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Abstract 

Although historical pigments are seldom found in the modern artist’s palette, their 

characterization is a critical aspect of designing effective conservation and restoration protocols, 

establishing provenance, and detecting forgeries. Ideal characterization methods 

are nondestructive, noninvasive, and able to distinguish between pure and mixed pigment 

samples. Spectroscopic techniques are commonly used to identify pigment composition because 

of their non-ionizing nature, rapid acquisition times, and safety. Unfortunately, the majority 

of these methods have difficulty distinguishing between pigments with similar chemical and 

physical properties. Recent advancements in instrument technology have increased the broader 

availability of terahertz time-domain spectroscopy (THz-TDS) and low-frequency Raman 

spectroscopy (LFRS). In this work, the capabilities of THz-TDS and LFRS for identification and 

characterization of historic and modern pigments were evaluated. These experimental 

studies were supported with solid-state density functional theory (ss-DFT) simulations of the 

pigment structures and vibrations to gain insight into the molecular and intermolecular origins of 

the observed spectral features. These results demonstrate the powerful combination of low-

frequency (≤ 200 cm-1) vibrational spectroscopic methods and computational techniques for the 

identification and characterization of pigments and establish the compelling abilities of THz-

TDS and LFRS as new tools for characterization of pigment components in artworks and 

artifacts. 
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Chapter 1. Introduction 

1.1 Motivation 

In 2011, one of the most elaborate forgery rings in European history was discovered 

through the examination of pigments in a painting. Chemical analysis revealed that the painting, 

which was dated from the late 19th century, contained titanium white, a pigment not used by 

artists until the mid-20th century. The discovery of this counterfeit is one example that 

demonstrates the need for reliable detection and identification of the component materials of 

artifacts. In addition to authentication purposes, pigment characterization plays a key role in the 

determination of provenance, design of conservation strategies, and monitoring physio-chemical 

and biological degradation in paintings and artifacts. 1-9 Due to the delicate and irreplaceable 

nature of many artifacts, ideal characterization methods will nondestructively and noninvasively 

determine the pigment composition and condition of an artifact.10-17 The motivation for this work 

is predicated on this need for additional analysis techniques capable of overcoming 

complications from the diversity and availability of pure pigments and pigment mixtures.  

Here, a multi-disciplinary approach of THz-TDS, LFRS, and ss-DFT is used to 

characterize pure pigments (Chapter 4 and Chapter 6) and pigment mixtures (Chapter 5). 

These low-frequency (≤ 200 cm-1) vibrational spectroscopies reveal the intermolecular motions 

unique to a crystalline pigment, making them ideal for differentiating chemically related 

(Chapter 4) and visually similar pigments (Chapters 5, 6). In addition to the pigment research 

in Chapters 4-6, the application of Raman spectroscopy in the identification of polymer 

components found in plastic artifacts has been demonstrated (Chapter 7). The subjects for the 

polymer study were actual museum artifacts and part of a collection in the Syracuse University 

Libraries’ Special Collections Research Center.  
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1.2 Introduction 

Common analytical techniques currently in use for in situ pigment identification include: 

powder X-ray diffraction (PXRD),  X-ray fluorescence spectroscopy (XFS),18 mass spectrometry 

(MS),19 Fourier-transform infrared spectroscopy (FTIR),20-24 and Raman spectroscopy.19, 24-29  

However, PXRD data collection is difficult in situ30 and has been shown to produce incorrect 

crystal structures in pigments that are chemically similar.31 XFS studies are unable to detect light 

elements and have difficulty differentiating between chemically similar pigments.32-35 MS is 

unfavorable because analysis requires destruction of a small sample from the artifact.  FTIR has 

previously been used for pigment identification; however, several classes of inorganic pigments 

are inactive in the mid-infrared (mid-IR, 4000 – 400 cm-1) region (e.g. oxides or sulfides).36 20, 24 

In these cases, complementary Raman spectroscopy is used to overcome such limitations.  

Nevertheless, Raman analysis requires vigilance to avoid damage from higher photon energies 

and spectra can be affected by fluorescence signals from organic components.37-38 The near-

infrared (near-IR, 12,800 – 4000 cm-1) and far-infrared (far-IR) have also been used for pigment 

identification. Near-IR studies are unsatisfactory because only functional groups containing NH, 

CH, OH, CO, and CC bonds produce significant vibrational bands in this range, limiting 

applicability to many historic inorganic pigments.20, 39  

THz spectroscopy, which refers to the far-IR, has been used to overcome the limitations 

of near-IR, mid-IR, and Raman spectroscopies in pigment identification, especially for inorganic 

compounds derived from minerals.40,41 THz radiation excites lattice vibrations that are unique to 

specific crystalline structures. These vibrations can be studied with vibrational techniques that 

access this low-frequency region. Recent improvements in technology42-44 and instrumentation45 

have increased the accessibility of two low-frequency vibrational spectroscopic techniques: 
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terahertz time-domain spectroscopy (THz-TDS) and low-frequency Raman spectroscopy 

(LFRS). 

1.3 Low-Frequency Vibrational Spectroscopy 

THz-TDS and LFRS are appealing methods for pigment identification because of their 

specificity, short acquisition times, and non-destructive nature.12, 46-47 These two low-frequency (≤ 

200 cm-1) vibrational techniques have been used to probe the intermolecular interactions in various 

solid materials including explosives,48-49 pharmaceuticals,50-51 pigments,48-49, 52-53 and more.38, 44, 

54-64 As opposed to the intramolecular vibrations in the mid-IR, low-frequency vibrations 

correspond to weak intermolecular motions of the species in the crystalline lattice.65 Intermolecular 

motions in crystalline materials are dependent on the packing of the unit cell and component 

identities.  As a result, these spectral features form ‘fingerprints’ that are unique to each sample. 

These spectral ‘fingerprints’ make it possible to use THz-TDS and LFRS for the identification and 

characterization of materials that are otherwise indistinguishable.56, 66 The complex origins of the 

spectral features in THz-TDS and LFRS spectra are not easily identifiable, therefore applications 

of these techniques in identification studies have been largely predicated on the existence of high-

quality spectra for pure pigments. Experimental THz-TDS and Raman spectral databases of artists’ 

materials have been constructed,53, 67-70 but they primarily focus on pure materials, when 

historically, pigment mixtures were commonly used to achieve desired hues in artifacts.6 

Raman, mid-IR, and first-derivative reflectance visible spectroscopies have been 

demonstrated to be useful in the analysis of various pigment mixtures and binders21-23, 71 but the 

overlapping spectral signals from mixtures often present challenges in analysis as compared to 

pure samples. THz-TDS and LFRS are likely useful in pigment mixture studies given the reported 

successes of these techniques in pharmaceutical mixtures.57, 72-75 In order to evaluate the analytical 
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capability of THz-TDs or LFRS in pigment mixture studies, the sensitivity of each instrument to 

specific pigments must be determined. This sensitivity is described as the limits of detection (LOD) 

and quantitation (LOQ). The pigment composition of binary mixtures can then be estimated using 

calibration curves specific to the instrument and standard samples of known mixture proportions. 

These measurements depend on the signal-to-noise ratio of the data and the degree of spectral 

separation between individual component peaks. The LOD and LOQ can be dramatically different 

between THz-TDS and LFRS investigations of the same sample because the spectroscopic 

selection rules of each technique may yield a unique pattern of peak positions and intensities. The 

chemical-specificity and successful application of THz-TDS and LFRS in pigment mixture studies 

could prove useful in elucidating the contrast mechanisms underlying the 2D and 3D images of 

artworks that have been obtained with THz imaging systems.12, 76-82  Additionally, solid-state 

density functional theory (ss-DFT) simulations may be beneficial in understanding spectra of 

mixed pigments.83  

1.4 Solid-State Density Functional Theory  

Although THz-TDS and LFRS have been demonstrated to be ideal techniques for 

pigment identification, interpretation of the vibrational origins of the observed spectral features 

is difficult if not impossible with experimental data alone. This complication can be overcome 

with ss-DFT simulations of crystalline pigments. These simulations utilize periodic boundary 

conditions84 to include the effects of the solid-state environment on the crystalline pigment 

structure and dynamics. Simulations with ss-DFT also provide insight into the intermolecular 

modes that dominate the low-frequency spectral region and enable unambiguous spectral 

assignments.39, 85 Simulating THz-TDS and LFRS spectra with ss-DFT highlights the connection 

between chemical identity, crystalline structure, and the intermolecular forces that collectively 
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contribute to the characteristic low-frequency vibrational spectra of these materials. This 

approach has been successfully demonstrated on both organic86 and inorganic pigments.87-88  

1.5 Summary of Chapters 

The first part of this work (Chapters 2 and 3) covers the theory behind low-frequency 

vibrational spectroscopy and solid-state density functional theory. Chapter 2 presents an 

overview of the quantum mechanical origins of vibrations and relationship to solid-state 

vibrations. A simple model, carbon dioxide, is used to illustrate the differences in spectral 

features when moving from molecular vibrational spectroscopy to solid-state vibrational 

spectroscopy. This model compound is also used to highlight the selection rules of infrared and 

Raman spectroscopies. This chapter also includes descriptions of the THz-TDS and LFRS 

commercial instruments used in this work. Chapter 3 covers DFT and ss-DFT, beginning with 

the quantum mechanical foundations of DFT that led to the development of density functionals 

and basis sets. The extension of this theory into the solid-state includes periodic boundary 

conditions, reciprocal space, and Bloch’s theorem. An overview of the ss-DFT software, 

CRYSTAL89, and the calculations most used in this work, are described.   

The second part of this work utilizes the experimental methods described in Chapter 2 to 

demonstrate the capabilities of THz-TDS and LFRS in pure pigment and mixed pigment 

samples. In addition to the low-frequency vibrational characterization, the ss-DFT methods 

described in Chapter 3 were used to assign the low-frequency spectral features. Chapters 4 and 

6 utilize THz-TDS and ss-DFT to characterize pigments that are visually and chemically similar. 

Chapter 4 presents the experimental THz-TDS spectra and ss-DFT simulations of three 

blue/green copper-containing pigments: azurite, malachite, and verdigris. Chapter 6 follows the 

same structure but with two modern red pigments, PR254 and PR3. Chapter 5 focuses on two 
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pigments commonly used by artists’ in pure and mixed forms, minium and vermilion. These two 

inorganic crystalline pigments were used to investigate the capabilities of THz-TDS and LFRS in 

examining mixtures. Data from pure samples and binary mixtures of minium and vermilion 

enabled LOD and LOQ values for the pigments to be established for both THz-TDS and LFRS 

measurements. The ss-DFT spectral simulations enabled complete assignments of the observed 

(sub-200 cm-1) spectral features. 

In Chapter 7, the results of a collaboration with the Plastics Artifacts Collection in the 

Syracuse University Libraries’ Special Collections Research Center are presented. This study 

aimed to develop Raman spectroscopy as a practical nondestructive method for unambiguous 

characterization of the composition of plastic artifacts in the collection. The identification of the 

polymer components of these artifacts will be used to develop strategies for conservation and 

storage of these pieces.  
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Chapter 2. Experimental Methods 

2.1 Introduction 

Terahertz time-domain spectroscopy (THz-TDS) and low-frequency Raman spectroscopy 

(LFRS) are ideal techniques for the characterization of historic and modern pigments. In addition 

to their nondestructive and noninvasive natures, THz-TDS and LFRS produce chemically 

specific spectra that are essential to distinguishing pigments that are visually similar or 

chemically related. In order to demonstrate the utility of these techniques for potential analytical 

applications, spectral characterization of pure pigments is necessary. In support of this 

vibrational study, powder X-ray diffraction (PXRD) measurements have been used as a non-

spectroscopic tool for evaluating sample identity and purity in bulk samples. After successful 

characterization of the low-frequency spectral behaviors of pure pigments, these methods can be 

applied with greater confidence in the analysis of pigment mixtures. 

This chapter focuses on the theory behind THz-TDS and LFRS techniques beginning 

with the fundamentals of vibrational spectroscopy and the extension of these fundamentals to 

low-frequency vibrations. A brief introduction to the theory and instrumentation for PXRD is 

also included. Throughout this discussion, carbon dioxide (CO2) will be used as a simple model 

system to demonstrate spectral differences between infrared and Raman spectroscopic studies of 

solids and single molecules. CO2 makes a simple, yet ideal, model due to its D∞h point group 

symmetry and crystallizes into space group 205, Pa3. These symmetries permit both infrared-

active and Raman-active vibrations to exist within a single molecule of CO2 and a crystallized 

array of bulk CO2. Diffraction data for CO2 is also included as a general example of a PXRD 

pattern.  
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2.2 Vibrational Spectroscopy  

Understanding the low-frequency intermolecular vibrations of crystalline materials 

requires discussion of the quantum mechanical vibrational behaviors of a simple model.1-3  The 

simplest vibration is the stretching motion in a diatomic molecule and it can be described with 

the Schrödinger equation for a quantum harmonic oscillator2, 4-7 

 − ħ�2� ��ψ�	
�	� + 12 
�	�ψ�	
 = Eψ (2.1) 

In the quantum harmonic oscillator model, the discreet vibrational energy levels (��
 are defined 

 �� = ħ� �� + 12� (2.2) 

where �, the vibrational frequency is equal to 

 � = 12� � 
�� (2.3) 

where 
 is the force constant and � is the reduced mass. 

This harmonic oscillator model is an overly-simplified approximation that breaks down 

when describing vibrations beyond the stretching motion of diatomic molecule. Realistically, 

vibrations deviate from harmonic behavior and require corrections to account for complexities 

for each oscillator but also possible coupling between oscillators in a system.4 These oscillators 

are considered anharmonic and, unlike the symmetric harmonic oscillator, are asymmetric 

(Figure 2-18)  
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Figure 2-1 Depictions of harmonic oscillator (left) and Morse potential (right). Adapted from 

Reference 8. 

Anharmonic oscillators are best approximated with a Morse potential: 

 � = ���1 −  !"��!�#
$% (2.4) 

where �� corresponds to the depth of the potential energy well, & is the curvature at the bottom 

of the well, and �' − '(
 is the internuclear distance. The vibrational energy levels of a Morse 

potential are defined as an expanded Taylor series 

 �� = )� + *�+ �� − )� + *�+� ��	�…. (2.5) 

in which the first term accounts for the harmonic behavior and the second term (and terms 

beyond) are for anharmonic corrections.9 Unlike the evenly-spaced vibrational energy levels in 

the harmonic approximation, the difference between the vibrational energy levels in the Morse 

potential are inversely proportional to � and asymptotically approach the dissociation energy.  

This vibrational theory can be extended to low-frequency vibrational theory, although the 

vibrational spectra will change drastically since the atomic-level nature of the vibrations in the 

mid-IR correspond to intramolecular motions and those in the far-IR are dominated by 

intermolecular motions. These spectral differences can be easily described with the simple 

model, CO2. In vibrational spectra of molecular CO2, modes originate from intramolecular 

motions. For example, in the infrared spectrum, modes near 667 cm-1 and 2349 cm-1  are 
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attributed to bending and asymmetric stretching motions, and in the Raman spectrum, the only 

mode at 1932 cm-1 corresponds to a symmetric stretch.10-11 In the vibrational spectra of 

crystalline CO2, the same intramolecular vibrations still exist (with shifting of energies), but new 

intermolecular vibrations result from the solid form. The new vibrational motions in the solid are 

seen as three modes in the IR spectrum (68, 110, and 114 cm-1) and correspond to translational 

lattice motions, while three modes (73, 90, and 131 cm-1) in the Raman spectrum are hindered 

rotations of CO2
 molecules in the crystalline lattice.10, 12-13  Intermolecular vibrations such as 

translations and hindered rotations are not present in isolated molecules since they arise from 

interactions of the molecules within the crystal lattice. The differences in spectral frequencies 

between molecular and crystalline CO2 can be explained with Eq. 2.2 and 2.3 which show the 

dependence of the vibrational frequency on the force constant and reduced mass of the motion. 

From these two equations, low-frequency modes will either be characterized by small force 

constants or large reduced masses; two conditions that are both satisfied by crystals with weak 

intermolecular van der Waals forces or involve simultaneous motions of many atoms (e.g. 

translations).  

In crystals, the displacement of atoms from the equilibrium position is restricted by the 

periodicity of the solid and the symmetry elements of the unit cell. This is best understood with a 

simplified periodic model of one dimensional chains of atoms. In these chains, vibrations are the 

displacement of atoms only along the direction of the chain. These displacements are referred to 

as longitudinal modes. If the dimensionality is removed the restrictions are no longer restricted to 

one dimension. Displacements will occur along the direction of the chain and also perpendicular 

to the chain.  The displacements perpendicular to the original chain are transverse modes. Since 
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the displacements of atoms are restricted in in crystalline lattices, the forces constants of these 

motions are considerable smaller and occur at lower frequencies.  

2.3 Selection Rules 

The discussion of the vibrational origins of changes in spectral frequencies between 

molecular and crystalline CO2 warrants an explanation of the differences between the IR and 

Raman spectra. In the molecular spectra of CO2, the IR spectrum had three modes and the Raman 

only had one,10-11 while there are three low-frequency modes in both the IR and Raman spectra 

of crystalline CO2
. In molecular vibrations, the origins of modes in IR spectra are characterized 

by the change in the dipole moment of a molecule during a vibrational motion, whereas modes in 

Raman spectra originate from the change in the polarizability. In crystals, the same theories 

apply but rather than observing the changes in a molecule’s dipole moment and polarizability, 

the changes are in relation to the unit cell.   

Considering IR spectroscopy first, the absorption of quantized radiation will induce a 

transition between vibrational energy levels (shown in Figure 2-2).  The only allowed transitions 

follow:  ∆- = ±1 and will be active if the dipole moment of a system changes during the 

vibration. This is defined by the magnitude of the dipole moment, M: 

 

Where, �̂,  the electric dipole operator is defined as the sum over all particles with the charge � 
 

and particle position �	, 1, 2
: 

 3 = 4 5�6�78∗ �̂ 56�6:678�; (2.6) 

 �̂ = �̂< + �̂= + �̂> =  ?  �	 + 1 + 2
 (2.7) 
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From Eq. 2.6 and Eq. 2.7, the magnitude of the dipole moment is equal to �̂ over the 

wavefunction of the transition, where �̂ is dependent on the charges of particles and their 

positions  

Rather than inducing molecular vibrations with direct absorption, vibrations can also be 

probed using light scattering. The light scattered by a sample can be elastic or inelastic and is 

classified as Rayleigh and Raman scattering, respectively.14 Raman scattering is further 

classified as Stokes and anti-Stokes scattering. Raman scattering has intensities on the order of 

10-5 - 10-8 of Rayleigh scattering. The frequencies of the scattered photons are reported as shifts 

from the incident photon beam frequency and are dependent on internal vibrational interactions 

or lattice vibrations. In Stokes scattering, photons from the incoming beam are absorbed to 

virtual state and upon release will fall to a higher vibration energy level than that of the ground 

state. This process results in a frequency shift that is lower than the incident beam frequency. In 

anti-Stoke scattering, some excited states are already populated and will relax to the ground state 

from a virtual state when a photon is released. Stokes scattering is more intense due to the 

dependence of anti-Stokes scattering on the thermal population of higher vibrational energy 

states. This process causes a frequency shift in the light that is higher than the incident beam 

frequency. This behavior is shown in Figure 2.215, as well as a comparison between the 

transitions observed in infrared and Raman spectroscopies.  
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Figure 2-2 Allowed transitions in IR and Raman spectroscopies. Adapted from Reference 

15.  

A Raman-active mode will undergo a change in its polarizability during the transition. 

The selection rule for Raman-active modes is related to Eq. 2.6, with the transition moment [@] 

defined in terms of polarizability of the molecule: 

The change in polarizability, @, during a Raman-active transition is defined as the response of the 

induced dipole moment [@] within an electric field ��
: 

 @ = [@]� (2.9) 

In IR-active vibrations, the change in dipole moment was only concerned with the x, y, and z 

coordinate positions. In Raman-active vibrations, the response of the induced dipole moment 

within an electric field is defined with a tensor: 

 [@] = 4 5�6�78∗ @ 56�6:678�; (2.8) 
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 [@] = C@<< @<= @<>@=< @== @=>@>< @=> @>> D E�<�=�>
F (2.10) 

The electric field, along the 	, 1, and 2 directions, is defined by the diagonal, �@<<, @== , @>>
. 

The response of the induced dipole moment along the directions of the other matrix values define 

the strength of polarization in that direction.  

2.4 Toptica TeraFlash Time-Domain Spectrometer   

In this work, a Toptica TeraFlash Time-Domain Spectrometer (Figure 2.3), which uses a 

Toptica FemtoFiber femtosecond laser with fiber InGaAs photoconductive switches, was used 

for optoelectronic terahertz generation.16-18 In this spectrometer, near-infrared radiation is 

generated with a femtosecond laser centered on 1560 nm and converted to terahertz waves using 

photoconductive switches comprised of a semiconducting multilayer structure of InGaAs and 

InAlAs on InP. Terahertz waves are then generated when the near-infrared radiation generates 

free charge carriers in the photoconductive switches creating a photocurrent of terahertz 

waves.19-20   

 

Figure 2-3 Commercially available Toptica TeraFlash Time-Domain Spectrometer 
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All pigment samples for THz measurements were prepared in a polytetrafluoroethylene 

(PTFE) matrix with concentrations determined by the sample’s absorption behavior. Polymer 

matrices show little to no THz absorption, making them ideal for measurements.21-23 Here, PTFE 

was used because it has a low hygroscopicity24 and high compressibility.25 The pigments and 

matrix were homogenized and finely ground using a Dentsply-Rinn 3110-3A ball mill. 

Homogenized pigment/matrix powders were pressed into 13 mm diameter x 2 mm thick pellets 

using a hydraulic press (~2000 psi). A pellet of pure PTFE with the same dimensions was 

prepared for use as a blank. During data collection, samples were held under vacuum while the 

spectrometer was purged with dry air to minimize peaks from water vapor, which is a strong 

terahertz radiation absorber.26 

THz-TDS measurements were usually collected at 293 K and again at 78 K when greater 

peak resolution was needed. Spectral peaks will narrow upon cooling, because the number of 

thermally excited states decreases at low temperatures. In addition, when a sample is cooled the 

spectrum will shift to higher frequencies. This shift is due to the contraction of the unit cell at 

low temperatures, in turn increasing the vibrational force constants.   

During a measurement, the THz-induced optical changes of a sample were recorded as 

time-domain waveforms with current signals as a function of the signal delay in picoseconds 

using a 100 ps window and an average of 20000 scans. The observed bandwidth was 0.3 - 4.8 

THz (10-150 cm-1), with a spectral resolution of 0.005 THz (0.167 cm-1).Time-domain 

waveforms were converted into the frequency-domain using Fourier transforms. The ratio of the 

transformed waveforms for the sample/matrix and blank pellets yields the absorption coefficients 

that are used to construct the final THz-TDS spectra. The absorbance values are transformed 
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from optical density to units of ε (M-1 cm-1) using Beer’s law and the concentrations (mol L-1) 

and thicknesses (cm) of the sample pellet.  

2.5 Ondax SureBlock XLF-CLM THz-Raman Spectrometer  

In LFRS spectra, the THz region lies very close to the Rayleigh excitation peak, which 

has been a large complication in accessing the sub-200 cm-1 region with Raman spectroscopy. 

This strong peak must be attenuated in order to reveal useful signals in this region.27 Recent 

developments in volume holographic grating filters28-29 have enabled development of notch 

filters that are able to reject the specific wavelength of the incoming laser while preserving the 

transmission of other Raman signals.  

In this work, an Ondax SureBlock XLF-CLM THz-Raman spectrometer was used. This 

spectrometer used a stabilized diode laser centered at 785 nm (Surelock LM series). A series of 

ultra-narrowband VGH suppression filters (NoiseBlock series) removed spontaneous emission 

from the diode laser. The beam was directed to a dichroic 90/10 VHG beam splitter that 

refocused the beam to the sample then measures the scattering off the sample. The beam splitter 

separated the Rayleigh scatter from the Raman signal, sending the Rayleigh scatter back to the 

laser and transmitting the Raman signals.27 The Ondax THz-Raman spectrometer was fiber-

coupled to an Andor Shamrock SR-750 spectrograph and Andor iDus 416 CCD camera detector. 

