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Abstract 

Proteins found on bacterial cells surfaces are capable of sensing and transducing signals 

from the environment to elicit a biological response. Fibrous appendages formed by assembly of  

pilin proteins on P. aeruginosa are surface proteins that are necessary for host colonization, 

adhesion on abiotic surfaces, controlling motilities, formation of biofilm, horizontal gene transfer 

and virulence production of the bacterium. Upon contact with stimuli, pili appendages extend 

and retract on the cell surface, driven by the assembly and disassembly of pili at inner membrane 

of the bacteria cells. The dynamic response of this protein assembly is likely caused by a 

conformational change in the pilin monomers at the tip of the pili appendage upon making 

contact with a ligand or surface, as well as caused by chemical signals within the bacterium. 

Despite all the functions of pili identified, the natural and synthetic ligands specific for pilin 

proteins remain elusive.  In this research, we report natural and synthetic ligands of pilin that 

control P. aeruginosa bioactivities.  

 

For biochemical and structural studies on pilin protein, we used a common technique of 

recombinantly expressing truncated pilin in E. coli.  The truncation of pilin from the N’-terminal 

α-helix retains the perceived binding region within the disulfide loop and yields a soluble pilin. 

Our approach of expressing truncated variants of the P. aeruginosa PA1244N3(pPAC46) and 

single amino acid mutants have demonstrated that pilin binds to the natural and synthetic ligands 

and that the disulfide loops plays an important role for this function. 

 



 
 

Using a novel bacterial motility-enabled binding assay, we demonstrated that spreading 

expressed pilin monomers on the hydrated gel surface can inhibit the swarming motilities of the 

wild-type  P. aeruginosa by binding and sequestering rhamnolipids secreted by the bacterium, or 

reactivate the swarming motility of the bacteria by sequestering the synthetic inhibitor added in 

the hydrated gel. Separating the components of rhamnolipids reveal that monorhamnolipid is 

more active than dirhamnolipid at controlling the swarming motility of P. aeruginosa. 

 

Ligand-induced changes to pilin structures were detected by circular dichroism, nuclear 

magnetic resonance (NMR) and fluorescence spectroscopy. Pilin monomers bind to the 

rhamnolipids at picomolar ranges and induce pilin proteins to form linear nano-assemblies. 

About one pico-molar of the ligands causes the transition of fluorescence signal to plateau for 

100 nM of pilin monomers. This 10-5 equivalence effect is likely due to tight ligand-receptor 

binding rather that a catalytic effect based on titration studies. The mechanism of the assembly 

appears to be isodesmic and does not require a critical aggregation concentration to form linear 

assemblies. A class of synthetic ligands consists of saturated farnesol tethered with disaccharide 

also binds directly to pilin proteins at picomolar range by intrinsic fluorescence, and to dominate 

rhamnolipids resulting in complete inhibition of swarming motilities, and to induce the pilin 

proteins to form an amorphous assembly.   

 

The nonamphiphilic chromonic salt, disodium cromoglycate (5’DSCG) was used to 

conduct preliminary crystallization studies on pilin from P. aeruginosa. We demonstrated that 

the 5’DSCG molecules demix in the presence of peptides and form isodesmic assemblies. This 



 
 

demixing phenomenon was then further explored to precipitate and crystallize pilin proteins. The 

resulting precipitates include radial precipitates for the native 1244 pilin and needle-like crystals 

for the truncated pilin. These results, along with past findings, suggest that 5’DSCG isodesmic 

assemblies has the potential to assist in protein purification and crystallization. 

 

This work presents the use of a label-free bacterial motility enabled assay, together with 

biophysical techniques to provide a mechanistic understanding of the ligand binding between 

natural and synthetic ligands to pilin.  The findings and methods in this study have potential use 

for the development and screening of therapeutics targeting the protein receptor that control the 

bioactivites of P. aeruginosa.   
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Chapter 1. Introduction: Ligands for controlling pili assembly dynamics and functions are 

important but remain elusive.  

 

1.1 Pili are surface proteins in multiple bacterial activities leading to infections. 

Pseudomonas aeruginosa is a gram-negative, rod-shape bacteria linked to a wide array of 

diseases. This bacterium is an  opportunistic human pathogen that can cause nosocomial 

infections in immunocompromised patients with cystic fibrosis, cancer, diabetes and burn 

wounds.1 P. aeruginosa has developed resistance to a multitude of antibiotics including β-

lactams, aminoglycosides and quinolones, posing a challenge to treating infections related to this 

bacterium.2 P. aeruginosa  infections are primarily mediated by  adhesion of their surface 

appendages, pili, to the sialic acid moieties on mammalian cells that further develops into 

proliferation on host cells. 3-13     Pili or type IV pili are long, thin filamentous surface protein 

appendages (Fig. 1.1), that are responsible for a range of P. aeruginosa biological activities 

including  recognition of a variety of surfaces and adhere to host cells and abiotic surfaces, 3-17 

initiating biofilm formation,18-23 mediating horizontal gene transfer,24-26 , swarming27, 28 and 

twitching motility.29-32 The surface sensing  mechanism of pili is one major determinant for the 

global signalling of the cyclic di-GMP (cdG) levels that controls multiple bacterial activities.33-36 

The surface sensing by pili is critical for initiating a wide range of virulence factors33 and for the 

formation of biofilm,34 which is associated with the increase of the cdG levels.35 Pili are also 

responsible for the motility of  bacteria dispersed from a biofilm,36 and the increase of associated 

virulence factors, which are associated with decreases of the cdG level.36   While pili are 

implicated for multiple biological activities, additional studies are still underway to understand 

how a single protein could display versatility in function.  
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Figure 1.1 Schematic representation of P. aeruginosa protein appendages with multiple pili and a 

single flagellum.  

 

1.2 The pili assembly is comprised of individual pilin monomers that assemble and disassemble 

 

Pili are long, thin filamentous protein appendages that are found on the surface of P. 

aeruginosa. The expression of the pili assembly involves a complex, large number of genes that 

include both structural and regulatory genes.37-40  Within the chromosomal DNA of the P. 

aeruginosa species, there is only one copy of the structural pilin gene, pilA.41 The pilA gene 

encodes for the pilin monomer that are assembled circularly (4-5 monomers) and stack to form 

the pili appendage. The pilin monomer is a general class of protein consisting of an exposed N’ 

terminal α-helix and a variable C’ terminal globular head comprised of β-sheets and terminal 

disulfide loop (Fig 1.2). The α-helices at the N-terminus assemble in the core of the linear fibrous 

structure with the D-loop and the β-sheet exposed to the aqueous environment. 

 

Transcription of this gene requires the rpoN σ-factor that RNA polymerase recognizes to 

express pilin in P. aeruginosa.42, 43 Pilin monomers are prematurely expressed as pre-pilins 

containing a 6-7 amino acid leader peptide sequence that is recognized and cleaved by the 
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prepilin peptidase pilD enzyme prior to the assembly into pili (Fig 1.2). 44-46 A cytoplasmic 

ATPase, pilB, powers the assembly of the mature pilin monomers that assembles as a filament 

that passes through the inner membrane, peptidoglycan and out the secretin embedded in the 

outer membrane as the polymerized pili assemble. The assembly reverses its course as the pili 

retracts into the bacterium by the aid of the retraction ATPase, pilT, as the ATP is hydrolyzed, and 

the pili assembly retracts into the bacterium from the outer membrane into the cytoplasm. In 

response to external stimuli, pili are capable of extension and retraction (assemble and 

disassemble) at a rate of ~1000 subunits/s generating ~100 pN of force. 47-49  (Fig. 1.2).  

 

 

Figure 1.2 The pili assembly and retraction of the pili assembly. The protein machinery involved 

in the assembly/retraction and their localization on the bacterium are shown. Pilin monomers 

(purple), secretin pilQ (blue), alignment proteins pilMNOP (green), platform protein pilC (yellow), 

prepilin peptidase pilD (orange), assembly ATPase pilB (red) and retraction ATPase pilT (gray).  
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1.3 Pili is the major adhesin of P. aeruginosa leading to host colonization and infections. 

The primary step of bacterial colonization and infections is  mediated by adhesion.50 

Several studies have demonstrated that pili is required for the attachment of bacteria to 

mammalian cells including tracheal cells 3, 4, 13 human buccal epithelial cells,7, 10  and 

pneumocyte cells11 as pili binds to the glycolipid Asialo-GM1 found on the mammalian cell 

surface.12 Further studies by Irvin and co-workers demonstrated that pili recognizes and binds to 

the GalNAc(1→4)β-DGal structure found in Asialo-GM1.
8, 9, 51 Pili also binds abiotic surfaces 

such as stainless steel and hydrophobic surfaces such as polystyrene.14-16  These binding events 

are tip-associated, and the adhesinotope is located within  disulfide loop (D-loop) of the pilin 

monomer at the C-terminus that is exposed when the pilin monomers assemble into pili. 

Competitive binding studies demonstrated that the disulfide loop of the pilin can inhibit binding 

of pilin to host cells and surfaces.12, 16 Collectively, these findings suggest that the pilin protein 

contains a binding pocket that has a dual function of binding both hydrophilic and hydrophobic 

moieties on surfaces.  

