
Syracuse University Syracuse University

SURFACE SURFACE

Dissertations - ALL SURFACE

December 2020

Reinforcement Learning for Mobile Robot Collision Avoidance in Reinforcement Learning for Mobile Robot Collision Avoidance in

Navigation Tasks Navigation Tasks

Zilong Jiao
Syracuse University

Follow this and additional works at: https://surface.syr.edu/etd

 Part of the Engineering Commons

Recommended Citation Recommended Citation
Jiao, Zilong, "Reinforcement Learning for Mobile Robot Collision Avoidance in Navigation Tasks" (2020).
Dissertations - ALL. 1227.
https://surface.syr.edu/etd/1227

This Dissertation is brought to you for free and open access by the SURFACE at SURFACE. It has been accepted for
inclusion in Dissertations - ALL by an authorized administrator of SURFACE. For more information, please contact
surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/etd
https://surface.syr.edu/
https://surface.syr.edu/etd?utm_source=surface.syr.edu%2Fetd%2F1227&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=surface.syr.edu%2Fetd%2F1227&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/etd/1227?utm_source=surface.syr.edu%2Fetd%2F1227&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Abstract

Collision avoidance is fundamental for mobile robot navigation. In general, its solu-

tions include: map-based and mapless approaches. In the map-based approach, robots

pre-plan collision-free paths based on an environment map and follow their paths dur-

ing navigation. On the other hand, the mapless approach requires robots to avoid

collisions without referencing to an environment map. This thesis first studies the

map-based approach for multiple robots to collectively build environment maps. In

this study, a robot following a pre-planned path may encounter unexpected obstacles,

such as other moving robots and obstacles inaccurately presented on an environment

map. This motivates us to study mapless collision avoidance in the second part of the

thesis. Mapless collision avoidance requires a robot to infer an optimal action based on

sensor data and operate in real time. Inferring an optimal action in a timely manner

is computationally expensive, particularly when a robot has limited on-board com-

puting resources. To avoid the expensive online action inferring, this thesis presents a

reinforcement learning approach which learns policies for mapless collision avoidance

under real-world settings. We first propose a Real-Time Actor-Critic Architecture

(RTAC) to support asynchronous reinforcement learning under real-time constraint.

Based on RTAC, we propose asynchronous reinforcement learning methods for map-

less collision avoidance of various numbers of robots under different environment con-

figurations. Through extensive experiments, we demonstrate that RTAC serves as a

solid foundation to support multi-task and multi-agent learning for mapless collision

avoidance under asynchronous settings.

Reinforcement Learning for Mobile

Robot Collision Avoidance in

Navigation Tasks

by

Zilong Jiao

B.E. Nanjing University of Posts and Telecommunications, 2011

B.F.A. New York Institute of Technology, 2011

M.S. Syracuse University, 2014

Dissertation

Submitted in partial fulfillment of the requirements for the Degree of

Doctor of Philosophy in Computer and Information Science and Engineering.

Syracuse University

December 2020

c© Copyright by Zilong Jiao, 2020.

All rights reserved.

Acknowledgements

I would like to thank my advisor, Prof. Jae C Oh, for his patience and guidance

throughout my PhD study. Besides my advisor, I would like to thank the rest of my

thesis committee: Prof. Chilukuri K Mohan, Prof. Garrett E Katz, Prof. Qinru Qiu,

Prof. Vir Virander Phoha, and Prof. Young Bai Moon for their insightful comments

and enlightenment. Last but not the least, I would like to thank my parents for their

support throughout this long journey.

iv

Contents

Abstract . i

Acknowledgements . iv

List of Tables . ix

List of Figures . xi

1 Introduction 1

2 Background 7

2.1 Collision Avoidance . 7

2.1.1 Single-Robot Collision Avoidance 9

2.1.2 Multi-Robot Collision Avoidance 11

2.2 Reinforcement Learning . 13

2.2.1 Preliminaries . 14

2.2.2 Multi-Task Reinforcement Learning 16

2.2.3 Multi-Agent Reinforcement Learning 17

2.2.4 End-to-End Reinforcement Learning 19

3 Map-based Collision Avoidance in Navigation Tasks 21

3.1 Centralized Environment Exploration 22

3.1.1 Problem Statement . 23

3.1.2 Solution Approach . 23

3.1.3 Evaluation . 27

v

3.2 Distributed Environment Exploration 33

3.2.1 Problem Statement . 35

3.2.2 Solution Approach . 36

3.2.3 Evaluation . 40

3.3 Summary . 48

4 Mapless Collision Avoidance through Reinforcement Learning 50

4.1 RL for Real-Time Continuous Control 51

4.2 MDP Formulation . 52

4.3 Robot Model . 53

4.4 Neural Network Design for MCA . 55

4.5 MCA in Practice: Multi-Task & Multi-robot 56

4.6 Quality Measurement . 57

5 Real-Time RL Architecture for Mapless Collision Avoidance 59

5.1 MDP under Control Delay . 61

5.2 RTAC . 62

5.2.1 Stabilizing Control Delay . 64

5.2.2 Scalability of Asynchronous Learning 66

5.3 Evaluation . 67

5.3.1 Simulation Details . 69

5.3.2 Relate Simulation to Theoretical Formulation 69

5.3.3 DDPG with RTAC . 71

5.3.4 Asynchronous Reinforcement Learning 74

5.4 Summary . 76

6 Multi-Task Mapless Collision Avoidance 78

6.1 Sparse Gradients through Dropout for Asynchronous RL 81

6.1.1 Policy as Feed-Forward Neural Network 82

vi

6.1.2 Policy as Recurrent Neural Network. 83

6.2 Asynd-DDPG . 84

6.2.1 Shared Policy with Dropout Regularization 84

6.2.2 Asynchronous Update . 86

6.3 Evaluation . 86

6.3.1 Simulation Details . 88

6.3.2 Relating Simulation to Theoretical Formulation 89

6.3.3 Learning Performance . 89

6.3.4 Policy Performance . 91

6.3.5 Policy Generalization . 93

6.4 Summary . 94

7 Multi-Agent Mapless Collision Avoidance 95

7.1 Multi-Agent Coordination with Partial Observability 97

7.2 Rec-MADDPG . 98

7.2.1 Parameter Sharing & Asynchronous Learning 100

7.3 Evaluation . 103

7.3.1 Simulation Details . 104

7.3.2 Relate Simulation to Theoretical Formulation 106

7.3.3 Learning Performance . 108

7.3.4 Policy Performance . 110

7.3.5 Policy Generalization . 111

7.3.6 Learning Policies with Improved Reward Function 111

7.4 Summary . 113

8 Conclusions 115

8.1 Summary . 115

8.2 Accomplishment . 117

vii

8.3 Discussion . 119

8.4 Future Work . 121

Bibliography 124

Vita 133

viii

List of Tables

3.1 The total number of times robots broadcast the cells of their occupancy

matrices in the proposed approach and in the closest frontier exploration. 46

5.1 Hyper-parameters used in experiments for learning policies. 69

5.2 Control delay statistics for RTAC and the sequential architecture. . . 71

5.3 The performance of the policy learned through both the RTAC and the

sequential architectures. The metrics summarized in the table includes,

the success rates and the time steps for an agent to complete navigation. 73

5.4 The performance of the policies learning Env5 and Env6. The Ca is

set to be 0.1 during training. 73

5.5 Control delay statistics for asynchronous RTAC. 75

5.6 The performance of the policy is learned under asynchronous RTAC.

The metrics summarized in the table include the success rates and the

time steps for an agent to complete navigation. 77

6.1 The performance of a Asynd-DDPG policy in all test environments

based on 50 episodes. The metrics include the success rates of naviga-

tion and the average of the time steps for completing navigation. . . . 93

7.1 Summarized metrics of navigation trajectories planned by agents using

learned policies in all environments. The minimum distance between

robots (i.e., min dist) is measured in meters. 110

ix

7.2 The performance of the policies learned based on the original reward

function and the improved reward function. The original and improved

reward functions are given by equation 7.7 and 7.8 respectively. . . . 112

x

List of Figures

1.1 The examples of the mapless collision avoidance under different set-

tings. In the examples, a scenario is an environment (or a region of

an environment) with a specific obstacle distribution. For a multi-

scenario setting, a robot or robots must avoid collisions in multiple

different scenarios during navigation. 4

3.1 The square at bottom left of the figure is the home base and the smaller

squares are the targets to be collected. The grey circles represent the

risk areas which the robots should avoid. 29

3.2 Left column: performance of stand-alone frontier-based exploration.

Right column: performance of stand-alone frontier-based exploration

and frontier-based exploration with target delivery. Standard deviation

is presented for the result of each given number of robots. 30

3.3 The frontier-based exploration with 20 robots. The black areas are

unexplored, and the small grey squares are the targets. 31

3.4 (a): an indoor environment with size of 185m× 126m. (b) the indoor

environment in with randomly distributed cylindrical obstacles. The

solid black circles represent the obstacles. 42

3.5 For the environment presented in Figure 3.4. 43

3.6 The environment maps built by 10 robots following the proposed pro-

tocol. 44

xi

3.7 The total amount of information exchanged by 10 robots with and

without following the proposed protocol in their frontier-based explo-

ration. 46

3.8 The environments mapped by 10 robots with communication loss. . . 47

4.1 An example of robot sensing. 54

4.2 An example of mapping sensor data to actuation commands through

a neural network policy. 56

5.1 An example of control delay. 60

5.2 Control delay in reinforcement learning. 61

5.3 Decoupling environment exploration and policy learning of a robot

through two threads. 63

5.4 Real-time actor-critic architecture (RTAC). 65

5.5 The overview of the asynchronous RTAC 66

5.6 The agent and environments used in experiments 68

5.7 The moving averages of episodic rewards achieved through RTAC

under various control delay. Video demo: https://youtu.be/

6dH7-0Miu7c . 72

5.8 The environments with random obstacle distribution. We used

Ardrone agent model to learn collision avoidance policy through

DDPG based on the RTAC architecture. A video demonstration can

be access through https://youtu.be/or6zQ6z4fqs 74

5.9 Asynchronous reinforcement learning with RTAC. Video demo: https:

//youtu.be/6dH7-0Miu7c . 76

6.1 The overall workflow of Asynd-DDPG. 85

6.2 The local patterns used for training. For each local pattern, a circle is

a initial location, and a star is a goal. 88

xii

https://youtu.be/6dH7-0Miu7c
https://youtu.be/6dH7-0Miu7c
https://youtu.be/or6zQ6z4fqs
https://youtu.be/6dH7-0Miu7c
https://youtu.be/6dH7-0Miu7c

6.3 Learning performance of DDPG and Asynd-DDPG in terms of episodic

rewards. Both methods are evaluated in Env3. 90

6.4 Episodic reward distributions based on moving averages for learning

navigation tasks in Env0, Env1 and Env2. 91

6.5 The trajectories planned by an agent using the multitask policy

based on Env0, Env1 and Env2. Video demo: https://youtu.be/

4TS5nDlku_g . 92

7.1 left: policy; right: q-function with independent and joint embedding

mechanisms. 100

7.2 The parallelized training paradigm of Rec-MADDPG 101

7.3 The agent and environments used in experiments. 105

7.4 Episodic reward distributions during training. IE and JE stand for the

Rec-MADDPG with independent and joint embedding. 106

7.5 Trajectories planned by the policies learned through Rec-MADDPG.

(a)-(c): Rec-MADDPG with independent embedding; (d)-(f): Rec-

MADDPG with joint embedding. Video demo: https://youtu.be/

UqMvFdcCCG4 . 109

xiii

https://youtu.be/4TS5nDlku_g
https://youtu.be/4TS5nDlku_g
https://youtu.be/UqMvFdcCCG4
https://youtu.be/UqMvFdcCCG4

Chapter 1

Introduction

The applications of mobile robots, such as autonomous cars and delivery robots, are

becoming increasingly available and making significant social impact. The deploy-

ment of mobile robots in practice is safety-critical and requires robots to navigate

in environments with high-level uncertainties. As a collision of a mobile robot can

be catastrophic, it is crucial to ensure the safety of the robot and avoid damage to

humans and properties in its surrounding environment.

Collision avoidance is an important problem and has been actively studied in

robotics research. In general, a robot can avoid collisions through map-based and

mapless approaches. This thesis considers a map as a grid representation of a phys-

ical environment that describes the characteristics of obstacles. In the map-based

approach, robots plan collision-free paths first and follow the pre-planned paths dur-

ing navigation. On the other hand, the mapless approach allows a robot to plan its

motion based on local sensor data and take action in real time.

In a navigation task, a robot needs both map-based and mapless approaches to

avoid collisions. This thesis first studies map-based collision avoidance in navigation

tasks involving multiple robots. In this part of study, robots need to collectively build

an environment map, so that they can plan collision-free paths for safe navigation. To

1

build an environment map, the robots adopt the frontier-based exploration strategy

[99, 11]. Specifically, the strategy allows each robot to plan collision-free paths to

different way-points (i.e., frontiers) and progressively build a map for the unknown

regions of an environment. In this study of map-based collision avoidance, robots

following different pre-planned paths may encounter each other during navigation. In

this case, each robot considers the other robots as dynamic obstacles. However, the

environment map built by the robots does not incorporate such dynamics. Besides,

in practice, such an environment map is not perfectly accurate and can mistakenly

present the locations of obstacles [90]. Therefore, during navigation robots must be

able to avoid collisions with encountered obstacles in real time, and it is important

to ensure safe navigation through mapless collision avoidance methods.

The rest of the thesis focuses on mapless approach collision avoidance, where

robots operate in a continuous environment and take actions in real time. The con-

ventional robotics solutions formulate mapless collision avoidance as an optimization

problem, where a robot infers an action by searching its action space at each time step

[24, 46, 54, 94, 95]. Such online action inferring can be computationally expensive,

particularly when a robot has limited computing resources. This thesis presents a

reinforcement learning approach which avoids the expensive online action inferring

and learns a policy for a robot to map its sensor data to optimal actions for mapless

collision avoidance. Such a policy is termed as a deterministic policy in reinforcement

learning literature, as it allows a robot to deterministically select an action at each

time step based on sensor observation.

Historically, reinforcement learning held its promises on learning optimal policies

for small scale problems, but it was unclear about its applicability to mapless colli-

sion avoidance under real-world settings. Developing control solutions for real-world

environments is challenging and must deal with the following issues, including par-

2

tial observability [84], high-dimensional sensor data [51], real-time control delay [19],

multi-task environments [36], and multi-agent interaction [37].

Recently, deep reinforcement learning achieved impressive results in game-playing

[57, 78, 9] and demonstrated its potential of contributing to mobile robot applica-

tions [49, 83, 15, 16]. However, none of these existing solutions consider all of the

issues mentioned above. Applying reinforcement learning to real-world environments

typically involves learning a policy in simulation and deploying the learned policy in

the second phase [91]. Unlike the previous methods, this thesis addresses all the is-

sues mentioned above and learns deterministic policies for mapless collision avoidance

under real-world settings.

In a real-world environment, the data perceived by a robot through on-board sen-

sors is usually high-dimensional. As on-board sensors have limited sensing ranges,

the robot can only observe its surrounding areas, which makes its environment par-

tially observable. Recent reinforcement learning literature shows that using a pol-

icy represented as a recurrent neural network can enable a robot to better estimate

its underlying environment state [27]. To overcome partial observability and high-

dimensional sensor data, we represent a robot’s policy as a deep recurrent neural

network which allows the robot to determine an action based on a temporal sequence

of sensor observation.

A robot navigating in the physical world may need to deal with different scenarios

and cooperate with other robots. Specifically, we define a scenario as an environment

(or a region of an environment) which has a known obstacle distribution. This makes

the physical world be a multi-task multi-agent environment [36, 37]. Here, a task

refers to collision avoidance in a particular scenario. Learning an optimal policy for

mapless collision avoidance requires progressively solving collision avoidance for 1)

a single robot navigating in a particular scenario, 2) a single robot navigating in

multiple scenarios, 3) multiple robots navigating in a single scenario, 4) and multiple

3

Figure 1.1: The examples of the mapless collision avoidance under different settings.
In the examples, a scenario is an environment (or a region of an environment) with
a specific obstacle distribution. For a multi-scenario setting, a robot or robots must
avoid collisions in multiple different scenarios during navigation.

robots navigating under multiple scenarios. Figure 1.1 illustrates examples of those

collision avoidance problems. This thesis presents reinforcement learning methods

which address the above collision avoidance problems, from the simplest single-agent

single-task setting to the most difficult multi-agent multi-task setting.

For mapless collision avoidance, a robot operates in real-time and must determine

an action within a predefined time limit. It is unavoidable for the robot to have a

varying time delay before actuating actions. In the context of reinforcement learning,

we defined the time delay before a robot actuates an action at each time step as

control delay. Through our empirical experiments and theoretical analysis, we found

that control delay with high variance can greatly destabilize reinforcement learning

and can even make an environment Non-Markovian. To reduce the variance of control

delay, we proposed a Real-Time Actor-Critic architecture (RTAC) which allowed

a robot to conduct policy learning and environment interaction with two separate

4

threads. Utilizing the recurrent neural network policy, RTAC enabled asynchronous

reinforcement learning to learn a policy under real-time constraint. The learned policy

allowed a single robot to avoid collisions in a single scenario. Based on RTAC, we

proposed the method, Asynd-DDPG, to learn multi-task policies for a single robot

to avoid collisions in multiple scenarios. Asynd-DDPG can asynchronously learn a

policy with robots under different scenarios. By extending the method, we further

proposed Rec-MADDPG, which can conduct the asynchronous learning based on the

joint states and actions of robots. Rec-MADDPG can effectively handle multi-agent

interaction and learn multi-agent policies for multiple robots to avoid collisions in

multiple scenarios.

We evaluate the proposed work in simulation where robots are configured closely

based on physical mobile robots (i.e., ROSbot and AR.Drone). In experiments, the

simulated robots conduct navigation in physics-enabled maze-like environments. To

support real-time operation, a reinforcement learning method is executed in a separate

process that runs in parallel with robot simulation. This allows a simulated robot

to update its motion while determining an action continuously. We evaluate RTAC

in terms of its capability of stabilizing reinforcement learning and the scalability of

asynchronous reinforcement learning. In the multi-task learning with Asynd-DDPG,

we consider tasks as different mapless collision avoidance behavior environments with

predefined obstacle distributions (i.e., scenarios). An effective multi-task policy must

enable a robot to have a balanced performance on learned tasks and safely navigate

environments consisting of the predefined obstacle distributions. In the evaluation of

Rec-MADDPG, robots in the same environment need to navigate to their own goals.

With effective policies, the robots shall be able to plan coordinated actions during

navigation and reach their goals without collisions.

Through experiments, we demonstrated that RTAC can reduce variance of con-

trol delay and well support asynchronous reinforcement learning under real-time con-

5

straint. Besides, Asynd-DDPG can consistently synthesize the knowledge learned in

different tasks into a balanced policy. The policy allowed a robot to navigate with-

out collisions, even in the unseen environments during training. By projecting the

joint observation of robots into low-dimensional embedding, Rec-MADDPG was able

to effectively learn individual policies for the robots in a cooperative environment.

With those policies, the robots can plan coordinated actions to avoid collisions and

navigate to their goals in different environments. In extensive experiments, RTAC

served as a solid foundation and allowed both Asynd-DDPG and Rec-MADDPG to

learn effective multi-task and multi-agent policies in real-world settings.

We structured the rest of the thesis as follows. Chapter 2 presents the background

related to collision avoidance and reinforcement learning. Chapter 3 introduces the

motivating work based on map-based collision avoidance. Chapter 4 provides the

formal definitions of the problem of mapless collision avoidance. Chapter 5 presents

the architecture for asynchronous reinforcement learning under real-time constraints.

Based on the architecture, Chapters 6 and 7 present the methods for learning multi-

task and multi-agent policies for mapless collision avoidance in real-world settings.

Finally, chapter 8 concludes the thesis.

6

Chapter 2

Background

2.1 Collision Avoidance

A collision of a mobile robot can be catastrophic, and it can cause severe damage to

humans and properties in the robot’s surrounding environment. Collision avoidance

is fundamental for robot navigation, and its solutions can be broadly categorized as

map-based and mapless approaches.

In the map-based approach, a robot has a map of an environment and can plan a

collision-free path to its goal based on the map. Planning a path on an environment

map has been extensively studied, and conventional techniques are based on A* and

D*. During navigation, a robot follows a pre-planned plan to its goal. The map-

based approach assumes that a robot can localize itself through on-board sensors

while navigating in an environment. For localization, Kalman filters and particle

filters are proven techniques for a robot to practically estimate poses in a wide range of

applications. In this thesis, the map-based approach assumes that a robot can localize

itself based on an available environment map and follow a pre-planned path during

navigation. In practice, an environment map usually contains high-level uncertainties

which are caused by dynamic obstacles and noisy sensors of robots. In this case, a

7

robot following a pre-planned path may encounter obstacles that are inaccurately

represented on the environment map. Therefore, it is important for a robot to use

the mapless approach to avoid collisions with unforeseen obstacles.

In the mapless approach, a robot operates in real time and avoids collisions based

on on-board sensor data. Conventional robotic methods formulate the mapless colli-

sion avoidance as a real-time optimization problem. In those methods, a robot needs

to search for an optimal action in its action space (or configuration space) within

a pre-defined time limit. Those methods are commonly based on the techniques of

artificial potential field [39], dynamic window [24] and velocity obstacle [95]. Such

online action inferring can be computationally expensive for a robot with limited on-

board computing resources. It is attractive to avoid the expensive action inferring by

deterministically map robot sensor observation to optimal actions. This is where the

advantages of reinforcement learning arises. Through reinforcement learning, a robot

can learn a policy representing the deterministic mapping through offline trails and er-

rors. However, applying reinforcement learning to mapless collision avoidance is chal-

lenging and often requires a robot to deal with the issues, including high-dimensional

sensor data, partial observability, real-time operation, multi-task environments and

multi-agent interactions.

In this chapter, we reviews the conventional map-based and mapless collision

avoidance methods, according to different numbers of robots and characteristics of

obstacles. In general, the characteristics of obstacles can be static and dynamic. Here,

static obstacles are the obstacles with unchangeable shape and size. They persist

in an environment at a fixed location all the time. On the other hand, dynamic

obstacles are the ones that can move and can have variable shapes and sizes. Besides,

they may not persist in an environment all the time. With the presented review,

this chapter intends to highlight the need of having reinforcement learning as an

8

alternative approach for collision avoidance, which can avoid expensive online action

inferring and learn effective behavior under real-world settings.

2.1.1 Single-Robot Collision Avoidance

In this section, we start reviewing the single-robot collision avoidance methods for

environment that only contains static obstacles. Then, we will review the single-robot

collision avoidance methods which address the environments with dynamic obstacles.

An environment can consist of arbitrary number of static obstacles. For navigation

in the environment. a robot must have a goal to reach. With an environment map,

a single robot can find an optimal collision-free path to its goal. Conventionally, the

robot can plan a collision-free path using A*, D*, Rapidly Exploring Random Tree

(RRT) [46] or Genetic Algorithm (GA). A* and D* algorithm is the standard path-

finding algorithm based on Dijkstra’s algorithm. RRT let a robot randomly sample

the state space (the state of the robot consisting of the position and velocity), and

iteratively build up a tree of sampled states to find the collision-free path to its goal.

With GA, a robot represents its path as a sequence of way-points, which is considered

as an individual in a population. By evolving the population, GA finds an optimal

collision-free path for the robot. If the physical constraints and uncertainties are

considered in path-finding, a robot represents its state as a configuration and plans

its path by searching its configuration space. A configuration of a robot can consist of

more detailed information other than the location of the robot, including velocities,

heading directions, or speed limits. Since the configuration space can be enormous,

a robot can sample the configuration space and infer its optimal path using RRT.

Without an environment map, a single robot can plan its motion based on its on-

board sensor data, in order to avoid collisions. The common techniques are based on

the potential field [42], the dynamic window [24] and nearness diagram [54]. Potential

field based algorithms are extensively studied and widely applied. In this approach,

9

a robot is applied to an artificial force based on the encountered obstacles, and it

adjusts its motion based on the applied force. The dynamic window is defined as a

set of velocities that the robot to reach within a predefined time interval. Within

the set, a robot searches an optimal velocity that can let it move to its goal without

collisions as quick as possible. In the nearness diagram, a robot classifies its local

observations into different situations using a decision tree. For avoiding collisions,

the robot executed the actions associated with each encountered situation.