The combination of this spectrograph and CCD camera detector optimizes sensitivity and 

spectral resolution.  
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Figure 2-4 Commercially available Ondax SureBlock XLF-CLM THz-Raman spectrometer 

In comparison to the sample pellets needed for THz-TDS spectroscopy, the samples for 

Raman methods are simply the material of interest. Precautions were taken to eliminate 

interference from ambient laboratory fluorescent lighting and to minimize damage to the samples 

from heating due to excessive laser power. These samples were held in a 10-mm glass vial which 

was placed in the spectrometer sample holder. The collected spectra were averaged over 225 

exposures with exposure times ranging between 1 to 3 seconds. The collected spectral range 

(with respect to the Rayleigh line) was from -100 to 300 cm-1 with a spectral resolution of 0.7 

cm-1. For comparison purposes, the intensity data for each sample was normalized.  

2.6 Powder X-ray Diffraction  

In solid-state materials, the crystalline lattice is defined as a three-dimensional periodic 

arrangement of atoms continuously moving (vibrating) around their equilibrium positions. These 

motions are influenced by the interatomic interactions and the symmetry elements of the lattice. 
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The periodic nature of lattices allows for simplification of the structure with a unit cell. Unit cells 

are defined by lattice parameters including lengths of the cell edges and the angles between 

them.  These parameters are used to categorize unit cells into one of the seven crystal systems 

and further into one of 230 space groups defined unique atomic positions and symmetry elements 

of the unit cell.30-31 Crystals will reflect high-energy X-ray radiation and produce diffraction 

patterns that yield structural details including crystal systems, space groups, lattice parameters, 

and atomic positions.32-33 Bragg’s law34-35 relates the scattering angles of diffracted X-rays to the 

atomic plane distances in a crystal:  

 2� sin�J
 = �K (2.1) 

Where � is the distance between atom planes, J is the angle between the incident X-ray 

and atom plane, and K is the wavelength of the incoming X-ray beam. Powder X-ray diffraction 

(PXRD) is used to measure diffraction of bulk powder samples. PXRD data is used to determine 

the space group and unit cell lattice dimensions of crystalline samples. PXRD is relatively quick 

data collection but requires a considerable amount of sample. In this work, PXRD was used to 

confirm sample identity, purity, and crystallinity of the representative pure pigments. An 

example PXRD powder pattern is shown in Figure 2-5 for crystalline CO2.
36 
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Figure 2-5 Predicted PXRD pattern for crystalline CO2. Adapted from Reference   

The PXRD measurements used a Bruker D2 Phaser diffractometer (Figure 2-6) with a 

LYKXEYE 1D silicon strip detector. Data collected with the Bruker D2 Phaser diffractometer 

was analyzed with the DIFFRAC.SUITE software package. During a data collection, the 

diffractometer held the sample position constant while the x-ray radiation beam (Cu Kα 

radiation, λ=1.5406 Å) was rotated around the sample.  

 

Figure 2-6 Commercially available Bruker D2 Phaser diffractometer. 
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Chapter 3. Density Functional Theory 

3.1 Introduction 

The spectral features in THz-TDS and LFRS spectra (Chapter 2) correspond to complex 

intermolecular motions in crystalline samples. In this work, the origins of these spectral features 

are determined with ss-DFT.1 In order to discuss the aspects of ss-DFT that make it ideal for 

modeling crystalline solids, the theoretical framework of DFT must first be considered. 

This chapter examines the fundamentals of DFT including descriptions of the quantum 

mechanical behavior of electrons and the orbitals they occupy with the Hohenberg-Kohn 

theorems, the Kohn/Sham method, exchange/correlation functionals, and basis sets. These 

foundational concepts are extended into solid-state models with periodic boundary conditions, 

reciprocal space, and Bloch’s theorem. The ss-DFT software package, CRYSTAL, and its 

applications in this research are also discussed.  

3.2 Quantum Mechanical Foundations of Density Functional Theory 

In the time-independent Schrödinger equation,2-3 the Hamiltonian operator returns the 

energy of a sub-atomic particle, which can be deconstructed into the kinetic and potential energy 

terms.4-5 This equation was initially used to explicitly derive the wavefunction and energy levels 

of the one-electron hydrogen atom,6 but explicit solutions for larger systems are nearly 

impossible because the number of terms needed in the Hamiltonian to adequately describe 

electronic and nuclear interactions increases as the electrons increase.7 Solving many-electron 

systems is possible by limiting the terms in the Hamiltonian to those that describe the electronic 

interactions in a system.4 The exclusion of nuclear interactions, referred to as the Born-

Oppenheimer approximation,8 is predicated on the assumption that atomic nuclei are stationary 
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in comparison to electrons because of the large mass difference between the two.9  As a result, 

the time-independent Schrödinger equation for a particle becomes 

 Hψ = E− ħ2� ? ∇6�
N

6O* + ? ��P6
N
6O* + ? ? Q�P6PR%RS*

N
6O* F ψ = Eψ (3.1) 

Where ψ is the electronic wavefunction, E is the ground state energy of a system, and H 

is the Hamiltonian. The Hamiltonian is defined by three terms, respectively: the kinetic energy of 

each electron, the interaction energy between the atomic nuclei and each electron, and the 

interaction energy between the electrons in a system.10-12 

Although exclusion of the nuclear terms simplifies the time-independent Schrödinger 

equation, difficulties remain in defining the wavefunction for a particle: a multi-body problem 

and 3N dimensionality. The last term of the Hamiltonian in Eq. 3.1 describes the interactions 

between electrons. Consequently, in multi-electron (multi-body) models this implies that 

determination of the wavefunction for one electron requires knowing the wavefunctions for the 

other electrons in a model. The other difficulty, 3N dimensionality, arises from the treatment of 

each electron as a single particle in space with unique coordinates. Rather than characterizing 

electrons as single points in space, defining the collective of electrons as a density eliminates the 

multi-body problem and reduces the dimensionality to a function of three coordinates. The 

electron density (�
 is defined as 

 ��P
 = ? ψ6∗�P
ψ6�P

6  (3.2) 

where the summation of the individual wavefunctions is equal to the probability that an electron 

�ψ6�P

 is at a point in space, �P
.  

Although Eq. 3.2 eliminated the multi-body and dimensionality complications, describing 

ψ6�P
 for ��P
 was not possible. Pierre Hohenberg and Walter Kohn theorized that ground state 
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energy of these wavefunctions can be determined from the solutions to a set of non-interacting 

electronic equations based on the electron density.13 This theory was centered on two theorems: 

first, the ground-state energy is defined as a functional of electron density,10, 13-14 and second, the 

electron density that minimizes the energy of the overall functional is the true electron density of 

a system.14-15  

The second Hohenberg-Kohn theorem16 can be expressed as: 

 E[Tψ6U] = EV�WX�[Tψ6U] + EYZ[Tψ6U] (3.3) 

where the minimized energy of a system depends on EYZ[Tψ6U]. This term is the 

exchange/correlation functional which accounts for the effects not included in EV�WX�[Tψ6U]. 
Although, the Hohenberg-Kohn theorems simplified Eq. 3.1, there were no methods for defining 

a functional that related the ground-state energy with electronic density, leaving solutions to Eq. 

3.3 with the same problems encountered in Eq. 3.1.  A definition for this functional, developed 

by Walter Kohn and Lu Jeu Sham, was based on wavefunctions for single electrons rather than 

wavefunctions that included contributions from each electron.16  A single-electron wavefunction 

is defined as 

 [− ħ2� ∇� + ��P
 + �\�P
 + �YZ�P
] ψ6�P
 = ε6ψ6�P
 (3.4) 

where the second term of the Hamiltonian describes the interaction between an electron and the 

atomic nuclei. This term is also in Eq. 3.1 and is included in the EV�WX�[Tψ6U] term of Eq. 3.3. 

The third term of Eq. 3.4 is the Hartree potential: 

 �\�P
 = e� 4 ��P`
|P − P`| �bP` (3.5) 
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which accounts for the Coulombic repulsion between an electron and the electronic density of a 

system. The fourth term is the exchange-correlation potential contribution to the wavefunction 

described by 

 �YZ�P
 = cEYZ�P
c��P
  (3.6) 

 

As a result, the wavefunction of a single electron (Eq. 3.4) depends on the Hartree 

potential (Eq. 3.5) which hinges on the electron density (Eq. 3.2) that can only be solved with 

known single-electron wavefunctions (Eq. 3.4). This circular process and along with the 

undefined exchange/correlation contribution (Eq. 3.6) form the iterative basis of the self-

consistent field (SCF) energy calculations in DFT.12 

3.3 Density Functionals 

In the prior section, both the minimized energy of a system (Eq. 3.3) and the single-

electron wavefunction (Eq. 3.4) include the undefined exchange/correlation terms, EYZ[Tψ6U] and 

�YZ�P
. The definition of a functional that yields exact exchange-correlation energy is unknown, 

resulting in the development of various approximations of the energy as functionals of electron 

density, referred to as exchange/correlation functionals.10, 12  Categorization of functionals has 

classically been depicted as a ladder composed of five rungs that correspond to the sophistication 

of the model.10, 17 Each rung includes a new physical constant. Theoretically, the inclusion of 

more constants will increase accuracy but the tradeoff between computational cost and accuracy 

must be considered. 

Here, the focus is on local density approximations, generalized gradient approximations, 

and hybrid models.  Other classes of functionals exist (range-corrected hybrid functionals18-21 

and meta-global gradient approximation functionals10, 22-23) but are not covered in this work. 
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Many density functionals do not account for the long-range London dispersion forces.24 

Although corrections for these weak interactions are small, 25 they are not negligible, and have 

been accounted for with the addition of two- three- and many-body terms. 26 In crystals, these 

forces contribute to the formation and stabilization of the lattice structure, prompting the 

development of two, and three-body dispersion terms for use in ss-DFT.25, 27-31  

3.3.1 Local Density Approximation Functionals 

The simplest functionals are local density approximation (LDA) functionals. LDAs were 

developed with the assumption that electron density is uniform in all directions. The LDA 

exchange-correlation energy depends on electron density and is the sum of independent 

exchange and correlation terms10   

 �YZdef[��P
] = �Ydef + �Zdef (3.7) 

Exact solutions for these terms are possible in systems with high electron delocalization or slow-

changing electron densities.10, 12, 32-34  Examples of LDAs include: PW92,35  VWN,36 and PZ.37 

3.3.2 Generalized Gradient Approximation Functionals 

In addition to the electron density, generalized gradient approximation (GGAs) 

functionals include the gradient of the electron density in a system.38 This additional parameter 

allows for improved local behavior models of the electron density in a real structure.39 The 

generic form of a GGA functional is defined by the addition of a gradient correction to the LDA 

functional: 

 gYZhhf�P
 = gYZdef[��P
] + ∆ E|∇��P
|
�ib�P
 F (3.8) 
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 Additionally, the exchange functionals40 and correlation41 functionals of GGAs have been 

independently developed for use in development of hybrid functionals.  

3.3.3 Hybrid functionals  

Although GGAs were an improvement from LDAs, further development showed 

additional accuracy was possible upon mixing exact HF exchange with exchange-correlation 

energy from GGAs to create a hybrid functional.42-43 This mixing increases the applicability of 

hybrid functionals, making them one of the most utilized functionals in computational 

chemistry.44-45 The general form of a hybrid functional is  

 �YZj=k�6l = �1 − m
�YZhhf +  m�Y\n (3.9) 

where m represents the mixing ratios of GGA exchange-correlation energy and HF exchange.12   

In this research, B3LYP and PBE0, two well-known hybrid functionals, were used. 

B3LYP (Beck-3-parameter-Lee-Yang-Parr) was built with the B88 exchange functional46 and the 

Lee-Yang-Par40, 47 correlation functionals. The three empirical parameters �m, o, p
 determined 

the ratio of mixing between the LDA exchange-correlation energies and the HF/GGA exchange-

correlation energies,  

�YZqbdrs = �YZdef +  m��Y\n − �Ydef
 + o��Yq − �Ydef
 + �tdef + p��tdrs − �tdef
 (3.10) 

 

PBE0 is the parameter-free hybrid model of the non-empirical GGA functional, PBE (Perdew–

Burke-Ernzerhof)48-50   

 �YZsqu( = �YZhhf +  14 ��Y\n − �Yhhf
 (3.11) 
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3.4 Basis Sets 

In addition to estimating electronic behavior, it is necessary to describe the atomic 

orbitals the electrons occupy. These atomic orbitals are defined with sets of functions (basis sets) 

for the electronic wavefunctions. In modern DFT software, atomic orbitals are defined with 

either plane-wave basis sets,51-52 atom-centered basis sets,53-54 or a combination of the two.55 

Although plane-wave basis set calculations offer advantages over atom-centered basis sets, such 

as the elimination of basis set superposition error, intrinsic periodicity in three dimensions, and 

faster calculations of energies and gradients in solid-state calculations, they have an 

extraordinarily high computational cost when paired with hybrid functionals.56-57 This 

incompatibility with hybrid functionals requires the use of GGA functionals that are usually less 

accurate than hybrid functionals.56-57 The compatibility of atom-centered basis sets with hybrid 

functionals makes them more advantageous for crystalline systems where higher accuracy is 

needed to model the sometimes subtle features of the crystal lattice. For this reason, only atom-

centered basis sets were used in this work and will be covered.  

Atomic orbitals are defined with atom-centered basis sets built with either Slater-type 

orbitals (STOs) or Gaussian-type orbitals (GTOs). Although basis sets built with STOs yield 

higher computational accuracy, they have a high computational cost that only increases as a 

system grows. This high computational cost has contributed to the wider use of Gaussian-type 

basis sets.58 The form of Gaussian-type orbitals is expressed in Cartesian coordinates for atom b 

as  

 w6RV = x	k6 1kR2kV !y z{$  (3.12) 

where x is a normalization constant, (	, 1, 2) are the Cartesian coordinates originating from o’s 

nucleus, α is the orbital exponent, and ' is the distance to the nucleus. 
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The smallest Gaussian-type basis sets, minimal basis sets, use single functions to describe 

the core and valence orbitals. Although they have a low computational cost, they are poor 

models for systems beyond a gas-phase atom.59 Split-valence basis sets are larger than minimal 

basis sets and define the core orbitals with one function and valence orbitals with more than one 

function. The inclusion of more functions increases the accuracy of these models by allowing the 

electron density to shift away from the atom nucleus.60-61 Considerable attention has focused 

towards the development of Gaussian-type basis sets that are optimized for solid-state 

calculations by improving the quality of functions used to describe crystalline orbitals.62-63 Solid-

state specific basis sets used in this research were developed by Peintinger, et al.62 and Weigend, 

et al.61 

Combining polarization and diffuse functions with minimal and split-valence basis sets 

can improve electronic structure calculations by including orbitals beyond the valence orbitals. 

Adding more orbitals provides electrons the freedom to shift towards bonding regions.12, 58 

Inclusion of these functions are especially important in models with delocalized electrons.58, 64 

Although it is reasonable to assume that increasing the number of polarization and diffuse 

functions results yields simulations with higher accuracy, this does not always hold true65 and 

could complicate convergence as well as increase computational costs.66  

Historically, modeling heavy atoms (transition metals and heavy metals) been 

challenging due to the computation costs associated with treating many electrons, the inability to 

account for relativistic effects, and complications in simulation convergence.67 These difficulties 

have been reduced through the development of effective core potentials (ECPs).10, 12, 67 ECPs 

reduce the computational costs of electronic structure calculations using a pseudopotential to 

describe the nucleus and all the core electrons. The pseudopotential replaces the second term of 
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the Hamiltonian in Eq. 3.4 with a modified potential that accounts for the interactions of the 

tightly-bound core electrons and the atomic nucleus. This frees up computational resources, by 

shrinking basis sets for heavy atoms, to focus on approximations of the effects on the valence 

electrons.12, 68-69 Although ECPs greatly reduce the complications to modeling heavy atoms, they 

are built on the assumption that there is no overlap in the wavefunctions of core and valence 

electrons.10 

3.5 Modeling Crystalline Materials with Solid-State Density Functional Theory    

3.5.1 Periodic Boundary Conditions, Reciprocal Space, and Bloch’s Theorem 

Implementation of DFT methods in solid-state models is predicated on the periodicity of 

crystals.70 These solid-state density functional theory (ss-DFT) models utilize periodic boundary 

conditions (PBCs) (Figure 3-1) to define an infinite crystal lattice with only the unit cell as the 

starting point.12  
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Figure 3-1 Example of a three-dimensional PBC. The bolded cell is surrounded by images 

generated with PBCs. Adapted from Reference 12. 
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Further simplification of ss-DFT simulations comes from the transformation of the unit 

cell in real space into reciprocal space with the unit cell defined as the Brillouin zone (BZ).71  

The BZ is defined with | (sampling) points and reciprocal space lattice vectors. The real space 

vectors of a unit cell �}, ~, �) are transformed into reciprocal space lattice vectors (}∗, ~∗, �∗) via 

  

}∗ = 2� ~ × �} ∙ ~ × � 

 

(3.13) 

  

~∗ = 2� � × }~ ∙ � × } 

 

(3.14) 

 

  

�∗ = 2� } × ~� ∙ } × ~ 

 

(3.15) 

which demonstrates the inverse relationship between real and reciprocal space. In reciprocal 

space, atom-centered basis sets are transformed into periodic Bloch functions that define 

crystalline orbitals.72-73 These Bloch functions will satisfy Bloch’s theorem: 

where the number of | points needed to describe a solid system is determined when the 

periodicity of Bloch wavefunction matches the periodicity of the original crystal.74 The 

periodicity of a wavefunction, �, is described with Bloch functions of the form 

 Ψ�r
 =   6V���P
 (3.16) 

 ��� + '
 = ��P
 (3.17) 
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This periodic definition of ��P
 can be substituted into the Kohn-Sham Hamiltonian  (Eq. 3.4) to 

determine the ground-state energy with the SCF method described in Sec. 3.2.1.  

3.5.2 Computational Techniques Used Specifically in CRYSTAL Software 

Solid-state density functional simulations were carried out with the commercial software 

package, CRYSTAL.75-76 This software utilizes PBCs to reduce computational costs of 

crystalline models. In this research, CRYSTAL was used to model the crystalline structures and 

normal mode frequencies of solid pigments. 

3.5.3 Geometry Optimizations  

Prior to a geometry optimization, the number of | points needed to describe a system 

must be determined. In CRYSTAL,75 this value is defined with shrinking factors via the 

keyword, SHRINK. The shrinking factors are used to construct the Pack-Monkhorst77 grid that is 

proportional to the number of | points and reciprocal space. Shrinking factors are determined 

with single-point energy calculations that hold the geometry constant while manually changing 

the | points. Calculations with differing | points are carried out until the energy difference 

between two single-point calculations converges to limits set with the keyword, TOLDEE.  

In a geometry optimization, a PES is constructed using a user-defined initial geometry.78-

80 The minima of PESs are found using a Quasi-Newton optimization scheme, where the 

gradients (analytical first-derivatives) of the PES are continuously evaluated until the stationary 

point of the PES is determined. During this optimization, the unit cell parameters and atomic 

positions are free to relax to the lowest electronic energy. Aspects of convergence on the PES 

(with the keywords in parentheses) that can be controlled include the gradient of the potential 

energy surface (TOLDEG) and the displacements along the PES (TOLDEX).76  
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3.5.4 Vibrational Normal Modes and Intensities 

Harmonic frequencies are calculated at the Γ point in the Brillouin zone by displacing 

atomic positions along Cartesian coordinates to determine the gradient numerical derivatives of 

symmetrically unique atoms.81-83 The second-order derivatives are found with numerical 

methods and used to construct the mass-weighted Hessian matrix (mass-weighted force constant) 

to generate the eigenvalues and eigenvectors of the vibrations. These eigenvalues and 

eigenvectors are then used to calculate the normal modes.  

As demonstrated in Chapter 2, the activity of an IR normal mode is proportional to the 

change in dipole moments with respect to the atomic displacements.84  In CRYSTAL, the 

intensities are determined using the Berry phase method85 which evaluates the derivatives of the 

dipole moment with respect to the atomic displacements as differences in polarization between 

the equilibrium and distorted geometries. Intensities are printed with units of km mol-1 which are 

not directly comparable with experimental intensities (ε). Transformation of the simulated 

intensities is carried out using experimentally determined full-width half-maximum values of the 

spectral peaks from Lorentzian line-shape analyses.  

In CRYSTAL, the Raman polarizability tensor, calculated with a coupled-perturbed 

Hartree-Fock / Kohn Sham method, is evaluated over the normal mode coordinates to calculate 

Raman intensities.85-89  The intensities for a polycrystalline spectrum are found by averaging 

over all orientations of the tensor. Once Raman intensities are calculated, the keyword RAMEXP 

can be used to account for effects from temperature and the wavelength of the incident beam on 

the intensities.90 The intensities generated with CRYSTAL are arbitrary in units and require 

normalization for comparison to experimental spectra. Scaling of the predicted intensities is 
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usually necessary, so comparisons are better focused on relative peak heights within a single 

spectrum.  
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Chapter 4. Terahertz Spectroscopy and Quantum Mechanical Simulations of 

Crystalline Copper-containing Historical Pigments 

 

The material in this chapter is published in The Journal of Physical Chemistry A (Kleist, E. M.; 
Koch Dandolo, C. L.; Guillet, J.-P.; Mounaix, P.; Korter, T. M., The Journal of Physical 

Chemistry A 2019, 123, 1225-1232.). This article has been reproduced with permission from the 
American Chemical Society.  Please see Appendix A for Supporting Information. 

Terahertz spectroscopy, a non-invasive and non-destructive analytical technique used in art 

conservation and restoration, can provide compelling data concerning the composition and 

condition of culturally valuable and historical objects. Terahertz spectral databases of modern and 

ancient artists’ pigments exist, but lack explanations for the origins of the unique spectral features. 

Solid-state density functional theory simulations can provide insight into the molecular and 

intermolecular forces that dominate the observed absorption features, as well as reveal deviations 

from simple harmonic vibrational behavior that can complicate these spectra. The characteristic 

terahertz spectra of solid azurite, malachite, and verdigris are presented here, along with 

simulations of their crystalline structures and sub-3.0 THz lattice vibrations. The powerful 

combination of theory and experiment enables unambiguous spectral assignment of these complex 

materials and highlights the challenges that anharmonic peak broadening in organic-containing 

materials may present in the construction of reference pigment databases. 
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4.1 Introduction 

In the field of heritage science, spectroscopy is an invaluable analytical approach for 

understanding the component materials of an object, previous restoration and conservation 

efforts, and artistic technique. The intricacy of the materials and the mixtures used in this field is 

such that many parameters like sample type, degree of aging, humidity exposure, and 

temperature control can influence the dielectric behavior of the sample response. While many 

different spectroscopy types have been applied, terahertz (THz) vibrational spectroscopy (≤ 100 

cm-1) has gained recent popularity as a powerful nondestructive technique for understanding the 

intermolecular interactions in solid materials.1-3 Terahertz radiation is an ideal source of 

information for characterization of various fragile artifacts, especially pigment identification, a 

crucial step for properly addressing dating, authenticity, and other problems encountered in 

heritage science.4-7  

Standard techniques for pigment identification include X-ray fluorescence spectroscopy 

(XRF), mass spectrometry, as well as infrared and Raman spectroscopies.8,9 The information 

provided by XRF is not always sufficient to identify the components of the paint under 

investigation, considering different pigments may contain the same elements and light elements 

cannot be detected.10  Mass spectrometry is unfavorable because analysis requires destruction of 

a small piece from the sample. Fourier-transform infrared spectroscopy (FTIR) has previously 

been used for pigment identification; however, several classes of inorganic pigments are inactive 

in the mid-infrared (mid-IR) region (e.g. oxides or sulfides) and cannot be identified with this 

technique. In these cases, complementary Raman spectroscopy is used to overcome such 

limitations.11 Nevertheless, Raman spectra can be affected by fluorescence signal in the presence 

of organic compounds or ligands despite efforts made to reduce this phenomenon using 
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mathematical or instrumental methods.12 Raman analysis also requires vigilance to avoid damage 

due to higher photon energies.  