 

1.4 Pili is important in bacterial motility. 

  P. aeruginosa are capable of different types of motility such as twitching, swarming, 

swimming, gliding and sliding (Fig. 1.3).52, 53  Upon attachment of P. aeruginosa on surfaces, 

bacterial motility plays a significant role by allowing the mobilization of the cells leading to 

effective colonization on both biotic and abiotic surfaces. Pili is also involved in bacterial 

motility, particularly in twitching motility of P. aeruginosa. Twitching motility is the most 

common pili-mediated motility that arise as a consequence of the dynamic behavior of the pili 

assembly, powered by the extension and retraction of the pili assembly.29, 54, 55 The retraction 
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force of pilin is so strong that the pull of a single fiber generates 100 pN of force (N. 

gonorrhea).47, 48  Twitching motility is implicated for P. aeruginosa bioactivities such as the 

traversal of the cells in corneal epithelium infections32  and the development of biofilm 

architecture.30, 31 Previous reports have shown that P. aeruginosa mutants deficient for pilus 

biogenesis did not form microcolonies that are essential for biofilms,31  while pili-retraction 

deficient mutants form larger and more irregular biofilms than the strains fully functional for 

twitching. 30 These results demonstrate that fully functional pili assembly is needed for biofilm 

development.    

 

 

Figure 1.3 Different motilities by the bacterium P. aeruginosa. 

 

Another mode of motility by P. aeruginosa that involves pili is swarming.27, 28  Swarming 

motility is the flagellum- mediated collective motion of cells inoculated on soft agar gel (0.4- 0.7 
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% agar). It was previously reported that swarming is influenced by different factors such as 

bacterial cell density/quorum sensing, surface wetness, nutrient medium, the presence of flagella 

and pili, and complex phenotypic adaptation. 27, 28, 56-58 The presence of pili on P. aeruginosa is 

known to influence swarming, but the exact role of pili is unclear.   In a previous study, the 

deletion of the pilA gene abolishes swarming motility of P. aeruginosa,28 while other studies 

have shown that deleting the pilA gene results in hyper swarming of P. aeruginosa.27. Pili has 

been reported to facilitate cell-to-cell interactions between swarming cells that results in bacteria 

clustering together instead of swarming.27 Quorum sensing regulates swarming of bacteria, as 

well as the production of rhamnolipids by P. aeruginosa. The production of rhamnolipids is 

essential for the swarming of P. aeruginosa. Structurally characterized as surfactants, 

rhamnolipids are believed to lower the surface tension of the soft agar gel surface.28 However, 

rhamnolipids have also been reported to function as signaling molecules in controlling swarming 

motilities.23, 59 For example,  P. aeruginosa transposon mutant strain, rhlA, is unable to produce 

rhamnolipids and does not swarm on the agar plate.23, 28, 59, 60 When rhamnolipids are externally 

added in the swarming gel, rhlA swarming is re-activated. Reversal of activity from initiating to 

inhibiting swarming motility is observed when the rhamnolipids concentration in the soft gel is 

increased.23 Such reversal of bioactivity as a result molecule concentration increases has been 

observed for quorum sensing molecules61 and is a classical sign of cell signaling controlled by 

chemicals. These results suggest that swarming arises from a biological effect, rather than a 

physical effect, in which rhamnolipids bind to one or more protein receptors, triggering a cascade 

of signaling events leading to observed regulation of bioactivities. To-date, no protein receptors 

of rhamnolipids have been identified although previous reports have shown that pili are 

important for rhamnolipids-induced swarming. Because pili has been reported to recognize 
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disaccharide groups and hydrophobic chains, we hypothesize that the pilin recognizes 

rhamnolipids, both the sugar and the aliphatic chain moiety. Here, we investigate pilin protein as 

a receptor of rhamnolipids in controlling pilin-mediated swarming of P. aeruginosa. 

 

1.5 Pili facilitates DNA uptake between bacterial cells. 

 

 Horizontal gene transfer involves the acquisition of new genetic material by bacteria and 

one of the known mechanisms by which a bacterial species increase their antibiotic resistance, 

develop antigenic variation and other virulence factors.26, 62-64  The binding of pili to double-

stranded DNA (dsDNA)  were visually observed by confocal and electron microscopy, showing 

that DNA is brought into the cell by retraction forces.26, 64, 65 Different proposed methods of 

where the DNA binds to the pilin include binding to the major pilin, binding to a tip complex or 

minor pilin. The most prevalent model for the DNA uptake is by retraction of the pili assembly, 

but other possible models have also been proposed (Fig. 1.4). Pili has been reported to  be 

involved in the horizontal gene transfer of a number of gram-negative bacteria such as Vibrio 

cholerae,64 Nesseria gonorrhoeae,66 Thermus thermophilus,67 and Pseudomonas stutzeri.67  For 

P. aeruginosa,  the binding between pilin and DNA have been reported, however, it is only 

recently that evidence of horizontal gene transfer was demonstrated in both biofilm and shaking 

conditions.63 The binding of pilin to DNA occurs at ~micromolar (μM) Kd ranges and is a tip-

associated binding event via the disulfide loop.24, 26  
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Figure 1.4 Models of DNA binding (top) and DNA uptake in the cell (bottom) by pili. 

[Piepenbrink KH (2019) DNA Uptake by Type IV Filaments. Front. Mol. Biosci. 6:1. doi: 

10.3389/fmolb.2019.00001; Image Credit: K.H. Piepenbrink; Copyright © 2019 Piepenbrink.  

This is an open-access article distributed under the terms of the Creative Commons Attribution 

License, which permits unrestricted use, distribution and reproduction in any medium, provided 

the original author and source are credited.] 

 

1.6 Pilin as an antigen for vaccine development. 

 

Because the disulfide loop has been identified to contain the binding region of the pilin 

proteins, this region became the central focus of vaccine development for pilin.13, 68-70  

Antibodies raised against the peptides corresponding to the disulfide loop of PAO and PAK pilin 

were able to block pilin binding to buccal epithelial cells (BECs).69, 70 Based on these findings, 

synthetic peptides corresponding to the disulfide loop of pilin proteins from different P. 

aeruginosa strains (PAK 128-144, PAO 128-144, KB7 128-144 and P1 126-148) were used to 

study the molecular interactions by NMR showing that despite the limited  amino acid sequence 
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conservation of the disulfide loops, the secondary structure for all peptides were found to contain 

two β-turns (Fig 1.5).68  The β-turn is a significant structural motif for antibody recognition and 

binding as most antigenic peptides adopt this conformation with the β-turn embedded in the 

combining site of the antigen.71-73 The binding of a cross-reactive monoclonal antibody to all 

four peptides were monitored by NMR and showed that conformational changes induced by 

antibody binding are mostly confined in the hydrophobic pocket of peptides. Furthermore, the 

same conformational changes were also observed when the ligand was βGalNAc(1→4)βGal, 

suggesting that the antigenic epitope and adhesion epitope are the same for pilin. Despite these 

efforts to develop vaccines for pilin, there is still no available vaccines for pilin in the market.  

 

 

Figure 1.5 The amino acid sequences of four pilin peptides from the C-terminal regions of the 

four strains of P. aeruginosa for which NMR solution structures have been determined. The 

PAK, PAO and KB7 pilin peptides are each 17 residues long with a disulfide-bridged loop of 14 

residues between Cys129 and Cys142. The P1 pilin peptide is 23 residues long with a disulfide-

bridged loop of 19 residues between Cys127 and Cys145. Cysteine residues are circled in the 

sequences, and residues in bold face are those conserved in the PAK, PAO and KB7 strains. The 

location of the β-turns in the PAK, PAO, KB7 and P1 peptides are designated by the boxes. The 

PAK, PAO and KB7 peptides all display a type I β-turn in the conserved sequence Asp134-X-X-

Phe137 and a type II β-turn in the conserved sequence Pro139-X-Gly-Cys142. The P1 peptide 
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displays a type I β-turn in the region spanned by residues Thr134-Ala135-Trp136-Lys137, 

followed by another turn (boxed in by the broken line) of undefined conformation in the region 

spanned by Pro138-Asn139-Tyr140-Ala141.  Figure is reprinted with permission from Ref. 68 

Copyright © 1997 Academic Press. All rights reserved. 

 

1.7: Open question and Our hypothesis: Pilin proteins are protein receptors to small molecules 

that control swarming bioactivities of P. aeruginosa. 

 

The pili proteins sense and transduce chemical and environmental signals that result in 

multiple biological activities of P. aeruginosa. However, the natural and synthetic ligands for pili 

that help regulate these activities have been elusive. To understand the mechanism of action by 

pilin, it is important to identify the ligands for pilin -both natural and synthetic. Prompted by 

previous studies suggesting that rhamnolipids act as signaling molecules rather than a surfactant 

in controlling the swarming of P. aeruginosa, 22, 23, 28, 59, 60 we believe that there must be a protein 

receptor for these molecules that exist.  Luk lab has synthesized surfactant-like molecules, 

disaccharides tethered with a saturated farnesol (SF) group, that inhibit the swarming motility of 

P. aeruginosa swarming motility,22, 23  while general surfactants such as 

tetra(ethyleneglycol)monododecyl ether (C12EG4OH) and SDS exhibited no swarming 

modulation on P. aeruginosa.23, 74  Because pilin has been shown to be important for swarming 

motility,27, 28   we hypothesize that the pilin is the protein receptor of rhamnolipids and the SF-

disaccharide analogs.  This hypothesis is corroborated by a previous study by Dr. Hewen Zheng 

(Luk lab) demonstrating that externally added pilin  on hydrated soft gel sequesters the 

rhamnolipids produced by PAO1 and inhibits the swarming, suggesting that rhamnolipids bind to 

pilin.75  We conduct further studies to characterize the binding between pilin and the ligand 
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candidates at a molecular level to gain understanding of the molecular details for potential 

development of therapeutics targeting the pilin protein of P. aeruginosa. 

