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Abstract 
This research examines the mechanics of mode-III cohesive fracture by defect initiation and quasi-

static growth in both cylinder and layered systems. The analysis, which is exact, is based on the 

solution of two fundamental elasticity problems: i) a cylinder subject to an arbitrary shear on one 

end cap and an equilibrating torque on the other and, ii) a layer subject to arbitrary anti-plane shear 

traction on one surface and an equilibrating uniform traction on the other. For a particular geometry 

and defect configuration, these solutions are shown to lead to a pair of interfacial integral equations 

whose derived cohesive surface fields capture the entire defect evolution process from incipient 

growth through complete failure. The anti-plane shear separation/slip process is assumed to be 

modeled by Needleman-type traction-separation relations (e.g., bilinear, Xu-Needleman, 

frictional) characterized by a shear cohesive strength, a characteristic force length and, in the case 

of the bilinear law, a finite decohesion cutoff length and possibly other parameters as well. 

Symmetrically arrayed cohesive surface defects are modeled by a cohesive surface strength 

function which varies with surface coordinate. Infinitesimal strain equilibrium solutions, which 

allow for rigid body movement, are found by eigenfunction approximation of the solution of the 

governing interfacial integral equations. 

General features of the solutions to anti-plane shear cohesive fracture in both cylindrical and 

layered geometries indicate that quasi-static defect initiation and propagation occur under 

monotonically increasing load. For small values of characteristic force length, brittle behavior 

occurs that is readily identifiable with the growth of a sharp crack, i.e., the existence of a strong 

local stress concentration. At larger values of characteristic force length, ductile response occurs 

which is more typical of a linear “spring” cohesive surface, i.e., more distributed stress and slip 

distribution. Both behaviors ultimately give rise to abrupt failure of the cohesive surface. Results 



for the stiff, strong cohesive surface under a small applied load show consistency with static linear 

elastic fracture mechanics solutions in the literature. By superimposing a frictional part onto the 

cohesive law, the solution can be used to predict frictional response. Both decohesion and friction 

dominated cases show similar quasi-static defect propagation process, stable defect growth till a 

maximum load is reached, then defect growth becomes dynamic and unstable. However, the 

difference lies in that the friction dominated cohesive surface can still sustain certain load even 

after response becomes dynamic, but the decohesion dominated case will not. For friction 

dominated cohesive surfaces, the cylinder cases have smooth deformation processes whereas the 

layered systems experience a noticeable displacement jump. Both cylinder and layered systems 

predict the principal plane (perpendicular to principal stress direction) to be close to 45 degrees 

which helps to explain the orientation of mode-I microcracks in layered systems and the initiation 

of a spiral crack plane in cylinder geometries.  

The cohesive fracture solution to layered geometries can be extended to obtaining traction fields 

for more complicated defect geometries (array of cracks and subsurface cracks in nonuniform 

bilayer) which can be used to predict the sequence of defect propagation. The bifurcation analysis 

of the uniform two-sublayer system shows the phenomenon of non-unique slip for the same 

loading. The bifurcation analysis for the multi-sublayer system with such non-uniqueness gives an 

explanation of the asymmetric configuration. For the analysis of nonuniform multi-sublayer 

systems, no additional difficulty occurs in the problem-solving process. By studying different 

geometries and crack patterns, the current study discussed the combined effects of interlaminar 

and intralaminar crack interaction which are important in predicting the most vulnerable place in 

the system while multiple defects exist.  

  



 

 

 

Anti-plane Shear of Cylinders and Layered Systems: Cohesive Fracture and 

Instability 

 

 

By 

Yueming Song 

 

B.S., Dalian University of Technology, 2014 

 

 

 

Dissertation 

Submitted in partial fulfillment of the requirements for the degree of  

Doctor of Philosophy in Mechanical and Aerospace Engineering 

 

 

 

Syracuse University 

August 2020 

  



 

 

 

 

 

 

Copyright © Yueming Song 2020 

All Rights Reserved 

 



V 
 

Acknowledgements 
Firstly, I would like to show my deepest gratitude to Dr. Alan Levy who has been an excellent 

academic advisor, life mentor and friend. His dedication to work, patience to colleagues and 

sincerity to friends encourage me to follow his example. 

I also want to express my gratitude Dr. Barry Davidson, Dr. Eric Lui, Dr. Teng Zhang, Dr. Zhao 

Qin and Dr. Wanliang Shan for serving in my committee and overcoming all the difficulties and 

inconvenience in holding a defense through online meeting. 

My achievement cannot be separated from the support of my family. They cultivated my desire to 

embrace other cultures, respected my choice of studying abroad and free me from all kinds of 

worries that most young people like me are dealing with. 

I also want to thank all my friends and colleagues whoever helped me in my research or my daily 

life. I would like to give special thanks to Mengyi Zhang, a smart beautiful young lady with strong 

will, she greatly boosts the abundance and colorfulness of my life.  

Finally, it is such an unforgettable memory to graduate during the COVID-19 pandemic. Even 

though there are inconvenience, pities and even disappointments, I hold the belief that knowledge 

will defeat ignorance, impartiality will overcome prejudice, truth will reveal lies, voice of reason 

will overwhelm irrationality. Despite all odds, we will defeat the virus and return to normal in the 

near future. 

  



VI 
 

Table of Contents 
Acknowledgements ........................................................................................................................ V  

1. Introduction ................................................................................................................................. 1  

2. Literature Review........................................................................................................................ 5  

2.1 Fracture mechanics in mode-III ............................................................................................ 5  

2.1.1 Static crack solutions ..................................................................................................... 5  

2.1.2 Experimental work ....................................................................................................... 12  

2.1.3 Numerical simulation ................................................................................................... 15  

2.2 Cohesive zone models (CZM) ............................................................................................ 17  

2.2.1 General structure and parameter characterization of cohesive laws ............................ 18 

2.2.2 The piecewise linear law .............................................................................................. 20 

2.2.3 The Xu-Needleman law ............................................................................................... 23  

2.2.4 Cohesive force laws with friction ................................................................................ 26  

2.3 Cohesive fracture mechanics .............................................................................................. 28  

2.3.1 Static defect solution .................................................................................................... 28  

2.3.2 Finite element simulations ........................................................................................... 29  

2.4 Linear and Nonlinear Integral Equations; Eigenfunction Expansions ................................ 30  

2.4.1 Linear integral equations.............................................................................................. 30  

2.4.2 Nonlinear Fredholm integral equations of the second kind ......................................... 33 

2.5 Integral equation formulations of cohesive fracture problems ........................................... 34 



VII 
 

3. Instability and Cohesive Fracture of a Torqued Cylindrical Bar .............................................. 40 

3.1 Elastic fields for arbitrary shear loading ............................................................................. 43 

3.2 Interfacial integral equations............................................................................................... 47  

3.3 The uniform cohesive surface; cohesive surface stability .................................................. 50 

3.4 Center, edge and annular defect growth in uniform and bi-cylinders ................................. 52 

3.5 Principal stress and mode-I micro cracks ........................................................................... 64  

3.6 Characterization of frictional cohesive surface and corresponding response ..................... 68  

4 Instability and Cohesive Fracture of the Two-Sublayer System ............................................... 72 

4.1 Elastic fields for arbitrary shear loading ............................................................................. 72 

4.2 Interfacial integral equations............................................................................................... 75  

4.3 The uniform cohesive surface; surface stability ................................................................. 78  

4.4 Center and edge defect fields in uniform two-sublayer ...................................................... 81 

4.5 Center defect fields in materially nonuniform bilayer ........................................................ 88  

4.6 Linear array of defects and sequence of defect propagation ............................................... 89 

4.7 Defect propagation process ................................................................................................. 94  

4.8 Maximum principal stress and mode-I micro cracks .......................................................... 97  

4.9 Characterization of frictional cohesive surface and corresponding response ................... 100  

5 Instability and Cohesive Fracture of the General N-Sublayer System .................................... 102 

5.1 Interfacial integral equations............................................................................................. 102  

5.2 Instability and asymmetric deformation in the multi-sublayer system ............................. 104 



VIII 
 

5.2.1 Instability and asymmetric deformation of uniform tri-sublayer system ................... 104 

5.2.2 Instability and asymmetric deformation of uniform four-sublayer system ............... 110 

5.2.3 Instability and asymmetric deformation of the nonuniform tri-sublayer system ....... 113 

5.3 Crack interaction and shielding in the tri-sublayer system ............................................... 118 

5.3.1 Single-single defect, varying middle layer thickness ( 2h ). .................................. 120 

5.3.2 Single-single defect, varying bottom defect length (
2,3 ) ......................................... 122 

5.3.3 Double-single defect, varying crack spacing. ............................................................ 124 

5.3.4 Columns of defects of identical size but variable thickness ...................................... 130 

5.4 Defect interaction and shielding in the four-sublayer system ........................................... 132 

5.4.1 Single column of defects ............................................................................................ 133 

5.4.2 Diamond pattern of defects ........................................................................................ 151 

6 Conclusions .............................................................................................................................. 166  

7 Future Work ............................................................................................................................. 173  

References: .................................................................................................................................. 178  



1 
 

1. Introduction 
Fracture mechanics gained popularity during WWII to explain failures of high strength structures 

under relatively low loading conditions [1]. These failures cannot be explained from the point of 

view of strength of materials since many cases of failure happen at loads conditions well under the 

design conditions. It is believed that micro-defects formed during manufacturing, or under service, 

lead to local stress concentrations that are responsible for structural failure under conditions when 

failure seems unlikely from a traditional strength point of view. Despite different theories and 

criteria of fracture initiation and propagation (either stress based, or energy based), obtaining the 

stress field is almost always the first priority and the basis for calculating derived physical 

quantities that describe fracture. A theoretical study of cracks in solid media under general loading, 

begins with the idea that the stress field at the tip of a crack can be decomposed into three 

components (corresponding to three types of loading as shown in Fig.1.1). These are mode-I 

(opening mode, loading is normal to the primary crack plane), mode-II (in-plane shearing mode, 

loading is parallel to primary crack plane but normal to crack front) and mode-III (anti-plane 

shearing mode, loading is parallel to both primary crack plane and crack front). In order to develop 

fundamental and consistent theories for general loading conditions, it is important to obtain 

uncoupled material properties that describe the materials’ ability to withstand a certain kind of 

loading. Note that except for mode-I fracture, the geometries and loadings given in Fig.1.1 cannot 

be used to produce uncoupled pure mode fracture testing. Of the three fracture modes,  mode-III 

fracture has received less attention from the research community because i) fracture of most 

structures under general loading are mode-I or mode-II dominated and, relatively complicated 

testing platforms are needed to create mode-III dominated fracture without introducing significant 

effects from other modes [2], ii) mode-I and mode-II fracture can be reduced to two-dimensional 

problems in which both mathematical representation and numerical treatment are implemented 
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without extra effort. However, mode-III problems are irreducible three-dimensional and difficult 

to be simplified. Problems such as the torsion of cylindrical shafts and layered composites, 

subjected to anti-plane shear traction are however mode-III dominated. Furthermore, due to the 

well-known difficulties of pure mode-III testing, exact analysis of this fracture mode is critical to 

interpreting mode-III and related mixed-mode experimental results. 

 

Fig.1.1 Fracture modes and relative loading direction [3]. 

A primary interest in the consideration of the macroscopic response of cracked structures is the 

critical load that leads to failure. Such analyses simplify the complicated phenomenon of detailed 

crack tip response by assuming the crack to be static and the crack tip to be well defined1. General 

methodologies for analyzing cracks include testing, theoretical and computational analyses of local 

crack tip fields, derivation and introduction of parameters for use in describing local fields and 

stable/unstable crack growth. Traditional linear elastic fracture mechanics (LEFM) concepts such 

as the stress intensity factor (SIF), the energy release rate (ERR), the crack tip opening 

displacement (CTOD) and the J-integral (of elastic “plastic” fracture) falls into this category [1]. 

However, the limitation of these methods includes, i) unphysical stress singularities, ii) restrictions 

to simple geometry and relatively simple material response, iii) difficulties in describing crack 

 
1 The term “crack” is used for the sharp crack of classical fracture mechanics; the term “defect” is used for the cohesive crack, i.e., 
the crack in the cohesive framework. 
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propagation processes, iv) derived quantities without real physical interpretation, etc. To resolve 

these issues, the cohesive zone was introduced by Barenblatt [4] based on the idea that the 

separation of material across a surface is governed by its own constitutive law relating force with 

the separation required to produce it. This kind of model, often micro-scale based, is applied to 

larger scales where they are interpreted phenomenologically. The cohesive fracture process is 

therefore governed by specific cohesive relations (cohesive force laws) that are analogous to the 

stress-strain relations of bulk material. The cohesive fracture framework seems to resolve many of 

the drawbacks of classical fracture mechanics of sharp cracks. However, cohesive fracture analysis 

has its own limitations such as requiring the primary fracture surface to be specified beforehand. 

The characterization of cohesive laws are not as straight forward and computational processes 

resulting from their use are often more complicated owing to the essential nonlinearity of the 

cohesive force laws. Because of this, much of the recent work involving CZM’s uses finite element 

analysis (FEA). The work described in this document avoids the finite element method in favor of 

an exact elasticity approach. The goal is not to simulate the response of the most complicated 

material models and geometries, but to analyze in detail the essential mode-III cohesive fracture 

and stability behavior of linear elastic cylinders and layers containing single or multiple nonlinear 

fracture planes. The formulation presented reduces the analysis of cohesive fracture fields and 

stability issues to the solution of a set of nonlinear integral equations governing the interfacial 

separation/slip field. Where possible exact results are given and, for cases where they are not, an 

efficient method is developed to solve the integral equations numerically. 

The following chapter (Chapter 2) is a literature review covering existing work relevant to the 

research outlined in this document, i.e., mode-III fracture (mostly the classical fracture theory and 

experimental results), an introduction to cohesive zone models and a review of certain aspects of 
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linear and nonlinear integral equations and their use in cohesive fracture analysis. Chapters 3 to 5 

presents novel solutions to two pure mode-III fracture problems: the cylindrical bar in torsion and 

the layered system subject to anti-plane shear traction. The basic approach is to solve the half 

cylinder and single sublayer component sub-problem exactly and derive the solution to interfacial 

integral equations governing cohesive fracture and stability behavior. The interfacial integral 

equations, which are necessarily nonlinear, are either solved exactly (e.g., the uniform cohesive 

surface or reduced by eigenfunction expansion (e.g., the nonuniform cohesive surface with initial 

defects) to a set of nonlinear algebraic equations which are then solved numerically by a program 

written by the author. Solutions are shown to govern a range of responses such as cohesive surface 

stability, ductile and brittle defect propagation, etc. When possible, the results are compared with 

classical sharp crack (SIF) results. Related issues such as mode-I micro cracking, multi-sublayer 

system cohesive surface stability, interlaminar and intralaminar crack interaction, crack 

propagation sequence and frictional cohesive surface response are analyzed and discussed as well. 
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2. Literature Review 
2.1 Fracture mechanics in mode-III 

Before presenting a new methodology, existing research is described to provide context and insight 

to the analysis of mode-III fracture. Traditional studies of fracture problems include, i) linear 

elastic fracture mechanics (LEFM) based static sharp crack solutions which generally produce the 

local stress field and introduce parameters that can be applied in an engineering sense for failure 

evaluation, ii) finite element simulations which can be easily set up at minimal cost compared to 

testing. It is very well suited to the analysis of more advanced problems such as elastic-plastic 

fracture, energy-based fracture, mixed-mode fracture, etc., iii) experimental work including bulk 

testing and materials characterization that reveals general behavior and microstructural details of 

the fracture surface. In this section, the application of these three approaches to mode-III fracture 

are briefly described. 

2.1.1 Static crack solutions 

A common engineering point of view is that structure will fail when the applied load exceeds the 

load limit. The local generalization of this idea is found in the science of the strength of materials 

which assumes that materials fail2 when a stress measure meets/exceeds a critical value [1]. In 

order to apply this idea, the stress field must first be obtained by solving an elasticity problem. 

Thus, an analysis of the stress field near the tip of a sharp crack must be carried out before 

exploring critical states for crack growth initiation and the growth process. For the simplest case 

of an isotropic, homogeneous and linear elastic material, mode-III fracture is associated with pure 

anti-plane shear deformation described by only one nonvanishing displacement component given 

in (x, y) coordinates by, 

 
2 The term failure as used here means excessive permanent (plastic) deformation or complete separation across a surface. 
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( , )zu u x y  (2.1) 

The stress-displacement relations3, 

( , ) ( , )
, zx zy

u x y u x y

x y
  

 
 

 (2.2) 

combined with the single nontrivial stress equilibrium equation, 

0zyzx

x y

 
 

 
 (2.3) 

yields the potential (harmonic, Laplace) equation which governs the anti-plane shear problem, 

2 ( , ) 0u x y   (2.4) 

where  2   is the Laplacian operator. 

Several analytical approaches to the solution of static crack problems lead to the determination of 

the stress intensity factor (SIF), a measure of the strength of the singularity of the crack tip stress 

field which uniquely characterizes the local behavior near the crack tip. These approaches are: a) 

complex variable methods [6], b) integral transform methods [7] and c) continuous distributions 

of dislocations methods [8]. Complex variables (along with conformal mapping [9]) were 

introduced by mathematicians in order to solve plane harmonic and biharmonic boundary value 

problems in curvilinear coordinates. Mechanicians applied this work to mode-I and mode-II crack 

problems governed by the biharmonic equation of plane elasticity, and the mode-III crack problem 

governed be the potential equation of anti-plane elasticity. Integral transforms are widely used in 

the formulation of boundary value problems of elasticity [10] as well. Many classical crack 

problems, such as an elastic plane or strip with a line crack, an elastic cylinder with an infinite or 

 
3 Note that the stresses have been nondimensionalized by the shear modulus . 
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finite radius with an axisymmetric crack, may be reduced to dual integral equations by using 

Fourier or Hankel transforms [11]. The dual integral equations can be transformed into an Abel 

integral equation which in turn can be solved exactly or reduced to a Fredholm integral equation 

[12]. Another approach to the solution of crack problems is to formulate them in terms of a set of 

Cauchy singular integral equations by employing distributions of dislocations as Green’s functions 

[13]. 

Mode-III fracture in an infinite plate. It can be shown that near-tip stress and displacement 

components for the general anti-plane problem are given by [14], 

1

1

1

1

1 1

1
cos

22

1
sin

22

2 1
sin

2

III
zy

III
zx

III
z

K

r

K

r

K
u r

 


 



 

   
 

    
 

   
 

 (2.5) 

Equations (2.5) shows that the fields are functions of local polar coordinates ( 1r and 1 , refer to 

Fig.2.1) and a parameter IIIK  (the mode-III stress intensity factor). IIIK  includes all unique 

information of the problem including crack geometry and magnitude of remote loading. The 

character of the field is approximated and controlled solely by the truncated trigonometric 

functions which imply that regardless of specific problem, the general shape of the local field is 

always the same. Note that (2.5) is accurate for the near-tip field only due to truncation of higher 

order terms and, a 1/2r  singularity is a general feature of sharp crack solutions regardless of 

fracture mode. 
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Fig.2.1 Mode-III crack of infinite plate. 

Figure 2.1 shows an infinite plate with a sharp crack of finite length subjected to remote equal and 

opposite uniform anti-plane shear tractions S. For this specific geometry it can be shown that IIIK  

is given by [1], 

IIIK S a   (2.6) 

Brittle fracture in a solid is governed by the stress field around the crack tip and the parameters 

that describe the resistance of the material to crack growth [1]. Related questions to be answered 

include the load to propagate the crack as a function of crack size, the maximum size of the crack 

as a function of applied load such that the crack remains static, etc. Note that the singularity of the 

stress components at the crack tip ( 1 0r  ) is unphysical and can cause difficulties when trying to 

use the stress field and, the stress field cannot be used directly as an indicator to determine if the 

crack will propagate or not. This is because no matter how small the applied load is, the singular 

behavior of the stresses implies that there will always be a small region close to the crack tip where 

the stresses exceed a certain finite value of material strength. In the sense of stress-based criteria 

(or a derived energy-based criteria), this indicates that a crack will propagate under vanishingly 
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small loads which cannot be true. However, brittle fracture is believed to be governed by the local 

field close to the crack tip such that only the first term in the stress field expression is enough to 

characterize it (Equation (2.5)). Regardless of different crack geometries and material properties, 

similar patterns of local stress fields are always characterized by exactly the same trigonometric 

functions depending on the fracture mode. The uniqueness of the local solution is solely captured 

by the multiplier ( IIIK ),i.e., stress intensity factor (SIF). Instead of comparing the values of 

stresses, the failure criteria can be introduced by comparing a field based IIIK  with experimental 

values of IIIK  obtained at crack growth (fracture toughness) for a certain material. It is worth 

pointing out that the derivation of SIF’s are based on linear elasticity for perfectly elastic brittle 

materials, but the application of this idea is not restricted to those circumstances. With certain 

modification, the idea can be extended to more complicated material models which give rise to 

elastic-plastic and creep crack tip fields [15]. 

Mode-III fracture in a cylindrical rod: In this problem the only one nonvanishing displacement 

component is the radius dependent circumferential displacement ( , )u u r z  . The governing 

equation is the potential equation (2.4) in cylindrical coordinates. IIIK  for a cylindrical rod with a 

ring-shaped edge crack (Fig.2.2) is given in [9], obtained by using the Hankel transformation. 
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Fig.2.2 Mode-III cylindrical bar ring-shaped crack. 

The solution for the near tip field is obtained by quintic interpolation and is given by, 

1/2

3 1/2

2 3 4 5

2 3 4 5

2 1

(2 )

3 1 3 5 35
1 0.208

8 2 8 16 128

z III

III

T ac
K

a b r

a a a a a
K

b b b b b




   
 

 
      

 

 (2.7) 

Note that, similar to the infinite plate crack problem, this solution also has a 1/2r   singularity near 

the crack tip. Apart from difficulties arising from the singular stress at the tip, an artificial 

nonvanishing stress at the cylinder axis is erroneous and basically comes from the approximation 

procedure (truncation of higher order terms). 

Mode-III fracture in bi-material and multi-crack systems: Problems involving bi-material elastic 

plates with interface cracks arise naturally from composite materials or plates with coatings (giving 

rise to a discontinuous material properties). Extensive work has been done in mode-I/II fracture of 

bi-material systems [16], [17], [18], and for these cases the crack-tip stress distribution has a

 1/2 sin
log

cos
r r  

 
 

 singularity. This is unlike that of uniform material in that it predicts 

oscillations (including material interpenetration) near the crack tip. The corresponding mode-III 
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problem was studied for the bi-material wedge [19] and the layered system [20]. These authors 

also generalized the solution to anisotropic materials by introducing an effective shear modulus 

which is defined to be a function of the anisotropic shear moduli. The layered solution was further 

generalized to the problem of mode-III cracks in tri-layer composites systems in which all three 

layers have distinct properties with SIFs given as [21] which is slightly different than that of the 

corresponding mode-I/II cases. 

1 1
0

2 32III

a
K

 
 

 
  

 
 (2.8) 

Infinite plate solutions are valid when the effect of the boundaries can be neglected, i.e., when the 

ratio of the crack length to the plate width is very small. Generally, the boundary plays a vital role 

in stress redistribution (finite domain) and crack interaction. In [14], extensive work on different 

geometries of layered systems was carried out including work on the semi-infinite plate, the finite 

plate and parabolic shaped strips. Also presented were solutions with various arrays of cracks 

including eccentric cracks, collinear cracks, arrays of cracks combining line cracks and elliptical 

cracks [14]. 

In summary, the SIF approach is popular for its simplicity of formulation and ease of use. The 

applied loading, geometric parameters are contained in one parameter KIII  which can be found, for 

many different geometries and loadings, in well-known handbooks (e.g., [14]). However, the SIF 

approach is limited by i) the stress singularity, ii) its prediction of only the close tip field and iii) 

its inability to account for growth. Regardless of these drawbacks, SIF has proved to be handy and 

accurate when the crack is sharp, and the bulk material remains linear elastic. The SIF also serves 

as a foundation for more sophisticated analyses such as small scale yielding, large scale yielding 

and plasticity, mix-mode fracture and crack dynamics as well. There have been several attempts 
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to eliminate the unphysical stress singularity which limits the applicability of the maximum-stress 

hypothesis. These entirely different approaches include: adding near tip inelasticity [22], removing 

the infinitesimal strain assumption [23] and adopting a non-local elasticity approach [24]. Another 

widely used method that is utilized in this work is to dispense with the sharp crack assumption 

altogether and employ a cohesive crack surface.  

2.1.2 Experimental work 

Unlike mode-I and mode-II testing, for which mode-I or mode-II dominant loading can be readily 

setup, pure mode-III or mode-III dominant fracture is very difficult to create in the laboratory [25], 

[26]. The reason is that testing is mostly carried out by displacement control systems, however, a 

mode-III displacement control test cannot guarantee a pure mode-III or mode-III dominant 

fracture. Thus, complicated testing platforms are required often with mixed results. To avoid 

difficulties in testing and, to extract the most general behavior of mode-III fractures, researchers 

have focused on brittle materials in two types of geometries that give rise to mode-III dominant 

behavior. These configurations are similar to that used to analyze SIFs, i.e., torsion of long slender 

cylindrical rods and layered composites. 

Mode-III fracture testing of rods. In [27] torsion tests are carried out on circular cylindrical rods 

with or without premade notches of varying shapes and sizes (Fig.2.3) and data are recorded as 

applied torque vs. twist angle. 
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Fig.2.3 Mode III torsion testing, cylindrical testing specimen with different notches [27] 

Plots of torque vs. twist angle (Fig.2.4) indicate response characterized by an initial linear elastic 

deformation followed by an approximate horizontal plateau leading to failure. Testing results also 

show that the size of the plateau is directly related to the notch shape and size such that the sharper 

the notch, the smaller the plateau. 