Less investigated than the mid-IR, the near-infrared (near-IR) and far-infrared (far-IR) 

regions have also been used for pigment identification. Near-IR is useful when performing non-

invasive reflection spectroscopy, as combination and overtone bands found in this spectral range 

have lower absorptions than fundamental ones in the mid-IR and are not distorted by specular 

reflection. However, only functional groups containing NH, CH, OH, CO, and CC bonds 

produce significant vibrational bands in this range, limiting applicability.13 The spectral region 

accessed by far-FTIR has been exploited for overcoming the limitations of mid-FTIR and Raman 

spectroscopy in pigment identification, especially for inorganic compounds derived from 

minerals.14,15 Far-IR radiation excites lattice vibrations that are unique to specific solid-state 

structures with significantly different frequencies found for crystalline polymorphs of the same 

chemical compound.   

Only recently has THz spectroscopy for pigment analysis and identification proven to be 

an effective tool for characterizing vibrational modes including rotational, torsional, phonon, and 

intra-/intermolecular modes.16,17 Compared to the mid-IR, where high-energy molecular 

vibrations are observed, THz spectroscopy can detect low-energy vibrations and weak 

interactions between molecules, such as those due to hydrogen bonding and van der Waals 

forces.18 The THz response is linked to the collective behavior of molecules in their environment 

and can be used to distinguish polymorphism and chirality.19-24 Moreover, pulsed terahertz time-

domain spectroscopy (THz-TDS) directly provides the value of the electric field amplitude of the 

electromagnetic radiation, rather than optical intensity. Accordingly, both the amplitude and 

phase of the electric field in the frequency domain are directly obtained by Fourier transform 
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with no need for Kramers-Kronig relations to calculate the desired optical constant from a 

measured one.16  

The spectroscopic examination of pigments and their specific fingerprints in the THz 

region will help researchers understand the source of contrast in the THz frequency parametric 

images obtained with THz imaging systems, which have been exploited for analysis of artworks. 

5, 25-28 Clarification of the spectral features for individual pigments is an essential component in 

identification of pigment mixtures used by artists, or the degradation of pigments over time. To 

aid in this understanding, experimental mid-FTIR, Raman, and THz spectral databases of artists’ 

materials have been constructed29-32 and further spectroscopic examinations of pigments 

followed.30, 33-35 These works demonstrate that individual pigments have unique spectral 

fingerprints, but accurate interpretation of spectra can be difficult given their complexities. Solid-

state density functional theory (ss-DFT) simulations are beneficial in elucidating these measured 

spectra that are comprised of pure or mixed pigments and indistinguishable by visual inspection. 

33 Simulating THz frequencies with ss-DFT allows for consideration of the connection between 

chemical identity, crystalline structure, and the intermolecular forces that collectively contribute 

to the characteristic THz vibrational spectra of these materials. 

In this study, experimental THz spectra and ss-DFT simulations of the crystalline 

structures and the sub-3.0 THz lattice vibrations of azurite [Cu3(CO3)2(OH)2], malachite 

[Cu2CO3(OH)2], and neutral verdigris [Cu(CH3COO)2·H2O] are presented. The visual 

appearance and crystal structures of these historical pigments are shown in Figure 4-1. Previous 

studies have reported the THz vibrational spectra of these pigments, but no terahertz-focused 

computational work has appeared for copper carbonate and acetate complexes, though other 
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frequency ranges have been considered.5, 34-43 Related computational analyses of the THz spectra 

of similar copper sulfate compounds44 and other dyes45 have been published.  

 

 

Figure 4-1 Powder samples and crystallographic unit cells of azurite, malachite, and neutral 

verdigris. 

4.2 Materials and Methods 

4.2.1 Sample Preparation  

Azurite, malachite, and verdigris were purchased from Kremer Pigments Inc. (Munich, 

Germany), while powdered high-density polyethylene (HDPE) was obtained from Sigma Aldrich 

(St. Louis, USA). All were used without further purification. The purity and type of verdigris 

was determined by powder X-ray diffraction (XRD) on a Bruker D8 Advance powder 

diffractometer using Cu Kα radiation (λ=1.5406 Å), considering that various forms of basic and 

neutral copper acetate can form upon exposure to different atmospheric or synthetic conditions.46 
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Powder data was collected and analyzed with Diffrac Plus XRD Commander software (version 

2.6.1) and compared to calculated powder patterns produced in Mercury CSD 3.10.251 using the 

published single-crystal X-ray diffraction data for synthetic neutral verdigris. The powder 

patterns shown in Figure. A1 in Appendix A confirm that the purchased verdigris is the neutral 

hydrate form.  

The pigments and HDPE were mixed and ground to reduce particle size and avoid 

scattering loss during the measurements, then pressed into uniform pellets with a 13 mm 

diameter and thicknesses varying from 2.72 to 3.52 mm, (specifics can be found in Table A1 in 

Appendix A). Particle size effects are a known complication in terahertz spectra of pigments47, 

but no corrections for such phenomena have been implemented here. All THz spectra were 

measured with pellets made with a 20 % w/w concentration of pigment. 

4.2.2 THz-TDS Experimental Setup  

Terahertz spectra were measured on a TPS Spectra 3000 time-domain spectroscopy 

system from TeraView (Cambridge, UK) at room temperature (293 K). The system relies on 

GaAs laser-gated photoconductive antennas (PC-antennas) for terahertz generation and 

detection, with an 80 fs Ti:Sa ultrashort pulsed laser operating at 800 nm with a repetition rate of 

76 MHz used as a probe/pump beam. The THz-TDS system offers a useful frequency range of 

0.06 – 3.0 THz (2.0 – 100.0 cm-1) with a maximum dynamic range around 75 dB and a rapid 

scan mode up to 30 scans/second. Further system specifications can be found elsewhere.48 The 

THz signals were acquired from the pellets in a transmission configuration, with the pellet placed 

between the transmitter and the receiver at the focal point of the THz radiation, midway between 

two off-axis parabolic mirrors. The pellet, emitter, and receiver are located inside a closed 
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system compartment, which has been purged with dry air to eliminate undesired absorption 

bands from water vapor in the acquired THz spectra. 

The THz signals were acquired within an 18.8660 ps time-delay window with a time step 

of 0.0097 ps (1943 data-points, 0.0063 THz step in frequency domain; 100 signal averaging for 

each pellet). Three THz spectra were recorded for each pellet for a total of 27 THz spectra. 

Terahertz absorbance spectra were obtained through the base-10 logarithm of the ratio of the 

sample single-beam spectrum divided by a reference single-beam spectrum. The THz signal 

collected from a 100 % wt. HDPE pellet (400 mg) was used as the reference signal for this 

calculation. 

4.2.3 Solid-State DFT Simulation Parameters  

Solid-state DFT simulations were performed using the CRYSTAL17 software package.49-

50 The Becke−3−Lee−Yang–Parr51 (B3LYP) exchange correlation functional was used in 

conjunction with the POB-TZVP basis set for Cu52, and the Ahlrichs valence triple zeta (VTZ) 

basis set with polarization functions53 for all other atom types. Geometry optimizations were 

carried out using starting atomic positions, lattice dimensions, and space groups from previously 

published room temperature crystallographic data.54-57 The structures were allowed to fully relax 

to energetic minima within the limits of the applied space group symmetries and an energy 

convergence threshold of ΔE < 10-8 hartree. Harmonic limit vibrational analyses were performed 

on the optimized structures at the same level of theory, but with an energy convergence of ΔE < 

10-10 hartree. Numerical derivatives for frequencies were calculated using the central-difference 

formula with two displacements per Cartesian axis, per atom.58 Infrared intensities were 

calculated using the Berry phase approach.59-60 Longitudinal optical/transverse optical (LO/TO) 

phonon splitting was evaluated in the frequency analysis through charge localization via Wannier 
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functions and coupled-perturbed Hartree-Fock calculation of the high-frequency dielectric 

tensor.61-63 Calculated dielectric tensor components and LO/TO split frequencies for all three 

systems can be found in Tables A2-A5 in the Supporting Information. In all calculations, 

tolerances for the Coulomb and exchange series integrals were set to 10-10, 10-10, 10-10, 10-12, and 

10-24 hartree. The simulations used a pruned DFT integration grid comprised of 99 radial and 

1454 angular points. The appropriate number of k-points in the Monkhorst-Pack scheme64 was 

determined by monitoring total energy convergence for each solid.      

4.3 Results and Discussion 

4.3.1 Terahertz Absorption Spectra of Azurite, Malachite, and Verdigris 

The THz spectra of malachite, azurite, and verdigris are presented in Figure 4-2. While 

no significant features could be detected in the THz spectrum of malachite, two sharp and 

distinctive features are found in the spectrum of azurite at 1.83 THz and 2.23 THz (61.0 cm-1 and 

74.4 cm-1). The THz spectrum of verdigris is more complex than the other pigments and features 

a sharp peak at 1.02 THz (34.0 cm-1) with a broad (but structured) band found between 1.7 and 

2.6 THz (56.7 cm-1 and 86.7 cm-1). The conspicuous absence of absorption peaks in the 

malachite spectrum and the presence of both narrow and broad peaks in the azurite and verdigris 

data are unexpected observations that deserve greater consideration.  

It is common for the THz spectra of molecular solids to exhibit relatively broad line 

widths that can necessitate the use of cryogenic cooling to uncover hidden features.65-66 

However, narrow bands have previously been observed for various crystalline inorganic 

pigments at room temperature.5, 31, 33 In azurite, the first peak at 1.83 THz has a line width of 

only 0.025 THz (all peak shapes determined via least squares fitting to Lorentzian functions, 

shown in Supporting Information) making it as sharp as those measured in low-temperature 
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samples of organic molecular crystals. The thermal broadening of spectral peaks is linked to the 

anharmonicity of the potential energy surfaces governing the vibrational motions in the solid 

state, with those most harmonic in nature producing the narrowest line widths. Thus, the THz 

spectrum of azurite suggests the forces in this solid are largely harmonic in character.  

In contrast, the THz spectrum of verdigris shows a mixture of line widths, indicating that 

different vibrations exist in potential energy surfaces with unequal anharmonicities. The lowest 

frequency peak has a FWHM of 0.045 THz, ~80 % broader than what is found in azurite, but 

still narrower than most room-temperature THz data. A peak fitting analysis of the broad feature 

between 1.7 and 2.6 THz found that the partially resolved absorption features can be well 

modeled using three peaks with an average linewidth of 0.167 THz, nearly seven times broader 

than that seen in azurite. The origins of these significantly greater linewidths may be rooted in 

the acetate polyatomic ion components of verdigris, since they resemble the organic species in 

the molecular solids that typically show broadened THz spectra. This suggests that the organic 

components in verdigris are the main contributors to the observed peak broadening and the 

higher frequency features are the widest due to localization of the underlying vibrations within 

the organic acetate species.  

The lack of any obvious discrete absorptions in the malachite THz spectrum is surprising 

given its chemical similarity to azurite. An initial supposition is that this may be related to the 

existence of a large amount of vibrational anharmonicity, resulting in extreme peak broadening 

and consequent obscuring of the spectral pattern. While sample cooling to liquid nitrogen 

temperatures or below may help resolve some of the spectral features, emphasis here is on the 

analysis of ambient temperature THz data since that is the information that would be collected 

for in situ art objects.  The underlying chemical origins of these unique THz spectra, including 
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the lack of THz frequency features, can be explored and revealed using quantum mechanical 

simulations to model the structures and vibrational motions of these crystalline systems.  

 

Figure 4-2 Averaged experimental THz spectra of azurite, malachite, and verdigris collected 

for each sample pellet detailed in Table A1. Each trace represents the averaged data from 

triplicate measurements of each pellet. 
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4.3.2 Computational Structural and Vibrational Analysis  

Solid-state density functional theory simulated lattice parameters are listed in Table 4-1 

alongside the experimental lattice parameters. The calculated crystal structures are all in 

excellent agreement with the observed structures, yielding dimensional errors of ≤ 1.25 % in all 

cases. The internal structures of the solids, which can be compared in terms of intramolecular 

bond lengths, angles, and dihedrals, also match well with experimental data (see Appendix A 

Tables A6-A8). The only significant differences occur in the dihedral angles involving 

hydrogens due to the poor positional data available in the X-ray crystallographic structures.  The 

high-quality optimized structures of all three samples were used in the vibrational analyses of 

their solid-state motions.  

Table 4-1 Space groups, Z values, and comparison of experimental and calculated lattice 

parameters for azurite, malachite, and verdigris. 

 Azurite Malachite Verdigris 
space group P21/c P21/a C2/c 

Z 2 4 8 

 Exp.  Calcd. Exp.  Calcd. Exp.   Calcd. 
a (Å) 5.01 5.00 9.50 9.43 13.17 13.31 
b (Å) 5.85 5.86 11.97 11.95 8.56 8.66 
c (Å) 10.35 10.48 3.24 3.26 13.86 13.92 
α (°) 90 90 90 90 90 90 
β (°) 92.41 91.63 98.75 98.11 117.02 116.05 
γ (°) 90 90 90 90 90 90 

V (Å3) 303.22 306.61 364.35 363.56 1392.20 1440.99 
 

SS-DFT vibrational simulations of the crystalline pigments allowed for assignment of 

their observed THz spectra, as shown in Figure 4-3. To facilitate comparison with theory, simple 

empirical baseline corrections were applied to the experimental spectra with details provided in 
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Figure A2 of Appendix A.  The experimental and simulated spectra for malachite are not shown 

because no significant peaks occur in the experiment or in the simulation (see Appendix A for 

details). Lists of all the calculated infrared-active vibrations of the three pigments including 

mode character descriptions are provided in Table 4-2, a list of the Raman-active modes and 

animations of the IR-active modes are given in Appendix A. While TO/LO vibrational energy 

splitting magnitudes were calculated for each solid, it was found to be a negligible factor in all 

cases, with spectroscopically unresolved frequency splittings of ≤ 0.015 THz.  

  



60 
 

Table 4-2 Calculated infrared-active vibrations (sub-3.0 THz) for crystalline azurite, 

malachite, and verdigris. 

 Frequency Intensity Mode 
Symmetry 

 
Primary Mode Character (THz) (cm-1) (km/mol) 

Azurite 1.87 62.43 1.60 Au CO3
-2

 rotation about b-axis, anti-
parallel translation of Cu2+ layers 
along a-axis 

     

 2.30 76.81 5.76 Bu CO3
-2

 rotation about a-axis, anti-
parallel translation of Cu2+ layers 
along b-axis 

      
Malachite 2.47 82.39 0.42 Au CO3

-2
 rotation about b-axis, 

translation of Cu2+ & OH- along c-

axis 
     

      
Verdigris 1.09 36.52 1.49 Bu Out-of-phase translation of Cu2+ 

along the b-axis 
 1.11 36.93 0.48 Au Out-of-phase translation of Cu2+ 

along a-axis      
 1.97 65.59 0.41 Au Out-of-phase Cu2+ translation along 

the c-axis, rigid rotation of 
CH3COO- and H2O 

 
    

 2.12 70.55 6.99 Au Rigid rotation of CH3COO- 
 2.15 71.55 5.72 Bu Torsion of Cu…O−C−O dihedral  
 2.34 77.90 0.00a Au Torsion of Cu…O−C−O dihedral 
 2.35 78.23 3.52 Bu Rigid rotation of CH3COO- and 

H2O, torsion of Cu…O−C−O 
dihedral in CH3COO- ⊥ to a-c plane 

 2.51 83.75 6.09 Bu Rotation of CH3COO-, torsion of 
O…Cu…O−C dihedral 

 2.74 91.46 0.02 Au Torsion of Cu…O−C−O dihedral  
 

amode predicted to be infrared active, but of negligible intensity 
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In azurite, the two sharp peaks readily observed in the experimental spectrum at 1.83 and 

2.23 THz can be assigned to the 1.87 and 2.30 THz calculated vibrations, respectively. Although 

the absolute simulated intensities for azurite are higher than the experimentally observed, the 

relative intensities between the peaks are as expected. The small shift of the calculated modes to 

higher frequency versus experiment (2.7 % on average) is consistent with there being mostly 

harmonic curvature in the potential energy surfaces governing these vibrational motions. The 

azurite absorptions have been assigned to rotation of the CO3
-2 ions about the b- and a-axes, 

along with simultaneous translational motions of the Cu2+ ion layers along the a-axis and b-axis 

of the azurite crystal. These same types of vibrational motions can be found in malachite but are 

very weakly IR-allowed and lead to its indistinct THz absorption spectrum shown in Figure 4-2.  

Although azurite and malachite are chemically similar (contain the same ionic species) and 

belong to the same space group, the crystal packing in each solid is markedly different. This 

leads to unique sets of intra- and intermolecular interactions in each solid, resulting in two 

obviously different spectra, and highlighting the specific sensitivities of THz spectroscopy versus 

mid-IR approaches. The quantum mechanical simulations of malachite make it clear that the 

absence of spectral features is not due to anharmonicity-induced line broadening, but rather is a 

product of its crystal structure simply not yielding IR-active modes of significant strength in this 

region. 
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Figure 4-3 Experimental and simulated (black) THz data for azurite (a) and for verdigris 

(b).  The simulated spectra were convolved using Lorentzian line shapes with a FWHM of 

0.025 THz for azurite and 0.045 THz for verdigris. 

The terahertz spectrum of verdigris shown in panel (b) of Figure 4-3 has a greater 

number of absorptions due to the increased molecular complexity of the crystal components. The 

verdigris spectrum contains one sharp feature at 1.02 THz and a broad absorption with a 

maximum at 2.27 THz and shoulders at 2.05 and 2.39 THz. The predicted frequencies are in 

general agreement with these observations, having 2 nearly degenerate vibrations contributing to 

the first feature (1.09 and 1.11 THz). The less resolved absorption centered near 2.25 THz is 

more difficult to assign to specific lattice motions since five lattice vibrations (see Table 4-2) 

contribute infrared intensity in this region. The only fully resolved peak in the verdigris spectrum 
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at 1.02 THz is overestimated by 7.8 % in the simulation (average of the two underlying 

vibrations), a nearly 3 times greater shift than in azurite.  The significant difference in the 

simulated harmonic frequencies as compared to the experiment is consistent with the broader 

peak widths indicating increased vibrational anharmonicity is present in the verdigris lattice.  

The relatively narrow width of the lowest frequency feature in verdigris suggests that the 

vibrational mode is still primarily harmonic in nature, yet less so than azurite. This ranking of 

anharmonic character is supported by inspection of potential energy curves constructed by 

scanning along the normal mode eigenvectors of the lowest IR-active vibrations in each solid. 

The results in Figure 4-4 clearly show that while the real potential energy curves of azurite and 

malachite are essentially harmonic (dashed lines), the equivalent for verdigris deviates 

significantly towards anharmonicity at displacement vector magnitudes that replicate zero-point 

energy levels (displacement factor of approximately 1.75 on each curve). The unveiling of 

vibrational anharmonicity in specific modes, a consistent shifting of the harmonic simulations, 

and the broadened features at higher frequencies, collectively demonstrate that verdigris is a 

crystalline solid with a very complicated multi-dimensional potential energy surface resulting 

from inorganic-organic component interactions. Even motions involving translation of the Cu2+ 

ions, that are largely harmonic, are perturbed through coupling with anharmonic vibrations 

originating in the organic acetate species.  
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Figure 4-4 Calculated harmonic (dashed) and anharmonic (solid) potential energy curves of 

the lowest IR-active mode in azurite (1.87 THz), malachite (2.47 THz), and verdigris (1.09 

THz). 

4.4 Conclusions  

Elucidation of the lattice vibration foundations of the experimental terahertz spectral 

features for the copper-containing pigments azurite, malachite, and verdigris has been achieved 

using solid-state density functional theory. The ss-DFT characterization of these complex 

materials greatly increases our understanding of the intermolecular forces contributing to the 

observed terahertz spectra, especially in situations where distinct absorption features are missing 

despite expectations or in chemically complex materials where harmonic and anharmonic 

vibrational behaviors intersect. 
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The differences in the observed terahertz spectra of chemically related azurite and 

malachite were rationalized via quantum mechanical simulations of the structures and lattice 

vibrations. The spectrum of verdigris was assigned by ss-DFT simulations, but the overlap of 

numerous absorption features in the experimental spectrum due to the presence of considerable 

anharmonicity, precluded exact vibrational assignments. Comparison of the observed line shapes 

and calculated potential energy curves for the low-frequency lattice vibrations demonstrate that 

verdigris exhibits far greater anharmonic character than malachite or azurite.   

An appreciation for the chemical origins of terahertz spectra assists in the rigorous 

analysis of complicated spectra of pigment mixtures and encourages the use of terahertz 

spectroscopy in the characterization of colorants that are visually indistinguishable. The 

characterization of these three prominent historical pigments allows for an increased 

understanding of the intermolecular interactions within the solids that must be accounted for in 

the construction and validation of spectral databases. 
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Chapter 5. Quantitative Analysis of Minium and Vermilion Mixtures Using 

Low-Frequency Vibrational Spectroscopy  

 

The material in this chapter is published in Analytical Chemistry. (Kleist, E. M.; Korter, T. M., 
Quantitative Analysis of Minium and Vermilion Mixtures Using Low-Frequency Vibraional 
Spectroscopy. Analytical Chemistry 2020, 92, 1211-1218.) This article has been reproduced with 
permission from the American Chemical Society. Please see Appendix B for Supporting 
Information.  

Low-frequency vibrational spectroscopy offers a compelling solution for the non-destructive and 

non-invasive study of pigments in historical artifacts by revealing the characteristic sub-200 cm-1 

spectral features of component materials. The techniques of terahertz time-domain spectroscopy 

(THz-TDS) and low-frequency Raman spectroscopy (LFRS) are complementary approaches to 

accessing this spectral region and are valuable tools for artifact identification, conservation, and 

restoration. In this investigation of historical pigments, pure and mixed samples of minium (Pb3O4) 

and vermilion (HgS) were studied using a combination of THz-TDS and LFRS experiments to 

determine the limits of detection (LOD) and quantitation (LOQ) for each compound with both 

methods. The measurements were also supported using solid-state density functional theory 

simulations of the pigment structures and vibrations, enabling spectral peaks to be assigned to 

specific atomic motions in these solids. The THz-TDS LOD was found to be similar for both 

minium and vermilion at 6 % by mass on average. In comparison, LFRS was found to be more 

sensitive to both pigments, particularly to the presence of vermilion with an LFRS LOD of 0.2 %. 

These results demonstrate that low-frequency vibrational spectroscopy can be used for successful 

quantitative analysis of pigment mixtures and provide reliable new data for use in heritage science.  
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5.1 Introduction 

In heritage science, there is demand for non-invasive and non-destructive techniques for 

determination of chemically specific data regarding composition and condition of cultural and 

historical artifacts.1 Proper characterization and identification of pure and mixed colorants in these 

artifacts are crucial steps in determining provenance and designing appropriate protocols for 

conservation and restoration efforts.2-5 Various approaches for pigment identification are currently 

employed and include X-ray fluorescence spectroscopy6 and secondary-ion mass spectrometry7, 

as well as near-infrared (near-IR)8, mid-IR9, and Raman spectroscopies.10-14 However, low-

frequency vibrational spectroscopies that access ≤ 200 cm-1 (≤ 6 THz) vibrational motions in solid 

samples have attracted great attention in recent years.15-20 Terahertz time-domain spectroscopy 

(THz-TDS) and low-frequency Raman spectroscopy (LFRS) are appealing methods for in situ 

studies of artifacts because of their specificities, acquisition times, and non-destructive 

approaches.21-23 The utilization of these emerging techniques has been driven largely by 

improvements in instrumentation capabilities and costs,24-25 and advances in the quantum 

mechanical solid-state simulations used to assign and interpret the spectral data.26-27  

The use of THz-TDS and LFRS methods in heritage science is predicated on the existence 

of high-quality spectra for pure pigments. Experimental THz-TDS and Raman (though not 

specifically at low frequencies) spectral databases of artists’ materials including pigments, glues, 

and binding media have been constructed.28-29 These databases primarily focus on pure materials; 

however, pigment mixtures were commonly used to achieve desired hues in artifacts.3 Accurate 

characterization of pigment mixtures is important not only for identification of artifact 

composition, but also to provide better understanding of artists’ palettes in original works, 

monitoring degradation of pigments over time, detection of previous damage including prior 
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restoration and conservation efforts, and artifact authentication.2, 30-31 Raman and infrared 

spectroscopies have been utilized in the analyses of various pigment mixtures and binders, as 

demonstrated in recent reports.32-34 From an analytical perspective, the multiple spectral signals 

from mixtures often present a practical challenge for spectroscopic analysis as compared to neat 

samples. Low-frequency vibrational spectroscopy has the potential to aid in pigment mixture 

analyses given the already reported successes using THz-TDS and LFRS for molecular solids, 

including pharmaceuticals.35-39 Investigating pigments and their mixtures with low-frequency 

vibrational spectroscopy could also prove useful in elucidating the contrast mechanisms 

underlying the 2D and 3D images of artworks that have been collected using THz radiation.40-42 

An important aspect of pure and mixed pigment analyses is determination of the sensitivity 

of an instrument to particular analytes, which is classified in terms of the limits of detection (LOD) 

and quantitation (LOQ). The pigment composition of binary mixtures can be estimated from THz-

TDS and LFRS spectra using calibration curves specific to the experiment and based on standard 

samples of known mixture proportions.  As for all spectroscopies, determination of LOD and LOQ 

for THz-TDS and LFRS measurements is dependent on the signal-to-noise ratio of the data and 

the degree of spectral separation between individual component peaks. The LOD and LOQ can be 

dramatically different between THz-TDS and LFRS investigations of the same sample since the 

defining spectroscopic selection rules of each technique yields a unique pattern of peak positions 

and intensities.   

