settings. Researchers conducted this exploratory methodology to learning interaction trace data 

gathered during a middle school class study with online tools called Betty’s Brain. They expected 

learners using Betty’s Brain to typically iterate between reading material and teaching Betty by 

building the causal map, while also checking and reflecting on Betty’s and their own 

understanding of the domain knowledge. To analyze the interaction traces of learners, researchers 

abstracted and divided interaction actions into five categories: (1) READ, learners read the 

resources; (2) Editing, actions such as link or concept, and add, remove, or modify; (3) QUER: 

learners query Betty; (4) EXPL: learners ask Betty to explain her answer to a query; (5) QUIZ: 

learners have Betty take a quiz. The novel combination of sequence mining techniques 

developed by the researchers can directly incorporate comparisons between groups when 

identifying interesting patterns, rather than manually performing comparisons. In addition to 

sequential pattern mining metrics, researchers employed another frequency calculation based on 

episode mining to identify and rank differentially frequent patterns. With the support of these 

sequence analysis techniques, they identified differentially frequent patterns between learners in 

the high (Hi) performance group and learners in the low (Lo) performance group. The results 

indicated that the learners in Hi group were more likely to follow a quiz with relevant reading or 
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queries, while the learners in Lo group were more likely to follow a quiz with unrelated reading. 

Also, the results suggested a differential effort by the Hi group to use monitoring strategies that 

made more effective use of the quiz results, and these strategies may indicate that the Hi group 

learners paid more attention to the feedback or were better able to understand and implement the 

monitoring feedback (Kinnebrew, Loretz, & Biswas, 2013). 

Guerra and colleagues (2014) modeled and examined patterns of learner behavior with 

parameterized exercises using Problem Solving Genome, a compact encapsulation of individual 

behavior patterns. They started with micro-patterns (genomes) that describe small chunks of 

repetitive behavior and constructed individual genomes as frequency profiles that show the 

dominance of each gene in individual behavior (Guerra, Sahebi, Lin, & Brusilovsky, 2014). With 

the genome, researchers analyzed learner behavior on the group level and identified genes 

associated with good and bad learning performance. The results revealed that individual patterns 

can distinguish learners from their peers and change very little with the growth of knowledge 

over the course (Guerra et al., 2014).  

In order to identify new factors of prediction of academic success, Venant and colleagues 

(2017) used a sequential pattern mining approach to analyze relations between learners’ activities 

during practical sessions, and their performance at the final assessment test. The data were 

collected from experimentation conducted with a remote lab dedicated to computer education. 

Researchers discovered recurrent sequential patterns of actions. These patterns may be evidence 

which defines learning strategies as indicators of a higher level of abstraction (Venant, Sharma, 

Vidal, Dillenbourg, & Broisin, 2017). They found that the construction of a complex action step 

by step, or the reflection before submitting an action, are two strategies applied more often by 
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learners of a higher level of performance than by other learners, which illustrated that some of 

the strategies are correlated to learners’ performance (Venant et al., 2017). 

In 2018, Doko and colleagues tried to decode mobile learning processes by coming up 

with a methodology for performing video learning data history of learner’s video watching logs, 

video segments or time-series data analyzing learners’ video watching logs, video segments or 

time-series data. They introduced a theoretical method of sequential pattern mining to identify 

the most important or difficult learning. They also described a model for understanding the most 

difficult topics. Their method can generate sequences from the collected learning histories, 

extract important patterns from a set of sequences, and find learners’ most difficult/important 

topics from the extracted patterns. Also, they recommended implementing this method to use in 

mobile phones in the future (Doko, Abazi Bexheti, Hamiti, & Prevalla, 2018). 

Interaction Research with Log Data in Particular Topics 

Other researchers employed sequential and temporal analysis with log files in particular 

areas such as learning style, concept mapping process, game-based learning, and 

recommendation systems.  

Graf and colleagues (2010) pointed out that supporting learners by considering their 

learning styles in the computer-assisted environment has a high potential for making learning 

easier or increasing learners’ performance (Graf et al., 2010). Therefore, they investigated the 

patterns of learners’ navigation behavior in an online course. Several differences in the learners’ 

behavioral patterns were identified, which indicated that learners with different learning styles 

used different ways to learn and interact with the course. Similarly, Fatahi and colleagues (2018) 

realized that identifying sequential behavior patterns can provide useful information for 

determining the learning style (Fatahi, Shabanali-Fami, & Moradi, 2018). They extracted 



44 
 

 
 

frequent sequential behavior patterns which can separate learners with different learning styles, 

and then predicted a learner’s learning style during their interaction with an e-learning system. 

The results showed that learning styles can be predicted with high accuracy. 

In order to help understand learners’ learning process, some researchers turned their 

attention to game-based learning environments to mine sequential behavior patterns. Hou (2012) 

compiled a log of learners’ operations on a large-scale multi-person online educational gaming 

platform to analyze learners’ knowledge construction, peer interaction, and problem-solving 

processes (Hou, 2012). Later, Hou (2015) investigated behavioral patterns and flow states in 

game-based learning to understand the patterns of their interactive behavior during learning 

(Hou, 2015). In 2017, Kang and colleagues conducted a study that uses gameplay data captured 

as a learner interacts with various tools embedded in a game environment (J. Kang, Liu, & Qu, 

2017). Their study expanded on previous research on learners’ cognitive process patterns by 

incorporating the combination of statistical analysis with sequential pattern mining in an 

investigation of learning patterns among learners with different expertise.  

Inspired by the application of sequential pattern mining techniques in various learning 

settings, an approach for exploring learner sequential patterns in constructing concept maps was 

proposed by C. Chiu and Lin (2012). To validate the proposed method, the concept mapping data 

from 187 college learners were analyzed by the sequential pattern analysis method. The results 

revealed that the mapping sequences used by learners that created superior concept maps were 

similar and had a pattern in which propositions were formed in temporal order from more 

inclusive to less inclusive (C. Chiu & Lin, 2012). Similarly, in 2018, Sun and colleagues 

conducted a sequence analysis exploring the effects of integrated concept maps and classroom 

polling systems on learners’ learning performance, attentional behavior, and brainwaves 
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associated with attention (Sun et al., 2018). The data from 21 college learners were collected 

through in-class quizzes, attentional behavior analysis, a 20-minute structured interview, and the 

attention-associated brainwaves. The results showed that the pen and paper concept mapping 

approach improved the quiz results of learners with lower learning motivation prior to the 

course, while the votable concept mapping method was effective in stimulating learners’ 

attention during class.  

Recommendation system is another application of temporal and sequential analysis. A 

recommendation could be based on the teacher’s intended sequence of navigation or navigation 

patterns of other successful learners, which is because other learners with similar learning status 

will have the same experience with these resources (Klašnja-Milićević, Vesin, & Ivanović, 

2018). For example, Chen and colleagues (2014) proposed a hybrid recommender system 

framework based on learners’ sequential patterns. After filtering content-related item sets, they 

applied a sequential pattern mining algorithm to discover items according to common learning 

sequences; therefore, potentially useful learning items were identified and recommended to guide 

users in their learning processes (W. Chen, Niu, Zhao, & Li, 2014). 

Discussions  

As mentioned above, a number of studies have conducted sequential and temporal mining 

techniques to extract learners’ behavior patterns based on discourse data, video data, log data, as 

well as the data of brainwaves. These data are from learners in primary schools, high schools, 

colleges, and MOOCs. The educational environments include collaborative learning, self-

regulated learning, game-based learning, or concept mapping activities. Some of the studies 

illustrated the effectiveness and stability of sequential and temporal analysis in exploring 

learners’ interaction behaviors in learning. Some of them used sequence patterns to distinguish 
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learners with different performances, cognition levels, meta-cognition levels, or learning styles. 

Some of them applied behavior patterns in developing recommendation systems. These analyses 

that reveal various interaction patterns about sequential and temporal interactions at the micro-

level mainly concentrate on two essential questions: “What do these relations among interaction 

patterns mean for learning, and which patterns should we encourage in learning and instruction?”  

However, most of these efforts were carried out under experimental or quasi-

experimental conditions with few participants and a short time span. None of them has tried to 

extract action patterns based on interaction behaviors in daily massive online courses that 

support massive learners with regular learning behaviors through an entire semester in online 

settings. That is because the massive online learners, long-term learning process, non-

experimental environment, and huge data files are big challenges for researchers to analyze fine-

grained learning action at the micro-level.  

Therefore, this study aims to find sequential patterns that can distinguish learners based 

on their interaction actions in a very particular environment ignored by most researchers: 

MPOCs settings.  

MPOCs: Massive Private Open Courses 

MOOCs vs MPOCs  

In online learning, there are different organizational forms that provide interaction data 

with different qualities. Kaplan and Haenlein (2016) summarized that there are two 

representative forms of online learning being conducted at present: MOOCs and SPOCs. A 

MOOC is an open-access online course (i.e., without specific participation restrictions) that 

allows for unlimited (massive) participation; many MOOCs provide interactive elements to 

encourage interactions among learners and between learners and the teaching staff (Kaplan & 
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Haenlein, 2016). A SPOC is an online course that only offers a limited number of places and 

therefore requires some form of formal enrollment; SPOCs frequently have a competitive 

application process and might charge a tuition fee (Kaplan & Haenlein, 2016). MOOCs and 

SPOCs differ primarily in the sizes of the learner populations to which they cater. 

However, Kaplan and Haenlein (2016) ignore another important online learning 

organization form, MPOCs, massive private online courses. An MPOC is a massive private 

online course designed on the model of SPOC in conventional distance-learning settings. In 

MPOCs, online facilitators are assigned to the online classes to lead online trainees to fulfill the 

online learning activities, assess their achievements and provide timely feedback to learners (W. 

Guo, 2014). MPOCs offer a limited number of enrollments like SPOCs, but because of the lower 

tuitions, the size of online classes in MPOCs is big and the enrollments of learners are massive 

(W. Guo, 2014). For example, in a training program conducted by Peking University in China, 

from 2007-2013, nearly 500,000 k-12 teachers had enrolled in this online training course in 

about 5,000 online classes, with approximately 2,000 online facilitators who had also joined the 

online practice (W. Guo, 2014). This program is a typical MPOC form of online learning.  

Unlike MOOCs, conventional online and distance-learning courses are not intended to be 

“open” to users moving in and out of a course multiple times (Perna et al., 2014). MPOCs, like 

China’s Open University or Turkey’s Anadolu University, are characterized as more uniform, 

regulated, and centralized than MOOCs. Although MOOCs mean massive open online courses, 

because of the extremely high dropout rate (more than 95%) and loose organization in MOOCs, 

most learners’ interaction trace data are not actually present throughout the entire course process 

(Hew & Cheung, 2014). This means that the final complete data in MOOCs are not that massive, 

nor complete. Further, many MPOCs conducted by conventional online institutions cannot only 
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accumulate relatively complete data of learner interaction such as views of specific resources, 

attempts and completion of quizzes, or discussion messages viewed or posted, but also record the 

demographic information and the previous learning status of their learners. Therefore, MPOCs 

can provide more comprehensive data than MOOCs to investigate the interaction details in 

online learning. 

However, given that MOOCs have attracted all the attention in online learning, little 

research has been conducted so far to understand how different achievement learners learn in 

today’s MPOCs and how learners, instructors, institutions, and researchers can best support their 

learning process. 