 

Fig.2.4 Displacement (angle) vs applied torque [27], d is cylinder diameter, R is notch radius. 
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Many post processing and data reduction methods can be used for fracture assessment. Among 

those, the most popular ones include the maximum elastic stress, the maximum elastic-plastic 

stress by Neuber’s rule [28] or, the equivalent strain energy density criterion, nominal stress at 

notch tip and averaged strain energy density [29]. This testing not only answers the question about 

the macroscopic response of the rod (large scale yielding or slip prior to failure), but also can be 

applied to mixed mode I/III fracture [30], [31]. The orientation of the fracture surface of initially 

notched PMMA rods for different mode-mixities and initial notch sizes was explored in [32]. It 

was found that the mode-III dominated loading tends to create a spiral fracture surface whereas 

for mode-I dominated loading, the fracture surface is flatter (Fig.2.5). The transition from a spiral 

to a flat fracture surface is also affected by the relative notch size. Some authors [33], [34], [35] 

speculate that the spiral fracture surface is a consequence of the merging of micro cracks which 

are oriented perpendicular to the maximum principal stress. Another phenomenon related to micro 

cracks is the factory-roof pattern observed when specimens are subjected to torsional fatigue 

testing [34]. Mode-III fatigue crack propagation was studied in [36] using circular cylinder test 

specimens made of steel. Compared with mode-I fatigue fracture, the mode-III fatigue crack 

growth rate is slower. Unlike mode-I fracture, characterized by small scale yielding, mode-III 

fracture growth has a larger plastic zone. Growth rates of low strength materials are better 

approximated by some large-scale plasticity parameters. 

 

Fig.2.5 Flat and spiral fracture surface in torsion test [32]. 
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Mode-III fracture testing of layered media. To characterize mode-III interlaminar fracture 

mechanisms of layered media, testing often utilizes beam or layered systems which are used 

extensively in mode-I/II testing. The Edge Crack Torsion (ECT) test is widely used since an almost 

pure mode-III state can be achieved with a relatively simple fixture. Studies were carried out in 

[37] as to whether the ECT test can be developed into a standard test for mode-III fracture 

toughness. Their results revealed that certain difficulties such as deviation from linearity before 

crack initiation, and dependency of the energy release rate on insert length, restrict its further 

application. There are many other commonly used tests in the literature [38] all of which are 

designed to get standard material properties governing the fracture process (e.g., fracture 

toughness, critical energy release rate). Each of the above methods however have their own 

limitations and are only applicable under certain conditions which hinders engineers from 

developing a versatile standardized testing procedure for mode-III fracture. 

2.1.3 Numerical simulation 

Experimental work yields information specific to a particular testing configuration. In order to 

interpret and generalize the results, experimental studies are often coupled to numerical 

simulations. Analytical methods may not be appropriate for this because of their limited ability to 

provide exact solutions to other than the simplest problems (mostly those involving infinite or 

semi-infinite domains with simple crack geometries). Numerical methods, however, can be 

employed to treat more complicated cases although the elegance, precision and insight of the 

analytical solution is lost. The finite element method (FEM) is currently the most popular method 

for the analysis of crack problems due to its accuracy and ease of use. Due to the strong stress 

concentration at the crack tip, finer meshing (or special element) is needed to obtain a reasonably 

accurate stress field near the crack tip. However, finer meshing means that more elements and 
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nodes are needed which increases the computational burden and takes longer times for solution 

convergence. A more sophisticated branch of FEM is fractal finite elements (FFEM). This method 

has a hierarchical mesh structure. Near the crack tip, an imagined zone containing the stress 

singularity is modeled by a successive refining mesh. Mode-III related work by FFEM is mostly 

about calculating SIFs. In [39], FFEM was employed to determine mode-III SIFs and extended 

into bi-material cracked /notched bodies subjected to anti-plane loading. Another well-developed 

FEM based numerical method (extended finite element (XFEM)) utilizes specific features from 

fracture mechanics solutions. The basic idea of XFEM is to add discontinuous special functions to 

expand the finite element space in order to capture special localized behaviors. XFEM suppresses 

the need for remeshing and improves accuracy and convergence rates. XFEM allows for arbitrary 

crack growth within an existing mesh at the cost of the restriction that the discontinuity has to be 

on the element edge. Other numerical methods such as boundary element method (BEM) and 

meshless methods have also been developed in order to obtain near tip fields. 

The numerical methods mentioned above are generally based on the assumptions of LEFM, and 

results obtained from them have proved to be accurate in comparison to classical SIF solutions 

given in handbooks or other existing testing results. Numerical analyses may circumvent the 

difficulties in the mathematical derivation of SIF’s and can be applied to more complicated 

geometries. In order to get continuous crack behavior such as crack propagation, additional 

constitutive relations that map crack surface deterioration progressively rather than in a binary 

description of intact or failed are needed. One of the most commonly used mechanisms is the 

cohesive surface governed by traction-displacement discontinuity 4  relations. This will be 

introduced in the following section. 

 
4 A normal (shear) displacement discontinuity is termed separation (slip). 
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2.2 Cohesive zone models (CZM) 

Linear elastic fracture mechanics (LEFM) has proven to be a useful tool in analyzing a wide range 

of crack problems but it has some well-known limitations. First, even for metallic materials in the 

elastic regime, a highly localized nonlinear plastic zone will develop at the crack tip. LEFM is 

applicable only when the plastic zone is within the region where the stress singularity dominates 

(K-dominant zone). Second, LEFM is based on a simplified or idealized model of a crack tip that 

is geometrically sharp and well defined (i.e., a clear boundary between separated and unseparated 

regions with no gradual transition region between them). The idealized sharp crack tip introduces 

an unphysical stress singularity which requires that its strength be used as the parameter whose 

critical value determines fracture initiation. Issues such as, a) the stability of the crack propagation 

process, b) its speed of propagation, c) the existence of critical values of crack size prior to unstable 

growth, cannot be easily answered by LEFM. Other constitutive relations or assumptions are 

needed. To handle these problems, a natural and powerful method is to replace the linear elastic 

region ahead of the sharp crack tip with a general material degrading mechanism (cohesive force 

law) governing behavior in the process zone (a small region near the crack tip where micro defects 

initiate and evolve). 

The concept of a cohesive zone was first proposed by Barenblatt [4] and Dugdale [5] in order to 

eliminate the LEFM stress singularity and to provide a separation mechanism at the crack tip. They 

suggested that two regions of surface within the fracture process zone are close enough to be 

modelled as two atomic layers held by atomic bonding forces which are separation dependent. In 

a continuum mechanics setting, this mechanism is characterized by relations between surface 

traction components and separation/slip components and, these cohesive constitutive laws are used 

to characterize the behavior in the process zone. Cohesive constitutive relations can be categorized 
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as local if they are applied near the crack tip, or global if they are applied along the entire path on 

which a crack is assumed to grow [40]. Based on their mathematical structure, cohesive laws can 

be divided into nonpotential-based and potential-based models. Nonpotential based cohesive laws 

are relations between components of cohesive surface traction, components of displacement 

discontinuity across a cohesive surface (and possibly other variables related to the fracture process) 

and can capture different kinds of surface phenomena such as friction, fatigue, time dependent 

damage, etc. The limitations of non-potential based models include, i) for mixed mode fracture, 

nonpotential based cohesive force laws cannot account for all possible separation sequences 

(sequence dependent energy dissipation), and ii) possibility of non-physical cohesive interactions, 

e.g. positive stiffness in a softening region [41], etc. Potential-based cohesive models are structured 

so that the traction is the gradient (with respect to separation or slip) of a scalar potential (Ψ). 

These relations are usually expressed in terms of component relations normal and tangent to a 

surface [42]. However, the main drawback of potential based models is that they are not suitable 

for describing irreversible material deterioration and may lead to undesirable and unphysical 

cohesive surface self-healing under cyclic loading or fatigue analysis. Other limitations include, i) 

the introduction of repulsive normal tractions in mixed-mode conditions, and ii) a complicated 

formulation with parameters that are not easy to obtain experimentally, etc. 

2.2.1 General structure and parameter characterization of cohesive laws  

Regardless of the different cohesive zone relations that have been developed in the past few 

decades, a cohesive law is generally composed of two basic branches, a quasi-linear branch and a 

softening branch. It’s worth pointing out that, i) the area below the cohesive law curve is the 

fracture energy density of the material, ii) the shape of the curve is uniquely characterized by the 

cohesive strength, the cut-off separation (if one exists), the range of action of the force law 
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(characteristic force length) and possibly other quantities related to the separation/slip process. The 

characterization of a particular cohesive force law is a complicated and laborious process including 

extensive testing, numerical simulations, verification and modification. Generally speaking, apart 

from the special methods of Digital Image Correlation (DIC) [43] and atomistic simulation [44], 

the most widely used method is an inverse problem approach [45], [46]. This can be summarized 

as, i) choosing a certain shape of cohesive relation based on experience and material type, ii) 

conducting experiments and measuring the load-displacement or load-crack opening displacement 

curve data which can be used to derive cohesive law parameters, iii) using a derived cohesive law 

in a FEA simulation to find the optimal parameters such that they are consistent with experiment 

within acceptable error. It is worth noting that there are multiple parameters characterizing a 

certain force law and some of them can be determined from testing or have recommended values 

provided by manufacturers. However, the common situation is that not all of them are independent 

from each other which means it is almost impossible to satisfy all the parameters provided at the 

same time, and some of the parameters are less important since they have little impact on the 

numerical simulation process. Certain compromises must be made such that some of the primary 

parameters are satisfied. A consensus agreed to by most researchers is that the two most important 

governing parameters are the cohesive strength (provided or recommended values can be found) 

and the fracture energy, and these two parameters are also closely related to testing. Their influence 

on FEA simulation have been studied by Peter et.al [47]. For mode-I (mode-II) fracture problem, 

standard DCB (MMB or ENF) testing and data reduction methods to obtain the critical energy 

release rate (GIc, GIIc) have been proposed. However, a standard mode-III testing configuration for 

GIIIc has not yet been standardized. Steven proposed SCB for GIIIc but the testing is restricted by 

its sensitivity to specific geometries [48]. His testing results shows that GIIIc generally doubles the 
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reported value of GIIc for the same material. Given values of primary parameters and shape of 

cohesive force law, the derived parameters can be calculated and the expression of cohesive force 

law is obtained [49].  

2.2.2 The piecewise linear law 

Barenblatt [4] and Dugdale [5] first applied a local cohesive zone to analyze brittle and elastic-

ideally plastic fracture of materials in opening mode. The basic idea is to apply a softening or 

yielding process close to the crack tip to eliminate the stress singularity. The cohesive relations 

used (Fig.2.6) are the linear softening model [38] and the constant yielding model [39]. Both are 

relatively simple phenomenological relations since straight lines are used to capture idealized 

linear softening (or yielding) response. 

 

Fig.2.6 Barenblatt linear softening cohesive zone and Dugdale ideal plastic cohesive zone. 

Due to increased computational power, more complicated cohesive relations were developed that 

are capable of capturing behaviors such as ductile and brittle fracture in uniform and bi-materials, 

interface delamination, fatigue fracture, viscous effects, etc. For these problems, the cohesive law 

is taken to apply to a finite but vanishingly thin physical interface separating two distinct materials 

or, to a uniform material containing a hypothetical predetermined surface along which a crack is 

assumed to grow. Early examples of cohesive constitutive relations are the bi-linear and 

trapezoidal laws [50].  
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Fig.2.7 Bi-linear model, trapezoidal model in opening mode. 

These are shown in Fig.2.7 for opening mode as the cohesive relation curves are in the first 

quadrant. Note that by tuning the parameters of the trapezoidal law, the bi-linear, linear softening 

or Dugdale models can be obtained. These force laws all have a finite cutoff length, i.e., the traction 

vanishes at a finite value of separation (u). The expression for the trapezoidal law is given as, 
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and four parameters (max, 1u) characterize its shape. The quantity max is the maximum 

traction the surface/interface can carry. Quantities 1andcontrol the size of the plateau (yielding 

regime) and the slope of linear and softening branches. u is the ultimate separation beyond which 

no traction can be carried signaling total failure. The fracture energy density (area below the curve) 

and initial stiffness are given as 
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respectively. Note that if 1 is set equals to  the trapezoidal model reduces to the bi-linear relation 

with =1=c. If 1==0, it reduces to linear softening model. When 1=0, =c the relation 

reduces to the Dugdale model with constant cohesive traction. 
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To differentiate normal (separation) and shear (slip) modes, the following notation is introduced. 

For displacement discontinuity in the plane, u represents the component normal to the surface 

(normal separation) while v represents the component tangent to the surface (shear slip). Normal 

(shear) traction is written as f (g). Other constitutive parameters are labeled with subscript n (t) for 

normal (shear). The normal mode cohesive relation (Fig.2.8) is a more general form than the 

opening mode relation (Fig.2.7) because it attempts to capture contact when the surface/interface 

is in compression. This is done by adding to the 3rd quadrant a very high stiffness branch. This 

approximation allows for material interpenetration, the magnitude of which can be decreased by 

increasing the slope of the branch in the compressive region. 

 

Fig.2.8 Cohesive relations in normal mode. 

The main difference between shear and normal mode is in how to interpret a negative displacement 

jump. In normal mode, a small negative separation give rise to material interpenetration which 

approximates contact. This is a totally different process than material separation. However, shear 

mode is not directionally sensitive, i.e., the sign of slip indicates the direction of relative movement 

of material above and below cohesive surface. By flipping the 1st quadrant of the force law, skew 

symmetric cohesive relations covering negative shear slip are obtained as shown in Fig.2.9. 
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Fig.2.9 Cohesive relations in shear mode. 

2.2.3 The Xu-Needleman law 

Piecewise linear cohesive laws are simple to develop and relatively easy to implement. Several 

main disadvantages limit their application. Piecewise linear laws are phenomenological, i.e., they 

are without any physical basis and, they are not smooth, i.e., the discontinuities in slope may cause 

convergence problems during computation. Furthermore, the laws are not potential based and may 

have consistency problems in mixed-mode applications such as path dependent energy dissipation. 

This is also true for polynomial type force laws of the kind used in [51]. 

Physically based cohesive relations often have an exponential character and are derived from an 

atomic potential. A normal mode universal binding law (2.11), derived from the adhesive and 

cohesive binding energies of metallic materials has been proposed in [52], [53], [54]. These 

relations have the form, 

/
max

nu

n

u
f e e 


  (2.11) 

where the two parameters (max and n) are all that are needed to characterize a unique exponential 

cohesive relation. max controls the height of the curve whereas n determines the range of action 

of the force law. By tuning these two parameters carefully, brittle and ductile cohesive surface 

responses can be obtained from one framework. Theoretically, the decohesion process terminates 
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only when the separation is unbounded. Practically, a predetermined cutoff separation value can 

be set characterizing total failure. The fracture energy density and initial stiffness are given as, 

max

max /
n
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e

E e
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An analogous potential for shear slip has been introduced in [55]. The Xu-Needleman law 

combines the distinct physically based exponential shear and normal relations into a 

phenomenological force law. The model accounts for coupling between the modes and thus can 

be used to predict failure under mixed-mode conditions [56], [57]. This potential based model can 

be expressed as, 
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The model has 5 parameters (n, n, q, t, r). The first four are related to cohesive energy densities 

in normal and shear mode and must be determined from experiment. They can be divided into two 

groups which characterize normal and shear response respectively. n and n characterize the 

normal response and related to normal cohesive strength by 2.141. The nondimensionalized 

parameter q characterizes the ratio of cohesive energy density of shear and normal mode by 2.142. 

Based on the definition, the shear cohesive energy density is related to shear direction 

characteristic length and shear cohesive strength by 2.143, 
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Another nondimensionalized parameter r is defined by, 

* / nr u   (2.15) 

u* is the value of normal separation after complete shear separation under the condition of zero 

normal traction, i.e., 0f  . In general, r is set to be vanishing since it ensures that a pure shear 

loading will not induce any normal separation. 

The force law in uncoupled form for each mode is shown in Fig.2.10 for various values of force 

length parameter. 

  

  

Fig.2.10 Uncoupled Xu-Needleman cohesive law in normal and shear modes. 
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Advantages of Xu-Needleman constitutive relation are that it is physically based and combines 

opening and shearing modes in one framework. The limitations of the Xu-Needleman constitutive 

law are i) that under total shear failure the normal traction does not vanish, ii) the parameter u* is 

ill-defined and difficult to obtain experimentally, iii) there is no finite cut-off length, which does 

not resemble macroscopic fracture behavior [42], iv) loading and unloading response of potential 

force relations gives rise to surface “healing” which is unphysical, v) material interpenetration is 

not eliminated but minimized by the high cohesive surface stiffness in compression. Other more 

complex force laws exist in the literature however these force laws have their limitations as well. 

Most of the results presented in this dissertation are for the Xu-Needleman potential force law. In 

pure shear mode, with zero normal traction, it assumes the form (Fig.2.10 b), 

2( / )
max( ) 2 / t

tg v e e       (2.16) 

The characteristic length t  in (2.16) is scaled by a factor of 2  so that maximum stress occurs 

at tv  . Thus, rewrite (2.16) as, 

20.5( / )
max( ) / t

tg v e e       (2.17) 

2.2.4 Cohesive force laws with friction 

The cohesive force laws discussed above mainly focus on the decohesion process in which the  

material interpenetration is minimized by setting a high stiffness in the 3rd quadrant of the normal 

cohesive law. This treatment suppresses the cohesive surface response when subject to 

compressive loading. However, when the problem to be studied consists of a significant amount 

of compressive load, which may induce nonnegligible friction effects, a specialized cohesive law 

which include frictional response should be used. Cohesive laws that account for friction as well 

as decohesion have been proposed in the literature [58], [59]. A simple model that separates the 
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debonding process from the friction process is given in [60]. In this work the classic Coulomb 

friction law was assumed to become active only after complete decohesion (Fig.2.11). Another 

model introducing the friction mechanism from the very beginning, i.e., before complete 

decohesion is given in [61]. 

 

Fig.2.11 Cohesive-friction model [62]. 

Recently, a nonlinear cohesive/frictional contact model for mode-II shear debonding of an 

adhesive composite joint was proposed [63] based on a modified Xu-Needleman’s exponential 

cohesive relation (Fig.2.12). Compared to previous constitutive relations, this model is built upon 

the potential based Xu-Needleman law. Since friction is affected by normal traction, a unified 

normal-shear model is more reasonable than models whose friction mechanism is based on 

uncoupled normal traction. 
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Fig.2.12 Cohesive-friction model [63]. 

2.3 Cohesive fracture mechanics 

Cohesive zone models have undergone rapid development since their introduction by Barenblatt 

[4] and Dugdale [5] almost 60 years ago. At that time they were applied to a small region near the 

crack tip and served as a local mechanism to remove the stress singularity in LEFM [4], [5] and to 

capture localized plasticity in the fracture process zone [64]. Analytical work of this type extends 

LEFM in such a way that many of the features of the classical solution still apply. The idea of 

extending these kinds of models to an entire cohesive surface was presented by Needleman in [51], 

[65], [40].Today, they are employed mostly within a finite element framework to model behaviors 

such as quasi-static [66], [67] and dynamic crack propagation [68], [69], mixed-mode fracture of 

nonlinear [70], time dependent materials [71], etc. 

2.3.1 Static defect solution 

In this dissertation a (global) cohesive zone is applied to the entire (predetermined) surface along 

which the defect is assumed to propagate. Analytical work of this kind is mostly based on 
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analyzing beams with cohesive defects ([72]). These studies apply classical beam or plate theories 

along with cohesive relations. The solutions are available for the mode-I double cantilever beam 

test [73], [74], mode-II end notch flexure test [75], and the mode-I/II mixed mode bending test 

[76]. However, most of this work is based on strength of materials theories of bending and 

relatively simple cohesive relations focusing on pre-failure response. An exact elasticity based 

theory of debonding and defect propagation has been proposed in [77], [78] which can be 

integrated with nonlinear cohesive laws. Related work of this type is cited in section 2.5. 

2.3.2 Finite element simulations 

Analytical solutions to problems employing cohesive zone models can answer fundamental 

questions about cohesive surface stability and defect propagation which help researchers have a 

better understanding of different cohesive laws and their predictions. However, analytical 

approaches are largely limited to simple geometries and relatively simple cohesive relations. For 

more complicated geometries and bulk material models, analytical solutions are exceedingly 

difficult to obtain due to mathematical complexity. Pioneering early work on FEM applied to 

cohesive surfaces involved the analysis of tensile decohesion along an cohesive surface with 

imperfections [65], modelling void nucleation processes [81] and studying dynamic crack growth 

and crack path branching [68]. Generally, two main methodologies can be found in modelling 

cohesive fracture depending on whether fracture is restricted to mesh boundaries. The first method 

restrains the crack propagation to occur between elements, branching or fragmentation is naturally 

obtained from the calculation process. Related work includes cohesive crack growth in concrete 

[82], [83], and nonuniform cohesive surface delamination analysis [40]. The other method enables 

crack growth within elements [84] which can be used to keep track of the unknown crack path. A 
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direct extension of such work is called the extended finite element method (X-FEM) [85] that has 

been developed to model arbitrary discontinuities in meshes. 

2.4 Linear and Nonlinear Integral Equations; Eigenfunction Expansions 

An integral equation is an equation in which the unknown function to be solved for occurs within 

a definite integral (Fredholm integral equation) or indefinite integral (Volterra integral equation5). 

If the unknown function occurs in linear terms then the integral equation is linear, otherwise it is 

nonlinear. Because of their centrality to this work the following subsections contain a brief review 

of these equations. 

2.4.1 Linear integral equations 

The linear Fredholm integral equation of the first kind is, 

( , ) ( ) ( )
b

a
K x y u y dy f x  (2.18) 

where u is unknown (the solution). In (2.18) K (the kernel) and f (the forcing) are prescribed. The 

more common, linear Fredholm integral equation of the second kind has the unknown function 

occurring both inside and outside the integral, i.e., 

( ) ( , ) ( ) ( )
b

a
u x K x y u y dy f x   (2.19) 

where  is an arbitrary numerical quantity called the parameter of the equation. Fredholm integral 

equations arise in many applications in mechanics [12], [86] since elliptic partial differential 

equations with Dirichlet and Neumann boundary conditions can be transformed into them. Because 

the boundary value problems that are considered in this work are of Sturm-Liouville type [87], we 

 
5 These will not be considered further as they are not relevant to the work described in this document. 



31 
 

will elaborate on the theory of linear and nonlinear Fredholm integral equations of the second kind 

with separable kernels. 

Solutions to Fredholm integral equations 

The general solution to Fredholm integral equations of the second kind can be formulated by 

successive approximation as a Neumann series [12], i.e., 
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Even though the successive approximation method has mathematical simplicity and stable 

precision improvement, the main reason that the method is not applied in this work is due to 

multiple integration processes which take most of the computation time.  

A special kind of Fredholm integral equation has a separable or Pincherle-Goursat (PG) type kernel 

which can be written as, 
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n

k k
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If we write  

( ) ( )  ( 1,2,..., )
b

k ka
Y x u x dx k n   (2.22) 

and substitute back into (2.19) the result is a series expansion for the unknown function, 
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Now multiply (2.23) by Yh(x) (h=1,2,…,n) and integrate within the domain to get, 
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This can be reduced to an algebraic system of n linear equations in n unknowns, 
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Another special kind of kernel is the symmetric kernel, K(x,y)=K(y,x), which can be written either 

as an infinite sum of eigenfunctions or, reduced to a PG kernel. For the Sturm-Liouville boundary 

value problem the corresponding kernels can be written as infinite eigenfunction expansions. The 

general solution scheme is approximation by truncation and reduction to a set of simultaneous 

algebraic equations by the orthogonality process. Assume iand i are the ith orthonormal 

eigenfunction and corresponding eigenvalue (distinct, real valued). Then the kernel and solution 

can both be written as follows, 
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where (2.261) is the bilinear formula [12]. Substitution into (2.19) yields, 
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and by orthogonality of eigenfunctions (i.e., multiply both sides by m(x) and integrate), 
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Note that m is a free index and the only nontrivial term occurs when i=j=m. The sums are 

annihilated so that, 
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The solution (2.262) is now completely determined in the form of an eigenfunction expansion. 

2.4.2 Nonlinear Fredholm integral equations of the second kind 

It has been shown that problems [78], [88] involving debonding and decohesion (see section 2.5) 

can be formulated as nonlinear Fredholm integral equations of the second kind (Hammerstein 

integral equations [12], [89]).The general form of these equations are, 

( ) ( ) ( , ) ( ( ))
b

a
u x f x K x y F u y dy    (2.30) 

where the kernel K(x,y) and forcing f(x) are given real-valued functions, F(u(x)) is a nonlinear 

function of u(x) which appears both inside and outside the integral. Commonly used solution 

techniques include direct computation method, series solution method, the Adomian 

decomposition method and successive approximation method [89]. The series solution method is 

to basically write u(x) in a Taylor series expansion which simplifies the integration of the nonlinear 

term. Adomian decomposition method applies Adomian polynomials to express nonlinear terms 

which result in decomposing the unknown function u(x) into an infinite sum of components that 

will be determined recursively through iterations. The successive approximation method (also 

called the Picard iteration method) solves integral equations by finding successive approximation 

to the solution starting from an initially guessed function u0(x). Since the kernel of our particular 

problem is of a very special kind (separable), direct computation method is employed. The 

approach reduces the nonlinear Fredholm integral equation to an infinite set of nonlinear algebraic 
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equations which can then be truncated and solved. To see this, first write an approximate truncated 

separable kernel in the form, 

1
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and substitute back into (2.30) to get, 
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Substituting (2.321) into (2.322) gives a system of n nonlinear algebraic equations governing the 

constants k. Once these constants have been obtained, they can be substituted back into (2.321) 

to obtain the spectral decomposition of the solution. Note that the method of transforming 

nonlinear Fredholm integral equations to a finite set of nonlinear algebraic equations and solving 

by Newton-Raphson method has been used to analyze cohesive surface debonding and defect 

propagation in layers [78], [80], debonding at circular cohesive surface [90], [91] and defect 

propagation at circular cohesive surface [88]. 