 

1.8 This dissertation is organized in the following 8 chapters:  

 

In Chapter 2, the design, cloning, recombinant expression and purification of truncated 

pilin from P. aeruginosa are discussed. We employ the common approach for studying the pilin 

protein by truncating the pilin from the N’-terminus to yield proteins that retain the putative 

binding region while improving the solubility. The pilA gene encoding the pilin from 

PA1244N3(pPAC46) was used as the DNA template for the truncations.  Three different 

truncations of the pilA gene were prepared by removing 23, 28 and 31 amino acid from the N-

terminus and recombinantly expressed in E. coli. Here, we study minimum structures of pilin 

that will bind to the natural and synthetic ligands. Furthermore, three single amino acid mutants 

of truncated pilin were also expressed to determine the importance of the C-terminal D-loop for 

binding pocket of the pilin protein.  

In Chapter 3, we demonstrated the direct  binding and sequestering of pilin to ligands on  

hydrated gel surfaces using a novel bacterial motility-enabled binding assay. Separating the 

components of rhamnolipids reveal that monorhamnolipid is more active than dirhamnolipid at 

controlling the swarming motility of P. aeruginosa. Using the bacterial motility-enabled binding 

assay, we  identified that among the three truncated pilin mutants, only the pilin Δ(1-31) binds 

rhamnolipids with similar activity as the full, native pilin from P. aeruginosa 

PA1244N3(pPAC46). We also show that three single amino acid mutants of the pilin Δ(1-31), 

where the mutation occurs in the disulfide region (D-loop) of C-terminus, are inactive for 
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controlling swarming motility of PAO1, indicating that this region is important for binding of 

pilin to rhamnolipids.  

In Chapter 4, biophysical techniques such as circular dichroism, nuclear magnetic 

resonance and dynamic light scattering were used to gain structural insight on the truncated pilin 

mutants and how they compare to the native 1244 pilin.  Using these methods, we were able to 

determine that the natural and synthetic ligands induced structural changes to the truncated pilin 

protein. Circular dichroism spectroscopy showed that rhamnolipids, particularly 

monorhamnolipid, induces a different structural change than the SF-disaccharide analog. The 

NMR studies on both native pilin and truncated pilin were challenging because of the lack of 

dispersion of the spectra. However, adding ligands to the both the native pilin and truncated pilin 

results in the appearance of additional peaks in the pilin spectra indicating ligand interactions 

with the proteins. Dynamic light scattering showed that addition of ligands to the pilin induced 

the formation of larger aggregates in the solution.  

In Chapter 5, the intrinsic fluorescence of the truncated pilin was used to probe binding to 

rhamnolipids and saturated farnesol (SF)- disaccharide analogues. Our fluorescence spectroscopy 

results show that about 1 pM of ligands (monorhamnolipid, dirhamnolipid, SFβC and SF-

EG4OH) is enough to saturate the fluorescence signal of 100 nM of truncated pilin. We 

determined that the ligands induce the assembly of pilin in vitro via tight-binding mechanism 

rather than a catalytic effect by the ligand. Kinetic studies show that pilin assembly induced by 

monorhamnolipid occurs via the isodesmic process. Transmission electron microscopy (TEM) 

show that rhamnolipids and SFβC induce two different assemblies, linear and amorphous, 

respectively.  
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In Chapter 6, the presence of peptides can promote the isodesmic assembly of 5’DSCG 

over a broad range of concentrations before reaching the liquid crystal phase indicative of 

demixing between 5’DSCG and peptides in aqueous solution. This demixing mechanism was 

explored to precipitate a wide range of proteins, including lectin A, esterase, lipase, bovine 

serum albumin, trypsin, and the pilin proteins. We found that 5’DSCG caused the aggregation of 

all these proteins except trypsin.  These results, along with past findings, suggest that 5’DSCG 

isodesmic assemblies has the potential to assist in protein purification and crystallization. 

In Chapter 7, the exploratory work on using filamentous bacteria to express proteins were 

discussed. Because filament growth is rapid, we would like to explore if protein expression can 

be maximized over a short time scale. Luk lab has previously discovered that antibiotics induce 

surface-mediated filament formation of bacteria and have identified optimum conditions that 

produce these filamentous bacteria. We show that the strain E. coli BL21 (DE3) carrying the 

plasmid encoding for proteorhodopsin can form filaments and express proteorhodopsin under the 

conditions for filament formation.  Furthermore, attempts to express,  purify and quantify of 

proteorhodopsin from filamentous bacteria will also be discussed in this chapter.  

In Chapter 8, the conclusions and summary of our finding in this thesis are discussed. We 

also present the existing open questions and future directions of this research.   
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Chapter 2. Cloning, Expression and Purification of Pilin Mutants for Structural 

Characterization and Ligand-Binding Studies 

 

2.1 Background and Significance 

 

 

2.1.1 Pilin protein general structure; status of literatures. 

Pilin proteins are a class of proteins that possess a general folded structure with a long, N-

terminal α-helix and a C-terminal globular domain with coiled structures and β-sheets (Fig. 2.1).  

The long α-helix has an exposed region comprised of the first 28 amino acid residues from the 

N’-terminus, which is relatively hydrophobic and form surfaces for assembly and disassembly of 

the pili appendages. The α-helix connects to an αβ-loop followed by a 4 to 7 stranded β-sheet 

then a C’-terminal disulfide loop (D-loop). Alignment of the amino acid sequence show that the 

both the N’ terminal helix and the presence of a D-loop is highly conserved among pilin from 

different species.  While the D-loop may vary in the amino acid sequence conserved across P. 

aeruginosa strains, the secondary structure of this loop is conserved, consisting of coils and two 

β-turns.68, 76-81  There are two main subclasses of pilin that exist – type 4a and type 4b pilin that 

differ in their amino acid sequence, size and origin. Pilin protein from species Neisseria 

gonorrhoeae and Pseudomonas aeruginosa are classified as type 4a; while Salmonella 

typhimurium, Vibrio cholerae and E. coli express type 4b pilin. Structures of pilin from both 

subclasses have been solved and reveal that the general scaffold with the α-helix, β-sheets and D-

loop are observed for both subclasses, but each would have a distinct fold due to the differences 

in the number of α-helices and β-sheets at the C’-terminus. (Fig 2.1).    
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Figure 2.1 Crystal structure of pilin proteins from different bacterial species. P. aeruginosa PAK 

PilA (PDB code: 1dzo), PA11059 ( PDB code: 3JZZ)  and K122-4 PilA (PDB code: 1qve) and 

N. gonorrhoeae MS11 PilE (PDB code: 1ay2), while the three structures at the bottom are 

previously solved T4b pilins S. typhi PilS (PDB code: 1q5f) and V. cholerae TcpA (PDB code: 

1oqv).  Crystal structures were generated using PyMOL software. Color representation: α-helices 

in blue, β-sheet in gray and coiled structures in red. 

 

Within the P. aeruginosa species, there are five distinct allele groups of type 4a pilin that 

have been identified.81-83 Each of these groups are distinguished by the amino acid sequence 

length, size of the D-loop, and pilin accessory proteins involved in pilin expression (Fig. 2.2). 

The pilin expressed by PA1244 belongs to the group I pilin, with a TfpO (pilO) accessory gene 

involved in the glycosylation of the pilin at Ser 148. Pilin from common laboratory strains 
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PAO1, PAK, and PA103 are classified as group II pilins which are smaller than group I and do 

not have accessory genes. Three other groups, groups III, IV and V have been found to possess 

distinct accessory genes that is believed to express and inner membrane protein that aid in the 

pili assembly.82 Isolates belonging to these groups include  PA14 (group III) alleles (including 

the well-characterized PA14 strain), and PA5196 (group IV) and PA110594 and PA281457 

(group V).   

 

 

Figure 2.2 Pilin modification and assembly systems in P. aeruginosa. Group I pilins are 

glycosylated by TfpO on the C-terminal Ser with an O antigen unit synthesized by the LPS 

machinery. Group II pilins have no accessory proteins. Group III and V pilins each have a 

specific accessory protein that promotes their assembly: TfpY for group III and TfpZ for group 

V. Group IV pilins are glycosylated at several positions by TfpW with mono-, di-, and 

trisaccharides of d-arabinofuranose synthesized by the ArfO/R proteins (Harvey and Burrows, 

unpublished data). Group IV pilins have a TfpX accessory protein that is similar to TfpY and 

TfpZ. Figure is reprinted with permission from Ref. 81. Copyright © 2009 Elsevier Ltd. All 

rights reserved. 

 

Structural studies on pilin proteins are limited by its secondary structure. There are several 

crystal structures of pilin that have also been solved by x-ray crystallography,77, 78, 81, 84 most of 
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which are of the truncated versions of pilin and only a few full-length pilin.76-79, 81, 84   Currently, 

crystal structures only exist for P. aeruginosa PAK 78, 79, 84 K122-4 proteins.77and PA11059 

proteins.81 The difficulty of crystallizing pilin is reportedly due to the   presence of the N-

terminal α-helix that is highly hydrophobic and insoluble, further, the full-length pilin monomers 

have the propensity to self-aggregate.78 By removing 28 amino acids starting from the N’-

terminus, a truncated protein retaining the C’- terminus becomes suitable for structural studies by 

NMR and X-ray crystallography and are also functional as evaluated by pilin binding to DNA 

and asialo-GM1.77, 78, 81, 84 Truncating pilin proteins is a commonly used method for structural 

characterization of pilin proteins. Despite some available pilin structures, pilin proteins from 

other groups still need to be solved and characterized. 