Comparative Research of Interaction Patterns, the Lack in MPOCs  

The final purpose of a course, no matter in MOOCs or MPOCs, is to improve the 

knowledge and skills of all learners. The first step, also the prerequisite, is learners who take the 

course have to stay in the course. Only when they stay in the course, can they interact with 

material, instructors, and peers, and learn new knowledge and skills. The second important step 

is to investigate effective ways to improve learning. Comparing the interaction differences 

between high-achievement learners and low-achievement learners is one of the ways to discover 

some effective learner interaction patterns from strong learners, which can help to facilitate other 

learners (Jeong et al., 2010; Martinez et al., 2011; Dilhan Perera et al., 2009).  

However, in MOOCs, only a few learners finally persist (stay and learn) or complete 

(pass the final exam) the courses (Hew & Cheung, 2014; Khalil & Ebner, 2014; Koller et al., 

2013). Almost all the focus of MOOCs is on learner retention and persistence (de Freitas, 

Morgan, & Gibson, 2015; Hew & Cheung, 2014; Khalil & Ebner, 2014; Koller et al., 2013; E. 

Meyer, 2015), which means research in MOOCs is still in an initial stage with regard to learning 
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outcomes, but, fortunately, without these dropout issues, MPOCs research has already moved on 

to the second step.  

Moreover, there is an increasing demand for skilled and trained citizens in this 

competitive world; colleges and universities face increased demand from the workforce sector 

where ongoing up-skilling and re-training is required to maintain employment in a rapidly 

changing economic, social and technical world (Dolence & Norris, 1995). However, educational 

institutions are finding it difficult to graduate learners who can meet the requirements 

(Bomatpalli, 2014). Fortunately, learners in MPOCs are more engaged, active, persistent and 

goal-oriented, and therefore, their learning is more effective. They will be more employable, and 

they deserve particular concern from institutions and researchers.  

There is little doubt that as learners in MPOCs maintain a high persistence rate--from the 

beginning to the end of the course process--the generation of huge quantities of learning-related 

data is also uninterrupted and of high quality. If studies in MPOCs follow the trends that target 

fine-grained interaction data, there will be a widespread interest in how these valuable data could 

be used to improve learning and teaching in MPOCs settings.  

A key issue is how to leverage these data to clarify what different learners understand and 

how they conduct learning, to derive meaningful measures of different learning processes, and to 

develop capabilities for precise diagnosis and targeting of instruction.  

The belief of this study is that certain sequences of interaction events may distinguish the 

strong groups from the weak ones. Kinnebrew and colleagues (2013) summarized four ways to 

analyze LMS trace data: (i) frequency of studying events, (ii) patterns of studying activity, (iii) 

timing and sequencing of events, and (iv) content analyses of learners’ notes and summaries 

(Kinnebrew et al., 2013). Frequency, static patterns, and content analysis are easier to be 
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accepted based on the knowledge of traditional statistics, but an important aspect of trace data 

that has been greatly ignored is the timing and sequence. Perera and colleagues (2009) insisted 

that certain sequence patterns of interaction can distinguish better learners from the weaker ones 

(Dilhan Perera et al., 2009).  

Excepting the general interaction sequences shared in all groups, some interaction 

sequences may be more common in the traces of high-achievement learners and much less in 

low-achievement learners; while other interaction sequences may be more common in low-

achievement learners’ traces and less in high-achievement learners’ traces. Interaction sequence 

patterns in the high-achievement group may have the potential for helping low-achievement 

learners to improve their own performance (Kay, Maisonneuve, Yacef, & Zaïane, 2006). In other 

words, if a learner appears to have many patterns associated with risks, the learner should be 

reminded; if there is a rise in the patterns associated with success, it may facilitate learners to 

improve achievements.  

Comparative research can help in measuring learner interaction, acquiring the skills to 

succeed, and promoting academic success in MPOCs. With comparison analysis, this study steps 

beyond the inquiry of whether learners stay and construct knowledge in LMSs, and investigates 

when and how learners interact through LMSs to conduct their knowledge. Moving forward, it 

will help improve all learners’ learning with new insight and depth, while at the same time 

producing new types of information that provoke new questions about learning experiences in 

MPOCs. 

Summary  

Interaction if the foundation of learning. Researchers have done much useful work to 

define interaction as a framework and identify a theoretical basis for the characteristics of 
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interaction associated with online learning (L. Chen, 2004; Gilbert & Moore, 1998; Mayer, 2008; 

Moore, 1989; Roblyer & Wiencke, 2003; Vrasidas & McIsaac, 1999; Wagner, 1994; Yacci, 

2000).  

Learning is a process full of interaction to gain skills and knowledge; also, it can be 

recognized through changes in the learners’ behaviors (Mayer, 2008; Vygotsky, 1978). Because it 

takes learners time to acquire skills and knowledge, and learning behaviors always change 

sequentially, the concept of time and sequence is innate to learning (Molenaar, 2014). However, 

in previous interaction studies, researchers mostly employed traditional statistical methods, 

which capture time in pre-test and post-test designs and ignore sequences changing in shorter 

time spans. As such they often focused on a narrow concept of relations between interaction 

entities such as content, instructors, peers, and interfaces (Hillman et al., 1994; Moore, 1989); 

therefore, these studies reduce the validity and explanatory power of interaction research. 

Currently, technology advancements in LMSs and digital APPs increase the ability to gain huge 

amounts of behavior traces of learners while they are interacting with the devices, which is an 

important facilitator to overcome previous issues of lack of knowledge about time and sequence 

(Reimann, 2009).   

Recently, more and more researchers have begun to address how different learning 

behaviors act and develop over time (Baker & Siemens, 2014; Molenaar & Chiu, 2014; 

Reimann, 2009). Also, they have conceptualized behaviors in learning processes in many ways, 

leading to a diverse set of dimensions of research questions at the micro-level (Molenaar, 2014). 

Temporal and sequential analysis entails a new methodology, learning analytics, which deviates 

from previous statistical research methods, changing our analysis from statics outcomes of 

learning performance and demographic information to dynamic process characteristics of 
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learning behaviors. There are two kinds of research questions. The first one focuses on the 

dynamic process data themselves. For example, Which sequences of learner behaviors occur 

during learning and instruction? The other one combines temporal and sequential characteristics 

with static outcome information such as learning performance or course achievement. For 

example, Which patterns of interaction during learning influence course achievement positively? 

Research has illustrated that learning analytics and big data in LMSs can support the 

transparency of interaction behaviors and enhance the comparability of different learners’ 

performances.  

The final goal of this line of time and sequence research is to offer adapted support and 

direct feedback to learners or to their facilitators in real daily course work under online settings 

(Martinez et al., 2011). However, given the challenges to coordinate many complicated factors in 

the massive online learners, long-term learning process, non-experiment environment, and huge 

data files, most of the studies have been conducted in small groups under MOOCs, higher 

education, and K-12 settings. MPOCs has been ignored by most researchers.  

This study focuses on LMS data and learning analytics approaches to make sense of 

different interaction behaviors occurring in different MPOCs groups. It can provide detailed 

information on learner interaction such as the sequence of accessing online resources and 

activities, the rate at which learners advance through the learning process, and the amount of 

time spent examining resources (Antonenko, Toy, & Niederhauser, 2012). Also, it can help 

establish and compare patterns of different learner interactions in different groups based on their 

interactions with materials, instructors, and peers in MPOCs.  

On the other side, this study is an exploration of the paradigm shift of the research 

methodology. First, it focuses on the temporal and sequential characteristics of interaction to find 
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out which meaningful sequences of learning activities occur during learning and instruction. 

Second, it combines the activity patterns with the final course achievement which is a kind of 

static outcome information commonly used in variable-based research. The purpose of this 

combination is to identify which patterns of interaction influence course achievement positively 

or not.  

Chen (2004) clarified that there are two roles of learner-centered interaction in online 

learning: one is to change the behavior of learners, and the other is to facilitate the learners’ 

behavior to gradually approach the learning objectives. This study investigates some “no-easy-

answer” questions, such as, whether high achievement groups behave differently from low 

achievement groups, and whether learners’ interaction activity patterns change in different course 

processes. 
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CHAPTER 3: METHODOLOGY     

The aim of this study is to employ learning analytics to the log data in MPOCs and build 

comparison analyses summarizing interaction patterns. The context is an 20 weeks Moodle-

based course, which occurred over a long and uninterrupted learning process in a whole 

semester. The course took place as part of a mandatory subject in a third year of a computer 

degree program at an open university in China. The general research purpose is to contribute to 

the knowledge of interaction patterns by comparing interaction activities in different 

achievement groups in MPOCs. With this purpose, four research questions are set:  

1. Are the interaction activity patterns of High-achievement learners’ group and Low-

achievement learners’ group the same or different in Learning weeks? 

2. Are the interaction activity patterns of High-achievement learners’ group and Low-

achievement learners’ group the same or different in Exam weeks? 

3. Does the interaction activity pattern of High-achievement learners’ group remain the 

same from Learning weeks to Exam weeks? 

4. Does the interaction activity pattern of Low-achievement learners’ group remain 

unchanged from Learning weeks to Exam weeks? 

In our study line, online learners’ interaction behaviors are clarified at two levels: 

interaction activity level and interaction action level. An interaction activity is defined as a 

sequence of learner interaction behaviors within one LMS module. For example, in Moodle, 

corresponding to the modules, interaction activities may include Introduction, Content, Forum, 

Quiz, Assignment, and so on. An interaction action is defined as the educationally meaningful 

typical behavior in an interaction activity such as view, delete, change, and create, and so on. 

This study focuses on the learners’ interaction activity. 
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After setting the research questions and clarifying the key terms, the participants and data 

collection are described. The methodology is then described in two different phases. In the first 

stage, data pre-processing is conducted; in the second stage, HMMs are employed to address the 

four research questions  

Participants and Data Collection  

The context is a 20-week Moodle-based online course, Basis of Computer Applications. 

This course is part of a mandatory subject in a computer degree program of a traditional open 

university in one of the Chinese provinces. This course is for beginners with some basic skills in 

computer applications. The designers and instructors adopt an exploratory learning mode of 

“learning by doing” to build a virtual software operating environment for learners, which aims to 

help learners learn the basic knowledge and skills of the Windows operating system, and 

Internet, MS office software, and Computer security. The first 16 weeks are Learning weeks; the 

last 4 weeks are Exam weeks. In 2017, initial enrollment in the course included 1490 learners, 

and 1375 students took the course exam and finished the course. 

There are 8 Moodle activity modules:  

1) Introduction & Announcement, where learners get the course description and 

messages;  

2) Content, where learners learn the 7 course-chapters;  

3) Resource, which includes frequently asked questions about the content, experiment 

guides, simulated tests of the final exam, and different types of materials to improve learners 

learning;  

4) Assignment & Quiz, which is for learners to consolidate their learning;  

5) Performance statement, where learners check their own and their peers’ performance; 
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6) Forum, where learners discuss with instructors and peers; Instructors especially 

emphasize discussions in the forum, but discussions are not included in the final grade of the 

course. 

7) Group learning, where learners conduct projects in a group; there are 3 occasions for 

mandatory group learning in Learning weeks.  

8) Course evaluation, where learners evaluate their instructors, peers and the course after 

they finish the course.  

For each learner, Moodle sequentially records the information of learners’ interaction 

activity in real-time throughout the whole semester as well as the grade of the final exam. 

To answer the research questions, different sources of data in the course are collected 

after learners worked through the semester, such as their final marks and the interaction traces in 

the LMS. The final grades for the semester can be used to look for interaction patterns that are 

more or less commonly performed among different achievement learner groups: patterns more 

common for strong groups may be indicators of success, and patterns more common for weak 

groups may be indicators of problems. This type of research is seeking to provide ways in which 

learners’ interactions with various entities can be captured, interrelated, analyzed and understood 

in terms of some typical interaction patterns. Please see the example of the interaction traces in 

Appendix 1.  