2.5 Integral equation formulations of cohesive fracture problems 

For cohesive fracture problems containing cohesive surfaces separating two or more subdomains, 

the cohesive surface constitutive relations which are different from bulk material constitutive 

relations lead to, i) complicated traction distribution along the cohesive surface, ii) deformation 

discontinuity across the cohesive surface (debonding), are the main focus of attention. The problem 

can be simplified by relegating nonlinearity to cohesive surface/interface6 such that exact linear 

 
6 Cohesive interface explicitly refers to a physical interface separating two media. Cohesive surface is a more general term which 
can refer to cohesive interface, or an imagined surface whose purpose is solely characterizing defect propagation within one medium. 
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elasticity solutions to the bulk media can be employed to formulate nonlinear boundary conditions 

in the form of integral equations for the cohesive surface displacement discontinuities. Since the 

method is also applied in this work, the general procedure and successful example of its application 

will be briefly introduced in this subsection. Regardless of different geometries, loading and 

cohesive relations, the procedure can be generalized in the following steps, 

1) Define component sub-problems. For composites and inclusion problems involving 

physical interface between different media, the domains of the component sub-problems 

are clearly defined by the interface where delamination or debonding would happen (shown 

in Fig.2.13 inclusion problem). However, for media with defect rather than physical 

interfaces, the cohesive surface is obtained by making an imaginary cut at the 

predetermined defect plane where defect would propagate (shown in Fig.2.13 beam 

problem). The traction on the cohesive interface or newly introduced cohesive surface by 

cut, is set to be arbitrarily distributed but satisfies the equilibrium of the component sub-

problem. 
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Fig.2.13 Cohesive fracture problem and its corresponding component sub-problem. 

2) Obtain the analytical solution of the deformation field to the component sub-problem by 

solving the corresponding boundary value problem.  

3) Integrate the two component sub-problems by applying a cohesive relation which relates 

the displacement discontinuity (deformation differences of the two constituents of the 

cohesive surface) with cohesive surface traction. Reconstruct the equations in form of 

solvable system of nonlinear integral equations. 

The nature of the problem-solving process leads to nonlinear boundary conditions in the form of 

integral equations governing the cohesive surface fields. Note that for a more general geometry or 

loading, the component sub-problem may consist of displacement discontinuity and traction in 

multiple directions. If displacement discontinuities are coupled, the mixed-mode cohesive law 

should be applied, and the formulation is rather complicated. For the pure mode-III formulation 
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described in the following chapters (uncoupled unidirectional deformation), the essential structure 

of a unidirectional cohesive fracture problem, in form of integral equations, can be written as, 

1

0

1

0

[ ]( ) ( , ) ( , ) ([ ]( ), )

( ) ([ ]( ), ) ( )

u x h x S K x g u d

L S g u f d

   

   

  

 




 (2.33) 

Equation 2.33 shows two groups of integral equations. Equation 2.331 shows that the displacement 

discontinuity [ ]( )u x  can be written as the integral of a kernel ( , )K x   and a cohesive force law 

integrand ([ ]( ), )g u   . ( , )K x   only depends on the geometry and the eigenfunctions that governs 

the problem. The integrand ([ ]( ), )g u   is the cohesive law with cohesive strength function 

characterizing initial defective and intact region. Equation 2.332 is a group of equilibrium 

equations each of which guarantees that a certain part of the system is equilibrated. S  is the 

applied traction and ( )L S  is the resultant by integrating the applied traction. Note that ( )f   is a 

geometry related function which arises from the integration of traction to get resultant. Equation 

2.33 is a relatively compact representation of the problem, the actual algebraic equations to be 

solved requires subsequent treatment including eigenfunction expansion, mode truncation, and 

orthogonality, etc. It’s worth pointing out that the two sets of nonlinear integral equations in 2.33 

are coupled and generally need to be solved simultaneously, in which case, only numerical results 

can be used. 

The use of exact elasticity solutions to analyze cohesive fracture problems was initiated and 

developed in several papers on the analysis of inclusion debonding and decohesion in different 

geometries subject to a number of different loadings (e.g., Levy, [77], [93], [94] and Levy and 

Hardikar [95]). Subsequently, the procedure was applied to layered composite systems subject to 

mode-I, mode-II loading (Chien and Levy [78], [79], [80]). Although originally developed to 
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analyze debonding/decohesion and defect growth along interfaces separating distinct materials, 

the method can be used to analyze cohesive fracture in uniform material as long as the fracture 

surface can be specified a’ priori ([78], [79], [80], [92], [96]). For the case of an interface defect 

in an inclusion-matrix system, Levy and Xie [88] analyzed the quasi-static defect growth process 

and interfacial stability (Fig.2.14). 

 

Fig.2.14 Cavity shape before and after bifurcation [88].(The term bifurcation, as in this work 
corresponds to snap cavitation.) 

Note that the methodology is quite flexible and allows for a variety of cohesive force laws. One 

example of this is the structural interface which, in its original inception consists of linear trusses 

as shown in Fig.2.15 ([97], [98]). This model was modified by Chien and Levy to account for 

nonlinearity of the truss members in order to study the rupture of atherosclerotic plaques by 

interfacial debonding [99]. In that work a biomaterial interface, consisting of discrete integrin 

receptor proteins, connected a calcified cell with the extracellular matrix. The geometry is an 

elastic half-space (the extracellular matrix or plaque cap) containing a spherical inclusion (the 
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calcification). The work revealed that when the inclusion is close to the cap-luminal boundary 

brittle interfacial decohesion precipitates an abrupt spike in circumferential stress in the thin layer 

of cap situated between the inclusion and luminal boundary. When this dynamic stress exceeds the 

cap strength, tearing occurs followed by thrombus formation and possibly infarction.  

 

Fig.2.15 Local geometry of atherosclerotic plaques and structure interface with Warren truss. 

In the following sections, a similar methodology is applied to cylinder and layered system to study 

the fundamental response of mode-III cohesive fracture. The detailed equation derivation process 

and numerical results will be presented. 
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3. Instability and Cohesive Fracture of a Torqued Cylindrical Bar7 
This chapter mainly focuses on an idealized geometry that gives rise to pure mode-III fracture. 

The exact analysis is based on the solution of two elastic slender cylinders connected to each other 

end to end by a nonlinear cohesive surface. The loadings are equal and opposite torques on the top 

end of the top cylinder and the bottom end of the bottom cylinder (shown in Fig.3.1). 

 

Fig.3.1 Cylinder model with cohesive surface. 

The solution procedure outlined in previous Section 2.5 (while limited to infinitesimal strain, linear 

elastic bulk material and axisymmetric deformation) is applicable to a wide range of problems 

including cohesive surface stability and defect initiation and growth in a number of geometries. 

Generally, three issues will determine the kind of problem that is addressed. 

i) The cohesive relation. Results based on the Xu-Needleman and bi-linear cohesive laws are 

presented and compared for certain problems. The Xu-Needleman relation in shear mode 

includes two constitutive parameters (the shear strength and a characteristic force length). 

 
7 The content of this chapter has been published in [92] 
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For problems requiring a constant shear strength m, explicit results will be obtained using 

a value of 0.018 reflecting a relatively weak cohesive surface (recall that m has been 

nondimensionalized by the shear modulus ). This particular value is obtained from the 

following m/E=0.01, m/m=0.7, =0.285 (here  (“nu”) represents Poisson’s ratio as 

distinct from which is the shear slip) that describes a cohesive surface which is slightly 

weaker in shear than in normal mode. The characteristic length has been chosen to be either 

0.01 or 0.001 where the former (latter) characterizes ductile (brittle) cohesive surface 

behavior. When the bilinear cohesive relation is used, its constitutive parameter values are 

chosen so that they conform to the Xu-Needleman model, i.e., both laws have the same 

cohesive energy, cohesive strength and critical shear slip. Frictional response is modeled 

by adding a uniform compressive traction on the composite cylinder end caps. The frictional 

cohesive law can be obtained by coupling a static friction law to the cohesive relation. 

Depending on the relative magnitude of the cohesive strength and maximum friction 

traction, decohesion dominated and friction dominated response can be modeled within the 

same framework. 

ii) Cohesive surface uniformity. Problems involving the stability of cohesive surfaces are 

analyzed with a constant ( max m   ) reflecting a uniform cohesive surface. Cohesive 

surface nonuniformities are used to distinguish the bonded region and the initial defect 

region by setting the cohesive strength max ( )x  to be a function of cohesive surface 

coordinate. The idea of a nonuniform force law with a zero cohesive strength region to 

represent a crack was first implemented in [40], [65] for the problem of an initially cracked 

straight cohesive surface separating a block from a rigid substrate. Cohesive zone analyses 

of this type have been used in other types of problems as well including defect initiation 
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and growth on a circular inclusion-matrix interface [88] and along straight cohesive surfaces 

in layered systems [78]. Apart from uniform cohesive surface, center, edge and annular 

(combination of the first two) defect geometries are studied in this chapter (Fig.3.2). 

 

Fig.3.2 Three cohesive surface defect geometries. 

iii) Material homogeneity. The only bulk material property related to the model is the shear 

modulus  . Here, the focus is on a uniform material system or, a bilayer system so that in 

the later case, the top half has shear modulus 1  and the bottom half has shear modulus 2

. This requires that an additional parameter 1 2/   be introduced. Material inhomogeneity 

within a layer will not be considered in this work. 

The solution to the cohesive fracture of a finite or infinite slender cylindrical bar in torsion unfolds 

as follows. First, the infinitesimal strain solution to a relatively long8 elastic cylinder subject to an 

 
8 The length of the cylinder is large compared to the radius. 
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arbitrary shear traction on one end and an equilibrating torque on the other is obtained by an 

eigenfunction expansion of the shear displacement field solution to the displacement equations of 

equilibrium. Next, for a nonlinear, nonuniform cohesive surface situated between two materially 

uniform cylinders, two single cylinder solutions are pieced together to obtain a nonlinear cohesive 

surface integral equation governing the cohesive surface slip field (tangential displacement jump). 

For a prescribed cohesive law, the integral equation, together with the integral equation of global 

moment balance, is solved by an eigenfunction expansion. This process yields modal equations 

governing mode multipliers of the cohesive surface shear slip field. In order to solve the equations, 

a program was written based on the Newton-Raphson method for a system of nonlinear equations 

and includes an integral solver for the numerical calculation of the mode multipliers. The shear 

slip field and corresponding interfacial traction field is obtained by post processing. 

3.1 Elastic fields for arbitrary shear loading  

The approach adopted in this work is to integrate Navier’s displacement equation directly. (This 

solution was obtained independent of that of a similar problem solved by Lurie [100] using a 

different, and more complicated, approach that employs the Boussinesq potentials of three 

dimensional elasticity [101]). The approach adopted here is more suitable for our problem because 

it yields the displacement field directly whereas the Boussinesq potentials approach yields the 

stress field. For axisymmetric torsional deformation, assume that the displacement vector has only 

the circumferential component ( , )u r z . 
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Fig.3.3 The cylinder under anti plane shear loading. 

Navier’s equation then becomes, 

2 2

2 2 2

1 1
0,   (0,1),  (0, )

u u u
u r z L

r r r r z
  


  

     
  

 (3.1) 

where all quantities with dimensions of length have been nondimensionalized by the cylinder 

radius a. The nontrivial stress components associated with the circumferential displacement 

( , )u r z  are given by, 

,  z r

u u u

z r r
  

   
  

 
 (3.2) 

Further note that all terms with dimensions of stress have been nondimensionalized by the shear 

modulus . The boundary conditions are: 

i) strong (pointwise prescribed) boundary condition of vanishing traction on the lateral 

cylindrical surface 1r . 

ii) strong (pointwise prescribed) boundary condition of prescribed shear traction on the 

surface 0z  . Note this surface is to be defined as the cohesive surface when two 

cylinders are connected. 

iii) weak (resultant prescribed) boundary condition of equilibrating torque on the upper 
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surface z L . Note this surface is to be defined as the surface where the external load is 

applied when two cylinders are connected. 

These can be formulated as follows, 

1
2

0

0

0,  1

( ),  0

( , ) ,   (semi-infinite bar) ,   (finite bar)
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u u
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 (3.3) 

where g(r) (nondimensionalized by ) is a prescribed function of radial coordinate r representing 

the arbitrary shear on one end. The torque T is nondimensionalized so that 3
02T a T . Note that 

L is nondimensionalized by the cylinder radius a and is such that 1L . This last condition ensures 

that the details of the shear traction distribution z on surface 0z  will not be significantly 

affected by the stress distribution near z L . Additionally, global moment equilibrium is ensured 

by requiring, 

1
2

0

0

( )g r r dr T  (3.4) 

The eigenvalue problem associated with equation (3.1) and (3.3) is of singular Sturm-Liouville 

type [87], and arises from the product solution ( , ) ( ) zu r z R r e 


  for the semi-infinite cylinder 

and ( , ) ( )[ sinh( ) cosh( )]u r z R r A z B z     for the finite cylinder. It is given by, 

 2 2( ) ( ) 1 ( ) 0,  (0, ]
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r R r rR r r R r r

R bounded r

R R



  

     


  

      

  (3.5) 



46 
 

where r r ,  is the separation constant and (3.51) is the Bessel equation of order 1. Note that 

(3.53) ensures the point wise satisfaction of vanishing shear tractions on the lateral cylinder surface 

(3.131). The eigenfunctions of (3.1) are, 

1

0 0 0

( ) ( ),  1,2,3,...

( ) ,  0
n n nR r C J r n

R r C r




 

 
 (3.6) 

Where J1 is the Bessel function of the first kind of order 1 and use has been made of the identity 

1( ) ( ) ( )xJ x xJ x J x     [102]. The eigenvalues are 0 0  and ,  1,2,3,...n n  where n are the 

roots of the characteristic equation 2 ( ) 0J   . The first several roots are easily shown to be, 

1 2 3 4 55.13562,  8.41724,  11.61984,  14.79595,  17.95982          (3.7) 

Since the eigenfunctions were generated from a Sturm-Liouville problem, they are orthogonal with 

respect to the weight function r. Thus, 
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 (3.8) 

The solution for the displacement ( , )u r z can now be written as, 
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where the additional boundary conditions (3.32), (3.33) have been imposed. Note that in (3.9),  

represents an arbitrary rigid body rotation and 0T is defined by
0 32

T
T

a
 , the 

nondimensionalized torque. 

The stress field follows directly from (3.3). It is interesting to note that for the semi-infinite 

cylinder the weak boundary condition of an applied torque at infinity gives rise to the stress 

distribution 04z T r  . Furthermore, when g(r)=g0r global moment equilibrium (3.4) implies that 

g0=4T0, the integral in (3.91) vanishes leaving an arbitrary rigid body rotation 0 , and the 

elementary solution of a torqued cylinder is recovered. A curious implication of the above results 

is that only the eigenfunction R0=C0r can be excited, i.e., apply g=RN(r) for some fixed N and 

obtain ( , )u r z  proportional to RN(r). This is because global equilibrium cannot be satisfied as the 

integral is identically zero by (3.82). 

3.2 Interfacial integral equations  

Nonlinear interfacial integral equations. In this subsection, solution (3.9) is employed to develop 

integral equations governing the cohesive surface shear slip field, i.e., the discontinuity in 

tangential displacement across the surface. This is done by applying (3.9) to the upper and lower 

halves of the cylinder. 

In order to obtain equations governing the shear slip field (displacement discontinuity field), first 

define the circumferential slip (circumferential displacement jump) as, 

 
0 0

( ) ( )   ( , )  ( , )Lim Lim
z z

v r u r u r z u r z  
 

    (3.10) 
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where ( )v r is nondimensionalized by cylinder radius a. The first term on the right hand side of 

(3.10) is given by (3.91) evaluated at 0z  . The second term on the right hand side of (3.10) can 

be shown to be identical to the first term provided we set, 

( , ) ( , 0, ),  ( , ) ( , 0, )K r K r z K r K r z          (3.11) 

and denote the rigid body rotation term as 0

 ( 0


) where a () indicates a field associated with 

the upper (lower) half of the cylinder. Combining (3.9), (3.10), (3.11) and letting the interfacial 

shear traction g depend on the (unknown) interfacial slip v, as well as the radial coordinate, we get, 
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v r r K r g v d

T g v d

     

   

 

  




 (3.12) 

where 2K K K K     ,       and the global equilibrium balance (3.4) has been included 

as (3.122). Provided the cohesive surface shear g and the torque 0T are prescribed, (3.12) forms a 

set of two nonlinear integral equations for two unknowns. One is the function ( )r  and the other 

is the constant, relative rigid body rotation   which is no longer arbitrary but governed by global 

equilibrium. 

Modal equations. The solution to the system (3.12) for ( )r  is sought as an eigenfunction 

expansion of the form, 

0 1
1

( )n n
n

v v r v J r




   (3.13) 

Direct substitution of (3.13) in (3.12) along with orthogonality relations (3.8) yields equations for 
the mode multipliers ,  1,2,...nv n   and constant  , 
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 (3.14) 

If a finite number of terms, say N, are taken in the sum (3.13), then (3.14), together with the 

cohesive law, represents a set of N+2 equations for the N+2 unknowns 0 1 2,  ,  ,  ,...,  Nv v v v . The 

system of nonlinear equations is solved numerically by the Newton-Raphson method [103] which 

gives an approximate solution, the accuracy of which generally increases with an increasing 

number of modes. Higher order modes with small magnitudes that are close to system precision 

(set for the process of integration) do little but introduce noise and waste computation time. The 

balance between solution precision and computational burden introduced by increasing numbers 

of modes is sought by trial and error comparison. In this section, bifurcation plots and field plots 

are obtained with 20 modes of approximation. 50 modes approximations are used to determine the 

brittle cohesive surface traction field for comparison with static crack solutions taken from the 

literature. 

Uniform linear spring cohesive surface; an exact solution. An exact, closed form solution to this 

problem can be obtained for the linear “spring” cohesive surface, i.e., g  ,   is a constant 

stiffness. Assume the solution 0r  , where 0  is constant. Then (3.121) implies that 0   

where use has been made of (3.82), (3.9), (3.11) and the fact that 2K K  . Global equilibrium 

(3.122) yields the slip 3
04 / 2 /T r Tr a    and the shear traction 3

04 2 /g T r Tr a  . 
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3.3 The uniform cohesive surface; cohesive surface stability  

A uniform cohesive surface means the cohesive law does not explicitly depend on the cohesive 

surface coordinate(s), i.e., the cohesive surface shear strength is a constant. The uniform cohesive 

surface assumption is used to study the response of weak cohesive surfaces where the effects of 

defects are negligible. Furthermore, in the uniform linear spring cohesive surface analysis, the 

system of nonlinear integral equations degenerates to one linear integral equation governing the 

classical torqued cylinder problem of linear elasticity. This can be used to check the validity of the 

numerical calculations. 

For the uniform Needleman type cohesive surface, a bifurcation plot of maximum slip ( 1)r   

versus normalized applied torque ( 0T ) for different values of force length δ is shown in Fig.3.4. A 

tangent bifurcation is seen to occur at a critical 0T  which coincides with the transition to unstable 

states of increasing separation at decreasing values of torque (and therefore failure of the cohesive 

surface). Bifurcations of this sort are not unusual for the Xu-Needleman force law [88]. However, 

the behavior indicated in the figure differs from other cases in that it does not appear to have the 

common “S” shape indicating a jump discontinuity in slip. This means that static behavior, i.e., 

the ability of the cohesive surface to support load, does not exist after the first transition. Note that 

with decreasing force length the transition becomes more brittle, i.e., cohesive surface failure 

occurs at smaller values of slip, without a significant decrease in the critical torque required to 

affect it. 
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Fig.3.4 Bifurcation plot. Shear slip ( 1)r   and torque 0T . Uniform cohesive surface. 

max 0.018  . 

 

Fig.3.5 Shear slip ( )r  and shear traction ( )r . Uniform cohesive surface. max 0.018  , 

0.01  . 

It is not surprising that under relatively small torques, the cohesive surface shear traction and shear 

slip plots follow a linear pattern since most points of the surface are within the quasi-linear branch 

of the force law (Fig.3.5). As the applied torque increases, the outer radius (with the largest shear 

slip) first enters the nonlinear zone of the force law. Once the shear slip exceeds the characteristic 

length ( ), and enters the softening branch of the force law, shear traction starts to drop as shown 

by the top curve in the shear traction field plot of Fig.3.5. This contrasts with the classical torsion 

solution and the solution for the linear spring cohesive surface. In those cases, the maximum shear 
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traction and shear slip fields are always linearly distributed so that the maximum values always 

occur at the outer radius. 

By looking at the slip plot, it turns out that a one mode approximation to the slip field, i.e., 

0r   (3.15) 

captures many features of the essential physical behavior with minimum effort. The governing 

equation can be obtained by combining (3.16) with (3.143) and the force law and integrating to 

get, 

  21/2 3 2 /2
0 max0 ( ) 2 2F T e e             (3.16) 

where  and, as defined above, T0 is a nondimensional measure of the applied torque (T) 

given by T=2a3T0. The nonlinear algebraic equation (3.16) has bifurcation points only if 

dF/d. Applying this condition leads to the critical shear slip and critical torque at bifurcation, 

0 max1.2704,  0.3115cr crT    (3.17) 

Note that this point corresponds to complete failure of the cohesive surface as it indicates the 

transition to states of increasing slip under decreasing torque (Fig.3.4). Equation (3.17) yields a 

critical normalized torque of 0 0.0056T   (provided m 0.018  ) which is a good approximation of 

the transition point in Fig.3.4. This is underscored by the fact that the single mode solution predicts 

a critical torque independent of the characteristic length which is clearly erroneous. 

3.4 Center, edge and annular defect growth in uniform and bi-cylinders 

In this subsection, cohesive surface nonuniformities in the form of initial axially symmetric center 

(penny shaped), edge (ring shaped) and annular (combination of first two) defects (Fig.3.2) are 
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considered by assuming that the cohesive strength is a function of radial coordinate in the general 

form, 

max

,   initial perfect region
( )

0,   initial imperfect region
m r

r
r





  

 (3.18) 

The nonuniform cohesive surface; the penny shape (edge) defect. In the case of the edge defect, 

(3.18) assumes the form, 

0
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  0,  1
m r

r
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 (3.19) 

where 0  is the initial core radius (normalized by cylinder radius a). In following calculations 

unless specified, we will take 0  to be 0.8. 

Figure.3.6 contains bifurcation curves for the nonuniform cohesive surface with edge defect using 

the Xu-Needleman force law and the bi-linear force law. For comparison purposes the force law 

parameters were chosen to have identical cohesive surface energy, cohesive strength and critical 

slip. The plot reveals the effect of the force law shape on the stability behavior. It is no surprise 

that the behavior predicted by the bi-linear force law is similar to that of the Xu-Needleman law 

since they share the same physical parameters (same fracture energy density, cohesive strength 

and critical slip). Furthermore, note that the smaller the characteristic force length (i.e., the more 

brittle the cohesive surface) the better the consistency between the bi-linear and Xu-Needleman 

force laws. This can be explained by the fact that the differences of bi-linear and Xu-Needleman 

exponential force law mainly are around the top of the force law maximum which represents 

material yielding. A larger yielding region in the cohesive force law will increase the discrepancy 

between the fields predicted by the two different force laws. This argument also addresses the 
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necessity for a more precise characterization of force laws when analyzing ductile cohesive 

surfaces. 

 

Fig.3.6 a) Xu-Needleman law and corresponding Bi-linear law. b) Bifurcation plots for the Xu-
Needleman and bi-linear force laws (edge defect). 

By comparison with Fig.3.4 (bifurcation plot of uniform cohesive surface), Fig.3.6 shows that 

nonuniform cohesive surfaces have a similar stability behavior (a critical torque separating stable 

and unstable branches that lead to total failure). However, unlike uniform cohesive surfaces, where 

the characteristic length has little effect on the bifurcation torque, a significant drop is observed 

for the nonuniform brittle cohesive surface. This is consistent with the common-sense idea that an 

initial defect on a brittle cohesive surface is more dangerous than on a ductile cohesive surface due 

to its higher stress concentration. 

Figure.3.7 depicts the shear slip distribution and shear traction distribution at different values of 

torque for a relatively brittle cohesive surface (small  ). Taken together the figures indicate 

behavior that is readily identifiable with sharp crack growth, i.e., a diminishing core region with 

negligible slip, and a concomitant shear traction that monotonically increases from zero at the core 

center followed by an abrupt drop off outside the core. 



55 
 

 

Fig.3.7 a) Shear slip field. b) Shear traction field. δ=0.001. 

By way of contrast, consider Fig.3.8 which depicts the shear slip/traction distributions of a more 

ductile cohesive surface (large  .  

In order to quantify quasi-static defect growth within the framework of cohesive fracture we will 

need to define the location of the defect tip. This is not always straightforward owing to i) the 

somewhat amorphous definition of defect tip within the cohesive surface formulation (note that 

the X-N exponential type force law does not have finite decohesion cutoff length and it is not 

suitable for defect tip defined by vanishing traction), ii) the fact that cohesive laws characterize a 

range of separation/slip phenomena (e.g., Fig.3.7 and Fig.3.8) not all of which can be identified 

with the growth of a defect. 

 

Fig.3.8 a) Shear slip field. b) Shear traction field. δ=0.01. 
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For the later, we simply note that a clear picture of defect extension will occur only for certain 

parameter values, namely high cohesive surface stiffness (small force length parameter). 

Regarding item i) much of the difficulty concerns growth under mixed mode loading which is not 

relevant to the present work (see [78], [88] for further discussion of this issue). One approach to 

resolve this issue is to define the location of the defect tip by an onset criterion for defect 

propagation whereby a critical shear slip needs to be attained for growth. In the present work only 

one slip mode is active and the location of the defect tip  is be defined by the condition that the 

slip at that point attains a critical value, i.e., ( )   . Because we are dealing with a single mode 

this criterion coincides with the maximum shear stress condition that max( ( ))g    . Finally, it is 

noted that there will generally be two critical loads to consider. One is the initiation torque 0iT  

which is defined to be the smallest torque required to cause the defect to extend and the other is 

the bifurcation torque 0cT  which is that torque which signals the transition to states of increasing 

slip at decreasing values of torque, i.e., cohesive surface instability or failure. The related notion 

of defect length is defined by 
0 0 0( ) ( )T T     and is such that i) 

0 0( 0)T   , ii) 
0( 0) 0T    and 

iii) 0/d dT    at a finite value of torque (bifurcation torque). Fig.3.9 is a plot of defect length (

 ) versus torque for two different values of force length parameter  . The figure indicates that 

the initiation torque and the bifurcation torque both decrease for more brittle cohesive surfaces 

(smaller  ’s). Furthermore, the figure indicates that the amount of growth prior to failure is less 

for brittle cohesive surfaces. 
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Fig.3.9 Defect length ( ) versus torque. 