Computational chemistry is becoming an increasingly important part of heritage science 

given the complexity of artists’ materials and the subtle variations in composition that can be 

significant.43 The foundational THz-TDS and LFRS experimental spectra of pigments are 

invaluable to their analytical applications,44 but detailed explanations are lacking for the origins of 
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the spectral features specific to each sample. The use of advanced computational models is 

particularly necessary in low-frequency vibrational spectroscopy of solids, where tabulated 

characteristic group frequency assignments are not possible due to the complex nature of the lattice 

vibrations. These complications can be overcome with solid-state density functional theory (ss-

DFT) simulations of crystalline pigments, which are based on periodic boundary conditions.45 

These types of calculations explicitly include effects of the solid-state environment on the pigment 

structure and dynamics, and provide insight into the rotational, torsional, and other phonon modes 

that dominate the low-frequency spectral region and enable unambiguous spectral 

assignments.24, 25 Simulating THz-TDS and LFRS spectra with ss-DFT highlights the connections 

between chemical identity, crystalline structure, and the intermolecular forces that collectively 

contribute to the characteristic vibrational spectra of these materials. This approach has been 

successfully demonstrated on both organic46 and inorganic pigments.47-48  

In this work, the focus is on the ancient pigments minium (Pb3O4) and vermilion (HgS) 

because of their frequent use together in artists’ palettes and their visual similarity necessitating 

analytical evaluation for quantification.5, 9, 34, 49-51 Previous terahertz44, 52-55 and Raman56 studies 

have reported the spectra of pure minium and vermilion, while mixtures of the two have been 

studied using other techniques including mid-range Raman spectroscopy57 and first-derivative 

reflectance visible spectroscopy.58 Here, these inorganic crystalline pigments were investigated 

using a combination of THz-TDS, LFRS, and ss-DFT to fully characterize their sub-200 cm-1 

vibrations. Data from pure samples and binary mixtures of minium and vermilion enabled LOD 

and LOQ values for the pigments to be established for both THz-TDS and LFRS measurements. 

The ss-DFT spectral simulations enabled complete assignments of the observed spectral features.  
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Figure 5-1 Bulk powder samples and crystallographic unit cells of minium and vermilion. 

5.2 Materials and Methods 

5.2.1 Sample Preparation 

Minium and vermilion were purchased from Natural Pigments Inc. (Willets, CA, USA). 

Micro-fine polytetrafluoroethylene (PTFE) was obtained from Spurlock Specialty Tools 

(Vacaville, CA, USA). All were used without further purification. Binary mixtures of 

minium:vermilion with various pigment mass ratios (1:0, 2:1, 3:2, 1:1, 2:3, 1:2, and 0:1) were 

prepared and homogenized with a mortar and pestle.  

5.2.2 X-Ray Powder Diffraction 

The purity and bulk crystallinity of powdered minium and vermilion were verified by 

powder X-ray diffraction (PXRD) on a Bruker D2 Phaser with a LYKXEYE 1D silicon strip 

detector using Cu Kα radiation (λ = 1.5406 Å). Experimental PXRD patterns were compared to 

predicted patterns produced in Mercury59 using the published 290 K single-crystal X-ray 

diffraction data for minium60 and vermilion.61 These comparisons are shown in Figure B1 of 

Appendix B. 

5.2.3 Terahertz Time-Domain Spectroscopy 

Room temperature (290 K) THz-TDS spectra were obtained with a commercial TeraFlash 

spectrometer from Toptica Photonics (Munich, Germany) based on a λ = 1.5 μm femtosecond fiber 
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laser and photoconductive antennas for both THz generation and detection. The pure pigments and 

pigment mixtures were combined with a PTFE matrix (1.0 wt. % concentration of sample) and 

ground to reduce particle size and avoid scattering losses during the measurements. No corrections 

for particle size effects, density fluctuations within the pellet, or non-uniform spatial distribution 

of the pigments were used in the final data analysis.62 The samples were pressed into uniform 

pellets at 2000 psig (details are listed in Table B1 of Appendix B) and a reference pellet of pure 

PTFE was made under the same conditions. The sample chamber was purged with dry N2 gas 

during the experiments to prevent interference from atmospheric water vapor. 

THz-TDS waveforms were collected over a 70 ps time window, but the time-domain data 

for each pellet was truncated to 23 ps past the terahertz pulse center, prior to analysis, to avoid 

pulse reflections from the pellet surface. The ratio of the Fourier-transformed (Hanning window) 

data of the sample and reference produced spectra ranging from 10 to 140 cm–1 (0.30 to 4.20 THz) 

with a spectral resolution of 1.45 cm–1. The spectral extinction coefficient (ε) is reported in units 

of M-1cm-1 with concentration (M) expressed in terms of crystallographic unit cell concentration 

(formula units of Z = 4 for minium and Z = 3 for vermilion). In order to enhance the signal-to-

noise ratio for each sample, three replicate spectra were recorded for each pellet and averaged. 

5.2.4 Low-Frequency Raman Spectroscopy 

LFRS spectra of powdered pure and mixed samples were collected at 290 K using an 

Ondax (Monrovia, CA, USA) THz-Raman system. Laser excitation was centered at 784.7 nm and 

used in a backscattering geometry with fiber-coupling to an Andor Shamrock 750 spectrograph 

equipped with a cooled (200 K) iDus 416 CCD. A maximum laser power of 10 mW was 

maintained to avoid sample heating and degradation. Each individual spectrum consisted of 225 

acquisitions with 1 second collection windows. The spectral range was 10 to 400 cm-1 with an 
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effective spectral resolution of 0.7 cm-1. Five replicate LFRS spectra were recorded and averaged, 

then intensity normalized to 1000.0. 

5.2.5 Data Analysis of Mixture Spectra 

Mean scattering or absorption values and their standard deviations were calculated from 

replicate measurements of each sample. The 2nd  derivative method for baseline detection63 was 

used to baseline correct the THz-TDS spectra while no baseline corrections were applied to the 

LFRS spectra. THz-TDS and LFRS calibration curves, used to determine LOD and LOQ values, 

were constructed for both pigments using the relative peak areas for both minium and vermilion 

in the sample spectra and the weight percentages of each pigment. Relative peak areas were 

determined by fitting Lorentzian profiles to the THz-TDS data after baseline correction, and Voigt 

profiles to the LFRS data prior to intensity normalization. The LOD and LOQ values for both THz-

TDS and LFRS were determined using previously described methodologies.34, 39, 64-67 

5.2.6 Computational Details 

All ss-DFT simulations were performed with the CRYSTAL17 software package, which 

utilizes periodic boundary conditions to represent the crystalline lattice.68-69 The PBE70 (Perdew-

Burke-Ernzerhof) and PBE071 density functionals were used with the POB-TZVP basis set72 for 

non-metal atoms (oxygen and sulfur) in both minium and vermilion, and effective core potential 

basis sets were used for lead73-74 and mercury75 atoms. Simulations for minium accounted for the 

coexisting divalent Pb (II) and tetravalent Pb (IV) atoms in the crystal lattice. Full geometry 

optimizations with an energy convergence of ΔE < 10-8 hartree were carried out using initial atomic 

positions, lattice dimensions, and space groups from the published room-temperature 

crystallographic data.60-61 Harmonic vibrational analyses were performed on the optimized 

structures at the same level of theory, but with an energy convergence of ΔE < 10-10 hartree. 
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Numerical derivatives for frequencies were calculated using the central-difference formula with 

two displacements per Cartesian axis, per atom.45 Infrared intensities for generation of THz-TDS 

spectra were calculated using the CPHF analytical approach.76-78 The infrared intensities (km/mol) 

were converted to extinction coefficients (M-1cm-1) for direct comparison to the experimental THz-

TDS data. It was found that the simulations consistently overestimated the peak intensities and 

consequently the simulated THz-TDS intensities in this work have been scaled down by a factor 

of three for minium and five for vermilion to match observations. Simulated LFRS data utilized 

Raman tensors calculated with a coupled-perturbed Hartree-Fock/ Kohn-Sham approach and 

included effects from experimental conditions including temperature and incoming laser 

frequency.78-79 The Raman scattering intensities have been normalized to 1000.0 based on the most 

intense feature in the entire calculated spectrum (found at 128.61 cm-1 for minium and 262.05 cm-1 

for vermilion). Longitudinal optical-transverse optical (LO-TO) phonon splitting was evaluated in 

the frequency analyses through charge localization via Wannier functions and coupled-perturbed 

Hartree-Fock/ Kohn-Sham calculation of the high-frequency dielectric tensor.80-82 Calculated 

dielectric tensor components and LO-TO split frequencies can be found in Appendix B. The 

overlap-based truncation tolerances for the Coulomb and exchange series integrals were set to 10-

12, 10-12, 10-12, 10-15, and 10-30 hartree. The simulations used a pruned DFT integration grid 

comprised of 99 radial and 1454 angular points. The appropriate number of k-points in the 

Monkhorst-Pack scheme, or the shrinking factor,83 was determined for each structure by 

monitoring total energy convergence for each solid as a function of k-point count.      
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5.3 Results and Discussion 

5.3.1 Terahertz-Time Domain Spectroscopy 

 

 

Figure 5-2 THz-TDS spectra of pure minium (top panel) and vermilion (bottom panel). Peaks 

used in subsequent mixture analyses are denoted with asterisks. 

The THz-TDS spectra (not baseline corrected) of pure minium and vermilion are shown in 

Figure 5-2, and a list of the experimental peaks are in Figure B4 of Appendix B. A cluster of 

THz-TDS absorption features for minium is found between 50 to 90 cm-1, while the three distinct 

peaks corresponding to vermilion are found between 30 to 45 cm-1 and near 90 cm-1. These spectra 
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are consistent with those reported previously.54-55 While sample cooling with liquid nitrogen (for 

example) can help resolve spectral features in molecular solids,19 emphasis here is on the analysis 

of ambient temperature data to mimic in situ pigment data collection. Figure 5-3 shows stacked 

spectral plots (baseline corrected) of the specific peaks of interest in the THz-TDS spectra of the 

mixture samples used in the LOD and LOQ analyses, and the corresponding calibration curves for 

each pigment. These standard calibration curves relate the pigment content of a sample to the 

absorption peak areas. The 37.3 cm-1 feature for vermilion could be well fit with a single 

Lorentzian profile, and the group of peaks found in the THz-TDS spectra of minium (54.7, 62.0, 

71.3 cm-1) were fit with a linear combination of three separate Lorentzian profiles. Calibration 

curves were obtained from linear least squares fits of the relative peak areas in the sample spectra 

plotted versus the weight percentages of each pigment. Further fit details are provided in Appendix 

B. From the slopes of the calibration curves in Figure 5-3 and the standard deviations associated 

with the lowest concentration samples, the THz-TDS LOD for minium was determined to be 5.58 

± 0.43 % and for vermilion 6.61 ± 0.28 %. The THz-TDS LOQ for minium and vermilion are 

16.91 ± 0.97 % and 20.04 ± 0.83 %, respectively. 
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d  

Figure 5-3 THz-TDS data (top panel) for the specific spectral range used in calibration curve 

(bottom panels) creation and determination of LOD and LOQ values for minium:vermilion 

mixtures. Spectra are vertically offset for clarity. 
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5.3.2 Low-Frequency Raman Spectroscopy 

 

 

Figure 5-4 Intensity normalized LFRS spectra of minium (top panel) and vermilion (bottom 

panel). Peaks used in subsequent mixture analyses are denoted with asterisks. 

  Considering now the LFRS spectra shown in Figure 5-4, one strong peak centered at 

41.7 cm-1 dominates the spectrum for vermilion below 200 cm-1, but other minor features are 

present between 60 and 150 cm-1. The LFRS spectrum of minium below 100 cm-1 shows five well-

resolved peaks with the two strongest centered at 53.4 and 63.2 cm-1. These results are consistent 

with the limited Raman data available in this range.51, 57 It is important to note that vermilion is an 
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approximately ~50 % stronger Raman scatterer than minium; this difference is more apparent in 

the unnormalized data of Figure B11 of Appendix B.  

For simplicity reasons and to facilitate comparison with THz-TDS, the LOD and LOQ for 

each pigment was calculated using the most intense sub-100 cm-1 band in the least concentrated 

sample mixture.66 In vermilion, the most intense peak at 41.7 cm-1 was used for determination of 

LOD and LOQ values, as was the most intense isolated peak for minium (63.2 cm-1). The relevant 

spectral regions for the mixture samples are shown in Figure 5-5. The same peak area fitting 

approach was used here as for the THz-TDS data for determination of the LFRS LOD and LOQ 

values. A difference found in the LFRS data analysis was that a Voigt profile was required to 

achieve high-quality peak fits due to both intrinsic (Lorentzian) and instrument (Gaussian) 

contributions to the line shapes, as reported by others.84  

From measurements of the band areas for the two-component mixtures, the LFRS LOD of 

minium was found to be 2.52 ± 0.33 % and that for vermilion, 0.21 ± 0.01 %. The LOQ for minium 

was determined to be 8.41± 1.10 % and vermilion yielded 0.69 ± 0.03 %. As already noted, minium 

is a significantly weaker Raman scatterer than vermilion and the LOD and LOQ of it using LFRS 

are much higher (less sensitive) than they are for vermilion. This is an important aspect to consider 

when analyzing unknown mixtures, as one could assume no presence of minium, when in fact the 

concentration could just simply be below the detection limit, yet still a nontrivial amount (~ 2 %).  
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d  

Figure 5-5 LFRS data (top panel) for the specific spectral range used in calibration curve 

(bottom panels) creation and determination of LOD and LOQ values for minium:vermilion 

mixtures. Spectra are vertically offset for clarity. 
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5.3.3 Solid-State Density Functional Theory Analysis  

Structural and vibrational ss-DFT simulations supported the experimental line shape 

analyses by providing additional confidence in the peak assignments. At the very least, ss-DFT 

low-frequency vibrational simulations are able to confirm the number and relative intensities of 

features within a particular spectral region which is important for LOD and LOQ evaluation. 

Adding to their value is that the current work is the first reported ss-DFT analysis and 

characterization of the crystal structures and low-frequency vibrational motions of minium and 

vermilion.  

In order to obtain high-quality simulated vibrational spectra, accurate lattice and 

molecular structures must first be produced through full structural optimizations. Comparisons of 

the experimental and ss-DFT simulated lattice parameters are listed in Table 5-1. The need for a 

hybrid density functional (PBE0) versus a generalized gradient approximation functional (PBE) 

to accurately model these complex heavy metal systems is clearly demonstrated by the overall 

dimensional errors for both pigments which decreased from ≤ 4.0 % with PBE to ≤ 0.2 % with 

PBE0. The superior performance of the hybrid may be attributed to its inclusion of greater HF 

character (25 %), as this may be especially important to include with inorganic pigments.85 

Simulated and experimental internal structure details of each solid are listed in Appendix B. 
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Table 5-1 Comparison of experimental and calculated lattice parameters for minium and 

vermilion using the PBE and PBE0 density functionals. 

 Minium Vermilion 

 Exp.a  PBE PBE0 Exp.b  PBE PBE0 

a (Å) 8.80 8.845 8.787 4.17 4.198 4.175 

b (Å) 8.80 8.845 8.787 4.17 4.198 4.175 

c (Å) 6.62 6.778 6.622 9.61 9.684 9.597 

α (°) 90 90 90 90 90 90 

β (°) 90 90 90 90 90 90 

γ (°) 90 90 90 90 90 90 

V (Å3) 512.12 530.303 511.296 144.71 147.774 144.884 

a ref. 60 

b ref. 61 
      

While improvement in the simulated solid-state lattices suggests improved vibrational 

spectra would result, both the PBE and PBE0 methods were still tested for their abilities to produce 

accurate solid-state vibrations and spectral intensities. The PBE0 predicted modes and intensities 

for THz-TDS and LFRS are shown in Figures 5-6 and 5-7, respectively, while the PBE results can 

be found in Appendix B. The removal of phonon degeneracy by LO-TO frequency splitting, which 

occurs as a result of long-range dipole-dipole coupling in crystals, was included in the simulations. 

Accounting for LO-TO split peaks was not nearly as important in reproducing the THz-TDS 

spectra as it was for the LFRS spectra. In both THz-TDS simulations for minium and vermilion, 

the LO component peaks accounted for less than 5 % of the observed spectral intensities, but in 

the LFRS simulation of vermilion, they accounted for nearly 40 % of the observed peak intensities. 

The LO split peak intensities for minium were negligible in the Raman simulations and therefore 

not reported here.  
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Figure 5-6 Experimental THz-TDS spectra of minium (top panel) and vermilion (bottom 

panel), compared to calculated ss-DFT frequencies (cm-1) and intensities (km/mol). Both TO 

and LO (in parentheses) modes are listed where appropriate. Simulated spectra (blue) were 

convolved using empirically determined Lorentzian line shapes with a FWHM of 2.2 cm-1 

for minium and 1.9 cm-1 for vermilion. 
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  The mode characters of the observed spectral features in the sub-200 cm-1 regions all 

involve simultaneous translations of the metal and non-metal atoms within the crystal lattices of 

minium and vermilion. PBE0-generated eigenvector plots86 for all Raman- and IR-active low-

frequency modes (sub-200 cm- 1) are shown in Appendix B. In short, the THz-TDS peaks at 54.7 

and 62.0 cm-1 for minium are predominantly due to translations of the O and Pb atoms along the 

crystallographic b-axis. The feature at 71.3 cm-1 originates from a similar translational motion, but 

along the c-axis.  In the THz-TDS spectrum of vermilion, the 37.3 cm-1 peak originates from 

translations of Hg and S atoms with nearly equal displacement magnitudes along all three 

crystallographic axes. In the LFRS spectrum of minium, the feature at 63.2 cm-1 is attributed to 

translation of the O and Pb atoms primarily along the c-axis. The high intensity peak at 41.7 cm-1 

in the LFRS spectrum of vermilion is due to translations of all atoms within the ab-plane.  
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 72.11 0.41 B1g 

71.2 72.91 19.64 A1g 

 88.06 14.62 B2g 

 89.24 8.74 Eg 

 121.67 10.80 Eg 

 128.61 1000.00 A1g 

 132.15 20.53 B2g 

 158.79 63.40 Eg 

 169.84 8.50 B1g 

     

 

    
    

Exp. Frequency Intensity Symmetry 

41.7 45.86 548.63 A1 

 
46.52 

(46.92) 
20.81 

(20.41) 
E 

84.5 
90.61 

(93.62) 
18.91 

(20.06) 
E 

101.9 
111.27 

(153.53) 
204.55 

(325.76) 
E 

 (144.50) 0.00 A2 

 
   

Figure 5-7 Experimental LFRS spectra of minium (top panel) and vermilion (bottom panel), 

compared to calculated ss-DFT frequencies (cm-1) and normalized scattering intensities (arb. 

units). Both TO and LO (in parentheses) modes are listed where appropriate. Simulated 

spectra (blue) were convolved using empirically determined Voigt profiles (80 % Gaussian / 

20 % Lorentzian) with a FWHM of 1.9 cm-1 for minium and 2.1 cm-1 for vermilion. 
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5.4 Conclusions 

The low-frequency vibrational spectroscopy methods of THz-TDS and LFRS both provide 

clear spectral fingerprints for minium and vermilion that can be readily used in the quantitative 

analysis of these pigments in objects and materials of artistic and cultural significance. These 

distinct and characteristic LFRS and THz-TDS spectra were completely assigned with rigorous ss-

DFT simulations of the crystalline pigments, revealing the importance of translational motion in 

understanding the nature of the sub-200 cm-1 vibrations. This work offers the first evaluation and 

comparison of the analytical capabilities of THz-TDS and LFRS for historical pigment mixture 

characterization and shows that they provide results that are complementary to each other and at a 

level that is competitive with more common high-frequency vibrational spectroscopy.57  

While both low-frequency techniques were successful in quantifying binary pigment 

mixtures, LFRS was determined to be the preferred method with LOD and LOQ values half those 

found for THz-TDS of minium and nearly thirty times lower than that for the THz-TDS analysis 

of vermilion. The THz-TDS derived LOD and LOQ were nearly equal between the two pigments 

studied here, but the LFRS LOD and LOQ varied considerably, with those for vermilion being 

about ten times lower than the values for minium. While LFRS is the superior technique for 

quantifying the composition of specifically minium:vermilion mixtures, this will not necessarily 

be the case for all mixtures since the THz-TDS absorption profiles of different pigments may 

produce advantageous LOD and LOQ figures. This is especially true in the investigation of 

pigments that fluoresce strongly when illuminated by the visible or near-IR lasers commonly used 

in Raman spectroscopy.56, 87 Overall, these findings highlight the application of low-frequency 

vibrational spectroscopies in the study of visually similar pigments, and it is anticipated that the 

methodology presented here can be extended to a variety of other historic pigments. 
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Chapter 6. Evaluating Vibrational Mode Character in the Terahertz Spectra 

of Solid-State Organic Pigments 

The material in this chapter is a completed manuscript currently undergoing revisions. Please see 
Appendix C for Supporting Information.  

 

Organic pigments have a variety of uses ranging from industrial colorants to a place in artists’ 

palettes. Terahertz time-domain spectroscopy is a promising tool for the identification and 

characterization of modern organic pigments because of its chemical-specificity and 

nondestructive natures. Solid-state density functional theory can reliably predict the sub-3.0 THz 

vibrations and the intermolecular and intramolecular forces that dominate them. Here, 

characterization of the low-frequency vibrations of two red pigments commonly used in industrial 

and artistic settings, Pigment Red 3 and Pigment Red 254, is performed using a combination of 

terahertz time-domain spectroscopy and solid-state density functional theory to gain insight into 

the origins of the observed spectral features.  
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6.1 Introduction  

Advances in organic synthesis from the late 19th century through the 20th century, enabled 

the production of modern organic pigments. Widespread use of these novel pigments extended 

from artists’ palettes1 to industrual applications as colorants in plastics, printing inks, textiles, and 

paints.2-3 Their versatility stems from the availability of structural modifications to adjust fastness 

and coloristic properties.2 The tunable nature of these properties means that characteristics such as 

resistance to degradation from light, weather, heat, and chemicals or color variations including 

hue, saturation, lightness, and intensity can be adjusted with slight changes to the molecular 

structure.2, 4-5 Additional benefits of synthetic organic pigments include decreased toxicity, 

increased availability, durability, and vibrancy;23, 41, 43-44 all of which contributed to their 

replacement of historical pigments in modern artists’ palettes.   