 

2.1.2 P. aeruginosa PA1244N3(pPAC46) and PyMOL modelling of pilin protein. 

P. aeruginosa PA1244 is clinically isolated strain from human blood characterized as a 

hyperpiliated strain.4, 85 An engineered strain,  PA1244N3, is a mutant of PA1244 with an 

inactive rpoN gene and therefore, cannot produce pili and flagella.85-87 Castric and co-workers 

constructed the pPAC46 plasmid by cloning the pilin structural gene, pilA, and the adjacent 

DNA(pilO) by ligation into the pMMB66EH vector and expression is under the control of the tac 

promoter.  The strain PA1244N3(pPAC46) which was introduced into P. aeruginosa PA1244N3 

by triparental mating. When PA1244N3 carries the pPAC46 plasmid PA1244N3(pPAC46), a 

glycosylated pilin protein is expressed by IPTG induction.85, 87, 88 The pilin protein expressed is 

able to assembly into the pilus fiber which protrudes out of the bacterial surface. The pilin 

monomer, belonging to the group I,  is glycosylated with an aminoglycan trisaccharide bound 

covalently to the β-carbon of the Ser-148 at the C-terminus.87, 89, 90 The role of glycosylation is 
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unclear but has been found not to interfere with the pilus biogenesis and basic pilin functions 

such as twitching, biofilm and phage attachment.90  

 

The pilin protein from P. aeruginosa PA1244 has not yet been structurally solved.85 We 

therefore used tools to model the predicted structure of native pilin protein (Fig. 2.3). The 

predicted structure of the native pilin contains the general conserved general domains with the 

long N-terminal α-helix, αβ-loop and a 4 stranded β-sheet and the C-terminal loop. The first 6 

amino acids are the leader peptide which gets cleaved by prepilin peptidase D (pilD) as the 

mature pilin forms.40, 85 Consequently, Phe7 gets methylated in the mature pilin.40, 85 Amino acid 

residues 9-59 are predicted to form the α-helix. This region is followed by the αβ-loop from 

residues 60-89 which also have two small β-sheets within the loop. From residues 90-135, there 

are 4 β-sheets predicted to be anti-parallel. A loop region forms to the C-terminus from residues 

135-154. There are two cysteine residues that would form a disulfide loop (not shown in the 

model) in between Cys133 and Cys151. The predicted structure was used for further design of 

truncated pilin.  
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Figure 2.3 Structures of PA1244N3(pPAC46) native pilin (top) generated by Phyre2 and 

visualized by PyMOL. The amino acid sequence of the native pilin (bottom) with leader peptide 

in black, α-helices in blue, β-sheet in grey and loops in red.  The pilin was rotated at different 

angles to show the  predicted structural features of the protein. The α-helix is in blue, β-sheet in 

gray and coils in red. 

 

2.1.3 Disulfide loop of pilin contains the host cell receptor binding epitope.  

 

Pilin proteins contain a C-terminal disulfide loop (D-loop) recognized as the host cell 

receptor binding site. Paranchych and co-workers introduced a chloramphenicol acetyltransferase 

into the pilin gene resulting in the alteration of the D-loop, which then was expressed in P. 

aeruginosa PAO1. The alteration in the D-loop did not affect the pili assembly biogenesis, but 

significantly decreased the binding to lung epithelial cells suggesting that the D-loop is not 

essential for pilus biogenesis but is important for binding to host cell receptors.91 These results 

were corroborated by Irvin and co-workers who demonstrated that the natural and synthetic 

peptides corresponding to the D-loop bind to mammalian cells,13 and would only need to 

recognize the β-D-GalNAc(1→4)β-DGal moiety of the host cell Asiao-GM1.
8, 12 The D-loop of 
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different pilin strains, despite having limited sequence homology, surprisingly binds to the same 

receptor.92 Based on NMR studies on synthetic peptides, these different D-loops share a common 

structural feature  containing two β-turns,68, 77, 80, 93 and the binding of the D-loop to β-D-

GalNAc(1→4)β-DGal is observed to induce a conformational change in the inner hydrophobic 

pocket of the D-loop. Collectively, these findings implicate the D-loop as the receptor binding 

epitope of the pilin protein. 

  

 

2.1.4 Chapter Aim: Cloning, expression and purification of minimum structured and single 

amino acid mutants. 

 

  The aim of this chapter is to design and express minimum structures of the pilin from P. 

aeruginosa PA1244N3(pPAC46) suitable for ligand-binding and structural studies. Because the 

native pilin expressed by PA1244N3(pPAC46) has no affinity tags, purification or pilin requires 

manually shearing off the protein from the bacteria cell followed by the use of PEG-8000 and 

NaCl to precipitate the protein from the cell culture.46, 88  Unfortunately, PEG8000 cannot be 

easily removed after the pilin is precipitated from the supernatant which further complicates our 

structural studies. The purified protein by this method is mostly in aggregate/assembly form will 

need the use of high concentrations of detergents to dissociate the proteins into monomers – 

these two conditions could potentially interfere with our ligand-binding studies.  

 

We based our experimental design on the common approach of deleting amino acids 

from the N-terminal α-helix to improve solubility while still retaining binding properties of the 

pilin. Our approach is to express truncated pilin proteins with different lengths by cutting off a 

part of the α-helix, by a difference of 1 helical turn so three different truncated pilin proteins 
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were designed by removing 23, 28 and 31 amino acids from the pilin N’-terminus of the mature 

pili (excluding the leader peptide) (Fig. 2.4). We present the heterologous expression of the 

truncated pilin in E. coli BL21(DE3) with an affinity tag to eliminate the use PEG-8000 for 

purification. We aim to explore the minimum structure that will be bioactive as well as be 

soluble for potential structural studies. Furthermore, removing a part of the α-helix would 

minimize any possible hydrophobic self-association of the individual pilin monomers in solution.  

Lastly, single amino acid mutants of the bioactive truncated pilin were expressed to determine 

the importance of the disulfide loop for ligand recognition.  

 

 

Figure 2.4 Amino acid sequences of the full-length pilin (top) and the truncated pilin proteins 

(middle).  The predicted secondary structures of the full, native pilin from PA1244N3 (pPAC46) 

and truncated pilin mutants- pilin Δ(1-31), pilin Δ(1-28) and pilin Δ(1-23) were generated by 

Phyre2 and visualized by PyMOL (bottom). 
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2.2 Results and Discussion 

 

 

2.2.1 Expression of native pilin in P. aeruginosa PA1244N3(pPAC46) 

 

Expression and the purification of the full-length, native pilin from P. aeruginosa 

PA1244N3(pPAC46) was done by standard methods provided by Dr. Peter Castric.75, 90 The 

final, purified pilin protein was evaluated by SDS-PAGE gel, showing a single band 

corresponding to a  molecular weight of approximately higher than 15 kDa (Fig. 2.5), and 

previous MALDI-TOF measurements on the pilin by Dr. Hewen Zheng show a molecular weight 

of 16,326.9189 Da,75  which are both consistent with the reported m.w. of 16,307 (±25) Da for 

this protein.94 For the purification method, the typical yield is ~2-3 mg native pilin/ L culture.  

 

 

Figure 2.5 SDS-PAGE gel of native pilin expressed and purified from P. aeruginosa 

PA1244N3(pPAC46). Lane (1) ladder and (2) purified native pilin.  
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2.2.2 Recombinant expression and purification of truncated pilin structures. 

 

Three truncated pilin proteins by removing 31, 28 and 23 amino acids from the N’-

terminus. (Fig. 2.4). The proteins will be referred to as pilin Δ(1-31), pilin Δ(1-28) and pilin Δ(1-

23) corresponding to the 31, 28 and 23 amino acid deletion, respectively.   

First, the pPAC46 plasmid was isolated and purified from PA1244N3(pPAC46). The 

genes corresponding to the targeted truncations of pilA was pulled out from the plasmid by 

polymerase chain reaction (PCR) using the primers listed in Table 2.1, Experimental Section. 

The PCR product of each truncation was analyzed by DNA gel electrophoresis to confirm the 

number of base pairs (bp) for each product. (Fig. 2.6) The bands of the PCR products on the 

agarose gel are in between 300-400 bp size which matches the expected bp size for the 

truncations. The expected bp size for each truncation corresponds to 354 bp (31 amino acids 

deletion), 366 bp (28 amino acids deletion), and 378 bp (23 amino acid deletion).  

 

Figure 2.6 Agarose gel of the PCR products of the pulled-out genes for the truncated pilin 

proteins. (A) lane 1 – 100 bp ladder, lane 2 – PCR product for pilin Δ(1-31) and (B)  lane 1 – 100 

bp ladder, lane 2- PCR product for pilin Δ (1-28), lane 3- PCR product for  pilin Δ(1-23). 
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The three different genes were then ligated into the Champion™ pET-SUMO vector 

(Thermo Fisher Scientific) using T4 DNA ligase to generate 3 different plasmid constructs. 

Ligating into the pET-SUMO yields a fusion protein with a SUMO (small ubiquitin-like 

modifier) protein (~11 kDa) attached to the N-terminal end of the insert. The three different 

plasmid constructs after the ligation will the fusion proteins SUMO-pilin Δ(1-31),  SUMO-pilin 

Δ(1-28), and SUMO-pilin Δ(1-23).  The successful ligations were confirmed by colony screen 

PCR using the T7 forward primer and the corresponding reverse primer for each insert. Colony 

screening was done for 8-16 colonies for each construct and the bp size was confirmed by DNA 

gel electrophoresis (Fig. 2.7).  For all the PCR products, the band appears at approximately ~800 

bp, consistent with the estimated or calculated bp for the PCR colony screen products: SUMO-

pilin Δ(1-31) – 799 bp, SUMO-pilin Δ(1-28)- 811 bp, and SUMO-pilin Δ(1-23) – 823 bp, 

encompassing the region from the T7 promoter, SUMO priming site and the gene insert.  These 

results confirm the successful ligation of the gene inserts corresponding to truncated pilin 

proteins into the pET-SUMO vector. The successful colony screens were sent for protein 

sequencing and confirmed no errors in the protein sequence.   
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Figure 2.7 PCR Colony screening results for pilin Δ(1-31) (A) lane 1 – ladder, lanes 2-7 – PCR 

products;  pilin Δ(1-28),  and  pilin Δ(1-23); (B)  lane 1 – ladder, lanes 2-6 PCR product for  pilin 

Δ(1-28), lane 8-11- PCR product for pilin Δ(1-23). Successful colony screens are bright bands 

around 800 bp. 