The static fracture mechanics solution of Benthem and Koiter [104], for the torsionally loaded 

cylindrical bar containing an annular defect, can be used to check the quality of the solution 

presented herein. Note however that the classical crack solution can only provide the near tip static 

field and gives no insight into the defect growth process. For this reason, the parameter values of 

the present solution, which gives the full field along with defect growth, will need to be tuned to 

values appropriate for static crack like behavior. Thus, consider a stiff9 (small  ), strong (large 

max ) cohesive surface under a small applied torque, i.e., ( max0.001,  0.018   ). The Benthem 

and Koiter (BK) solution for the axisymmetric shear stress on the crack plane is given by, 
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 (3.20) 

Where z  has been nondimensionalized by the shear modulus  , 0  is the nondimensional core 

radius (which locates the defect tip from the cylinder axis) and 0T  is the nondimensional torque. 

 

9 Recall that for cohesive force laws (3.4) the initial stiffness 
0v

dg dv
  is proportional to m  . 
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Fig.3.10 depicts the static BK solution along with the cohesive solution obtained for three different 

values of torque. As expected the curves indicate excellent agreement between the two solutions 

at the smallest value of torque considered. The solutions begin to diverge for larger values of torque 

owing to the extension of the defect in the cohesive fracture solution. Furthermore, the cohesive 

solution gives an accurate description at and near the core center (r=0) where the shear stress 

distribution must vanish. 

 

Fig.3.10 Static crack solution (SC) vs cohesive fracture solution (CZM). 

The nonuniform cohesive surface; the penny shape (center) defect. In the case of a penny shape 

defect, the cohesive surface nonuniformity has an expression similar to (3.20) but with the perfect 

and imperfect regions switched, i.e., 

0
max

m 0

0,      0
( )

,  1

r
r

r




 
 

   
 (3.21) 

From Fig.3.7 and Fig.3.8, we can conclude that for the edge defect, growth is inward from the tip 

of the initial defect. This occurs because the defect driven concentration of stress occurs at the 

outer most radius of the bonded material. For the center defect we might expect outward growth 
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from the defect tip however this might not be true because, while defect driven stress concentration 

occurs at the defect tip, the cylindrical geometry and torsional loading indicate larger shear slip 

and shear traction at the outer radius. Thus, there is a competition between the elevated shear 

traction occurring at the inner radius caused by the defect and, the elevated shear traction occurring 

at the outer radius due to torsional deformation. Similar to the edge defect, the maximum shear 

slip occurs within the initial defect zone. Figures 3.11 and Fig.3.12, for the penny shaped defect, 

show a qualitative difference in behavior due to the difference in characteristic lengths. For 

=0.001 (Fig.3.11), the behavior is defect dominated. The shear traction and shear slip field 

concentration are at the defect tip (r=0.8) and the defect will grow outward towards the outer 

radius. However, for=0.01 (Fig.3.12), before the bifurcation torque, the shear traction and the 

shear slip at the outer radius have already become comparable (or greater than) that at the defect 

tip. This fact indicates that the formation of a new defect may occur at the outer radius. The 

cohesive surface would therefore be degraded by both the initial defect growing outward and the 

newly formed defect (at the outer radius) growing inward. This finding motivates the contents of 

the next section which mainly focuses on a discussion of the sequence of defect initiation. 

 

Fig. 3.11 a) Shear slip field. b) Shear traction field. δ=0.001. 
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Fig.3.12 a) Shear slip field. b) Shear traction field. δ=0.01 

The nonuniform cohesive surface; two initial defect fronts (annular defect). For the cohesive 

surface with an annular defect characterized by (3.22), 

0

max 0 1

1

0, 0

( ) , 

0,  1
m

r

r r

r


   



 
  
  

 (3.22) 

the cohesive strength step function appearing in the definition is approximated by a combination 

of smooth hyperbolic functions. The function  max 0 1( ) tanh( ( )) tanh( ( ))
2

mr r r
    

    , 

where   measures the ascent slope, is used to approximates (3.22) (all calculations were carried 

out with a   value of 200). This is done in order to boost computational efficiency since calculating 

the values of smooth functions is faster than evaluating nested conditional statements. Two issues 

not present in the edge and penny-shaped defect analyses occur in this case. The first involves the 

cohesive surface loading capacity and how it changes as the bonded region shrinks, the second 

concerns the sequence of propagation of the two initial defect fronts. 

Figure.3.13 depicts how altering the location of an initial defect front affects the load capacity of 

the cohesive surface. The blue curve shows that increasing the radius of the inner defect front 0  
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(fixing the outer defect front at 1 0.95  ) has little effect on the critical torque since material at 

the inner radius carries a reduced amount of interfacial shear. However, decreasing the radius of 

the outer defect front 1  (fixing the inner defect front at 0 0.20  ) leads to a significant drop in 

the critical torque (orange curve). 

 

Fig.3.13 Annular defect geometry and its influence on the critical torque maximum. 

Comparison of the cohesive fracture solution (CFS) to the static crack solution (SCS) is indirect 

because the annular defect solution for the sharp crack does not, to the best of our knowledge, 

appear in the literature. An approximate solution for the sharp crack can be obtained by 

superimposing the Benthem and Koiter solution [1] for two different crack geometries. However, 

the approximation ignores crack tip interaction which will lead to erroneous results when two crack 

fronts are close to each other. The cohesive surface shear distribution for the cohesive fracture 

solution and the corresponding superimposed sharp crack solution are given in Fig.3.14 for 

different initial inner defect front locations. Figure.3.14 shows that for a relatively large bonded 

region, the SCS and the CFS give similar predictions for the stress distribution, i.e., the outer defect 
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front is subject to a higher stress concentration which in turn would be the first to propagate. 

However, for a relatively small bonded region (bottom right of Fig.3.14), the CFS and the SCS, as 

expected, diverge because the SCS cannot predict crack tip interaction. It is worth noting that, in 

such cases, the stress concentration at the inner defect front has already become comparable to the 

outer one which leads to the issue of the sequence of defect propagation. Figure.3.15 addresses 

this question by 

 

Fig.3.14 CFS vs SCS for different initial inner defect front locations. 

depicting the defect growth process for annular bonded regions of radial thickness 0.1 situated at 

different locations within the cross section. Note that each curve terminates at the critical torque 

maximum. For an annular bonded region close to the core, only the outer defect front will 

propagate. However, when the bonded region is located towards the outer radius, the inner defect 

front will eventually propagate as well (Fig.3.15 left line of 0.8-0.9 bonded region). 
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Fig.3.15 Defect tip locations. 

The formulation presented in this paper is readily applicable to the bi-cylinder problem, i.e., the 

problem of two cylinders made of different material bonded together by an infinitesimal thin layer 

of adhesive along a common interface. The adhesive can spread along the whole cross sectional 

area (uniform interface) or cover just part of it(nonuniform interface). In the process leading to the 

governing integral equations (3.12), one merely keeps track of the different shear moduli of the 

upper and lower halves of the cylinder. Thus, for the uniform cylinder, quantities with the 

dimensions of stress are nondimensionalized by shear modulus  For the bi-cylinder a second 

shear modulus 2  is introduced and this is also nondimensionalized by shear modulus 1  . 

Figure.3.16 shows that the bi-cylinder shares the same defect propagation processes as the uniform 

cylinder (increasing slip with increasing load, torque maximum leading to interface/cohesive 

surface failure). For the uniform interface, the shear slip-torque plots are very similar regardless 

of shear modulus ratio 2  (Fig.3.16a). However, for the nonuniform interface (Fig.3.16b), 

significant differences in the torque maximum are observed. For increasing values of 2 , the 
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curves seem to converge. This can be explained by considering the problem of a compliant cylinder 

resting on a rigid foundation whose behavior should be dominated by the compliant material 

(curves for 2 1.0   and 2 2.0   curves are close). Because the cohesive strength is normalized 

by 1  , small 2 ( 2 1  ) makes the interface weaker and more compliant leading to a drop of 

interface load capacity (curves for 2 0.5, 0.1   versus 2 0.1  ). 

 

Fig.3.16 Interface shear slip (r=1) vs torque T0 for the bi-cylinder. 

a) Uniform interface, b) Nonuniform interface. 

3.5 Principal stress and mode-I micro cracks  

Micro-cracks oriented at certain angles to the primary fracture plane have been observed in 

numerous cylinder torsional experiments [33], [35], [105]. The coalescence and extension of these 

micro-cracks leads to an array of new repetitive oblique secondary crack planes which resembles 

a factory roof. The factory roof pattern is a common phenomenon in mode III+I testing of brittle 

materials such as PMMA. A careful study of such crack configurations not only helps to 

understand the formation of rupture zones but i) reveals a more general fracture initiation process, 

ii) shows the effects of mode-III/I mixity on fracture behavior, iii) explains how mode-I micro-
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cracks deviate from the primary fracture plane and finally, iv) shows its effects on bulk material 

behavior after the primary crack tip moves. Knauss [105] did experiments on brittle materials 

(solithane) under mode-III dominated loading (torsion of cylinder with edge razor cut), and 

showed that the crack front fragments into multiple cracks oriented at 45° with respect to the 

primary crack plane. He concluded that these cracks are mode-I cracks generated by the maximum 

principal tensile stress. Based on a series of testing with microscopic observation and finite element 

analysis, Cox and Scholz [33] pointed out that the rupture zone of mode-III cracks is formed by 

an array of oblique tensile micro-cracks at the tip of the primary initial crack. This argument is in 

accordance with the maximum tensile stress criterion for mixed fracture proposed by Erdogan and 

Sih [106] when the crack direction is not predetermined. Cox and Scholz also predicted a 45° angle 

(ϕ) between the micro-crack plane and primary fracture plane. 

The cohesive zone analysis of the previous sections can be used to shed light on mode-I micro-

crack formation by examining the maximum principal tensile stresses and their locations. Recall 

that for the cylinder problem, subject to a remote torque, the only two non-vanishing stress 

components are r  and z . Stress tensor manipulation yields the magnitude of the principal tensile 

stress and its associated principal direction, 
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 (3.23) 

The oblique mode-I micro defect plane is perpendicular to the principal tensile stress direction 

given in (3.23) and its intersection line with the local -z plane at the primary fracture tip is shown 

in top figure in Fig.3.17. The bottom figure of Fig.3.17 shows the idealized stress state of an 
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element subjected to only z  , the corresponding direction of principal stress and mode-I micro 

defect plane with =45°. 

 

Fig.3.17 Oblique mode I micro cracks. 

The existence of the stress component r  can be demonstrated by the following argument. For 

an edge cracked cohesive surface, the moment resultant of the shear traction on the defect plane 

must equilibrate the applied torque on the top end cap. Now take a free body diagram of a fictitious 

internal cylinder with radius slightly ahead of the crack tip (Fig.3.18). This shows that the decrease 

in torque carried by the reduced top surface area (on the free body) must be picked up by shear 

traction r  component on the lateral surface (of the free body). Note that the resultant of the 

shear traction on the defect plane is unchanged. The difference of the load carried by the cohesive 

surface and the equivalent torque on the reduced top surface reaches its maximum at the initial 

defect tip. In the vicinity of this location, the cohesive surface stress state predicts that r is 

comparable to z  which makes the angle deviate from 45° as shown in Fig.3.19. At a smaller 

radius (except close to core when z is also very small) z  dominates and the angle is very 
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close to 45°. For points beyond the defect tip ( 0r  ), the angle quickly increases to 90° because 

z  decreases abruptly to zero and r  becomes the dominant term. The cohesive zone analysis 

just described gives a more precise explanation for the orientation of oblique mode-I micro-cracks. 

The prediction of approximately 45° oblique mode-I micro cracks agrees with experiment and 

FEM analysis from the literature [35], [107], [108]. 

 

Fig.3.18 Fictitious internal cylinder (dotted) with radius just behind the defect tip. 
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Fig.3.19 Orientation of mode I micro defects obtained from the cohesive zone analysis.  

3.6 Characterization of frictional cohesive surface and corresponding response  

The transition from cohesion to sliding friction during contact is a key dissipative mechanism in 

cohesive zone approaches dealing with frictional cohesive surfaces [109], e.g., fiber pull out in 

composite materials [111]. An early attempt to combine cohesion and frictional contact [60] 

treated decohesion and friction as decoupled sequential processes (the cohesive surface is assumed 

to be frictionless until complete decohesion after which friction is activated). Other theories, such 

as initiating frictional response when the load is first applied [61] or, from the onset of fracture, 

have also been proposed [63]. 

For the torqued cylindrical bar, friction on a parallel cut section will not occur. In order to introduce 

a friction mechanism into the present formulation (without introducing additional sources of shear 

slip) i) the loading is modified to include a compressive traction that is uniformly distributed on 

the cross section and ii) the cylinder is assumed to be materially uniform (so there is no slip at the 

cohesive surface arising from differential contraction). The modified cohesive law (gm) is then 

assumed to be the sum of a cohesive part (g) and a superimposed frictional part (f), i.e., mg g f  . 
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Furthermore, the frictional part of the force law is taken to be zero for a range of values of slip less 

than a critical value. Beyond this point the frictional part rapidly increases to its maximum uniform 

value determined by the friction coefficient and the normal compressive traction. This step-like 

behavior (shown in Fig.3.20) is modelled by a hyperbolic trigonometric function [63], 

 max

0,    0< <

tanh ( ) ,    
f

f

 
    

   
 (3.24) 

 

Fig.3.20 Frictional branch of cohesive law approximated by a hyperbolic trigonometric function. 

1  . 

where maxf  is the maximum friction force which is dependent on the friction coefficient and the 

compressive traction. Parameters  and are two dimensionless constitutive parameters that 

characterize the shape of frictional part. Parameter  controls when the frictional response begins 

while parameter determines how fast the curve rises to its maximum friction value (slope of 

ascending branch in Fig.3.20). There are generally two kinds of qualitatively different behaviors, 

i.e., i) decohesion dominated response and ii) friction dominated response. The first occurs when 

there is a small amount of friction (maximum friction force less than maximum cohesive force, 
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e.g., max 0.3 mf  ), the second when there is a larger amount of friction (maximum fiction force 

greater than the maximum cohesive force, e.g., max 1.5 mf  ). The frictional cohesive force law 

for both cases is presented in Fig.3.21. Corresponding shear slip-torque plots are shown in Fig.3.22. 

For the decohesion dominated case (Fig.3.22a), the general shape is similar to previous frictionless 

cases except that i) the stable branch has a pronounced decrease in slope (at around T0=0.0003) 

and ii) the unstable branch will not decrease to zero applied torque. The reason for the turning 

point is that some points on the cohesive surface have already entered the region where friction is 

active, and the introduction of friction tends to stiffen the cohesive surface leading to a decrease 

in slope of slip vs normalized applied torque curve . In case ii), the unstable branch will not 

decrease to zero applied torque since even for large shear slip, the shear traction would attain the 

persistent maximum friction force. For the friction dominated  

 

Fig.3.21 Frictional cohesive force law( 0.018m  , 0.001  , 0.8  , 500  .). a) Decohesion 

dominated ( max 0.3 mf  ), b) Friction dominated ( max 1.5 mf  ). 
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Fig.3.22 Shear slip ( 1)r   vs torque 0T . Edge defect ( 0 0.8  ). 

a. Decohesion dominated. b. Friction dominated. 

cohesive surface (Fig.3.22b) the behavior appears to be qualitatively different then decohesion 

dominated response. This is because there does not appear to be a critical torque maximum. The 

cohesive surface will still fail as it appears that the slope of the curve becomes unbounded at a 

finite value of torque. However, the exact behavior beyond the last computed point of Fig.3.22b is 

unknown because i) the curve is almost vertical leading to a breakdown of the Newton Raphson 

process and ii) the slip magnitude may be beyond the infinitesimal strain assumption. 
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4 Instability and Cohesive Fracture of the Two-Sublayer System 
The basic procedure used to derive the governing integral equations for layered systems is similar 

to that of the cylinder case treated previously. Note the term “sublayer” in this work represents the 

medium on one side of the cohesive surface. The two-sublayer system can be used to model, i) a 

materially uniform layer containing a line defect (the layer is separated into two sublayers by the 

plane of defect) and, ii) the interfacial defect between two different media. The single sublayer 

solution is obtained subject to arbitrary, strong (pointwise prescribed) boundary conditions. 

Cohesive surface integral equations are obtained by piecing together the solutions for two or more 

sublayers. 

4.1 Elastic fields for arbitrary shear loading 

Anti-plane shear of a sublayer subjected to arbitrary, but equilibrated, strong tractions on 

opposing surfaces. Consider a plane rectangular sublayer (Fig.4.1), infinite in extent in the 

direction normal to the plane, with coordinates of points referred to a Cartesian coordinate system. 

The only anti-plane displacement component is ( , )zu x y . The Navier-Cauchy equilibrium 

equation in the absence of body force is 2(1 2 ) div   u u 0  which, for anti-plane shear, 

becomes, 

2 2

2 2

( , ) ( , )
0,  (-1,1),  (- , )z zu x y u x y

x y h h
x y

 
   

 
 (4.1) 

which is the two-dimensional Laplace equation in a rectangular domain. Recall that all quantities 

with dimensions of length have been nondimensionalized by the layer half-width. Nontrivial stress 

components (normalized by shear modulus  ) are given by, 

,  z z
zx zy

u u

x y
  

 
 

 (4.2) 
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Strong boundary conditions on top and bottom surfaces can be formulated as, 
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 (4.3) 

where g(x) and f(x) are prescribed shear tractions on the top and bottom surfaces written as 

functions of coordinate x. 

 

Fig.4.1The single sublayer. 

Note that global force equilibrium requires that 

1 1

1 1
( ) ( )f x dx g x dx

 
   (4.4) 

The eigenvalue problem obtained from (4.1), (4.2) and (4.3) is of regular Sturm-Liouville type 

[87] given by,  
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The fundamental set of solutions to (4.51) is sin( )x  and cos( )x . For the remainder of this work 

a symmetric geometry, with loading symmetric about the ,y z  plane, is assumed. The eigenvalues 

and eigenfunctions are therefore, 

0 0
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 (4.6) 

Because the layer is assumed to have a finite thickness the product solutions are written in the 

form, 

,

,0 0 0 0

( , ) ( )[ sinh( ) cosh( )]   1,2,...,

( , ) ( )[ ]
z n n n n n n

z

u x y X x A y B y n N

u x y X x A B y

   

 
   (4.7) 

where hyperbolic functions have replaced exponential functions. 

Combine (4.6) and (4.7), the displacement and stress fields can be rewritten as, 
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Apply strong boundary conditions (4.31,2) and isolate Cn and Dn coefficients to get, 
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 (4.9) 

The direct integration of (4.91) yields  
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Explicit expressions for individual Cn and Dn coefficients, in terms of integrals of f(x) and g(x), 

follow directly from the orthogonality of the eigenfunctions. A rearrangement of terms enables the 

displacement field (4.81), in a single sublayer subject to arbitrary but equilibrated shear tractions 

on the top and bottom surfaces, to be written in the integral form, 

1 1

0 1 21 1

1
1

2

( , ) ( , , ) ( ) ( , , ) ( )

cos( ) cos( )
sinh( ) cosh( ) cos( )

4 2 cosh( ) 2 sinh( )

cos( ) cos( )
sinh( ) cosh( )

4 2 cosh( ) 2 sinh( )

z

n n
n n n

n n n n n

n n
n n

n n n n

u x y D K x y g d K x y f d

y
K y y x

h h

y
K y y

h h

     

     
   

    
   

 





  

 
   

 


  

 



1

cos( )n
n

x





 
 



 (4.11) 

where D0 is an arbitrary rigid body displacement. Note  is a dummy variable of integration in 

the x direction. 

4.2 Interfacial integral equations 

In this subsection, interfacial integral equations are derived for the two-sublayer system. 

Representation of these equations as a finite set of nonlinear algebraic modal equations suitable 

for numerical solution will be obtained as well. 

The two-sublayer system. The two-sublayer system consists of two sublayers of identical width 

and depth, but generally different thicknesses, separated by a cohesive surface. This system can be 

analyzed by considering the two sublayers separately (Fig.4.1) and employing the solution 

developed in the previous section (Fig.4.2). Thus, apply (4.11) to the top and bottom layers10 and 

define the cohesive surface displacement discontinuity (shear slip) as, 

 
10 A +(-) indicates quantities associated with the top(bottom) layer. 
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( ) [ ]( )  ( , )  ( , )z z zx u x Lim u x y h Lim u x y h            . (4.12) 

 

Fig.4.2 The two-sublayer system. 

The displacement fields of the top and bottom layers can be written as, 
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 (4.13) 

Substitute equation (4.13) into (4.12) and evaluate on the cohesive surface to yield the expression 

for the shear slip  
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 (4.14) 

In (4.14), geometry dependent kernels K1 and K2 are given by (4.11) and functions 1 2( ), ( )g g   

are prescribed shear tractions on top and bottom surfaces. Constant v
R  is a rigid body translation 
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term governing the relative rigid displacement of the top layer with respect to the bottom layer. 

Global equilibrium for the two-sublayer system is satisfied provided an equilibrated system of 

shear tractions is applied to the top and bottom surfaces of the layer. Rigid body equilibrium for a 

single sublayer constrains the relative rigid body movement of one sublayer with respect to the 

other. This has to be actively enforced. Thus, (4.141) must be supplemented with the rigid body 

equilibrium equation, 

1 1

1 1
0 ( ) ( )f d g d   

 
    (4.15) 

(It can be shown that the satisfaction of (4.15) for one sublayer, together with an equilibrated set 

of applied shear tractions, implies satisfaction of rigid body equilibrium for the other sublayer.) 

Note that for a cohesive surface problem, f ( ) is defined by a particular cohesive law. In order 

to solve (4.14) and (4.15), they must first be reformulated as a set of nonlinear algebraic equations. 

In order to do this, write the solution as an expansion in eigenfunctions of the kernels 1 2,K K , i.e., 
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where the  , 0,1,2,...nv n  are unknown mode multipliers. Introduce 0 0 0D D D   ,  1

2
h h h  

for simplicity. Apply orthogonality, 
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If N terms are taken in the sum (4.16), and the cohesive law is given as a function of x and v(x), 

then (4.17) represents a set of N+2 equations for N+2 unknowns 0 1, , ,...,R n    . 

4.3 The uniform cohesive surface; surface stability 

In this subsection numerical results are presented for several two-sublayer or materially 

nonuniform bilayer systems with different defect configurations, material properties and layer 

thicknesses. In all cases it is assumed that the shear tractions applied to the top and bottom surfaces 

are uniform and the defects are symmetric in the width direction. 

Uniform cohesive surface; the bifurcation problem. For the cylinder in torsion, the traction 

distribution depends on the radial coordinate even when the cohesive surface is uniform, i.e., 

without defects. This causes difficulties in obtaining the exact solution to the bifurcation problem. 

However, in the case of the layered system, there is a uniform traction distribution in the absence 

of defects. This can be demonstrated as follows (Fig.4.3). 
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Fig.4.3 Explanation of uniform solution for a uniform cohesive surface. 

Suppose a two-sublayer system, subject to a uniform applied shear traction S on its upper surface, 

has a nonuniform but equilibrated shear traction on the cohesive surface as shown in Fig.4.3(a). 

The solution to a similar problem of twice the width as (a) can be obtained by simply connecting 

two original geometries side by side shown in Fig.4.3(b). This can be done because the tractions 

of the side surfaces vanish. Scaling the solution of (a) would generate a similar traction pattern as 

Fig.4.3(c). Because the traction distribution in Fig.4.3(a) is arbitrary, the uniqueness theorem of 

linear elasticity [110] implies that the original traction distribution is uniform. Based on this 

argument the interfacial shear slip is uniform and governed by (4.171) and (4.173), i.e., 

0 
0
 v

R
 2hS        

0  f (0 ) S
 (4.18) 

If the two-sublayer system is load controlled and the cohesive surface is of uniform X-N 

exponential type , then the slip 0  and the relative rigid body displacement R  can be obtained 

from (4.18) and (2.17), i.e., 
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 (4.19) 

where W is the multivalued Lambert W function [112]. Figure.4.4 is a plot of solution (4.191). The 

graph depicts a load maximum or tangent bifurcation and is characterized by two distinct branches, 

a stable branch (increasing slip under increasing load) and an unstable branch (increasing slip 

under decreasing load). This behavior is similar to that which occurs in the mode-III deformation 

of a cylindrical bar in torsion (Fig.3.4). Note that due to the multi-valued nature of the Lambert W 

function, the solution to the load control problem is generally multi-valued. This will not cause 

any ambiguity for the two-sublayer system subjected to monotonically increasing load from the 

reference state. 
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Fig.4.4 Uniform cohesive surface response. 

However, in layered systems with more than one cohesive surface, multi-valued solutions can lead 

to asymmetric deformation and more complex bifurcation behavior. 

4.4 Center and edge defect fields in uniform two-sublayer  

The formulation presented is applicable to many different defect configurations and loadings. In 

this section the focus is on, i) two-sublayer systems that reveal fundamental aspects of defect 

growth behavior and, ii) solutions that can be tested against classical SIF solutions that exist in the 

literature. Thus, the problems considered below are i) a materially uniform layer containing a small 

defect (both center and edge) symmetrically placed with respect to the top and bottom surfaces, ii) 

a materially nonuniform bilayer system containing an interface defect and, iii) a uniform layer or 

nonuniform bilayer system containing a defect that is not symmetrically distributed with respect 

the top and bottom surfaces (i.e., the sub surface defect problem), iv) a symmetric linear array 

defect, v) a frictional interface. 