The inclusion of organic pigments in modern artists’ palettes necessitates efforts to 

investigate these pigments with analytical techniques. In heritage science, identification and 

characterization of artists’ materials is a vital aspect in designing effective conservation and 

restoration protocols, monitoring degradation, and detecting forgeries.1, 6-13 Current techniques 

include powder X-ray diffraction (PXRD), mid- and near-infrared (IR) spectroscopy, Raman 

spectroscopy, and X-ray fluorescence spectroscopy (XRF).14, 15-16 Data collection methods for 

PXRD are difficult in situ17 and the analysis of diffraction data has been shown to produce 

incorrect crystal structures in structurally-similar quinacridone pigments.18 Mid- and near- IR 

spectroscopy can only detect certain functional groups, limiting the ability to distinguish 

chemically similar pigments.19-20 Raman studies require diligence to prevent damage from higher 

photon energies, and Raman spectra of organic species can have significant interference from 

fluorescence.21 Similar to IR spectroscopies, XRF studies lack chemical specificity and the 
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sensitivity to detect light elements.22-24 Limitations of these methods predicate the need for 

additional techniques that can overcome these challenges.25 

Terahertz time-domain spectroscopy (THz-TDS), which accesses vibrations in the ≤ 3.0 

THz region, is a nondestructive technique capable of penetrating opaque materials and providing 

chemically specific data with relatively quick acquisition times.26-28  THz methods have proved 

useful for analysis of complex crystalline materials in the pharmaceutical industry,29-30 polymorph 

identification,31-34 and heritage science.9-11, 35-40 Prior pigment studies focused on the  THz-TDS 

spectra of historic pigments,41-43 but recent efforts now include modern organic pigments.35 In 

crystalline solids, low-frequency vibrations involve simultaneous intramolecular and 

intermolecular movement of the unit cell components, which are uniquely dependent on 3D 

packing arrangements and molecular identities, rendering interpretation of the features in THz-

TDS spectra difficult. This challenge can be reduced with quantum mechanical solid-state 

simulations.44-46 Solid-state density functional theory (ss-DFT) utilizes periodic boundary 

conditions to accurately model crystalline environments and their low-frequency motions.47 The 

combination of THz-TDS and ss-DFT has uncovered the origins of THz-TDS spectral features in 

complex systems such as clathrates,48 metal-organic frameworks,49 polymorphic materials,33, 46  

disordered crystals,32 and pigments.50-53 

In this study, focus is on two modern red pigments, pigment red 3 (PR3) and pigment red 

254 (PR254), because of their extensive use in industrial settings and modern artists palettes. PR3, 

also known as Toluidine Red, is a versatile and low-cost azo pigment used in printing inks, paints, 

and plastics.4-5, 54 The structures of azo pigments are comprised of a β-naphthol system, in addition 

to the azo functional group.3 Although PR3 is referred to as an azo pigment, a significant number 

of studies indicates the predominant resonance structure of these pigments is the hydrazone form 
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(=N–NH–) rather than the azo form (–N=N–).4-5, 55-62 PR254, also known as Ferrari Red, is a 

diketopyrrolopyrrole (DPP) pigment.16, 63-64 DPP pigments, known for their high-performance and 

lightfastness, are used in automobile and industrial paint applications,54, 65 and as functional dyes 

in optoelectronics.66 The structures of these pigments include a 1,4-diketopyrrolo(3,4c)pyrrole 

system which is comprised of two carbonamide-containing five-membered rings.3, 65   

 Here, THz-TDS spectra and solid-state simulations of the crystal structures and sub-3.0 

THz modes of PR3 [C17H13N3O3, CAS#:2425-85-6] and PR254 [C18H10Cl2N2O2, CAS#:84632-

65-5] are presented. The structures of these modern pigments are shown in Figures 6-1 and 6-2. 

Prior studies have demonstrated the potential of solid-state computational analyses in revealing 

the effects of crystal packing forces and internal molecular motions on the low-frequency features 

in THz-TDS spectra of polycyclic aromatic hydrocarbons,67 as well as the ability of THz-TDS to 

distinguish between chemically similar species.51    
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Figure 6-1 Resonance structures of Pigment Red 3: hydrazone form (top) and azo form 

(bottom). 

 

 

 

Figure 6-2 Structure of Pigment Red 254.  
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6.2 Methods 

6.2.1 Experimental Details 

PR3 (sold under Studio Red) and PR254 (sold under Red DPP BO) were purchased from 

Kremer Pigments Inc. (Munich, Germany) and used without further purification. Pigment purity 

and bulk crystallinity was determined by powder X-ray diffraction (PXRD) at 290 K on a Bruker 

D2 Phaser with a LYKXEYE 1D silicon strip detector using Cu Kα radiation (λ=1.5406 Å). 

Powder patterns for the pigments were compared to calculated powder patterns (shown in 

Appendix C) produced in Mercury CSD 3.10.25168 using the single-crystal X-ray diffraction 

data for PR3 and PR25469.  

Mixed samples of the pigments and HDPE were then pressed into uniform pellets with a 

13 mm diameter and thicknesses varying from 3.53 to 3.88 mm. No corrections for particle size 

effects were applied.70, All THz spectra were measured with pellets made with a 20 % w/w 

concentration of pigment. Spectra were collected with a TPS Spectra 3000 time-domain 

spectroscopy system from TeraView (Cambridge, UK) at room temperature (293 K). The system 

relies on GaAs laser-gated photoconductive antennas (PC-antennas) for terahertz generation and 

detection, with an 80 fs Ti:Sa ultrashort pulsed laser operating at 800 nm with a repetition rate of 

76 MHz used as a probe/pump beam. The THz-TDS system offers a useful frequency range of 

0.06 – 3.0 THz (2.0 – 100.0 cm-1) with a maximum dynamic range around 75 dB and a rapid 

scan mode up to 30 scans/second.71 The THz signals were acquired from the pellets in a 

transmission configuration, with the pellet placed between the transmitter and the receiver at the 

focal point of the THz radiation, midway between two off-axis parabolic mirrors. The pellet, 

emitter, and receiver are located inside a closed system compartment, which has been purged 
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with dry air to eliminate undesired absorption bands from water vapor in the acquired THz 

spectra. 

The THz signals were acquired within an 18.8660 ps time-delay window with a time step 

of 0.0097 ps (1943 data-points, 0.0063 THz step in frequency domain; 100 signal averaging for 

each pellet). Three THz spectra were recorded for each pellet for a total of 27 THz spectra. 

Terahertz absorbance spectra were obtained through the base-10 logarithm of the ratio of the 

sample single-beam spectrum divided by a reference single-beam spectrum. The THz signal 

collected from a 100 % wt. HDPE pellet (400 mg) was used as the reference signal for this 

calculation.  

6.2.2 Computational Details 

All ss-DFT simulations were performed using the CRYSTAL17 software package.72-73 

Structural optimizations used atomic positions, lattice dimensions, and space groups from the 

solved crystal structure for PR3 and previously published-ray data for PR254.69 The structures 

were allowed to fully relax to energetic minima within the limits of the applied space group 

symmetries and an energy convergence threshold of ΔE < 10-9 hartree. Simulations were 

performed with the generalized gradient approximation (GGA) Perdew−Burke−Ernzerhof 

(PBE)74-75 exchange-correlation functional was used in conjunction the Ahlrichs valence triple 

zeta (VTZ) basis set with polarization functions.76-80 All calculations were augmented with 

Grimme’s London dispersion correction (D3) with the Becke-Johnson damping function and 

included a three-body repulsion term to better account for intermolecular dispersion forces.81-83  

Vibrational analyses were carried out on the optimized structures at the same level of 

theory with an energy convergence of ΔE < 10-10 hartree. Numerical derivatives for frequencies 

were calculated using the central-difference formula with one displacement per Cartesian axis, 
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per atom.84 Normal mode eigenvalues and eigenvectors were calculated within the harmonic 

approximation and infrared intensities were obtained using the Berry phase approach.85-86 All IR-

active modes and intensities for PR3 and PR254 are listed in Appendix C. Coulomb and 

exchange series integral tolerances were set to 10-14, 10-14, 10-14, 10-22, and 10-44 hartree and used 

a pruned DFT integration grid comprised of 99 radial and 1454 angular points for all 

calculations. The appropriate number of k-points in the Monkhorst-Pack scheme87 was 

determined by monitoring total energy convergence for each solid. 

6.3 Results and Discussion 

6.3.1 Terahertz Absorption Spectra of PR3 and PR254  

The experimental baseline-corrected THz-TDS spectra of PR3 and PR254 are shown in 

Figure 6-3. The spectrum for PR3 contains multiple well-defined peaks located from 0.5 to 3.0 

THz.  In contrast PR254 is a significantly weaker absorber of THz radiation and only has three 

apparent absorption features centered at 0.86, 1.88, and 2.05 THz. Frequently, cryogenic cooling 

is employed in the analysis of molecular solids to uncover hidden features lost to the thermal 

broadening of spectral peaks, 88-89  but here room temperature studies are emphasized to better 

replicate the in situ analysis of artifacts. In the spectrum of PR3, the average FWHM value is 

0.05 THz, while the average FWHM for PR254 is 0.09 THz. The spectral features observed in 

the room temperature THz-TDS spectra can be further explained using ss-DFT to model the 

structures and vibrations of these two pigments.  
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Figure 6-3 Averaged experimental THz-TDS spectra of PR3 (top panel) and PR254 (bottom 

panel) for each sample pellet. Each spectrum represents the averaged data for triplicate 

measurements of three pellets. 
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6.3.2 Computational Structural Analysis  

The crystallographic unit cells for both PR3 and PR254 are shown in Figure 6-4. Both 

pigments crystallize in the monoclinic group as space group p21/c and p21/n for PR3 and PR254, 

respectively. As previously mentioned, characteristic structural features of organic pigments 

include: chromophores, planarity, van der Waals contacts, and functional groups that enable in 

hydrogen bonding, insoluble salts or metal complexes. Both PR3 and PR254 are planar 

chromophoric systems with functional groups that enable hydrogen bonding. All of these 

features lend to the stabilization via π-π stacking and contribute color and fastness properties. 

  

Figure 6-4 Experimental crystallographic unit cells of PR3 (left) and PR254 (right). 

The calculated ss-DFT crystallographic unit cell dimensions for both PR3 and PR254 are 

listed in Table 6-1. The choice to use the PBE functional and VTZP basis set was based on the 

demonstrated success of this combination in quinacridone pigments51 which have structural 

similarities to PR3 and PR254. Simulations of the crystal structure for PR3 (hydrazone form) 

yielded results with ≤ 1 % dimensional error.  In order to address the confusion concerning the 

structures of the azo pigments, structural simulations were carried out on the azo and hydrazone 

forms of PR3. An energy comparison of the energetically-converged structures confirmed the 
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hydrazone structure is lower in energy by 76.17 kJ/mol. Although the azo-form relaxed to an 

energetically favorable minimum, the large energy difference between the forms suggests that 

was a coincidence. It is interesting to note that the azo structure relaxed to an energetically 

favorable minimum. The error between the experimental and calculated lattice parameters for 

PR254 was considerably larger, with an average error of 1.5 %. This larger error in PR254 may 

be due to limits of the applied theory in modeling the chlorine atoms or hydrogen bonds. The 

simulated crystal structures, for PR3 and PR254, were used in the following vibrational analysis. 

Table 6-1 Comparison of the experimental and calculated crystallographic unit cell 

dimensions for PR3 and PR254. 

 

 

 

 

 

 

 

6.3.3 Computational Vibrational Analysis of PR3 and PR254  

Harmonic vibrational calculations with ss-DFT enabled assigned of the observed features 

from 0.5 – 3.0 THz for PR3 and PR254. Empirical baseline corrections (details are listed in 

Appendix C) were applied to the experimental spectra to simplify comparison with theory. 

Calculated THz infrared-active vibrations and corresponding mode descriptions are listed in 

Tables 6-2 and 6-3. Complete lists of all infrared-active modes, intensities, and mode 

symmetries are provided in Appendix C. As seen in Figure 6-5, simulations with PBE/basis set 

 PR3 PR254 

 Exp. Calc. Error (%) Exp. Calc. Error (%) 
a (Å) 6.82 6.85 0.41 5.66 5.62 -0.76 
b (Å) 12.86 12.88 0.13 23.10 23.64 2.32 
c (Å) 16.19 16.17 -0.14 5.59 5.45 -2.44 
α (°) 90 90  90 90 0.00 
β (°) 102.13 102.12 -0.01 99.07 97.89 -1.19 
γ (°) 90 90  90 90 0.00 

V (Å3) 1389.51 1395.11 0.40 720.80 716.30 -0.62 
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produced reasonable simulations that correlated with both the intensities and positions of the 

experimental peaks.  

 In PR3, the multiple features THz spectrum were well-reproduced by computational 

vibrational analysis. The experimental peaks from 0.79 – 2.15 were assigned to motions that are 

intermolecular in nature involving translations and rotations of the aromatic groups coupled with 

intramolecular motions. In contrast, the four modes predicted to contribute to observed 

absorption at 2.57 THz are largely dominated by intramolecular motion localized in the nitro and 

methyl groups. The mode characters for the three predominant features in PR254 were all found 

to be intermolecular in nature. The features at 0.86 THz and 1.88 THz are due to out-of-plane 

wagging of the phenyl groups that mostly differ in the phase of the vibration. The peak at 2.05 

THz is attributed to in-plane phenyl rocking of the PR254 molecules.  

Although intermolecular vibrations, such as translational and other lattice motions, are 

typically found in the assignment of terahertz spectra, these results highlight the importance of 

internal molecular motions. This appears to be a large factor in the case of conformationally 

flexible molecules, such as PR3 and PR254, where intermolecular and localized functional group 

motions can be the main origination of THz features.  Despite the similar motions of the 

predicted vibrations, the measured THz spectra are easily distinguishable between the two 

pigments.  
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Figure 6-5 Comparison of experimental THz-TDS spectra of PR3 (top panel) and PR254 (bottom 
panel) with simulated spectra (black). Simulated spectra were convolved with Lorentzian line 
shapes with FWHM values of 1.5 cm-1 for PR3 and 3.23 cm-1 for PR254. 
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Table 6-2 List of experimental and calculated infrared-active modes (THz), infrared 

intensities (km/mol), mode symmetries, and mode character descriptions for PR3 from 0.5 

to 3.0 THz 

Exp. Frequency Intensity Symmetry Mode Character 
0.79 0.74 1.48 Bu  Out-of-phase translation along b-axis 

0.99 
0.96 0.00a Au 

Out-of-phase translation along b-axis coupled 
with methyl rotation 

1.03 4.64 Au In-plane rotation about the –N=N– 
1.22 1.25 0.59 Au Out-of-phase wagging 

1.37 
1.46 6.75 Bu Rotation about the a-axis 

1.48 0.02 Au 
Out-of-phase rocking of naphthol and phenyl 

groups 
1.67 1.71 6.62 Bu In-phase rocking of naphthol group in cb-plane 
1.71 1.86 2.38 Au Out-of-phase translation along c-axis 
1.87 2.02 10.37 Bu Wagging of phenyl and naphthol groups 

2.15 
2.21 5.41 Au Rotation along a-axis 

2.36 1.70 Bu 
Rotation of phenyl and naphthol groups 

coupled with methyl rotation 

2.57 

2.57 0.21 Au Rotation of nitro group 
2.68 42.54 Bu Wagging of nitro and O along a-axis 
2.77 1.92 Bu Out-of-phase rotation of the nitro group 
2.86 7.25 Au Rotation of nitro and methyl groups 

amode predicted to be infrared active, but of negligible intensity 
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Table 6-3 List of experimental and calculated infrared-active modes (THz), infrared 

intensities (km/mol), mode symmetries, and mode character descriptions for PR254 from 0.5 

to 3.0 THz 

Exp. Frequency Intensity Symmetry Mode Character 

0.86 
0.87 0.57 Au Out-of-phase wagging of phenyl groups 
0.97 0.00a Au Out-of-phase wagging of phenyl groups 
1.03 0.07 Bu Out-of-phase wagging along b-axis 

1.88 
1.87 3.69 Au Wagging of phenyl group and Cl  
1.94 0.29 Bu Rocking of Cl 

2.05 
2.03 0.68 Bu Rotation of phenyl groups 
2.91 0.04 Au Wagging of phenyl groups 

amode predicted to be infrared active, but of negligible intensity 
 

6.4 Conclusions 

THz-TDS and ss-DFT were used to identify and characterize the unique low-frequency 

vibrational modes of the modern red pigments, PR3 and PR254. In both pigments, these low-

frequency modes are primarily due to wagging, twisting, and rocking motions. Although the 

origins of the spectral features are similar, the THz-TDS spectra are significantly different and 

can be used to distinguish these two visually similar pigments. These results support increased 

use of THz-TDS in the field of heritage science and other fields that require nondestructive, 

chemically specific techniques.  
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Chapter 7. Nondestructive Characterization of Plastic Purses from the Late 

19th Century to Modernity: A Collaboration with the Syracuse University 

Libraries’ Plastics and Historical Artifacts Special Collections Research 

Center 

 

This work is the product of a collaboration between Courtney Asztalos, the Plastics and 

Historical Artifacts Curator at the Syracuse University Library Special Collections Research 

Center and members of the chemistry department: Dr. Mary Boyden, Prof. Tim Korter, and 

graduate student, Elyse Kleist. The goal of this collaboration focused on demonstrating the utility 

of a portable Raman spectroscopic system as a practical nondestructive method for the 

unambiguous characterization of plastic artifacts. The identification of the polymer components 

of these artifacts is essential in the development of conservation strategies for these pieces. Here, 

the reliability of this Raman spectroscopic method is established via the characterization of a 

selection of plastic artifacts from the Plastics Collection.  
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7.1 Introduction 

The inclusion of plastic objects in museum collections reflects the growing role of 

plastics in modern society. The component polymers of these plastic objects range from naturally 

occurring materials, such as shellac, horn, and ivory, to newer synthetic polymers like 

polyethylene, polyethylene terephthalate, polystyrene, and polypropylene.1 Although plastic has 

been believed to possess long-term physical and chemical durability, curation of these objects 

has revealed predispositions to deterioration resulting in color changes, physical deformations, 

increased fragility, as well as the release of volatile organic compounds (VOCs).2-3 The release 

of VOCs accelerates deterioration and can induce degradation of nearby objects.4-5 Additional 

accelerants include ultra-violet light, high humidity, and environmental pollutants. Increased 

awareness to the unstable-nature of these polymeric-materials has spawned large-scale research 

projects focused on developing new tools, techniques, and conservation practices specifically 

aimed towards the nuances of in situ characterization of plastic artifacts.6-9 

Proper identification and characterization allow for the development of preservation 

methods, the design of proper storage, and determination of restoration treatments.10-11 Current 

identification techniques include a variety of analytical methods such as Raman4 and infrared 

spectroscopies,12-15 gas chromatography/mass spectrometry,3, 12, 16-18 elemental analysis,19 and 

volatile organic compound analysis.5 Although these methods yield useful data, the 

instrumentation can be expensive, sampling can be destructive, and operation can be time-

consuming or require a specific level of expertise. Ideal identification methods are widely 

accessible, fast, noninvasive, and nondestructive.20-22 Portable analytical instruments boast 

benefits such as small footprints, ease of data collection, and cheaper prices.22 These advantages 

have contributed to the implementation of portable spectroscopic instruments within museum 
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labs.  The efficacy of these portable spectroscopic techniques is limited by the availability of 

comprehensive, high-quality reference spectral libraries that are used in identification. The use of 

these spectral libraries with commercialized bench top instrumentals allows for the development 

of procedures that can be readily and consistently followed by all researchers and professionals. 

This work uses the characterization of a selection of plastic artifacts to highlight the capabilities 

of a portable Raman system in providing fast and reliable identification of polymer components. 

Characterization with this system required construction of a comprehensive spectral library from 

which unknown materials could be identified.  

7.2 Materials and Methods 

7.2.1 i-Raman Plus Portable Raman System  

Spectra were measured with a B&W TEK (Newark, DE) i-Raman Plus Portable Raman 

System (laser wavelength of 785 nm) equipped with a fiber optic probe, sample stage, and a 

CCD array detector. Spectra were averaged over 225 acquisitions with a 1-second exposure time 

at room temperature (298 K) with a spectral range from 65 – 3400 cm-1 and a spectral resolution 

of 3.5 cm–1. Laser power was varied to avoid damaging polymer samples and artifacts. This 

spectrometer system includes two software packages, BWSpec and BWID. BWSpec was used 

for instrument control, spectral acquisition, and peak analysis with spectral smoothing, and 

baseline corrections.  BWID was used for the identification of unknown materials through 

comparison of collected spectra to user-built spectral libraries.  

7.2.2 Spectral Reference Library and Plastic Artifacts  

A reference library of over 200 Raman spectra for unique polymer and polymer blends 

was built from sample kits obtained from Chroma Color Corporation (Dayton, OH); Scientific 

Polymer Products, Inc. (Ontario, NY); and The Plastics Group of America (Woonsocket, RI).  
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Five sample artifacts were selected from the Plastics Collection at the Syracuse University 

Library Special Collections Research Center. The objects, which include plastic purses and 

pieces, chosen for characterization are shown in Figure 7-1. This collection consists of over 

2000 artifacts including objects such as toys and industrial building materials to iconic jewelry 

and fashion pieces. This collection was first established by the Plastics Pioneers’ Plastics History 

and Artifacts Committee and the Greenwald-Haupt Charitable Foundation. Items in the 

collection have also been contributed by the National Plastics Center and Museum.  

 

Figure 7-1 Plastic objects selected from the Plastics Collection for characterization — a. 

clamshell purse (20003.206); b. clear purse (2003.208); c. handbag covers (2010_2005.147); 

d. colored bamboo-like handles (2010_055.16) ; e. brown purse (2010_055.114).  
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7.3 Results and Discussion 

7.3.1 Spectral Reference Library 

The final Raman spectral reference library was composed of over 200 reference polymer 

samples. A selection of spectra for seven common polymers is shown in Figure 7-2, including 

cellulose acetate (CA); high-density polyethylene (HDPE); polyvinyl chloride (PVC); Nylon- 

6,6; poly(methyl methacrylate) (PMMA); acrylonitrile butadiene styrene (ABS); styrene 

acrylonitrile resin (SAN), and polystyrene (PS). The differences between the spectral patterns 

shown in Figure 7-2 are exploited by the BWID software for determination of unknown polymer 

compositions in each artifact. 

 

 

Figure 7-2 Selection of Raman spectra collected with the i-Raman Plus Portable Raman 

system for seven reference polymers cellulose acetate (CA); high-density polyethylene 

(HDPE); polyvinyl chloride (PVC); Nylon- 6,6; poly(methyl methacrylate) (PMMA); 

acrylonitrile butadiene styrene (ABS); styrene acrylonitrile resin (SAN), and polystyrene 

(PS). 
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In this work, the spectral range of primary interest is between 500 and 2000 cm-1 where peaks 

correspond to intramolecular motions that can be defined using characteristic group frequencies. 

These characteristic frequencies enable assignment of the vibrational origins of observed spectral 

features. For example, Figure 7-3 shows the reference spectra and structures for PMMA, PS, and 

CA, and descriptions of the characteristic functional group motions that observed spectral 

features correspond to.   

 

Figure 7-3 Raman spectra and chemical structures of PMMA, PS, and CA. Characteristic 

molecular vibrations and the associated spectral ranges are labeled. 

7.3.2 Composition of Plastic Purses 

Prior to this work, there had been minimal detail concerning the composition of these 

pieces but mentions of prior component identifications will be included where applicable. The 

polymeric composition of the clear, decorative clamshell purse (2003.206) in Figure 7-4 had 

previously been labeled as PMMA. Looking at Figure 7-4, the spectrum of PMMA shows 
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significant activity from 500 – 1000 cm-1 which originate from deformations of the ester group in 

its chemical structure. The collected spectrum for 2003.206 shows a noticeable lack of activity in 

from 500 – 1000 cm-1. Instead, there is a strong peak centered at 1000 cm-1 that is characteristic 

of a motion commonly observed in aromatic rings. The structure for PMMA (shown in Figure 7-

3) contains no aromatic rings, but PS does.  Upon comparison to the reference spectra for PS and 

PMMA, it became clear that the 2003.206 had been previously misidentified as PMMA but is 

actually PS.  

 

 

Figure 7-4 Spectral comparison of 2003.206 in comparison to PMMA and PS. Prior to this 

work, 2003.206 was previously characterized as PMMA.  
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The purse (2003.208) in Figure 7-5, has four parts that were independently characterized: 

the lid, the base, the handle, and the feet. The lid, base, and handle were all determined to be 

PMMA by identification of the signature activity from 500 – 1000 cm-1 arising from deformation 

of the ester functional group. The feet had a drastically different spectral fingerprint, with 

significant activity from 500 and 2000 cm-1. This complicated spectrum shows features with 

origins from deformations of an ester groups, stretches of C-C and C-O groups, and ring 

motions. From these characteristic features, the feet were determined to be CA (structure shown 

in Figure 7-3).  