 

We proceeded with the transformation by heat-shock and expression in E. coli 

BL21(DE3) cells by IPTG induction of the proteins. Preliminary evaluation of the expression of 

the protein showed that the expressed proteins were not soluble and most of the expressed 

proteins were found in the cell debris rather than the lysate when the protein was induced at 30 

ºC. We changed the expression temperature to 18 ºC for all the truncated pilin mutants to 

improve the solubility where more proteins were found in the lysate and not in the debris, except 

for pilin Δ(1-28). The purification method was same for pilin Δ(1-23) and pilin Δ(1-31) where 

the bacteria cells were then lysed by sonication, and the SUMO-pilin proteins were purified from 

the lysate by a Nickel affinity column (Fig. 2.8, 2.9). The SUMO tag was cleaved using SUMO 

protease (OD280 of protein: OD280 of protease = 200:1), then removed by Ni-NTA column. The 
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final proteins, pilin Δ(1-23) and pilin Δ(1-31), were buffer exchanged in storage buffer.  This 

procedure yielded ~2-3 mg/mL of the proteins. 

 

 

Figure 2.8 SDS-PAGE gel of pilin Δ(1-31) purification.  Lanes (1) ladder, (2) pre-induction, (3) 

induced sample, (4) cell debris, (5) cell lysate, (6) flow through, (7) wash flow through, (8) pre-

SUMO cleavage, (9) final pilin Δ(1-31), (10) final pilin Δ(1-31) + β-mercaptoethanol (Left) and 

the MALDI-TOF results of the pilin Δ(1-31) (Right). 

 

 

Figure 2.9 SDS-PAGE gel of pilin Δ(1-28) purification from the lysate.  Lanes (1) ladder, (2) 

pre-induction, (3) induced sample, (4) cell debris, (5) cell lysate, (6) flow through, (7) wash flow 
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through, (8,9) pre-SUMO cleavage, (10) post-cleavage final pilin Δ(1-28), (11) final pilin Δ(1-

28). 

However, for SUMO- pilin Δ(1-28), the protein expressed at 18 °C  was localized in the 

debris (Fig. 2.10, lane 4), which required recovering the protein from inclusion bodies. First, the 

standard purification of the protein from the lysate was carried out (Fig. 2.10), but the SDS-

PAGE analysis shows that the final protein is not pure, with a band that matches the SUMO tag. 

We then further purified the protein by passing through a Ni-NTA column to remove the 

suspected SUMO tag (Fig. 2.12, lanes 4 & 5). The final protein yield was 0.5 mg/ L culture.   

Next, the cell debris were resuspended in 50 mM Tris, 100 mM NaCl, 4% (v/v) Triton-X and 1 

M urea (pH=8.0) to resolubilize the inclusion bodies. The inclusion bodies were spun down by 

centrifugation and judging the SDS-PAGE, the supernatant and the cell debris both have the 

SUMO-pilin Δ(1-28). The supernatant was kept for further purification using the same method as 

the lysate (Fig 2.11, 2.12).  We obtained 0.5 mg of inclusion bodies which were resolubilized in 

50 mM Tris, 100 mM NaCl, 8M urea, pH= 7.5 followed by refolding the protein. The solution 

containing the refolded protein was passed thru a Ni-NTA column to obtain the protein. The 

protein was eluted, cleaved and buffer exchanged with the standard procedures. (Fig 2.11).  The 

yield of proteins recovered from inclusion bodies was ~ 2 mg per L of culture. The protein from 

the supernatant was purified using the standard SUMO cleavage, removal of tag and buffer final 

exchange in storage buffer which yielded ~1 mg of protein per L of culture (Fig. 2.12, lanes 4 

and 5). The total amount of pilin Δ(1-28)  is  ~3.5 mg per L of culture from combining from the 

lysate, supernatant from re-solubilization of the inclusion bodies and refolding from inclusion 

bodies (Fig. 2.12).   
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Figure 2.10 SDS-PAGE gel of pilin Δ(1-28) purification from the lysate.  Lanes (1) ladder, (2) 

pre-induction, (3) induced sample, (4) cell debris, (5) cell lysate, (6) flow through, (7) wash flow 

through, (8,9) pre-SUMO cleavage, (10) post-cleavage final pilin Δ(1-28), (11) final pilin Δ(1-

28). 

 

 

Figure 2.11 SDS-PAGE gel of pilin Δ(1-28) purification from the inclusion bodies.  Lanes (1) 

post-sonication lysate, (2) post-sonication cell debris, (3) supernatant after recovering inclusion 

bodied from the cell debris, (4) inclusion bodies, (5) post-refolding from inclusion bodies, (6) 

flow through from Ni-NTA, (7) wash flow through, (10) post-cleavage final pilin Δ(1-28), (11) 

final pilin Δ(1-28) passed through Ni-NTA column second time. 
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Figure 2.12 SDS-PAGE gel of the final pilin Δ(1-28) purification.  Lanes (1) ladder, (2,3) final 

pilin Δ(1-28) from first attempts of purification showing contamination. These proteins were not 

used in this study.  (4) final pilin Δ(1-28) from Fig. 2.10, (5) re-purified pilin Δ(1-28) from Fig. 

2.10 by passing through Ni-NTA then buffer exchanged in storage buffer, (6) final pilin Δ(1-28) 

purified pilin from supernatant in Fig 2.11, lane (7) re-purified pilin Δ(1-28) from supernatant in 

Fig 2.11.  

 

The progress of the purification was monitored by protein gel (Fig 2.8-2.12).  Using the 

molecular weight of ~13.4 kDa for SUMO tag, the expression of the SUMO-pilin proteins were 

confirmed by the appearance of the peak at ~25.6, ~26 and ~26.6 kDa for pilin Δ(1-23), pilin 

Δ(1-28) and pilin Δ(1-31), respectively  (Fig. 2.8, 2.10, 2.11).  The SUMO fusion tag was then 

cleaved using the SUMO protease (from Korendovych lab, Syracuse University) with 3 hours of 

incubation to yield the final truncated proteins. On the gel, the bands of the final proteins are 

found in between 10-15 kDa, which would match the calculated molecular weight of the protein 

(Fig. 2.8 – 2.12). Furthermore, the exact mass of the protein was then determined by MALDI-

TOF. For pilin Δ(1-31) the m.w. = 12,223.21 Da (Fig. 2.8), pilin Δ(1-28)  m.w. = 12,660.15 Da 

(Fig. 2.12) and pilin Δ(1-23) m.w. = 13,217.16 Da (Fig. 2.9).  We also note that due to the 
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purification method of the SUMO-pilin, we sometimes observed dimers in the protein gel, but 

they only contribute to a small population in the whole protein hence, some samples we have a 

lane for the protein + (β-mercaptoethanol) βME.  

 

2.2.3 Recombinant expression and purification of single amino acid pilin mutants. 

Single amino acid mutants of the pilin Δ(1-31) were designed and expressed to determine 

the importance of the D-loop of pilin  for binding to natural and synthetic ligands (Fig. X). Based 

on NMR studies by Irvin and co-workers, important structural features of this D-loop binding 

epitope were identified as β-turns, a hydrophobic pocket and the disulfide bond. Included in this 

study is a D-loop peptide from P. aeruginosa P1 strain that has the same sequence as the PA1244 

pilin D-loop allowing us to choose which amino acids to mutate.68, 93, 95, 96 The following 

mutations of amino acids were selected based on their positions in the binding epitope of the 

truncated pilin Δ(1-31)- I98D, W105K, and P111G (Fig. 2.13). We decided to study hydrophobic 

effects and structural effects by changing hydrophobic amino acids to charged amino acids and 

changing proline to glycine, respectively. The isoleucine at position 98 (I98) is part of the 

hydrophobic core and hidden from the solvent, mutated to a charged aspartic acid (D) residue. 

The tryptophan at position 105 (W105) is part of the β-turn and hydrophobic and mutated to a 

charged lysine (K) residue. The proline at position 111 (P111) is part of the hydrophobic core but 

fairly solvent exposed, mutated to a smaller glycine (G) residue.  
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Figure 2.13 Amino acid sequences of the single amino acid mutants of pilinΔ(1-31)  (top).  The 

predicted secondary structure of the single amino acid mutant proteins generated by Phyre2 and 

visualized by PyMOL. 

 

Single amino acid mutants were constructed by site-directed mutagenesis directly on the 

on isolated and purified plasmid containing the pET-SUMO-pilin Δ(1-31) construct with Phusion 

polymerase. The primers used for each mutation are indicated in Table 2.1, Experimental 

Section. Upon performing site-directed mutagenesis, successful mutations were checked by PCR 

to see if there are any bands appearing at ~6000 bp corresponding to the pET-SUMO plasmid 

(5634 bp) with the pilin Δ(1-31) insert (54 bp) (Fig. 2.14). Since the site -directed mutagenesis is 

done on the pET-SUMO plasmid directly, the base pairs of the single amino acids will be the 

same as the wild-type pET-SUMO-pilin Δ(1-31) vector. The PCR products were purified and 

subjected to DpnI digestion to remove parent plasmids present.  
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Figure 2.14 W105K and I98D mutations of pET-SUMO- pilin Δ(1-31) vector (A). Successful 

mutations are lanes with a band at ~6 kilobase pairs.  Lane (1) 1 kilobase pair ladder, (2) W105K 

and (3) I98D and P111G mutations of pET-SUMO- pilin Δ(1-31) (B). Successful mutations are 

lanes with a band at ~6 kilobase pairs.  Lane (1) 1 kilobase pair ladder, (2) pET-SUMO- pilin 

Δ(1-31) vector template and (3) P111G. 