Center defect. Fig.4.5 is a two-sublayer system with identical thicknesses and material properties 

containing a single center defect situated on the cohesive surface separating the two sublayers. The 

parameter 0  characterizes the ratio of defect length to sublayer half-width so that the coordinate 

dependent cohesive strength function is given by, 

m
max

0 0

   otherwise   
( )

0    -
x

x




 


   
 (4.20) 

(Recall that all lengths are nondimensionalized by layer half width). Unless otherwise noted the 

following parameter values will be used in calculations, 
00.5,  0.1h    which represents a 

relatively small defect length and a relatively thick layer. These values are chosen so that boundary 
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effects are mitigated, and solutions can be compared with the infinite plate or semi-infinite plate 

static crack tip fields of linear elastic fracture mechanics. 

 

Fig.4.5 Bilayer system with center defect. 

Fig.4.6 shows bifurcation curves for different characteristic lengths. The general behavior is 

similar to the torqued cylinder case, i.e., a critical applied shear traction characterizes the transition 

from stable to unstable states. For load control, once the critical shear traction is reached, the 

cohesive surface cannot carry any more load and the defect plane fails. 
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Fig.4.6 Bifurcation plot. 

Figure 4.7 depicts the shear traction field ( (x)  f (v(x),x)) and the shear slip field ( v(x)) for 

the brittle cohesive surface. Symmetry about the -y z  plane allows the fields to be plotted only for 

0x  . Note the strong stress concentration near the defect tip representing “sharp crack-like” 

defect growth. By contrast, Fig.4.8 shows a ductile cohesive surface (large ) with a more 

distributed traction and slip field. The failure of the cohesive surface is no longer “sharp crack-

like” defect growth but generally tends to a more uniform slip process.  

 

Fig.4.7 Center defect  a) shear slip field, b) shear traction field.  
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Fig.4.8 Center defect  a) shear slip field, b) shear traction field. 

The comparison between the cohesive fracture solution and that of classical fracture mechanics is 

carried out with parameters consistent with a static crack (i.e., high cohesive surface stiffness and 

small applied load). The Stress Intensity Factor Handbook [14] gives the SIF for two geometries 

that are similar to our two-sublayer configuration (i.e., the infinite and semi-infinite plates as 

shown in Fig.4.9). Note that these two geometries are infinite in extent in the y-direction (in our 

problem the y dimension is finite). Due to Saint-Venant’s principle, we anticipate that this will not 

cause any inconsistency as long as the thickness (h+=h-=h) of the two-sublayer system is large 

compared to the crack length. 
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Fig.4.9 a) SIF infinite plate. b) SIF semi-infinite plate. 

The SIF’s for the two geometries given in SIFs handbook [14] are, 

0

1/2 0

Infinite Plate: ( )
2

2
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2
Finite Width Plate: ( )

2

S
r

r

b
S

b
r
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 (4.21) 

 

Fig.4.10 Cohesive fracture solution (CFS) vs finite width static crack solution (SCS). 0.001  . 
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Figure.4.10 shows that cohesive fracture solution agrees well with the finite width SCS solutions 

based on the SIF (4.212) around the defect tip. However, SIF gives a poor estimation of fields away 

from the tip (where the shear traction should converge to the applied shear load rather than 

approach zero if crack is small). 

Edge defect. An edge defect can be modeled by switching the initial intact and defective zones in 

the center defect geometry as shown in Fig.4.11. The corresponding cohesive strength function 

can be written as, 

max
m 0 0

0      otherwise   
( )

    1+ 1
x

x


  


     
 (4.22) 

 

Fig.4.11 two-sublayer system with edge defect. 

Here all length quantities are normalized by layer half width (b=1, h=0.5, 0.1), which creates 

an initial defect region of 0.1 at each edge. The similarities between the center and the edge defects 

can be explained by an imaginary cut of the center defect geometry (Fig.4.5) along the y-z plane 

which separates the solid into two halves “A” and “B” (as shown left of Fig.4.12). Since both the 
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left and right sides of the halves “A” and “B” are traction free, the two halves can be positioned 

side by side in a different order which generates the edge defect configuration. 

 

Fig.4.12 Similarities of center and edge defects. 

Based on this argument, the edge defect geometry should have exactly the same solution as the 

center defect region provided the x-axis is translated. A computation carried out without taking 

this idea into account verifies this argument, i.e., Fig.4.13 is the same as Fig.4.7 if the direction of 

the x-axis is flipped. Note that in the SIF handbook, the edge defect geometry was not listed 

independently since mathematically it is the same as the center defect geometry. 

 

Fig.4.13 The edge defect . a) shear separation field, b) shear traction field. 
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4.5 Center defect fields in materially nonuniform bilayer  

The formulation developed above is not restricted to layered systems that are materially and 

geometrically uniform. In this subsection the solution is applied to the bilayer problem consisting 

of an interfacial defect situated between two materially and geometrically nonuniform layers. The 

specific problem considered is a coating/substrate system in which the coating layer is 

considerably thinner and stiffer than the substrate layer. Exact SCS for such systems, as well as 

those consisting of double layers of coating or functionally graded coatings, are treated in [113]. 

These solutions predict that the SIF increases with decreasing thickness of the coating or, 

decreasing shear stiffness ratio ( c
/ 

s ) where c is the shear modulus of the coating and s is the 

shear modulus of the substrate. Because the general mathematical structure of this problem is the 

same as that of previous problems, many of the features observed are qualitatively the same as 

well. In order to understand the effect of shear stiffness ratio and thickness ratio (h+/h), where h+ 

is the coating thickness and h the substrate thickness, the maximum shear traction along the 

cohesive surface is plotted against the applied shear S. Figure 4.14 reveals how shear stiffness 

properties and coating thicknesses affect the cohesive surface traction field. Because all the points 

are computed under the same loading, the maximum traction on the surface can be treated as a 

parameter characterizing the local stress concentration (similar to SIF). Each locus of points shows 

that the maximum traction increases with a reduction of coating thickness h+. A comparison 

between the three different loci of points shows that as the coating becomes stiffer, the maximum 

traction is reduced. The computational results presented here indicate behavior that is qualitatively 

the same as the SCS provided in [113]. 
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Fig.4.14 cohesive surface maximum shear traction vs defect geometry. Center defect.
0 0.1,  0.001,  0.001S    . 

4.6 Linear array of defects and sequence of defect propagation 

Modelling initial defects by a coordinate dependent cohesive strength function enables the analysis 

of more complicated defect configurations. In the previous section on the derivation of the 

governing integral equations, a perfect symmetry in both geometry and loading is assumed with 

respect to the y-z plane, hence, all the eigenfunctions are even functions of x direction which can 

only be used to approximate fields which are even in x as well. Such an assumption restricts the  

geometry of linear arrays of defects to be even in x. Based on the above discussion, the solution to 

associated static crack analyses of this type of problem include, a) periodic distributions of 

collinear cracks with equal spacing and size in an infinite domain (Fig.4.15a), and b) three 

collinear, symmetrically placed cracks (Fig.4.15b). In this subsection, the theory developed above 

will be applied to predict the response and, to address questions related to multiple defect 
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distributions such as, i) whether or not all defects will propagate prior to complete failure of the 

cohesive surface, ii) the sequence and rates of defect propagation given that multiple defects 

propagate, iii) the consistency of the predictions of SCS and CFS. 

 

Fig.4.15 Symmetric linear array defect. a) Periodic distribution of defects of equal size and 
spacing. b) Three symmetrically placed defects with arbitrary size and location. 

The SCS for the two different configurations of Fig.4.15 are given below. It is reasonable to 

assume that Fig.4.15a has a periodic traction distribution which means that all crack tips share the 

same value of stress intensity factor [14], [104],  

1/22

0

sin( / )
lim 2 1

sin( ( ) / )III r

c d
K rS

c r d








         
 (4.23) 

where c, d are defined in the figure, and r is defined on the horizontal axis from crack tip. For three 

symmetrically located cracks shown in Fig.4.15b, the corresponding stress intensity factors are 

given by [14], 
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 (4.24) 

Note that in (4.24) KIII is the mode-III stress intensity factor with the subscript (a, b or c) 

representing the corresponding crack tip while k is a nondimensional parameter characterizing the 

relative crack lengths. Quantities K (k)  and E(k)  are complete elliptic integrals of the first and 

second kind associated with k. Because the crack configurations given in Fig.4.15 are for the 

infinite plane, geometrical parameters must be chosen so that the results obtained can be compared 

with the finite layered system of the CFS. For periodic defects as shown in Fig.4.15a, it can be 

proved that when d=2.0/3.0, the problem degenerates to the problem of a finite domain with three 

equally sized and spaced cracks due to symmetry. 

Fig.4.16 shows the shear traction for the special case where d=2.0/3.0, c=1.0/6.0, i.e., where the 

length of the cracked region equals that of the bonded region. 



92 
 

 

Fig.4.16 Shear traction, periodic distribution of defects. 

d=2.0/3.0, c=1.0/6.0, =0.001. 

Note that, i) CFS and SCS are consistent near the crack/defect tip, ii) CFS and SCS both predict 

the same amount of stress concentration regardless of crack location due to the periodic condition, 

iii) away from the defect tips (into the initially bonded region), the CFS predicts higher stress 

concentration since it takes defect interaction into consideration automatically whereas SCS not. 

For more general cases where the location and size of outer cracks varies, the accuracy of SIF is 

undermined by finite width effect or crack interaction. In the following section, SIF solution is 

plotted simply for comparison. Fig.4.17 shows the defect spacing’s effect on the shear traction 

field. For closely located defect tips, the interaction between two defect fronts tend to increase the 

maximum shear traction that leads to defect propagation at an earlier stage (in Fig.4.17a defect tips 

are at x=0.05, 0.1). However, for sparsely located defects, the interaction is negligible (Fig.4.17b). 
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Fig.4.17 Shear traction with same defect size but different spacing.  

Three symmetrically placed defects 

 

Fig.4.18 Shear traction with same defect center location but different defect size. 

Three symmetrically placed defects 
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Figure.4.18 shows that the crack/defect size has a significant effect on the shear traction 

distribution. The second and third tips in Fig.4.18b has a significantly higher traction magnitude 

than its counterpart in Fig.4.18a. Note that in Fig.4.18b the CFS predicts a higher traction 

magnitude at the third tip (x=0.9) than at the second tip (x=0.3) whereas the SCS predicts that the 

second tip has a 3% higher IIIK  than the third tip. Unlike SCS, whose accuracy is largely 

dependent on a negligible boundary effect, CFS can provide superior results for large crack 

geometries with a strong boundary condition. This is because CFS exactly accounts for the 

boundary effect. 

4.7 Defect propagation process 

The previous subsections are mainly focused on static stress analysis including solution 

verification based on existing SCS solutions. One of the strengths of CFS is its ability to 

characterize quasi-static defect propagation. In this subsection, defect propagation processes are 

analyzed for an exponential force law considering the effects of the different cohesive surface 

constitutive parameters on the response. 

The method of characterizing defect propagation process is the same as previously given in Section 

3.4. The fundamental sequence of steps in the quasi-static growth process is as follows. Under 

small applied loads there is minimal interfacial shear slip v(x)    (or  (x)  
m  with 

 (x)  f (v(x),x) ) and the defect is considered static by the onset criterion. As the load is 

increased a critical slip (or equivalently a critical cohesive surface shear traction) is attained, i.e., 

v(x  
0
)    or equivalently  (x  

0
)  

m [40], [88]. The value of load at which this occurs is 

the initiation load, i.e., that load at which growth initiates. As the load increases beyond this value 

the defect extends to locations that satisfy the criterion, i.e.,   0 . This process continues until 
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the cohesive surface becomes unstable, i.e., d d    at a finite value of . The critical load at 

which this occurs is the bifurcation load (failure load). Beyond this point the cohesive surface slip 

increases under decreasing load and there are no stable equilibrium states. 

For the fundamental center defect geometry (Fig.4.5), it is reasonable to expect that the cohesive 

law constitutive parameters e.g., the characteristic force length (), will have a strong effect on 

the defect growth process since it characterizes the brittle or ductile nature of the cohesive surface. 

Figure 4.19 shows that for a brittle cohesive surface (small ), cohesive surface deterioration is 

restricted to a small region near the tip and, the behavior has the appearance of sharp crack growth, 

i.e., strong stress concentration. As for the ductile cohesive surface that traction pattern is more 

distributed, the load can be carried by a relatively large area which leads to higher initiation loads 

and crack initiation at a later stage. 

 

Fig.4.19 Defect propagation of a center defect. Initial defect tip at 0
 0.1. 

Figure.4.20a shows that when the sizes of the defects are similar and sparsely distributed, all defect 

tips have a similar degree of stress concentration which leads to approximately the same maximum 
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traction at different tips and simultaneous defect propagation response. However, when the second 

defect ( x (0.4,0.8) ) is much longer (Fig.4.20b) than the center defect ( x (0,0.05)), the first 

defect tip will not propagate before the cohesive surface becomes unstable. In Fig.4.20c the length 

of the second defect ( x (0.3,0.9)) is further increased so that tip c is close to the traction free 

surface. This configuration is such that boundary effects will occur for defect tip c. The figure 

indicates that, i) the defect size has a significant effect on defect behavior in that larger defects 

tend to have a stronger stress concentration which may lead to defect initiation at an earlier stage, 

ii) comparing the two defect fronts of the outer crack, the defect tip which is closer to the free 

surface will initiate at an earlier stage and undergoes more substantial defect growth. 
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Fig.4.20 Defect propagation. Three symmetrically placed defects. 

a) a=0.05, b=0.55, c=0.65. b) a=0.05, b=0.4, c=0.8. c) a=0.05, b=0.3, c=0.9. 

4.8 Maximum principal stress and mode-I micro cracks 

Micro cracks oriented at certain angles to the primary fracture plane have been observed in anti-

plane delamination processes of laminated composites [114], [115]. A careful examination of the 

stress field at the cohesive surface would help to, i) understand the general fracture initiation 

process, ii) explain how mode-I micro cracks deviate from the primary fracture plane. Similar to 

torsion tests, layered composites show an array of 45° oblique tensile micro cracks initiating from 
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the tip of the primary crack [33], [116]. The formulation developed in the previous sections can be 

used to shed light on mode-I micro crack formation by predicting the maximum principal tensile 

stresses and their locations in the region of the primary mode-III defect. Because of the assumed 

form of displacement and slip fields ( ( , ), ( , )zu x y x y ), the only two non-vanishing stress 

components in anti-plane shear loading of layered systems are xz  and yz . For the two non-

vanishing stress components, yz  is nothing but the interfacial shear traction which is a primary 

output field from the computation program. However, the other stress component xz  has to be 

obtained from post processing. Note that from section 4.1, the elastic field for each sub-layer is 

governed by two sets of multipliers ( ,n nC D  in (4.8)). However, the program calculated multipliers 

governing interfacial slip are basically the combinations of nC  and nD  from two sub-layers. 

Generally it’s impossible to derive nC  and nD  directly from n . However, since the problem in 

this section has perfect symmetry in the thickness direction, one can expect that the two sublayers 

are subject to exactly the same deformation along the cohesive surface. Hence, it is reasonable to 

distribute the mode multipliers governing interfacial slip evenly to two sublayers. Stress tensor 

manipulation yields the maximum tensile stress and its corresponding direction as, 

 (4.25) 

The oblique mode-I micro crack plane (oriented at an angle in Fig.4.21) is perpendicular  
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Fig.4.21 Orientation of oblique mode-I micro cracks. 

to the principal tensile stress direction given in (4.25). The mode-I micro crack planes’ intersection 

lines with the local y-z plane at the primary defect front is shown in Fig.4.21. 

Figure.4.22 shows the values of orientation angle for a center defect ( h  0.5,  
0
 0.1) geometry 

under an moderate applied loading prior to defect initiation. It begins with   90o  since the 

dominant stress component in the defect region is  xz . Far ahead of the crack tip the unperturbed 

shear converges to the uniform shear loading and the  xz  component vanishes so that   45o. 

Within the region close to the crack tip, a smooth transition from 90° to 45° occurs with the 

variation depending on the relative magnitude of  xz  and 
yz

. The prediction of mode-I micro 

crack initiation can proceed once a crack initiation criterion has been specified. Difficulties with 

this approach are that the exact values of the stress components close to the defect tip is sensitive 

to both the form of cohesive law and the manner in which the cracked region is characterized. 
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Fig.4.22 Distribution of orientation angle . 

4.9 Characterization of frictional cohesive surface and corresponding response 

Based on the same frictional cohesive constitutive relation shown in section 3.6, this section 

presents the analogous bifurcation plots for two qualitatively different kinds of layered system 

For the decohesion dominated case (Fig.4.23a), the general shape is similar to previous frictionless 

cases (Fig.4.6) except that the unstable branch will not decrease to zero applied shear since the 

shear traction would attain the persistent maximum friction force regardless of the large value of 

shear slip. 

 

Fig.4.23 Bifurcation plots (center defect) a. Decohesion dominated. b. Friction dominated. 
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For the friction dominated case (Fig.4.23b) the behavior appears to be qualitatively different from 

decohesion dominated response in the following sense, i) there does not appear to be a tangent 

bifurcation at a critical failure load. The cohesive surface will still fail as it appears that the slope 

of the curve becomes unbounded at a finite value of shear load. ii) a shear slip jump is observed 

before the bifurcation shear load (in other words, a discontinuity of shear slip under a continuously 

increasing applied shear). Note that this phenomenon is not observed in related research on torqued 

cylinders (Song and Levy 2019) due to the differences in the applied traction field (uniform versus 

linearly varying with radial coordinate). The exact behavior beyond the last computed points of 

Fig.4.23b is unknown since i) the curve is almost vertical leading to a breakdown of the Newton 

Raphson process and ii) the slip magnitude may be large, thereby violating the infinitesimal strain 

assumption. 
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5 Instability and Cohesive Fracture of the General N-Sublayer System 
5.1 Interfacial integral equations 

The formulation for the N-sublayer system (Fig.5.1) is obtained by following a similar process as 

the two-sublayer system. The major difference is that the N-sublayer system has two outer layers 

with prescribed tractions and at least one layer that is subject only to reactive cohesive surface 

tractions on its upper and lower surfaces. To avoid ambiguity, a new labeling scheme for the 

multilayer system is introduced: i) superscripts represent the numbering of layers from top to 

bottom (e.g., h1 means the half thickness of the 1st layer), ii) subscripts define the location within 

one layer, 1 for top surface and 2 for bottom (e.g., 
1
2f  represents the shear traction on the bottom 

surface of the 1st layer), iii) because the cohesive surface shear slip is defined for two adjacent 

layers, two superscripts are assigned (2,3 means the cohesive surface shear slip between the 2nd 

and 3rd sublayers). 
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Fig.5.1 N-sublayer system. 

Now suppose the system has M+1 sublayers with M cohesive surfaces where each cohesive surface 

slip field is characterized by an expansion in N+1 modes (n=0, 1, 2, …, N), i.e., 

 m,m1(x)  
n
m,m1

n0

N

 cos(
n
x) (5.1) 

Thus, there are ( 1)M N   unknown mode multipliers which, together with the M unknown 

relative rigid body displacements11, result in a total of ( 2)M N  unknowns to be solved for. The 

nonlinear system of integral equations governing these unknowns is given by, 

 
11 One sublayer is fixed against rigid body displacement. 
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 (5.2) 

Equation (5.22) provides M N  equations and (5.21,3) each provides M equations for a total of 

( 2)M N   equations. 

5.2 Instability and asymmetric deformation in the multi-sublayer system 

5.2.1 Instability and asymmetric deformation of uniform tri-sublayer system 

Recall that the bifurcation analysis of the uniform cohesive surface problem in Section 4.3 

concludes that the uniform cohesive surface should have a uniform shear traction (and slip) 

distribution, equal to the applied shear traction (interfacial slip can then be obtained by inverting 

the cohesive force law). Inverting the exponential force law yields a Lambert W function which is 

not single-valued. Generally, there are two slip values to one applied shear which can be verified 

by checking a plot of the force law. In the figure of a force law (e.g. Fig.2.10), a certain loading 

can be represented by a horizontal line. For an applied shear smaller than the cohesive strength, 

there are two intersection between the line representing applied load and force law (representing 

two solutions). This fact should not cause any ambiguity in the two-sublayer system since there is 

only one cohesive surface. However, for a system with more than one cohesive surface, the multi-

valued behavior leads to complicated bifurcation patterns such as asymmetric deformed 



105 
 

configurations arising from symmetric geometry and loading. In this subsection, the analysis of 

the tri-sublayer system and the four-sublayer system are discussed in detail. 

A result of the uniqueness theorem is that a uniform cohesive surface will have a uniform shear 

slip and traction field. The slip fields for a tri-sublayer system (with two cohesive surfaces) can be 

written as, 

1,2 1,2

2 ,3 2 ,3

( )
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x

x

 

 




 (5.3) 

where 
1,2 2,3,   are constant. Global equilibrium requires that, 
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 (5.4) 

For a given shear traction load (S), the exact solution for the interfacial slip can be directly obtained 

by isolating expressions for 1,2 and 2,3 . From (5.4), 
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 (5.5) 

Consider a displacement-controlled system, assume the top sublayer and bottom sublayer are 

subjected to equal but opposite rigid body displacements (top moving in positive z direction). 

Based on (5.21), the shear slip field can be written as, 
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where Rt,b is the absolute value of the controlled rigid body translation (R.B.T) of top and bottom 

sublayers, Rmid is the value of R.B.T of the middle sublayer. Rearranging terms Rt,b and Rmid can 

be written as, 
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 (5.7) 

Now take S as the forcing term of the problem. The values of Rt,b and Rmid for a given loading (S) 

can be obtained by substituting (5.5) into (5.7). Due to the multi-valued nature of the Lambert W 

function (a stable and an unstable branch), different combinations of such branches will generally 

create four configurations based on permutations and combinations.  

 

Fig.5.2 Four terminal configurations of traction control loading. 

Suppose a tri-sublayer system subject to traction loading that follows exactly as the force law (load 

to critical shear and then unload), Fig.5.2 shows four “possible” terminal configurations. The top 

left case indicates that two cohesive surfaces heal resulting in their initial state since the force law 

(XN) used here is reversible. The top right figure is the opposite of the first case in that both 

cohesive surfaces snap (the slip value jumps to the unstable branch of the force law) to large slip 

values which leads to a skew symmetric configuration. Note that the two cases at the top of Fig.5.2 

both have symmetry since the two cohesive surfaces are behaving exactly the same (in the 
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unloading process, two cohesive surfaces fall into the same branch of the cohesive force law). The 

bottom of Fig.5.2 shows two asymmetric terminal configurations caused by different cohesive 

surface behavior governed by different branches of the cohesive force law (one cohesive surface 

goes back to the stable branch of the force law and heals itself, the other cohesive surface snaps as 

the unstable branch governs). Note that for the displacement-controlled system, the first case in 

Fig.5.2 cannot be obtained since the controlled displacement will create offsetting between the top 

and bottom sublayer. The other three cases are distinguished by the relative magnitudes of two 

cohesive surface slip values. For a displacement-controlled system (top and bottom sublayers 

subject to equal and opposite controlled displacement), the two cohesive surface slip values are 

closely related to the location of the middle sublayer. The skew symmetric configuration can be 

obtained only when the middle sublayer does not displace, while the other two asymmetric cases 

can be differentiated by checking the direction of R.B.T of the middle sublayer. For the 

convenience of discussion about system configuration based on sublayer R.B.T. Rmid vs Rt,b is 

plotted for the tri-sublayer system under displacement-controlled loading. To distinguish from the 

bifurcation plots of previous sections, “configuration bifurcation plot” is used in this chapter for 

Rmid vs Rt,b plots. 

Uniform material, geometry and cohesive strength. For cases where the two uniform cohesive 

surfaces have identical cohesive strengths, the direction of movement of the middle sublayer is 

random which manifested by two branches in configuration bifurcation plot of Fig.5.3. In this 

figure curves show a perfect symmetry with respect to the abscissa. The general process as depicted 

in Fig.5.3 proceeds as follows. For ductile cohesive surface (large ), under a monotonically 

increasing displacement control of top and bottom sublayers, the middle sublayer initially 

undergoes no rigid body translation and the system remains symmetric (①). At a certain value of 
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the controlled displacement, the symmetric configuration is broken, and the middle sublayer will 

displace together with the either top or bottom sublayer (②or ③, corresponding to the two bottom 

cases in Fig.5.2). For brittle cohesive surface (small ), the asymmetric configuration is formed by 

an abrupt jump or snap bifurcation from the symmetric configuration as opposed to the gradual 

process of the ductile cohesive surface. There is another branch ④ (top right case in Fig.5.2) which 

indicates a symmetric configuration after the bifurcation point. However, this branch is unstable 

and ultimately unobservable since any material imperfection or nonuniformity would break the 

configuration of perfect symmetry leading to asymmetric configurations. 

 

Fig.5.3 Configuration bifurcation plot for uniform cohesive surface. 