Data Pre-processing 

The first and one of the key steps to making data useful for analysis is data pre-

processing (Romero, Romero, & Ventura, 2014). Data pre-processing is the process of 

engineering and distilling appropriate features that can be used to represent key aspects of the 

data, which is one of the most time-consuming and difficult steps in learning analytics (García, 
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Romero, Ventura, & Calders, 2007). The two main families of techniques are detection 

techniques to find imperfections in data sets, and transforming techniques oriented to obtain 

more manageable data sets (Romero et al., 2014).  

Base on the suggestions from Romero and colleagues (2008), there are two tasks for the 

data pre-processing in this study: 

Create summarization tables: To create a new table in the Moodle database that can 

summarize information of each learner. As learner and interaction data are spread over several 

tables, a summary table will integrate the most important information for answering the research 

questions. This table (mdl_sum) has a summary per row about all the activities done by each 

learner during the course and the final mark obtained by the learner in the course. 

Transform the data: The data must be transformed into the required format of the 

Learning analytics algorithm or framework. To investigate frequently occurring activity sequence 

patterns in different achievement groups, the mdl_sum table will be first divided into two 

datasets: High-achievement group and Low-achievement group by grade C based on the final 

course grade. Grade C is used as the dividing line because, based on the regulations of the open 

university, learners with grade C or higher are the ones passing the course, learners with grades 

lower than C are the ones failing the course. Thus, in this course, there are 974 learners in the 

High-achievement group (grade>=C), and 401 learners in the Low-achievement group 

(grade<C). Finally, given on grade C and two course-processes (Learning process, Exam 

process), researchers have four datasets: High-Learning, Low-Learning, High-Exam, and Low-

Exam (Please see Table 1). 

Table 1. Four datasets 

 Learning weeks (16 weeks) Exam weeks (4 weeks) 

High-achievement High-Learning  High-Exam  
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(n=974, grade >= C) (n=974, grade >= C) 

Low-achievement Low-Learning  
(n=401, grade < C) 

Low-Exam  
(n=401, grade < C) 

 

Data Analysis: HMMs 

There are 8 activity modules in the Moodle course, and the sequences of these activities 

are extracted from the log files and then pre-processed. The goal is to determine if there is 

evidence of different activity patterns between two achievement groups during the course 

process and whether these patterns change when learners worked in the different course sessions.  

HMMs Measures 

In this study, learners’ interaction activity pattern is defined as the sequence of indirect 

interaction states in a certain course process; these patterns are frequently performed among high 

and low achievement groups. Based on the literature, HMMs (Rabiner & Juang, 1986) is the 

specific approach employed in this study, which is a probabilistic state-based approach to 

generate indirect state patterns based on direct activity sequences (Bahl, Brown, De Souza, & 

Mercer, 1986; Ben-Yishai & Burshtein, 2004; Jeong et al., 2008; Kwong, He, & Man, 1996; Li 

& Biswas, 2002; Panuccio, Bicego, & Murino, 2002; Rabiner, 1989; Rabiner & Juang, 1986; 

Soller & Lesgold, 2007). Here, the key parameters and procedures of HMMs are introduced. For 

the details of HMMs algorithm, please see Appendix in this study. 

HMMs manifests the hidden states through three sets of parameters (Bahl et al., 1986; 

Ben-Yishai & Burshtein, 2004; Kwong et al., 1996; Li & Biswas, 2002; Rabiner, 1989).  

Initial probability vector π: initial probabilities for hidden activity states. An initial 

probability represents the chance of learners engaging in a particular hidden activity state during 

a given course process. 
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Transition probability matrix, A: the transition probabilities between each of the hidden 

activity states; 

Output probability matrix, B: observation activity probabilities for detecting a particular 

observation activity in a hidden activity state. An observation activity probability represents the 

proportion of learner engagement of an observable activity in a given hidden state because that 

hidden state may consist of several observable activities. 

The meaning or interpretation of a particular hidden state is based on the interaction 

activities associated with that hidden state (Jeong et al., 2008).  

HMMs algorithm tries to derive an optimal set of the parameters (π, A, B), which can 

maximize the likelihood of the input activity sequences (Bahl et al., 1986; Ben-Yishai & 

Burshtein, 2004; Kwong et al., 1996). Given each dataset, the input activity sequence in HMMs 

is learners’ observable sequential interaction activities from the beginning to the end in a certain 

course process. Take the dataset of High-Learning as an example: Here the input activity 

sequence is the High-achievement learners’ sequential activities recorded in real time by LMS 

from Week 1 to Week 16, and the sample size is 974 (please see Table 1). 

The first step is to initialize the parameters that define the states and the possible state 

transitions (Li & Biswas, 2002; Rabiner, 1989). The well-known Baum-Welch (BW) method, a 

variation of the general expectation-maximization (EM), is employed to estimate the three sets of 

parameters (π, A, B) in HMMs (Baum, Petrie, Soules, & Weiss, 1970; Ben-Yishai & Burshtein, 

2004; Martinez et al., 2011). Particularly, to improve the accuracy of the parameter values in the 

BW procedure, the Viterbi algorithm is the way of starting with initial parameter values that are 

better than random (Li & Biswas, 2002). 
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Another issue to define HMMs is the “best” number of hidden activity states to model the 

data (Heckerman, 1998; Li & Biswas, 2002; Schwarz, 1978). In order to gain an educationally 

interpretable simple model, the Bayesian information criterion (BIC) is used to achieve a balance 

between “high likelihood” which means how likely the model fits the data and “low complexity” 

which means the number of the states in the derived model (Heckerman, 1998; Schwarz, 1978).  

BIC is a well-established and easily interpretable method for model selection, which is 

derived from the Laplace approximation (Li & Biswas, 2002). BIC computation is -

log(L)+(d/2)log(N) (Schwarz, 1978). The first term, -log(L), is the likelihood term which tends 

to favor larger and more detailed models of data; the second term, (d/2)log(N), is the model 

complexity penalty term; d represents the number of significant parameters in the model, which 

is influenced by the number of the hidden states; N represents the sample size. The best number 

of hidden states is indicated by the smallest value of BIC (Heckerman, 1998; Li & Biswas, 2002; 

Schwarz, 1978).  

HMMs Procedures 

In this study, HMMs have been run in the four different datasets: High-Learning, Low-

Learning, High-Exam, and Low-Exam. Then, there will be 4 models resulting from the HMMs 

algorithm. The HMMs offer a state-based aggregated interpretation of learners’ activity 

sequences, which can be analyzed in various ways (Jeong et al., 2010; Jeong et al., 2008):  

Each model is made up of a set of states; some states may represent a single activity, 

others may comprise more than one activity, and each state will be labeled by the predominant 

activity (or activities) present in that state (Jeong et al., 2010). The major activities are identified 

by the proportion of time spent in each activity. Naming each discrete state is helpful to provide 

evidence to determine what interaction activities these states indicate. 
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Further, transition probabilities between two states provide the likelihoods (expressed as a 

percentage) of learners transitioning to different states or remaining in the current state (Jeong et 

al., 2010). The transitions between states give a sense of how learners transition between 

different interaction activities. 

In addition, the stationary probability gives a sense of what states frequently occur in a 

session. The stationary probability is the relative proportion of activities that belongs to a certain 

state; for example, a state with a 20% stationary probability implies that 20% of learners’ 

activities during the session are related to the interaction activities in the state (Jeong et al., 

2010).  

The HMMs results are compared and analyzed within the new framework of learner 

interaction. The probability of activity time spending in each state indicates the major activities 

in the state, which is also the name of the state. The transition probability (the transition 

likelihood) indicates the likelihood of learner interaction staying in the current sate or 

transitioning from the current state to the different indicated state(s). The comparison of these 

patterns between datasets of High-Learning and Low-Learning (as well as High-Exam vs. Low-

Exam) are used to evaluate the status of research questions 1 and 2. 

Furthermore, the stationary probabilities of each state in the two high-achievement 

models (High-Learning, High-Exam) are compared to determine the evolution of interaction 

activity patterns in the high-achievement group. The same analysis is also conducted on the two 

models of the low-achievement group. Then, the interaction activity evolution of both two 

groups is detected, which answers research questions 3 and 4. 
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CHAPTER 4: RESULTS     

In this chapter, I first take the dataset of “High-Learning” as an example to describe how 

to identify the BIC value, and how to interpret the values of three HMMs measures (Initial 

probability vector π, Transition probability matrix, A, and Output probability matrix, B) based on 

the real interaction practice. Second, the results of four research questions are reported. 

Interpretations of HMMs Results 

The first three models from datasets of High-Learning, Low-Learning, and High-Exam 

each have 4 states; the last model from the Low-Exam dataset has 3 states. I discuss the models 

in detail to demonstrate the HMM structure and BIC measures.  

HMMs of High-achievement Group in Learning Weeks 

BIC measures in Table 2 indicate that the best number of hidden states in the High-

achievement group in Learning weeks is 4; it is because when the number of hidden states is 4, 

HMM derived the smallest value of BIC (-128280). 

Table 2. BIC measures of High-achievement group in Learning weeks 

 

Values of vector π in Table 3 show the chance that High-achievement learners engaged in 

each state in Learning weeks: 30.5% on State 1, 4% on State 2, 62.5% on State 3, and 3% on 

State 4. 
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Table 3. HMMs initial probability vector (π) of High-Learning 

 State 1 State 2 State 3 State 4 

Π 0.305 0.04 0.625 0.03 

Table 4 shows the transition probabilities among each activity state of High-achievement 

learners. The values in bold indicate the most likely transitions from a particular state to other 

states. 

Table 4. HMMs transition probability matrix (A) of High-Learning 

A State 1 State 2 State 3 State 4 

State 1→ 0.594 0.006 0.4 0 

State 2→ 0.617 0.003 0.312 0.068 

State 3→ 0 0.058 0 0.942 

State 4→ 0 0.99 0.01 0 

 

Based on the output probabilities in Table 5 (Please see the content in bold), frequent 

interaction activities in State 1 are Content, and Assignment & Quiz; the former took High-

achievement learners 31.6% of engagement in State 1, the latter took them 48.7% of engagement 

in State 1; thus, we can define State 1 as Learning & Checking State. Similarly, State 2 is Forum 

(92.2%) State; State 3 is Performance statement (93.8%) State; State 4 is Group learning (99.1%) 

State. The values indicate the proportion of engagement that High-achievement learners spent on 

the activities in each certain State, which is the reason to define the State.  

Table 5. HMMs output probability matrix (B) of High-Learning 

B State 1 ↓ State 2 ↓ State 3↓ State 4 ↓ 

01  Introduction & Announcement 0.04 0.002 0.001 0.001 

02 Content 0.316 0 0 0 
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03 Resource 0.058 0 0 0 

04 Assignment & Quiz 0.487 0 0 0 

05 Performance statement 0 0 0.938 0 

06 Forum 0 0.922 0 0.008 

07 Group learning 0.086 0.076 0.06 0.991 

08 Course evaluation 0.013 0 0 0 

 

Figure 1 is a complete HMMs structure of High-achievement group based on Table 3, 4, 

and 5 (only the values in bold are included in the figure). Figure 1 shows that: 1) High-

achievement learners started from State 1 (Learning & Assignment State); there is a 59.6% 

probability for High-achievement learners to remain in State 1 to keep learning course content, 

and 40% probability to transition to State 3 to check their performance statement. Furthermore, 

in State 1, learners engaged more in taking assignments and quizzes than in learning course 

content. 2) After learners transited to State 3 (Performance statement State), 93.8% of their 

engagement was in checking their own and their peers’ performances. 3) Then, they transited to 

State 4 (Forum State) and almost totally engaged in the discussion. 4) After discussion, learners 

transited to S2 (Group learning state), and 92.2% of their engagement was in conducting group 

learning. 5) Then, they mainly transited back to S1 and S3.  