 

Once the plasmids were confirmed to have no errors, the single amino acid mutants were 

expressed and purified by the same method as the truncated pilin mutants.  The progression and 

purity of the purification were monitored by SDS-PAGE gel (Fig. 2.16, 2.16, 2.17). Similar to 

the truncated pilin mutants, the proteins are soluble judged by the presence in the lysate, post 

sonication. For I98D, the initial purification yielded a mixture of the protein and the SUMO-

I98D, a second purification step was performed by Ni-NTA to remove the SUMO-I98D (Fig. 

2.17).  The procedure yield was 1 g/ L culture and ~0.5 mL of ~92 μM pilin protein per L of 
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culture for P111G, 1.5 g/ L culture and ~0.75 mL of ~118 μM pilin protein per L of culture for 

I98D and 0.5 g/L culture and ~ 0.3 mL of 90 μM of W105K.   

 

 

Figure 2.15  SDS-PAGE gel of P111G mutant of pilin Δ(1-31).  Lanes (1) ladder, (2) pre-

induction, (3) induced sample, (4) cell lysate, (5) cell debris, (6) flow through, (7) wash flow 

through, (8) pre-SUMO cleavage, (9) post-cleavage and (10) final P111G protein. 
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Figure 2.16 SDS-PAGE gel of I98D mutant of pilin Δ(1-31).  Lanes (1) ladder, (2) pre-induction, 

(3) induced sample, (4) cell lysate, (5) cell debris, (6) flow through, (7) wash flow through, (8) 

pre-SUMO cleavage, (9) post-cleavage and (10) final I98D protein. 
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Figure 2.17 SDS-PAGE gel of W105K mutant of pilin Δ(1-31) and I98D final pilin Δ(1-31) 

vector purified protein.  Lanes (1) ladder, (2) pre-induction, (3) induced sample, (4) cell lysate, 

(5) cell debris, (6) flow through, (7) wash flow through, (8) pre-SUMO cleavage, (9) post-

cleavage and (10) final W105K protein (11) final I98D protein. 

 

Comparing these two methods of protein expression, there are a lot of differences and 

factors that needed to be changed. P. aeruginosa PA1244N3(pPAC46) expresses the pilin 

protein as an assembly outside the bacterial cell that can be manually sheared off and purified 

from the supernatant while E. coli BL21(DE3) expresses the protein inside the cell and has to be 

lysed in order to purify the protein. The main difference between the two expressed protein is 

that the P. aeruginosa expressed pilin are mostly in aggregate form while E. coli BL21(DE3) 

mainly expresses pilin in the monomeric form. Despite the different methods used for the 

expression of native and the truncated pilin mutants, the final protein yields are comparable per L 

of culture used.  We were able to purify ~2-3 mg per L culture of native pilin in P. aeruginosa 



36 
 

and in E. coli for the pilin Δ(1-31) for both procedures.  Furthermore, the single amino acid 

mutants yields are low compared to the truncated pilin proteins when expressed in E. coli, with 1 

mg/ L culture for pilin Δ(1-31) P111G, 1.5 mg/ L culture for pilin Δ(1-31) I98D and 0.5 mg/ L 

culture for pilin Δ(1-31)W105K. 

 

 

2.3 Conclusion  

We successfully expressed the truncated pilin mutants from P. aeruginosa 

1244N3(pPAC46) in E. coli BL21 (DE3).  By ligating the pilA gene in the pET-SUMO vector, 

we were able to generate soluble proteins. Furthermore, we also successfully expressed single 

amino acid mutants by site direct mutagenesis in the pET-SUMO- pilin Δ(1-31) plasmid. All the 

proteins can be overexpressed and purified by using a Nickel affinity column. Our procedure 

completely eliminates the use of PEG-8000 in the purification process and avoids any possible 

interference in structural studies. The truncated pilin and single amino acid mutants will be used 

for futures biological and structural studies to identify potential ligands for pilin protein.   

 

2.4   Experimental Section  

 

2.4.1 Expression and purification of native pilin from P. aeruginosa PA1244N3(pPAC46) 

Frozen glycerol stock of P. aeruginosa PA1244N3(pPAC46)85 was streaked and grown 

overnight on a Luria Bertani (LB) agar plate (1.5 wt% Bacto Agar, 1 wt% NaCl, 1 wt% tryptone, 

and 0.5 wt% yeast extract) supplemented with 50 ug/mL tetracycline (Tc50) and 200 ug/mL 

carbenicillin (Cb200) at  37 °C. A single colony from the agar plate was grown in 25 mL LB 

media (Tc50, Cb200) overnight at 37°C, with shaking at 250 rpm. The culture was then transferred 

to 1 L of LB media (Tc50, Cb200) followed by adding 1 mM isopropyl β-D-1-
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thiogalactopyranoside (IPTG) to induce protein expression overnight at 37 ºC with shaking at 

250 rpm.  The pili on the bacteria cells were sheared off by centrifugation at 20,000 g, 4°C for 30 

minutes and the cell pellet was discarded.  To the supernatant, 3 % polyethylene glycol 8000 

(PEG- 8000) and 0.5 M NaCl was added then incubated on ice for 2 hours to precipitate the pili. 

Pili was collected from the supernatant by centrifugation at 20,000 g, 4°C for 30 minutes, and the 

supernatant was discarded. The resulting precipitate was dissolved in 4 mM sodium phosphate 

buffer, pH = 7.2, with stirring for 1 hour at ambient temperature. The insoluble impurities were 

collected by centrifugation at 20,000 g, 4°C for 30 minutes and discarded, keeping the 

supernatant. Precipitation of the pili with PEG-8000 and NaCl followed by solubilization in 

phosphate buffer was repeated once. Final precipitation by adding 3 wt% PEG 8000/ 0.5 M NaCl 

to the resulting supernatant then incubation on ice for 30 minutes was done. The resulting pili 

pellet was collected by centrifugation at 20,000 g, 4°C. The pili precipitate was dissolved in 

sodium phosphate buffer (50 mM, pH = 7.2) and kept at -80 ºC. Purity of pili protein was 

checked by SDS-PAGE (15 % acrylamide). The concentration of the protein in solution was 

checked by taking absorbance at 280 nm (A280) using the calculated (ExPASy) extinction 

coefficient of 17085 M-1 cm-1.  
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Table 2.1 Primers used for recombinant expression of pilin in E.coli. 

 

2.4.2 Cloning and recombinant expression of truncated pilin proteins. 

The pPAC46 plasmid containing the native pilA gene was extracted from P. aeruginosa 

strain PA1244N3(pPAC46)85 using the PureLink™ Quick Plasmid Miniprep Kit (Thermo Fisher 

Scientific). Truncated pilin DNA sequences were cloned from the native pilA gene, deleting the 

first 31, 28 and 23 amino acids from the N’-terminus. To pull out the gene, we used IDT primers 

(Integrated DNA Technologies, IDT) shown in Table 2.1. The truncated native pilin DNA 

sequences were ligated into the Champion™ pET-SUMO vector (Thermo Fisher Scientific) to 

yield a plasmid that would express a fusion of truncated pilin proteins with the SUMO protein. 

The sequence was confirmed by Sanger sequencing (Genewiz). The plasmid containing the 

truncated pilin proteins were heat-shocked transformed into E. coli BL21(DE3). A single colony 

was grown overnight in LB media (20 mL) supplemented with kanamycin (Kan50) at 37 ºC with 

shaking at 250 rpm. This overnight culture was transferred to 1 L of LB media supplemented 

with kanamycin (Kan50) and grown at 37˚C to OD600 = 0.6. The flask was then chilled on ice for 

5 min and protein expression was induced by adding IPTG to a final concentration of 0.5 mM. 

Proteins Mutation Primers 

pilin Δ(1-31) Δ1-31 forward:5’-CAGGTGACCCGTGCCGTGAGTG-3’  

reverse: 5’-TTAGGATTTCGGGCAATTAGCCGGAG-3’ 

pilin Δ(1-28) Δ1-28 forward: 5’-ACCGCCTACCCAGG-3’  

reverse: 5’TTAGGATTTCGGGCAATTAGCCGGAG-3’ 

pilin Δ(1-23) Δ1-23 forward: 5’-ACCGCCCGTACCCAGG-3’ 

reverse: 5’TTAGGATTTCGGGCAATTAGCCGGAG-3’ 

truncated 

W105K 

Δ1-31, W at position 105 is 

mutated to K 

forward: 5'-CTCCTACAGCTAAAAAGCCCAACTACGC-3'  

reverse: 5'-GCGTAGTTGGGCTTTTTAGCTGTAGGAG-3' 

truncated I98D Δ1-31, I at position 98 is 

mutated to D 

forward:5'-CTGGAACTGCAAAGATACCAAAACTCCTAC-3'  

reverse: 5'-GTAGGAGTTTTGGTATCTTTGCAGTTCCAG-3' 

truncated 

P111G 

Δ1-31, P at position 111 is 

mutated to G 

forward:5'-CCAACTACGCTGGCGCTAATTGCCC-3'   

reverse: 5'-GGGCAATTAGCGCCAGCGTAGTTGG-3' 
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The culture was then allowed to grow overnight at 18°C with shaking at 250 rpm. The cells were 

harvested by centrifugation at 4,000 g, 4°C for 30 minutes. The typical yield of wet cell paste 

was ~2 g per liter of culture. Cell pellet was flash frozen in liquid nitrogen and stored at -80 ˚C 

until needed for purification. 