Uniform material, geometry and cohesive surface with different cohesive strength. In the preceding 

subsection, the symmetric bifurcation behavior (Fig.5.3) was considered for the tri-sublayer 

system with perfect symmetry (identical sublayer geometries and cohesive strengths). However, 

once the perfect symmetry in geometry or material properties is removed, some of the bifurcation 

branches become unreachable and the stable (i.e., observable) configuration of the system can be 

determined. In this subsection, parameters and sublayer geometries are kept the same with the 
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exception of one of the cohesive surface strengths ( m ) which is taken to be slightly weaker than 

the others are. Figure.5.4a shows that the 4 branches of configuration bifurcation plots no longer 

intersect at a single point as the previous uniform cohesive surface case. The symmetry is broken, 

and the curves appears as two separated groups. The first one is composed of ①, ② which shows 

that the middle layer displaces on initial application of the load and tends to move in the same 

direction as the top layer before bifurcation occurs. Note that ① is the branch that begins at the 

origin (initial configuration). The other group (③, ④) are unstable branches lying entirely in the 

4th quadrant and have no physical significance since they never intersect with any curve starting 

from the initial configuration (origin). This means that these equilibrium states can’t be obtained 

by a continuous increase in loading of the system from the symmetric unstressed initial 

configuration. For purpose of distinction, the applicable configurations are drawn in blue close to 

the corresponding curves, whereas the inapplicable ones are drawn in red as shown in Fig.5.4. It 

is worth noting that the bigger the perturbation in cohesive strength, the more the two groups will 

diverge. As the perturbation in cohesive strength vanishes, the plots converge to the symmetric 

unperturbed solution (Fig.5.3). Comparing Fig.5.4 with the corresponding unperturbed case of 

Fig.5.3 shows that the perturbation of cohesive strength will not fundamentally affect the response, 

which is determined by the ductility of the cohesive surface, i.e., either an abrupt jump (brittle) or 

a smooth continuous transition (ductile) to an asymmetric configuration. However, the 

perturbation of cohesive strength does control the direction of R.B.T of the middle sublayer (only 

one configuration from the bottom of Fig.5.2 is applicable), whereas in the case of unperturbed 

case, either one is equally likely. 
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Fig.5.4 Configuration bifurcation plot for uniform cohesive surfaces with perturbed strength. a) 

brittle cohesive surface. b) ductile cohesive surface 

For the case of a perturbed brittle cohesive surface under increasing displacement-controlled 

loading, the system initially moves through a sequence of quasi-skew symmetric configurations 

(negligible R.B.T of the middle layer). As the controlled displacement becomes larger, the 

interfacial shear increases and the R.B.T of the middle layer becomes noticeable with its direction 

of movement following the other constituent with the stronger cohesive surface. Once the 

interfacial shear reaches the critical load, the weaker cohesive surface snaps and the shear traction 

jumps back to a small value. To compensate the abrupt decrease of shear traction, the stronger 

cohesive surface goes back along the stable branch of force law and self-heals, its slip decreases, 

and the asymmetric configuration is obtained. The response of perturbed ductile cohesive surface 

model is similar except the displacement jump is replaced by a gradual process. 

5.2.2 Instability and asymmetric deformation of uniform four-sublayer system  

The analysis of a four-sublayer system follows the same procedure as mentioned above. For 

convenience of discussion, a new labeling system is introduced. From top to bottom, the sublayers 

are labelled from 1 to 4. Assume that the first and fourth sublayer undergo equal but opposite 
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controlled R.B.T. For a uniform four-sublayer system with three cohesive surfaces, the expressions 

for cohesive surface slip are, 
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 (5.8) 

For each applied load S, the cohesive surface slip values for three uniform cohesive surfaces can 

be obtained by inverting the force law. Equation (5.8) is a system of three linear equations 

governing three R.B.T (R1, R2 and R3). The bifurcation behavior and configuration of a 

displacement control system can be obtained by plotting R2 and R3 versus the controlled 

displacement R1. 

Figure max1 max2 max3 

5.5a 0.018 0.018 0.018 

5.5b 0.016 0.016 0.018 

5.5c 0.016 0.018 0.018 
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Fig.5.5 Configuration bifurcation plot of four-sublayer brittle uniform cohesive surface 
( 0.001  ). a) same cohesive surface strength, b) two weak cohesive surfaces, c) one weak 

cohesive surface 

Figure.5.5 shows the transition in behavior from an idealized system with three cohesive surfaces 

of identical strength (Fig.5.5a) to the more realistic case in which one of the cohesive surface is 

weaker or stronger than the other two (Fig.5.5b,c). Figure.5.5a shows that for the system without 

any perturbation, all the branches (8 of them) intersects at two bifurcation points. Whether the 

system remains skew symmetric or develops into an asymmetric configuration after hitting the 

bifurcation point is mathematically arbitrary and would ultimately depend on imperfections in the 

system. Figure.5.5b relaxes the condition of identical cohesive surfaces by choosing two to be 

weaker than the third. The imperfection introduces two candidates of cohesive surface failure that 

reduce the number of applicable branches from 8 to 4 (1 stable branch and 3 unstable ones) since 

the stronger cohesive surface should never fail before the weaker ones do. Figure.5.5c shows that 

if there is only one weak cohesive surface, i.e., the only candidate for cohesive surface failure, 8 

branches degenerate to only two applicable branches (one stable and one unstable which means 

the configuration can be determined) such that the weakest cohesive surface snaps and the two 

others self-heal (the cohesive surface slip closes). Initially, the four-sublayer system would deform 

symmetrically like a deck of card under relatively small controlled displacement. As the controlled 
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displacement increases, interfacial slips increase such that the traction on the weaker cohesive 

surface reaches the cohesive strength which signals bifurcation. After that the second sublayer 

would jump back and move together with the third and fourth layers such that the cohesive surface 

slips of the second and third cohesive surfaces close. 

It might be argued that the asymmetric bifurcation configuration results from the reversable 

cohesive force law, however the argument is only partially correct. The self-healing process occurs 

because the force law has more than one equilibiurm state for a given load. As long as the basic 

structure of force law (stable branch following by unstable branch) remains unchanged, under 

monotonically increasing controlled displacement, there will always be an asymmetric 

configuration which can only be obtained by undergoing a cohesive surface self-healing process.  

5.2.3 Instability and asymmetric deformation of the nonuniform tri-sublayer system 

Rigid body translation in systems with nonuniform cohesive surfaces are not as important as 

systems with uniform cohesive surfaces since the main focus of nonuniform cohesive surface 

analysis is traction related to defects. This subsection presents a brief discussion of the instability 

in the tri-sublayer system with defect geometry consisting of one center defect on each cohesive 

surface. The analysis of the nonuniform cohesive surface problem and its resulting behavior 

follows along the lines of the uniform case above. However, the solution for the rigid body 

translation for a nonuniform cohesive surface problem cannot be as easily found as in the uniform 

one. Recall that for the uniform cohesive surface problem simply inverting the force law is all that 

is required. For the nonuniform cohesive surface problem, the cohesive surface slip field of the 

whole traction controlled process has to be calculated. This consists of both a stable branch (from 

a monotonically increasing load to the critical point, initiation and stable defect grwoth) and an 
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unstable branch (unload to vanishing traction, unstable defect growth resulting in cohesive surface 

failure). Recall the slip field at the nonuniform cohesive surface, 
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in which 0D  is the term in the displacement expansion that characterizes the relative rigid body 

translation of two adjacent sublayers. The 0C y term represents a simple shear deformation in the 

y direction while the higher order trigonometric terms characterize a nonuniform shear distribution 

in the x direction due to the presence of defects. However, there are two clarifications that need to 

be examined, i) the elasticity solution will not eliminate the arbitrary R.B.T of the system as a 

whole which means one of the layers must be fixed against rigid body translation, ii) the constants

0D ’s are relative R.B.T of two adjacent sublayers, and an algorithm needs to be introduced in 

order to compute the R.B.T of each sublayer. Recall 
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where 1R  is the R.B.T of the top sublayer, 2R is the R.B.T of the middle sublayer and 3R is the 

R.B.T of the bottom sublayer. Suppose the top and bottom sublayers translate same amount in 

opposite direction ( 1 3 ,t bR R R  , 2 midR R ), which is also the controlled displacements. The 

initial position of middle sublayer is chosen to be the reference, equation (5.10) can be rewritten 

as  
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The original load-controlled system now has been transformed into an equivalent displacement-

controlled system. The sublayer configurations can be obtained once midR vs ,t bR  is plotted. It can 

be expected that similar to the uniform cohesive surface problem (Fig.5.3), there is an unstable 

(unreachable branch for the classical pitchfork bifurcation) skew symmetric configuration when 

no perturbation of cohesive strength exists. In that case, the second sublayer does not move while 

the top and bottom sublayers rigidly translate by equal amounts in opposite directions (resulting 

in a horizontal line as shown in Fig.5.3). When a slight perturbation (a perturbation of cohesive 

strength or a microstructural defect or a geometrical defect) appears, the perfect symmetry in the 

thickness direction is broken, the system will end up with an asymmetric configuration. To trigger 

an asymmetric configuration, the 2nd cohesive surface is set to be slightly weaker than the 1st one. 

Based on the results from the uniform cohesive surface problem, one would expect that, after 

reaching the critical load, the middle layer tends to move along with the top layer (with whom it 

forms a stronger attachment). Figure.5.6 shows the configuration bifurcation plots of thin sublayer 

system with different magnitudes of cohesive strength perturbation (the 1st cohesive surface with 

a cohesive strength 1,2 0.018m  is the unperturbed value, the 2nd cohesive surface strength is 

perturbed to be slightly smaller). Under displacement-controlled loading, the configuration 

bifurcation plot reveals a stable quasi symmetric branch (close to the abscissa), followed by two 

displacement jumps. Ultimately, at a later stage of unstable branch, the middle sublayer will move 

with the top sublayer such that the second interfacial slip snaps and the first interfacial slip is 

closed. Those two different slips under the same relatively small loading correspond to the two 

shear slip values under the same small applied shear traction in the force law. 
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Fig.5.6 Brittle thin layer ( 0.001, 0.1h   ) with different cohesive strength perturbation. 

Figure.5.7 shows how bifurcation plots vary with sublayer thickness (note all sublayers are equally 

thick). Based on the stages of configuration bifurcation, three branches are defined. Start from the 

origin, the branch that essentially overlaps the abscissa is the skew symmetric configuration branch 

since the R.B.T of the middle sublayer is almost zero regardless of increasing controlled 

displacement. The straight line with a slope of approximately 1 is the asymmetric configuration 

branch since the middle layer is moving together with the top sublayer, creating a large difference 

in shear slip between the two cohesive surfaces. The curve connecting the symmetric and 

asymmetric branches is called the transition branch which is the most complicated one. However, 

the transition branch only affects the transition process without affecting the ultimate configuration. 

Compare the configuration bifurcation plot of the center defect geometry shown in Fig.5.7 with 

the uniform cohesive surface plots shown in Fig.5.3. It is apparent that regardless of the 

introduction of a cohesive surface defect, the symmetric and asymmetric branches, as well as the 

overall physical behavior, are very similar (barring minor differences in the transition branch). 

These differences in the transition branch include, i) for the uniform cohesive surface, an almost 
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straight line connecting the symmetric and asymmetric branches (the transition branch of the 

nonuniform cohesive surface geometry has a wiggle), ii) a sharpness to the wiggle that increases 

with decreasing layer thickness and, which may cause a second displacement jump ( 0.1h   case 

in Fig.5.7). However, for the ductile cohesive surface case, the behavior of the thin layer case 

( 0.1h  ) is similar to its counterpart in the uniform cohesive surface case (Fig.5.3). The middle 

sublayer starts to diverge smoothly and notably away from the abscissa when the applied R.B.T is 

close to  . However, as the thickness increases, the distinctive displacement jump behavior in 

previous brittle cases start to show up in the nonuniform ductile case. This transition, for increasing 

layer thickness (equivalent to decreasing characteristic force length in the uniform cohesive 

surface case shown in Fig.5.3), from smooth to abrupt asymmetric configurations is also observed 

in the uniform case as well. 

 

Fig.5.7 a) Brittle cohesive surface ( 0.001  ). b) Ductile cohesive surface ( 0.01  ).  
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Fig.5.8 Brittle thick layer (varying defect size) 

Figure.5.8 shows how the initial defect size affects the bifurcation behavior. Both cases presented 

here have small defects so boundary effects are negligible. The figure shows that the transition 

wiggle almost overlaps which means the transition process from symmetric configuration to 

ultimate asymmetric configuration through abrupt displacement jump is not affected by the size of 

defect. However, the controlled displacement which trigers the displacement jump and the 

asymmetric configuration, is different. It makes sense that the cohesive surface with a smaller 

initial defect can withstand a larger controlled displacement before the system becomes unstable 

and asymmetric.  

5.3 Crack interaction and shielding in the tri-sublayer system 

Analyses of an elastic solid containing non-dilute distributions of cracks (Fig.5.9) have been a 

problem of keen interest to the mechanics community ever since it was discovered that the elastic 

fields of a single crack will fundamentally change the general macroscopic behavior of the solid. 

Problems of this type have focused on either the change in SIF (Karihaloo [119]) due to crack-
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crack interaction or the effective elastic properties of a solid containing a non-dilute distribution 

of cracks (Kachanov [118]). However, even though Karihaloo’s work is superior to LEFM solution 

in the sense that it takes crack interaction into consideration, it is still limited by its mathematical 

complexity. Kachanov’s work is useful from applications point of view because qualitative 

analysis can be done with minimal effort, but the smearing out of the details of the fracture process 

lead to confusing results since most of the crack problems are governed by local fields. 

 

Fig.5.9 Elastic solid containing non dilute distribution of cracks. 

In this subsection we focus on the exact solution to the defect tip local field as opposed to the 

effective property problem. For an example of the later problem including defect propagation see 

[88]. The analysis presented in this study can be applied to an elastic solid containing several 

parallel defect planes such that within each defect plane there will be either a single crack-like 

defect or an array of symmetrically placed defects. Instead of focusing on the distribution of 
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interfacial fields (which has been discussed in detail in Section 4 of the two-sublayer system), this 

section mainly focuses on defect interaction and related issues. Based on the onset criterion for 

defect growth (i.e., a defect initiates when the critical slip or equivalently a critical cohesive surface 

traction is obtained), it is reasonable to take the maximum traction at the defect tip as a quantity 

that captures the near-tip field. This traction can then be used to compare the degree of stress 

concentration between different defect tips ultimately giving insight into defect plane behavior. 

The computational program has been verified by considering geometries which can degenerate to 

a two-sublayer system whose solution is known from previous sections. However, the validation 

of solutions for other defect geometries are limited by what is available in the literature.  

5.3.1 Single-single defect, varying middle layer thickness ( 2h ). 

In this subsection, the thicknesses of top and bottom sublayers are set to be equal, i.e., 

( 1 3 0.5h h  ), while the defect lengths are taken to be 
1,2 2,3 0.1   . Under these conditions, 

tuning the middle sublayer thickness can lead to two important geometries: i) for a relatively large 

middle sublayer thickness, the system can be reduced to a simpler one (two-sublayer with one 

defect) based on Saint-Vernant’s Principal (Fig.4.5), ii) a reduction of the middle sublayer 

thickness, increases the effects of interlaminar defect interaction such that defect tip stress 

concentrations change leading to a change in the general defect growth behavior. Figure 5.10 

shows that by utilizing symmetry in the thickness direction and making an imagined cut at the 

middle of the system, the tri-sublayer problem can be reduced to a two-sublayer problem with a 

slightly different boundary condition. The new surface created by the imaginary cut serves as the 

lower boundary of the simplified geometry. The two different limiting behavior can be 

distinguished by whether or not the new lower boundary (imagined cut) can be reduced to a 

uniform traction boundary condition. In other words, whether the middle layer is thick enough 



121 
 

such that, regardless of the stress field perturbation of the other defect plane, the shear traction on 

that imagined cut plane asymptotically approaches the uniform distribution.  

 

Fig.5.10 Tri-sublayer geometry and corresponding simplified two-sublayer subproblem. 

In order to address the preceding concerns, the defect plane maximum stress ( max ) of tri-sublayer 

geometries with different middle sublayer half thickness ( 2h ) has been plotted in Fig.5.11a. It 

clearly shows that when 2h is more than 0.3 (three times the size of defect), the curve is close to a 

horizontal line which means the stress concentration is no longer changing with variation of middle 

sublayer thickness. This can be treated as a rule of thumb for neglecting defect interaction and for 

simplifying the complicated multi-sublayer system to a much simpler one without hurting accuracy. 

As the thickness decreases, the defect plane maximum stress decreases due to crack shielding. 

Figure 5.11b depicts crack shielding from the point of view of defect plane loading capacity ( maxS ). 

As the thickness decreases, the maximum applied shear ( maxS ) that the defect plane can carry 

increases which can only be explained by a reduced stress concentration since the defect 

geometries are exactly the same. 
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Fig.5.11 a) Defect plane maximum traction ( max ) vs middle sublayer thickness. b) Defect plane 

critical load ( maxS ) vs middle sublayer thickness ( 1 3 0.5h h  ,
1 2 3 1.0     , 

1,2 2,3 0.018m m   , 1,2 2,3 0.001    ) 

5.3.2 Single-single defect, varying bottom defect length ( 2,3 ) 

The previous section contained an analysis of the effect of sublayer thickness and defect interaction 

and when it cannot be ignored. However, defect sizes were constrained to be the same which is 

not realistic. In order to study the effects of defect tip offset on the two planes, the middle sublayer 

is chosen to be thin enough (based on previous section, 2h is chosen to be 0.05) so that the effect 

of interlaminar defect interaction is significant (Fig.5.12). 

 

Fig.5.12 Tri-sublayer system with different defect sizes. 
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The defect of the 1st cohesive surface is set to the fixed value 
1,2 0.1   while the size of the defect 

on the 2nd plane is changed in order to see its impact on the distribution of the 1st cohesive surface. 

There are two important factors that govern the shear distribution on the 1st cohesive surface, i) 

the direct presence of the defect on the top defect plane (which tends to cause a spike of cohesive 

surface shear traction around the defect tip), ii) the indirect perturbation by the nonuniform shear 

traction distribution on the 2nd cohesive surface. Figure 5.13a shows two qualitatively different 

distributions. For cases where the defect on the 2nd cohesive surface (
2,3 ) is smaller than on the 

1st cohesive surface, the shear traction distribution of the 1st cohesive surface is similar to the two-

sublayer single defect cases (Fig.4.7). That is, the highest shear traction is located around the defect 

tip which means the presence of the defect on 1st cohesive surface dominates the shear distribution. 

However, for larger values of 
2,3 , the shear traction field the of 2nd cohesive surface significantly 

affects the shear distribution of the 1st cohesive surface by suppressing the 2nd defect tip 

concentration and mapping its own larger defect tip stress concentration onto 1st cohesive surface. 

Under such circumstances, the defect on the 1st cohesive plane would not propagate before the 2nd 

one. 
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Fig.5.13 a) Shear traction on the first defect cohesive surface. b) Critical load ( maxS ) vs size of 

defect on the second cohesive surface. c) Shear traction value at first cohesive surface defect tip 

( 1 3 0.5h h  , 2 0.05h  , 0.0020S  ,
1 2 3 1.0     , 1,2 2,3 0.018m m   ,

1,2 2,3 0.001   ,
1,2 0.1  ). 

The qualitative change (with the second defect size) of the shear distribution leads to the behavior 

of load capacity behavior shown in Fig.5.13b. The maximum point coincides with the equal defect 

length case where 
1,2 2,3 0.1   . For larger 

2,3 , it is obvious that the load capacity drops since 

the intact region of the second cohesive surface is reduced and the second defect cohesive surface 

fails first. However, this argument is unable to explain the load capacity drop when 
2,3 is small 

since it’s counterintuitive that a system with less defect can withstand less applied load. In fact, 

when 
2,3 1,2  , the 1st cohesive surface fails first. Figure.5.13c shows that reducing 

2,3  to 

values smaller than 
1,2  leads to increasing stress concentration on the 1st cohesive surface which 

makes it more vulnerable to defect propagation.  

5.3.3 Double-single defect, varying crack spacing.  

An interesting modification of the previous single-single defect geometry is to split the defect on 

the 1st cohesive surface into two defects (Fig.5.14). The questions about defect behavior and defect 

tip stress concentration are not easy to answer since at least two antagonistic mechanisms are active. 
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First, splitting the defect would definitely introduce a new bonded region within the two inner 

defect tips. There will be defect interaction between the two inner defect fronts (suppose they are 

close enough) which may introduce a higher stress concentration within the bonded region (as 

discussed in Section 4.6) and, lead to a change in defect growth behavior. However, the newly 

introduced region (suppose its size does not exceed the bottom defect) is subject to a free boundary 

below it since it sits on top of the initial defect region of the second cohesive surface and this may 

act to relieve the stress concentration.  

 

Fig.5.14 Double-single defect configuration 

To study these two antagonistic mechanisms, and their effects on the stress redistribution on the 

top cohesive plane, keep the defect size and location on the bottom cohesive surface fixed 

( 2,3
0 0.2  ) and fix the defect size on the top cohesive surface ( 1,2 1,2

1 0 0.1   ) as well, only vary 
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the spacing ( 1,2
0 ). Note that in what follows, the following values of the parameters are fixed, i.e., 

20.0020,  0.018,  0.05mS h   . 

For the most brittle case of Fig.5.15a, the figure shows that where the defect regions on the 1st 

cohesive surface are enclosed by the defect region of 2nd cohesive surface ( 0.15e , e is the 

location of the center line of defects on the 1st cohesive plane), the overall stress concentration (at 

the inner or outer defect tip) is relatively small compared to geometries with larger e’s. 

Furthermore, the outer defect tips ( 1,2
1 ) which are closer to the defect tip of 2nd cohesive surface 

( 2,3
0 ) has a higher stress concentration than the inner ones. This behavior indicates the effect of 

the boundary (the nonuniform shear traction on the 2nd cohesive surface) dominates the in-plane 

two inner defect tip interactions. As the defect region of the 1st cohesive surface moves outward, 

the inner bonded region of the 1st cohesive surface is wider than the defect region of the 2nd 

cohesive surface, the stress concentration of the inner defect tip of the 1st cohesive surface is 

elevated and the relative magnitude of the shear stress at the two defect tips can also be switched 

( 0.35e ). This indicates that the inner defect tip would propagate first. However, for the case 

considered here (brittle cohesive surface with small  ), the defect will not propagate through the 

inner bonded region which indicates the defects on the 1st cohesive surface would not coalesce into 

one larger defect before the defect plane becomes unstable. It is also worth noting that when the 

outer defect tip approaches the side boundary, the overall stress concentration is reduced due to 

minimum defect interaction, but the outer tip which is close to the free boundary has higher stress 

concentration than that of the inner tip (similar to Fig.4.18b) due to the traction free boundary 

effect. 
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Fig.5.15 The maximum traction at both defect tips on the top cohesive plane. a: 

0.001  . b: 0.003  . c: 0.010  . 

The CFS can also be applied to more ductile cohesive planes without introducing any additional 

difficulties. Figure 5.15 b and c are plots for more ductile cohesive surfaces. There are generally 

two differences. The first one where the inner tips are closely located, (left most point for both 

plots, 0.07e ), the inner tip has a higher stress concentration. This can be explained by the change 

of cohesive surface ductility. For the brittle cohesive plane, the traction decreases quickly from the 

maximum value at the defect tip. Once the spacing of in-plane defects is larger than the localized 

zone of elevated traction, defect interaction is not obvious. However, the more ductile cohesive 

surface has a more distributed stress pattern which leads to a more obvious in-plane defect 
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interaction when they are closely located. The other difference is that for the most ductile case 

(Fig.5.15c), the cohesive surface maximum shear traction is no longer necessarily located at either 

original defect tip. The coupling effect leads to an unusual pattern for the cohesive plane shear 

traction redistribution as shown in Fig.5.16. 

 

Fig.5.16 Traction distribution ( 20.0020,  0.010,  0.018,  0.05,  0.07mS h e      ). 

In order to have the merging of defects on the 1st cohesive plane, several conditions need to be 

satisfied. These are, 

i) ductile cohesive surfaces (same   for both cohesive surfaces) which enables longer defect 

growth. 

ii) a relatively small inner bonded region on the 1st cohesive surface such that limited defect 

growth can propagate through the inner bonded region.  

iii) an even smaller center defect on the 2nd cohesive plane which strengthens the stress 

concentration at the two inner defect tips of the 1st cohesive plane which ensures that the 

inner tips would propagate first. 



129 
 

iv) A 1st cohesive surface that is weaker than the 2nd one so that the second cohesive surface 

would not fail before defect propagation through the inner bonded region of the 1st cohesive 

surface.  

One defect geometry/cohesive plane that satisfies all of the above conditions is, 

1,2 1,2 2,3
0 1 0

1,2 2,3

1,2 2,3

0.03,  0.13,  0.02

0.010,  0.018

0.005

m m

  

 

 

  

 

 

 (5.12) 

Figure.5.17a shows that for a relatively small applied load (dashed line), the inner tip has a higher 

traction which indicates that the inner tip will propagate first as expected. For relatively high 

applied load (solid line), the inner bonded region has already reached the cohesive strength which 

means that the initial inner bonded region is compromised. This argument is made clearer by 

checking the cohesive surface slip field shown in Fig.5.17b which shows that when S=0.0080, the 

shear slip value of any point within the initial inner bonded region has passed the threshold of 

characteristic length ( 0.005  ). Based on the defect tip definition introduced in the previous 

section (any point on the cohesive surface with a shear slip larger than the characteristic length, or 

equivalently, a cohesive surface shear traction exceeding the cohesive strength), the inner defect 

tip will propagate through the inner bonded region. It also shows that at S=0.0080, the shear slip 

of the outer tip has not reached the critical value which means the outer tip has not propagated yet. 

Only after the inner bonded region is totally compromised does the outer defect tip rapidly 

propagate from its initial position of 1,2
1 0.13  to almost 0.25 from which the defect plane 

becomes unstable. 
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Fig.5.17 1st cohesive surface a) shear traction distribution. b) shear slip distribution. 

5.3.4 Columns of defects of identical size but variable thickness 

The purpose of this section is to determine the behavior of layered systems with columns of 

defects. Similar crack geometries have been considered by Kachanov [117], [118] and Karihaloo 

[119]. Kachanov [117] carried out a mode-I and mode-II stress analysis of a medium containing 

multiple collinear cracks employing superposition. His approximate analytical solution can be 

applied to both two and three-dimensional crack arrays of arbitrary geometry and, the approximate 

SIFs are accurate for closely spaced cracks. Apart from this study on the impact of interactions on 

individual cracks (especially SIFs), Kachanov also looked at the effective elastic properties of 

solids containing multiple cracks [118]. Kachanov’s work revealed that the effect of introducing 

cracks into an elastic medium resulted in a reduction of the SIF while simultaneously reducing the 

stiffness of the material. Kachanov’s work did not focus on anti-plane shear loading and this 

“paradoxical” effect is worth studying in that context. Figure.5.18 shows two geometries that will 

be analyzed in this subsection. Since the geometries considered by Kachanov are for the infinite 

domain, the cases considered here will minimize finite domain effects based on two different 

strategies. In the first case, the defect is located far from the traction free sides while the the second 

case satisfies a periodic condition. 