Although there are four activity states in the model of the High-achievement group in 

Learning weeks, learners did not distribute their learning engagement evenly. They engaged most 

in S3 (62.5%) to check their performance statements, but only 30.5% in S1 to learn the content 

and assess their learning. Furthermore, they engaged less both in S3 (4%) to conduct group 

learning and in S4 (3%) to engage in discussions, even though group learning is one of the 

compulsory course plans, and discussions are always encouraged by the course instructor.  
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S1 (30.5%): 

Content (31.6% of S1 

time) 

Assignment & Quiz 

(48.7% of S1 time)

S2 (4%): 

Group learning 

(92.2% of S2 time)

S3 (62.5%): 

Performance 
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(93.8% of S3 time)

S4 (3%): 

Forum 

(99.1% of S4 time)
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Figure 1. HMM of High-achievement group in Learning weeks 

HMMs of Low-achievement Group in Learning Weeks 

BIC measures in Table 6 indicate that the best number of hidden states in the Low-

achievement group in Learning weeks is 4 because HMM derived the smallest value of BIC (-

33952.48376) when the number of hidden states is 4.  

Table 6. BIC measures of Low-achievement group in Learning weeks 

 

 

Values of vector π in Table 7 show the chance that Low-achievement learners engaged in 

each state in Learning weeks: 2% on State 1, 0.3% on State 2, 74.1% on State 3, and 23.6% on 

State 4. 
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Table 7. HMMs initial probability vector (π) of Low-Learning 

 State 1 State 2 State 3 State 4 

Π 0.02 0.003 0.741 0.236 

Table 8 shows the transition probabilities among each activity state of Low-achievement 

learners. The values in bold indicate the most likely transitions from a particular state to other 

states. 

Table 8. HMMs transition probability matrix (A) of Low-Learning 

A State 1 State 2 State 3 State 4 

State 1→ 0.007 0.993 0 0 

State 2→ 0.009 0.293 0.016 0.682 

State 3→ 0 1 0 0 

State 4→ 0.059 0 0.35 0.591 

 

Based on the output probabilities in Table 9 (Please see the content in bold), frequent 

interaction activities in State 1 are Performance statement, and Forum; the former took Low-

achievement learners 63% of engagement in State 1, the latter took them 35.7% of engagement 

in State 1; thus, State 1 is defined as Performance and Forum State. Similarly, State 2 is Forum 

(83.3%) State; State 3 is Performance statement (99.4%) State; State 4 is Assignment & Quiz 

(33.2%) and Forum (36.1%) State. The values indicate the proportion of engagement that Low-

achievement learners spent on the activities in each certain State.  

Table 9. HMMs output probability matrix (B) of Low-Learning 

B State 1 ↓ State 2 ↓ State 3↓ State 4 ↓ 

01  Introduction & Announcement 0.007 0 0.002 0.024 

02 Content 0.003 0 0.002 0.194 
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03 Resource 0.003 0 0.001 0.033 

04 Assignment & Quiz 0 0 0 0.332 

05 Performance statement 0.63 0 0.994 0 

06 Forum 0 0.167 0 0.361 

07 Group learning 0.357 0.833 0 0.049 

08 Course evaluation 0 0 0 0.007 

 

Figure 2 is a complete HMMs structure of Low-achievement group in Learning weeks 

based on Table 7, 8, and 9 (only the values in bold are included in the figure). Figure 2 shows 

that: 1) Low-achievement learners started from State 1 (Performance and Forum State); there is a 

99.3% probability for Low-achievement learners to transition to State 2 to discuss some topics in 

Forum. 2) In State 2, 83.3% of learners’ engagement was in discussion. There is 29.3% 

probability for Low-achievement learners to remain in State 2 to keep their discussion, and 

68.2% probability to transition to State 4. 3) In State 4, 33.2% of learners’ engagement was in 

conducting assignments and quiz, and 36.1% of learners’ engagement was in the forum. Then, 

there is a 59.1% probability for Low-achievement learners to remain in State 4, and 35% 

probability to transition to State 3. 4) 99.4% of learners’ engagement was in checking their own 

and peers’ performance. There is a 100% probability for Low-achievement learners to remain in 

State 3. 

Learners in Low-achievement group in Learning weeks did not distribute their learning 

engagement evenly. They engaged most in S3 (74.15%) to check their performance statements, 

but only 23.6% in S4 to do the assignments and quiz as well as participating in the forum. 

Furthermore, they engaged much less both in S1 (2%) to check performance and forum, and in 
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S4 (0.3%) to engage in discussions. In the four states in the model, there is no evidence for these 

learners to learn and review the course content.  

S1 (2%): 

Performance 

statement (63% of 

S1 time)

Forum (35.7% of S1 

time)

S2 (0.3%): 

Forum (83.3% of S2 

time)

S3 (74.1%): 

Performance 

statement

(99.4% of S3 time)

S4 (23.6%):

 Assignment & Quiz 

(33.2% of S4 time) 

Forum

(36.1% of S4 time)

68.2%

35%99.3%

29.3% 59.1%100%

 

Figure 2. HMM of Low-achievement group in Learning weeks 

HMMs of High-achievement Group in Exam Weeks 

When the number of hidden states is 4, HMM derived the smallest value of BIC (-

69788), therefore, the best number of hidden states in the High-achievement group in Exam 

weeks is 4 (Please see BIC measures in Table 10). 

Table 10. BIC measures of High-achievement group in Exam weeks 

 

Values of vector π in Table 11 show the chance that High-achievement learners engaged 

in each state in Exam weeks: 52,8% on State 1, 45.1% on State 2, 1% on State 3, and 1.1% on 

State 4. 
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Table 11. HMMs initial probability vector (π) of High-Exam 

 State 1 State 2 State 3 State 4 

Π 0.528 0.451 0.01 0.011 

Table 12 shows the transition probabilities among each activity state of High-

achievement learners. The values in bold indicate the most likely transitions from a particular 

state to other states. 

Table 12. HMMs transition probability matrix (A) of High-Exam 

A State 1 State 2 State 3 State 4 

State 1→ 0.636 0.364 0 0 

State 2→ 0 0 0 1 

State 3→ 0.822 0.178 0 0 

State 4→ 0 0 1 0 

 

Based on the output probabilities in Table 13 (Please see the content in bold), frequent 

interaction activities in State 1 are Content, and Assignment & Quiz; the former took High-

achievement learners 53.6% of engagement in State 1, the latter took them 35% of engagement 

in State 1; State 1 was defined as Learning & Checking State. Similarly, State 2 is Performance 

statement (99%) State; State 3 is Group learning (99%) State; State 4 is Forum (99%) State. The 

values indicate the proportion of engagement that High-achievement learners spent on the 

activities in each certain State in Exam weeks.  

Table 13. HMMs output probability matrix (B) of High-Exam 

B State 1 ↓ State 2 ↓ State 3↓ State 4 ↓ 

01  Introduction & Announcement 0.016 0.01 0.01 0 

02 Content 0.536 0 0 0 
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03 Resource 0.088 0 0 0.01 

04 Assignment & Quiz 0.35 0 0 0 

05 Performance statement 0 0.99 0 0 

06 Forum 0 0 0.99 0 

07 Group learning 0.01 0 0 0.99 

08 Course evaluation 0.016 0.01 0.01 0 

 

Figure 3 is a complete HMMs structure of the High-achievement group in Exam weeks 

based on Tables 11, 12, and 13 (only the values in bold are included in the figure). Figure 3 

shows that: 1) High-achievement learners started from State 1 (Learning & Checking State.); 

there is a 63.6% probability for High-achievement learners to remain in State 1 to keep learning 

course content, and 36.4% probability to transition to State 3 to check their performance 

statement. Furthermore, in State 1, learners engaged more in learning course content than in 

taking assignments and quizzes. 2) After learners transited to State 2 (Performance statement 

State), 99% of their engagement was in checking their own and their peers’ performances. 3) 

Then, they transited to State 4 (Forum State) and almost totally engaged in the discussion. 4) 

After discussion, learners transited to S3 (Group learning State), and 99% of their engagement 

was in conducting group learning. 5) Then, there is 82.2% probability for High-achievement 

learners to transited back to State 1 and 17.7% probability to transition to State 2. 

Learners in the High-achievement group in Learning weeks engaged most in S1 (52.8%) 

to review their course content and assignments, and S2 (45.1%) to check their performance 

statements. They engaged much less in S3 (1%) to conduct group learning and in S4 (1.1%) to 

engage in discussions when preparing the final exam.  
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S1 (52.8%): 

Content (53.6% of S1 

time) 

Assignment & Quiz

(35% of S1 time)

S2 (45.1%): 

Performance 

statement

(99% of S2 time)

S3 (1%): 

Group learning 

(99% of S3 time)

S4 (1.1%): 

Forum (99% of S4 

time)

100%

100%36.4%

82.2%63.6%

17.8%

 

Figure 3. HMM of High-achievement group in Exam weeks 

HMMs of Low-achievement Group in Exam Weeks 

When the number of hidden states is 3, HMM derived the smallest value of BIC (-

99999.09331) (Please see BIC measures in Table 14). Therefore, the best number of hidden 

states in the High-achievement group in Learning weeks is 4.  

Table 14. BIC measures of Low-achievement group in Exam weeks 

 

Values of vector π in Table 15 show the chance that Low-achievement learners in Exam 

weeks engaged in each state: 8% on State 1, 85% on State 2, 7% on State 3. 

Table 15. HMMs initial probability vector (π) of Low-Exam 

 State 1 State 2 State 3 

Π 0.08 0.85 0.07 

-1512.474031

-99999.09331

-99999 -99999 -99999

-150000

-100000

-50000

0

0 1 2 3 4 5 6 7

B
IC

Number of hidden states of Low-Exam



72 
 

 
 

Table 16 shows the transition probabilities among each activity state of Low-achievement 

learners. The values in bold indicate the most likely transitions from a particular state to other 

states. 

Table 16. HMMs transition probability matrix (A) of Low-Exam 

A State 1 State 2 State 3 

State 1→ 0.749 0.251 0 

State 2→ 0 0 1 

State 3→ 1 0 0 

 

Based on the output probabilities in Table 17 (Please see the content in bold), frequent 

interaction activities in State 1 are Resource and Group learning; the former took learners 29.1% 

of engagement in State 1, the latter took them 54.3% of engagement in State 1. State 2 is 

Performance statement (100%) State; State 3 is Forum (100%) State. The values indicate the 

proportion of engagement that Low-achievement learners spent on the activities in each certain 

State in Exam weeks.  

Table 17. HMMs output probability matrix (B) of Low-Exam 

B State 1 ↓ State 2 ↓ State 3↓ 

01  Introduction & Announcement 0 0 0 

02 Content 0.083 0 0 

03 Resource 0.291 0 0 

04 Assignment & Quiz 0.083 0 0 

05 Performance statement 0 1 0 

06 Forum 0.543 0 0 

07 Group learning 0 0 1 
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08 Course evaluation 0 0 0 

 

Figure 4 is a complete HMMs structure of the Low-achievement group based on Tables 

15, 16, and 17 (only the values in bold are included in the figure). Figure 4 shows that: 1) Low-

achievement learners started from State 1 (Resource and Group learning State.); there is a 74.9% 

probability for Low-achievement learners to remain in State 1, and 25.1% probability to 

transition to State 2 to check their performance statement. 2) After learners transited to State 2 

(Performance statement State), 100% of their engagement was in checking their own and their 

peers’ performances. 3) Then, they transited to State 3 (Forum State) and totally engaged (100%) 

in the discussion. 4) After discussion, learners transited back to S1 (Group learning state).  