 

Figure 7-5 Spectral comparison of the four component parts of 2003.208 with PMMA and 

CA. The base, handle, and lid were determined to be PA and the feet to be cellulose acetate. 

Figure 7-6 shows the measured spectrum for the purse covers (2010_2005.147). As seen 

in previously in Figure 7-4, the measured spectrum for 2010_2005.147 is dominated by the peak 

around 1000 cm-1  that corresponds to motion of an aromatic ring, as seen in the spectrum for PS. 

Prior to this work, 2010_2005.147 had been identified as PS and now was spectroscopically 

confirmed to be PS.  
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Figure 7-6 Purse covers (2010_2005.147) previously identified as PS were spectroscopically 

confirmed to be PS.  
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The four plastic bamboo-like handles (2010_055.16) shown in Figure 7-1 were 

previously identified as PS. Spectral measurements shown in Figure 7-7 found that the spectra 

for the orange and clear handles were devoid of the characteristic peak for PS around 1000 cm-1. 

Rather, the collected spectra had many spectral features, similar to those observed in Figure 7-5, 

revealing the primary polymer component as CA.  

 

Figure 7.5 Four colored purse handles (2010_055.16) that were previously identified as PS. 

The spectra for the black and tan handles were inconclusive, but the orange and clear 

handles were found to be cellulose acetate. 

Although the orange and clear handles could be readily identified, spectra for the black 

and tan handles were inconclusive with no discernable activity (only broad structureless 

fluorescence was observed). In addition to the lack of spectral features for two of the handles, the 
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brown purse (2010_055.114) shown in Figure 7-1, also lacked any structured features. These 

pieces fluoresced because they absorbed the 785 nm radiation rather than scattering it.  

7.4 Conclusion 

The analysis of five plastic artifacts from the Plastics Collection at the Syracuse 

University Library Special Collections Research Center successfully demonstrated the ability to 

reliably characterize plastic artifacts with the i-Raman Plus Portable Raman System. These 

results not only proved that this method is useful in confirming composition identity, but also in 

revealing composition identities that were unknown or erroneously labeled. One significant 

limitation that was noted in the examination of the purse handles and brown purse, was sample 

fluorescence, but that may be mitigated by the use of a different Raman instrument at a different 

excitation wavelength. The information from this work will be useful in implementing this 

procedure for large-scale applications for artifact characterization and for designing proper 

protocols for the preservation of these artifacts. 
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Appendix A: Supporting Information for Chapter 4 

Figure A1. Powder X-ray diffraction data (green) of verdigris sample compared to the predicted powder 
pattern (black) based on the neutral Cu(CH3COO-)2˙H2O single-crystal structural data. 
 

Figure A2. Experimental and simulated (black) THz data for malachite. 
 

Figure A3. Azurite unit cell and labeled asymmetric unit. 
 

Figure A4. Malachite unit cell and labeled asymmetric unit. 
 

Figure A5. Unit cell, asymmetric unit, and a labeled asymmetric unit of verdigris. 
 

Figure A6. Baseline corrections for experimental spectra of azurite and verdigris performed using Origin 
2018b. 
 

Figure A7. Peak fitting analysis with a Lorentzian line shape for the lowest frequency terahertz 
absorption of crystalline azurite using Origin 2018b. 
 

Figure A8. Peak fitting analyses with Lorentzian line shapes of the lowest frequency feature (top panel) 
and broad feature (bottom panel) for verdigris using Origin 2018b. 
 

Table A1. Pellet thickness in millimeters for tablets A-C for azurite, malachite, and verdigris. Each pellet 
weighed approximately 400 mgs. 
 

Table A2. Cartesian components of dielectric tensor used for calculating LO/TO splitting were simulated 
with solid-state DFT for azurite, malachite, and verdigris.  
 

Table A3. Solid-state DFT simulated frequencies (including LO/TO splitting) for azurite. 
 

Table A4. Solid-state DFT simulated Raman-active vibrational frequencies for azurite. 
 

Table A5. Solid-state DFT simulated frequencies (including LO/TO splitting) for malachite. 
 

Table A6. Solid-state DFT simulated Raman-active vibrational frequencies for malachite. 
 

Table A7. Solid-state DFT simulated frequencies (including LO/TO splitting) for verdigris. 
 

Table A8. Solid-state DFT simulated Raman-active vibrational frequencies for verdigris. 
 

Table A9. Experimental and solid-state DFT calculated bonds lengths, angles, and torsions for azurite 
asymmetric unit. 
 

Table A10. Experimental and solid-state DFT calculated bonds lengths, angles, and torsions for 
malachite asymmetric unit. 
 

Table A11. Experimental and solid-state DFT calculated bonds lengths, angles, and torsions for verdigris 
with all atoms (top) and only heavy atoms (bottom). Disorder of the methyl rotors in the crystal structure 
dominates the high RMSD value observed. 
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Table A1. Pellet thickness in millimeters for tablets A-C for azurite, malachite, and verdigris. 
Each pellet weighed approximately 400 mgs. 

 

 

 

 

 

 

 

 

 

 

Table A2. Cartesian components of dielectric tensor used for calculating LO/TO splitting were 
simulated with solid-state DFT for azurite, malachite, and verdigris.  

 XX YY ZZ ��� 0 00 �� 00 0 ��� Azurite 2.803286 2.724973 3.072791 
Malachite 3.387876 3.201275 2.396752 
Verdigris 2.209984 2.232644 2.233784 

 Pellet thickness (mm) 
Azurite  

A 3.34 
B 3.44 
C 2.72 

Malachite  
A 3.28 
B 3.36 
C 3.24 

Verdigris  
A 3.50 
B 3.52 
C 3.51 
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Figure A2. Experimental and simulated (black) THz data for malachite. 
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Table A3. Solid-state DFT simulated frequencies (including LO/TO splitting) for azurite. 

Longitudinal Optical Modes Transverse Optical Modes 

 Frequency Mode 
Symmetry 

Intensity  Frequency Mode 
Symmetry 

Intensity 

 cm-1 THz (km/mol)  cm-1 THz (km/mol) 

1 62.44 1.87 Au 1.6 1 62.86 1.88 Au 0.5 

2 76.81 2.30 Bu 5.8 2 116.77 3.50 Au 0 

3 116.77 3.50 Au 0.0 3 132.22 3.96 Au 1.6 

4 131.32 3.94 Au 9.9 4 152.96 4.59 Au 9.7 

5 139.03 4.17 Bu 51.1 5 159.96 4.80 Au 11.8 

6 146.88 4.40 Bu 21.0 6 199.64 5.99 Au 24.9 

7 147.82 4.43 Au 53.8 7 258.29 7.74 Au 3.7 

8 157.59 4.72 Au 10.7 8 272.29 8.16 Au 6.4 

9 176.41 5.29 Bu 46.8 9 327.01 9.80 Au 129.7 

10 194.17 5.82 Au 49.5 10 364.73 10.93 Au 0.1 

11 201.43 6.04 Bu 88.9 11 433.44 12.99 Au 12.7 

12 256.23 7.68 Bu 58.8 12 473.49 14.19 Au 58.4 

13 257.50 7.72 Au 12.1 13 485.15 14.54 Au 5.5 

14 271.04 8.13 Au 19.4 14 542.51 16.26 Au 467.5 

15 273.67 8.20 Bu 24.7 15 746.31 22.37 Au 13.8 

16 310.48 9.31 Au 225.4 16 776.17 23.27 Au 11.9 

17 313.28 9.39 Bu 310.2 17 834.86 25.03 Au 216.6 

18 349.93 10.49 Bu 363.3 18 921.70 27.63 Au 46.6 

19 364.72 10.93 Au 0.1 19 1080.52 32.39 Au 822.2 

20 417.77 12.52 Bu 266.6 20 1119.15 33.55 Au 7.4 

21 431.96 12.95 Au 34.7 21 1470.54 44.09 Au 669.2 

22 463.81 13.90 Bu 446.6 22 1510.20 45.27 Au 1869.2 

23 466.83 14.00 Au 169.7 23 3631.78 108.88 Au 2.2 

24 481.45 14.43 Bu 181.8      
25 484.71 14.53 Au 8.9      
26 515.38 15.45 Bu 22.1      
27 515.74 15.46 Au 432.6      
28 745.65 22.35 Au 18.9      
29 756.33 22.67 Bu 58.0      
30 775.60 23.25 Au 17.9      
31 776.11 23.27 Bu 42.1      
32 826.10 24.77 Au 264.4      
33 835.17 25.04 Bu 99.8      
34 915.62 27.45 Bu 939.3      
35 920.01 27.58 Au 57.1      
36 1056.22 31.66 Au 883.1      
37 1058.37 31.73 Bu 166.3      
38 1117.42 33.50 Bu 26.7      
39 1119.01 33.55 Au 3.2      
40 1434.16 43.00 Bu 4294.2      
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41 1443.68 43.28 Au 1722.4      
42 1489.37 44.65 Au 394.2      
43 1503.97 45.09 Bu 6397.2      
44 3626.60 108.72 Bu 2423.6      
45 3631.76 108.88 Au 2.1      
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Table A4. Solid-state DFT simulated Raman-active vibrational frequencies for azurite. 

 Frequency Mode 
Symmetry   cm-1 THz 

1 92.32 2.77 Ag 

2 119.16 3.57 Bg 

3 135.60 4.07 Ag 
4 149.54 4.48 Bg 
5 157.69 4.73 Ag 
6 162.95 4.89 Bg 
7 181.62 5.44 Ag 
8 192.43 5.77 Bg 
9 213.65 6.41 Ag 
10 233.05 6.99 Bg 
11 253.01 7.59 Bg 
12 273.17 8.19 Ag 
13 279.79 8.39 Ag 
14 300.36 9.00 Ag 
15 302.66 9.07 Bg 
16 340.64 10.21 Bg 
17 381.23 11.43 Bg 
18 397.18 11.91 Ag 
19 411.93 12.35 Bg 
20 418.92 12.56 Ag 
21 421.31 12.63 Ag 
22 428.05 12.83 Bg 
23 555.31 16.65 Bg 
24 555.35 16.65 Ag 
25 745.28 22.34 Ag 
26 751.30 22.52 Bg 
27 769.82 23.08 Ag 
28 773.30 23.18 Bg 
29 827.38 24.80 Ag 
30 836.87 25.09 Bg 
31 922.29 27.65 Bg 
32 924.90 27.73 Ag 
33 1046.36 31.37 Ag 
34 1049.61 31.47 Bg 
35 1116.38 33.47 Bg 
36 1121.23 33.61 Ag 
37 1456.69 43.67 Bg 
38 1469.20 44.05 Ag 
39 1486.59 44.57 Ag 
40 1624.58 48.70 Bg 
41 3629.38 108.81 Ag 
42 3634.36 108.96 Bg 
43 1503.97 45.09 Bu 
44 3626.60 108.72 Bu 
45 3631.76 108.88 Au 
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Table A5. Solid-state DFT simulated frequencies (including LO/TO splitting) for malachite. 
Longitudinal Optical Modes Transverse Optical Modes 

 Frequency Mode 
Symmetry 

Intensity  Frequency Mode 
Symmetry 

Intensity 

 cm-1 THz (km/mol)  cm-1 THz (km/mol) 
1 82.39 2.47 Au 0.4 1 82.44 2.47 Au 0.1 
2 102.42 3.07 Au 3.5 2 102.76 3.08 Au 0.7 
3 123.73 3.71 Bu 9.5 3 126.34 3.79 Au 1.2 
4 125.86 3.77 Au 6.4 4 143.12 4.29 Au 2.2 
5 142.33 4.27 Au 12.2 5 179.72 5.39 Au 1 
6 145.34 4.36 Bu 10.0 6 196.49 5.89 Au 32.4 
7 150.81 4.52 Bu 278.8 7 221.94 6.65 Au 28.6 
8 164.64 4.94 Bu 41.9 8 232.10 6.96 Au 23.6 
9 179.18 5.37 Au 20.2 9 244.07 7.32 Au 3.9 
10 184.57 5.53 Bu 100.3 10 283.10 8.49 Au 5.6 
11 187.56 5.62 Au 167.8 11 290.51 8.71 Au 0.3 
12 216.28 6.48 Bu 75.1 12 375.88 11.27 Au 451.7 
13 216.51 6.49 Au 87.1 13 351.77 10.55 Au 39.4 
14 229.69 6.89 Au 24.6 14 443.97 13.31 Au 122.2 
15 243.65 7.30 Au 5.6 15 501.35 15.03 Au 99.5 
16 245.19 7.35 Bu 42.1 16 541.62 16.24 Au 4.5 
17 262.57 7.87 Bu 5.3 17 594.31 17.82 Au 264.6 
18 278.07 8.34 Bu 113.9 18 721.00 21.62 Au 39.3 
19 282.21 8.46 Au 23.7 19 754.91 22.63 Au 5.4 
20 290.47 8.71 Au 1.0 20 822.90 24.67 Au 12.8 
21 290.87 8.72 Bu 306.5 21 834.57 25.02 Au 6 
22 305.37 9.15 Bu 836.4 22 868.37 26.03 Au 0.6 
23 328.36 9.84 Bu 108.1 23 931.55 27.93 Au 303 
24 332.10 9.96 Au 712.4 24 1089.12 32.65 Au 337.1 
25 355.73 10.66 Au 74.4 25 1145.10 34.33 Au 278 
26 438.55 13.15 Au 95.2 26 1469.18 44.05 Au 817 
27 449.68 13.48 Bu 45.9 27 1578.88 47.33 Au 5124.8 
28 497.13 14.90 Au 92.9 28 3554.81 106.57 Au 561.9 
29 511.22 15.33 Bu 102.1 29 3675.03 110.17 Au 4275.4 
30 526.31 15.78 Bu 484.0      
31 541.42 16.23 Au 5.3      
32 571.41 17.13 Bu 189.9      
33 584.59 17.53 Au 258.6      
34 719.74 21.58 Au 44.9      
35 719.99 21.58 Bu 16.2      
36 751.41 22.53 Bu 238.7      
37 754.75 22.63 Au 6.2      
38 822.50 24.66 Au 18.9      
39 827.60 24.81 Bu 41.2      
40 829.40 24.86 Bu 934.7      
41 834.39 25.01 Au 8.4      
42 868.35 26.03 Au 1.1      
43 869.37 26.06 Bu 643.6      
44 923.07 27.67 Au 430.1      
45 927.68 27.81 Bu 1970.7      
46 1080.62 32.40 Au 524.5      
47 1089.68 32.67 Bu 595.2      
48 1135.80 34.05 Bu 691.8      
49 1139.62 34.16 Au 294.3      
50 1401.51 42.02 Bu 3815.3      
51 1444.96 43.32 Au 2703.9      
52 1522.12 45.63 Au 2672.2      
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53 1564.73 46.91 Bu 1525.4      
54 3545.08 106.28 Bu 3232.3      
55 3550.66 106.45 Au 815.8      
56 3651.29 109.46 Au 3731.5      
57 3672.05 110.09 Bu 99.5      
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Table A6. Solid-state DFT simulated Raman-active vibrational frequencies for malachite. 
  Frequency Mode 

Symmetry 

  

  cm-1 THz   

1 49.80 1.49 Ag   

2 80.47 2.41 Bg   

3 80.62 2.42 Ag   

4 99.17 2.97 Bg   

5 113.66 3.41 Ag   

6 129.62 3.89 Ag   

7 130.76 3.92 Bg   

8 132.33 3.97 Ag   

9 146.15 4.38 Bg   

10 155.83 4.67 Ag   

11 156.50 4.69 Bg   

12 170.48 5.11 Ag   

13 174.65 5.24 Bg   

14 189.91 5.69 Bg   

15 206.50 6.19 Ag   

16 212.41 6.37 Bg   

17 229.37 6.88 Bg   

18 246.00 7.37 Ag   

19 248.20 7.44 Ag   

20 249.76 7.49 Bg   

21 279.00 8.36 Ag   

22 279.65 8.38 Bg   

23 287.39 8.62 Bg   

24 288.84 8.66 Ag   

25 301.25 9.03 Ag   

26 310.60 9.31 Bg   

27 349.76 10.49 Bg   

28 358.47 10.75 Ag   

29 440.59 13.21 Bg   

30 450.73 13.51 Ag   

31 506.47 15.18 Bg   

32 520.41 15.60 Ag   

33 538.45 16.14 Ag   

34 544.96 16.34 Bg   

35 567.03 17.00 Ag   

36 603.90 18.10 Bg   

37 722.02 21.65 Ag   

38 724.18 21.71 Bg   

39 753.12 22.58 Ag   

40 758.06 22.73 Bg   

41 802.89 24.07 Ag   

42 806.50 24.18 Bg   

43 831.09 24.92 Bg   

44 832.35 24.95 Ag   

45 879.89 26.38 Ag   

46 880.21 26.39 Bg   
47 1087.82 32.61 Ag   
48 1091.93 32.74 Bg   
49 1127.76 33.81 Ag   
50 1138.60 34.13 Bg   
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51 1148.14 34.42 Ag   
52 1148.34 34.43 Bg   
53 1389.25 41.65 Ag   
54 1489.20 44.65 Bg   
55 1537.67 46.10 Ag   
56 1560.98 46.80 Bg   
57 3539.91 106.12 Ag   
58 3545.97 106.31 Bg   
59 3625.93 108.70 Ag   
60 3627.85 108.76 Bg   
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Table A7. Solid-state DFT simulated frequencies (including LO/TO splitting) for verdigris. 
Longitudinal Optical Modes Transverse Optical Modes 

 Frequency Mode 
Symmetry 

Intensity  Frequency Mode 
Symmetry 

Intensity 

 cm-1 THz (km/mol)  cm-1 THz (km/mol) 
1 36.52 1.09 Bu 1.5 1 37.08 1.11 Au 0.2 
2 36.93 1.11 Au 0.5 2 65.65 1.97 Au 0.1 
3 65.59 1.97 Au 0.4 3 71.71 2.15 Au 3.9 
4 70.55 2.12 Au 7.0 4 77.90 2.34 Au 0.0 
5 71.55 2.15 Bu 5.7 5 91.47 2.74 Au 0.0 
6 77.90 2.34 Au 0.0 6 118.74 3.56 Au 0.4 
7 78.23 2.35 Bu 3.5 7 133.84 4.01 Au 8.1 
8 83.75 2.51 Bu 6.1 8 143.21 4.29 Au 0.3 
9 91.46 2.74 Au 0.0 9 176.13 5.28 Au 0.1 
10 104.22 3.12 Bu 2.5 10 188.70 5.66 Au 0.1 
11 118.66 3.56 Au 0.9 11 199.57 5.98 Au 1.5 
12 127.54 3.82 Bu 2.5 12 226.46 6.79 Au 0.3 
13 132.57 3.97 Au 14.2 13 240.32 7.20 Au 10.8 
14 143.16 4.29 Au 0.5 14 255.26 7.65 Au 4.0 
15 144.77 4.34 Bu 4.2 15 272.72 8.18 Au 17.3 
16 167.66 5.03 Bu 13.7 16 283.22 8.49 Au 16.7 
17 176.12 5.28 Au 0.2 17 305.40 9.16 Au 71.6 
18 186.07 5.58 Bu 31.8 18 336.85 10.10 Au 11.3 
19 188.68 5.66 Au 0.2 19 380.35 11.40 Au 152.6 
20 194.25 5.82 Bu 61.8 20 529.55 15.88 Au 8.8 
21 199.41 5.98 Au 2.9 21 570.24 17.10 Au 5.1 
22 226.42 6.79 Au 0.8 22 622.05 18.65 Au 313.2 
23 226.79 6.80 Bu 10.0 23 643.24 19.28 Au 189.2 
24 239.25 7.17 Au 24.7 24 646.42 19.38 Au 46.9 
25 245.73 7.37 Bu 29.6 25 689.93 20.68 Au 51.3 
26 252.91 7.58 Bu 35.7 26 695.82 20.86 Au 146.1 
27 254.88 7.64 Au 9.2 27 747.83 22.42 Au 55.4 
28 271.08 8.13 Au 45.1 28 789.73 23.68 Au 713.0 
29 272.70 8.18 Bu 49.4 29 952.84 28.57 Au 0.4 
30 276.29 8.28 Bu 253.9 30 957.27 28.70 Au 0.1 
31 281.93 8.45 Au 30.9 31 1048.57 31.44 Au 14.8 
32 300.93 9.02 Au 100.9 32 1055.59 31.65 Au 56.6 
33 304.29 9.12 Bu 4.8 33 1075.35 32.24 Au 61.6 
34 319.47 9.58 Bu 352.3 34 1083.23 32.47 Au 0.7 
35 336.21 10.08 Au 16.6 35 1400.51 41.99 Au 47.5 
36 371.11 11.13 Bu 96.0 36 1404.62 42.11 Au 13.7 
37 373.27 11.19 Au 187.0 37 1439.09 43.14 Au 11.7 
38 525.90 15.77 Bu 1.0 38 1456.29 43.66 Au 252.6 
39 529.20 15.87 Au 15.8 39 1480.29 44.38 Au 22.2 
40 566.56 16.99 Bu 5.6 40 1489.87 44.67 Au 182.9 
41 570.02 17.09 Au 12.8 41 1499.01 44.94 Au 386.5 
42 604.88 18.13 Bu 71.3 42 1503.08 45.06 Au 183.5 
43 609.85 18.28 Au 653.0 43 1533.91 45.99 Au 132.3 
44 636.56 19.08 Bu 51.9 44 1663.21 49.86 Au 2146.4 
45 638.96 19.16 Au 134.6 45 1714.69 51.41 Au 6.8 
46 644.79 19.33 Bu 29.4 46 3058.09 91.68 Au 6.8 
47 646.01 19.37 Au 5.7 47 3060.11 91.74 Au 4.2 
48 657.45 19.71 Bu 110.0 48 3116.45 93.43 Au 1.5 
49 688.02 20.63 Au 115.6 49 3124.48 93.67 Au 3.3 
50 691.47 20.73 Bu 80.4 50 3162.23 94.80 Au 2.2 
51 693.36 20.79 Au 68.1 51 3177.13 95.25 Au 3.8 
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52 705.19 21.14 Bu 817.4 52 3518.81 105.49 Au 590.6 
53 739.74 22.18 Bu 70.4 53 3656.24 109.61 Au 1932.8 
54 746.39 22.38 Au 82.6      
55 777.04 23.30 Au 545.7      
56 952.78 28.56 Bu 6.4      
57 952.84 28.57 Au 0.3      
58 957.00 28.69 Bu 0.1      
59 957.26 28.70 Au 0.1      
60 1048.31 31.43 Au 19.7      
61 1048.87 31.44 Bu 3.2      
62 1054.14 31.60 Bu 56.8      
63 1054.75 31.62 Au 56.1      
64 1074.50 32.21 Au 55.5      
65 1077.24 32.30 Bu 24.0      
66 1083.22 32.47 Au 0.5      
67 1083.87 32.49 Bu 84.1      
68 1391.92 41.73 Bu 20.8      
69 1399.14 41.95 Bu 43.1      
70 1399.82 41.97 Au 79.2      
71 1404.46 42.10 Au 15.8      
72 1438.89 43.14 Au 28.5      
73 1445.30 43.33 Bu 1171.4      
74 1451.16 43.50 Bu 926.7      
75 1452.64 43.55 Au 440.5      
76 1477.28 44.29 Bu 138.5      
77 1479.00 44.34 Bu 108.5      
78 1479.84 44.36 Au 77.6      
79 1486.52 44.56 Au 441.5      
80 1486.56 44.57 Bu 197.1      
81 1495.23 44.83 Au 246.3      
82 1499.76 44.96 Bu 62.5      
83 1502.25 45.04 Au 29.6      
84 1532.72 45.95 Au 101.4      
85 1540.24 46.18 Bu 60.5      
86 1625.02 48.72 Bu 4504.2      
87 1644.71 49.31 Au 1752.6      
88 1691.81 50.72 Bu 182.5      
89 1714.65 51.40 Au 3.2      
90 3057.70 91.67 Bu 30.4      
91 3058.06 91.68 Au 6.9      
92 3060.09 91.74 Au 4.1      
93 3060.22 91.74 Bu 9.2      
94 3116.38 93.43 Bu 0.4      
95 3116.44 93.43 Au 1.5      
96 3123.46 93.64 Bu 68.1      
97 3124.46 93.67 Au 3.4      
98 3161.83 94.79 Bu 12.5      
99 3162.22 94.80 Au 2.2      