131 
 

 

Fig.5.18 a. Two columns of defects ( 12 0.1,  0.25a d  ). b. Four columns of defects 

( 1 22 0.1,  0.25, 0.75a d d   ). 

Figure.5.19a shows the interlaminar defect shielding phenomenon that has been examined 

previously in the single defect geometry shown Fig.5.11a. However, the double column geometry 

has a smaller maximum cohesive shear traction than the single defect geometry (note they have 

the same defect region length) since the original defect was split into two smaller and well 

separated ones which would reduce the local stress concentration. Figure 5.19a plots the cohesive 

surface maximum shear traction ( max ) versus middle sublayer thickness ( 2h ) for two columns 

and four columns of defect geometries. It shows that the four columns defect geometry has a 

slightly higher traction than the double column defect geometry. This behavior clearly shows the 

difference between SCS and CFS. From the point of view of SCS, remotely located defect tips 

should have negligible crack interaction. The local stress concentration is governed by the local 

defect geometry. However, the CFS governs the cohesive shear traction based on the argument of 

global equilibrium which takes the reduced bonded region into consideration automatically. Figure 

5.19b shows the cohesive surface load capacity for the two geometries. Regardless of geometry, 

they all show that with decreasing middle sublayer thickness, the defect plane load capacity 

increases, which is similar to the single column defect geometry (Fig.5.11b). By checking the two 
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curves, it shows that the two columns model always has a higher load capacity than its counterpart 

which is intuitive from the point of view of global equilibrium. However, compared to the two 

column model, the defect length in the four columns model doubled but the load capacity decrease 

is not proportion to the reduction of area of the initially bonded region. This behavior can be 

explained by the defect driven cohesive failure of a brittle cohesive surface which mostly is based 

on local field rather than a ductile linear spring like cohesive plane.  

 

Fig.5.19 a) Cohesive surface maximum shear traction ( max ) vs second sublayer thickness ( 2h ).  

b) Cohesive surface maximum load ( maxS ) vs second sublayer thickness. 

5.4 Defect interaction and shielding in the four-sublayer system 

In the previous section concerning the tri-sublayer system, the work focused primarily on 

interlaminar and intralaminar defect interaction. This was accomplished by studying the local 

stress concentration (which can be measured by cohesive surface maximum traction) when the 

system is subject to same small amount of applied load. However, the number of cohesive surfaces 

was limited to two which does not allow for consideration of more complex defect geometries with 

interlaminar symmetry, e.g., the diamond pattern and the columnar pattern of defects. In this 
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subsection, the study mainly focuses on the effects of introducing a third nonuniform cohesive 

surface. 

5.4.1 Single column of defects 

The geometry of a single column of defects in a four-sublayer system is shown in Fig.5.20 and can 

be regarded as an extension of the corresponding tri-sublayer geometry by introducing another 

nonuniform cohesive surface. The modification seems trivial but in fact, it raises several interesting 

questions that are difficult or impossible to treat by other methods. These include i) what is the 

effect of introducing a new columnar cohesive defect, ii) are there any changes in the resulting 

defect propagation process, iii) what are the effects of changing the sublayer thicknesses in i) and 

ii). 

In the following analysis, all sublayer thicknesses in each geometry were constrained to be 

identical. In other words, defects are spaced uniformly in the thickness direction. The cohesive 

strengths and characteristic lengths are set to be the same ( 0.018m  , 0.001  ). 

 

Fig.5.20 The four-sublayer geometry and the tri-sublayer geometry. 

Single column of defects. The first case analyzed is a comparison between the four-sublayer system 

and the tri-sublayer system. This is done by requiring that the bulk material and cohesive surface 
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properties be the same, including the defect sizes ( 0 0.1  ). Additionally, the thickness of the 

middle sublayer of tri-sublayer system will be assumed to be twice that of the top and bottom 

sublayers (Fig.5.20). One can expect that for thick sublayers, the introduction of a middle cohesive 

surface defect would have little impact on the stress redistribution of the other two existing 

cohesive surfaces. For thick sublayers, as one horizontal plane (parallel to the x-z plane) moves 

away from the top or bottom boundary in thickness direction, the shear traction on that plane 

reduces asymptotically to a uniform field. As long as such a horizontal plane with uniform shear 

traction in the media can be found between two cohesive surfaces, no matter how complicated the 

defect geometry of middle cohesive surface is, the traction of the top and bottom cohesive surfaces 

can be expected to reduce to a two-sublayer problem with an initial defect. Figure 5.21 indicates 

the correctness of this assumption since, for higher values of h, the curve for the maximum shear 

of the top cohesive surface converges to the same value regardless of the number of sublayers. By 

comparing the shape of the two curves, it is clear that they generally have the same behavior as 

predicted by the nonuniform two-sublayer problem (reducing the thickness tends to increase the 

stress concentration shown in Fig.4.14). The dash curve characterizing the tri-sublayer is always 

on top of the solid line. An examination of the two curves for the identical overall thickness shows 

that the maximum shear for the four-sublayer system is always lower than its counterpart tri-

sublayer system. This seems counterintuitive since one might expect that the introduction of 

another defect to the system will generally tend to soften the system which would lead to failure 

at an earlier stage. However, this argument is based on a global point of view. From a local 

perspective, for the initial defect region, the introduction of a new middle nonuniform cohesive 

surface changes the corresponding top and bottom cohesive surface boundary conditions within 

the defect region ( 0.1 0.1x   ) from a distributed shear traction to a partially traction free region. 
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Locally, the newly introduced nonuniform cohesive surface reduces the amount of boundary 

traction to be compensated which in turn reduces the shear maximum. Globally, with a reduced 

maximum cohesive surface traction, it precipitates a more distributed shear traction field such that 

global equilibrium is satisfied. Figure 5.21 plots the maximum shear traction on top cohesive 

surface ( 1,2
max ) vs sublayer thickness (h). Since defect propagation is driven by local factors, the 

behavior in Fig.5.21 is reasonable. 

 

Fig.5.21 Single column defect geometry (tri-sublayers vs four-sublayers). 

Single column of defects, varying middle defect size. The previous geometry restricted all defects 

to be the same size, i.e., 0 0.1  . In the following subsection, the middle defect size is altered and 

the effect on behavior is studied for different sublayer thicknesses. Here, all sublayer and cohesive 

surface properties are set to the same parameter values ( 1.0,  0.018, =0.001m    ). 

Furthermore, the loading is assumed unchanged ( 0.0020S  ). As in previous sections, the 

maximum shear tractions on the cohesive surfaces are compared and contrasted. Note that the sizes 

of the defects on the top and bottom cohesive surfaces are kept the same, their location fixed such 
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that the traction distribution follows a similar pattern as the basic single defect fields (it’s worth 

pointing out that when the sublayers are relatively thin and the middle defect is very large, the 

stress pattern has greatly changed and this argument no longer hold, refer Fig.5.24). Hence the 

cohesive surface maximum shear ( 1,2
max ) can be treated as an indicator of the local stress 

concentration. Comparing the maximum shears on different cohesive surfaces ( 1,2
max vs 2,3

max ) 

resolves the issue of defect propagation sequence. 

 

Fig.5.22 Four-sublayer system with columnar defect geometry for two middle layer defect sizes. 

 

Fig.5.23 Maximum shear traction for different sublayer thicknesses and defect sizes. 
a) 1st cohesive surface. b) 2nd cohesive surface. 
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Figure 5.23a shows that when the middle defect is no larger than top/bottom defect (top three 

curves), the top and bottom cohesive surfaces follow a similar pattern of behavior as the 

nonuniform bilayer geometry considered in Section 4.5, i.e., shrinking the sublayer thickness 

would increase the traction concentration which is manifested by an increasing maximum traction 

around the defect tip. However, when the middle defect is relatively large ( 2,3
0 0.25  ), the bottom 

two curves indicate qualitatively different behavior. That is, under increasing thickness the traction 

concentration initially decreases, attains a minimum and then increases. This can be explained by 

checking the traction distribution of the first cohesive surface for those cases. Figure 5.24 shows 

the traction distribution for the bottom curve case in Fig.5.23a ( 2,3
0 0.25  ). There are generally 

two competing factors governing the traction concentration. One is as discussed in previous 

sections, i.e., decreasing the thickness leads to increasing concentration. The other is that as the 

thickness decreases, the traction distribution of the second cohesive surface would project itself 

onto the first cohesive surface which, in the case of a relatively large second cohesive surface 

defect, would create a new traction pattern on the first cohesive surface with a second peak at the 

location where the second cohesive surface defect tip is located. The new stress pattern with two 

peaks would generally decrease the stress concentration at its original defect tip when the sublayer 

thickness is not considerably small (check cases of 0.05,  0.03h  in Fig.5.24). 
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Fig.5.24 First cohesive surface shear traction ( 2,3
0 0.25  , 0.0020S  ) 

For geometries with a single column of defects, when the size of a certain defect is noticeably 

larger than the other two, the propagation initiates first from the larger defect. However, for a 

single column of defects of identical size, the defect propagation process is difficult to predict by 

simply examining the defect geometry. Figure 5.25 shows the cohesive surface maximum shear 

for different sublayer thicknesses with exactly the same defect geometry ( 0 0.1  ). Due to perfect 

symmetry in thickness direction, the 1st and 3rd cohesive surface should have exactly the same 

traction and slip fields. Figure 5.25 shows that the maximum shear traction on 1st (3rd) cohesive 

surface is always higher than their counterpart on the middle cohesive surface which indicates that 
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the middle cohesive surface is stronger, and defects will propagate either from the 1st or 3rd 

cohesive surface. In Fig.5.25b the applied shear traction has been increased (the critical load of the 

thinnest sublayer system). The graph clearly shows that for the thinnest case at some particular 

point on the 1st and 3rd cohesive surfaces, the shear traction has reached its cohesive strength 

( 0.018m  ) meaning that defects have already propagated whereas for the middle layer, they have 

not.  

 

Fig.5.25 Cohesive surface maximum traction vs layer thickness. a) 0.0020S  , b) 0.0070S   

Note that the columnar defect geometry (Fig.5.22) can be generalized to multiple columns of 

defects as long as the geometry to be studied can be cut into simplified single defect columns 

provided that, 

i) Each column of defects has a line of symmetry. 

ii) The center line between the two new cut surfaces (dotted line) coincide with the line of 

symmetry of defects. 

iii) The two new cut surfaces both have vanishing tractions. This can be satisfied by either 

cutting at the middle line between two adjacent columns of defects or, cutting  is far from 

any defect tip such that the traction converges to the applied shear. 
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Figure 5.26 shows how a double column geometry can be reduced to a simpler problem that 

can be analyzed as a single column geometry (portion encircled by dotted line). However, 

sometimes conditions ii) and iii) cannot by both satisfied at the same time and, in those cases, 

the geometry cannot be simplified. In that case the complete geometry has to be considered. In 

general, the geometries that can be simplified are cases for which defects are well separated 

within the cohesive surfaces and far from the boundaries. 

 

Fig.5.26 Analysis of two column geometry by a single column geometry. 

Principal directions. Analogous to Section 4.8, this subsection concerns the orientation of potential 

mode-I micro cracks based on the same assumptions i.e., micro cracks are formed by maximum 

principal tensile stress. Recall that the mode multipliers govern the cohesive surface slip field 

rather than the actual deformation field of either sublayer. In order to obtain the stress component 

( xz ) related to the deformation of a certain sublayer, an algorithm needs to be developed 

obtaining the deformation field from the calculated multipliers. It is worth pointing out that for the 
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middle cohesive surface which has top and bottom sublayers with perfect symmetry (including 

boundary conditions), the deformation field of its two constituent sublayers should be the same 

(Fig.5.27 right bottom). Hence, it is reasonable to distribute the calculated mode multipliers that 

govern the cohesive slip evenly to each sublayer’s deformation field. However, this argument is 

not adequate for the top or bottom cohesive surface since the boundary conditions for the top and 

bottom sublayer are different (one is a uniformly distributed applied shear traction, while the other 

one is a non-uniformly distributed cohesive surface shear traction. These arguments are 

summarized in Fig.5.27).  

 

Fig.5.27 Four-sublayer center defect geometry with same sublayer thickness and defect size. 
Corresponding two-sublayer model for top and middle cohesive surface. 

In such cases, the deformation field of each sublayer can only be calculated exactly by (4.8) and 

(4.9). Note that the higher order terms in (4.8) can be obtained by orthogonality process of (4.9). 

However, 0 0D C y  does not contribute to xz , so there is no need to go through the process to 

calculate it. 
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Because the defect geometry is similar to the two-sublayer centered defect geometry (Section 4.4), 

the stress fields have a similar distribution. It can be expected that the general trend for the principal 

direction varying W.R.T cohesive surface location should be the same as Fig.4.22, i.e., start from 

90 degrees in the initial defect region since the governing stress component is xz and converge 

to 45 degrees in the bonded region away from the defect tip because the governing component 

changes to yz . Close to the defect tip, there will be a smooth but steep transition from 90 degrees 

to 45 degrees. Figure 5.28 shows the orientation of mode-I micro cracks of all cohesive surfaces 

with different sublayer thicknesses. It can be expected that when the layers are relatively thick, 

interlaminar defect interaction is negligible and all cohesive surfaces share similar cohesive 

surface tractions which are manifested by curves for different cohesive surfaces overlapping each 

other ( 0.5 and 0.3 h h  case) in Fig.5.28. However, when the layer is relatively thin, there will 

be significant differences in traction distributions between cohesive surfaces. The top and bottom 

layers tend to have stronger traction concentrations and the middle layer is affected by interlaminar 

defect shielding with less traction concentration. The cohesive surface with the stronger 

concentration has high values of gradient / x   which is proportion to xz . Because the relative 

magnitude of yz  and xz  governs the orientation, the top/bottom cohesive surfaces of the thin 

layer cases with comparable xz would deviate more substantially from 45 degree and therefore 

would take longer to converge to the stable value of 45 degrees. The preceding discussion also 

explains why, for thinner layers, the principal direction of the middle cohesive surface converges 

to 45 degrees more rapidly than other cohesive surfaces. This argument can be studied by checking 

single sublayers of the system (Fig.5.29). Note that the stress component xz  on a cohesive 

surface is basically compensating the difference between shear force (integration of applied shear) 
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on the corresponding boundary and the reactive cohesive surface shear force. Proceed as discussed 

in Section 3.5, make a fictitious vertical cut closely ahead of the defect tip (dashed line on 

Fig.5.29). Fig.5.29 shows the single sublayer configuration and the corresponding shear traction 

distribution on each surface, the shear tractions on top and bottom surface for each configuration 

are combined and plotted on the right within one coordinate. For the top sublayer, the deficit of 

the shear force on the cohesive surface (compared to top surface) caused by introducing a defect 

can be expressed by the difference of the area between region 1 and region 2 labelled on Fig.5.29.  

However, for the middle sublayer (both top and bottom boundaries having a defect), the shear 

traction distribution for those two surfaces are very similar (Fig.5.29 bottom) and a relatively small 

deficit is obtained. The unbalanced shear force deficits can only be obtained by another stress 

component ( xz ) on the fictitious cut surface, and the magnitude of xz is proportion to the deficit. 

Hence, for the middle sublayer which a smaller shear force deficit introduces a smaller xz , the 

orientation of mode-I micro cracks should converge to its stable value of 45 degrees faster. Note 

that for relatively thick sublayers, the interlaminar interaction is negligible and regardless of which 

cohesive surface is considered, they all can be reduced to the same two-sublayer system. This 

argument is also shown in Fig.5.28 by checking cases h=0.3 and h=0.5. 
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Fig.5.28 Distribution of principal tensile stress orientation. 

 

Fig.5.29 Single sublayer configuration and shear traction distribution.  
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Defect propagation process. This section serves as an extension of Section 4.7 which mainly 

concerns the criteria for primary defect propagation based on the traction and slip fields obtained 

by CFS. This section mainly focuses on more complex propagation phenomena, the comparison 

between the location of the primary defect tip and the potential location of mode-I micro cracks 

are addressed. Related topics include, i) the sequence of propagation (micro cracking vs primary 

defect propagating on a particular cohesive surface ) and ii) comparison between the sequence of 

propagation between different cohesive surfaces and, how changes in the constitutive parameters 

alter the prediction of two different propagation processes. Before any discussion of the 

propagation process, it is first necessary to clearly define the propagation criteria for primary defect 

growth and mode-I micro cracking. These include, i) the primary defect propagation criterion, 

which is closely related to the cohesive law, ii) the mode-I micro crack initiation criterion that 

characterizes a bulk material’s resistance to tensile fracture. Note that the CFS determines the 

traction fields and because of this, stress-based (or critical slip criteria) propagation criteria are 

chosen for consistency. For the primary defect, the propagation criterion is defined as in Section 

4.7 and once the cohesive shear traction reaches its maximum value ( m ) or equivalently the 

cohesive surface slip value reaches the characteristic length ( ), the primary defect propagates. 

Note that the parameters of the propagation criterion for the primary defect is directly related to 

the cohesive law and cohesive relation is only applicable to the cohesive surface (i.e., the fictitious 

surface along which the primary defect is assumed to be propagate).  

Before defining the criterion for micro crack initiation, it is necessary to understand the 

fundamental differences. These include, i) the fact that a mode-I micro cracks arise from an  

imperfection of the bulk material in the vicinity of the cohesive surface rather than a clearly 

predefined and easily modelled initial defect, ii) a matrix where the micro cracks initiate is the 
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bulk material as opposed to the fictitious cohesive surface on which the primary defect propagates. 

The first difference means that the CFS analysis of mode-I micro cracks cannot  follow the 

procedure used in studying primary defect. Unlike the primary defect whose calculated fields can 

be used to define the current primary defect tip (based on certain criterion), mode-I micro cracking 

is a much complicated phenomenon. Because of this, the calculated fields can only give a 

prediction about the region where certain micro cracking criterion is satisfied (characterized by 

potential micro cracking boundary 
m  ). Some researchers did study the propagation process, 

orientation and shape of micro cracks by introducing predefined inclined notches. The orientation 

of these notches is predetermined by testing. The criterion for micro crack propagation is based on 

the fracture toughness in the vicinity of perturbed notches [120]. The same group of researchers 

also carried out phase field analysis by introducing randomly distributed small imperfections 

(rather than predefined notches near the primary defect tip). This was done in  order to study the 

orientation and merging of micro cracks. The phase field formulae accounting for damage is also 

based on the maximum tensile stress criterion ( p m  ) [121], where p is the maximum 

principal stress and m is the tensile strength of the bulk material. 

The second difference suggests that mode-I micro cracks are governed by a different set of 

parameters rather than what has been used to characterize the primary defect plane. The relation 

between the parameters characterizing cohesive surface behavior, and a new set of parameters 

characterizing the resistance to tensile fracture can be different based on the actual problem. If the 

cohesive surface is a fictitious one, the two sets of parameters are characterizing the same material 

and need to be consistent ( m  and m , the cohesive strength of the surface and the tensile strength 

of the bulk material, are related by certain yield criteria depending on different types of bulk 

material). However, if the cohesive surface is an actual surface of adhesion that bonds two distinct 
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layers, the two sets of parameters characterize two different materials (bulk and adhesion), and 

their relation has to be built by setting the shear modulus of the bulk material as a primary 

parameter and the relative magnitude of cohesive strength of the adhesion has to be derived. 

In this subsection, the method of characterizing micro cracking by maximum tensile stress criterion 

( p m  ) is applied. No distinction is made about whether the cohesive surface is fictitious or not. 

The study mainly is focused on defining a region in the vicinity of the propagating primary defect 

tip such that the principal tensile stress within it exceeds a certain value, i.e., the maximum tensile 

stress criterion is met. The cohesive surface is taken to be brittle ( 0.001  ) and the cohesive 

strength is assumed to be the same as in previous calculations, i.e., 0.018m  . Thus, existing 

results can be used for comparison. The following results focus on three aspects, i) differences 

between the top and middle cohesive surfaces, ii) how a change in sublayer thickness affects 

cohesive surface behavior, and most importantly, iii) the effects of the ratio /m m    which 

measures the resistance to failure in two different ways ( m  characterizes the resistance to shear 

failure on the cohesive surface, m  characterizes the resistance to normal failure in the bulk 

material). 
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Fig.5.30 Location of primary defect tip (shear) and boundary of potential micro cracking 
(normal) for top and middle cohesive surface. ( 1.2  ) a) top cohesive surface, normal failure. 

b) top cohesive surface, shear failure. c) middle cohesive surface, normal failure. d) middle 
cohesive surface, shear failure. 

In order to answer i) and ii) of the previous paragraph, the primary defect tip location ( ) and 

potential micro cracking boundary (
m ) has been plotted separately in Fig.5.30, based on the 

cohesive surface defect propagation criteria given above. First compare graphs on the same column 

(same propagation criterion, either potential micro cracking boundary or defect tip of shear failure), 

note that when h is relatively large, the behavior of crack propagation of the middle cohesive 

surface is almost the same as its counterpart on the top cohesive surface ( 0.5  or  0.3h  ). Graphs 

in the same row (same cohesive surface) shows that the potential micro cracks caused by a normal 

criterion propagate first and will propagate deeper into the initially intact region. This behavior is 
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observed in various brittle material testing including both torsion of a cylindrical bar and the 

shearing of layered systems [27], [33], [37]. For a discussion about thickness effects, focus on 

Fig.5.30b first since it is directly related to the cohesive shear field.  

In previous section, Figure.5.21 clearly shows how the cohesive traction concentration changes 

with respect to a changing thickness. From 0.5h , the local traction concentration slightly 

decreases until 0.05h . After that, the traction concentration tends to increase, when 0.03h  it 

has already surpassed the starting value becoming significantly larger as the thickness further 

decreases. Note that the local traction concentration is measured by the maximum shear traction 

under the same load which is also the criterion for primary defect propagation. The above argument 

can be used to explain the why reducing sublayer thickness first delayed primary defect 

propagation and then stimulates it. 

Fig.5.30b shows that from 0.5h to 0.05h , defect initiation is slightly delayed and, for the case 

of 0.01h , the defect propagates much earlier than the other cases. Similar behavior also appears 

in Fig.5.30a, the boundary of potential mode-I micro cracking. The above argument also provides 

an explanation for the behavior of the middle cohesive surface (Fig.5.30 second row). Figure 5.23b 

( 2,3
0 0.125  ) shows a similar change in stress concentration for 0.03h , but not a rapid increase 

for case 0.01h . The defect propagation process follows a similar pattern with one exception. 

For 0.01h , no curve for 0.01h is observed in Fig.5.30d which means that the primary defect 

will not propagate at all due to the interlaminar shielding effect. 
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Fig.5.31 Location of primary defect tip ( ) and boundary of potential micro cracking ( m ) for 

top and middle cohesive surface.  

Figure 5.31 shows the defect tip location of both top and middle cohesive surfaces for different 

values of   and sublayer thicknesses. For a fixed cohesive strength, higher values of   leads to 

smaller value of m   which makes the micro crack propagation criterion more easily to be satisfied. 

An examination of the figure indicates that those curves with higher   values generally are on top 

of their counterparts. Therefor a smaller value of applied shear (S) is required to trigger the micro 

cracking and the potential micro cracking boundary departs from the initial defect location (

0.1  ). Note that the light grey lines labelled “shear top” and “shear mid” represent the primary 

defect propagation process due to shear which will not change with varying  . They indicate that 

the tips of primary defects are generally always behind the potential boundary of micro cracks. 
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This result is consistent with the commonsense notion that the propagation of a primary defect is 

driven by the coalescence of existing micro cracks ahead of it. How far the micro cracks are ahead 

of the current primary defect is largely dependent on the relative magnitude of the parameters 

( / )m m    characterizing the resistance of tensile failure of the bulk material and cohesive shear 

strength within the potential micro cracking region. The first three cases in Fig.5.31 show the 

discrepancy (distance between micro cracks and primary defects) increase as the primary defect 

propagates. This fact is consistent with results from the literature that assert that the discrepancy 

is proportional to the characteristic length of the primary defect ([120]).  

5.4.2 Diamond pattern of defects 

Apart from the columnar defect geometry, another interesting geometry that consists of multiple 

sublayers system is the diamond pattern array of defects ([117], [118], [119]). The fundamental 

difference between the two geometries is that in the columnar pattern, the defects line up by the 

same center line, whereas for the diamond array, the defects on the middle cohesive surface are 

offset by a certain distance from their counterparts on the 1st and 3rd cohesive surface. Figure 5.32 

shows the most basic unit that characterizes one “diamond” pattern.  
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Fig.5.32 Schematic sketch for a single-double-single (S-D-S) diamond array of defects. 

Although defects formed during the manufacturing process or during service are randomly 

distributed, nonuniform cohesive surfaces with predesigned patterns take advantage of certain 

symmetries. These may be reduced to one of the following three, i) the most basic geometry of a 

two-sublayer system containing a center defect (well-separated defects and relatively thick 

sublayers), ii) a columnar defect pattern (defects line up in thickness direction), iii) a geometry 

constructed by stacking the basic “diamond pattern” side by side (satisfying certain periodicity 

conditions). In this subsection the diamond pattern geometry is considered to be perfectly 

symmetric with respect to the middle cohesive surface (1st and 3rd cohesive surfaces are exactly 

the same), and the total size of the defect region (two defect sizes combined on the middle cohesive 

surface) on each cohesive surface is the same. In this subsection, 1,2
0a  represents the defect half 

length on the top cohesive surface between the 1st and 2nd sublayer, and 1,2 3,4
0 0a a will be assumed 
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due to an enforced symmetry in the thickness direction. The quantity 2,3
0a  is the defect half length 

of the middle cohesive surface which can be different from its counterpart on the other two 

cohesive surfaces. The offset distance of defects’ centerline is labeled as e12. Note that this set of 

parameters ( 1,2
0a , 2,3

0a  and e) can also be transformed into a set that describes defect fronts (i.e., 

1,2
0 , 2,3

0  and 2,3
1 ). Analogous to Section 5.3, the following section mainly focusses on stress 

concentrations for various defect geometries. 