Learners of the Low-achievement group in Exam weeks engaged most in S2 (85%) to 

check their performance statements, but only 8% in S1 and 7% in S3. 

S1 (8%): 

Resource (29.1% of 

S1 time) 

Group learning 

(54.3% of S1 time)

S2 (85%): 

Performance 

statement

(100% of S2 time)

S3 (7%): 

Forum

(100% of S3 time)

25.1%

100%74.9%

100%

 

Figure 4. HMM of Low-achievement group in Exam weeks 

 

Generally, no matter what observable activities associated with each state or what 

transition probabilities between each state, the differences in activity patterns between two 

achievement groups in two course-processes are very clear. The differences of the High-

achievement group between two course-processes are more in transition probabilities rather than 

observable activities associated with each state. But the patterns of Low-achievement group in 
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two course-processes are very different in each activity state. The only engaging activity crossing 

the four patterns in two achievement groups and two course-processes is Performance statement, 

which is a very interesting phenomenon. The two activities mostly ignored by all the learners are 

Introduction & Announcement and Course evaluation. 

The HMM approach offers a state-based analysis of learners’ interaction activities; thus, 

the patterns of the two achievement groups in two course-processes are based on the different 

parameters in Figure 1, 2, 3, and 4, and these findings are interpreted to answer the four research 

questions proposed in this study.  

Research Question 1: High-Learning V.S. Low-Learning 

The most obvious difference between activity patterns of two groups in Learning weeks 

is the observable frequent activities associated with each state, the distributions of engagement 

chance, and the transition characteristics (Please see Table 18, Figure 1, and 2).  

Table 18. Distribution of major activities of two groups in Learning weeks 

 State 1 State 2 State 3 State 4 

Initial probability of 
each state 

30.5% 4% 62.5% 3% 

High-Learning Content (31.6%) 

Assignment & Quiz 

(48.7%)  

Group learning 

(92.2%) 

Performance 

statement 

(93.8%) 

Forum (99.1%) 

Initial probability of 
each state 

2% 0.3% 74.1% 23.6% 

Low-Learning Performance 

statement (63%) 

Forum (35.7% ) 

Forum (83.3%) Performance 

statement 

(99.4% ) 

Assignment & 

Quiz (33.2%)  

Forum (36.1%) 
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High-Achievement learners started their course learning from content and assignment & 

quiz, with an approximately 60% probability that they remained in S1 to continue learning, a 

40% probability that they transited to S3 to check performance statements and a 60% probability 

of learners engaged in Learning weeks during S3. On the other hand, High-achievement learners 

did not engage in group learning and forum discussions. By reviewing the forum records and 

group learning actions, we found that High-achievement learners only regarded Forum as a tool 

to conduct their group learning in the course context in which forum is a mandatory item in the 

course plan. This also explains why they almost exclusively transited from S4 (Forum state) to 

S2 (Group learning). After group learning,), High-achievement learners primarily (61.7% 

probability) transitioned back to S1 to focus on their own learning again, and they were also 

somewhat likely (31.2% probability) to transit to S3 to check their performance statements again.   

However, Low-achievement learners conducted their learning in a very different way. 

Early in the course process, they started checking their performance statements (even there was 

no statement at the beginning of the course) and engaging in discussions in the forum. Then, they 

focused their attention on the Forum State. After that, with an approximate 70% probability, 

these learners transited to S4 to take assignments & quizzes (33.2%), and forum (36.1%), but 

with an approximate 30% probability they stayed at the forum. It can be found that, when 

remaining in S1 and S2, Low-achievement learners discussed the interesting Moodle function of 

learners’ performance statements. After they finally transited to S4, they engaged in assignments 

& quizzes, and forum with a 23.6% probability. They mostly (59.1% probability) stayed in S4 to 

focus on learning, but they still transited (35% probability) to S3 to check the performance 

statements, and then they totally stayed there with 100% probability.  
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Reviewing the pattern of Low-achievement group in Learning weeks, it can be observed 

that, none of the first three states shows evidence of engagement with course content. Far from 

High-achievement learners, Low-achievement learners seemingly did not engage in the course 

content, which may be the primary reason why Low-achievement learners did not pass the final 

exam. This pattern of data also raises the questions of when and where did the low-achievement 

learners learn the course content? Given that learning the course content is the most important 

part of the course, it is striking that these low-achievement learners showed little engagement 

with learning in their data log activities. Furthermore, Low-achievement learners engaged in 

Assignment & Quiz and Forum, but these two activities are in S4, the last state in the pattern. It 

seems that Low-achievement learners were not active in the learning process.   

The only similar state of the two achievement groups is S3 (i.e., Performance statement), 

but obviously, Low-achievement learners were more likely to check their own and their peers’ 

performance than High-achievement learners. However, this activity was not helpful for them to 

pass the course exam. Based on the Initial probability of each state, Low-achievement learners 

put more than 74% of their engagement in S3 performance statement (Please see Table 18) in 

Learning Weeks. This may be another reason why Low-achievement learners did not pass the 

final exam. 

Therefore, generally, the interaction activity patterns of High-achievement learners group 

and Low-achievement learners group are very different in Learning weeks. 

Research Question 2: High-Exam V.S. Low-Exam 

The differences between activity patterns of two groups in Exam weeks are also obvious 

(Please see Table 19, Figure 3, and 4).  
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Table 19. Distribution of major activities of two groups in Exam weeks 

 State 1 State 2 State 3 State 4 

Initial probability of 
each state 

52.8% 45.1% 1% 1.1% 

High-Exam Content (53.6%) 

Assignment & Quiz 

(35%) 

Performance 

statement 

(99%) 

Group learning 

(99%) 

Forum (99%) 

Initial probability of 
each state 

8% 85% 7%  

Low-Exam Group learning 

(54.3%) 

Resource (29.1%) 

Performance 

statement 

(100%) 

Forum (100%)  

High-achievement learners engaged in Content and Assignment & Quiz with a 52.8% 

chance. With 63.6% probability, they stayed in this state to review their learning and transited to 

checking the performance statements with 36.4% of the probability. They only took around 2% 

of their engagement in Exam weeks on Group learning and Forum; we infer that the reason for 

the transition to S3 and S4 is to review their behaviors in these two states to prepare for the final 

exam. This also explains why after the review in S3 and S4, they mostly transited (82.2% of the 

probability) back to S1 to continue reviewing the course. Also, they were still interested in 

performance statements, so they transited to S2 with 17.8% of the probability.  

Low-achievement learners engaged neither in Content nor in Assignment & Quiz, but in 

checking performance statements with 85% of their engagement in Exam weeks, which is NOT 

an item in the final exam. We found that they engaged in Forum to look for something related to 

the final exam with only a 7% chance, but almost no useful responses. S1 consists of Group 

learning (54.3%) and Resource (29.1%), which is a confusing combination of data-log evidence 

to remind the reader where the data comes from in the process of preparing for the final exam. 
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By checking the course design, we found the reason for Low-achievement learners started from 

reviewing the resource, which is because there are several simulated tests in Resource, and 

maybe they placed their hope of passing the final exam on these simulated tests. Even like this, 

they still engaged less in Resource (29.1% of S1 time), but more in Group learning (54.3% of S1 

time), and started their review from Group learning. It is hard to give a reasonable interpretation 

of what these students were trying to accomplish with this approach.  

By the comparison, we found that the pattern of High-achievement learners is effective, 

while the pattern of Low-achievement learners is hard to classify as a successful pattern, which 

implies Low-achievement learners appear more opportunistic and inactive when preparing for 

the final exam. For example, although there are several simulated tests in Resource, High-

achievement learners did not focus on these tests, but still reviewed the course content and took 

assignments & quizzes; however, Low-achievement learners only focused on these tests instead 

of reviewing over the course content with more effort; unfortunately, they can hardly be expected 

to succeed in the course by performing like this.  

Thus, the interaction activity patterns of the High-achievement learner group and Low-

achievement learner group are not the same in Exam weeks. 

Research Question 3: High-Learning V.S. High-Exam 

There is no extreme difference between the two patterns of High-achievement group in 

Learning weeks and Exam weeks. The frequent activities associated with the states are almost 

the same, as well as the distribution of engagement chance in the two course-processes (Please 

see Table 20) and the transition probabilities from S1 to Performance statement Sate, Forum 

State, Group learning State, and back to S1 and Performance statement State (Please see Figure 1 

and 3).  
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Table 20. Distribution of major activities of High-achievement group in two course-processes 

 State 1 State 2 State 3 State 4 

Initial probability of 
each state 

30.5% 4% 62.5% 3% 

High-Learning Content (31.6%) 

Assignment & 

Quiz (48.7%)  

Group learning 

(92.2%) 

Performance 

statement 

(93.8%) 

Forum (99.1%) 

Initial probability of 
each state 

52.8% 45.1% 1% 1.1% 

High-Exam Content (53.6%) 

Assignment & 

Quiz (35%) 

Performance 

statement (99%) 

Group learning 

(99%) 

Forum (99%) 

However, from the small differences of S1 between the High-Learning pattern and the 

High-Exam pattern, we can still find some meaningful information. In Learning weeks, High-

achievement learners engaged more in Performance statement State than in S1. However, in 

Exam weeks, they engaged more in S1 than in Performance statement State. Moreover, in 

Learning weeks, learners focused more on Content than on Assignment & Quiz in S1; while in 

Exam weeks, they reviewed Content more than Assignment & Quiz in S1. These two differences 

indicate that, in the learning process, High-achievement learners preferred to take Assignment & 

Quiz to consolidate their learning and build knowledge construction. But in the exam process, 

the course content is their first choice to prepare for the final exam because Assignment & Quiz 

can hardly cover all of the course content, and the final exam is based on the content instead of 

assignments & quizzes. We infer that this is an effective strategy to help them pass the final 

exam. The differences also indicate that, in order to succeed in the course, High-achievement 

learners consciously adjusted their engagement in terms of different course processes, and 
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conducted the course work with more intentional efforts instead of guessing the content of the 

final exam.  

Basically, the interaction activity pattern of the High-achievement learners group is consistent 

from Learning weeks to Exam weeks), and learners consciously adjust their engagement 

depending on different course processes. 

Research Question 4: Low-Learning V.S. Low-Exam 

Not only there are differences between the pattern of Low-achievement group and the 

pattern of High-achievement group in two course-processes, but also the patterns of Low-

achievement group themselves in two course-processes (Please see Table 21, Figure 2, and 4). 

Table 21. Distribution of major activities of Low-achievement group in two course-processes 

 State 1 State 2 State 3 State 4 

Initial probability of 
each state 

2% 0.3% 74.1% 23.6% 

Low-Learning Performance 

statement (63%) 

Forum (35.7% ) 

Forum (83.3%) Performance 

statement (99.4% ) 

Assignment & 

Quiz (33.2%)  

Forum (36.1%) 

Initial probability of 
each state 

8% 85% 7%  

Low-Exam Group learning 

(54.3%) 

Resource 

(29.1%) 

Performance 

statement 

(100%) 

Forum (100%)  

For the Low-achievement learners, the only focus remained the same in two processes is 

the engagement in checking performance statements. However, it is difficult to have a reasonable 

interpretation of the patterns of Low-achievements in two course-processes. Fortunately, these 
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patterns may be regarded as an early warning signal to remind related learners and instructors in 

this specific course. 