Starting from this paragraph, this section will focus on single-robot collision avoid-

ance for dynamic obstacles. When an environment contains dynamic obstacles, an

environment map can capture their locations and motion dynamics. In this case, a

robot can plan its optimal path by searching its configuration space, e.g., using RRT.

This collision avoidance problem can also be solved as the case of static obstacles with

an additional dimension of time [25]. In this case, a robot can re-plan its collision-free

paths as needed.

On the other hand, avoiding dynamic obstacles based on local observations con-

sists of three steps: detecting, predicting, and avoiding [21]. Detecting requires a

robot to distinguish dynamic obstacles from static obstacles based on the data per-

ceived through its onboard sensors [21, 10, 48]. For predicting, a robot predicts the

information (or features) describing the motion of detected dynamic obstacles based

on the data collected by its onboard sensors. Broadly, predicting the motion of dy-

namic obstacles can be solved by heuristic-based methods (e.g., always assume that

the obstacle moving forward) and learning methods (e.g., supervised learning or rein-

forcement learning) [102]. For avoiding, a robot avoids the detected dynamic obstacles

based on their predicted motion and the surrounding environment of the robot.

In a real-world application, a mobile robot may need to avoid collisions with hu-

man, such as pedestrians. In this case, a robot can still avoid collisions by following

the general framework: detecting, predicting, and avoiding. When autonomous ve-

10

hicles or vehicles driven by humans are considered as obstacles, they are generally

treated as dynamic obstacles (assuming that they do not react to the robot) in the

reviewed literature. In the detecting step, a robot needs to detect humans in its ob-

served environment. For predicting, a robot predicts the motion of detected humans

using Kalman filters, social studies about human behaviors [64], or human behavior

model estimated offline [2]. In terms of avoiding, a robot needs to behave in a socially

acceptable way, since a pedestrian may change its behavior when a robot is too close

to him [77]. In [40], a robot reasons its velocity space to keep enough distance from

pedestrians. However, it is unavoidable for a robot to get close to humans when a

robot needs to navigate a crowd of humans. In this case, a robot may not be able to

find feasible paths in the step of avoiding, although there are narrow spaces among

pedestrians allowing it to get through. This issue is termed as the Freezing Robot

Problem in [92]. To this end, [92] presents the statistic methods, where a robot

cooperates with pedestrians to navigate through a crowd.

2.1.2 Multi-Robot Collision Avoidance

In this section, we review methods for collision avoidance involving multiple robots.

In a multi-robot setting, a robot needs to avoid collisions with both obstacles and the

other interacting robots. Each robot can treat the other robots as obstacles. Alter-

natively, the robot can also consider the other robots as components of a multi-robot

system, instead of parts of an environment. The application of those two different

treatments of multi-robot interaction depend on the amount of mutual information

shares by robots.

When an environment map is available to a multi-robot system, each robot in

the system can plan a collision-free path based on the map while being mindful of

other robots’ paths. In a multi-robot system, each robot can have an environment

11

map or share a global map. Although robots can plan their paths, they will require

techniques to minimize interfering with each other during their navigation [35].

In the absence of environment maps, robots can avoid collisions based on their

local observation. Collision avoidance in multi-robot systems must allow robots to

plan their motion with navigation plans of other robots. Berg et al. [94] proposed

reciprocal velocity obstacles for multi-robot collision avoidance. Their algorithm al-

lows each robot to infer actions based on the other robots’ velocities and selects an

optimal action that would not result in collisions in the near future. Inspired by the

velocity obstacles, Chen et al. [16] achieve collision avoidance between two robots by

estimating the Q-function for joint states and actions of robots. In their later work

[15], their method is generalized for collision avoidance among multiple robots.

The map-based methods for collision avoidance with static obstacles can be ex-

tended to deal with the dynamic obstacles, even when there are multiple robots sit-

uating in the environment. In this case, each robot can consider the other robots in

the system as dynamic obstacles. Mapless collision avoidance is more actively studied

in the context of multi-robot systems.

For mapless collision avoidance in multi-robot systems, conventionally a robot can

plan its motion based on its observation or the joint observation of all robots. To this

end, many existing methods are based on the Reciprocal Velocity Obstacles (RVO)

algorithm. The concept of RVO [94] is an extension of velocity obstacles (VO), which

is defined as the set of velocities which can make the robot collide with the obstacles

or the other robots in the near future. In RVO, when robots encounter each other,

each robot takes a certain responsibility for avoiding each other. For example, when

the robot ra and rb move directly towards each other, VO based methods let both

robots assume each other as obstacles and turn to their left 60◦. However, with RVO,

each of ra and rb may take 50% of the responsibility for avoiding each other, so they

12

only need to turn 30◦ in this case. The percentage of the responsibility for collision

avoidance is predefined and can be used to model the behavior of each robot.

The RVO has been extensively studied and widely applied [80, 95, 3, 70, 8]. In [28],

RVO based method which accounts the uncertainties introduced by robot localization

is proposed to enable collision avoidance among multiple robots. As an alternative

approach, reinforcement learning has also been actively studied for collision avoidance

in multi-robot systems. Some of the reinforcement learning approaches [15, 16, 51] are

inspired by the VO based approach. That work assumes that each robot can observe

the velocities and locations of the other robots. The estimated policy directly maps

the observations of a robot to the desired velocity command for collision avoidance.

In [44], the multi-agent reinforcement learning is combined with the formation control

method, and the learned Q-function is used by each robot to select escaping direction

in the context of its neighbors. For obstacles, such as pedestrians, robots must predict

their reactions before determining their strategies for collision avoidance.

2.2 Reinforcement Learning

Reinforcement learning requires the interaction between a robot and an environment

to be the Markov Decision Process (MDP). The MDP is defined as a tuple (S,A, T,R).

S defines a state space of a robot, and A is a set of actions the robot can take in

each state s ∈ S. T : S × A × S → R is a transition function, define a probability

distribution over all possible states resulting from an action taken in any state. R :

S×A→ R is a reward function. For each s ∈ S, R assigns a scale value to a robot as

a reward. An environment where a robot situates is Markovian if the future states of

the robot only depend on the present state. Maintaining the Markovian property of

an environment is essential for a reinforcement learning algorithm working correctly.

13

2.2.1 Preliminaries

In reinforcement learning, a robot takes actions in discrete-time and estimates a

parameterized policy µ to determine the strategy of taking action in each s ∈ S. µ

can be stochastic or deterministic. In the stochastic case, µ : S × A → R defines a

probability of a robot taking action a ∈ A in s ∈ S. As for the deterministic case,

µ : S → A directly maps each s ∈ S to an action a ∈ A. An optimal policy µ∗ lets a

robot take an action that gives the maximum expected future reward, s.t.

∞∑
t=0

γtrt

. γ ∈ [0, 1) is a constant discount factor and rt is the reward a robot receives at time

t. For learning µ∗, a value-based approach allows a robot to determine µ∗ using an

optimal value function:

V ∗(s) = max
a∈A

∑
s′

T (s, a, s′)(R(s, a, s′) + γV ∗(s′))

With V ∗, a robot determines the optimal action based on the value of the state

resulting from taking action. This requires the environment model T is known to the

robot. Therefore, a value-based approach based on V ∗ is model-based. Alternatively,

a robot can determine µ∗ using an optimal Q-function:

Q∗(s, a) =
∑
s′

T (s, a, s′)(R(s, a, s′) + γmax
a′∈A

Q∗(s′, a′))

The q-value of a state-action pair Q(s, a) defines the expected future reward that a

robot can receive by taking a in s. A value-based approach based on Q∗ is known

to be model-free. In this case, a robot can select the optimal action a∗ based on the

values of actions available in a given state without relying on an environment model,

14

s.t.

a∗ = argmax
a∈A

(Q∗(s, a))

In contrast to the value-based approach, policy gradient methods directly optimize

a parameterized policy with respect to its expected reward. Let µθ let a policy with a

parameter vector θ. If µθ is stochastic, it can be optimized based on policy gradients

given by

∇θJ(µθ) = E{∇θ log µθ(a | s)Q(s, a)} (2.1)

where ρµθ denotes the probability distribution that a robot visits each s ∈ S using

µθ.

When µθ is deterministic, a robot can optimize it using deterministic policy gra-

dients [79] given by

∇θJ(µθ) = E{∇θ log µθ(s)∇aQ(s, a) |a=µθ(s)} (2.2)

∇θ log(µθ(s)) is a Jacobian matrix where an entry in row i and column j represents

the gradient of the ith parameter for the jth action. ∇aQ(s, a) is a vector of gradients

with respect to the Q-function for the action selected by µθ in a state. This thesis

uses Q-functions to estimate policy gradients, and alternative estimations of policy

gradients can be found in [74].

In policy gradient methods, a Q-function can be unknown to a robot initially. In

this case, a robot must fit its Q-function based on its state-action trajectories sampled

from an environment, while evaluating policy gradients according to equation 6.1 or

7.1. A method alternating between fitting a Q-function and optimizing a policy is

called an actor-critic method.

15

2.2.2 Multi-Task Reinforcement Learning

Multitask reinforcement learning allows a robot to learn a single policy for handling

multiple related tasks. One would expect that the tasks to be learned are simple

tasks. Through multitask reinforcement learning, a robot can asymptotically reach

optimal performance on solving any of the learned tasks. It is not always desired to

learn a policy that can handle all the tasks at the same time. Besides integrating

knowledge from different sources, a robot should also be able to generalize or transfer

the knowledge learned from previous tasks for solving new tasks.

In multitask reinforcement learning, a single robot learns multiple tasks, either

sequentially or simultaneously. In terms of learning multiple tasks sequentially, much

work has been studied under the topics of Lifelong Learning [4, 88], and Curriculum

Learning [22, 53]. Recently, simultaneous multitask reinforcement learning has been

actively studied, and impressive results have been achieved in discrete environments

[20, 29]. On the contrary, multitask reinforcement learning in continuous environ-

ments are less focused, and recent work on these topics is [17, 100].

For learning a multitask policy, Deisenroth et al. [17] studied multitask rein-

forcement learning in the context of robotics for continuous control. In their work,

a multitask policy is represented as a function of robot states and tasks, and, at

each optimization step, a single robot optimizes the policy using the policy gradients

averaged overall tasks. Yang et al. [100] proposed multi-DDPG, which learns sim-

ple robotic control tasks with multiple DDPG actors. With a single shared critic,

multi-DDPG learns tasks, specific actors, for each continuous control task.

Using regularization to enable multitask learning has been studied in recent lit-

erature. Teh et al. [87] applied γ-discounted KL divergents to task-specific policies

in order to simultaneously distill them into a central policy. To learn tasks with dif-

ferent reward scales in parallel, Hessel et al. [29] regularize the gradient update of

a shared value function by applying PopArt normalization [97] to task-specific state

16

values. This thesis utilizes Dropout regularization for learning multitask policies and

proposed a multitask reinforcement learning method, Asynd DDPG. Compared to the

aforementioned methods, Dropout regularization is a simple but effective technique

for enabling asynchronous multitask reinforcement learning. It avoids having need of

task-specific information (e.g., task IDs) for synthesizing knowledge learned in indi-

vidual tasks into a meta policy. This sheds light on a better direction for learning a

multitask policy.

2.2.3 Multi-Agent Reinforcement Learning

In multi-agent reinforcement learning (MARL), robots are asked to learn a global

policy or individual local policies for solving tasks in cooperative, competitive, or

mixed environments. Compared to single-agent reinforcement, reinforcement learn-

ing applied to a multi-agent system faces with a unique challenge posed by inter-

actions among robots. The interactions can introduce randomness to the learning

process and can make their environment non-Markovian. Consequently, the theoret-

ical guarantees in single-agent reinforcement learning may no longer hold. Ensuring

the Markovian property of an environment is essential for a multi-agent reinforcement

learning method to learn optimal policies for a team of robots for solving their tasks

at hand.

Multi-agent reinforcement learning can be modeled as a Markov Game.

(N,S,A,P,R)

N is a set of robots. S = {S1, . . . , Sn} is state spaces of all robots in N. A =

{A1, . . . , An} is action spaces of all robots in N. Let S = S1×· · ·×Sn and A = A1×

· · ·×An be the joint state and action spaces of all robots in N. P : S×A ×S → [0, 1]

is a joint state transition function, and R = {R1, . . . , Rn} is a set of reward functions

17

for each robot in N, and Ri : S × A → R is the reward function of robot i in

N. In a Markov game, a environment is assumed to be Markovian, and robots take

their actions at the same time. In the above definition, robots are assumed to have

complete observation of an environment state.

Broadly, approaches to MARL can be categorized as the Independent Learner

(IL) approach and the Joint Action Learner (JAL) approach [12]. In IL, each robot

independently learns its own policy and value function. As early work based on

IL, [86] empirically proved that independent Q-learning robots can converge on poli-

cies satisfying Nash-equilibrium in certain conditions. Alternatively, JAL learns a

global policy that maps the joint states of robots to their joint actions. In this case,

MARL is deduced as single-agent reinforcement learning. Although JAL inherits the

convergence guarantees from single-agent reinforcement learning, the joint state and

action spaces grow exponentially as the number of robots increases. This poses a

great challenge for the existing single-agent reinforcement learning (e.g., deep rein-

forcement learning) methods to learn a general policy for controlling multiple robots

simultaneously.

Recently, Lowe et al. proposed MADDPG [52], which follows the framework of

centralized learning with distributed execution. Lowe et al. evaluated the effective-

ness of MADDPG in various simple environments, where decentralized single-agent

reinforcement learning methods [57, 50, 55] failed to learn. However, the application

of MADDPG to real-world settings was not studied. In practice, robots typically

observe an environment through sensors, and it is common for robots to have a high-

dimensional observation. This thesis applies MADDPG to real-world settings and

learns individual policies for robots with high-dimensional observation in cooperative

environments.

Relying on deep neural network representation of value functions, recent literature

[82, 67] addressed multi-agent learning with value-based methods. Sunehag et al. [82]

18

learned q-functions based on linearly decomposed team rewards. Later, Rashid [67]

extended this work and learned individual q-functions by decomposing a factorized

joint q-function in a non-linear way. In contrast to [82, 67], the proposed method

learns a separate q-function directly based on agent-specific rewards and allows the

q-function to determine the q-values in the condition of joint observation and actions.

2.2.4 End-to-End Reinforcement Learning

In end-to-end reinforcement learning, a robot learns to map its sensor observation to

its actuation commands. It greatly simplifies the design of a robot control while still

enabling the robot to have optimal performance. As sensor observation and actuator

commands pose enormous state and action spaces, finding exact mapping can be

infeasible. In recent literature, end-to-end reinforcement learning approximates the

mapping through deep neural networks, as they are commonly considered as universal

function approximators in principle.

End-to-end reinforcement learning studies were mostly in single-agent domains

[57, 50, 27, 104, 84]. It was made popular by Mnih et al. [57] for learning Deep Q-

Networks (DQN) to play Atari games at a superhuman performance. Later, Lillicrap

et al. [50] applied end-to-end reinforcement learning to continuous control. The

authors proposed the DDPG algorithm, which learns deterministic policies based on

deterministic policy gradients. DDPG uses slowly evolved target neural networks

to stabilize learning. DDPG was able to learn effective policies in various robot

continuous control tasks in simulation. By extending DQN, Hausknecht et al. [27]

proposed Deep Recurrent Q-Networks (DRQN) for learning end-to-end policies in

partially observable environments. The authors demonstrate that recurrent neural

network was able to enable a robot to overcome its partial observability and learn

optimal policies based on local observation. The aforementioned work are in simulated

19

environments, and they showed the potential of applying end-to-end reinforcement

learning to practice.

Zhu et al. [104] learned end-to-end policies for visual-based indoor navigation.

The authors proposed an actor-critic method to learn a policy that directly maps the

image sensor data to actions. Utilizing pre-trained image embedding networks, they

were able to generalize the policy learned in simulation to the physical environment

and allows a robot to navigate to a target only based its visual input. For mapless

collision avoidance, Tai et al. [84] extended DDPG for an asynchronous setting and

learned a deterministic policy that maps range sensor data to steering commands.

The authors learned the policy in a simulated environment and were able to transfer

the learned policy to a real-world environment for safe navigation. However, their

work is based on low dimensional range sensor data (i.e., ten range measures are

perceived at each sensor scan). For practical deployment, end-to-end reinforcement

learning should be able to incorporate high dimensional sensor data.

Extending the success of single-agent end-to-end reinforcement learning to a multi-

agent setting faces a great challenge. The interaction among robots makes an environ-

ment non-stationary. This issue was actively studied in [43, 16, 51, 45, 23]. However,

the existing methods either are direct extension of single-agent reinforcement learn-

ing [51, 26] or focus the scenarios where each reinforcement learning agent has small

state and action spaces [52, 45, 23]. Applying those methods to robots with higher-

dimensional state and action spaces is still an open problem. In this case, learning

optimal policies quickly becomes intractable, since the search space of joint policies

grows exponentially as the number of robots increases.

20

Chapter 3

Map-based Collision Avoidance in

Navigation Tasks

Map-based collision avoidance requires robots to plan collision-free paths based on an

environment map. However, an environment map is usually not available to the robots

in advance, and the robots must build the map through environment exploration.

This chapter studies environment exploration with multiple robots in simulation.

While exploring an environment, robots need to plan collision-free paths based the

environment map that they progressively build.

Environment exploration studied in this chapter is essentially navigation tasks in-

volving multiple robots. With the growing popularity of the internet of things (IoT)

and cloud computing technologies, modern robotic devices can communicate with

each other either globally or locally. In this chapter, we study environment explo-

ration under both centralized and distributed settings, which are defined based on the

communication ranges of robots. Through the study, this chapter demonstrates that

safe navigation requires both map-based and mapless collision avoidance approaches.

As the environment map can not accurately present all possible obstacles, the robots

21

follows pre-planned paths must use the mapless approach to avoid unforeseen obsta-

cles based local sensor observation.

3.1 Centralized Environment Exploration

This section studies multi-robot environment exploration under a centralized setting.

In the exploration task, robots need to build map environments and collect discovered

targets. We assumed that a centralized device integrates sensor data of all robots

into a consistent map and plans collision-free paths for each of the exploring robots.

Specifically, we simulate the target collection behavior of a robot as navigation from

the location where a robot discovers a target to a dedicated location in the same

environment (i.e., a home base).

This section extends the frontier-based exploration algorithm proposed in [11]

to simultaneously explore the unknown environment and collect discovered targets

with multiple robots. During exploration, the discovered targets require immediate

harvesting [47]. In this case, robots should be allocated efficiently, so that the tasks

of environment exploration and target collection can be well balanced.

Task allocation was effectively applied to multi-robot exploration by other re-

searchers [62, 98]. However, among those works, balancing the performance of target

collection and environment exploration did not receive enough attention. The pro-

posed work provides insights on how a multi-robot exploration strategy can get benefit

from robot target-collection behavior. In extensive simulation runs, we evaluated the

collision-free paths planned by robots based on their environment map, according

to: 1) their total travel time, 2) the total length of their paths, 3) and exploration

redundancy. We compared the proposed work with the frontier-based exploration

algorithm proposed in [11] and demonstrate that our work can better balance the

tasks of environment exploration and target collection.

22

3.1.1 Problem Statement

We let n robots explore an unknown environment consisting of m targets and k

obstacles. The targets in the environment are randomly distributed, and the obstacles

are circular regions preventing robots from entering. We assume that the robots can

communicate and exchange information globally and can connect to a central device

(e.g., a cloud service). The central device represents an environment as a grid-based

map and plans a robot path as a sequence of way-points on an environment map.

3.1.2 Solution Approach

In our foraging task, robots need to simultaneously explore the entire environment

while continuously collecting all discovered targets. To effectively fulfill the task,

the proposed work extended the multi-robot exploration algorithm proposed in [11].

In contrast to the original algorithm, the proposed algorithm is integrated with an

auction-based task-allocation method, which can balance tasks of environment ex-

ploration and target collection. For clarity, this section first explains the multi-robot

exploration algorithm that has been extended and then introduces how it is integrated

with the auction-based task-allocation method.

Coordinated Multi-Robot Exploration with Frontiers

During exploration, a global occupancy map[89], which represents the environment,

is shared and maintained by all robots. Since robots are assumed to have accurate

sensing capability, the occupancy probability Po(ci,j) of the cell ci,j within the sensor

range (the probability that a cell with row index i and column index j in the occupancy

map is occupied by an obstacle) can be either 0 or 1. In general, ci,j can be in one of

three conditions:

open: Po(ci,j) = 0;

23

occupied: Po(ci,j) = 1;

unknown: Po(ci,j) is not determined.

Robots explore the environment by moving toward frontiers that will provide the

best utilities. Frontiers are defined as the open cells lying on the boundaries between

explored and unexplored areas [99]. The utility of a frontier f , Ur(f), for robot r, is

determined by two factors, the cost for r to reach f and the number of robots moving

toward f . Let Rt be a set of robots to choose a frontier cell to move at time t. For

each r ∈ Rt, Cr(ci,j) is the cost for r to reach the cell ci,j.

Before the cost is evaluated for a robot, a copy of the global occupancy map is

convoluted with a 5 × 5 Gaussian filter. After the convolution, the obstacles rep-

resented in the map become larger, so that the robot will not move too close to

obstacles. With the convoluted copy of the global occupancy map, the cost for each

robot moving toward each of its frontiers is evaluated using Algorithm 1.

Algorithm 1 Calculate cost for robots moving toward frontiers

1: function MapCost(Rt)
2: for each r ∈ Rt do
3: cr ← the cell where r locates
4: for each cell ci,j in the global occupancy map do
5: if cr = ci,j then
6: Cr(ci,j)← 0
7: else
8: Cr(ci,j)←∞
9: while there exists ci,j, s.t. Cr(ci,j) =∞ do
10: for each cell ci,j in the global occupancy map do
11: if ci,j is not unknown then
12: Cr(ci,j)← min

δi,δj∈{−1,0,1}
{Cr(ci+δi,j+δj) · (1 + Po(ci+δi,j+δj))}+ 1

Lines 4 to 8 initialize Cr(ci,j) to either 0 or ∞, depending on the location of

the robot, r. Then Cr(ci,j) is updated within the nested-loop from lines 9 to 11.

Po(i+δi, j+δj) is the probability of an obstacle to be at the location (i+δi, j+δj). Line

11 makes sure that the cost for cells within the frontier boundary. After computing

24

Cr(ci,j) for all cells within the frontier boundary, next step is to choose a frontier for

each robot to move.

Let P (ci′,j′ |ci,j) be the probability of the cell ci′,j′ being covered by the robot in the

cell ci,j. According to [11], P (ci′,j′|ci,j) is approximated as P (ci′,j′ |ci,j) = max(0, 1 −

dc/l), where dc is the Euclidean distance from ci,j to ci′,j′ and l is the maximum sensor

range of robots. After sensing the environment, each robot in Rt simultaneously

updates the Po(c) of all the cells it covers in the global occupancy map. The robot

with the smallest ID in Rt will assign new frontiers for all in Rt using Algorithm 2. To

cover the entire environment, robots keep expanding explored areas until no frontiers

are left.

Algorithm 2 Assign a new frontier to each robot

1: function AssignFrontiers()
2: determine the set of frontiers F from the global occupancy map;
3: for all fi ∈ F , set all utilities U(fi) = 1
4: for each robot rj ∈ Rt do
5: f ∗ = argmaxfi∈F (U(fi)− β · Crj(fi))
6: set f ∗ to be rj’s frontier
7: ∀fi ∈ F , U(fi)← U(fi)− P (fi|f ∗)

Balancing Environment Exploration and Target Exploitation

Robots deliver items from targets as they are discovered. As the target discovery

continues, many robots will move toward a fewer number of remaining frontiers and

cause congestion. Since the number of Explorers is reduced as well, the congestion

is reduced. The proposed work uses an auction-based method to allocate robots for

discovered targets. Note that neither the number nor the locations of targets are

known in advance. Therefore, it is extremely difficult to compute the number of

robots for each target before all targets are found. Algorithm 3, however, ensures

that each target will be served by at least one robot.