 

2.4.3 Purification of pilin Δ(1-31), pilin Δ(1-28) and pilin Δ(1-23) from the lysate 

Bacterial cells were resuspended in a lysis buffer (25 mM Tris, 100 mM NaCl, 20 mM 

imidazole, 10% glycerol, 0.1% lauryldimethylamine N-oxide, 0.5 mM PMSF pH =7.5; 5 mL of 

buffer for 1 g of cell paste) and lysed on ice by sonication for 15 minutes (20 s pulse, 20 s rest). 

The crude cell lysate was then centrifuged at 20,000 g, 4°C for 30 min, and the supernatant was 

loaded onto Ni-NTA resin (Clontech, 2 mL). The resin was then washed with 50 mL of the lysis 

buffer. The protein was eluted with a buffer containing 25 mM Tris, 100 mM NaCl, 250 mM 

imidazole, pH = 7.5 (elution buffer). Fractions containing protein, detected by Pierce™ BCA 

Protein Assay Kit (Thermo Fisher Scientific) were collected and concentrated to ~2 mL using an 

Amicon® Ultra-15 Centrifugal Filter Units 10 kDa MWCO (Millipore Sigma). The concentrated 

protein was buffer exchanged into SUMO cleavage buffer (50 mM Tris, 50 mM NaCl, pH = 8.0) 

using an Econo-Pac® 10DG desalting column (Bio-Rad Laboratories). The SUMO tag was 

cleaved by mixing the fusion protein with EDTA (0.5 mM final concentration), DTT (1 mM) and 

SUMO protease (the ratio of OD280 of protein to OD280 of protease is 200:1). The solution was 

sterilized using a 0.22 μm cellulose acetate filter, followed by incubation of the mixture at 30°C 

for 3 hours.  The protein was then exchanged into storage buffer (25 mM Tris, 100 mM NaCl, 

pH =7.5) to remove DTT and EDTA. Pure digested protein was collected in the flow through 

fractions from Ni-NTA column. Fractions containing the protein were collected and concentrated 
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to the desired volume between 500 µL – 1 mL. The purity (> 95%) of the final samples was 

checked by SDS-PAGE analysis. The concentration of the protein was determined by measuring 

A280 using the calculated (ExPASy) extinction coefficient of 14105 M-1 cm-1 
  for pilin Δ(1-31), 

pilin Δ(1-28) and 17805 M-1 cm-1 
 pilin Δ(1-23).   

 

2.4.4 Purification of pilin Δ(1-28) from the inclusion bodies 

 The cell debris from the sonication of the E. coli BL21(DE3) cells expressing SUMO-pilin 

Δ(1-28) were resuspended in 50 mM Tris, 100 mM NaCl, 4% (v/v) Triton-X and 1 M urea. 

pH=8.0 (9 mL buffer / g cell pellet) by gently shaking the tube. The suspension incubated at 

room temperature for 10 minutes followed by centrifugation at 20,000 rcf, 4 °C for 15 minutes. 

The supernatant was saved for further purification using the standard methods. The inclusion 

bodies (0.5g) were solubilized in 160 mL of resolubilizing buffer (50 mM Tris, 100 mM NaCl, 

8M urea, pH= 7.5) then stirred at room temperature. The next steps were performed in a cold 

room. The solution of the resolubilized inclusion bodies were added dropwise to 500 mL of 

refolding buffer (50 mM Tris, 100 mM NaCl and 20% glycerol, pH= 7.5) then allowed to stir for 

3 hours. The subsequent purification was done at ambient temperature.  ~3.5 mg per L of culture 

from combining from the lysate, supernatant from resolubilization of the inclusion bodies and 

refolding from inclusion bodies (Fig. 2.13).   The 500 mL solution with the refolded protein was 

loaded onto Ni-NTA resin (Clontech, 6 mL). The elution and subsequent steps of protein 

purification was carried out in the same manner as the lysate purification.  Fractions containing 

the protein were collected and concentrated to the desired volume between 500 µL – 1 mL. The 

purity (> 95%) of the final samples was checked by SDS-PAGE analysis. The concentration of 
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the protein was determined by measuring A280 using the calculated (ExPASy) extinction 

coefficient of 14105 M-1 cm-1.   

 

2.4.5 Expression and Purification of Truncated Native Pilin Mutants. 

Mutants of the pilin Δ(1-31) protein were generated using site-directed mutagenesis with the 

Phusion DNA polymerase (Thermo Fisher Scientific) and primers listed in Table 2.1.  The 

underlined letters are the specific codons that correspond to the mutations introduced in the 

plasmid. The plasmid containing the DNA expressing the SUMO- pilin Δ(1-31)   was used for 

site-directed mutagenesis by PCR. PCR products that showed a band at approximately ~6,000 bp 

were considered successful mutations of the truncated pilin. The PCR products were subjected to 

DpnI digestion for 2 hours at 37°C. The plasmid transformed in E. coli DH5α cells and plated on 

LB agar plates (1.5 w% Bacto-agar).  Colonies were grown in 10mL LB media for plasmid 

miniprep. The plasmids were purified and sent for sequencing. The sequence was confirmed by 

Sanger sequencing (Genewiz). The transformation, expression and purification of the 

successfully mutated plasmids followed the same protocol as the pilin Δ(1-31)  (see above).  

Protein concentration was determined by measuring A280 using the calculated (ExPASy) 

extinction coefficient of 8605 M-1 cm-1 (truncated W105K) and 14105 M-1 cm-1 (truncated 

P111G and truncated I98D).  

2.4.6 MALDI-TOF Analysis of Truncated Pilin Molecular Weight.  

Truncated pilin proteins were prepared to a final concentration of ~40-50 μM with 100 μL 

volume in 25 mM Tris, 100 mM NaCl, pH=7.5. The protein samples were sent to The Protein 

Facility of the Iowa State University (Ames, Iowa). The protein samples were prepared with 
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sinapinic acid as matrix ( 50% acetonitrile, 0.01% TFA and water) and MALDI-TOF was 

performed on a Shimadzu AXIMA Confidence MALDI TOF Mass Spectrometer.



 

* The work in this chapter is a collaboration with Felicia Burns in Luk group. She separated the rhamnolipids into 

monorhamnolipid and dirhamnolipid, performed the swarming motility assay on rhlA and collected the 1H NMR of 

each rhamnolipid component for the purpose of completing the information. 
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Chapter 3. Interactions of Truncated Pilin with Small Molecules Control the Swarming 

Motility of P. aeruginosa. 

3.1 Background and Significance 

3.1.1 Swarming motility of P. aeruginosa is influenced by different factors. 

The collective migration of bacterial cells while growing on a hydrated soft gel surface is 

referred to as bacterial swarming motility.22, 23, 28, 53, 59, 60, 97-100 In nature, swarming motility is not 

exclusive for P. aeruginosa, but can also be observed in E. coli, Bacillus subtilis, Vibrio 

parahaemolyticus, Proteus mirabilis and Myxococcus xanthus.101, 102 The high density of these 

swarming cells is believed to contribute to the increased resistance to antibiotics –  an adaptive 

mechanism of the bacteria to thrive in harsh environments.100, 101 In a laboratory setting, on a 

hydrated soft agar gel (0.5 wt% agar in a petri dish of 10-cm diameter), swarming motility  

produces different, complex patterns that have been associated with variable growth conditions.53   

Interestingly, for P. aeruginosa, different strains exhibit different geometric patterns of 

bacteria on a 10-cm diameter gel as a result of the swarming motility. Whereas wild type PAO1 

swarm to give circular disk pattern with a few cm (<10) in diameter, PA14 (a strain developed 

from burnt wound and from other patients) produce patterns with protruding tendrils from the 

center of inoculated colony (Fig. 3.1).13 For wild type PAO1 strain, the general assumption is that 

there is only one phenotype on the plate, and they move in random directions on the gel surfaces 

when they swarm. As the population increases, the colony area becomes bigger as the result of 

the swarming movement, forming a circular disc shape of swarming pattern. However, for PA14, 

overtime, it is recognized that two phenotypes exist on the agar gel. One is a transient swarming 

strain at the tip of the tendrils; as these bacteria swarm outwardly, they transition into the non-
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swarming phenotype and are left behind on the plate. This conclusion is drawn because of the 

fact that the bacteria in the stems of the tendril are not swarming, otherwise they will cover the 

surface between the tendrils. This understanding of PA14 raises the question of whether the wild 

type PAO1 inside the circular pattern are actually swarming or not. It is also possible that they 

are not swarming, and only the bacteria on the edge of the disc are swarming, as a transient 

phenotype.  The phenotype bifurcation for the PA14 on the gel, where the swarming branches 

only from the tendril tips and the stems do not swarm (Fig. 3.1) is a known phenomenon.103 The 

mechanism for this phenotype bifurcation has yet to be elucidated. The bacteria may employ a 

regulation mechanism as a result of the different phenotypes produced or due to the presence of 

the secreted rhamnolipids to the environment where the small molecules guide the bacterial 

motility.   

The presence of small molecules in the soft gel also induces different patterns formation 

by P. aeruginosa.22, 23, 59 However, the mechanism by which these phenomena occur is still 

unknown.22, 23, 59     P. aeruginosa  swarming motility requires a nutrient-rich media, semisolid 

surface (0.4 % to 0.7 % agar), rhamnolipid production, the presence of flagella and pilin protein 

on the bacteria and cell-to-cell interactions.22, 23, 28, 53, 59, 60, 97-100 P. aeruginosa produces 

rhamnolipids, a biosurfactant, is required for swarming motility, believed to lower the surface 

tension of the gel. 28, 53, 59, 97  P. aeruginosa swarmer cells have been observed to elongate and 

even produce multiple flagella.28, 98 The presence of flagella is important in swarming as this 

protein powers the motion of the bacteria cells.28, 59 Pilin protein expressed by P. aeruginosa has 

also been reported to influence the swarming motility of this bacterium, by which the  

mechanism is still unknown. Despite having identified these different factors, there is still no 

clear consensus of whether swarming occurs because of physical conditions or signaling factors. 
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Figure 3.1 Different swarming patters of two P. aeruginosa strains PAO1 (left) and PA14 (right) 

on M8 soft agar gel (0.5 wt% agar). The swarming assays were performed by Dr. Hewen Zheng 

(Luk lab).  