100 3177.07 95.25 Bu 8.9      
101 3177.11 95.25 Au 3.9      
102 3516.05 105.41 Au 645.5      
103 3519.45 105.51 Bu 3892.7      
104 3648.21 109.37 Au 1802.4      
105 3650.46 109.44 Bu 2068.6      
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Table A8. Solid-state DFT simulated Raman-active vibrational frequencies for verdigris. 
  Frequency Mode 

Symmetry 

   

  cm-1 THz    

1 51.80 1.55 Bg    
2 53.70 1.61 Bg    
3 57.11 1.71 Ag    
4 59.65 1.79 Ag    
5 81.26 2.44 Bg    
6 83.04 2.49 Ag    
7 99.77 2.99 Ag    
8 101.51 3.04 Bg    
9 103.97 3.12 Ag    
10 109.24 3.27 Bg    
11 124.16 3.72 Bg    
12 124.27 3.73 Ag    
13 126.88 3.80 Bg    
14 134.98 4.05 Ag    
15 142.72 4.28 Bg    
16 144.28 4.33 Ag    
17 147.28 4.42 Bg    
18 147.52 4.42 Ag    
19 179.01 5.37 Bg    
20 181.70 5.45 Ag    
21 181.88 5.45 Bg    
22 190.39 5.71 Ag    
23 190.43 5.71 Bg    
24 203.56 6.10 Ag    
25 218.26 6.54 Bg    
26 220.21 6.60 Ag    
27 233.10 6.99 Ag    
28 233.13 6.99 Bg    
29 244.26 7.32 Ag    
30 244.33 7.33 Bg    
31 257.97 7.73 Ag    
32 259.80 7.79 Bg    
33 266.11 7.98 Ag    
34 269.52 8.08 Bg    
35 277.34 8.31 Bg    
36 277.55 8.32 Ag    
37 306.69 9.19 Ag    
38 310.41 9.31 Bg    
39 322.85 9.68 Bg    
40 325.04 9.74 Ag    
41 541.95 16.25 Bg    
42 547.51 16.41 Ag    
43 569.07 17.06 Bg    
44 569.29 17.07 Ag    
45 595.64 17.86 Bg    
46 610.15 18.29 Ag    
47 626.09 18.77 Bg    
48 627.55 18.81 Ag    
49 651.43 19.53 Bg    
50 651.44 19.53 Ag    
51 669.10 20.06 Bg    
52 684.52 20.52 Ag    
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53 698.78 20.95 Bg    
54 708.71 21.25 Ag    
55 722.55 21.66 Bg    
56 771.31 23.12 Bg    
57 773.47 23.19 Ag    
58 782.10 23.45 Ag    
59 948.83 28.45 Bg    
60 949.35 28.46 Ag    
61 963.50 28.89 Ag    
62 963.52 28.89 Bg    
63 1048.74 31.44 Ag    
64 1050.81 31.50 Bg    
65 1058.30 31.73 Bg    
66 1058.76 31.74 Ag    
67 1072.72 32.16 Ag    
68 1076.52 32.27 Bg    
69 1083.89 32.49 Bg    
70 1085.28 32.54 Ag    
71 1394.57 41.81 Bg    
72 1400.83 42.00 Ag    
73 1403.97 42.09 Bg    
74 1406.55 42.17 Ag    
75 1439.91 43.17 Ag    
76 1442.31 43.24 Bg    
77 1445.51 43.34 Ag    
78 1458.70 43.73 Bg    
79 1473.51 44.17 Bg    
80 1479.98 44.37 Bg    
81 1480.11 44.37 Ag    
82 1485.90 44.55 Bg    
83 1486.73 44.57 Ag    
84 1488.23 44.62 Ag    
85 1504.35 45.10 Bg    
86 1504.87 45.11 Ag    
87 1552.09 46.53 Bg    
88 1553.39 46.57 Ag    
89 1558.21 46.71 Ag    
90 1559.33 46.75 Bg    
91 1698.18 50.91 Bg    
92 1720.61 51.58 Ag    
93 3057.57 91.66 Bg    
94 3057.61 91.66 Ag    
95 3059.91 91.73 Bg    
96 3060.41 91.75 Ag    
97 3116.37 93.43 Ag    
98 3116.50 93.43 Bg    
99 3122.79 93.62 Bg    

100 3123.93 93.65 Ag    
101 3161.50 94.78 Bg    
102 3161.78 94.79 Ag    
103 3177.14 95.25 Bg    
104 3177.32 95.25 Ag    
105 3516.96 105.44 Ag    
106 3533.06 105.92 Bg    
107 3643.72 109.24 Ag    
108 3650.28 109.43 Bg    
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Table A9. Experimental and solid-state DFT calculated bonds lengths, angles, and torsions for 
azurite asymmetric unit.  

    Length (Å) Angle (°) Torsion Angle (°) 
Atom1 Atom2 Atom3 Atom4 Exp. Calcd. Exp. Calcd. Exp. Calcd. 

Cu2 O2 C O4 2.758 2.79 74.21 73.87 -7.72 -8.2 
Cu2 O4 C O3 1.940 1.950 112.89 113.86 -167.84 -167.94 
O2 C Cu2 O1 1.280 1.288 78.72 79.16 -62.12 -63.01 
O3 C Cu2 O2 1.287 1.284 160.14 160.08 -158.15 -159.44 
O4 C Cu2 O2 1.277 1.277 41.34 40.80 169.79 169.01 
O1 Cu2 O4 C 1.967 1.968 96.69 96.92 -73.59 -75.53 
H O1 Cu2 O4 0.973 0.976 113.05 113.59 66.97 68.75 

Cu1 O2 C Cu2 1.939 1.935 120.29 121.01 -151.38 -150.07 
          
    RMSD 0.012 RMSD 0.55 RMSD 1.22 
 
 
 
          

 

Figure A3. Azurite unit cell and labeled asymmetric unit. 
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Table A10. Experimental and solid-state DFT calculated bonds lengths, angles, and torsions for 
malachite asymmetric unit.  

    Length (Å) Angle (°) Torsion Angle (°) 
Atom1 Atom2 Atom3 Atom4 Exp. Calcd. Exp. Calcd. Exp. Calcd. 

Cu2 O2 Cu1 O5 2.110 2.124 94.74 91.73 8.73 5.35 
Cu1 O5 Cu2 O4 1.911 1.922 106.41 105.42 103.67 103.20 
O2 Cu1 O5 H2 2.053 2.581 79.43 79.99 -131.35 -140.02 
O3 C O2 Cu1 1.266 1.265 119.66 119.78 -34.32 -80.42 
O4 Cu2 O2 C 2.372 1.928 92.09 95.76 46.22 55.04 
O1 C O2 Cu2 1.287 1.291 118.87 118.84 19.42 21.70 
H1 O4 Cu2 O2 0.975 0.978 99.32 115.06 -158.24 -168.78 
H2 O5 Cu1 O2 0.969 0.972 123.65 123.24 -131.35 -140.02 
C O2 Cu1 O5 1.313 1.305 124.29 129.04 -128.26 -129.02 
          
    RMSD 0.230 RMSD 5.72 RMSD 16.61 

 

 

 

Figure A4. Malachite unit cell and labeled asymmetric unit. 
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Table A11. Experimental and solid-state DFT calculated bonds lengths, angles, and torsions for 
verdigris with all atoms (top) and only heavy atoms (bottom). Disorder of the methyl rotors in 
the crystal structure dominates the high RMSD value observed.  

    Length (Å) Angle (°) Torsion Angle (°) 
Atom1 Atom2 Atom3 Atom4 Exp. Calcd. Exp. Calcd. Exp. Calcd. 

O3 Cu O1  C1 1.994 1.95 89.05 87.01 -81.37 -86.25 
O1 Cu O5 H8 1.95 2.01 93.33 100.22 44.93 20.61 
C4 C3 O3 Cu 1.495 1.502 117.04 117.73 -173.89 -178.66 
C2 C1 O1  Cu 1.506 1.505 118.78 119.08 177.52 177.15 
H5 C4 C3 O3 1.064 1.087 116.54 111.26 35.35 4.99 
H4 C4 C3 O3 0.874 1.090 117.80 109.30 -175.42 126.75 
H6 C4 C3 O3 0.996 1.090 106.63 109.27 -61.87 -116.35 
H2 C2 C1 O1 0.977 1.085 110.31 112.27 63.23 -3.91 
H1 C2 C1 O1 1.003 1.091 106.94 108.44 -47.97 -125.87 
H3 C2 C1 O1 1.022 1.091 103.35 109.97 -171.60 117.84 
H8 O5 Cu O3 0.860 0.973 115.09 133.15 -44.29 -67.94 
H7 O5 Cu O1 0.880 0.979 128.54 115.91 -115.07 -134.03 
O4 C3 O3 Cu 1.251 1.269 124.22 125.06 5.95 1.84 
C3 O3 Cu O1 1.269 1.265 124.90 122.49 78.70 87.36 
C1 O1 Cu O3 1.248 1.269 124.85 121.03 -81.37 -86.25 
O2 C1 O1  Cu 1.274 1.267 125.45 124.10 -1.96 -2.39 

          
    RMSD 0.083 RMSD 6.70 RMSD 109.32 

          
 

      
   

    Length (Å) Angle (°) Torsion Angle (°) 
Atom1 Atom2 Atom3 Atom4 Exp. Calcd. Exp. Calcd. Exp. Calcd. 

O3 Cu O1  C1 1.994 1.95 89.05 87.01 -81.37 -86.25 
C4 C3 O3 Cu 1.495 1.502 117.04 117.73 -173.89 -178.66 
C2 C1 O1  Cu 1.506 1.505 118.78 119.08 177.52 177.15 
O4 C3 O3 Cu 1.251 1.269 124.22 125.06 5.95 1.84 
C3 O3 Cu O1 1.269 1.265 124.90 122.49 78.70 87.36 
C1 O1 Cu O3 1.248 1.269 124.85 121.03 -81.37 -86.25 
O2 C1 O1  Cu 1.274 1.267 125.45 124.10 -1.96 -2.39 

          
    RMSD 0.020 RMSD 1.99 RMSD 4.82 

 



147 
 

 

Figure A5. Unit cell, asymmetric unit, and a labeled asymmetric unit of verdigris.  
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Figure A6. Baseline corrections for experimental spectra of azurite and verdigris performed 
using Origin 2018b. 
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Figure A7. Peak fitting analysis with a Lorentzian line shape for the lowest frequency 
terahertz absorption of crystalline azurite using Origin 2018b.  
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Figure A8. Peak fitting analyses with Lorentzian line shapes of the lowest frequency feature 
(top panel) and broad feature (bottom panel) for verdigris using Origin 2018b.  
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Appendix B: Supporting Information for Chapter 5 

Figure B1. Powder X-ray diffraction data (red) of minium (top panel) and vermilion (bottom panel) 
samples compared to the predicted powder patterns (black) based on the single-crystal structural data.  
 

Table B1. Pellet thickness (in millimeters) for pure and mixed sample pellets. Each pellet weighed 
approximately 800 mgs. 
 

Table B2. SS-DFT simulated dielectric tensor components for minium and vermilion.  
 

Table B3. Solid-state DFT simulated IR-active frequencies (including LO/TO splitting) for minium. 
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Figure B3. LFRS spectra simulated with PBE were convolved using Voigt profiles for minium (top-
panel) and vermilion (bottom panel).   
 

Figure B4. Experimental 290 K THz-TDS spectra of pure vermilion (top) and minium (bottom). 
 

Figure B5. Peak fitting with Lorentzian line shapes of specific THz-TDS spectral range in minium and 
vermilion mixture sample, 1:2, using Origin 2018b. 
 

Figure B6. Peak fitting with Lorentzian line shapes of specific THz-TDS spectral range in minium and 
vermilion mixture sample, 2:3, using Origin 2018b. 
 

Figure B7. Peak fitting with Lorentzian line shapes of specific THz-TDS spectral range in minium and 
vermilion mixture sample, 1:1, using Origin 2018b. 
 

Figure B8. Peak fitting with Lorentzian line shapes of specific THz-TDS spectral range in minium and 
vermilion mixture sample, 3:2, using Origin 2018b. 
 

Figure B9. Peak fitting with Lorentzian line shapes of specific THz-TDS spectral range in minium and 
vermilion mixture sample, 2:1, using Origin 2018b. 
 

Figure B10. Parameters for linear least squares fit of THz-TDS calibration curves for minium (top) and 
vermilion (bottom). 
 

Figure B11. Experimental 290 K LFRS spectra of pure vermilion (top) and minium (bottom) before 
normalization. 
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Figure B12. Peak fitting with Voigt line shapes of specific LFRS spectral range in minium and vermilion 
mixture sample, 1:2, using Origin 2018b. 
 

Figure B13. Peak fitting with Voigt line shapes of specific LFRS spectral range in minium and vermilion 
mixture sample, 2:3, using Origin 2018b. 
 

Figure B14. Peak fitting with Voigt line shapes of specific LFRS spectral range in minium and vermilion 
mixture sample, 1:1, using Origin 2018b. 
 

Figure B15. Peak fitting with Voigt line shapes of specific LFRS spectral range in minium and vermilion 
mixture sample, 3:2, using Origin 2018b. 
 

Figure B16. Peak fitting with Voigt line shapes of specific LFRS spectral range in minium and vermilion 
mixture sample, 2:1, using Origin 2018b. 
 

Figure B17. Parameters for linear least squares fit of LFRS calibration curves for minium (top) and 
vermilion (bottom). 
 

Table B7. Experimental and solid-state DFT calculated bonds lengths and angles for minium asymmetric 
unit.  
 

Table B8. Experimental and solid-state DFT calculated bonds length for vermilion asymmetric unit. 
 

Figure B18. Eigenvector plot for Raman-active mode, 22.43 cm-1, in minium. 
 

Figure B19. Eigenvector plot for Raman-active mode, 57.37 cm-1, in minium. 
 

Figure B20. Eigenvector plot for IR-active mode, 58.22 cm-1, in minium. 
 

Figure B21. Eigenvector plot for IR-active mode, 60.23 cm-1, in minium. 
 

Figure B22. Eigenvector plot for Raman-active mode, 66.95 cm-1, in minium. 
 

Figure B23. Eigenvector plot for Raman-active mode, 72.11 cm-1, in minium. 
 

Figure B24. Eigenvector plot for Raman-active mode, 72.91 cm-1, in minium. 
 

Figure B25. Eigenvector plot for IR-active mode, 74.17 cm-1, in minium. 
 

Figure B26. Eigenvector plot for IR-active mode, 85.77 cm-1, in minium. 
 

Figure B27. Eigenvector plot for Raman -active mode, 88.06 cm-1, in minium. 
 

Figure B28. Eigenvector plot for Raman -active mode, 89.24 cm-1, in minium. 
 

Figure B29. Eigenvector plot for IR-active mode, 116.19 cm-1, in minium. 
 

Figure B30. Eigenvector plot for Raman-active mode, 121.67 cm-1, in minium. 
 

Figure B31. Eigenvector plot for Raman-active mode, 128.60 cm-1, in minium. 
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Figure B32. Eigenvector plot for IR-active mode, 130.83 cm-1, in minium. 
 

Figure B33. Eigenvector plot for Raman-active mode, 132.15 cm-1, in minium. 
 

Figure B34. Eigenvector plot for Raman-active mode, 158.79 cm-1, in minium. 
 

Figure B35. Eigenvector plot for Raman-active mode, 169.84 cm-1, in minium. 
 

Figure B36. Eigenvector plot for IR-active mode, 35.08 cm-1, in vermilion. 
 

Figure B37. Eigenvector plot for Raman-active mode, 45.86 cm-1, in vermilion. 
 

Figure B38. Eigenvector plot for Raman & IR-active mode, 46.52 cm-1, in vermilion. 
 

Figure B39. Eigenvector plot for Raman & IR-active mode, 90.61 cm-1, in vermilion. 
 

Figure B40. Eigenvector plot for Raman & IR-active mode, 111.27 cm-1, in vermilion. 
 

Figure B41. Eigenvector plot for IR-active mode, 111.54 cm-1, in vermilion. 
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Figure B1. Powder X-ray diffraction data (red) of minium (a) and vermilion (b) samples 
compared to the predicted powder patterns (black) based on the single-crystal structural 
data.  
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Table B2. SS-DFT simulated dielectric tensor components for minium and vermilion. 
 Minium Vermilion 
 XX YY ZZ XX YY ZZ 

PBE 5.594 5.594 5.594 7.911 7.911 9.949 
PBE0 4.620 4.620 4.726 6.249 6.249 7.494 

 

  

Table B1. Pellet thickness (in millimeters) for pure and mixed sample pellets. Each pellet 
weighed approximately 800 mgs. 

 Pellet thickness (mm) 
Minium 2.89 

Vermilion 2.82 

Blank (PTFE) 2.90 

3:2 2.85 

1:1 2.86 

2:3 2.95 

1:2 2.56 

2:1 2.70 
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Table B3. Solid-state DFT simulated IR-active frequencies (including LO/TO splitting) for 
minium. 

 PBE PBE0 
 Frequency Mode 

Symmetry 
Intensity Frequency Mode 

Symmetry 
Intensity 

 (THz) (cm-1) (km/mol) (THz) (cm-1) (km/mol) 

Transverse 
Optical 
Modes 

1.61 53.55 Eu 92.18 1.75 58.22 Eu 35.72 
1.73 57.56 Eu 151.38 1.81 60.23 Eu 220.35 
1.99 66.25 A2u 79.91 2.22 74.17 A2u 40.81 
2.33 77.85 Eu 111.37 2.57 85.77 Eu 100.03 
3.18 105.94 A2u 365.30 3.48 116.19 Eu 1.62 
3.30 109.96 Eu 0.31 3.92 130.83 A2u 449.88 
4.30 143.53 Eu 739.04 4.59 153.12 Eu 829.10 
5.67 189.26 Eu 3.16 6.50 216.82 Eu 43.09 
8.04 268.21 Eu 2584.91 8.51 283.78 Eu 2796.69 
9.31 310.52 Eu 2693.80 9.82 327.68 Eu 2450.93 
9.94 331.49 A2u 5428.33 11.14 371.68 A2u 5905.17 

11.10 370.24 Eu 1235.97 11.88 396.14 Eu 801.66 
11.90 396.86 Eu 3469.52 12.94 431.72 Eu 4542.89 
13.40 446.87 A2u 2237.98 14.17 472.59 A2u 1903.39 
14.87 495.85 Eu 802.10 16.13 538.06 Eu 1640.97 
15.25 508.75 Eu 678.40 16.31 543.93 Eu 42.67 

Longitudinal 
Optical 
Modes  

1.64 54.66 Eu 1.80 1.75 58.45 Eu 0.20 
1.89 62.90 Eu 29.20 2.02 67.42 Eu 28.80 
2.08 69.53 A2u 8.40 2.28 76.09 A2u 4.70 
2.43 81.22 Eu 33.40 2.66 88.81 Eu 23.40 
3.58 119.49 A2u 85.10 3.48 116.21 Eu 0.20 
3.30 109.97 Eu 0.10 4.38 146.25 A2u 90.60 
4.62 154.15 Eu 179.80 4.97 165.82 Eu 165.40 
5.68 189.30 Eu 0.90 6.51 217.27 Eu 7.60 
8.46 282.21 Eu 254.10 9.01 300.45 Eu 225.60 

10.02 334.23 Eu 816.10 10.64 354.91 Eu 818.90 
11.95 398.66 A2u 953.20 12.03 401.25 Eu 154.60 
11.30 376.85 Eu 205.50 13.17 439.26 A2u 566.90 
13.48 449.63 Eu 4475.60 14.79 493.20 Eu 3425.60 
15.05 501.93 Eu 376.10 16.30 543.78 Eu 5.80 
15.94 531.56 Eu 6189.50 17.41 580.79 A2u 7637.00 
16.01 534.01 A2u 7064.80 17.45 582.20 Eu 8649.50 
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Table B4. Solid-state DFT simulated Raman-active frequencies and normalized intensities 
(including LO/TO splitting) for minium. 
 

 PBE PBE0 
 Frequency Mode 

Symmetry 
Intensity 
(km/mol) 

Frequency Mode 
Symmetry 

Intensity 
(km/mol)  (THz) (cm-1) (THz) (cm-1) 

Transverse 
Optical 
Modes  

1.61 53.85 B1g 87.78 0.67 22.43 Eg 6.59 
1.84 61.47 Eg 74.75 1.72 57.37 B1g 52.86 
1.97 65.76 A1g 6.29 2.01 66.95 Eg 120.32 
2.00 66.79 B1g 1.06 2.16 72.11 B1g 0.41 
2.27 75.88 Eg 0.14 2.19 72.91 A1g 19.64 
2.54 84.77 B2g 34.46 2.64 88.06 B2g 14.62 
3.10 103.48 Eg 10.65 2.68 89.24 Eg 8.74 
3.61 120.49 A1g 1000.00 3.65 121.67 Eg 10.80 
3.69 123.25 B2g 5.01 3.86 128.61 A1g 1000.00 
4.45 148.30 Eg 29.53 3.96 132.15 B2g 20.53 
4.55 151.61 B1g 0.08 4.76 158.79 Eg 63.40 
6.19 206.34 B1g 18.44 5.09 169.84 B1g 8.50 
6.93 231.08 A1g 36.96 7.02 234.02 B1g 14.17 
7.45 248.56 B1g 0.10 7.11 237.26 A1g 189.25 
9.24 308.24 Eg  67.35 7.86 262.13 B1g 6.55 
9.50 317.00 B2g 3.60 9.89 329.80 B2g 39.12 

11.15 372.05 Eg 14.74 9.91 330.48 Eg 164.92 
11.46 382.32 A1g 95.52 12.29 409.81 A1g 190.55 
13.36 445.72 Eg 43.01 12.37 412.57 Eg 42.75 
13.40 447.14 B1g 9.57 14.36 478.95 Eg 57.83 
13.88 463.14 B2g 0.09 14.84 495.17 B1g 26.13 
13.92 464.27 Eg 0.43 15.03 501.27 B2g 0.35 
15.38 513.13 B2g 2.77 15.19 506.56 Eg 9.38 
15.39 513.48 A1g 651.68 16.58 553.19 B1g 43.09 
15.65 522.04 B1g 60.42 17.22 574.51 A1g 371.62 

    17.24 575.24 B2g 0.19 

Longitudinal 
Optical 
Modes 

1.64 54.66 Eu 0.00 1.75 58.45 A2u 0.00 
1.89 62.90 Eu 0.00 2.02 67.42 Eu 0.00 
2.08 69.53 A2u 0.00 2.28 76.09 Eu 0.00 
2.43 81.22 Eu 0.00 2.66 88.81 Eu 0.00 
3.58 119.49 A2u 0.00 3.48 116.21 A2u 0.00 
3.30 109.97 Eu 0.00 4.38 146.25 Eu 0.00 
4.62 154.15 Eu 0.00 4.97 165.82 Eu 0.00 
5.68 189.30 Eu 0.00 6.51 217.27 A2u 0.00 
8.46 282.21 Eu 0.00 9.01 300.45 Eu 0.00 

10.02 334.23 Eu 0.00 10.64 354.91 Eu 0.00 
11.95 398.66 A2u 0.00 12.03 401.25 Eu 0.00 
11.30 376.85 Eu 0.00 13.17 439.26 Eu 0.00 
13.48 449.63 Eu 0.00 14.79 493.20 A2u 0.00 
15.05 501.93 Eu 0.00 16.30 543.78 A2u 0.00 
15.94 531.56 Eu 0.00 17.41 580.79 Eu 0.00 
16.01 534.01 A2u 0.00 17.45 582.20 Eu 0.00 
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Figure B2. THz-TDS spectra simulated with PBE were convolved using empirically 
determined Lorentzian line shapes with a FWHM of 2.15 cm-1 for minium (top-panel) and 
1.85 cm-1 for vermilion (bottom panel).  
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Table B5. Solid-state DFT simulated IR-active frequencies (including LO/TO splitting) for 
vermilion.  
 