25

Algorithm 3 Allocate a robot for a discovered target (executed by each robot)

1: function RobotAtAuction()
2: while auction is not closed do
3: listen to all the other robots
4: if discovered a target T then
5: become auctioneer
6: broadcast T ’s location (xT , yT)

7: if received a target location (xT , yT) then
8: store (xT , yT) in r’s local memory
9: if r is an Explorer then
10: bid← (1− dr,T/dmax) + α · (1− n∆t/N)
11: broadcast bid
12: if r is the auctioneer and
13: received the set of bids, B, from all robots in RE

t \ {r} then
14: best bid = max(B)
15: winner ← the bidder of the best bid in B; // determine the winner
16: broadcast winner
17: if received winner and r = winner then
18: become Worker
19: close the auction

The robots have two types: Explorers and Workers. They switch the roles appro-

priately. Let RE
t be the set of Explorers at time t. Once a target is discovered by a

robot, the robot will become an auctioneer and start auction among all the robots in

RE
t . A centralized scheduler ensures that only one auction can be triggered at any

time. The auction in Algorithm 3 consists of four steps:

Announce Task: an Explorer becomes an auctioneer after broadcasting a task;

Bid Task: an Explorer submits a bid to the auctioneer after valuating a task;

Determine Winner: the auctioneer determines the winner based bids;

Close Auction: the auctioneer broadcasts the winner and closes the auction.

The robots’ bidding behavior influences the results of an auction. In our algorithm,

a robot r bids a target T based on two factors: the distance dr,T from r to T and n∆t,

the number of unknown cells explored by r within the last ∆t time units. Let N be

26

the number of cells in the global occupancy map and dmax be the maximum possible

distance between any robot and any target. The bidding function of a robot is a linear

combination of task valuation (1−dr,T/dmax) and robot fitness α · (1−n∆t/N), where

α is a constant ranging over [0, 1]. Because of the bidding function, a robot that is

closer to the target and covers fewer cells recently will bid higher for the announced

target. The robots explored more unknown cells tend to have a better chance to

explore more unknown cells in the future; these robots should not become Workers

easily. Once the auctioneer receives all the bids, it will set the Explorer, which bids

the highest value to be the winner of the auction. The winner will become a Worker

and move directly back and forth between the discovered target and the base. If

the auctioneer does not win, it will become a regular Explorer. Regarding obstacle

avoidance, the proposed work employs the method proposed by [32] for all the robots,

including Explorers and Workers. Note that Workers can enter the unexplored areas

while collecting targets since they know both locations and radius of risk areas in

advance.

When exploration is completed, remaining Explorers, RE, will also be allocated

to transport discovered targets. The proposed work lets the robot with the lowest ID

in RE randomly assign each of the robots in RE to one of the discovered targets.

3.1.3 Evaluation

The proposed work is evaluated in simulation and is conducted on a server with an

8-core CPU and 128GB memory. For 100 robots, one instance of simulation takes

about two days. Each experiment reports the average performance of 12 simulation

instances with standard deviation. The frontier-based exploration algorithm with no

auction is evaluated by a fewer simulation runs for each experiment instance, since

the algorithm shows similar performance in each simulation given the same number

of robots.

27

This section first investigates how frontier-based exploration performs with differ-

ent numbers of robots. After that, the effects of the auction-based task allocation on

robots’ exploration performance are studied.

Frontier-based Exploration with Various Number of Robots

Given a number of robots, the performance of their exploration is evaluated based on

three criteria:

Trajectory Length: total length of robot trajectories during exploration;

Exploration Time: total time for robots to complete their exploration;

Redundancy: times of robots repeatedly updating the same cells in the global map.

Both trajectory length and exploration time are easy to understand, but the re-

dundancy deserves more explanation. During exploration, all robots simultaneously

update the global occupancy map based on their sensor data. Therefore, a cell’s oc-

cupancy probability, in the global occupancy map, may be updated by more than one

robot at nearly the same time. This is unlike the work proposed in [89, 11], where

cells’ occupancy probabilities are learned based on all robots’ observation. Since

it has been assumed that robots have accurate sensing capability, ideally, each cell

should be updated only once. However, coordination among robots may sometimes

be inefficient; some cells may need to be updated more than once. For evaluation

purpose, each deployed robot keep track of the number of unknown cells in the global

occupancy map during entire exploration. Let R denote a set of deployed robots,

and nr denote the number of cells covered by a robot r during entire exploration.

Formally, exploration redundancy is defined as NR−N , where NR =
∑

r∈R nr and N

is the total number of cells in the global occupancy map (as defined in section 3.1.2).

Figure 3.4 shows the environment to be explored. The frontier-based exploration

algorithm is evaluated based on different numbers of robots, including groups with

28

Figure 3.1: The square at bottom left of the figure is the home base and the smaller
squares are the targets to be collected. The grey circles represent the risk areas which
the robots should avoid.

sizes of 1, 5, 10, 20, 40, 60, 80 and 100. The resulting performance is presented in

the left column of Figure 3.2.

Frontier assignment algorithm encourages robots to explore the environment in

diverse directions. Consequently, exploration should speed up when more robots are

deployed. Figure 3.2-(a) shows the results, where the time of exploration decreases

non-linearly as the number of deployed robot increases. Figure 3.3 illustrates an ex-

ample of the frontier-based exploration, given 20 robots. In Figure 3.2-(a), the time

for finishing exploration does not change significantly when the number of deployed

robot exceeds 20. On the other hand, Figures 3.2-(b) and (c) show that both trajec-

tory length and exploration redundancy increase as more robots are deployed. The

reason is that robots have to avoid colliding with each other more frequently as the

environment becomes more ”crowd.” When robots are more close to each other, the

29

0 20 40 60 80 100
0

0.5

1

1.5

2
·104

number of robots

av
g.

to
ta

ln
um

be
r

of
it

er
at

io
ns stand alone

(a)

20 40 60 80 100

1,000

2,000

3,000

4,000

number of robots

av
g.

to
ta

ln
um

be
r

of
it

er
at

io
ns stand alone

no auction
with auction

(b)

0 20 40 60 80 100

2

4

6

8

·104

number of robots

av
g.

to
ta

ll
en

gt
h

of
tr

aj
ec

to
ri

es

stand alone

(c)

20 40 60 80 100
2

4

6

8

·104

number of robots

av
g.

to
ta

ll
en

gt
h

of
tr

aj
ec

to
ri

es

stand alone
no auction

with auction

(d)

0 20 40 60 80 100

0

1,000

2,000

3,000

4,000

number of robots

av
g.

ex
pl

or
at

io
n

re
du

nd
an

cy stand alone

(e)

20 40 60 80 100

1,000

2,000

3,000

4,000

number of robots

av
g.

ex
pl

or
at

io
n

re
du

nd
an

cy stand alone
no auction

with auction

(f)

Figure 3.2: Left column: performance of stand-alone frontier-based exploration.
Right column: performance of stand-alone frontier-based exploration and frontier-
based exploration with target delivery. Standard deviation is presented for the result
of each given number of robots.

area covered by a robot’s sensor will more likely overlap with the areas covered by

the other robots.

The results from frontier-based exploration suggest that there is an optimal num-

ber of robots for exploring an environment with unknown size. As the size of unex-

plored areas shrinks during exploration, the number of exploring robots should also

be reduced accordingly, to avoid congestion.

30

(a) t=10 (b) t=30 (c) t=50

(d) t=70 (e) t=90 (f) t=100

Figure 3.3: The frontier-based exploration with 20 robots. The black areas are unex-
plored, and the small grey squares are the targets.

Effect of Task Allocation on Exploration

To better understand the effects of the auction, this section presents two series of ex-

periments. The first series allocate the robot without auction, and then the resulting

performance is compared with the performance of the proposed auction-based task

allocation method.

Task Allocation without Auction

This part of the experiments firstly lets any robot which discovers a target directly

become a Worker to collect the target. In contrast to the performance of the stand-

alone frontier-based exploration, the evaluation of the proposed work is based on a

different number of robots: 20, 40, 60, 80, and 100. The resulting performance is

presented in the right column of Figure 3.2.

31

Turning Explorers as they discover a target to Workers has limited effects in

improving exploration efficiency. Figure 3.2-(d) shows that this approach takes a

long time to explore the entire environment when the number of robots is less than

60. If robot density is low, the frontier-based exploration algorithm can well disperse

robots. In this case, deploying more robots can speed up the exploration process

because explored areas can be expanded in more different directions simultaneously.

However, the exploration will be slowed down when some Explorers become Workers.

According to the results reported earlier, the total exploration time decreases non-

linearly due to congestion. When the number of robots is too high (> 60), having

some Explorers become Workers can ease congestion. As a result, total exploration

time can be reduced.

Even without auction, as presented in Figure 3.2-(e), the trajectory traveled by

robots is significantly decreased when the task allocation method is deployed. Figure

3.2-(f) shows that the exploration redundancy is also slightly decreased due to the

task allocation method. The reason is that no matter how many robots are deployed

initially, the probability of having an area sensed by multiple robots always decreases

as there are fewer Explorers remaining. As a result, overall exploration redundancy

is decreased.

Auction-based Task Allocation

In the first series of experiments, the robot discovering a target must be closer to the

target than most of the other robots, although the experiments could not guarantee

that it is the closest one. Therefore, task valuation is effective for allocating robots.

The second series of experiments linearly combine task valuation and robot fitness

in robots’ bidding functions (as defined in Section 3.1.2). The goal of having robot

fitness is to allocate robots that contribute less to the exploration to collect targets.

In this series of experiments, the constant α is empirically set as 0.5, and the fitness

32

of a robot is evaluated based on the number of cells covered by the robot in the global

occupancy map within the last 100 simulations iterations. The effect of the auction

with both task valuation and robot fitness is shown in the right column of Figure3.2.

In Figures 3.2-(d) and (e), both exploration time and trajectory length are re-

duced, due to auction. With the bidding function, a robot at a better exploratory

position can keep exploring the environment rather than being allocated for target

collection. Instead, a robot that is left behind has a higher probability of becoming

a Worker, because the areas close to it assigned frontiers are often explored by the

robots moving in front of it.

Figure 3.2-(f) shows that exploration redundancy in this series of experiments is

almost identical to the one in the stand-alone frontier-based exploration. This is an

indication that the proposed auction-based task-allocation method performs well on

minimizing the impact of target collection on environment exploration.

3.2 Distributed Environment Exploration

In this section, we study environment exploration with multiple robots under a dis-

tributed setting. In this exploration task, robots have limited communication ranges

and must build consistent maps of their environment in their local memory. Based on

the consistent local maps, robots can plan their own collision-free paths to different

way-points, in order to safely explore an environment. To this end, we study commu-

nication protocol which enables robots to synchronize their local environment map

in an efficient way. Specifically, the communication protocol serves two purposes: 1)

enabling robots to form communication networks during exploration, 2) and allowing

the robots to synchronize their local environment maps.

Designing an effective protocol, which can meet above purposes, needs to deal with

the following challenges. First, robots can quickly exhaust their limited resources after

33

intensive communication. Second, avoiding redundant information to save communi-

cation bandwidth can violate convergence guarantee of a consensus protocol. Third,

a communication network formed by robots can dynamically change. It is difficult to

ensure network connectivity, particularly in the presence of communication loss [33].

Although the convergence of min, max, and average consensus solutions have been

proven under different communication network dynamics [60, 13, 61, 69, 58, 34], the

existing consensus-based methods are communication heavy.

Addressing the above challenges, we proposed a consensus-based protocol for build

consistent local environment maps in distributed environment exploration. During

exploration, robots following the proposed protocol can dynamically constitute con-

nected communication networks and synchronize their local environment maps. The

proposed protocol is computationally efficient. It allowed robots to keep track of

their communication history and avoid exchanging redundant information. The pro-

posed protocol could preserve its convergence even in the presence of communication

loss. In experiments, the proposed protocol is evaluated based on the well-known dis-

tributed frontier-based exploration [11]. In extensive experiments, the proposed pro-

tocol demonstrated its impact on robot exploration performance and demonstrated

its efficiency in terms of its communication demand. Also, the proposed protocol

was robust and can enable robots to build consistent maps, even in the presence of

communication loss.

Consensus-based algorithms have been studied in the context of distributed multi-

robot systems. Aragues et. al [6] proposed an offline method where robots used a

consensus algorithm to estimate their global frame of reference for merging their

local environment maps. Later, the authors [7] proposed an online algorithm that

allowed robots to merge their feature-based environment maps during exploration.

In [7], robots estimated their average position through a consensus algorithm for

merging their local environment maps. Different from those existing methods, our

34

work focused on the grid-based environment map. Besides, our work enabled robots

to avoid exchanging redundant information and was robust against communication

loss.

3.2.1 Problem Statement

This section presents the consensus-based communication protocol for building con-

sistent local environment maps in distributed exploration. Let N = {1, 2, . . . , n}

be a set of robots. Each robot i ∈ N has an n × m grid Mi which represent

the environment mapped by the robot. Each cell ci in Mi corresponds to a square

area in the environment where robot i operates, and it is associated with a label

L(ci) ∈ {open, occupied, unknown}. Let Mi(t) be the environment map built by

robot i at time t. Let Mi(t) be the state xi(t) of robot i at time t, s.t.

xi(t) = Mi(t)

Let G(t) = (V,E) denote a unweighted undirected graph representing a communica-

tion network formed by some robots V ⊂ N at time t. E is a set of edges, where

each eij ∈ E indicates that robot i and j can communicate with each other. For each

robot i ∈ V , the robot update its state xi(t) according to a protocol µi(t), s.t.

ẋi(t) = µi(t)

Let xi(t) be a initial state of robot i at time t; x(t) be a vector of xi(t),∀i ∈ V .

Robots in V reach χ-consensus, if there is a stable state x∗ = χ(x), s.t. ∀i ∈ V ,

xi(t+ δ) = x∗ with δ →∞.

35

3.2.2 Solution Approach

The proposed consensus-based protocol enables robots to share environment maps in

distributed exploration. Robots following the proposed protocol can form connected

communication networks and synchronize their local environment maps. Robots usu-

ally have limited computing resources and may suffer communication loss in practice.

The consensus-based protocol is designed to let robots keep track of their communica-

tion history and avoid communicating redundant information. Besides, the proposed

protocol can preserve its convergence guarantee in the presence of communication

loss.

Let G(t) = (V,E) be a connected graph representing a communication network

constituted by a set of robots V ⊂ N at time t. For each i ∈ V , let Skni (t) be a set

of cells known to robot i, s.t.

Skni (t) = {ci | ci is a cell of Mi(t) and L(c) 6= unknown}

Let N(i) be the neighbors of robot i; h be a function, s.t.

h(ck, k) =


1, if ck ∈ Sknk ,∀k ∈ N(i).

0, otherwise.

(3.1)

To avoid broadcasting redundant cells, at time t, an robot i will broadcast a set

of cells Ssti (t+ δ), s.t.

Ssti (t) = {ci | ci ∈ Skni (t) and ∃k ∈ N(i), h(ci, k) = 0}

Intuitively, Ssti (t+ δ) contains all the cells in Mi(t) that haven’t been sent to all the

neighbors of robot i. Let δ be the time that have passed after the initial time t. At

36

time t+ δ, each i ∈ V updates its state xi(t+ δ) according to the consensus protocol

µi(t+ δ) = l(
⋃

k∈N(i)

Sstk (t+ δ)) (3.2)

where l is a function which updates Mi(t+ δ) based on the cells robot i has received

from its neighbors.

Theorem 1. Let G(t + δ) = (V,E), ∀δ ∈ N, be a connected graph with node set V

and edge set E, where t is the time when G is initially formed and δ is the passed

time steps after t. Suppose G(t + δ),∀δ ∈ N, has fixed topology, and there is no

communication loss among robots. As δ → |V |, protocol 3.2 can have all i ∈ V reach

χ-consensus, where each Mi(t) is merged with Mj(t),∀j ∈ V/{i}.

Proof. The convergence of protocol 3.2 can be proved by contradiction.Besides,

the proof also derives the upper bound of δ for robots to reach consensus.

S =
⋃
∀i∈V S

kn
i (t) is the total possible known occupancy probabilities that can

be exchanged by all robots over the period of δ. According to the update function l,

the number of known cells in robot i’s environment map Mi(t + δ) is monotonically

increasing with respect to δ. Here, a robot i ∈ V is considered to have a cell c ∈ S ,

if the cell c is known in Mi(t+ δ).

Suppose Skni (t + δ) ⊂ Skn, as δ →∞. In this case, let j be an robot that can be

reached by i, and j does not have a cell c. According to the definition of l, all the

robots in N(j) must not have c in their environment map. Besides, the neighbors

of robots in N(j) must not have c too. By induction, all the robots in G that can

be reached from vi must not contain c. Since G(t + δ) is connected and has a fixed

topology for all δ ∈ N, there is always a path from i to each of the other robots. This

contradicts the assumption of Skni (t + δ) ⊂ Skn. Therefore, Skni (t + δ) = Skn for all

i ∈ V , as δ →∞.

37

Algorithm 4 Forming connected communication networks

1: function ConstituteNetwork()
2: listen for messages from other robots
3: if connected to robot k then
4: if k /∈ N(i) then
5: Stop moving
6: N(i)← N(i) ∪ {k}
7: use protocol 3.2 to update Mi(t) based on Sstk (t+ δ)
8: broadcast Ssti (t+ δ)
9: δ ← δ + 1

10: if N(i) = {} or reached consensus then
11: continue to explore the environment
12: δ ← 0

To derive the upper bound of δ, the application of protocol 3.2 is considered as

information cascade on G(t). cj ∈ Sknj (t) is propagated from j to i, if i receives cj

from j. At each time step, each robot i ∈ V propagate all ci ∈ Skni (t) to all the other

robots. For all robots in V , Skni (t) are propagated in parallel. Note that, at each

time step, each cell ci in Skni (t) can be propagated one hop between two robots, and

the propagation stops when a robot has already had ci. In this case, there is no cycle

during the propagation. Because of the parallel propagation, the time for robots

to reach consensus is determined by the longest simple path that ci is propagated

through. In G(t), the longest simple path between any two robots has the length of

|V | − 1. Therefore, the time step for robots in V to reach χ-consensus is bounded by

|V |.

To synchronize local maps of robots, the protocol 3.2 requires G(t+ δ) to remain

connected for all δ ∈ N . To constitute a connected communication network during

exploration, each robot in V try to connect to its nearby robots periodically. A robot

i stops moving when it connects to another robot, and then it starts broadcasting

Si(t). Let t be the time when robot i joins a communication network. Algorithm

4 presents the protocol for robots to constitute a connected communication network

during exploration.

38

A robot considers other robots in the same communication network reaches con-

sensus, if its own environment map has not been updated for a certain amount of

time. Note that, according to protocol 3.2, two robots will broadcast empty sets of

cells to each other, if they have already shared all the known occupancy probabilities

in their own environment maps.

Theorem 2. At any time t, the communication network G(t+δ),∀δ ∈ N, constituted

by robots using Algorithm 4 is connected.

Proof. Based on Algorithm 4, during exploration an communication network is ini-

tialized two robots. Given a communication network G(t) consisting of n robots,

n ≥ 2. Suppose G0(t) is G(t)’s initial network consisting of two robots i and j. Let

k be the third robot joining G(t) at time t + 1. In this case, k must be able to

communicate with either i or j. Since G(t+ 1) is undirected, there is a path between

any two of i, j and k. Therefore, G(t+ 1) is connected.

To prove the network connectivity by induction, G(t + δ),∀δ ∈ N is defined as a

connected undirected graph representing a communication network formed by a set

of robots V at time t+ δ. Let x be an robot joining G(t+ δ) at time t+ δ+ 1. In this

case, x must be able to communicate with at least one robot i ∈ V . Since G(t+ δ) is

connected, each j ∈ V/{i} has at least one path to i, and vice versa. Since for each

i ∈ V there is at least one path between i and x, G(t + δ + 1) is a connected graph.

By induction, G(t + δ),∀δ ∈ N is connected. Therefore, a communication network

constituted by robots using Algorithm 4 is always connected.

Theorem 2 and 1 prove that robots using Algorithm 4 can eventually form a

connected communication network with fixed topology, and the proposed protocol can

let robots eventually reach a consensus of their environment maps. At last, Theorem

3 prove that the robots can preserve the convergence guarantee in the presence of

communication loss.

39

Theorem 3. Let G(t + δ) = (V,E),∀δ ∈ N, be a connected communication network

formed by a set of robots V at time t. Suppose G(t + δ) is a weighted graph, where

an edge eij ∈ E represents the probability of robot i receiving information from robot

j through communication. As δ → ∞ all robots in V can reach χ-consensus, where

each Mi(t) is merged with Mj(t),∀j ∈ V/{i}

Proof. Theorem 1 proves the convergence of the proposed consensus protocol in the

weighted communication network if one can guarantee that each robot in V can

eventually receive all the known cells in all its neighbors’ environment map. Note that

the proposed protocol does not consider the cells whose occupancy probabilities are

unknown to all robots. Therefore, those cells will not have any impact on convergence.

Let N(vi) be a set of neighbors of robot i. Suppose cell ci unknown in Mi(t)

but known by at least one k ∈ N(i). At each time step, the probability of robot i

updating ci to be known is Σvk∈N(vi) αeik, where α is a decision variable. α = 1 if ci is

known by k. Otherwise, α = 0. According to equation 3.1 and 3.2, each k ∈ N(i) will

repeatedly broadcast ci, if ci known by robot k. Given δ time steps, the probability

of robot i marking ci to be known is δΣvk∈N(vi) αeik. According to the equation, this

probability will monotonically increase with respect to δ. Therefore, as δ →∞, it is

guaranteed that robot i will update ci to be known based on the cells broadcast by

its neighbors.

3.2.3 Evaluation

The experiments presented in this section integrate the proposed protocol with the

frontier-based distributed exploration [11]. The experiments are implemented in C++

using Gazebo [41], and they are executed on a server with 8 CPUs and 128Gb memory.

The simulated robots have diameters of 0.5m and communication ranges of 20m. Each

robot is equipped with a LiDar sensor that supports 360◦ sensing with 360, evenly

40

spaced lasers. Each laser has a range of 0.1m and 10m and consists of Gaussian noises

with the zero mean and the standard deviation of 0.1.

During exploration, a robot uses its LiDar sensor for both environment mapping

and collision detection. It has a linear motion model [90] and moves at a constant

speed. For collision detection, each robot senses the environment within the corn of

120◦ in its front at a constant rate. If the robot detects objects that are 0.8m away,

it stops moving immediately and then keeps turning to its right until no objects can

be detected.

For all the experiments presented in this section, the robots are always simulated

with the same configuration. All the methods to be evaluated are empirically adjusted

to their best performance. The exploration time and the trajectory length of robots

are evaluated by using the simulation time and distance measure provided by Gazebo

[41].

Impact on Exploration Efficiency

The proposed protocol on environment exploration is applied to the frontier-based

exploration, where robots always move to their closest frontiers.

Having a consistent view of the mapped environment can be easily achieved when

robots have unlimited communication ranges (i.e., each robot can always communi-

cate with all the other robots.). In contrast, the proposed protocol enables robots

with limited communication ranges to have consistent local environment maps after

reaching consensus. The performance of the frontier-based exploration algorithms

with and without the proposed protocol, in order to evaluate the impact of the pro-

posed protocol on exploration. The frontier-based exploration without the proposed

protocol assumes that robots have unlimited communication ranges. For each number

of robots, the result is based on their average performance in 12 simulation runs, and

the error bars are standard deviation.

41

(a)

(b)

Figure 3.4: (a): an indoor environment with size of 185m× 126m. (b) the indoor en-
vironment in with randomly distributed cylindrical obstacles. The solid black circles
represent the obstacles.

As presented in Figure 3.5a, the proposed protocol enabled robots with limited

communication to conduct faster exploration. The results indicate that the time for

robots to reach consensus is reasonable and does not introduce significant overhead.

The resulting trajectory lengths show that the proposed protocol can enable robots

to complete their exploration with shorter travel distances. However, according to

exploration time, robots have decrease exploration performance, when their density

42

5 10 15 20
500

1,000

1,500

2,000

2,500

to
ta

l
ex

p
lo

ra
ti

o
n

ti
m

e
(s

ec
o
n

d
s)

without protocol
with protocol

(a) Average exploration time.

5 10 15 20
0.5

1

1.5

2

2.5

3
·104

to
ta

l
tr

a
je

ct
o
ry

le
n

g
th

(m
et

er
s)

without protocol
with protocol

(b) Total length of trajectories.

Figure 3.5: For the environment presented in Figure 3.4.

exceeds a certain threshold (i.e., 15 robots). The reason is that, as the density of

robots increases, their interference between each other (i.e., robots avoid colliding

each other) becomes more significant.

43

Collaborative Mapping

The proposed protocol must enable robots to build the correct environment map

after the exploration. This section lets ten robots map both environments presented

in Figure 3.4 using the proposed protocol. Figure 3.6 presents the resulting maps of

both environments at the end of exploration. Each cell in a robot’s local environment

(a) The map of Figure 3.4a.