Varying offset distance “e”: The offset distance e of the 2nd cohesive surface affects the cohesive 

traction distribution as follows. First, the offset distance controls the defect geometry of the second 

sublayer, for 1,2 2,3
0 00.05,  0.1,  0.05e a a   the defect pair of the second cohesive surface 

degenerates to a single defect. In that case, the geometry can be treated as single column of defects. 

Second, for offset values slightly greater than 0.05, there will be a small bonded region within the 

two inner defect tips which should experience an increased stress concentration due to interactions 

of the defect tips. Finally, a relatively thin sublayer thickness will cause defect interaction in the 

thickness direction as well. 

Figure 5.33 shows the traction distributions of two cohesive surfaces for different offset values. 

Note that the geometry of the 1st cohesive surface is held fixed ( 1,2
0 0.1a  ). Regardless of different 

defect states of the 2nd cohesive surface, the defect tip on the 1st cohesive surface always has the 

strongest traction concentration (similar to single column defect geometry shown in Fig.5.25a). It 

is worth noting that small wiggles can be detected near the location where there is a defect tip on 

the 2nd cohesive surface. However, these small wiggles do not affect the general shape of the 

traction pattern and cause no ambiguity in the defect driven 1st cohesive surface behavior. For the 

 
12 The offset distance is also nondimensionalized by layer half-length.  
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second cohesive surface, the response is quite different in the sense that, i) there can be either one 

or two defect tips (depending on the offset distance) leading to qualitatively different traction 

distributions, ii) the traction distribution and the local traction concentration at the tip is greatly 

affected by the defect geometry of the 1st and 3rd cohesive surface. The two values of e 

( 0.05,0.95e  ) in Fig.5.33b are limiting cases and are such that there is only one defect tip 

observed on one half of the 2nd cohesive surface. Though the traction distributions are similar as 

long as the x-axis is translated, the degree of stress concentration is different. The left and right 

most red dot points in Fig.5.35 (e=0.075) clearly shows that when the 2nd cohesive defect is located 

near the free side surface, it’s maximum cohesive shear (which is generally lower than that on the 

1st cohesive surface) becomes equal to its counterpart on the first cohesive surface. This can be 

explained by, i) instead of four, now there are just two defect tips on the middle cohesive surface 

which resembles its counterpart on the 1st cohesive surface, ii) distantly located defect tips 

minimize interlaminar defect interaction. 
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Fig.5.33 Traction distribution (S-D-S, 1,2 2,3
0 00.001, 0.01, 0.1,  0.05S h a a    ) 

The degree of stress concentration is directly related to complex questions such as whether or not 

all defects will propagate (generally not) and, if multiple defects propagate, what is the 

corresponding propagation sequence. A relatively simple initial study can be carried out by 

comparing the maximum cohesive traction under exactly the same loading for different geometries 

as shown in Fig.5.34.  
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Fig.5.34 The cohesive surface maximum shear traction vs offset distance e (S-D-S, 
0.001, 0.01S h  ) 

Figure 5.34 shows the local stress concentration for different defect configurations. Except for the 

discussion of the special case that both cohesive surfaces have almost the same degree of stress 

concentration ( 0.95e , 2nd cohesive surface has edge defect), Fig.5.34 also provides other useful 

information. First, excluding the two special cases where e=0.075 or e=0.1, the curve of maximum 

stress of the 1st and 3rd cohesive surface is almost always on top of the corresponding second 

cohesive surface curve. This indicates that the 1st and 3rd cohesive surfaces have relatively higher 

traction concentration and therefore are more vulnerable to defect propagation as the applied load 

increases. The special cases of e=0.075 and e=0.1, where the maximum cohesive traction on 
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second cohesive surface is higher than its counterpart on the other surfaces, can be explained by 

checking the second cohesive shear traction from other cases. For the case of e=0.05, the geometry 

is columnar and interlaminar crack shielding suppresses the traction concentration on 2nd cohesive 

surface. The next two groups of points correspond to the two special cases of e=0.075 and e=0.1. 

Note these two special cases have different traction distributions than the others shown in Fig.5.33, 

i.e., the outer tip of the 2nd cohesive surface has a higher traction concentration than that of the 

inner tip. Fig.5.35 shows how introducing a small bonded region affects the local stress 

concentration. Recall that for CZM, the local stress concentration can be explained from the global 

equilibrium point of view, compensating the deficit between applied load and reactive traction 

within defect region. Focusing on the primary defect tip (i.e., the defect tip with the stronger stress 

concentration, in this case at 0.125x ), to the left of it is a small initially defective region 

( 0.025 0.125x  ) with zero shear traction. The difference between the “shear force” (integration 

of traction within certain region) within the initial defective region forms the main body of stress 

concentration at the primary defect tip (as single columnar model). To the left of the small defect 

region ( 0.025x ) is the inner bonded region. Within that region, take the applied load line 

( 0.0010S  ) as reference line, every point above is surplus while any point below is deficit. This 

clearly shows that within the inner bonded region, there is overall deficit which can only be 

compensated by raising the primary defect stress concentration. When e=0.15, the defect tip of 1st 

and 3rd cohesive surfaces line up with the inner defect of the 2nd cohesive surface. Interlaminar 

defect interaction elevates the traction concentration for both cohesive surfaces such that the most 

vulnerable case is observed with the highest traction values for all cohesive surfaces. For the other 

cases, the inner defect tip has a higher traction concentration within the 2nd cohesive surface. As 

the defect on the middle cohesive surface moves out towards the edge, defect interaction is 
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negligible, and the solutions converge to stable behavior (horizontal line portion in Fig.5.34) 

regardless of a change in defect configuration. 

 

Fig.5.35 shear stress and applied load distribution. 

However, determining the defect propagation process based simply on the stress concentration 

under relatively low loading has its limitations. First, not all cohesive surfaces have the same 

resistance to shear deformation, i.e., a multilayer composite system consists of multiple adhesive 

layers with different bonding strengths. Secondly, there is no guarantee that the basic pattern of 

the shear traction distribution would remain similar up to failure, i.e., more ductile cohesive 

surfaces fail like linear spring interfaces which resemble an interfacial softening. Under these 

circumstances, the study of defect propagation has to be done by computing and investigating 

stress fields up to failure. Figure 5.36 shows one example (e=0.1), assuming a relatively small 

applied load (S=0.001). From the solid curves, it can be concluded that the outer defect tip on the 

2nd cohesive surface propagates first. In Fig.5.36, 0.0056S   is the initiation load when the outer 
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defect tip on the 2nd cohesive surface begins to propagate (as predicted by the simple argument 

above based on fields of S=0.001) whereas the value of the shear traction of inner tip is far from 

the cohesive strength. The cohesive shear of the defect tip on the 1st cohesive surface is close to 

the cohesive strength but has not propagated yet. The group of dash-dot lines (S=0.0070 ultimate 

load) shows that the defect on the 1st cohesive surface eventually will propagate but the inner 

defect on the 2nd cohesive surface will not. 

 

Fig.5.36 Interfacial shear distribution ( 1,2 2,3
0 00.1, 0.01, 0.1,  0.05e h a a     ) 
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Another form of the diamond array pattern can be obtained by simply switching the stacking 

sequence as shown in Fig.5.37. A discussion of this case proceeds in a way that is parallel to that 

of the previous section. 

Figure 5.38 shows the traction distribution for different offset distance e under the same applied 

load ( 0.0010S  ). The figure indicates that there are several differences as compared with 

Fig.5.33. First, for the cohesive surface with moving defect fronts, the case that 0.05e (single 

columnar defect geometry, left most point on Fig.5.34) has the second strongest traction 

concentration (second to edge defect geometry) rather than in the previous case in which several 

cases have stronger concentrations (Fig.5.33 bottom). Second, as the cohesive surface with a single 

defect tip has been moved to the middle in the thickness direction, none of its boundary is subjected 

to strong uniform shear traction. Instead, both of its boundaries are subject to nonuniform cohesive 

shear traction and the stress oscillation (the wiggle) is strengthened since both boundaries of the 

cohesive surface are perturbed by the introduction of defects. 
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Fig.5.37 Schematic sketch for a double-single-double (D-S-D) diamond array of defects. 

Comparing Fig.5.34 with Fig.5.39, one can readily draw the conclusion that when defect tips are 

well separated ( 0.35e ), regardless of the defect pattern, the general cohesive surface behavior 

converges such that the cohesive traction distribution mainly depends on the size of defects (the 

cohesive surface with a single defect has a stronger traction concentration and would fail first) 

since defect interaction can be neglected. However, for cases where the offset distance is relatively 

small, the cohesive surface behavior should be studied by keeping track of the traction field for 

each step. 
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Fig.5.38 Traction distribution (D-S-D, 1,2 2,3
0 00.001, 0.01, 0.05, 0.1S h a a    ) 
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Fig.5.39 The interfacial maximum shear stress vs offset distance e (D-S-D, 0.001, 0.01S h  ) 

It is worth pointing out that under certain circumstances, the two basic configurations of the 

diamond array degenerate to a single one. Similar to the argument made about Fig.4.12, due to 

perfect symmetry, the central plane is stress free. Then the boundary conditions of the right half of 

Fig.5.40a is exactly the same as left half of Fig.5.40b and, based on the uniqueness theorem of 

linear elasticity [110], so is the stress and deformation field. Based on above argument, Fig.5.40 

shows two defect geometries that look different but are mathematically equivalent. Their solution 

can be obtained by solving one model and translating the coordinate system accordingly.  
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Fig.5.40 Equivalence of diamond pattern configurations. 

 

Fig.5.41 Traction field for defect geometry in Fig.5.40. 0.0010S  . 

Figure 5.41 shows that a full cohesive fracture analysis (not taking the above argument into 

consideration) verifies the prediction. The lines with the same line shape represent the equivalent 

defective cohesive surface, the two configurations have exactly the same traction distribution as 

long as the x-axis is translated as stated. For a system with a periodicity condition in the x-



165 
 

coordinate direction, the argument above can be used to simplify the calculation by scaling a 

sub-problem to a simpler geometry.  
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6 Conclusions  
This dissertation has been concerned with the fundamental mechanical behavior of mode-III 

cohesive fracture in two basic geometries, the long slender cylindrical bar and the N-sublayer 

system subject to anti-plane loading. To circumvent the restriction from LEFM (simple defect 

geometries) and testing (difficulties in getting pure mode-III fracture), a general theory has been 

developed beginning with the exact solution to the equations of linear elasticity and proceeding 

with an integral equation formulation for the two pure mode-III cohesive fracture problems. 

Superior to the LEFM solution whose application is limited by crack tip plasticity and the 

unphysical crack tip stress singularity, the theory developed in this study takes advantage of both 

conciseness (exact behavior describable as a low order set of nonlinear integral equations) and 

flexibility (it can be implemented with to a wide range of cohesive force laws). 

The first geometry considered in the study (Section 3) focuses on the cohesive fracture of a long 

slender cylinder containing an axisymmetric defect on a cross section. The governing equations 

are in the form of nonlinear integral equations that takes full consideration of the displacement 

field (including rigid body displacement). In this dissertation, a novel computational method based 

on the Newton Raphson (NR) method has been employed to solve the integral equations. The 

method reduces the equations to a finite set of nonlinear algebraic equations which can be truncated 

and solved depending on the precision needed.  

Figure 3.3 and 3.6 shows that both uniform and the defective cohesive surfaces go through a similar 

interfacial stability behavior such that a critical load separates a stable (increasing slip under 

increasing load) and unstable (increasing slip under decreasing load) branch. However, a more 

brittle cohesive surface is more susceptible to the introduction of defects which is manifested by a 

more significant drop in critical load compared to the corresponding uniform cohesive surface. 
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The slip and traction fields for different cohesive surface ductilities and defect geometries are 

plotted in Fig.3.7-8 (center defect) and Fig.3.11-12 (edge defect). As expected, ductile cohesive 

surfaces have a more distributed field whereas brittle ones have more a concentrated local field. 

Within the regime in which they are comparable (stiff cohesive surface under small loading), the 

solution is in excellent agreement with LEFM solutions in the neighborhood of the crack tip. The 

nature of cohesive fracture solutions enables the modelling of brittle and ductile defect growth 

within the same framework and, can account for defect interaction. This fact motivates the study 

of cohesive surfaces with multiple defect fronts. Figure.3.14 shows that CFS compares well with 

SCS when the defect tips are well separated. However, when the two defect tips are close or the 

domain is finite, CFS is more accurate. This is because SCS neglects crack interaction and is 

largely based on an infinite or semi-infinite domain which neglects boundary effects. Because the 

history of the traction field under monotonically increasing load is computed, the implementation 

of certain stress-based defect propagation criteria can be used to predict the defect propagation 

process. Figure.3.9 shows the difference between a brittle and a ductile cohesive surface for the 

same single defect geometry, i.e., the differences between defect driven behavior as opposed to 

compliant “linear spring” type behavior. For cohesive surfaces with multiple defect tips, a direct 

extension is the comparison of propagation behavior between tips. This includes addressing the 

question of defect tip propagation sequence and its relationship to cohesive surface stability. 

Figure.3.15 shows defect tip locations vs applied load for several cases, each of which has 0.1 

width of annular bonded region but at different radial locations. Figure.3.15 clearly shows that the 

inner tip resists propagation since it bears a lower traction (recall the classic linear stress 

distribution for a cylinder under torsional loading [101]). As the bonded region moves radially 
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outward, the inner tip may start to propagate but it will still occur later and be shorter of length 

than the outer defect.  

The flexibility of the cohesive constitutive relation enables the study of more complicated behavior 

such as a materially nonuniform bi-cylinder and frictional cohesive surfaces. Figure.3.16 shows 

that a materially nonuniform bi-cylinder has similar stability behavior as the uniform cylinder. 

However, the introduction of a new bulk material makes the corresponding material properties 

come into effect. Under such circumstances, reducing the shear moduli of one of the cylinders will 

soften the system leading to a reduction in critical load. The orientation of mode-I micro cracks 

can be predicted by studying the traction field along the cohesive surface. Depending on the 

relative magnitude between the two traction components, the potential orientation of mode-I micro 

crack plane (which is perpendicular to the principal tensile stress direction) varies from 90 degrees 

(behind the primary defect tip) to 45 degrees (ahead of primary defect tip). Frictional response can 

be coupled with the cohesive response by superimposing a friction law to the cohesive relation. 

By tuning the relative magnitude of the cohesive and the frictional response two qualitatively 

different behaviors can be observed. The stability response of the decohesion dominated case is 

similar to previous results but with a nonvanishing reactive traction. In contrast, the friction 

dominated case no longer has a critical load since decohesion softening response is followed by 

significant frictional response. 

The second geometry considered in this dissertation (Section 4) deals with the two-sublayer 

composite system. The development parallels that of the cylinder analysis, i.e., nonlinear integral 

equations are derived from the exact elasticity solution of a single sublayer subject to arbitrary but 

equilibrated shear tractions on top and bottom surfaces. The main difference is that unlike the 

cylinder analysis which requires the cylinder to be semi-infinite (or long enough so that weak 
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boundary conditions can be prescribed on the ends), the sublayer solution is obtained for finite 

layer thicknesses with strong boundary conditions applied to all surfaces. In Fig.4.3, it has been 

demonstrated that the uniform cohesive surface should have a uniform traction distribution and 

therefore, the stability analysis of the two-sublayer system can be obtained simply by inversing 

the cohesive force law. For the two-sublayer system with nonuniform cohesive surface (i.e., one 

with initial defects), the study parallels that of the cylinder geometry and they share many 

similarities. The cohesive surface stability behavior is similar to the cylinder geometry which 

consists of a stable and an unstable branch separated by a load maximum. The single defect near 

tip stress field also shows consistency with SCS, multiple defect stress fields give a more 

reasonable prediction with defect interaction effects included. CFS of periodic defect geometries 

show consistency with existing SCS, both of which gives the same amount of stress concentration 

for each defect tip. By changing the defect spacing, size and location, general conclusions 

regarding intralaminar defect interaction can be drawn. Closely located defect tips, tips of larger 

defects and tips close to free boundaries have stronger stress concentrations. The solution can be 

applied to study subsurface defects situated in a materially nonuniform bilayer in which a stiffer 

or thicker coating layer leads to a reduced stress concentration. Other topics such as defect 

propagation processes, the orientation of mode-I micro cracks and frictional cohesive surfaces are 

basically the same as for the cylinder case. 

The third geometry considered, i.e., the N-sublayer system (Section 5) is a direct extension of the 

two-sublayer system considered in Section 4. Based on the exact solution for the uniform cohesive 

surface, a stability analysis of an N-sublayer system can be carried out in a similar fashion to the 

two-sublayer systems but leads to more complicated results as shown in Fig.5.3-5. This includes 

the configuration transition from simple shear deformation (shearing of a deck of card) to an 
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asymmetric configuration (when interlaminar cohesive strength perturbations exist). The cause of 

this behavior comes from imperfections of the system, e.g., perturbations of cohesive strength 

between different cohesive surfaces. The transition from an initial symmetric configuration to an 

asymmetric configuration can be obtained by either an abrupt snap-type transition (brittle) or a 

smooth transition (ductile). However, the stability analysis of systems with nonuniform cohesive 

surface needs to be done by full CFS analysis with perturbations to trigger a certain configuration 

(solving a set of nonlinear integral equations) rather than inversing the cohesive force law.  

Section 5.3 focusses on interlaminar defect interaction of a tri-sublayer system. The conclusions 

that can be drawn are as follows, i) for a single-single defect geometry (each cohesive surface has 

only one defect situated in the middle, shown in Fig.5.10) with same defect size, reducing the 

middle sublayer thickness (closely located defects in thickness direction) leads to a reduction of 

stress concentration, ii) keeping the sublayer thicknesses relatively thin and fixed, changing one 

of the defect sizes would greatly change the stress pattern. If the offset distance between the defect 

tip on 1st and 2nd cohesive surface is relatively small, the larger defect will be affected by the 

concentrated tip stress of its counterpart. Whereas the smaller defect is encircled by the larger 

defect, its stress concentration is reduced. A similar argument is also valid for double-single (the 

1st cohesive surface has two defects of the same size situated symmetrically, and the 2nd cohesive 

surface has only one defect, shown in Fig.5.14) defect geometry. The relative tip location and 

boundary condition has a strong effect on the stress redistribution. It is worth pointing out that this 

dissertation also discussed the possibility of diminishing the small inner bonded region. In such 

cases, the CFS model could be used to predict single defect propagation, defect coalescence and 

subsequent growth within the same framework.  
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The four-sublayer geometry was considered in order to study a multi-sublayer system with 

thickness direction symmetry (columnar or diamond pattern of defects). For a single column of 

defects, the study has made a comparison with that of the tri-sublayer system such that the effect 

of introducing a new defect surface (interlaminar crack shielding) is observed. However, this is an 

ideal scenario because the newly introduced defect is exactly the same as the other. The effect of 

the size of the newly introduced defect is given in Fig.5.21-23, the discussion includes local 

traction concentration, cohesive surface traction fields and defect propagation sequences. It’s 

worth pointing out that under two circumstances, the multiple defect column geometry can be 

reduced to a single column of defects approximately or exactly, i) defect tips are well separated 

(approximately) or ii) a certain periodic condition is satisfied (exactly). The four-sublayer system 

is used to study geometries with both interlaminar symmetry and defect tip offsets. The effects of 

geometries on local stress concentration is shown in Fig.5.34 and Fig.5.39 for two different types 

of diamond patterns. The explanation for the behavior is obtained by examining the stress 

distributions shown in Fig.5.33 and Fig.5.38. Two types of diamond pattern can be equivalent 

under certain circumstances, the criteria and computational proof required for this to be true is also 

presented. 

This dissertation extends existing cohesive fracture analyses, that have been used to study the 

debonding of inclusions and the planar delamination of layered composites, to the realm of mode-

III cohesive fracture. The two geometries considered are the torqued cylinder and the N-sublayer 

composite. The advantage of the methodology includes the mathematical clarity of an analytical 

solution, fully account for rigid body displacement, the versatility of being able to employ different 

cohesive relations that can be used to characterize different response, no unphysical stress 

singularity, a full field description which takes defect interaction and boundary effects into 
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consideration automatically, etc. However, there are limitations and drawbacks that may have 

room for improvement. First, the geometry has certain limitations. The sublayer system and 

cylinder geometry need to be long enough to ensure that the weak boundary condition has no effect 

on the cohesive surface. Second, due to difficulties in mode-III testing, the characterization of pure 

mode-III cohesive law is rather difficult. Without efficient and accurate testing methodologies 

characterizing the cohesive force law, the theory developed here can only provide insights into the 

qualitative behavior rather than give quantitative information for a real engineering problem. It 

also needs to be mentioned that the analytical methodology is rather efficient in handling simple 

defect geometries. However, for more complicated defect geometries with characteristic lengths 

of the geometry decreasing, the fields require higher order terms to capture reasonable behavior. 

The increasing computational burden and precision needed also slows down the convergence rate 

of CFS. In such case, CFS loses some of its advantages over FEA. 
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7 Future Work 
The method developed in this study has two important elements that differentiate the various 

problems which can be solved by it. The first, is that the solution of the displacement field of a 

component sub-problem should be obtainable as an expansion in eigenfunctions. The component 

sub-problem can be defined as that part of the solid body of interest that lies on one side of the 

surface/interface on which the defect is presumed to propagate. Arbitrary but equilibrated 

surface/interface tractions are assumed to be prescribed pointwise. The other element is that a 

cohesive force law connects two or more sub-problems and,  governs the cohesive surface behavior. 

In this section these two key elements are examined in order to provide a brief overview of some 

other problems that can be explored by the method applied in this dissertation. 

Note that the solution to a component sub-problem consisting of an elastic solid subject to 

equilibrated but otherwise arbitrary strong traction boundary conditions is very difficult to obtain. 

Figure 7.1 shows an example of a pressure vessel with two symmetric inner cracks and the 

corresponding component sub-problem that would be required to be solved. The system can be 

reduced to analyzing a quarter circular domain subject to mixed boundary conditions. The 

boundary condition of the inner and outer circular surface is relatively simple, i.e., the inner surface 

is subject to applied pressure and the outer surface is traction free. However, the boundary 

conditions of the two imaginary radial cuts are complicated. Symmetry considerations force those 

two surfaces to be free of shear traction and to have zero circumferential displacement (

0, 0 at 0, / 2r u      ). The traction on the defect plane is assumed arbitrary in the 

formulation process and can only be obtained by numerical computation procedure. Due to Saint-

Venant’s Principle, traction on the vertical plane is unknown but can be approximated by the 

similar geometry without defects. Note that the pure mode-III problems presented in this 
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dissertation are unidirectional in both the deformation field and the cohesive relation. The example 

shown in Fig.7.1 has two deformation components ( u  and ru ) but only a single component of 

cohesive traction is needed since the unknown traction and deformation fields are unidirectional 

on the cohesive surface. More general problems with multi-directional deformation fields and 

mixed-mode fracture processes such as mode-I/II coupled fracture of layered systems, can be 

studied in a similar manner but with more complicated mixed-mode cohesive relations. Related 

work on this problem can be found in [78], [79], [80]. 

 

Fig.7.1 Schematic figure of sub-problem of a cracked pressure vessel. 

An interesting direct extension of the current study with a more complicated deformation field, is 

the cohesive fracture of a notched cylinder subject to mode-I/III loading as shown in Fig.7.2.  
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Fig.7.2 Schematic figure of notched cylinder subjects to mode-I/III loading. 

This geometry has been utilized in testing and results indicate two different kinds of fracture 

processes with different primary fracture planes, i.e., spiral and flat [30], [31]. It has been 

demonstrated that whether or not the one or the other occurs depends upon the loading (or 

equivalently the mode-mixity) and the geometry (depth of initial defect, shape and sharpness of 

notch). However, the quantitative study of the transition between the two primary fracture 

propagation modes can be analyzed by a comprehensive parametric study of the mathematical 

analysis proposed in this study. Even though the mode-I fracture testing of a cylindrical bar is very 

common in industry, it is worth pointing out that extra attentions should be given to the cohesive 

fracture formulation. This is because nonuniform normal traction on the cohesive surface leads to 

additional displacement in the radial direction due to Poisson’s effect and, a mixed-mode (mode-

I/II) cohesive force law is needed for characterizing the cohesive surface.  

Another popular topic related to mode-III layered geometries is the wrinkling of materially 

nonuniform composites subject to compressive loading. Note that the current work on wrinkling 

problems is mostly global wrinkling and assumes that the rigid coating and soft substrate are 
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ideally bonded as shown in the top figure of Fig.7.3. Some researchers have proposed applying 

CZM and Föppl-von Kármán plate theory [124] to study the transition from wrinkling to buckle-

delamination as shown in Fig.7.3. However, the equations of Föppl-von Kármán plate theory are 

notoriously difficult to solve, and it is an idealized 2D model. In order to study local wrinkle and 

buckle-delamination that is likely to be triggered by local defects, analytical solutions to the 

layered system under mode-I/III loading should be developed. Wrinkling can be induced by adding 

perturbation of the cohesive surface, the effect of local defects and the formation process from 

wrinkle to delamination can be obtained. The theory applied in this dissertation may be applicable 

to analysis of incipient wrinkling by adding an additional displacement component and introducing 

mixed-mode cohesive force laws.  

 

Fig.7.3 Materially nonuniform bi-layer, wrinkle to delamination transition [125]. 
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For the same geometry and response, the methodology applied in the study is largely independent 

of the cohesive law and in this dissertation three have been used, i.e., piecewise linear, exponential, 

and modified exponential. These interface constitutive models are relatively simple in the way that 

they are reversible, modified exponential with friction is dissipative and can only be applied to 

problems related to monotonic loading. By examining other cohesive laws, the solution can be 

used to study more complicated processes such as cyclic loading. Modification to cohesive laws 

has to be made such that they can capture complicated material response for loading, unloading 

and cyclic procedures. Extensive development of cohesive laws has been carried out, most of this 

work is based on hysteretic model to capture irreversible dissipative process as [126], [127], [128]. 

The methodology developed in this dissertation, incorporating cohesive relations (that captures 

cyclic response), can be a powerful tool for studying interfacial stability analysis under cyclic 

loading. 
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