Unlike the pattern for the high-achievement learners, the interaction activity pattern of 

the Low-achievement learner group is not consistent from Learning weeks to Exam weeks, and 

based on the educational outcome for this group, neither of these two patterns in Learning weeks 

and Exam weeks is effective. 
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CHAPTER 5: DISCUSSIONS     

The purpose of the current study is to employ learning analytics to explore temporal and 

sequential characteristics of interaction activities at the micro-level in different achievement 

groups through different course processes and therefore identify the invisible activity patterns to 

improve learning and instruction in MPOCs settings. This chapter discusses the major findings of 

this study in regard to the research questions and relates them to previous research, and also 

discusses the paradigm shift from variable-based research to event-based research. Based on 

these discussions, the limitations of the study are highlighted to avoid overgeneralization of the 

findings, and plans for future research are discussed. 

Discussions Based on Four Research Questions 

In this study, I present an exploratory learning analytics methodology, HMMs, for 

identifying interaction activity patterns from learners’ learning traces within MPOCs context. 

Results illustrate the effectiveness of this learning analytics methodology of mining big data in 

online learning for (1) identification of activity patterns employed differentially in two 

achievement groups as well as two course processes, and (2) analysis of activity states 

distinguished by the relationship to engagement or counter-engagement status of activities.  

Key results point to the value of analysis based on achievement groups and on course 

processes. The activity patterns of High-achievement learners group and Low-achievement 

learners group are different both in Learning weeks and in Exam weeks. The activity pattern of 

High-achievement learners group is more consistent from Learning weeks to Exam weeks, but 

learners consciously adjust their engagement depending on different course processes, which 

suggests the activity pattern of High-achievement learners evolves based on different course 

processes. The activity pattern of Low-achievement learner group is not consistent from 
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Learning weeks to Exam weeks, and both of the two patterns in Learning weeks and Exam 

weeks are not effective, which means the activity pattern of Low-achievement learners may be 

inconsistent. These results support the belief that certain interaction patterns may distinguish the 

high-achievement learners from the low-achievement ones, and learners conduct their activity 

using different patterns in different course processes.  

Also, through mining invisible states behind the observable activities by HMMs, results 

indicate that some important learning activities are related to either more or less successful 

performance in MPOCs context. In particular, engagement in Content and Assignment & Quiz 

distinguished High-achievement learners from Low-achievement learners, both during the 

Learning process and Exam process. Further, over-focusing on certain activities, such as Group 

learning, Forum discussion, and Performance statement, may provide warning signs of learners’ 

low achievement in the final exam, which could be used to provide corrective feedback. In 

addition, High-achievement learners adjusted their learning strategies based on the goals of 

different course processes; low achievement learners were inactive in both learning and exam 

processes. For example, low achievement learners were used to disengaging from the course 

content, depending on other peers in learning, guessing issues in the exam, drawing exam clues 

from simulated tests and so on will NOT benefit Low-achievement learners in any course 

process.  

In addition, a particular phenomenon crossing the four patterns generated by HMMs is 

that of engagement in Performance statement, which shows strong evidence that learners care 

about their own or peers’ performance statements. Performance statements help learners to 

compare themselves with peers, and evaluate ranks in the whole learner group, which influences 

learners’ engagement and efforts in learning. Therefore, the Performance statement function in 
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LMSs can be a useful entrance to make some designs to highlight good performance, encourage 

inactive learners, provide effective suggestions, and improve learning. For example, instructors 

and designers can use data visualization to show the details of effective and ineffective 

performance and encourage learners to improve their engagement. Also, based on details of 

learners’ performances, they can design direct links and entrances of specific learning resources 

in the Performance statement function to support learners showing low performance.  

On the other side, another issue that is suggested by these findings is whether forum 

discussion and group learning are effective in MPOCs. Online discussion and group learning are 

prominent activities designed in many online courses (Chan, Hew, & Cheung, 2009; 

Gulbrandsen, Walsh, Fulton, Azulai, & Tong, 2015; Mason & Watts, 2012; O’Malley, 2012; 

Thomas, 2013). Advocates insist that online discussion can support active learning and 

knowledge building (Dillenbourg, 1999; Hew, 2015; K. A. Meyer, 2003). Similarly, many studies 

focusing on collaborative learning indicate that collaborative learning can facilitate learner 

higher-order thinking, and greater productivity; it can also help learners construct more 

supportive relationships to relieve isolation (Barkley, Cross, & Major, 2014; Gokhale, 1995; 

Mason & Watts, 2012; O’Malley, 2012). In contrast to the prior work of other researchers, the 

current finding suggests that learners engaged little in forum discussion and group learning, and 

these two activities seemed to have little effect on learners’ achievement. These results do not 

necessarily suggest negative conclusions about online discussion and group learning in terms of 

the results of this study. However, I propose a different perspective on forum discussion and 

group learning in the MPOCs context, which reminds researchers to challenge stereotypes and 

review the influence of forum discussion and group learning on MPOCs learners with particular 

characteristics.  
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Focusing on the MPOC population is a salient difference between this study and previous 

research discussed in the literature review section. For example, Perera and colleagues focused 

on 43 learners in online collaborative learning (D. Perera et al., 2009). Similarly, Martinez and 

colleagues analyzed the action patterns of 18 elementary learners in collaborative learning 

(Martinez et al., 2011). Kinnebrew and colleagues compared the interaction behaviors of 40 8th-

grade learners (Kinnebrew et al., 2013). These studies focused on a small number of learners in a 

traditional school context and employed sequential mining techniques to investigate interaction 

actions, which are very different from our study identifying activity patterns in MPOCs 

population through HMMs techniques.  

Although Jeong and colleagues also employed HMMs to investigate interaction patterns, 

the basic unit in the analysis was neither interaction activity nor interaction action; it was 

“activity-action”. In addition, they especially designed a circle including five modules to 

represent the learning process, thus, the final patterns in both performance groups are linear ones 

(Jeong et al., 2010). However, this study particularly identified interaction patterns on activity 

level, and the course was not particularly designed for any experiment. Thus, these results are 

close to the MPOCs situation in the real world, which can benefit more efficient learners and 

instructors on a larger scale.  

Implications for MPOCs  

The knowledge from this study can be used in several valuable ways.  

First, this study offers a new methodology, learning analytics, for studying invisible 

patterns based on temporal and sequential characteristics of interaction activities in MPOCs 

settings from different achievement groups. This study showed that interaction patterns can be 

effectively identified by using HMMs at the activity level. This exploration confirmed the 



86 
 

 
 

assertion that interaction patterns could be effective to identify strong learners and weak learners 

in MPOCs, which has been illustrated in other learning environments such as MOOCs, blended 

learning in higher education and K-12 contexts. This finding is particularly important in MPOCs, 

because massive learners make it difficult for instructors to identify strong learners and weak 

learners depending on their daily online behaviors. Activity patterns enable us to give concrete 

examples of patterns associated with some effective and important learning activities in MPOCs, 

which helps instructors to capture and describe learners’ performances. 

Secondly, we can identify the most salient activity patterns in different achievement 

groups and present these to instructors, then design important activities with more facilitation 

such as Content, Assignment & Quiz, Performance statement, and Group learning. Previously, 

LMSs generally aim at supporting teachers and administrators, and they provide teachers with 

many features to create, manage and administrate online courses. These functions allow them to 

include different kinds of learning activities such as content, forums, quizzes, examples, and so 

on, and facilitate administrative issues such as enrollment, grading and monitoring the learners’ 

progress and performance. Therefore, LMSs typically do not focus on examining the individual 

differences and personal needs of learners, providing a little, or in most cases, no intelligent 

support or adaptive features for learners (Graf et al., 2010). By identifying the activity patterns 

based on the learners’ traces in LMSs, more features and functions will be designed in LMSs, 

which can help instructors better understand the characteristics of learners’ interaction, and 

conduct learner-centered online courses. 

Thirdly, new efficient ways of using LMSs to achieve effective learning in MPOCs can 

be analyzed and evaluated, and then introduced to learners and instructors. Essentially, it enables 

LMSs to provide evidence-based feedback to learners during different course processes if their 
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current behavior is more likely to be associated with positive or negative performance and 

identify problems. Therefore, this feedback may also help learners to rectify ineffective activity 

patterns and consolidate effective ones. 

Further, the information provided by the current study contributes to valid learner 

learning models for adaptive learning on MPOCs and the future development of recommendation 

systems. Such as: identifying similar performances in terms of achievement, modeling learners’ 

underlying interaction behaviors with LMSs denoting different patterns, analyzing the adequacy 

of different types of learners’ learning models, and building recommendation systems based on 

different online learning groups in MPOCs. In this sense, it is necessary to conduct more 

investigation as to how LMSs can be adapted to specific learners. For that purpose, however, we 

have to gain more knowledge.  

Reflections of the Paradigm Shift of the Research Method  

Beyond the discussion of the study findings related to the four research questions, this 

study also encourages researches, educators, and administrators to reflect on the paradigm shift 

from variable-based research to event-based research in MPOCs and other settings. As 

mentioned in Chapter 2, the variable-based research paradigm focuses on the analysis of variance 

between independent and dependent variable(s); while the event-based research paradigm attends 

to interaction events and analyzes the (dynamic) relations between them. 

The foundation of variable-based research is traditional statistical approaches. The logic 

of such kind of research is Null hypothesis significance testing (NHST), which emphasizes 

whether there is a significant effect or not between variables, and whether to support or discredit 

a priori speculations about some aspect of a population based on a small size of the sample 

(Gibson & Ifenthaler, 2017). Also, how much variance in a dependent variable can be attributed 
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to one or multiple independent variables. The values of variables derive from scales, surveys, 

questionnaires, or by coding schema or counting procedures (Reimann, 2009). Because it is 

impossible to measure variables in real-time through the entire learning process, the values of the 

variables can only be static outcomes at one or some particular time point(s). Most of the online 

interaction studies before 2010 are variable-based research: therefore, the limitation of these 

studies is inevitable, which could only investigate these static variables related to interaction, but 

not focus on the interaction itself. 

However, learning is not only an outcome but also a process. In contemporary 

educational research, there is increasing attention, valuation, and inquiry devoted to the temporal 

and sequential character of interaction, providing important information in learning and 

instruction that will allow researchers to construct theories of how learners behave overtime at 

the micro-level. Therefore, it is important to realize that advanced temporal and sequential 

analysis of interaction events entails the shift from the variable-based research to the event-based 

research. By integrating the current findings with the opinions of Molenaar (2014), a number of 

challenges resulting from this paradigm shift are discussed here. 

One challenge is how to define the unit of behavioral events in interaction research. 

Currently, there is no conceptual framework to articulate different levels of interaction units to 

frame sequential characteristics within related research questions. The information about the 

interaction behaviors commonly includes access time, time spent, textual data, learner ratings, 

and other details. In an event-based research paradigm, the unit of interaction behaviors cannot 

be limited to only one dimension. In my study, the fine-grained interaction behaviors online are 

defined by two dimensions: activity and action. An interaction activity is defined as a sequence 

of learner interaction behaviors within one LMS module with learning and instructional 



89 
 

 
 

meanings such as forum, quiz, assignment, and so on. Interaction action is defined as the 

educationally meaningful typical behavior in an interaction activity such as view, delete, change, 

create, and so on. On the other hand, since human beings are subjects who perform interactions 

with other entities when decoding the secret of interaction, we cannot ignore the subjects 

conducting these behaviors, because our final purpose of decoding interaction is to investigate 

how humans learn and thereby improve human learning. Generally, the subjects can be classified 

by demographic or course information which has been generally used in previous variable-based 

research, such as learning contexts, tasks, achievements, genders, groups, and so on. In this 

study, I focus on the pattern of interaction activity based on different achievement groups in self-

learning in MPOCs, which is a challenge to combine a specific interaction unit and a certain 

subject division. This kind of strategy could be used to combine different interaction units and 

different subjects. But, a conceptual framework articulating different levels of the unit of learner 

interaction is necessary, which can enhance conceptual clarity and provide ground for mining 

different patterns of interaction events in the real-time learning process.  