(b) The map of 3.4b.

Figure 3.6: The environment maps built by 10 robots following the proposed protocol.

map corresponds to a 1m× 1m area in the environment. In general, robots following

the proposed protocol can correctly merge their local environment maps and estimate

44

the overall maps in both environments. The correctness of the map can be verified

by comparing the structure of the mapped obstacles with ground-truth presented

in Figure 3.6. Besides the structures of mapped walls, one can clearly identify the

randomly distributed obstacles based on their shapes and sizes in Figure 3.6b. With

a single LiDar sensor, a robot can not distinguish obstacles from the other robots.

The small squares scattered in Figure 3.6 are robots that are mistakenly detected as

obstacles. Since sensor data of robots consists of small Gaussian noises, robots can

map the same obstacles into slightly different cells in their local environment maps.

That causes the mapped obstacles to have non-smooth edges.

Communication Demand

Following the proposed protocol, each robot keeps track of its communication history.

This is done by having a robot maintaining a simple data structure to keep track of

the cells that have been broadcast to each of the other robots. For the evaluation of

communication demand, this section compares the amount of information exchanged

by ten robots with and without following the proposed protocol during exploration.

The amount of information exchanged among robots is approximated as the total

number of occupancy probabilities broadcast by all the robots during exploration.

Without following the proposed protocol, each robot in the same communication

network broadcasts all the known occupancy probabilities in its local environment

map until convergence. The experiment results are presented in Figure 3.7, where

the error bars represent the standard deviation. Table 3.1 summarizes the amount of

exchanged information, given different number of robots. For each number of robots,

the result is based on their average performance in 12 simulation runs.

With the proposed protocol, each robot only broadcasts the cells that have not

been sent to all its current neighbors. As presented in Figure 3.7, the proposed

protocol can significantly save the communication bandwidth for sharing information.

45

5 10 15 20

0

2

4

6

8
·106

number of robots

to
ta

l
n
u
m

b
er

of
b
ro

ad
ca

st
ce

ll
s

with protocol
without protocol

Figure 3.7: The total amount of information exchanged by 10 robots with and without
following the proposed protocol in their frontier-based exploration.

number of robots
total broadcast times

proposed approach closest frontier exploration
5 251 335
10 690 1116
15 1428 1683
20 2261 3475

Table 3.1: The total number of times robots broadcast the cells of their occupancy
matrices in the proposed approach and in the closest frontier exploration.

In the naive approach, a robot has to broadcast all the known cells in its environment

map. With the proposed protocol, the number of cells that robots have to broadcast

grows mush slower as more robots are deployed for exploration.

Environment Mapping under Communication Loss

The proposed the protocol is applied to a group of 10 robots with communication

loss. As we assumed that all the robots have the same capability, in this part of

46

experiments, each robot has the same probability of loosing the message broadcast

by its neighbors. Specifically, two experiments are conducted. In those experiments,

robots have communication loss probabilities of 0.2 and 0.4 respectively. Figure ??

shows final environment mapped by the robots in both experiments.

(a) comm loss: 0.2

(b) comm loss: 0.4

Figure 3.8: The environments mapped by 10 robots with communication loss.

In both experiments, a sufficiently large threshold is set as the maximum broad-

casting iterations for robots. The threshold ensures that the robots can converge on

their consensus. The results of both experiments suggest that the proposed protocol

47

is robust against communication loss. As higher communication loss requires larger

threshold for broadcasting iterations, robots with higher communication loss have to

spend longer time on maintaining their communication network during exploration.

In this case, each robot can have a higher probability of being falsely detected as an

obstacle by other exploring robots. Therefore, in Figure 3.8, the map built by robots

with the communication loss probability of 0.4 is noisier.

3.3 Summary

In this chapter, we studied map-based collision avoidance in multi-robot exploration

under both centralized and distributed settings. Environment exploration studied

here essentially is multi-robot navigation tasks. For safe navigation, robots need to

build environment maps and plan collision-free paths during exploration. However,

as demonstrated in extensive experiments, robots following the pre-planned paths

can encounter other moving robots or obstacles that are inaccurately represented on

the map. In this study of map-based collision avoidance, when a robot encounter an

unforeseen obstacle, it will stop moving immediately and then turn to a predefined

direction until it can safely move forward. Although this simple mechanism allowed

the robot to avoid collisions, it greatly decreased the navigation performance of the

robot. Besides, it could easily cause congestion during exploration.

For optimal navigation performance, robots must adopt more effective mapless

collision avoidance methods. For mapless collision avoidance, a robot needs to plan

its motion based on its local sensor observation. Conventional approach formulate

mapless navigation as a real-time optimization problem and require a robot to select

for an optimal action based on on-board sensor data within a predefined time limit.

The conventional methods usually require complex motion and sensing models of a

robot and also requires extensive mutual information among robots. Beside, deploying

48

those methods generally involves extensive engineering effort and parameter tuning

for different environments. Addressing those issues, the rest of the thesis studies

the reinforcement learning approach for mapless collision avoidance. The proposed

reinforcement learning approach can avoid the need of online action searching and

allows robots to learn general policies for mapless collision avoidance in different

scenarios under real-world settings.

49

Chapter 4

Mapless Collision Avoidance

through Reinforcement Learning

In the map-based approach studied in the previous chapter, an environment map

could contain high-level uncertainties. Following a path pre-planned based on the

map, a robot may encounter unforeseen obstacles during navigation. For safe naviga-

tion, a robot needs mapless collision avoidance to plan motion based on local sensor

observation.

Mapless collision avoidance is a long-standing and open-ended problem in robotics

research. Various approaches have been explored under different robot configura-

tions. This thesis studies the reinforcement learning approach for mapless collision

avoidance. To this end, the problem of mapless collision avoidance is formulated as

Markov Decision Process (MDP). Reinforcement learning is mostly studied in artifi-

cial domains. Applying reinforcement learning must deal with the following issues,

including partial observability [84], high-dimensional sensor data [51], real-time con-

trol delay [19], multi-task environments [36], and multi-agent interaction [37]. Those

issues limit the applications of reinforcement learning in real-world environments,

and the existing approach can only partially address them. In this thesis, we address

50

all the above issues and apply reinforcement learning to mapless collision avoidance

under real-world settings. This chapter formulates mapless collision avoidance as a

reinforcement learning problem and presents details of both robot model and policy

representation which will be used in the rest of the thesis.

4.1 RL for Real-Time Continuous Control

In real-world environments, robots operate in real-time. It is common for a robot

to have actions consisting of continuous actuator signals (e.g., desired linear and

rotational velocities). As actuating an action can take various amounts of time, a

robot must meet a predefined time limit (i.e., a real-time constraint) while avoiding

collisions.

A robot operating in real time needs to complete the following procedures at

each time step: processing sensor data, inferring actions, and actuating commands.

It unavoidable for the robot to have time delay before actuating its action. We

define the time delay before a robot actuates an action at each time step as control

delay. With the aid of modern computing architectures (e.g., GPUs), the robot can

process sensor data with minimal delay and transmit control commands to actuator

quickly. However, the procedural of inferring actions may require a robot to search a

large action space. Besides, this procedure may also requires the robot to optimize

its controller based on its previous actions. Therefore, completing the procedure

of inferring action can take varying amount of time, particularly when a robot has

limited computing resources. Therefore, this procedure can cause high variance of

control delay. In Chapter 5, we show that the high variance of control delay can

destabilize reinforcement learning for a robot operating in real time and make an

environment Non-Markovian.

51

4.2 MDP Formulation

Let N = {1, . . . , n} be a set of robots, and e be an environment where the robots op-

erate. Let e be a continuous 2D plane which contains a set of obstacles. Each obstacle

occupies an certain region of e. It is assumed that each robot i ∈ N can accurately

determine its current location and follows an pre-planned path τi = (ρ1, . . . , ρm),

where (ρ1, . . . , ρm) is a sequence of accessible locations on e. To follow τi, robot i

must visit each ρi consecutively until finally reaching ρm. Given a pair of ρi and ρi+1,

a robot treats ρi+1 as its goal location g while conducting mapless collision avoidance.

Following the path τi, an robot can come across obstacles or other robots. Therefore,

each robot i ∈ N must dynamically plan a collision-free path from ρi to ρi+1. Specif-

ically, this section focuses on the mapless collision avoidance problem, in which each

robot i ∈ N plan its local collision-free paths from ρi to ρi+1 in order to follow its

trajectory τi.

The mapless collision avoidance is formulated as a 5-tuple (N,S,A,R,T), where

• N = {1, . . . , n} is a set of robots situating in the environment e.

• S = {S1, . . . , Sn}, where Si is the state space of robot i ∈ N .

• A = {A1, . . . , An}, where Ai is the action space of robot i ∈ N .

• R = {R1, . . . , Rn}, where Ri is the reward function of robot i ∈ N , such that,

Ri : Si × Ai → R

• T: a transition function, such that, T : S t ×A → S , where

S = S1 × · · · × Sn; A = A1 × · · · × An.

In the above formulation, each robot i ∈ N as a function i : Si → Ai and assume that

each robot independently follows a Markov Decision Process (MDP). At each time

step, all robots take deterministic actions at the same time. For collision avoidance,

52

robots take joint actions which resulting in maximum expected future rewards in their

joint states, s.t. Σ∞t=0γ
tΣiRi(a

t
i, s

t
i), where ai ∈ Ai, si ∈ Si.

In MDP, a robot operates in discrete time steps. In practice, that requires a robot

to discretize continuous time with a specific resolution. Let ∆t denote the duration

of a time step, and ∆t is also the time constraint for a robot to both determine its

action based on the current state and measure the state resulting from its action.

4.3 Robot Model

For each robot i ∈ N , its state st ∈ Si at time t is defined as (ōt, pt, g). pt ∈ R2 is robot

i’s geographical location. g ∈ R2 is the goal location of the robot, which remains fixed

during robot navigation. ōt = (ot−l+1, . . . , ot) represents a sequence of its observation

perceived through on-board sensors (e.g., LiDar sensors or cameras), where l is the

length of the sequence. By using a temporal sequence of sensor observation, a robot

can have improved observability [27] in a partially observable environment. An action

of robot i is a vector of real values, s.t. at = (vt, ωt), ∀a ∈ Ai. vt ∈ R+ specifies a

target speed at a robot’s heading direction, and ωt ∈ [−π, π] is a target rotational

velocity of the robot. This robot model closely matches the ROSbot configurations.

However, it can be also generalized to model other robots with equivalent sensors and

actuators.

A robot perceives ōt) and pt through an on-board range sensor and a SLAM-

enabled device. At the time t, the range sensor enables robots to perceive ot as a a

vector of normalized range data, s.t. ot ∈ [0, 1]n. Each component of ot represents the

ratio between the robot’s distance to a detected obstacle and the robot’s maximum

sensing range. A component with a value of 1 indicates that no obstacle is detected.

Figure 4.1 illustrates an example of a robot perceiving ot at time t through its range

sensor.

53

Figure 4.1: An example of robot sensing.

A robot determines its geographical locations pt ∈ R2 through a SLAM-enabled

device. The robot is assumed to be a SLAM-enabled device and be able to determine

its geographical locations accurately. Having accurate localization is not a strong

assumption since the modern SLAM algorithms can provide high-quality state esti-

mations. The actuator of a robot takes a velocity command (vt, ωt) as input and

accelerates the robot’s current v and ω towards the target vt and ωt for ε time. Let

av and aω be the acceleration for the linear and rotational velocities of the robot.

The actuator changes the velocity of the robot according to the follow equation:

vt = vc + av · ε, ωt = ωc + aω · ε.

54

4.4 Neural Network Design for MCA

With reinforcement learning, a robot avoids collisions by mapping its state space to

action space through a parameterized policy. The mapping between the state and

action spaces is highly nonlinear and can have intricate patterns. To accommodate

the complex mapping, we represent the policy of a robot as a deep neural network.

Specifically, at time t, the neural network takes a robot state (pt, ōt, g) as input,

and output the action (vt, ωt) consisting of the target velocities of the robot. With

limited sensor ranges, the state perceived by the robot is only based on the robot’s

surrounding environment. This makes the robot have partial observability during

navigation. Also, ōt, as part of the state representation of the robot, is usually high-

dimensional. It is crucial to have an effective neural network structure for the robot’s

policy to deal with both partial observability and high-dimensional sensor data.

As reported by Hausknecht et al. [27] in their work of reinforcement learning

for game playing, utilizing the time dependency conveyed by a temporal sequence

of states can improve the observability of an agent. The sequence of sensor data ōt

contained in our robot state representation seamlessly matches this reported find-

ing. Motivated by those authors’ work, we propose to utilize the recurrent neural

network to capture the time-dependent information within ōt, and project ōt to low-

dimensional embedding et, in order to deal with the high-dimensionality of state

space. Hausknecht et al. [27] utilized a recurrent neural network to process a tem-

poral sequence of image frames. In contrast to their mechanism, we are applying a

recurrent neural network (i.e., LSTM) to robot navigation and use it to deal with

high-dimensional range sensor data. Figure 4.2 illustrates an example of mapping a

state of a robot to action through the designed recurrent-neural-network policy.

55

Figure 4.2: An example of mapping sensor data to actuation commands through a
neural network policy.

4.5 MCA in Practice: Multi-Task & Multi-robot

The physical world poses a highly complex environment. For mapless collision avoid-

ance (MCA), a robot may need to handle various situations or cooperate with other

robots. As long-standing issues in reinforcement learning, multi-task, and multi-agent

learning had been actively studied in the past. It will continue to bring benefits to

deploying reinforcement learning to practice.

Any real-world task will probably be too complicated for a robot to solve through

trials and errors directly. It is common to decompose a complex task into simpler sub-

tasks and have a robot learn a multi-task policy to solve each individual of them. With

a multi-task policy, one would expect a robot to have asymptotic optimal performance

for anyone of the sub-task. That says, an effective multi-task policy should let a robot

have an optimal and balanced performance on a collection of relevant tasks without

salient performance on any specific ones. Besides, a multi-task policy should be

56

general and allows a robot to handle a more complex task which composes those

sub-tasks.

In practice, many tasks involve multiple robots. Robots can cooperatively solve a

task by learning their policies through multi-agent learning. Broadly, the multi-agent

learning can be categorized as joint policy learning and individual policy learning.

This thesis focuses on the later. Particularly, this thesis studies learning individual

policies for robots to operate based on local sensor observation in a cooperative envi-

ronment. It is well known that the interaction among robots can make an environment

non-stationary and can make multi-agent learning diverge. To make an environment

stationary, it is assumed that each robot follows a separate MDP. In addition, all the

robots take action at the same time at each time step. Under this setting, an effective

multi-agent learning method should enable robots to take coordinated actions based

on their sensor observation using their own policies.

4.6 Quality Measurement

The objective of applying reinforcement learning to mapless collision avoidance is to

learn an optimal policy for a robot to navigate in particular environments without

collisions. In the context of mapless collision avoidance, the quality of a reinforce-

ment learning method can be measured according to 1) its learning performance with

respect to a certain reward function, 2) and the performance of its learned policy in

terms of navigation behavior.

The reward function utilized by a reinforcement learning directly impacts the

performance of the policy learned the method. It is common to define such a reward

function based on criteria related to robot navigation performance measurement. An

effective policy should enable a robot to navigate its initial location to its goal as

57

quickly as possible without collisions. Besides, for safe navigation, robots should

avoid moving too close to the other robots.

Motivated by the above objective, we evaluate robot navigation according to the

following criteria:

success rate: the probability that a robot can complete navigation;

time step: the number of time steps for a robot to complete navigation;

minimum distance: the closest distance between robots during navigation;

In this thesis, we study reinforcement learning for mapless collision avoidance in

simulated environments, which is the pre-requisite step for deploying reinforcement

learning in the physical world. The above criteria intend to describe the quality of

robot navigation with a policy learned in a simulated environment. In addition to

those criteria, we also evaluate the learned policy to a different number of robots

within the same environment for multi-robot collision avoidance.

58

Chapter 5

Real-Time RL Architecture for

Mapless Collision Avoidance

Applying reinforcement learning to real-world environments needs to deal with real-

time operation of a robot [19]. Inspired by impressive results achieved in artificial

domains, off-policy model-free reinforcement learning methods have been actively

studied for navigation [51], collision avoidance [16], and grasping [63]. To be consistent

with existing reinforcement learning literature, this chapter refers a robot as an agent.

In a typical reinforcement learning setting, an agent follows a Markov Decision

Process (MDP) and plans its actions in discrete time. As reinforcement learning

comes to a real-world environment, an agent must discretize continuous time into

a certain resolution and take action in real-time. At each time step, a robot needs

to process its sensor data, inferring an action, and actuate its action. In general,

the action inferring step may also involve improving the robot’s controller through a

learning method. In real-time systems, control delay is ubiquitous and is well-known

for destabilizing system performance [59]. Specifically, this thesis defines control delay

as a time delay before a robot actuates an action at a particular time step. Figure

5.1 shows an example of control delay.

59

Figure 5.1: An example of control delay.

Because of the stochastic nature of an MDP, control delay can be adapted by a

transition function. However, an environment can become Non-Markovian, if control

delay has high variance. Addressing this issue, we propose a real-time actor-critic ar-

chitecture (RTAC) for applying off-policy reinforcement learning methods for mapless

collision avoidance. RTAC stabilizes control delay by decoupling policy learning from

environment interaction through multiple threads. Besides, it has the scalability of

asynchronous reinforcement learning. RTAC is evaluated in a series of environments

simulated close to real-world settings. Those environments are physics-enabled, where

agents learn to map high-dimensional sensor data to continuous actions. In extensive

experiments, we demonstrated the effectiveness of RTAC in terms of stabilizing control

delay, improving learning performance, and supporting asynchronous reinforcement

learning.

Because learning optimal policy requires a large number of trials and errors, a

practical application of reinforcement learning usually involves learning policy in sim-

ulation and deploying the learned policy to a real-world environment in the second

phase. It is crucial to reduce the reality gap [91] and incorporate control delay in

simulation to enable successful policy transfer. Schuitema et al. [73] extended the

Q-learning and SARSA algorithms to incorporate delay time and archived improved

performance in simulation. Hester et al. [30] proposed a real-time architecture for ap-

plying model-based reinforcement learning to autonomous vehicle control. Unlike the

60

Figure 5.2: Control delay in reinforcement learning.

previous work, RTAC is based on the recent advancement in model-free off-policy re-

inforcement learning [50, 79, 96], and uses experience replay [1] to improve the sample

efficiency of a learning method. Besides, it well supports asynchronous reinforcement

learning even in the presence of control delay.

5.1 MDP under Control Delay

Reinforcement learning models the interactions between an agent and an environment

as a Markov Decision Process (MDP). An MDP is a tuple (S,A, T,R), where S and

A are the state and action spaces of an agent. T : S×A×S → R is a state transition

function, and it defines a probability distribution over the states resulting from an

action execution. R : S×A×S → R is a reward function, and it determines a reward

of an agent-based on the consequence of taking action in a specific state. In MDP,

an agent takes actions in discrete-time, and incrementally constitutes a state-action

trajectory. By definition, an environment is Markovian, if the probability distribution

over the future states that an agent will visit only depends on the present state of

the agent.

It is crucial to ensure the Markovian property of an environment in order to apply

reinforcement learning to a control task. However, in practice, an agent operates in

continuous time and always has time delay before actuating an action determined

in an observed state [59]. The time delay δ for an agent to take action is defined

61

as control delay. Figure 5.2 illustrates an example of control delay in the context of

reinforcement learning. In the example, the learning step’s performance depends on

an underlying policy optimization method, and a robot can take an arbitrary amount

of time to complete this step. In this case, this learning step can cause control delay

δ to have high variance, particularly when the robot has limited computing resources.

Let st be the state observed by an agent at time t, and the agent determines

its optimal action based on st. When δ has high variance, st can be arbitrarily

different from the state st+δ where the agent actuate the action. In this case, the

optimality of the determined action can not be guaranteed. To ensure the optimality

of the determined action, the agent needs to predict st+δ based on st and determines

its action based on the predicted state. In this case, one shall consider st+δ to be

the present state, and determining an action involves the historical state st. This

violates the Markovian property of an environment. Therefore, δ with high variance

is prohibitive in reinforcement learning applications.

A MDP is able to tolerate control delay δ with low variance, as long as δ meets the

real-time constraint of an agent (i.e., δ < t′−t). Because of the stochastic nature of an

MDP, the transition function T can incorporate the effect of the δ into the probability

distribution over the transited states. Although the magnitude of δ does not affect

Markovian property, it poses challenges for deploying reinforcement learning policy

in practice, particularly for safety-critical tasks.

5.2 RTAC

The high variance of control delay can destabilize reinforcement learning and can

cause an environment being Non-Markovian. As illustrated in Figure 5.2, the step of

learning a robot policy can take arbitrary amount of time and causes high variance of

control delay for the robot. To reduce the variance of control delay, the policy learning

62

Figure 5.3: Decoupling environment exploration and policy learning of a robot
through two threads.

is decoupled from environment interaction of the robot by two threads, i.e.; the update

thread and the behavior thread. Figure 5.3 shows such decoupling mechanism.

In the decoupling mechanism, the update thread focuses on optimizing a robot’s

policy based on the robot’s experience. The behavior thread focuses on determining

actions based on the sensor data perceived by the robot. In this case, the control

delay of the robot only depends on the behavior thread’s performance. As the policy

of the robot is deterministic (as the policy shown in Chapter 4), the behavior thread

of the robot can use the policy to map perceived sensor data to a particular action

quickly. Therefore, determining an action with the behavior thread only introduces

a small control delay. To further reduce the variance of control delay, it is desired

to make the robot to have constant control delay in any time step. To this end,

the concept of estimated control delay for actuation Ca is introduced. The Ca is

empirically determined, and it represents the upper bound of control delay that the

robot will have in any time steps. At each time step, the behavior thread of the

robot is expected to wait until its control delay being equal to Ca, before actuating

a determined action. In this way, one can expect that, at any time step, the control

delay of the robot is always equal to Ca. It is important to note that Ca should be

reasonably small so that the robot can meet its minimum control frequency.

63

Based on the above decoupling mechanism, RTAC is proposed for applying model-

free off-policy reinforcement learning to real-time control. Figure 5.4 shows the pro-

posed architecture.

5.2.1 Stabilizing Control Delay

The proposed work assumes that an agent represents its update policy and behavior

policy as parameterized functions (e.g., neural networks). Also, the update policy

and the behavior policy share the same set of parameter variables. RTAC stores the

values of the parameter variables either in a shared memory or in parameter servers.

During learning, the behavior thread periodically (i.e., every t time steps) updates

the behavior policy by copying the shared parameter values. On the other hand,

the update thread uses DDPG [50] algorithm to evaluate policy gradients and apply

them to the shared parameter values, and evolves the update policy by copying the

updated shared parameter values to its local memory. Those copying operations can

be greatly accelerated by GPUs and can have very low latency.

In RTAC, each pair of update and behavior threads jointly maintains a replay

buffer. Although the synchronization between those two threads can introduce some

overhead, such overhead can be accommodated by the estimated control delay for

actuation Ca. In an actor-critic method, an agent alternates between improving its

Q-function and optimizing its policy. In RTAC, the Q-function is completely local to

the update thread, and the update thread optimizes its Q-function and update policy

in a sequence.

Without decoupling policy learning from environment exploration, an agent typ-

ically adopts a sequential architecture, where it improves its update policy every

certain time steps or after certain trajectories are collected [57, 75]. With the sequen-

tial architecture, policy optimization can hinder environment interaction, since an

agent will not determine its action until policy optimization is complete. If the policy

64

F
ig

u
re

5.
4:

R
ea

l-
ti

m
e

ac
to

r-
cr

it
ic

ar
ch

it
ec

tu
re

(R
T

A
C

).

65

Figure 5.5: The overview of the asynchronous RTAC

optimization happened before the end of an episode, it introduces additional time de-

lay and increases the variance of control delay. Although an agent could optimize the

update policy at the end of an episode, the sequential architecture can slow down the

learning process, particularly when the optimization is computationally demanding

(e.g., computing returns of roll-out trajectories).

5.2.2 Scalability of Asynchronous Learning

A practical application of reinforcement learning typically involves training policy

in simulation and transferring the learned policy to a real-world environment in the

following phase. As learning an effective policy requires a large amount of trials and

errors, a parallel training mechanism is desired and adopted by recent reinforcement

66

learning methods [55, 38]. To support asynchronous reinforcement learning, RTAC

allows multiple worker agents to simultaneously learn in a different environment and

synthesize the knowledge they have learned into a shared policy. Figure 5.5 presents

the asynchronous RTAC.