 PBE PBE0 
 Frequency Mode 

Symmetry 
Intensity Frequency Mode 

Symmetry 
Intensity 

 (THz) (cm-1) (km/mol) (THz) (cm-1) (km/mol) 

Transverse 
Optical 
Modes 

1.10 36.61 A2 22.09 1.05 35.08 A2 32.50 
1.37 45.71 E 1.32 1.39 46.52 E 3.47 
2.58 85.99 E 63.1 2.72 90.61 E 83.67 
3.38 112.78 E 452.67 3.34 111.27 E 401.53 
3.41 113.74 A2 242.42 3.34 111.54 A2 200.40 
7.85 261.98 E 192.11 8.61 287.04 E 228.19 
9.44 315.02 A2 365.85 10.28 342.74 A2 375.70 
9.51 317.17 E 197.01 10.49 349.95 E 171.36 

Longitudinal 
Optical 
Modes 

1.25 41.78 A2 6.20 1.33 44.39 A2 7.60 
1.37 45.84 E 0.30 1.41 46.92 E 0.50 
2.65 88.50 E 6.20 2.81 93.62 E 4.20 
4.45 148.46 E 381.00 4.60 153.53 E 352.50 
4.28 142.73 A2 188.30 4.33 144.50 A2 157.50 
8.09 270.02 E 196.70 8.94 298.28 E 233.90 
9.77 325.75 E 322.00 10.76 358.97 E 297.10 

10.08 336.21 A2 435.80 11.08 369.58 A2 443.60 
 

 
 

Table B6. Solid-state DFT simulated Raman-active frequencies and normalized intensities 
(including LO/TO splitting) for vermilion. 

 PBE PBE0 
 Frequency Mode 

Symmetry 
Intensity Frequency Mode 

Symmetry 
Intensity 

 (THz) (cm-1) (km/mol) (THz) (cm-1) (km/mol) 

Transverse 
Optical 
Modes 

1.32 44.06 A1 558.08 1.37 45.86 A1 548.63 
1.37 45.71 E 1.93 1.39 46.52 E 20.81 
2.58 85.99 E 1.93 2.72 90.61 E 18.91 
3.38 112.78 E 68.54 3.34 111.27 E 204.55 
7.12 237.46 A1 1000.00 7.86 262.05 A1 1000.00 
7.85 261.98 E 115.24 8.61 287.04 E 87.45 
9.51 317.17 E 265.78 10.49 349.95 E 293.38 

Longitudinal 
Optical 
Modes 

1.25 41.78 A2 0.00 1.33 44.39 A2 0.00 
1.37 45.84 E 2.10 1.41 46.92 E 20.41 
2.65 88.50 E 1.18 2.81 93.62 E 20.06 
4.45 148.45 E 147.99 4.60 153.53 E 325.76 
4.28 142.73 A2 0.00 4.33 144.50 A2 0.00 
8.09 270.02 E 161.01 8.94 298.28 E 135.86 
9.77 325.75 E 243.13 10.76 358.97 E 269.32 

10.08 336.21 A2 0.00 11.08 369.58 A2 0.00 
 

 
 

  



160 
 

 

 

 

Figure B3. LFRS spectra simulated with PBE were convolved using Voigt profiles for 
minium (top-panel) and vermilion (bottom panel).   
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Vermilion 
Exp. Peaks (cm-1) 

37.3 
42.7 
88.0 

 

Minium 
Exp. Peaks (cm-1) 

54.7 
62.0 
71.3 
84.0 

Figure B4. Experimental 290 K THz-TDS spectra of pure vermilion (top) and minium 
(bottom). 
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Figure B5. Peak fitting with Lorentzian line shapes of specific THz-TDS spectral range in 
minium and vermilion mixture sample, 1:2, using Origin 2018b. 

 

Vermilion 
 

             Minium 

Figure B6. Peak fitting with Lorentzian line shapes of specific THz-TDS spectral range in 
minium and vermilion mixture sample, 2:3, using Origin 2018b. 

 

Vermilion Minium  

Figure B7. Peak fitting with Lorentzian line shapes of specific THz-TDS spectral range in 
minium and vermilion mixture sample, 1:1, using Origin 2018b. 
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Figure B8. Peak fitting with Lorentzian line shapes of specific THz-TDS spectral range in 
minium and vermilion mixture sample, 3:2, using Origin 2018b. 
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Figure B9. Peak fitting with Lorentzian line shapes of specific THz-TDS spectral range in 
minium and vermilion mixture sample, 2:1, using Origin 2018b. 
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Equation y=a+b*x 
Intercept -1.44657±0.48731 

Slope 0.05166 ± 0.00947 
Residual Sum of Squares 0.20291 

Pearson’s r 0.95313 
R-Square (COD) 0.90846 

 

Equation y=a+b*x 
Intercept -1.48511 ± 0.3564 

Slope 0.0545 ± 0.00692 
Residual Sum of Squares 0.10853 

Pearson’s r 0.97663 
R-Square (COD)  0.9538  

 

Figure B10. Parameters for linear least squares fit of THz-TDS calibration curves 
for minium (top) and vermilion (bottom).  
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 Vermilion 
Exp. Peaks (cm-1) 

41.7 
84.5 
101.9 
253.8 
282.3 
288.4 
343.2 
351.8 

 

 Minium 
Exp. Peaks (cm-1) 

31.8 
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63.2 
71.2 
84.9 
87.4 
121.0 
142.7 
151.8 
223.7 
232.8 
289.9 
314.4 
391.8 

 
Figure B11. Experimental 290 K LFRS spectra of pure vermilion (top) and minium (bottom) 
before normalization. 
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Figure B12. Peak fitting with Voigt line shapes of specific LFRS spectral range in minium and 
vermilion mixture sample, 1:2, using Origin 2018b. 
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Figure B13. Peak fitting with Voigt line shapes of specific LFRS spectral range in minium and 
vermilion mixture sample, 2:3, using Origin 2018b. 
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Figure B14. Peak fitting with Voigt line shapes of specific LFRS spectral range in minium and 
vermilion mixture sample, 1:1, using Origin 2018b. 
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Figure B15. Peak fitting with Voigt line shapes of specific LFRS spectral range in minium and 
vermilion mixture sample, 3:2, using Origin 2018b. 
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Figure B16. Peak fitting with Voigt line shapes of specific LFRS spectral range in minium and 
vermilion mixture sample, 2:1, using Origin 2018b. 
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Equation y=a+b*x 
Intercept -1.44657±0.48731 

Slope 0.05166 ± 0.00947 
Residual Sum of Squares 0.20291 

Pearson’s r 0.95313 
R-Square (COD) 0.90846 

 

Equation y=a+b*x 
Intercept -1.48511 ± 0.3564 

Slope 0.0545 ± 0.00692 
Residual Sum of Squares 0.10853 

Pearson’s r 0.97663 
R-Square (COD) 0.9538 

 

Figure B17. Parameters for linear least squares fit of LFRS 
calibration curves for minium (top) and vermilion (bottom). 
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Table B7. Experimental and solid-state DFT calculated bonds lengths and angles for minium 
asymmetric unit.  
 

Bond Length (Å)  Exp. Calcd.   
Atom1 Atom2 

 
PBE PBE0  

Pb4+ O1 2.13 2.18 2.14  

Pb4+ O2 2.21 2.26 2.20  

Pb2+ O2 2.73 2.38 2.73  

Pb2+ O1 2.22 2.27 2.23  

  RMSD 0.18 0.01  
      

Bond Angle ( ° )   Exp. Calcd.  
Atom1 Atom2 Atom3  PBE PBE0 
Pb4+ O1 Pb2+ 112.32 111.25 112.28 
Pb2+ O2 Pb4+ 93.51 94.84 94.00 
O1 Pb4+ O2 83.35 82.42 83.31 
O1 Pb2+ O2 70.56 71.28 70.21 

   RMSD 1.04 0.30 
 

 

 

 

Table B8. Experimental and solid-state DFT calculated bonds length for vermilion 
asymmetric unit. 

Bond Length (Å)  Exp. Calcd.  

Atom1 Atom2  PBE PBE0 
S Hg 2.37 2.44 2.41 

  % Error 3.17 1.73 
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Figure B18. Eigenvector plot for Raman-active mode, 22.43 cm-1, in minium. 
 

Figure B19. Eigenvector plot for Raman-active mode, 57.37 cm-1, in minium. 
 

Figure B20. Eigenvector plot for IR-active mode, 58.22 cm-1, in minium. 
 

Figure B21. Eigenvector plot for IR-active mode, 60.23 cm-1, in minium. 
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Figure B22. Eigenvector plot for Raman-active mode, 66.95 cm-1, in minium. 
 

Figure B23. Eigenvector plot for Raman-active mode, 72.11 cm-1, in minium. 
 

Figure B24. Eigenvector plot for Raman-active mode, 72.91 cm-1, in minium. 
 

Figure B25. Eigenvector plot for IR-active mode, 74.17 cm-1, in minium. 
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Figure B26. Eigenvector plot for IR-active mode, 85.77 cm-1, in minium. 
 

Figure B27. Eigenvector plot for Raman -active mode, 88.06 cm-1, in minium. 
 

Figure B28. Eigenvector plot for Raman -active mode, 89.24 cm-1, in minium. 
 

Figure B29. Eigenvector plot for IR-active mode, 116.19 cm-1, in minium. 
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Figure B30. Eigenvector plot for Raman-active mode, 121.67 cm-1, in 
minium. 

 

Figure B31. Eigenvector plot for Raman-active mode, 128.60 cm-1, in 
minium. 

 

Figure B32. Eigenvector plot for IR-active mode, 130.83 cm-1, in minium. 
 

Figure B33. Eigenvector plot for Raman-active mode, 132.15 cm-1, in 
minium. 
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Figure B34. Eigenvector plot for Raman-active mode, 158.79 cm-1, in 
minium. 

 

Figure B35. Eigenvector plot for Raman-active mode, 169.84 cm-1, in 
minium. 
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Figure B36. Eigenvector plot for IR-active mode, 35.08 cm-1, in vermilion. 
 
 

Figure B37. Eigenvector plot for Raman-active mode, 45.86 cm-1, in vermilion. 
 

Figure B38. Eigenvector plot for Raman & IR-active mode, 46.52 cm-1, in vermilion. 
 
 

Figure B39. Eigenvector plot for Raman & IR-active mode, 90.61 cm-1, in vermilion. 
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Figure B40. Eigenvector plot for Raman & IR-active mode, 111.27 cm-1, in vermilion. 
 
 

Figure B41. Eigenvector plot for IR-active mode, 111.54 cm-1, in vermilion. 
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Appendix C: Supporting Information for Chapter 6 

Figure C1. Experimental and predicted powder X-ray diffraction patterns of PR3.  
 

Figure C2. Experimental and predicted powder X-ray diffraction patterns of PR254.  
 

Table C1. . Pellet thickness in millimeters for tablets A-C for PR3 and PR254. Each pellet weighed 
approximately 400 mgs 
 

Table C3. Solid-state DFT simulated frequencies for PR3. 
 

Table C4. Solid-state DFT simulated frequencies for PR254. 
 

Table C5. Solid-state DFT simulated frequencies (including LO/TO splitting) for verdigris. 
 

 
Figure C1. Experimental and predicted powder X-ray diffraction 
patterns of PR3.  
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Figure C2. Experimental and predicted powder X-ray diffraction 
patterns of PR254. 

 

 

Table C1. Pellet thickness in millimeters for tablets A-C for PR3 and PR254. Each pellet 
weighed approximately 400 mgs. 
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 Pellet thickness (mm) 
PR3  

A 3.53 
B 3.72 
C 3.59 

PR254  
A 3.88 
B 3.82 
C 3.88 
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Table C2. Solid-state DFT simulated 
frequencies for PR3. 

Frequency 
Intensity Symmetry 

THz cm-1 

0.74 24.79 1.48 Bu 
0.96 31.92 0.00 Au 
1.03 34.29 4.64 Au 
1.25 41.73 0.59 Au 
1.46 48.57 6.75 Bu 
1.48 49.38 0.02 Au 
1.71 57.18 6.62 Bu 
1.86 62.09 2.38 Au 
2.02 67.36 10.37 Bu 
2.21 73.65 5.41 Au 
2.36 78.59 1.70 Bu 
2.57 85.64 0.21 Au 
2.68 89.52 42.54 Bu 
2.77 92.49 1.92 Bu 
2.86 95.45 7.25 Au 
3.33 111.18 0.15 Au 
3.34 111.40 0.10 Bu 
3.54 118.16 6.67 Bu 
3.59 119.61 1.17 Au 
4.10 136.89 4.54 Bu 
4.14 138.18 15.87 Au 
4.37 145.71 2.44 Au 
4.52 150.64 1.95 Bu 
4.58 152.85 0.49 Bu 
4.79 159.61 1.54 Au 
4.96 165.34 13.64 Bu 
4.99 166.32 32.18 Au 
5.66 188.87 35.65 Bu 
5.80 193.37 17.61 Au 
5.90 196.72 17.98 Au 
5.95 198.62 1.28 Bu 
6.85 228.56 17.28 Bu 
6.94 231.49 1.40 Au 
7.63 254.53 2.18 Au 
7.66 255.60 19.38 Bu 
8.67 289.22 28.73 Bu 
8.71 290.63 2.32 Au 
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10.02 334.24 3.05 Au 
10.11 337.37 1.46 Bu 
10.24 341.63 24.22 Bu 
10.29 343.14 3.54 Au 
10.89 363.22 2.87 Au 
10.89 363.31 13.71 Bu 
11.45 381.82 0.32 Au 
11.45 382.04 20.51 Bu 
12.03 401.31 23.32 Au 
12.08 402.99 23.09 Bu 
12.23 408.09 0.24 Au 
12.31 410.46 11.34 Bu 
12.67 422.49 62.16 Bu 
12.67 422.68 11.56 Au 
12.92 431.00 0.29 Bu 
12.93 431.15 0.00 Au 
13.63 454.79 9.52 Bu 
13.66 455.76 3.92 Au 
14.29 476.62 46.42 Au 
14.32 477.79 12.74 Bu 
14.85 495.34 283.98 Bu 
14.85 495.44 2.00 Au 
14.93 498.00 7.87 Au 
14.99 500.00 30.63 Bu 
15.68 522.94 1.52 Au 
15.74 524.93 33.94 Bu 
15.93 531.24 1.74 Au 
15.98 532.93 4.54 Bu 
16.07 536.20 23.75 Bu 
16.08 536.21 0.54 Au 
18.47 615.96 5.85 Au 
18.47 616.14 24.19 Bu 
19.38 646.30 0.02 Au 
19.39 646.83 9.96 Bu 
20.00 667.27 4.05 Bu 
20.01 667.44 0.70 Au 
20.21 674.25 13.26 Au 
20.26 675.94 0.45 Bu 
20.32 677.80 26.25 Bu 
20.33 678.12 0.09 Au 
21.66 722.52 27.36 Bu 
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21.67 722.74 73.31 Au 
21.94 731.85 6.43 Au 
21.97 732.99 277.21 Bu 
22.18 739.97 1.76 Au 
22.23 741.44 146.12 Bu 
22.29 743.37 38.60 Bu 
22.31 744.32 140.84 Bu 
22.32 744.50 134.25 Au 
22.37 746.18 18.37 Au 
23.62 787.90 10.28 Bu 
23.62 787.94 31.91 Au 
24.16 805.93 13.42 Au 
24.20 807.17 363.58 Bu 
24.81 827.56 162.72 Bu 
25.01 834.26 6.05 Au 
25.05 835.69 25.76 Bu 
25.06 836.01 32.18 Au 
25.52 851.17 40.18 Au 
25.65 855.58 18.53 Bu 
25.95 865.52 159.45 Au 
25.97 866.34 70.06 Bu 
26.53 885.06 2.18 Bu 
26.54 885.16 12.93 Au 
27.69 923.68 49.06 Bu 
27.74 925.29 36.85 Au 
27.90 930.48 13.95 Au 
27.95 932.46 169.60 Bu 
28.12 938.10 209.10 Bu 
28.12 938.10 17.61 Au 
28.45 948.87 24.66 Bu 
28.47 949.52 2.53 Au 
28.76 959.40 7.91 Bu 
28.77 959.64 0.68 Au 
29.51 984.47 22.81 Bu 
29.52 984.78 137.34 Au 
29.57 986.49 16.10 Bu 
29.59 986.91 3.66 Au 
30.05 1002.37 42.52 Bu 
30.07 1002.92 4.08 Au 
31.11 1037.75 5.46 Au 
31.11 1037.78 55.55 Bu 
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31.21 1040.94 40.17 Bu 
31.22 1041.35 0.07 Au 
32.24 1075.29 325.66 Au 
32.27 1076.46 20.25 Bu 
32.71 1091.19 208.26 Bu 
32.83 1094.92 148.99 Au 
33.58 1120.26 827.91 Au 
33.61 1121.21 98.75 Bu 
33.79 1127.11 75.86 Au 
33.82 1128.27 56.57 Bu 
34.56 1152.95 159.63 Bu 
34.57 1153.12 16.45 Au 
35.10 1170.87 228.92 Au 
35.19 1173.76 40.63 Bu 
35.71 1191.09 104.05 Bu 
35.82 1194.77 2109.84 Au 
36.40 1214.32 5.06 Au 
36.41 1214.58 287.09 Bu 
36.70 1224.13 23.25 Au 
36.70 1224.32 190.57 Bu 
37.26 1242.82 47.78 Bu 
37.26 1242.92 581.41 Au 
37.61 1254.62 108.67 Bu 
37.61 1254.66 7.18 Au 
38.27 1276.40 27.12 Bu 
38.27 1276.69 257.10 Au 
38.63 1288.45 1802.14 Bu 
38.72 1291.57 3291.42 Au 
39.32 1311.64 252.14 Bu 
39.34 1312.34 119.14 Au 
40.55 1352.70 27.21 Bu 
40.57 1353.11 510.43 Au 
40.71 1358.06 250.34 Bu 
40.71 1358.08 170.78 Au 
41.07 1370.02 21.71 Bu 
41.09 1370.76 141.82 Au 
41.48 1383.68 1141.75 Au 
41.55 1386.04 24.30 Bu 
41.65 1389.20 479.00 Bu 
41.74 1392.22 138.87 Au 
42.28 1410.31 700.73 Bu 
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42.37 1413.37 189.95 Au 
42.94 1432.33 337.20 Bu 
42.95 1432.50 1356.85 Au 
43.09 1437.18 210.17 Bu 
43.16 1439.61 303.39 Au 
43.27 1443.48 84.54 Au 
43.33 1445.38 67.34 Bu 
43.54 1452.28 421.08 Bu 
43.71 1458.12 689.59 Au 
44.12 1471.67 336.03 Au 
44.14 1472.44 41.59 Bu 
44.38 1480.37 1898.78 Au 
44.59 1487.48 370.62 Bu 
45.00 1501.00 277.82 Au 
45.03 1501.95 5.38 Bu 
46.22 1541.83 1376.95 Au 
46.28 1543.65 124.84 Bu 
46.31 1544.86 368.12 Bu 
46.35 1546.06 33.36 Au 
46.85 1562.79 16.39 Au 
46.89 1564.00 114.97 Bu 
47.92 1598.59 17.35 Bu 
47.94 1598.99 485.10 Au 
48.08 1603.85 149.81 Au 
48.10 1604.40 116.08 Bu 
48.28 1610.50 55.62 Au 
48.42 1615.12 30.53 Bu 
88.78 2961.34 50.63 Bu 
88.78 2961.50 0.79 Au 
90.75 3027.12 8.54 Au 
90.75 3027.14 18.95 Bu 
91.08 3038.13 653.41 Bu 
91.09 3038.33 588.31 Au 
92.16 3074.19 10.72 Bu 
92.16 3074.24 18.89 Au 
92.94 3100.18 12.12 Au 
92.95 3100.33 4.15 Bu 
93.02 3102.72 58.59 Au 
93.02 3102.79 89.89 Bu 
93.22 3109.39 8.34 Bu 
93.22 3109.53 2.42 Au 
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93.23 3109.65 2.12 Au 
93.23 3109.68 5.66 Bu 
93.82 3129.56 9.79 Bu 
93.82 3129.65 8.43 Au 
94.14 3140.19 2.40 Bu 
94.14 3140.32 4.15 Au 
94.40 3148.89 6.46 Au 
94.40 3148.95 9.10 Bu 
94.56 3154.10 0.05 Bu 
94.56 3154.17 0.63 Au 
94.78 3161.39 367.57 Au 
94.78 3161.39 23.35 Bu 

 

 

Table C3. Solid-state DFT simulated 
frequencies for PR254. 

Frequency 
Intensity Symmetry 

THz cm-1 

0.87 29.12 0.57 Au 
0.97 32.47 0.00 Au 
1.03 34.51 0.07 Bu 
1.87 62.54 3.69 Au 
1.94 64.61 0.29 Bu 
2.03 67.72 0.68 Bu 
2.91 97.10 0.04 Au 
3.40 113.55 0.42 Bu 
3.47 115.81 0.01 Au 
3.93 131.15 12.29 Bu 
3.96 132.07 7.58 Au 
5.30 176.87 0.61 Au 
5.31 177.05 15.72 Bu 
6.74 224.74 9.07 Bu 
6.74 224.88 0.36 Au 
7.06 235.33 86.25 Bu 
7.06 235.41 1.57 Au 
8.12 270.95 13.84 Au 
8.15 271.90 11.10 Bu 
8.91 297.33 1.20 Au 
8.92 297.70 0.16 Bu 
9.72 324.07 150.93 Bu 
9.77 325.87 22.91 Au 
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11.95 398.70 4.63 Bu 
11.98 399.71 1.61 Au 
12.94 431.77 41.35 Au 
12.95 431.96 131.16 Bu 
14.13 471.36 85.22 Bu 
14.19 473.44 49.97 Au 
15.40 513.59 64.17 Au 
15.43 514.59 258.39 Bu 
18.22 607.92 31.94 Au 
18.23 608.11 72.82 Bu 
18.67 622.61 1.11 Bu 
18.68 623.08 0.12 Au 
20.56 685.72 59.79 Bu 
20.56 685.80 36.72 Au 
21.21 707.57 34.80 Au 
21.21 707.60 86.16 Bu 
21.28 709.68 325.66 Bu 
21.36 712.34 43.31 Au 
22.67 756.16 7.92 Au 
22.67 756.28 35.01 Bu 
23.75 792.18 152.98 Bu 
23.77 792.76 9.05 Au 
24.38 813.08 605.00 Bu 
24.40 813.85 67.07 Au 
24.63 821.56 292.90 Au 
24.69 823.54 329.79 Bu 
24.76 825.85 0.62 Au 
24.82 827.74 851.15 Bu 
27.84 928.71 26.55 Bu 
27.85 928.85 0.43 Au 
28.67 956.34 14.14 Bu 
28.69 957.00 0.34 Au 
30.03 1001.66 64.23 Bu 
30.07 1003.00 169.57 Au 
31.13 1038.35 55.79 Au 
31.15 1039.02 41.03 Bu 
32.32 1077.95 136.61 Bu 
32.41 1081.13 409.31 Au 
33.42 1114.85 227.81 Bu 
33.46 1116.24 27.08 Au 
33.71 1124.54 82.69 Au 
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33.72 1124.74 617.70 Bu 
35.87 1196.64 22.08 Au 
35.88 1196.96 72.73 Bu 
36.14 1205.58 151.20 Au 
36.18 1206.72 91.76 Bu 
39.16 1306.07 1.20 Bu 
39.19 1307.35 0.78 Au 
39.73 1325.40 333.78 Bu 
39.74 1325.47 0.72 Au 
40.47 1349.92 15.16 Au 
40.47 1350.05 295.13 Bu 
42.13 1405.43 31.59 Bu 
42.14 1405.58 54.18 Au 
43.74 1458.92 65.29 Au 
43.75 1459.41 1433.82 Bu 
44.44 1482.29 841.43 Au 
44.59 1487.48 453.59 Bu 
46.38 1546.95 100.94 Bu 
46.38 1547.15 82.70 Au 
47.55 1586.25 708.76 Au 
47.62 1588.46 1815.12 Bu 
47.67 1590.04 105.86 Au 
47.69 1590.61 1939.59 Bu 
48.59 1620.82 268.16 Au 
48.64 1622.51 5026.13 Bu 
92.15 3073.84 272.48 Au 
92.17 3074.59  Bu 
93.04 3103.34 26.43 Au 
93.04 3103.36 183.24 Bu 
93.69 3125.32 550.22 Bu 
93.70 3125.41 6.83 Au 
94.06 3137.44 228.25 Bu 
94.06 3137.67 11.36 Au 
94.37 3147.92 0.54 Bu 
94.39 3148.42 31.87 Au 
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