A second challenge is how to divide time in the whole time span under investigation 

(Molenaar, 2014). Time is a complex construct in educational research. In previous research, 

researchers typically make artificial divisions of time, such as to divide the timeline based on key 

points (course beginning, mid-term exam, and final exam) in the course plan. Even now, in the 

event-based research emphasizing time and sequence, there is no framework accepted by most 

researchers to clarify the dimensions of time. The segmentation of time can be approached 

differently based on the level of instructional units, time units or units of time in which a 

construct is acting homogeneously (Molenaar, 2014). In this study, based on the course plan, the 

20-week course is divided into Learning weeks and Exam weeks, which is not a very detailed 
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division. This is because learning and exam are conducted with very different plans, and even 

within Learning weeks, interaction patterns may also differ within and across weeks which may 

impact differently on learners’ behaviors. A goal of future research will be to identify and better 

describe the evolution of these patterns over time. Choices of “cut-in-time” in the temporal 

analysis have important implications for the research and results (Molenaar, 2014); therefore, 

researchers need to explore and cumulate more practices to formulate clearer guidelines towards 

determining segmentations of time in the event-based research paradigm. 

 A third challenge is how to apply different methods to answer different questions 

(Molenaar, 2014). Although there are many emerging techniques in learning analytics and 

educational data mining, as was mentioned in Chapter 2, researchers are only at the beginning of 

the exploration of the effectiveness, stability, feasibility, and differences of these methods. 

Understanding the characteristics of these emerging techniques and frequently applying these 

methods in research practice can definitely enrich our understanding of which learning and 

instruction questions can be answered, and which method is most appropriate for specific kinds 

of research questions. For example, in my study, the findings suggest, for mining interaction 

patterns at the activity level in MPOCs, the temporal and sequential analysis based on HMMs 

used in the current study can be effective. If the purpose of the temporal and sequential analysis 

is to provide a description at the action level, then additional sequential mining techniques need 

to be employed to mine more details of learning interaction. 

A fourth question is how to integrate or balance research that focuses on the micro-level 

and the theory resulting from the more traditional approach at the macro-level. Currently, the 

event-based research is data-driven, and the temporal and sequential information is captured by 

LMSs at the micro-level. However, most contemporary theories explaining the relation among 
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different educational constructs are usually defined at the macro-level (Molenaar, 2014). This 

dilemma has been discussed in the literature review in Chapter 2. Most of the interaction 

research before 2010 is based on traditional theories and methods. Molenaar (2014) noted that 

the different levels of granularity between research unit and theory are a challenge for meaning-

making, and researchers have realized the need for micro-level theories to support temporal and 

sequential analysis. Combinations of the event-based research and traditional variables can help 

make connections between the macro-level theory and the micro-level event. This study does 

some exploration into this combination of macro-level theory and micro-level events. First, it 

focuses on the temporal and sequential characteristics of interaction to idenfity which meaningful 

sequences of learning activities occur during learning and instruction. Second, it combines the 

activity patterns with the final course achievement to identify which patterns of interaction 

influence course achievement. This combination connects the results from the micro-level 

analysis with contemporary theories and approaches, and makes a meaningful explanation of the 

study in the context of the contemporary research literature.  

A final challenge is how to develop new theories based on exploratory studies focusing 

on temporal and sequential characteristics of interaction events. A key limitation of employing 

contemporary theories to interpret the results from analysis focusing on temporal and sequential 

data is that these previous theories are neither derived from nor totally illustrated by these data. 

Thus, to some extent, simply linking these analyses to previous theories is challenging. Lending 

support from the theories and practices from the instructional design area may be a useful 

approach to develop new theories based on such exploratory studies. It means to effectively 

design instruction and learning at the micro-level first, then employ learning analytics 

approaches to investigate the behavior patterns in specific contexts. For example, first, to design 
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subactivities in each module in LMS; then, to tag and track learning behaviors with temporal and 

sequential information; then, to mine the patterns through data mining techniques; finally, to 

analyze the results and make comparison with the contemporary theories to develop new ones. 

The whole process needs cooperation from different stakeholders such as instructors, course 

designers, learners, technology supporters, LMSs administrators, etc, which is complex and slow. 

The online course in this study can be characterized as having weak instructional design 

characteristics. For example, there are no fine-designed activities in the course content module, 

the only actions are to read the text and watch the videos. Without designing and conducting 

activities with specific educational meanings, it is hard to build useful theories based on the 

analysis of instruction and learning behaviors. The results of this study are only an initial attempt 

to describe and evaluate the efficacy of learning analytics in mining educational meaning from 

Big Data in education, which is far from developing new theories. More efforts are needed to 

construct studies that employ event-based methods in educational research and combine event-

based methods with the variable-based approach. This may be a way to develop new theories, 

and connect them with the contemporary ones, which can ultimately enhance our understanding 

of learning and instruction. 

Limitations and Future Plans 

The current study makes the assumption that learners with different achievements 

conduct different interactivity patterns, and also learners conduct different patterns in different 

course processes. Although the results of this study appear robust, some limitations need to 

improve in future research. 

The first limitation is the construct validity issue. The results in this study are from 

comparisons of two (High/Low) achievement groups based on the grade C of the final exam, 



93 
 

 
 

which results in a construct validity issue. Generally, there are grades of A, B, C, D, and F in a 

course. It is quite possible that the genuinely high achieving learners--those who earn an A or an 

A/B--conducted their interactions differently than a group of learners with a C. Therefore, in 

order to decode how learners conduct their interaction and learning, one research plan in the 

future is to refine the classification of learners. This study only divided learners based on Grade 

C of the final exam, which does not precisely define the high achievement learner; it could be 

more useful to divide learners into different achievement groups based on Grade A, B, C, and not 

pass, and then to mine the behavior patterns more precisely.  

The second limitation is the generalization issue. The data were only from first-year 

learners in one course, one semester, one major, and one open university in China, which is not 

sufficient to conclude that certain activity patterns or learning activities are definitely correlated 

with different achievements. This may not be true for other classes in the MPOCs context. Since 

the data were only from learners in one class and one semester, the patterns could be 

substantially different in the case of other learners and other classes. For example, first-year 

learners, possibly because of their inexperience as MPOCs learners, may only engage more in 

the course content; while senior learners, because they have more experience learning in 

MPOCs, may be better able to manage their engagement, focus, and thus behave in different 

patterns. One additional important factor is unique disciplinary cultures, which is computer 

science in this study. Scholars have suggested that STEM-based reasoning, communication, and 

collaboration skills are different from those for other social science fields. In this sense, the 

personal characteristics of the learners who choose a specific major or degree may influence the 

pattern of behavior in the LMSs.  
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Furthermore, there is not any consideration in this study regarding cultural differences in 

terms of learner interaction on the MPOC settings. It has been well-documented that learners 

with diverse linguistic and cultural backgrounds showed different patterns in their participation 

in online learning. In sum, interaction patterns may vary based on various factors of learners, 

contexts, and backgrounds. Therefore, one of the next steps is to apply this research line to more 

studies in MPOCs, which legitimizes the need for more focus on the background factors of 

learner and context, such as diverse linguistic and culture, or STEM-based skills, which could 

explain the differences discovered in different studies. Moving forward, one research plan is to 

employ HMMs to investigate learners in different courses, discipline, majors, or cultures, and 

then compare the activity patterns to identify the common and particular patterns across them. 

The challenge is to explain why some interaction patterns are correlated with different 

achievements in different populations and contexts in MPOCs. 

The third limitation is the single interaction layer issue. In this study, learners’ interaction 

behaviors were defined in two levels: activity level and action level. The purpose of applying 

learning analytics methodology is to decode learners’ learning at these two levels. Based on the 

previous discussion of this research paradigm shift, this inquiry will typically involve two steps. 

The first step is to assign specific labels to the HMM states by interpreting definitions, learners’ 

engagement, and transitions by domain knowledge. The second is to investigate the interaction 

action details within each state to determine how and when learners interact with other entities at 

the action level. Therefore, in future work, it will be particularly interesting to employ additional 

learning analytics techniques to mine meaningful patterns of interaction action. Relating 

identified action patterns back to the specific context of learners’ activity could help us to gain a 
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better understanding of the relationship between learners’ interactions and 

successful/unsuccessful learning in MPOCs.  

The last limitation is the instructional design issue. In this study, there were not any 

specific instructional design features or learning strategies in this Moodle-based online course, 

Basis of Computer Applications. Also, the research design of this study is not experimental or 

quasi-experimental. However, learners adaptively regulate their cognitive and metacognitive 

behaviors during learning is a premise toward achieving success with advanced learning 

technologies (Cerezo, Sánchez-Santillán, Paule-Ruiz, & Núñez, 2016). Therefore, to improve 

this issue, we need to concern the model interpretation with more interaction details based on 

learning science and instructional design. One of the future challenges is to design more effective 

learning strategies and then explain why some learners with different interaction patterns end up 

with different achievements in MPOCs. The attempt here is to develop new theories based on the 

combination of instructional design principles and learning analytics methods. 

 

This study did not aim to develop a general solution for the MPOCs context; rather, I 

tried to derive a large set of patterns that may suggest more specific, high-level interpretations of 

learner interaction to provide more efficient and effective understanding and to support 

recommendation systems and instructors’ decisions in MPOCs. Also, with the exploration of 

future research, the experiences of event-based research will be greatly enriched, which will 

definitely contribute to the related research field. 
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APPENDICES 

APPENDIX 1: An Example of Interaction Traces in Log Files 

Event Time 
Learner with 

pseudonymID 
Activity 

Final 

Grade 

…… …… …… …… …… 

2060 2017-04-24 10:18:00 538 
Performance 
statement 

B 

2061 2017-04-24 10:18:00 538 
Performance 
statement 

B 

2062 2017-04-24 10:18:00 538 Forum B 

2063 2017-04-24 10:18:00 538 Forum B 

2064 2017-04-24 10:18:00 538 Forum B 

2065 2017-04-24 10:19:00 538 Content B 

2066 2017-04-24 10:19:00 538 Content B 

2067 2017-04-24 10:19:00 538 Content B 

2068 2017-04-24 10:19:00 538 Content B 

2069 2017-04-24 10:19:00 538 Content B 

2070 2017-04-24 10:19:00 538 Content B 

2071 2017-04-24 10:19:00 538 Content B 

2072 2017-04-24 10:19:00 538 Content B 

2073 2017-04-24 10:19:00 538 Content B 

2074 2017-04-24 10:19:00 538 Content B 

2075 2017-04-28 16:41:00 538 
Course 
evaluation 

B 

2076 2017-04-28 16:41:00 538 
Performance 
statement 

B 

2077 2017-04-28 16:41:00 538 
Performance 
statement 

B 

2078 2017-04-28 16:41:00 538 Forum B 

2079 2017-04-28 16:41:00 538 Forum B 

2080 2017-04-28 16:41:00 538 Forum B 

2081 2017-04-28 16:41:00 538 Group learning B 

2082 2017-04-28 16:41:00 538 Group learning B 

2083 2017-04-28 16:41:00 538 Group learning B 

2084 2017-04-28 16:41:00 538 Group learning B 

…… …… …… …… …… 
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APPENDIX 2: Hidden Markov Models - An Introduction1 

A consistent challenge for quantitative traders is the frequent behavior modification of 

financial markets, often abruptly, due to changing periods of government policy, regulatory 

environment and other macroeconomic effects. Such periods are known colloquially as “market 

regimes” and detecting such changes is a common, albeit difficult process undertaken by 

quantitative market participants. 