In an asynchronous RTAC, each agent has its own update thread, behavior thread,

and replay buffer. During learning, each agent situates in its own environment and

accumulate its experience in its own replay buffer through its behavior thread. All

the worker agents share the same set of policy parameter variables, and the update

thread of each agent applies its policy gradients to the shared policy parameter val-

ues either synchronously or asynchronously. Such a policy optimization mechanism

enables various off-the-shelf asynchronous reinforcement learning methods [55] to be

applicable to real-time systems.

It is important to note that the asynchronous RTAC requires worker agents to use

the same Ca in their update threads. Otherwise, the experience collected by different

agents can be inconsistent and hinders the convergence of the share policy parameters.

In the asynchronous setting, RTAC uses separated replay buffers for worker agents.

This reduces the overhead caused by merging the experience collected in different

environments.

5.3 Evaluation

This section demonstrates that the RTAC architecture, which utilizes the proposed

recurrent neural network policy, can address the following issues that may arise in

real-world reinforcement learning applications, including partial observability, high-

dimensional sensor data, and real-time control delay. This section focuses on evalu-

ating the RTAC architecture, in terms of dealing with real-time control delay during

67

(a) Env 1 (b) Env 2 (c) Env 3

(d) Env 4 (e) Agent

Figure 5.6: The agent and environments used in experiments

training and learning effective policies that are represented as deep recurrent neural

networks.

The evaluation is based on the well-known reinforcement learning algorithm,

DDPG [50]. By comparing the performance of DDPG with and without RTAC,

experiments demonstrate the effectiveness of RTAC, in terms of learning effective

recurrent neural network policies with a single agent under real-time constraint. To

show that RTAC can support asynchronous reinforcement learning, RTAC is used

as the execution architecture of the Asynchronous DDPG [103]. The Asynchronous

DDPG is the DDPG algorithm that are executed with multiple threads, where each

thread uses DDPG to generate gradients and asynchronously apply the gradients to

a shared policy. In the context of RTAC, such a thread is a worker agent.

68

5.3.1 Simulation Details

The evaluation of RTAC is based on navigation tasks in simulated maze-like environ-

ments. The proposed task environments are physic-enabled and implemented using

ROS [65] and Gazebo [41]. Figure 7.3c to 5.6d illustrates those environments. In

each environment, an agent needs to plan a collision-free path from a fixed initial

location to a pre-defined goal in real-time. An agent is simulated as a mobile robot,

i.e., a ROSbot. The robot has a simulated LiDar sensor, which has a range of 0.1m to

2m and can scan its surrounding environment with 180 evenly spaced lasers. During

navigation, an agent moves at a constant speed and controls its moving direction

through rotational velocities. Table 5.1 summarizes the hyper-parameters used for

policy learning.

5.3.2 Relate Simulation to Theoretical Formulation

In this chapter, the evaluation of proposed architecture, RTAC, is based on the DDPG

algorithm [50]. During training, DDPG allows an agent to alternate between learning

its policy and q-function through stochastic gradient optimization. In this chapter,

we represent a policy and q-function as deep neural networks. The structure of the

policy is presented in Figure 4.2. The q-function has almost identical neural network

hidden layer neurons 1024
number of hidden layers 2
LSTM hidden state size 128
hidden layer activation ReLu
actor learning rate 0.00001
critic learning rate 0.001
target network τ 0.01
batch size 256
relay buffer size 100000

Table 5.1: Hyper-parameters used in experiments for learning policies.

69

architecture, except for that its take an action (i.e., a pair of scalar values) as addition

part of the input and outputs a single scalar value as the q-value of the input action.

Based on the above neural network representation, DDPG allows an agent to

compute the gradients for optimizing its policy and q-function according the following

equation 5.1 and 5.2

.∇θJ(µθ) = E{∇θ log µθ(st)∇atQ(st, at) |at=µθ(st)} (5.1)

∇wL(w) = E[∇w(r + γQ(st+1, at+1;w)−Q(st, at;w))] (5.2)

In both equations, st and at are the state and action of an agent at time t. rt is the

reward received by the agent after taking at in st. We θ and w to denote the weights

of the neural networks representing the agent’s policy and q-function respectively. In

simulation, st, at and rt have the definition given in Chapter 4, and those definition is

all based on the data that the agent can perceive in the Gazebo simulation. At each

time step t, the Gazebo simulator will send those data to the training program which

executes the DDPG algorithm. Upon receiving those data, the training program will

structure those data as the state, action and reward of the agent. Then, it stores

those state, action and reward into a buffer. As the agent repeatedly navigate in

the Gazebo simulation, the training program fills the buffer with the transactions,

(st, at, rt), based on the data received at different time steps.

To compute the gradients based on the above equations, the training program

first samples multiple transactions, (st, at, rt, st+1, at+1), from the buffer. For each

sampled transaction, the training program computes gradients for θ and w based on

those two equations without expected value notation E. To compute the expected

gradient values, the training program will then average the gradients values that were

computed based on those transactions for each of the parameters contained in θ and

w respectively. When multiple agents are navigating in the Gazebo simulation, the

70

training program will store the state, action and reward of those agents in separate

buffers. Then, the training program can compute expected gradient values according

to the above procedure for each of those simulated agents.

5.3.3 DDPG with RTAC

RTAC reduces the variance of control delay by decoupling policy learning and envi-

ronment interaction in order to stabilize an actor-critic method applied to a real-time

system. In contrast, when an agent conducts policy learning and environment inter-

action in sequence, the time delay for optimizing the policy can increase the variance

of control delay, particularly in systems with limited computing resources, such as

robots. Table 5.2 compares the RTAC with the sequential architecture, in terms of

their control delay statistics.

Ca = 0.05 Cat = 0.1 Cat = 0.15 sequential
var mean var mean var mean var mean

Env 1 1.925e-05 0.051 2.431e-05 0.101 1.466e-05 0.151 0.004 0.127
Env 2 1.399e-05 0.051 3.739e-05 0.101 5.582e-06 0.151 0.003 0.123
Env 3 2.557e-05 0.051 1.680e-05 0.101 2.041e-05 0.151 0.004 0.129
Env 4 4.055e-06 0.051 1.196e-05 0.101 1.210e-05 0.151 0.004 0.141

Table 5.2: Control delay statistics for RTAC and the sequential architecture.

The results presented in Table 5.2 is based on the average of mean and variance of

control delay in 50 episodes. In the experiments, compare the control delay in RTAC

based on different estimated control delay for actuation Ca. As Ca is increased, the

variance of control delay does not change significantly across all environments. In

contrast, the sequential architecture causes much higher variance.

The performance of DDPG with the RTAC and the sequential architecture is

compared, in terms of a moving average of episodic rewards. Figure 5.7 presents

the results collected in all environments. According to the results, the DDPG with

RTAC significantly outperforms the DDPG with the sequential architecture. Accord-

71

(a) Env 1 (b) Env 2

(c) Env 3 (d) Env 4

Figure 5.7: The moving averages of episodic rewards achieved through RTAC under
various control delay. Video demo: https://youtu.be/6dH7-0Miu7c

ing Table 5.2, the sequential architecture causes much higher variance of control delay,

although the mean is in the reasonable range (i.e. [0.05, 0.15] in our experiments).

With different estimated control delay for actuation Ca, DDPG with RTAC achieved

similar learning performance. This proves our claim that the high-variance of con-

trol delay can make an environment Non-Markovian, but the magnitude of control

delay does not effect the Markovian property, as long as it is in a reasonable range.

Table 5.3 summarize the performance of the policy learned by DDPG under RTAC

architecture.

According the results, the RTAC with different Ca can consistently enable DDPG

to achieve good success rate, compared to the sequential architecture. When we the

Ca to be a smaller value, the agent can take action with frequency. Therefore, the time

72

https://youtu.be/6dH7-0Miu7c

Ca = 0.05 Cat = 0.1 Cat = 0.15 sequential
succ timestep succ timestep succ timestep succ timestep

env1 0.93 73.20 0.86 49.52 0.96 49.22 0.22 51.34
env2 0.86 70.06 0.89 48.50 0.90 48.64 0.02 48.36
env3 0.918 60.56 0.69 62.54 0.97 41.26 0.00 52.18
env4 0.88 120.92 0.78 103.30 0.97 92.50 0.84 85.10

Table 5.3: The performance of the policy learned through both the RTAC and the
sequential architectures. The metrics summarized in the table includes, the success
rates and the time steps for an agent to complete navigation.

steps for an agent to complete navigate increases, as we decrease the Ca. Notice that

the DDPG with sequential architecture achieved good success rate in env4. In our

experiments, we found that the control delay does not have significant impact on the

control of an agent, when the agent is moving at constant speed towards a particular

direction. As shown in Figure 5.6d, the hallway-like regions requires an agent to move

in the constant speed toward a particular direction. This gives opportunities to the

DDPG with the sequential architecture to learn an effective policy. In general, the

RTAC still outperformed the sequential architecture and enabled the DDPG to learn

better optimal policies in the most of the environments.

With the RTAC architecture, we used DDPG to learn policies in clustered envi-

ronment where obstacles are randomly distributed. In this part of the experiments,

we set the Ca to be 0.1 seconds. Figure 5.8 shows those environments, and Table

5.4 summarizes the performance of the policies learned in those environments. Those

results demonstrate that RTAC can also enable DDPG to learn effective policies un-

der different random obstacle distributions. A video demonstration can be accessed

through https://youtu.be/or6zQ6z4fqs.

Ca = 0.1
succ timestep

env5 0.84 119.84
env6 0.87 128.38

Table 5.4: The performance of the policies learning Env5 and Env6. The Ca is set to
be 0.1 during training.

73

https://youtu.be/or6zQ6z4fqs

(a) Env5 (b) Env6

Figure 5.8: The environments with random obstacle distribution. We used Ardrone
agent model to learn collision avoidance policy through DDPG based on the RTAC
architecture. A video demonstration can be access through https://youtu.be/

or6zQ6z4fqs

.

5.3.4 Asynchronous Reinforcement Learning

RTAC is applicable to an asynchronous setting. To learn a policy, asynchronous RTAC

consists of multiple pairs of behavior and update threads, and each pair of threads cor-

responds to a worker agent. Those worker agents can optimize globally shared policy

parameters in parallel. This part of the experiment conducts the asynchronous rein-

forcement learning using a single PC, and implement the shared parameter variables

as shared memory. In the asynchronous setting, each agent learns its environment

through DDPG and applies its policy gradients asynchronously to the shared policy

parameters.

For the asynchronous reinforcement learning, RTAC is evaluated based on the

environment presented in Figure 5.6d, which consists of all the patterns presented in

Env 1 to Env 3. Since the asynchronous RTAC has multiple worker agents learn the

shared policy in parallel, one can expect the learned policy to represent more complex

behavior, comparing to the policy learned by a single agent. Figure 5.9 shows the

performance of the asynchronous reinforcement learning under various delay thresh-

74

https://youtu.be/or6zQ6z4fqs
https://youtu.be/or6zQ6z4fqs

olds. Table 5.5 summarizes the control delay during the asynchronous reinforcement

learning.

As shown on the right side of Figure 5.9b, three worker agents are used to learn

the same environment, and each worker agent interacts with its own copy of the

environment. For evaluating the policy jointly optimized by those three worker agents,

every 5 seconds, a separate evaluation agent makes a copy of the jointly optimized

policy and evaluates its performance in terms of episodic rewards. The left side of

Figure 5.9b shows the evaluation agent.

Ca = 0.05 Cat = 0.1 Cat = 0.15
var mean var mean var mean

Agent 1 1.559e-04 0.052 5.642e-05 0.102 2.584e-05 0.152
Agent 2 1.390e-04 0.052 3.148e-05 0.102 2.948e-05 0.152
Agent 3 1.591e-04 0.053 6.194e-05 0.102 4.441e-05 0.152

Table 5.5: Control delay statistics for asynchronous RTAC.

According to the results, RTAC enables the asynchronous DDPG to converge at

optimal policies under all three delay thresholds (i.e., 0.05, 0.1, 0.15). Each exper-

iment initializes the shared policy with random parameters, and the difference in

terms of convergence time is caused by those initial parameter settings, instead of the

estimated control delay for actuation Ca. According to Table 5.5, the asynchronous

RTAC does not significantly increase the variance of control delay, and it can en-

sure each worker environment being Markovian throughout the learning. Besides,

the results also prove that an MDP could tolerate stabilized control delay even in an

asynchronous setting. Table 5.6 summarizes the performance of the policy learned

under the asynchronous setting.

75

(a) The episodic reward moving average.

(b) Environments for asynchronous reinforce-
ment learning.

Figure 5.9: Asynchronous reinforcement learning with RTAC. Video demo: https:

//youtu.be/6dH7-0Miu7c

5.4 Summary

This chapter presents a reinforcement learning architecture RTAC, which applies an

actor-critic method to mapless collision avoidance. In this chapter, we showed that

the control delay with high variance can destabilize the learning performance of an

agent operating in real time. We evaluated the RTAC based on navigation tasks in

simulation. In those navigation tasks, the simulated agents operate in real time and

76

https://youtu.be/6dH7-0Miu7c
https://youtu.be/6dH7-0Miu7c

Ca = 0.05 Ca = 0.1 Ca = 0.15
succ 0.816 0.91 0.979

timestep 125.81 108.63 91.59

Table 5.6: The performance of the policy is learned under asynchronous RTAC. The
metrics summarized in the table include the success rates and the time steps for an
agent to complete navigation.

navigate in physics-enabled environments. In extensive experiments, we demonstrated

that RTAC is salable and allowed multiple worker agents to asynchronously optimize

a shared policy under real-time constraint.

RTAC used DDPG as the learning algorithm for optimizing policies of agents.

It is straight forward to incorporate alternative off-policy actor-critic methods into

RTAC for learning either deterministic or stochastic policies. Besides, one can also

combine RTAC with more advanced experience replay techniques, such as prioritized

experience replay [72] and hindsight experience replay [5]. Although a small number

of agents is used to evaluate the asynchronous RTAC, the overall task to be learned

is still challenging. Using a smaller number of worker agents allows us to better focus

on the effects of control delay on asynchronous reinforcement learning in a close-

to-real-world setting. Specifically, during the asynchronous reinforcement learning,

each worker agent learns to map high-dimensional sensor data (i.e., 720 dimensions)

to continuous actions and asynchronously update over 1 million parameters of the

shared policy.

The proposed RTAC is for the off-policy model-free reinforcement learning. Al-

though RTAC is based on the recent advancement in reinforcement learning, in prac-

tice, many control tasks still favor model-based methods, particularly for robotic

tasks. The future work would expand the study presented in this chapter to model-

based methods. It would be attractive to have a unified architecture for applying

either model-based or model-free methods to real-time systems.

77

Chapter 6

Multi-Task Mapless Collision

Avoidance

A robot navigating in the physical world may need to avoid collisions in different sce-

narios. We define a scenario as an environment with a known obstacle distribution.

In this chapter, we consider mapless collision avoidance in a scenario as a particular

task. In this case, the physical world is a multi-task environment for robot naviga-

tion. Manually designing a controller for mapless collision avoidance in a multi-task

environment require extensive parameter turning and engineering effort. It is attrac-

tive to have a robot learn a multi-task policy for mapless collision avoidance through

reinforcement learning. In the rest of the chapter, we refer a robot as an agent, in

order to be consistent with existing reinforcement learning literature.

Deep reinforcement learning was able to exceed human performance in various

control tasks [78, 56, 50]. Even though the results are impressive, the existing work

normally trains a specialized policy from scratch for one task at a time, and each task

requires training a different policy instance. Learning a specialized policy for a task

in a complex environment (e.g., the physical world) requires a tremendous amount of

time and agent experience, making the deep reinforcement learning methods sample

78

inefficient. To address this issue, researchers in the reinforcement learning commu-

nity shifted their attention to multitask reinforcement learning, which could estimate

a general policy by learning a series of related tasks, either sequentially or simul-

taneously. Compared to single-task reinforcement learning, one would expect that

in multitask reinforcement learning, learning each task requires much fewer data.

Combining solutions to multiple tasks enables a policy to have better asymptotic

performance and generalizability.

Learning simple tasks individually does not make the learning in a multitask

setting simpler. Instead, it poses at least two stressing issues for learning effective

policies. First, the processes of learning individual tasks often interfere with each

other. When policy parameters are jointly optimized based on multiple tasks, the

gradients evaluated in one task can likely override the gradients evaluated in another

task. Without special treatments, this would make a multitask reinforcement learning

method is sample inefficient. Second, a multitask policy can have an unbalanced

performance on learned tasks. Since tasks can be learned based on rewards with

different scale or distribution, some of the tasks can be more salient than the other

during training [29]. Addressing those issues, recently parallel multitask reinforcement

learning [20, 29] has demonstrated remarkable effectiveness in Atari games [56] and

DeepMind Lab [9]. In those environments, agents operate in discrete action spaces.

On the contrary, multitask reinforcement learning for continuous control is still under-

explored. Here, the chapter refer to robots as agents so that the proposed work can

be better related to existing reinforcement learning literature.

Agents with continuous actions are commonly involved in robotic control tasks,

such as autonomous driving [71], UAV control [14] and object manipulation [66, 35].

Unlike game environments [56, 9], robotic control is often constrained on physical

factors, e.g., limited sensing ranges, high-dimensional sensor data, and limited ac-

celeration of motion. In this chapter, we study multitask reinforcement learning for

79

mapless collision avoidance. In particular, we focus on agents with continuous actions

and partial observability. Based on Deep Deterministic Policy Gradient (DDPG) algo-

rithm [50], we presents an asynchronous method, Asynd-DDPG, for learning a shared

policy and q-function with multiple simultaneous worker agents. To deal with partial

observability of agents, Asynd-DDPG represents the shared policy and q-function as

recurrent neural networks that allow agents to take actions based on a sequence of

recent sensor observation.

We empirically found that ensuring the sparsity of the gradients applied to the

shared policy and q-function can reduce conflicts in learning competing tasks and

avoid unbalanced learning. To this end, the proposed work regularizes the shared

policy and q-function using Dropout to ensure the gradients generated through back-

propagation are sparse. As each agent needs to evaluate its sparse gradients, applying

different Dropout to the same neural network requires synchronization. To solve this

issue, Asynd-DDPG let each worker agent maintain up-to-date copies of the shared

policy and q-function in its memory and independently apply Dropout regularization

to those local copies. During training, each worker agent asynchronously updates the

shared policy and q-function using the gradients evaluated based on its regularized

local policy and q-function.

Asynd-DDPG is evaluated in physic-enabled environments based on robotic simu-

lation. In experiments, worker agents simultaneously learn different navigation tasks

in a small number of maze-like continuous environments. Experimenting with those

environments provides the first step to understanding how Dropout regulation af-

fects agents’ learning performance in a multitask setting. It also allows us to analyze

the performance of the policy learned by Asynd-DDPG on all those learned tasks in

detail. In experiments, we demonstrate that Dropout regularization can effectively

reduce the interference among competing tasks and enable a learned policy to have

a balanced performance on individual tasks. With extensive evaluation, the policy

80

learned by Asynd-DDPG can significantly outperform the specific policies learned by

DDPG in all test environments. Also, the policy learned by Asynd-DDPG can avoid

collisions in more complex navigation tasks that are unseen by agents during training.

6.1 Sparse Gradients through Dropout for Asyn-

chronous RL

Asynchronous reinforcement learning are actively studied in recent literature. Asyn-

chronous reinforcement learning attempts to optimize a policy through scholastic

optimization with different threads. Here, each thread is called a worker agent. As

each worker agent computes gradients independently, the gradients applied by worker

agents can improved the policy parameters toward different directions, which can re-

sult in conflicts. As proven in [68], asynchronous stochastic optimization method

can always converge on optimal parameter values, if the applied gradients are sparse.

This section presents the Dropout regularization technique utilized by Asynd-DDPG

to compute sparse policy gradients for asynchronous reinforcement learning.

As a reinforcement learning approach directly optimizing policies of the agent,

policy gradient methods optimize a parameterized policy with respect to its expected

reward using gradient decent algorithms. Let S define a state space of an agent; A be

a set of actions the agent can take in each state s ∈ S. µθ is a policy with a parameter

vector θ. When µθ is stochastic, the parameter gradients for optimizing its expected

reward can be calculated as

∇θJ(µθ) = Es∼ρµθ ,a∼µθ{∇θ log µθ(a | s)Q(s, a)} (6.1)

where ρµθ denotes the probability distribution that an agent visits each s ∈ S using µθ.

As a special case of Equation 6.1, Equation 7.1 computes the gradients for optimizing

81

a deterministic policy [79].

∇θJ(µθ) = Es∼ρµθ{∇θ log µθ(s)∇aQ(s, a) |a=µθ(s)} (6.2)

∇θ log(µθ(s)) is a Jacobian matrix where an entry in row i and column j represents

the gradient of the ith parameter for the jth action. ∇aQ(s, a) is a vector of gradients

with respect to the Q-function for the action selected by µθ in a state. This chapter

uses Q-functions to estimate policy gradients, and alternative estimations of policy

gradients can be found in [74].

If a Q-function (or a value function) is unknown, an agent must fit the unknown

Q-function based on its state-action trajectories collected online while calculating

policy gradients for optimizing its policy. A method alternating between fitting a

Q-function and optimizing a policy is called an actor-critic method.

6.1.1 Policy as Feed-Forward Neural Network

Suppose a policy µθ is represented as a feed-forward neural network with parameters

θ. Let L = {1, 2, . . . , l} be the indexes of hidden layers. zl and yl are the input and

output of the hidden layer l. In forward operation, dropout is applied to each yl, s.t.

ỹl = rl ∗ yl

rl is a vector whose components are independently sampled from Bernoulli distri-

bution with a probability of P being 0, and P is called a dropout rate. ∗ denotes

element-wise multiplication. ỹl is input to the hidden layer l + 1 according to the

following equation:

zl+1 = W l+1ỹl + bl+1

yl+1 = τ(zl+1)

82

where, ỹl is a column vector, and τ is non-linear activation function. W l+1 is a n×m

weight matrix, where n and m are the number of neurons in hidden layers l + 1

and l. For computing zl+1, it’s equivalent to zero out ith column of W l+1, when

ith component of rl is 0. When the dropout rate P is sufficiently large, all weight

matrices in a forward neural network can be sparse. While evaluating gradients for

the weight matrices through back-propagation, the entries which were zeroed out in

the forward operation are restricted to have gradients of 0. Therefore, the resulting

gradient vector is sparse.

6.1.2 Policy as Recurrent Neural Network.

Taking Long Short Term Memory (LSTM) as an example, Dropout can be applied to

a recurrent neural network to produce sparse gradients. Let xt and ht be the input

and the output of LSTM at time t. Dropout is applied to LSTM in the following way

h̃t = rh ∗ ht

x̃t = rx ∗ xt

rh and rx are dropout vectors as what was explained in the feed-forward neural

network case. t indicates the time step of a input sequence. With Dropout, LSTM is

given by the equations below:

i = sigm(Uih̃t−1 +Wix̃t) f = sigm(Uf h̃t−1 +Wf x̃t)

o = sigm(Uoh̃t−1 +Wox̃t) g = sigm(Ugh̃t−1 +Wgx̃t)

ct = f ∗ ct−1 + g ∗ i ht = o ∗ tanh(ct)

Let W = {Wi,Wf ,Wo,Wg} and U = {Ui, Uf , Uo, Ug} be weight matrices of a

LSTM. ht is a column vector that is the output at time t. Similar to the feed-forward

neural network case, ht can be calculated by zeroing out ith column of each W ∈W,

83

if the ith component of h̃t is 0. Similarly, when the ith component of x̃t is 0, ith

column of U ∈ U can be zeroed out for computing x̃t. While evaluating gradients for

each W ∈W and each U ∈ U, the entries that are zeroed out always have gradients

of 0. When the dropout probability P is sufficiently large, the resulting gradient

vector can be sparse.

6.2 Asynd-DDPG

Based on DDPG algorithm [50], this section proposes an asynchronous actor-critic

method, Asynd-DDPG, for learning mapless collision avoidance behavior with worker

agents. The proposed method enables multiple worker agents asynchronously to opti-

mize a shared policy and q-function. The key to the proposed method is maintaining

the sparsity of the gradients applied to the shared policy and q-function. To this end,

each agent maintains up-to-date copies of the shared policy and q-function in its local

memory and apply independent Dropout regularization to those copies. Figure 6.1

shows the overview of Asynd-DDPG.

6.2.1 Shared Policy with Dropout Regularization

Considering robotic applications in practice, at each time step, an agent perceives

a high-dimensional feature vector from its surrounding environment through an on-

board sensor (e.g., a camera or LiDar). The limited sensing capability makes the

environment where the agent operates partially observable. To overcome the partial

observability, in Asynd-DDPG, a state of an agent contains a sequence of sensor obser-

vations perceived the past l time steps. Also, the state of an agent also contains other

information, including locations and velocities. The shared policy and q-function are

represented as deep recurrent neural networks with dropout regularization. Their

structures are presented in Chapter 4.

84

F
ig

u
re

6.
1:

T
h
e

ov
er

al
l

w
or

k
fl
ow

of
A

sy
n

d
-D

D
P

G
.

85

In Asynd-DDPG, agents independently apply Dropout regularization to the local

copies of the shared policy and q-function. This allows agents to evaluate sparse

gradients for optimizing both functions during training independently. Note that

agents do not apply Dropout to the input of LSTM, since at each optimization step,

the states input to the local policy and q-function of an agent must always be the

same.

6.2.2 Asynchronous Update

Algorithm 5 summarizes the asynchronous update procedural, followed by all agents.

µ(θti) and Q(wti) are the agent i’s local copies of the shared policy and q-function. At

the time t, the worker agent i evaluates Deterministic Policy Gradients and Temporal

Difference Gradients. Since those evaluated gradients are sparse, agents can follow

the Hogwild! Strategy [68] to asynchronously apply their gradients to the shared

policy and q-function.

Because of the copying mechanism, each worker agent can transfer their knowledge

learned in different tasks to the other agents during training. This allows each work

agent to improve the shared policy upon the work done by the other agents, which

is essential for the agents to synthesize their behavior into a consistent meta policy

(i.e., the shared policy). As the gradient evaluation does not depend on task-specific

information, the policy jointly learned by all worker agents can be generalized to

unfamiliar and potentially more complex tasks.

6.3 Evaluation

This section demonstrates that Asynd-DDPG can address the issue of multi-task

environments and the issues that have been addressed by RTAC in the previous

section. Asynd-DDPG is the same as the Asynchronous DDPG, except that the

86

Algorithm 5 The update thread of a worker agent.

1: function AsynUpdate()
2: copy w? and θ? to w and θ
3: while the shared policy hasn’t converge do
4: deploy the robot at a fixed initial location
5: while an episode is not terminated do
6: store experience to replay buffer
7: sample a batch of experience
8: evaluate policy gradient δw
9: evaluate temporal-difference gradients δθ
10: apply δw and δθ to w? and θ?

11: copy w? and θ? to w and θ

worker agents utilize Dropout to compute sparse gradients. To demonstrate Dropout’s

effectiveness, we compare Asynd-DDPG to the baseline methods, the standard DDPG,

and the Asynchronous DDPG, which do not utilize Dropout. In the experiment,

the Asynd-DDPG, the Asynchronous DDPG, and the standard DDPG all follow the

RTAC execution architecture. This section shows two parts of the data collected in the

experiment. Those two parts of the data show 1) the effect of Dropout on learning the

overall multi-task policies, 2) and the effect of Dropout on the learning performance

of the worker agent in each training environment. Besides, the evaluation of the

multi-task policy learned by Asynd-DDPG based on the balance of ploy performance

on learned tasks and generalizability of the learned policies for unseen environments.

For evaluating Asynd-DDPG, a complex navigation environment is decomposed

into simpler ones. This decomposition is based on the observation that many real-

world environments consist of repeating patterns. For example, a building floor can

contain doors, hallways, and rooms. This part of the experiments considers that a

complex navigation task requires an agent to have three different types of sub-tasks,

1) entering a room, 2) following a hallway, 3) entering a hallway. The Ardrone agent

model is used for experimentation. The experiments are based on three environments

that represent those sub-tasks.

87

(a) Agent (b) Env0

(c) Env1 (d) Env2

Figure 6.2: The local patterns used for training. For each local pattern, a circle is a
initial location, and a star is a goal.

6.3.1 Simulation Details

Agents: Worker agents are simulated as unmanned aerial vehicles using ROS and

Gazebo. A worker agent observes an environment through a LiDar sensor, and it

scans the area in its front with 360, evenly spaced lasers at a constant rate. An agent

detects a collision if any laser measures a range of less than 0.2m.

Tasks: In experiments, worker agents learn three navigation tasks in maze-like

environments, as presented in Figure 6.2. In each environment, a worker agent has

a pre-defined initial location and goal. It terminates an episode of navigation if it

collides with an obstacle or reaches its goal. The policy jointly learned by all worker

agents needs to master navigation tasks in all environments.

88

6.3.2 Relating Simulation to Theoretical Formulation

The experiments conducted in the chapter are based on the same theoretical formu-

lation as what is in Chapter 5. Unlike the work presented in the previous chapter, we

apply the DDPG algorithm under an asynchronous setting. Worker agents use DDPG

to compute gradients based on states, actions, and rewards collected from different

environments. Specifically, the policy and q-function leaned by worker agents have

same neural network architecture as described in Chapter 5, and each worker agent

computes its gradients according equation 5.1 and 5.2.

In experiments, we simulate worker agents as aerial vehicles (i.e., Airdrone) nav-

igating in a different maze-like environment. The states and actions and rewards of

simulated agents follow the definition given in Chapter 4. The simulation involves

a Gazebo simulator, which simulates a robot navigation and training program that

executes a reinforcement learning method according to the RTAC 5 architecture. The

Gazebo simulator and the training program follow the same procedure described in

Chapter 5, to transfer simulation data for reinforcement learning execution. During

training, the training program uses a separate thread to compute gradients based on

each simulated agent’s states, actions, and rewards. Unlike the simulation setting

in the previous chapter, each of the threads applies the neural network regulariza-

tion technique, Dropout[81], to sparse computer gradients for asynchronous stochastic

gradient optimization.

6.3.3 Learning Performance

In the experiment, worker agents use the same configuration of dropout rates: 0.4 for

LSTM and 0.2 for fully connected layers. For both shared policy and q-function, each

fully connected layer has 1024 neurons with ReLu activation functions, and the hidden

state of LSTM has the size of 128. Figure 6.2 summarizes the learning performance

of Asynd-DDPG, in comparison with the standard DDPG and the Asynchronous

89

Figure 6.3: Learning performance of DDPG and Asynd-DDPG in terms of episodic
rewards. Both methods are evaluated in Env3.

DDPG (i.e., the Asynd-DDPG without dropout regularization). The Asyn-DDPG

policy with and without dropout regularization is trained in Env0 to Env2. On the

other hand, the DDPG policy is trained directly in Env3. For a fair comparison,

during training, the separate evaluation agent evaluates the policy jointly learned by

the worker agents of Asynd-DDPG every 5 seconds (in wall-clock time) in Env3. In

the Figure, the reward distribution is the moving average of 100 episodic rewards. It

shows that the multitask policy learned by Asynd-DDPG achieves better asymptotic

performance compared to the single-task policy learned by DDPG.

To better understand the effectiveness of dropout regularization, the performance

of each worker agent of Asynd-DDPG and Asynchronous DDPG is compared in Env0

to Env2. Figure 6.4 presents the impact of dropout regularization on the Asynd-

DDPG. The results are moving averages of 100 episodic rewards. Based on the

results, Dropout can effectively stabilize the performance of Asynd-DDPG on each

90

(a) (b)

(c)

Figure 6.4: Episodic reward distributions based on moving averages for learning nav-
igation tasks in Env0, Env1 and Env2.

task. This supports our claim that ensuring the sparsity of gradients through Dropout

regularization can resolve the interference of learning competing tasks.

6.3.4 Policy Performance

This section evaluates the policy learned by Asynd-DDPG in two aspects: 1) if the

learned policy performs equally well in training tasks; 2) if the learned multitask

policy has better performance than task-specific policies learned by DDPG.

With balanced performance, the multitask policy jointly learned by all worker

agents is expected to complete navigation tasks in all training environments. The

first aspect of the evaluation measures the performance of a policy learned by Asynd-

91

(a) Env3 (b) Env4

(c) Env5 (d) Env6

(e) Env7 (f) Env8

Figure 6.5: The trajectories planned by an agent using the multitask policy based on
Env0, Env1 and Env2. Video demo: https://youtu.be/4TS5nDlku_g

DDPG in different concatenations of a training environment. Those environments

are presented in Figure 6.5a to 6.5d, together with the trajectories planned by both

Asynd-DDPG and DDPG policies. Those DDPG policies are trained in each of those

environments separately, while the multitask the Asynd-DDPG learns policy in Env0

to Env2. Table 6.1 summarizes the performance of the trained policies during 50

episodes.

92

https://youtu.be/4TS5nDlku_g

Env3 Env4 Env5 Env6 Env7 Env8
succ rate 0.88 0.90 0.90 0.90 0.86 0.92
time step 310.18 310.22 316.71 331.51 415.23 408.31

Table 6.1: The performance of a Asynd-DDPG policy in all test environments based
on 50 episodes. The metrics include the success rates of navigation and the average
of the time steps for completing navigation.

According to the results, the multitask policy learned by Asynd-DDPG can com-

plete the navigation task in all test environments with sufficiently high success rates.

The experiment results provide consistent evidence showing that the multitask policy

learned by Asynd-DDPG has balanced performance in all training tasks. Without

balanced performance, the learned to multitask policy will result in collisions in one

of the training environments during navigation. Besides, the multitask policy always

achieves better performance in all environments than the policies learned by DDPG.

This supports that the policies learned by Asynd-DDPG have better asymptotic per-

formance than the single-task policies learned by DDPG.

6.3.5 Policy Generalization

The generality of the policy learned by Asynd-DDPG is evaluated in two other envi-

ronments unseen by worker agents during training. Those environments are presented

in Figure 6.5e and 6.5f, together with the trajectories planned by the Asynd-DDPG

policy. Table 6.1 shows the success rates of the multitask policy in all test envi-

ronments (i.e., Env3 to Env8) based on the average performance of 50 episodes.

According to the results, the multitask policy learned by Asynd-DDPG can be well

generalized to handle unfamiliar tasks.

93

6.4 Summary

This chapter presented an asynchronous multitask reinforcement learning method,

Asynd-DDPG, for mapless collision avoidance. By incorporating Dropout regular-

ization, Asynd-DDPG was able to effectively resolve the interference among worker

agents. It enabled the worker agents to asynchronously learn a multitask policy

which has balanced performance on learned tasks and good generalizability for un-

familiar tasks. The experiments evaluate Asynd-DDPG in collision avoidance tasks

based on realistically simulated robots and physics-enabled environments. Although

the number of tasks used in our experiments is small, we define each task based

on a real-world setting. We extensively evaluated the multitask policy learned by

Asynd-DDPG, and our evaluation provided the first step to understand the effects of

Dropout regularization on asynchronous multitask reinforcement learning. In future

work, we will investigate the impact of Dropout regulation on asynchronous multi-

task reinforcement learning in a more significant number of procedurally generated

task environments. As another direction of future work, we would combine Dropout

regularization with strategically adapted learning rates of worker agents, in order to

learn a multitask policy with better generalizability.

94

Chapter 7

Multi-Agent Mapless Collision

Avoidance

In practice, there can be multiple robots navigating in the same environment, in

order to cooperatively accomplish a task. For example, the multi-robot exploration

tasks studied in Chapter 3 require multiple mobile robots to collaboratively build an

environment map by constantly navigating in an unknown environment. The rein-

forcement learning methods presented in the previous chapters focused on mapless

collision avoidance for single-robot navigation. This chapter further addresses the

issue of enabling mapless collision avoidance for multi-robot navigation through re-

inforcement learning. In this chapter, we continue referring a robot as an agent, in

order to be consistent with existing multi-agent reinforcement learning literature.

The reinforcement learning methods presented in the previous chapters are essen-

tially end-to-end reinforcement learning. Through end-to-end reinforcement learning,

a robot maps raw sensor input to control commands using a single neural network.

It avoids requiring hand-crafted features for representing robot states and actions.

End-to-end reinforcement learning was recently made popular by its successful ap-

plications to Atari games [57], Go [78] and continuous control [50]. However, those

95

remarkable results are all achieved in single-agent domains. Except for [85, 26], there

is little work for scaling end-to-end reinforcement learning to multi-agent settings.

In this chapter, we seek to apply end-to-end reinforcement learning to multi-agent

mapless collision avoidance. In a robotic application, an agent usually operates in a

partially observable environment and perceives high-dimensional sensor data. This

poses great challenges to end-to-end multi-agent reinforcement learning. The interac-

tion among agents makes a non-stationary environment [52] and causes multi-agent

learning to be unstable. Considering partial observability, multi-agent reinforcement

learning needs to map the joint observation space of agents to their joint action space,

either through individual policies or a joint policy [93]. When the observation space

of each agent is high-dimensional, without effective techniques, the curse of dimen-

sionality can make the learning in a joint observation space intractable.

Addressing the above non-stationary environment issue, Lowe et al. [52] proposed

a multi-agent actor-critic method, MADDPG, to learn individual policies for contin-

uous control in a partially observable environment. MADDPG follows the paradigm

of centralized training with decentralized execution. During training, each agent op-

timizes its policy based on joint observation and actions. At execution time, an agent

uses its policy to determine actions based on local observation. Although MAD-

DPG can learn optimal policies in the environments where single-agent reinforcement

learning is hardly applied, its scalability to high-dimensional observation spaces has

not been explored. Extending MADDPG, Rec-MADDPG is proposed, which learns

individual end-to-end policies for mapless multi-agent collision avoidance in high-

dimensional observation spaces.

Rec-MADDPG categorizes agent observation as interior and exterior observation.

Interior observation describes an agent’s properties, such as positions and velocities

of the agent. On the other hand, exterior observation is the sensor data that the

agent perceives from its surrounding environment. Partial observability is related

96

to the exterior observation of an agent to be a sequence of sensor observations that

the agent perceived in the past. To project joint exterior observation of agents into

low-dimensional features, we propose two embedding mechanisms, independent and

joint embedding, based on recurrent neural networks. In both mechanisms, agents

learn their joint exterior observation embedding through end-to-end training. For

training efficiency, Rec-MADDPG incorporates parameter sharing and the A3C-based

asynchronous framework [55]. This allows Rec-MADDPG to learn a shared policy

and q-function with multiple sets of agents grouped in different environments.

We evaluated Rec-MADDPG based on realistically simulated robots in physics-

enabled maze-like environments. In experiments, agents need to learn multiple co-

ordinated behaviors for safe navigation in mazes with different layouts. Through

experimentation, we demonstrated that Rec-MADDPG could learn optimal end-to-

end policies for multi-agent continuous control in the proposed tasks. In contrast,

MADDPG was not able to learn effective policies. In extensive experiments, policies

learned by Rec-MADDPG with both proposed embedding mechanisms allow agents

to navigate all environments safely. Also, compared to joint embedding, independent

embedding enabled Rec-MADDPG to learn even better optimal policies.

7.1 Multi-Agent Coordination with Partial Ob-

servability

Rec-MADDPG learns coordination among agents that perceive high-dimensional on-

board sensor data and operate in continuous action spaces. The multi-agent coordi-

nation problem is formulated as a Markov Game defined as

(N,S,A,P,R)

97

N is a set of agents. S = {S1, . . . , Sn} and A = {A1, . . . , An} is state spaces and action

spaces of all agents in N respectively. Let S = S1×· · ·×Sn and A = A1×· · ·×An be

the joint state and action spaces of all agents. Si and Ai are the state and action spaces

of agent i. P : S ×A ×S → [0, 1] is a state transition function. R = {R1, . . . , Rn}

is a set of reward functions of all agents, and Ri : S ×A → R is the reward function

of agent i. In a Markov game, an environment is assumed to be Markovian under

the joint actions of all agents. Given a joint action, a Markov Game assumes that

individual actions are taken at the same time.

In a real-world application of multi-agent coordination, agent i usually has the

partial observation of an environment and perceives its state si ∈ Si through on-

board sensors. The agent’s state si consists of two types of observation, exterior,

and interior observation. The exterior observation is about the task environment

where the agent situates (e.g., obstacle locations observed by the agent). The interior

observation is related to the agent’s own properties (e.g., the agent’s locations and

orientations). Based on the state representation introduced in Chapter 4, in this

thesis, an agent i has its interior observation as (pti, gi) and its exterior observation at

time step t as ōti = (ot−l+1
i , . . . , oti) o

t
n is the sensor observation perceived by agent i at

time step t, and l is the length of the sequence. In this chapter, oti is high-dimensional

data that an agent perceived through its on-board sensor.

7.2 Rec-MADDPG

Rec-MADDPG learns individual policies for agents based on the low-dimensional em-

bedding of their joint observation. The proposed method is an extension of MADDPG

[52] and follows the framework of centralized learning with decentralized execution.

The key to Rec-MADDPG is representing the exterior observation ōi of each agent

i into low-dimensional embedding through recurrent neural networks, as (pi, gi) is

98

low-dimensional vector. Let µi(θi) and Qi(wi) be the deterministic policy and the

q-function of agent i. θi and wi are the parameter vectors of µi(θi) and Qi(wi)

respectively. Let φ be a parameterized non-linear function which projects ōi to a low-

dimensional feature vector. For each agent i, Rec-MADDPG learns optimal µi(θ
∗
i)

using stochastic gradient ascent based on Deterministic Policy Gradients [79]

∇θiJ(θi) = E[∇θiµi(s̃i; θi)∇aiQi(s̃,a;wi) |ai=µi(s̃i;θi)] (7.1)

a is the joint action of all agents. s̃i = (φ(ōi), pi, g) is the embedded observation

of agent i. s̃ is embedded joint observation of all agents. s̃ is the embedded joint

observation of all agents. Since the joint exterior observation in s can be extremely

high-dimensional, embedding s is the most crucial part of Rec-MADDPG. To this

end, two embedding mechanisms are proposed:

s̃ = (φ(ō1, . . . , ōn), p1, . . . , pn, g1, . . . , gn) (7.2)

or

s̃ = (φ(ō1), . . . , φ(ōn), p1, . . . , pn, g1 . . . , gn) (7.3)

The embedding provided by Equation 7.2 and 7.3 are termed as joint embedding

and independent embedding. Both types of embedding allow Rec-MADDPG to learn

effective policies.

Rec-MADDPG learns the q-function of each agent i using stochastic gradient

decent based on Temporal Difference (TD) gradients.

∇wiL(wi) = E[∇wi(ri + γQi(s̃
′,a′;wi)−Qi(s̃,a;wi))] (7.4)

s̃′ is the embedded joint observation which is resulting from agents taking their joint

actions. ri is the reward received by agent i. a and a′ are the joint actions taken in

99

Figure 7.1: left: policy; right: q-function with independent and joint embedding
mechanisms.

s̃ and s̃′. In both Equations 7.1 and 7.4, E is the expectation of the gradients over a

batch of joint state-action transactions.

7.2.1 Parameter Sharing & Asynchronous Learning

In Rec-MADDPG, the policy and the q-function of each agent are represented as

deep neural networks which embed exterior observation of the agent using LSTM [31]

components. For training efficiency, Rec-MADDPG incorporates parameter sharing.

In this case, all agents share a single policy and a single q-function.Figure 7.1 shows

the neural network representation of the shared policy and q-function.

Rec-MADDPG learns the joint and independent embedding through a single

LSTM component. In terms of the joint embedding, the exterior observation of

all agents is concatenated before being embedded by LSTM. As for the independent

embedding, all agents’ exterior observation is input to the same LSTM in a sequence

and then concatenated. Both types of embedding are input to the shares q-function to

determine the q-values of an agent in the context of the other agents. Rec-MADDPG

learns both types of embedding through end-to-end training of the shared q-function.

100

F
ig

u
re

7.
2:

T
h
e

p
ar

al
le

li
ze

d
tr

ai
n
in

g
p
ar

ad
ig

m
of

R
ec

-M
A

D
D

P
G

101

In a parameter-sharing setting, an agent i determines its actions and q-values by

augmenting its input to the shared policy and q-function with its own ID i. Rec-

MADDPG utilizes the asynchronous framework proposed in single-agent reinforce-

ment learning [55] as an asynchronous training paradigm.

Figure 7.2 illustrates the proposed paradigm, where multiple sets of agents are

grouped in different environments and asynchronously optimize the globally shared

policy and q-function. In the proposed paradigm, each environment contains the same

number of agents indexed by the same set of IDs. After each time step, a centralized

Manager thread stores their joint state-action transactions into a separate replay

buffer and optimize the globally share policy and q-function according to equation

7.1 and 7.4. Algorithm 6 summarizes the learning procedure executed by a Manager

thread in a particular environment.

It is important to note that the asynchronous framework proposed in [55] does

not rely on replay buffers for stable learning. Instead, it allows agents to accumulate

their gradients before applying them to the shared policy or q-function. Different

from [55], the proposed paradigm relies on replay buffers for asynchronous learning.

The reason is that, in the proposed paradigm, accumulated gradients will most likely

explore during training. Since agents in the same environment must take their ac-

tions simultaneously, the agents have to apply their accumulated gradients to their

shared policy and q-function all together at each optimization step. That often leads

to a large destructive policy/q-function update. Under the proposed paradigm, em-

pirically replay buffers can well stabilize the asynchronous learning process and also

allow Rec-MADDPG to update the shared policy and q-function with more significant

learning rates.

102

Algorithm 6 The update thread of a group of agents.

1: function EnvLearn(µ(θ), Q(w))
2: initialized si = (ōi, pi, gi) for each agent i
3: for time step t = 1 to T do
4: for each agent i do
5: take action ai = µ(si, i; θ)
6: observe s′i = (ō′i, p

′
i, g) and receive reward ri

7: si ← s′i
8: store (s, re0, . . . , r

e
n,a, s

′) to De

9: for each agent i do
10: sample a batch from De for gradient evaluation
11: optimize µ(θ) and Q(w) using ADAM

7.3 Evaluation

Rec-MADDPG extends the Asynd-DDPG algorithm and conducts asynchronous

learning based on agents’ joint states and actions. Based on the experiment results

of RTAC and Asynd-DDPG, this section demonstrates that Rec-MADDPG can

further address the issue of multi-agent interaction and learn individual policies for

interacting agents in a cooperative environment. This successfully demonstrates that

Rec-MADDPG can address all the five issues that may arise in real-world reinforce-

ment learning applications, including partial observability, high-dimensional sensor

data, real-time operation, multi-task environments, and multi-agent interaction. In

addition, the multi-agent policy learned by Rec-MADDPG is evaluated in terms of

its effectiveness on learned tasks and generalizability for unseen environments.

In the experiment, the Rec-MADDPG follows the same execution architecture as

what the Asynd-DDPG follows (i.e., RTAC), and it also utilizes Dropout to compute

sparse policy gradients for asynchronous learning. Different from Asynd-DDPG, Rec-

MADDPG uses the MADDPG algorithm [52] to conduct the asynchronous learning

based on joint states and actions of agents. Extending the standard MADDPG,

Rec-MADDPG projects the joint states of agents into a low-dimensional embedding

through recurrent neural networks. To this end, two embedding mechanisms, the joint

103

embedding, and the independent embedding are proposed. To show that those two

embedding mechanisms can enable Rec-MADDPG to learn better optimal policies for

multi-agent navigation, Rec-MADDPG is compared with the standard MADDPG.

In the experiment, MADDPG follows the same asynchronous training mechanism

adopted by the Rec-MADDPG and also utilizes Dropout to compute sparse gradients

for asynchronous learning. Such an asynchronous reinforcement learning setup is also

essentially the same as the one used in the Asynd-DDPG experiments so that the

experiments in this section can be consistent with the experiments in the previous

sections.

7.3.1 Simulation Details

In experiments, agents with continuous actions must navigate to their pre-defined

goals based on their local sensor observation without collisions. To address the issues

that may arise in real-world robotic applications, the implementation of experiments

is based on ROS and Gazebo, which provide realistic robot simulation and physics-

enabled environments.

Agents. Agents are simulated based on physical robots, i.e. ROSbot 2.0. Figure

7.3a presents an simulated agent in our experiments. Each agent observes its sur-

rounding environment using a range sensor that measures the distance between the

agent and its nearby objects using evenly spaced outgoing rays. Each time step, each

agent uses its range sensor to observe a vector of 180 ranges, each of which determines

the agent’s distance to an obstacle detected by a ray.