These various regimes lead to adjustments of asset returns via shifts in their means, 

variances/volatilities, serial correlation, and covariances, which impact the effectiveness of time 

series methods that rely on stationarity. In particular, it can lead to dynamically-varying 

correlation, excess kurtosis (“fat tails”), heteroskedasticity (clustering of serial correlation) as 

well as skewed returns. 

This motivates a need to effectively detect and categorize these regimes in order to 

optimally select deployments of quantitative trading strategies and optimize the parameters 

within them. The modeling task then becomes an attempt to identify when a new regime has 

occurred and adjust strategy deployment, risk management and position sizing criteria 

accordingly. 

A principal method for carrying out regime detection is to use a statistical time series 

technique known as a Hidden Markov Model[2]. These models are well suited to the task as they 

involve inference on “hidden” generative processes via “noisy” indirect observations correlated 

to these processes. In this instance, the hidden, or latent process is the underlying regime state, 

while the asset returns are the indirect noisy observations that are influenced by these states. 

                                                   
1 This artilce is from: https://www.quantstart.com/articles/hidden-markov-models-an-introduction/ 
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This article series will discuss the mathematical theory behind Hidden Markov Models 

(HMM) and how they can be applied to the problem of regime detection for quantitative trading 

purposes. 

The discussion will begin by introducing the concept of a Markov Model[1] and their 

associated categorization, which depends upon the level of autonomy in the system as well as 

how much information about the system is observed. The discussion will then focus specifically 

on the architecture of HMM as an autonomous process, with partially observable information. 

As with previous discussions on other state space models and the Kalman Filter, the 

inferential concepts of filtering, smoothing and prediction will be outlined. Specific algorithms 

such as the Forward Algorithm[6] and Viterbi Algorithm[7] that carry out these tasks will not be 

presented as the focus of the discussion rests firmly in applications of HMM to quant finance, 

rather than algorithm derivation. 

In subsequent articles, the HMM will be applied to various assets to detect regimes. 

These detection overlays will then be added to a set of quantitative trading strategies via a “risk 

manager”. This will be used to assess how algorithmic trading performance varies with and 

without regime detection. 

Markov Models 

Prior to the discussion on Hidden Markov Models, it is necessary to consider the broader 

concept of a Markov Model. A Markov Model is a stochastic state space model involving 

random transitions between states where the probability of the jump is only dependent upon the 

current state, rather than any of the previous states. The model is said to possess the Markov 

Property and is “memoryless”. Random Walk models are another familiar example of a Markov 

Model. 
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Markov Models can be categorized into four broad classes of models depending upon the 

autonomy of the system and whether all or part of the information about the system can be 

observed at each state. The Markov Model page at Wikipedia[1] provides a useful matrix that 

outlines these differences, which will be repeated here: 

 Fully Observable Partially Observable 

Autonomous Markov Chain[5] Hidden Markov Model[2] 

Controlled 
 

Markov Decision 
Process[3] 

Partially Observable Markov Decision 
Process[4] 

 

The simplest model, the Markov Chain, is both autonomous and fully observable. It 

cannot be modified by actions of an “agent” as in the controlled processes and all information is 

available from the model at any state. A good example of a Markov Chain is the Markov Chain 

Monte Carlo (MCMC) algorithm used heavily in computational Bayesian inference. 

If the model is still fully autonomous but only partially observable then it is known as a 

Hidden Markov Model. In such a model there are underlying latent states (and probability 

transitions between them) but they are not directly observable and instead influence the 

“observations”. An important point is that while the latent states do possess the Markov Property 

there is no need for the observation states to do so. The most common use of HMM outside of 

quantitative finance is in the field of speech recognition. 

Once the system is allowed to be “controlled” by an agent(s) then such processes come 

under the heading of Reinforcement Learning (RL), often considered to be the third “pillar” of 

machine learning along with Supervised Learning and Unsupervised Learning. If the system is 

fully observable, but controlled, then the model is called a Markov Decision Process (MDP). A 

related technique is known as Q-Learning[11], which is used to optimize the action-selection 

policy for an agent under a Markov Decision Process model. In 2015 Google DeepMind 
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pioneered the use of Deep Reinforcement Networks, or Deep Q Networks, to create an optimal 

agent for playing Atari 2600 video games solely from the screen buffer[12]. 

If the system is both controlled and only partially observable then such Reinforcement 

Learning models are termed Partially Observable Markov Decision Processes (POMDP). 

Techniques to solve high-dimensional POMDP are the subject of much current academic 

research. The non-profit team at OpenAI spend significant time looking at such problems and 

have released an open-source toolkit, or “gym”, to allow straightforward testing of new RL 

agents known as the OpenAI Gym[13]. 

Unfortunately, Reinforcement Learning, along with MDP and POMDP, are not within the 

scope of this article. However, they will be the subject of later articles, particularly as the article 

series on Deep Learning is further developed. 

Note that in this article continuous-time Markov processes are not considered. In quantitative 

trading the time unit is often given via ticks or bars of historical asset data. However, if the 

objective is to price derivatives contracts then the continuous-time machinery of stochastic 

calculus would be utilized. 

Markov Model Mathematical Specification 

This section, as well as that on the Hidden Markov Model Mathematical Specification, 

will closely follow the notation and model specification of Murphy (2012)[8]. 

In quantitative finance, the analysis of a time series is often of primary interest. Such a 

time series generally consists of a sequence of T discrete observations X1,…, XT. An important 

assumption about Markov Chain models is that at any time t, the observation Xt captures all of 
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the necessary information required to make predictions about future states. This assumption will 

be utilized in the following specification. 

Formulating the Markov Chain into a probabilistic framework allows the joint density 

function for the probability of seeing the observations to be written as: 

  

This states that the probability of seeing sequences of observations is given by the 

probability of the initial observation multiplied T−1 times by the conditional probability of 

seeing the subsequent observation, given the previous observation has occurred. It will be 

assumed in this article that the latter term, known as the transition function, p(Xt∣Xt-1) will 

itself be time-independent. 

In addition, since the market regime models considered in this article series will consist 

of a small, discrete number of regimes (or “states”), say K, the type of model under 

consideration is known as a Discrete-State Markov Chain (DSMC). 

Thus if there are K separate possible states, or regimes, for the model to be in at any time 

t then the transition function can be written as a transition matrix that describes the probability of 

transitioning from state j to state i at any time-step t . Mathematically, the elements of the 

transition matrix A are given by: 
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As an example it is possible to consider a simple two-state Markov Chain Model. The 

following diagram represents the numbered states as circles while the arcs represent the 

probability of jumping from state to state: 

 

Notice that the probabilities sum to unity for each state, i.e. α+(1−α)=1. The transition 

matrix A for this system is a 2×2 matrix given by:  

 

In order to simulate n steps of a general DSMC model, it is possible to define the n-step 

transition matrix A(n) as: 

 

It can be easily shown that A(m+n)=A(m) A(n) and thus that A(n)=A(1)n. This means 

that n steps of a DSMC model can be simulated simply by repeated multiplication of the 

transition matrix with itself. 
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Hidden Markov Models 

Hidden Markov Models are Markov Models where the states are now “hidden” from 

view, rather than being directly observable. Instead, there are a set of output observations, related 

to the states, which are directly visible. To make this concrete for a quantitative finance example 

it is possible to think of the states as hidden "regimes" under which a market might be acting 

while the observations are the asset returns that are directly visible. 

In a Markov Model, it is only necessary to create a joint density function for the 

observations. A time-invariant transition matrix was specified allowing full simulation of the 

model. For Hidden Markov Models it is necessary to create a set of discrete states zt∈{1,…, 

K} (although for purposes of regime detection it is often only necessary to have K≤3) and to 

model the observations with an additional probability model, p(xt∣zt). That is the conditional 

probability of seeing a particular observation (asset return) given that the state (market regime) is 

currently equal to zt. 

Depending upon the specified state and observation transition probabilities a Hidden 

Markov Model will tend to stay in a particular state and then suddenly jump to a new state and 

remain in that state for some time. This is precisely the behavior that is desired from such a 

model when trying to apply it to market regimes. The regimes themselves are not expected to 

change too quickly (consider regulatory changes and other slow-moving macroeconomic 

effects). However, when they do change they are expected to persist for some time. 
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Hidden Markov Model Mathematical Specification 

The corresponding joint density function for the HMM is given by (again using notation 

from Murphy (2012)[8]): 

 

In the first line this states that the joint probability of seeing the full set of hidden states 

and observations is equal to the probability of simply seeing the hidden states multiplied by the 

probability of seeing the observations, conditional on the states. This makes sense as the 

observations cannot affect the states, but the hidden states do indirectly affect the observations. 

The second line splits these two distributions into transition functions. The transition 

function for the states is given by p(xt∣zt-1) while that for the observations (which depend 

upon the states) is given by p(xt∣zt). 

As with the Markov Model description above, it will be assumed for the purposes of this 

article that both the state and observation transition functions are time-invariant. This means that 

it is possible to utilize the K×K state transition matrix A as before with the Markov Model for 

that component of the model. 

However, for the application considered here, namely observations of asset returns, the 

values are in fact continuous. This means the model choice for the observation transition function 

is more complex. The common choice is to make use of a conditional multivariate Gaussian 

distribution with mean μk and covariance σk. This is formalized below: 
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That is, if the state zt is currently equal to k, then the probability of seeing observation xt, 

given the parameters of the model θ, is distributed as a multivariate Gaussian. 

In order to make this a little clearer the following diagram shows the evolution of the 

states zt and how they lead indirectly to the evolution of the observations, xt: 

 

Filtering of Hidden Markov Models 

With the joint density function specified it remains to consider how the model will be 

utilized. In general state-space modeling there are often three main tasks of interest: Filtering, 

Smoothing and Prediction. The previous article on state-space models and the Kalman 

Filter describe these briefly. They will be repeated here for completeness: 

� Prediction - Forecasting subsequent values of the state 

� Filtering - Estimating the current values of the state from past and current 

observations 

� Smoothing - Estimating the past values of the state given the observations 

Filtering and smoothing are similar, but not identical. Smoothing is concerned with 

wanting to understand what has happened to states in the past given current knowledge, whereas 

filtering is concerned with what is happening with the state right now. 
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It is beyond the scope of this article to describe in detail the algorithms developed for 

filtering, smoothing and prediction. The main goal of this article series is to apply Hidden 

Markov Models to Regime Detection. Hence the task at hand becomes determining what the 

current “market regime state” the world is in utilising the asset returns available to date. Thus 

this is a filtering problem. 

Mathematically the conditional probability of the state at time t given the sequence of 

observations up to time t is the object of interest. This involves determining  p(zt∣x1:T) . As 

with the Kalman Filter it is possible to recursively apply Bayes rule in order to achieve filtering 

on an HMM. 

Bibliographic Note 

An overview of Markov Models (as well as their various categorisations), including 

Hidden Markov Models (and algorithms to solve them), can be found in the introductory articles 

on Wikipedia[1], [2], [3], [4], [5], [6], [7]. 

A highly detailed textbook mathematical overview of Hidden Markov Models, with 

applications to speech recognition problems and the Google PageRank algorithm, can be found 

in Murphy (2012)[8]. Bishop (2007)[8] covers similar ground to Murphy (2012), including the 

derivation of the Maximum Likelihood Estimate (MLE) for the HMM as well as the Forward-

Backward and Viterbi Algorithms. The discussion concludes with Linear Dynamical Systems and 

Particle Filters. 
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