Environments. For successful completion of the proposed task, agents must

learn their behavior in the presence of obstacles with various distributions. Rec-

MADDPG learns a shared policy for agents to master the proposed navigation task

in all sub-environments presented in Figure 7.3b to 7.3d.

104

(a) Agent (b) Env0

(c) Env1 (d) Env2

Figure 7.3: The agent and environments used in experiments.

In each environment, each agent is assigned a pre-defined goal where it needs

to navigate. An agent reaching its goal, if its distance to its goal is lower than 0.5

(i.e., the diameter of a simulated robot). During navigation, each agent must avoid

collisions with both obstacles and the other agents. If an agent reaches its goal early,

it must learn to hover its goal while waiting for the other agents to reach theirs. For

each environment, agents complete their tasks successfully if they all reach their goals

without collisions.

105

(a) Rewards in Env0 (b) Rewards in Env1

(c) Rewards in Env2

Figure 7.4: Episodic reward distributions during training. IE and JE stand for the
Rec-MADDPG with independent and joint embedding.

7.3.2 Relate Simulation to Theoretical Formulation

This chapter focuses on learning policies for multi-agent collision avoidance. To sup-

port multi-agent reinforcement learning, we extends the simulation setting presented

in Chapter 5 and allows multiple agents to navigate in the same environment. In

this chapter, we simulate an agent as a land-based vehicle (i.e., ROSbot). The states,

actions and rewards of an agent has the definition given in Chapter 4.

The experiments in this chapter is based on a multi-agent reinforcement learning

method, MADDPG [52]. This method allows an agent to alternate between optimiz-

ing its own policy and q-function through stochastic gradient optimization. Specifi-

cally, the agent computes the gradients for optimizing its own policy and q-function

106

according to equations 7.5 and 7.6.

.∇θJ(θ) = E{∇θ log µiθ(s
i
t)∇ait

Q(st,at) |ait=µiθ(sit)
} (7.5)

∇wL(w) = E[∇wi(r
i
t + γQi(st+1,at+1;w)−Qi(st,at;w))] (7.6)

In the above equations, st and at are the joint states of all agents in the same

environment at time t. sit and ait are the state and action of agent i at time t. During

training, an agent must have access to the joint state and actions of all agents in

the same environment, in order to evaluate its own gradients. To support this in

our simulation, we let the Gazebo simulator to transfer the data perceived by all

the agents in the same environment to the training program, which will subsequently

structure those data as joint states, actions and rewards of those agents and store

them in a separate buffer as different transactions, (st,at, rt). rt is the rewards

received by each of the agents in the same environment at time t.

The experiments conducted in this chapter utilizes weigh-sharing technique which

allows agents in the same environment to use the same neural networks as their poli-

cies and q-functions. Figure 7.1 presents the neural network structure implemented

in our experiments. During training, a separate thread samples multiple transactions,

(st,at, rt, st+1,at+1), from the buffer which stores the joint state, action and rewards

of agents. For each sampled transaction, the thread will compute the gradients for

each agent i according to equation 7.5 and 5.2 without the expected value notation E.

For each agent i, the thread computes the expected values of the agent’s gradients by

averaging those computed gradient values with respect to each of the parameters of

the shared policy and q-function. Then, the thread will apply the expected gradients

of each agent to the parameters of the shared policy and q-function.

The proposed methods will requires asynchronous reinforcement learning with

multiple groups of agent in different environments 7.2.1. In this case, the Gazebo

107

simulator will transfer the data perceived by different groups of agents to the training

program. Then, the training program will structure the data of each group of agents

as separate transactions of joint state, action and rewards. Each transaction is stored

into separate buffers. For each buffer, a separate thread will compute expected gra-

dient values according to the above procedure. The thread will then asynchronously

applies those computed gradients to the shared policy and q-function.

7.3.3 Learning Performance

With both independent and joint embedding, the performance of Rec-MADDPG

is compared with the standard MADDPG [52]. The evaluation of Rec-MADDPG

and MADDPG uses asynchronous RTAC as execution architecture. In experiments,

both methods need to learn a shared policy that can coordinate agents in all three

environments presented in Figure 7.3b to 7.3d.

In terms of the shared q-function, the embedding of the joint exterior observation

of all agents, together with other state features, are input to a 3-layer perceptron,

where each layer has 2048 neurons. As for the shared policy, the exterior observation

of an agent is also embedded by a LSTM component and then input to a 3-layer

perceptron, where each layer has 1024 neurons. ReLu is used as an activation func-

tion for both q-function and policy. For comparison, LSTM is eliminated from the

shared policy and q-function in MADDPG. Instead, MADDPG flattens the exterior

observation of agents into a one-dimensional vector.

Figure 7.4 presents the experiment results. In all three environments, Rec-

MADDPG significantly outperforms the MADDPG. Based on the results, both

independent and joint embedding can enable Rec-MADDPG to learn policies that

can effectively coordinate agents in all three environments. Compared to joint

embedding, independent embedding enables Rec-MADDPG to achieve considerably

108

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

(i
)

(j
)

F
ig

u
re

7.
5:

T
ra

je
ct

or
ie

s
p
la

n
n
ed

b
y

th
e

p
ol

ic
ie

s
le

ar
n
ed

th
ro

u
gh

R
ec

-M
A

D
D

P
G

.
(a

)-
(c

):
R

ec
-M

A
D

D
P

G
w

it
h

in
d
ep

en
d
en

t
em

b
ed

d
in

g;
(d

)-
(f

):
R

ec
-M

A
D

D
P

G
w

it
h

jo
in

t
em

b
ed

d
in

g.
V

id
eo

d
em

o:
h
t
t
p
s
:
/
/
y
o
u
t
u
.
b
e
/
U
q
M
v
F
d
c
C
C
G
4

109

https://youtu.be/UqMvFdcCCG4

higher rewards. The reason is that independent embedding can reduce the joint

observation space of agents.

With joint embedding, Rec-MADDPG learns the embedding in the joint exterior

observation space with the sized of |ō|n. |ō| is the dimensionality of an agent’s ex-

terior observation, and n is the number of agents. On the other hand, independent

embedding enables Rec-MADDPG to learn exterior observation embedding for each

agent independently through a shared LSTM. That reduces the size of agents’ joint

exterior observation space from |ō|n to n|ō|. With smaller joint exterior observation

space, it’s easier for Rec-MADDPG to learn effective embedding during training.

7.3.4 Policy Performance

In this part of experiments, the performance of the policies learned by Rec-MADDPG

and MADDPG are compared in each of the three environments presented in figure

7.3b to 7.3d. To show the detailed performance of policies learned by Rec-MADDPG,

a team of agents use the learned policies to navigate in each of the three environments

for 120 episodes. Figure 7.5 presents example trajectories planned by the policies

learned through Rec-MADDPG and MADDPG.

Rec-MADDPG IE Rec-MADDPG JE
time step succ rate min dist time step succ rate min dist

Env0 48.611 0.824 0.532 63.032 0.917 0.716
Env1 45.883 0.642 0.591 57.576 0.972 0.753
Env2 53.472 0.982 0.653 68.121 0.509 0.634
Env3 52.770 0.951 0.580 133.08 0.174 0.881
Env4 46.090 0.803 0.499 74.218 0.653 0.709

Table 7.1: Summarized metrics of navigation trajectories planned by agents using
learned policies in all environments. The minimum distance between robots (i.e.,
min dist) is measured in meters.

Table 7.1 summarizes metrics of the trajectories planned agents in all three en-

vironments, including the success rates and the time steps, and minimum distance

110

between robots. Based on the results, Rec-MADDPG, with both independent and

joint embedding, can learn policies that enable agents to complete their navigation

in all three environments. On the other hand, MADDPG can not learn effective

policies at all. However, for each embedding mechanism, the learned policies have

considerably low performance in one of the three environments, while having a strong

performance in the other two. This result suggests that both embedding mechanisms

were able to compliment each other in certain scenarios.

7.3.5 Policy Generalization

The generalizability of the learned policies is evaluated in unfamiliar environments.

Those trajectories suggest that independent embedding enabled Rec-MADDPG to

learn policies with significantly better performance in unfamiliar environments.

7.3.6 Learning Policies with Improved Reward Function

In the chapter, Rec-MADDPG learns policies for multi-robot collision avoidance based

the reward function below:

R =


−1 collided,

1 reached the final goal,

max(0, d′ − d) otherwise.

(7.7)

The d and d′ are the euclidean distance from an agent’s previous and current

locations to its goal. Indeed, the above function was also the reward function used

by the reinforcement learning methods presented in Chapter 5 and 6.

In general, this reward function allowed agents to learn effective policies for col-

lision avoidance. However, it does not capture all navigation performance metrics,

as presented in Chapter 4. This makes us hypothesize that the quality of learned

111

policies can be improved if we incorporate more relevant metrics into the rewards.

This section re-trained the policies with an independent embedding mechanism based

on the following reward function:

R =


−1 collided,

1 reached the final goal,

(d′ − d)− α 1
c
− βϕ otherwise.

(7.8)

In the above equation, we incorporate the additional metrics, c, and ϕ. c denotes

the minimum distance from an agent’s current location to obstacles, and ϕ is the

agent’s travel distance within a one-time step. α and β are scalar values serving as

coefficients. After incorporating those addition metrics, the reward function would

favor shorter trajectories that allow an agent to stay further away from obstacles. We

compare the performance of the learned policy within Table 7.2. Those results are

summarized based on 120 episodes planned by agents using their learned policies.

original reward function improved reward function
time step succ rate min dist time step succ rate min dist

Env0 48.611 0.824 0.532 61.491 0.852 0.781
Env1 45.883 0.642 0.591 59.862 0.557 0.755
Env2 53.472 0.982 0.653 75.428 0.983 0.956

Table 7.2: The performance of the policies learned based on the original reward func-
tion and the improved reward function. The original and improved reward functions
are given by equation 7.7 and 7.8 respectively.

According to the results, the improved reward function allows agents to distance

each other during navigation significantly. Compared to the original reward function,

the improved reward function does not significantly change agent navigation’s success

rate. In Env1 (as shown in Figure 7.3c), both reward function give low success rate.

According to Table 7.1, the joint embedding mechanism achieved the success rate of

0.972 in the Env1. This suggests that the Independent Embedding mechanism is not

112

well suitable for Env1. The reason can be that the Independent Embedding is not as

good as the Joint Embedding mechanism in capturing the relationships among the

observation of different robots. As we can observe in the same table, the improved

reward caused the robots to take more time to complete their navigation. Because the

improved reward function encourages the robots to keep larger distances to obstacles,

they would have to reroute their path during their navigation. This caused the robots

to plan a longer path to their goals eventually. However, it is important to have the

travel distance component in the reward function. With the component, the robots

can learn to minimize the lengths of their rerouted paths instead of learning to plan

an arbitrary long path to their goals.

7.4 Summary

This chapter presented a multi-agent reinforcement learning method, Rec-MADDPG,

which enabled mapless multi-agent collision avoidance for multi-robot navigation. We

proposed independent and joint embedding mechanisms based on recurrent neural

networks in order to project joint exterior observation of agents to low-dimensional

features. By incorporating parameter sharing and an A3C-based asynchronous frame-

work, Rec-MADDPG learned a shared policy and q-function with multiple sets of

agents grouped in different environments. We evaluate Rec-MADDPG in robotic

navigation tasks based on realistically simulated robots and physics-enabled maze-

like environments. In extensive experiments, we demonstrated that Rec-MADDPG

could significantly outperform MADDPG. With both independent and joint embed-

ding, Rec-MADDPG learned effective policies for agents to master those navigation

tasks. Also, those learned policies were general enough to handle environments that

are unseen by agents during training. Compared to joint embedding, independent

113

embedding could enable Rec-MADDPG to learn even better optimal policies, which

allowed agents to plan shorter and smoother trajectories to their goals.

114

Chapter 8

Conclusions

8.1 Summary

Collision avoidance is a difficult problem, and researchers have been actively study-

ing it under different robot configurations and environment dynamics. In this thesis,

we first studied map-based collision avoidance in navigation tasks involving multiple

robots. We proposed two multi-robot systems that allowed robots to build environ-

ment maps for navigation under centralized and distributed settings. In this study,

robots following different pre-planned paths may encounter each other during navi-

gation and must avoid collisions in real-time based on their local sensor observation.

This was because the environment map built by the robots was not entirely accu-

rate, and it did not incorporate the locations of those moving robots. Therefore, it is

essential for a robot to utilize mapless collision avoidance methods for safe navigation.

Motivated by the study of map-based collision avoidance, the rest of the thesis

focused on mapless collision avoidance. For collision avoidance in practice, robots op-

erate in real-time and must meet the real-time constraint. However, the conventional

robotic methods for collision avoidance require a robot to infer optimal actions within

a predefined time limit at each time step. Such online action inferring can be com-

115

putationally expensive, particularly when a robot has limited computing resources.

This thesis presented a reinforcement learning approach to learn a policy that allows

a robot to deterministically map local sensor observation to optimal actions for map-

less collision avoidance. By directly mapping sensor observation to actions through

the learned policy, a robot can avoid expensive online action inferring and minimize

the time delay before acting. After formulating the mapless collision avoidance as

a reinforcement learning problem, we proposed a real-time architecture, RTAC, to

have robots learn policies through model-free off-policy reinforcement learning un-

der real-time constraints. Based on RTAC, we proposed Asynd-DDPG for learning

multi-task policies for mapless collision avoidance. By extending Asynd-DDPG, we

proposed Rec-MADDPG to incorporate multi-agent interaction into reinforcement

learning and learn policies for mapless collision avoidance of multiple robots.

In extensive experiments, this thesis demonstrated the great potential of deep

reinforcement learning to solve mobile robots’ real-world collision avoidance. We

evaluated the proposed work in simulation, which allowed simulated robots to oper-

ate under real-world settings. Through experimentation, we showed that RTAC could

effectively apply reinforcement learning to real-time control, fundamental for robot

navigation in the physical world. Specifically, RTAC effectively reduced the control

delay variance and enabled robots to operate in real-time to learn optimal policies. It

can also be scaled to support asynchronous reinforcement learning and allow the pro-

posed reinforcement learning methods, Asynd-DDPG and Rec-MADDPG, to learn

optimal policies under real-time constraint. Asynd-DDPG and Rec-MADDPG ad-

dressed multi-task and multi-agent control, respectively, which are important issues

for collision avoidance in the physical world. The physical world is an environment

with high-level uncertainties, and it can pose unforeseen scenarios where robots need

to avoid collisions. In experiments, those proposed methods could learn policies that

116

have good generalizability and allow a single robot or multiple robots to conduct safe

navigation in different scenarios, including those unseen during training.

8.2 Accomplishment

This thesis focused on a reinforcement learning approach for mapless collision avoid-

ance under real-world settings. As a long-standing problem, mapless collision avoid-

ance has been actively studied under robotics research. Conventionally, mapless col-

lision avoidance is formulated as a real-time optimization problem, which requires

a robot to search for an optimal its action space (or configuration space) within a

pre-defined deadline. With limited onboard computing resources, such online action

inferring can be computationally expensive and may fail to meet the deadline. In

the thesis, we mitigate the issue of online action inferring by learning deterministic

policies through reinforcement learning. With a learned policy, an agent can deter-

ministically select an action based on its sensor observation at each time step, which

avoids searching an action space.

In general, applying reinforcement learning to robotics task requires learning pol-

icy in a simulated environment and deploying the learned policy in the second phase.

In this thesis, we study those issues in a simulated environment, which serves the

pre-requisite step of deploying reinforcement learning for mapless collision avoidance

in the physical world. Applying reinforcement learning to mapless collision avoid-

ance must deal with various issues in the physical world. In this thesis, we primarily

addressed the following issues in the context of reinforcement learning, including par-

tial observability, high-dimensional sensor data, real-time control delay, multi-task

environments, and multi-agent interaction.

Historically, reinforcement learning was able to solve small scale problems. The

above issues posed a challenging environment for reinforcement learning, and address-

117

ing all of them at once can be difficult. Instead, we studied different reinforcement

learning methods to address the above issues progressively. In the end, our multi-

agent reinforcement learning methods, Rec-MADDPG, was able to deal with all those

issues. The Rec-MADDPG learns individual policies for each of the robots navigat-

ing in the same environment. Compared to the solutions where robots adopt the

same controller for collision avoidance, Rec-MADDPG better learns customized poli-

cies for collision avoidance under challenging scenarios. However, learning individual

policies poses exponentially increasing policy search space, making Rec-MADDPG

only applicable to a small number of robots. We found that the convergence time of

Rec-MADDPG increases as we increase the number of robots through experiments.

However, there is no evidence showing that Rec-MADDPG would not converge if we

can give it enough training time.

The Rec-MADDPG is based on the other two reinforcement learning methods

we developed in the thesis: the RTAC architecture and Asyncd-DDPG. Robots nav-

igating in the physical world operates in real-time. To support real-time operation

during reinforcement learning, we proposed the RTAC architecture. Through em-

pirical experiments and theoretical analysis, we show that it is crucial to support

real-time operations to ensure the Markov property. For learning efficiency, we also

designed RTAC to support asynchronous reinforcement learning. Robot navigating

in the physical world needs to avoid collisions under different scenarios. To this end,

we developed Asyncd-DDPG as a way to synthesis collision avoidance behavior un-

der different scenarios into a consistent policy through asynchronous reinforcement

learning. Both RTAC and Asyncd-DDPG provides insights about the performance of

deep reinforcement learning robot navigation in the physical world. They are the fun-

damental building blocks for Rec-MADDPG to learn customized collision avoidance

policies under real-world settings.

118

8.3 Discussion

The reinforcement learning approach studied in the thesis focused on collision avoid-

ance of robots with low traveling speed. In our experiments, a robot is subject to

a maximum speed. Through reinforcement learning, the robot needs to determine

its desired speed at any time steps. The proposed reinforcement learning methods

treat the maximum traveling speed as an intrinsic property of a robot. In this case,

the policies learned by those methods are for the robots with redefined maximum

traveling speed. In experiments, we empirically set such maximum speed to be 1m/s

while considering the constraints of robot motion (i.e., kinematic constraints) and

navigation environments’ characteristics. When multiple robots are involved in an

experiment, the robots have the same maximum traveling speed (i.e., 1m/s).

Navigation is ubiquitous among the tasks involving mobile robots. In practice,

a robot can travel in speed that is much higher than 1m/s. A robot’s travel speed

is usually subject to navigation task requirements and obstacle distributions of an

environment. For example, in a cluttered indoor environment, a robot would have

to move at low speed to avoid collisions, as a robot has to change its heading di-

rections constantly. On the other hand, a robot can also navigate the open outdoor

environment, such as traveling on a highway. In this case, the control task would be

significantly different from the ones studied in the thesis. The robot’s navigation per-

formance shall be measured with additional metrics, such as stabilizes and response

time. Addressing the issue of high traveling speed requires an extension of thesis

work, e.g., incorporating additional reward function components, computing more

effective policy gradients, and designing a more appropriate reinforcement learning

mechanism. The work studied in the thesis contributes to learning robust policies for

safe navigation in real-world environments.

This thesis progressively studied reinforcement learning methods for enabling mul-

tiple robots to avoid collisions in various navigation scenarios under real-world set-

119

tings. Eventually, we achieve this objective through the proposed multi-agent re-

inforcement learning method, Rec-MADDPG. This method follows the centralized-

learning-and-distributed-execution paradigm. Essentially, it learns separate policies

for individual robots based on their joint state and actions. As the joint state and ac-

tion spaces grow exponentially as the number of robots increases, the Rec-MADDPG

is only suitable for learning policies for a small number of robots. In the thesis work,

Rec-MADDPG was able to learn policies for three robots navigating in three different

scenarios. In our experiments, it took approximately one day to learn the policies

for those robots. As we increase the number of robots to five, the Rec-MADDPG

seems not going to converge on optimal policies for a single scenario within a reason-

able amount of time (i.e., ≥ 2 days). This suggests that learning collision avoidance

policies for many robots require a significant extension of Rec-MADDPG.

When multiple robots are navigating in the same environment, it is a rare case

when all the robots need to avoid collisions with each other. It is more often for a

subset of the robots to encounter each other during their navigation. In this case, it is

necessary to have policies for a small number of robots to avoid collisions. To this end,

the proposed Rec-MADDPG demonstrates the feasibility of applying reinforcement

learning to learn policies for collision avoidance under various obstacle distributions.

In extensive experiments, we show that recurrent neural networks can effectively

handle the temporal sequence of high-dimensional sensor data and can be utilized to

approximate the optimal q-function for high-dimensional joint state space. The Rec-

MADDPG provides the opportunities to empirically understand deep reinforcement

learning behavior in both high-dimensional joint state space and continuous action

space.

120

8.4 Future Work

Reinforcement learning is generally categorized as model-free and model-based meth-

ods. This thesis focused on model-free reinforcement learning for mapless collision

avoidance. On the other end of the spectrum, model-based reinforcement learning

has also been actively studied in robotics research. Although model-free methods can

theoretically achieve the same optimal performance without estimating the model of

an environment, model-based methods can achieve better sample efficiency by col-

lecting more informative experience based on an environment model. In future work,

we would apply model-based reinforcement learning to mapless collision avoidance.

Unlike a model-free method that purely relies on state values, a model-based method

allows a robot to predict the outcome of an action based on the estimated model of an

environment and select actions based on more complete criteria. Therefore, a model-

based method has an opportunity to learn predictable and interpretable behavior for

collision avoidance.

Applying reinforcement learning to robotic tasks typically involves learning policy

in simulation and transfer the learned policy to a robot operating in the physical

world in the second phase. This thesis focused on learning policies under real-world

settings in simulation, an important step for a practical application of reinforcement

learning. It primarily addressed the following five issues that can arise in real-world re-

inforcement learning applications: partial observability, high-dimensional sensor data,

real-time control delay, multi-task environment, and multi-agent interaction. For fu-

ture work, there can be other issues related to reinforcement learning in the physical

world. It will be worthwhile to incorporate the uncertainties caused by robot localiza-

tion into reinforcement learning to learn more robust policies for collision avoidance.

Besides, a robot can extract semantic information from sensor data (e.g., detecting

pedestrians and recognizing traffic signs) and possibly incorporate the information

121

into its environment model, so that the robot can make more intelligent decisions for

collision avoidance.

In some navigation tasks, there can be many robots that need to move through

narrow spaces. This can be typical scenarios where robots form congestion, and such

scenarios were also demonstrated in the motivating work presented in Chapter 3. Re-

inforcement learning can be a candidate solution for robots to resolve congestion and

ensure safe navigation in narrow spaces. However, the proposed multi-agent reinforce-

ment learning method, Rec-MADDPG methods, is only suitable for learning policies

for a small number of robots. For future work, we would extend the Rec-MADDPG

to enable collision avoidance among a large number of robots. As demonstrated in

an extensive experiment, the proposed independent and Joint embedding mechanism

has its advantages on collision avoidance under different scenarios. Based on those

two embedding methods, we can design a mechanism that can both well embed ob-

servation of each robot and capture the readership among observation of different

robots. In terms of learning policies for many robots, learning customized policies

for each robot would pose an extremely large policy search space and make learning

intractable. To reduce the policy search space, we would effectively fuse the experi-

ence collected by different robots and learn a single policy shared by all the robots for

collision avoidance. However, the time for learning such a policy can increase dras-

tically, as we have more agents navigate in the same environment. It is important

to increase the sample efficiency of the reinforcement learning method. As suggested

in recent literature [83, 16, 101], we can let agents use a pre-programmed motion

controller to collect more useful experiences. The agents can use those experiences to

initialize reinforcement learning. With the pre-programmed controller’s guide, agents

can discover better optimal policies for collision avoidance.

Navigation tasks can require robots to travel at various speeds. The reinforce-

ment learning approach studied in the thesis is only suitable for robots traveling at

122

low speed. As autonomous driving and delivery robots become increasingly popular,

it is important to enabling collision avoidance of robots traveling at high speed in

future work. To support navigation tasks requiring high-speed traveling, we would

incorporate the different simulation setup, such as [76, 18], for reinforcement learning.

In the thesis, we assumed that all robots have the same maximum travel speed. Con-

sidering generalizability, we propose a reinforcement learning method for robots with

different maximum traveling speeds. To this end, a learned policy must be subject

to the physical constraints of different robots and determine the desired velocities

under various maximum speed. To this end, we need to study alternative training

paradigms and algorithms for learning policies that can not only work in different

scenarios but also work for robots with different configurations.

123

Bibliography

[1] Sander Adam, Lucian Busoniu, and Robert Babuska. Experience replay for
real-time reinforcement learning control. IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews), 42(2):201–212, 2011.

[2] Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan, Alexandre Robicquet,
Li Fei-Fei, and Silvio Savarese. Social lstm: Human trajectory prediction in
crowded spaces. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 961–971, 2016.

[3] Javier Alonso-Mora, Andreas Breitenmoser, Paul Beardsley, and Roland Sieg-
wart. Reciprocal collision avoidance for multiple car-like robots. In Robotics and
Automation (ICRA), 2012 IEEE International Conference on, pages 360–366.
IEEE, 2012.

[4] Haitham Bou Ammar, Eric Eaton, José Marcio Luna, and Paul Ruvolo. Au-
tonomous cross-domain knowledge transfer in lifelong policy gradient reinforce-
ment learning. In Twenty-Fourth International Joint Conference on Artificial
Intelligence, 2015.

[5] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong,
Peter Welinder, Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech
Zaremba. Hindsight experience replay. In Advances in Neural Information
Processing Systems, pages 5048–5058, 2017.

[6] Rosario Aragues, Jorge Cortes, and C Sagues. Distributed consensus algorithms
for merging feature-based maps with limited communication. Robotics and
Autonomous Systems, 59(3-4):163–180, 2011.

[7] Rosario Aragues, Jorge Cortes, and Carlos Sagues. Distributed consensus on
robot networks for dynamically merging feature-based maps. IEEE Transac-
tions on Robotics, 28(4):840–854, 2012.

[8] Daman Bareiss and Jur van den Berg. Generalized reciprocal collision avoid-
ance. The International Journal of Robotics Research, 34(12):1501–1514, 2015.

[9] Charles Beattie, Joel Z Leibo, Denis Teplyashin, Tom Ward, Marcus Wain-
wright, Heinrich Küttler, Andrew Lefrancq, Simon Green, Vı́ctor Valdés, Amir
Sadik, et al. Deepmind lab. arXiv preprint arXiv:1612.03801, 2016.

124

[10] Nicola Bernini, Massimo Bertozzi, Luca Castangia, Marco Patander, and Mario
Sabbatelli. Real-time obstacle detection using stereo vision for autonomous
ground vehicles: A survey. In Intelligent Transportation Systems (ITSC), 2014
IEEE 17th International Conference on, pages 873–878. IEEE, 2014.

[11] Wolfram Burgard, Mark Moors, Cyrill Stachniss, and Frank E Schneider. Coor-
dinated multi-robot exploration. IEEE Transactions on robotics, 21(3):376–386,
2005.

[12] Lucian Buşoniu, Robert Babuška, and Bart De Schutter. Multi-agent rein-
forcement learning: An overview. In Innovations in multi-agent systems and
applications-1, pages 183–221. Springer, 2010.

[13] Yongcan Cao, Wenwu Yu, Wei Ren, and Guanrong Chen. An overview of
recent progress in the study of distributed multi-agent coordination. IEEE
Transactions on Industrial informatics, 9(1):427–438, 2013.

[14] Ursula Challita, Walid Saad, and Christian Bettstetter. Cellular-connected
uavs over 5g: Deep reinforcement learning for interference management. arXiv
preprint arXiv:1801.05500, 2018.

[15] Yu Fan Chen, Michael Everett, Miao Liu, and Jonathan P How. Socially
aware motion planning with deep reinforcement learning. arXiv preprint
arXiv:1703.08862, 2017.

[16] Yu Fan Chen, Miao Liu, Michael Everett, and Jonathan P How. Decentral-
ized non-communicating multiagent collision avoidance with deep reinforcement
learning. In Robotics and Automation (ICRA), 2017 IEEE International Con-
ference on, pages 285–292. IEEE, 2017.

[17] Marc Peter Deisenroth, Peter Englert, Jan Peters, and Dieter Fox. Multi-task
policy search for robotics. In 2014 IEEE International Conference on Robotics
and Automation (ICRA), pages 3876–3881. IEEE, 2014.

[18] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and
Vladlen Koltun. Carla: An open urban driving simulator. arXiv preprint
arXiv:1711.03938, 2017.

[19] Gabriel Dulac-Arnold, Daniel Mankowitz, and Todd Hester. Challenges of real-
world reinforcement learning. arXiv preprint arXiv:1904.12901, 2019.

[20] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir Mnih,
Tom Ward, Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Im-
pala: Scalable distributed deep-rl with importance weighted actor-learner ar-
chitectures. arXiv preprint arXiv:1802.01561, 2018.

[21] Dave Ferguson, Michael Darms, Chris Urmson, and Sascha Kolski. Detection,
prediction, and avoidance of dynamic obstacles in urban environments. In In-
telligent Vehicles Symposium, 2008 IEEE, pages 1149–1154. IEEE, 2008.

125

[22] Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and Pieter
Abbeel. Reverse curriculum generation for reinforcement learning. arXiv
preprint arXiv:1707.05300, 2017.

[23] Jakob N Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli,
and Shimon Whiteson. Counterfactual multi-agent policy gradients. In Thirty-
Second AAAI Conference on Artificial Intelligence, 2018.

[24] Dieter Fox, Wolfram Burgard, and Sebastian Thrun. The dynamic window ap-
proach to collision avoidance. IEEE Robotics & Automation Magazine, 4(1):23–
33, 1997.

[25] Thierry Fraichard and Alexis Scheuer. Car-like robots and moving obstacles. In
Robotics and Automation, 1994. Proceedings., 1994 IEEE International Con-
ference on, pages 64–69. IEEE, 1994.

[26] Jayesh K Gupta, Maxim Egorov, and Mykel Kochenderfer. Cooperative multi-
agent control using deep reinforcement learning. In International Conference
on Autonomous Agents and Multiagent Systems, pages 66–83. Springer, 2017.

[27] Matthew Hausknecht and Peter Stone. Deep recurrent q-learning for partially
observable mdps. CoRR, abs/1507.06527, 7(1), 2015.

[28] Daniel Hennes, Daniel Claes, Wim Meeussen, and Karl Tuyls. Multi-robot
collision avoidance with localization uncertainty. In Proceedings of the 11th In-
ternational Conference on Autonomous Agents and Multiagent Systems-Volume
1, pages 147–154. International Foundation for Autonomous Agents and Mul-
tiagent Systems, 2012.

[29] Matteo Hessel, Hubert Soyer, Lasse Espeholt, Wojciech Czarnecki, Simon
Schmitt, and Hado van Hasselt. Multi-task deep reinforcement learning with
popart. arXiv preprint arXiv:1809.04474, 2018.

[30] Todd Hester, Michael Quinlan, and Peter Stone. Rtmba: A real-time model-
based reinforcement learning architecture for robot control. In 2012 IEEE In-
ternational Conference on Robotics and Automation, pages 85–90. IEEE, 2012.

[31] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[32] Nicholas R Hoff, Amelia Sagoff, Robert J Wood, and Radhika Nagpal. Two for-
aging algorithms for robot swarms using only local communication. In Robotics
and Biomimetics (ROBIO), 2010 IEEE International Conference on, pages
123–130. IEEE, 2010.

[33] M Ani Hsieh, Anthony Cowley, Vijay Kumar, and Camillo J Taylor. Main-
taining network connectivity and performance in robot teams. Journal of Field
Robotics, 25(1-2):111–131, 2008.

126

[34] Franck Iutzeler, Philippe Ciblat, and Jérémie Jakubowicz. Analysis of max-
consensus algorithms in wireless channels. IEEE Transactions on Signal Pro-
cessing, 60(11):6103–6107, 2012.

[35] Zilong Jiao and Jae Oh. Simultaneous exploration and harvesting in multi-robot
foraging. In International Conference on Industrial, Engineering and Other
Applications of Applied Intelligent Systems, pages 496–502. Springer, 2018.

[36] Zilong Jiao and Jae Oh. Asynchronous multitask reinforcement learning with
dropout for continuous control. In 2019 18th IEEE International Conference
On Machine Learning And Applications (ICMLA), pages 529–534. IEEE, 2019.

[37] Zilong Jiao and Jae Oh. End-to-end reinforcement learning for multi-agent
continuous control. In 2019 18th IEEE International Conference On Machine
Learning And Applications (ICMLA), pages 535–540. IEEE, 2019.

[38] Steven Kapturowski, Georg Ostrovski, John Quan, Remi Munos, and Will Dab-
ney. Recurrent experience replay in distributed reinforcement learning. 2018.

[39] Oussama Khatib. Real-time obstacle avoidance for manipulators and mobile
robots. In Autonomous robot vehicles, pages 396–404. Springer, 1986.

[40] Sujeong Kim, Stephen J Guy, Wenxi Liu, David Wilkie, Rynson WH Lau,
Ming C Lin, and Dinesh Manocha. Brvo: Predicting pedestrian trajectories
using velocity-space reasoning. The International Journal of Robotics Research,
34(2):201–217, 2015.

[41] Nathan Koenig and Andrew Howard. Design and use paradigms for gazebo,
an open-source multi-robot simulator. In Intelligent Robots and Systems,
2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ International Conference on,
volume 3, pages 2149–2154. IEEE, 2004.

[42] Yoram Koren and Johann Borenstein. Potential field methods and their inherent
limitations for mobile robot navigation. In Robotics and Automation, 1991.
Proceedings., 1991 IEEE International Conference on, pages 1398–1404. IEEE,
1991.

[43] Landon Kraemer and Bikramjit Banerjee. Multi-agent reinforcement learning
as a rehearsal for decentralized planning. Neurocomputing, 190:82–94, 2016.

[44] Hung Manh La, Ronny Lim, and Weihua Sheng. Multirobot cooperative learn-
ing for predator avoidance. IEEE Transactions on Control Systems Technology,
23(1):52–63, 2015.

[45] Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl
Tuyls, Julien Pérolat, David Silver, and Thore Graepel. A unified game-
theoretic approach to multiagent reinforcement learning. In Advances in Neural
Information Processing Systems, pages 4190–4203, 2017.

127

[46] Steven M LaValle. Rapidly-exploring random trees: A new tool for path plan-
ning. 1998.

[47] Uichin Lee, Eugenio Magistretti, Mario Gerla, Paolo Bellavista, Pietro Lió, and
Kang-Won Lee. Bio-inspired multi-agent data harvesting in a proactive urban
monitoring environment. Ad Hoc Networks, 7(4):725–741, 2009.

[48] Dan Levi, Noa Garnett, Ethan Fetaya, and Israel Herzlyia. Stixelnet: A deep
convolutional network for obstacle detection and road segmentation. In BMVC,
pages 109–1, 2015.

[49] Lihong Li, Thomas J Walsh, and Michael L Littman. Towards a unified theory
of state abstraction for mdps. In ISAIM, 2006.

[50] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with
deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[51] Pinxin Long, Tingxiang Fan, Xinyi Liao, Wenxi Liu, Hao Zhang, and Jia Pan.
Towards optimally decentralized multi-robot collision avoidance via deep rein-
forcement learning. arXiv preprint arXiv:1709.10082, 2017.

[52] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor
Mordatch. Multi-agent actor-critic for mixed cooperative-competitive environ-
ments. In Advances in Neural Information Processing Systems, pages 6379–
6390, 2017.

[53] Tambet Matiisen, Avital Oliver, Taco Cohen, and John Schulman. Teacher-
student curriculum learning. arXiv preprint arXiv:1707.00183, 2017.

[54] Javier Minguez and Luis Montano. Nearness diagram (nd) navigation: colli-
sion avoidance in troublesome scenarios. IEEE Transactions on Robotics and
Automation, 20(1):45–59, 2004.

[55] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Tim-
othy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asyn-
chronous methods for deep reinforcement learning. In International conference
on machine learning, pages 1928–1937, 2016.

[56] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[57] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Ve-
ness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland,
Georg Ostrovski, et al. Human-level control through deep reinforcement learn-
ing. Nature, 518(7540):529, 2015.

128

[58] Luc Moreau. Stability of multiagent systems with time-dependent communica-
tion links. IEEE Transactions on automatic control, 50(2):169–182, 2005.

[59] Johan Nilsson et al. Real-time control systems with delays. 1998.

[60] Reza Olfati-Saber, J Alex Fax, and Richard M Murray. Consensus and coopera-
tion in networked multi-agent systems. Proceedings of the IEEE, 95(1):215–233,
2007.

[61] Reza Olfati-Saber and Richard M Murray. Consensus problems in networks of
agents with switching topology and time-delays. IEEE Transactions on auto-
matic control, 49(9):1520–1533, 2004.

[62] Giovanni Pini, Arne Brutschy, Carlo Pinciroli, Marco Dorigo, and Mauro Bi-
rattari. Autonomous task partitioning in robot foraging: an approach based on
cost estimation. Adaptive behavior, 21(2):118–136, 2013.

[63] Lerrel Pinto and Abhinav Gupta. Supersizing self-supervision: Learning to
grasp from 50k tries and 700 robot hours. In 2016 IEEE international conference
on robotics and automation (ICRA), pages 3406–3413. IEEE, 2016.

[64] Wang Qian-Ling, Chen Yao, Dong Hai-Rong, Zhou Min, and Ning Bin. A
new collision avoidance model for pedestrian dynamics. Chinese Physics B,
24(3):038901, 2015.

[65] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy
Leibs, Rob Wheeler, and Andrew Y Ng. Ros: an open-source robot operating
system. In ICRA workshop on open source software, volume 3, page 5. Kobe,
Japan, 2009.

[66] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani, John
Schulman, Emanuel Todorov, and Sergey Levine. Learning complex dexter-
ous manipulation with deep reinforcement learning and demonstrations. arXiv
preprint arXiv:1709.10087, 2017.

[67] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder de Witt, Gregory Far-
quhar, Jakob Foerster, and Shimon Whiteson. Qmix: monotonic value func-
tion factorisation for deep multi-agent reinforcement learning. arXiv preprint
arXiv:1803.11485, 2018.

[68] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: A
lock-free approach to parallelizing stochastic gradient descent. In Advances in
neural information processing systems, pages 693–701, 2011.

[69] Wei Ren and Randal W Beard. Consensus seeking in multiagent systems under
dynamically changing interaction topologies. IEEE Transactions on automatic
control, 50(5):655–661, 2005.

129

[70] Steven Adriaan Roelofsen, Denis Gillet, and Alcherio Martinoli. Reciprocal col-
lision avoidance for quadrotors using on-board visual detection. In International
Conference on Intelligent Robots and Systems, number EPFL-CONF-212951,
2015.

[71] Ahmad EL Sallab, Mohammed Abdou, Etienne Perot, and Senthil Yogamani.
Deep reinforcement learning framework for autonomous driving. Electronic
Imaging, 2017(19):70–76, 2017.

[72] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized
experience replay. arXiv preprint arXiv:1511.05952, 2015.

[73] Erik Schuitema, Lucian Buşoniu, Robert Babuška, and Pieter Jonker. Control
delay in reinforcement learning for real-time dynamic systems: a memoryless
approach. In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ Interna-
tional Conference on, pages 3226–3231. IEEE, 2010.

[74] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter
Abbeel. High-dimensional continuous control using generalized advantage esti-
mation. arXiv preprint arXiv:1506.02438, 2015.

[75] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

[76] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. Airsim: High-
fidelity visual and physical simulation for autonomous vehicles. In Field and
Service Robotics, 2017.

[77] Masahiro Shiomi, Francesco Zanlungo, Kotaro Hayashi, and Takayuki Kanda.
Towards a socially acceptable collision avoidance for a mobile robot navigating
among pedestrians using a pedestrian model. International Journal of Social
Robotics, 6(3):443–455, 2014.

[78] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneer-
shelvam, Marc Lanctot, et al. Mastering the game of go with deep neural
networks and tree search. nature, 529(7587):484, 2016.

[79] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and
Martin Riedmiller. Deterministic policy gradient algorithms. In ICML, 2014.

[80] Jamie Snape, Jur Van Den Berg, Stephen J Guy, and Dinesh Manocha. The
hybrid reciprocal velocity obstacle. IEEE Transactions on Robotics, 27(4):696–
706, 2011.

[81] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan Salakhutdinov. Dropout: a simple way to prevent neural networks from
overfitting. The Journal of Machine Learning Research, 15(1):1929–1958, 2014.

130

[82] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki,
Vinicius Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z
Leibo, Karl Tuyls, et al. Value-decomposition networks for cooperative multi-
agent learning. arXiv preprint arXiv:1706.05296, 2017.

[83] Lei Tai, Shaohua Li, and Ming Liu. A deep-network solution towards model-less
obstacle avoidance. In Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ
International Conference on, pages 2759–2764. IEEE, 2016.

[84] Lei Tai, Giuseppe Paolo, and Ming Liu. Virtual-to-real deep reinforcement
learning: Continuous control of mobile robots for mapless navigation. In 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 31–36. IEEE, 2017.

[85] Ardi Tampuu, Tambet Matiisen, Dorian Kodelja, Ilya Kuzovkin, Kristjan Ko-
rjus, Juhan Aru, Jaan Aru, and Raul Vicente. Multiagent cooperation and
competition with deep reinforcement learning. PloS one, 12(4):e0172395, 2017.

[86] Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative
agents. In Proceedings of the tenth international conference on machine learn-
ing, pages 330–337, 1993.

[87] Yee Teh, Victor Bapst, Wojciech M Czarnecki, John Quan, James Kirkpatrick,
Raia Hadsell, Nicolas Heess, and Razvan Pascanu. Distral: Robust multitask
reinforcement learning. In Advances in Neural Information Processing Systems,
pages 4496–4506, 2017.

[88] Chen Tessler, Shahar Givony, Tom Zahavy, Daniel J Mankowitz, and Shie Man-
nor. A deep hierarchical approach to lifelong learning in minecraft. In Thirty-
First AAAI Conference on Artificial Intelligence, 2017.

[89] Sebastian Thrun. A probabilistic on-line mapping algorithm for teams of mobile
robots. The International Journal of Robotics Research, 20(5):335–363, 2001.

[90] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic robotics. MIT
press, 2005.

[91] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and
Pieter Abbeel. Domain randomization for transferring deep neural networks
from simulation to the real world. In 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 23–30. IEEE, 2017.

[92] Pete Trautman, Jeremy Ma, Richard M Murray, and Andreas Krause. Robot
navigation in dense human crowds: Statistical models and experimental studies
of human–robot cooperation. The International Journal of Robotics Research,
34(3):335–356, 2015.

[93] Karl Tuyls and Gerhard Weiss. Multiagent learning: Basics, challenges, and
prospects. Ai Magazine, 33(3):41–41, 2012.

131

[94] Jur Van den Berg, Ming Lin, and Dinesh Manocha. Reciprocal velocity obstacles
for real-time multi-agent navigation. In Robotics and Automation, 2008. ICRA
2008. IEEE International Conference on, pages 1928–1935. IEEE, 2008.

[95] Jur Van Den Berg, Jamie Snape, Stephen J Guy, and Dinesh Manocha. Recip-
rocal collision avoidance with acceleration-velocity obstacles. In Robotics and
Automation (ICRA), 2011 IEEE International Conference on, pages 3475–3482.
IEEE, 2011.

[96] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning
with double q-learning. In Thirtieth AAAI conference on artificial intelligence,
2016.

[97] Hado P van Hasselt, Arthur Guez, Matteo Hessel, Volodymyr Mnih, and David
Silver. Learning values across many orders of magnitude. In Advances in Neural
Information Processing Systems, pages 4287–4295, 2016.

[98] Changyun Wei, Koen V Hindriks, and Catholijn M Jonker. Dynamic task
allocation for multi-robot search and retrieval tasks. Applied Intelligence,
45(2):383–401, 2016.

[99] Brian Yamauchi. A frontier-based approach for autonomous exploration. In
Computational Intelligence in Robotics and Automation, 1997. CIRA’97., Pro-
ceedings., 1997 IEEE International Symposium on, pages 146–151. IEEE, 1997.

[100] Zhaoyang Yang, Kathryn E Merrick, Hussein A Abbass, and Lianwen Jin.
Multi-task deep reinforcement learning for continuous action control. In IJ-
CAI, pages 3301–3307, 2017.

[101] Tianhao Zhang, Gregory Kahn, Sergey Levine, and Pieter Abbeel. Learning
deep control policies for autonomous aerial vehicles with mpc-guided policy
search. In 2016 IEEE international conference on robotics and automation
(ICRA), pages 528–535. IEEE, 2016.

[102] Yunfei Zhang, Clarence W de Silva, Dijia Su, and Youtai Xue. Autonomous
robot navigation with self-learning for collision avoidance with randomly moving
obstacles. In Computer Science & Education (ICCSE), 2014 9th International
Conference on, pages 117–122. IEEE, 2014.

[103] Zhizheng Zhang, Jiale Chen, Zhibo Chen, and Weiping Li. Asynchronous
episodic deep deterministic policy gradient: Toward continuous control in com-
putationally complex environments. IEEE Transactions on Cybernetics, 2019.

[104] Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim, Abhinav Gupta,
Li Fei-Fei, and Ali Farhadi. Target-driven visual navigation in indoor scenes
using deep reinforcement learning. In 2017 IEEE international conference on
robotics and automation (ICRA), pages 3357–3364. IEEE, 2017.

132

VITA

Zilong Jiao was born in Henan, China. He received his Bachelor of Engineering degree
at Nanjing University of Posts and Telecommunications (Nanjing, Jiangsu, China) in
June 2011. He received his Bachelor of Fine Arts degree at New York Institute of
Technology (New York, New York, USA) in May 2011. He received his Master of
Science degree in Computer Science at Syracuse University (Syracuse, New York,
USA) in May 2014. He Received his Doctor of Philosophy degree in Computer and
Information Science and Engineering from Syracuse University (Syracuse, New York,
USA) in December 2020.

133

	Reinforcement Learning for Mobile Robot Collision Avoidance in Navigation Tasks
	Recommended Citation

	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	1 Introduction
	2 Background
	2.1 Collision Avoidance
	2.1.1 Single-Robot Collision Avoidance
	2.1.2 Multi-Robot Collision Avoidance

	2.2 Reinforcement Learning
	2.2.1 Preliminaries
	2.2.2 Multi-Task Reinforcement Learning
	2.2.3 Multi-Agent Reinforcement Learning
	2.2.4 End-to-End Reinforcement Learning

	3 Map-based Collision Avoidance in Navigation Tasks
	3.1 Centralized Environment Exploration
	3.1.1 Problem Statement
	3.1.2 Solution Approach
	3.1.3 Evaluation

	3.2 Distributed Environment Exploration
	3.2.1 Problem Statement
	3.2.2 Solution Approach
	3.2.3 Evaluation

	3.3 Summary

	4 Mapless Collision Avoidance through Reinforcement Learning
	4.1 RL for Real-Time Continuous Control
	4.2 MDP Formulation
	4.3 Robot Model
	4.4 Neural Network Design for MCA
	4.5 MCA in Practice: Multi-Task & Multi-robot
	4.6 Quality Measurement

	5 Real-Time RL Architecture for Mapless Collision Avoidance
	5.1 MDP under Control Delay
	5.2 RTAC
	5.2.1 Stabilizing Control Delay
	5.2.2 Scalability of Asynchronous Learning

	5.3 Evaluation
	5.3.1 Simulation Details
	5.3.2 Relate Simulation to Theoretical Formulation
	5.3.3 DDPG with RTAC
	5.3.4 Asynchronous Reinforcement Learning

	5.4 Summary

	6 Multi-Task Mapless Collision Avoidance
	6.1 Sparse Gradients through Dropout for Asynchronous RL
	6.1.1 Policy as Feed-Forward Neural Network
	6.1.2 Policy as Recurrent Neural Network.

	6.2 Asynd-DDPG
	6.2.1 Shared Policy with Dropout Regularization
	6.2.2 Asynchronous Update

	6.3 Evaluation
	6.3.1 Simulation Details
	6.3.2 Relating Simulation to Theoretical Formulation
	6.3.3 Learning Performance
	6.3.4 Policy Performance
	6.3.5 Policy Generalization

	6.4 Summary

	7 Multi-Agent Mapless Collision Avoidance
	7.1 Multi-Agent Coordination with Partial Observability
	7.2 Rec-MADDPG
	7.2.1 Parameter Sharing & Asynchronous Learning

	7.3 Evaluation
	7.3.1 Simulation Details
	7.3.2 Relate Simulation to Theoretical Formulation
	7.3.3 Learning Performance
	7.3.4 Policy Performance
	7.3.5 Policy Generalization
	7.3.6 Learning Policies with Improved Reward Function

	7.4 Summary

	8 Conclusions
	8.1 Summary
	8.2 Accomplishment
	8.3 Discussion
	8.4 Future Work

	Bibliography
	Vita