 

3.1.2 Rhamnolipids and synthetic disaccharides control the swarming motility of P. 

aeruginosa.  

Rhamnolipids are biosurfactants secreted by P. aeruginosa,  implicated for the virulence 

of this bacterium, often found in the sputa of patients with cystic fibrosis.104 Studies on 

rhamnolipids have shown that this biosurfactant is needed for swarming motility,22, 23, 28, 56, 59, 103, 

105 the formation of channels in biofilms, as well as for the dispersion of the biofilms.18, 106   

Rhamnolipids are classified as amphiphilic molecules with a hydrophilic L-rhamnose group and 

a hydrophobic 3- hydroxy fatty acid chain. P. aeruginosa produces two types of rhamnolipids 

namely mono- and dirhamnolipids. Monorhamnolipid is L-rhamnosyl-3-hydroxydecanoyl-3-

hydroxydecanoate and dirhamnolipid is a L-rhamnosyl-L-rhamnosyl-3-hydroxydecanoyl-3-
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hydroxydecanoate molecules, these two only vary with the number of the L-rhamnose groups 

(Fig. 3.2).105, 107  

 

Figure 3.2 Structures of the individual components of rhamnolipids produced by P. aeruginosa. 

 

While it has been identified that rhamnolipids are required for the swarming of P. 

aeruginosa,22, 23, 28, 56, 59, 103, 105 the function of rhamnolipids remain a controversy. As a 

biosurfactant, it is believed that rhamnolipids act as  surface active agents that facilitate 

swarming by lowering the surface tension of the hydrated soft gel surface.53, 59, 60, 97, 99, 105 

However, previous studies have demonstrated that rhamnolipids act as  signaling molecules and  

modulate the swarming of P. aeruginosa.22, 23, 28, 59, 60 For example,  P. aeruginosa transposon 

mutant strain, rhlA, is unable to produce rhamnolipids and does not swarm on soft agar gel.23, 28, 

59, 60 When rhamnolipids are externally added in the swarming gel, rhlA swarming is re-activated. 

Furthermore, a concentration study of adding rhamnolipids into the swarm gel shows that 

swarming is activated at low concentrations and swarming is inhibited at higher concentration. 

Moreover, high concentrations of rhamnolipids added to the gel inhibit the swarming of PAO1.23 

General surfactants such as tetra(ethyleneglycol)monododecyl ether (C12EG4OH) and SDS 
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exhibited no swarming modulation on P. aeruginosa (Fig. 3.3).23, 74  These results strongly 

suggest that rhamnolipids are most likely signaling molecules that control swarming activity of 

P. aeruginosa. As a signaling molecule, there must a protein receptor that recognizes 

rhamnolipids resulting in the swarming oscillation of rhlA. However, the protein receptor of 

rhamnolipids is still unknown.   

 

Figure 3.3 The swarming motility of P. aeruginosa strain rhlA and PAO1 on soft agar plates with 

SDS. 

 

Pili is implicated for swarming of P. aeruginosa, but the nature of its role in swarming is 

not entirely clear.28, 100   Pilin recognizes the D-GalNAc-β-(1→4)-D-Gal-β disaccharide group of 

Asialo-GM1 which primarily leads to cell adhesion then colonization8, 9, 51  and bind hydrophobic 

surfaces.16, 17  We explore the possibility that pili are the receptor for rhamnolipids and the 

swarming motility is directly controlled by the binding between the two. Luk lab synthesized 

several bulky alkyl-disaccharides that have a general structure resemblance to rhamnolipids, that 

inhibit swarming motility (Fig. 3.4).22, 23 These small molecules may also function as specific 
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ligands for pilin, and controls the pili assembly, and dynamics of extension and retraction, as 

well as other pili-related signaling processes.  

 

Figure 3.4 Synthetic disaccharides that inhibit swarming of P. aeruginosa: SFβM, SFβC and SF-

EG4OH. These molecules are synthesized by Luk lab.   

 

 

 Studies led by Dr. Hewen Zheng (Luk lab) demonstrated that externally adding purified 

pilin on the gel surface inhibits swarming of P. aeruginosa PAO1, leading us to hypothesize that 

pilin binds to rhamnolipids. This result suggests a mechanism where the externally added pilin 

competes with the pilin on the bacterium for the rhamnolipids. Because rhamnolipids produced 

by PAO1 enable the swarming motility of this bacterium, the fact that swarming inhibition is 

observed suggests that the externally added pilin binds and sequesters the rhamnolipids, leaving 

none, if not, a deficiency for the pilin on the bacterium to bind and allow swarming to occur.  

Furthermore, the SFβM-inhibited swarming of PAO1 was reinitiated when externally added pilin 

was added on the gel, demonstrating that the external pilin is sequestering the SFβM rather than 
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the rhamnolipids (produced by PAO1) in the gel. However, the combination of native pilin and 

SFβM can cause the reactivation of swarming motility only at a specific and narrow 

concentration. Collectively, we hypothesize that pilin the protein receptor of rhamnolipids and 

the disaccharide analogs, and that their binding controls the swarming motility of P. aeruginosa. 

 

3.1.3 Chapter aim: To test the hypothesis that pilin is the protein receptor of rhamnolipids and 

synthetic molecules.  

In this chapter, we further develop the bacterial motility enabled modified swarming assay to 

study the direct and specific interactions between pilin and rhamnolipids. We initially 

determined that monorhamnolipid is more active than dirhamnolipid at controlling the swarming 

motility of P. aeruginosa.   Next, we optimize and standardize the parameters of the bacterial 

motility enabled binding assay for demonstrating the binding between pilin and rhamnolipids. 

We either applied the protein by spreading or localizing the pilin as a drop on the soft gel 

surface. The established parameters were carried out in two separate studies- for PAO1 and for 

rhlA. First, we used the wild-type PAO1, for which rhamnolipids are self-secreted by the 

bacterium into the surrounding environment on the soft gel, needed for the PAO1 to swarm. 

Second, we used non-swarming rhlA mutant, for which rhamnolipids in the gel activates the 

swarming motility of rhlA. We aim to determine if the externally added pilin will revert the 

rhamnolipids-controlled swarming motilities of these two strains. Moreover, we evaluate the 

bioactivities of the heterologously expressed pilin proteins and the single amino acid mutants for 

similar binding activities to rhamnolipids as the native, full-length pilin expressed by P. 

aeruginosa in an effort to determine the binding region as well as the importance of the D-loop 

to binding rhamnolipids.  
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3.2 Results and Discussion 

3.2.1 The design of the swarming competition assay to identify protein receptors of 

rhamnolipids: Bacterial motility binding-enabled motility assay 

Swarming is performed on a highly hydrated soft agar gel in M8 media supplemented 

with glucose, casamino acids and salts ( ~ 97.8 wt% water, 0.5 wt% agar and 2.2 wt% other 

components) (Table 3.1). We note that this high hydration is essential for P. aeruginosa to 

swarm.22, 23, 28, 53, 59, 60, 97-100 Despite the fact that the gel is mostly water (~97. 8 wt%), when a 

drop of water of bacteria culture (3 μL) is added on the gel surface, the droplet is observed to 

bead up (Fig. 3.5) showing that the agar gel network creates a physical barrier that limits the 

accessibility or the motility of the water molecules on the surface of the gel. Previous studies by 

Luk lab on the effect of small molecule analogs of rhamnolipids on the swarming motility of P. 

aeruginosa were done by dissolving the small molecules in the soft gel solution prior to gelation 

in a petri dish then allowed to air dry.22, 23 To gain understanding of how these surfactants affect 

the physical properties of the gel surface, we performed the same experiment by dissolving 

amphiphatic small molecule, dodecyl-β-maltoside (DβM) in the gel solution, then allowed to dry. 

We observe that the droplets of water or the bacteria culture on the gel collapse on the surface 

(Fig. 3.5). These results demonstrate that upon gelation the ligand molecules appear to have a 

preferred partition on the air-gel interface because of their amphiphilic nature, and these 

molecules can interact with the droplets and cause them to spread on the surface.  
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Table 3.1 Composition of salts in M8 agar gel.  

component weight (g) wt% 

Na2HPO4 6 0.60% 

KH2PO4 3 0.30% 

NaCl 0.5 0.05% 

agar 5 0.50% 

glucose 2 0.20% 

casamino acids 5 0.50% 

1 mM MgSO4 0.12 0.012% 

TOTAL SOLIDS 21.62 2.162% 

*Based on 1 L volume of agar solution.  

 

 

Figure 3.5 Swarm gel prepared by dissolving increasing concentrations of DβM. Droplets (3 µL) 

of water or PAO1. The droplet assay was performed by Yuchen Jin (Luk lab member).  
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Swarming motility is a surface-associated motility, suggesting that binding between the 

pili appendages and the ligand molecules primarily occur on the gel surface despite the small 

molecules distributed within the gel network. However, we also note that the concentration of the 

molecules in the bulk of the gel plays an important role in swarming. During 12 to 24-hour 

course of the swarming assay, the bacteria population increases, and each bacterium 

continuously expresses pili on it surfaces. Thus, pili sequesters ligands in the monolayer 

constantly allowing for the swarming motility, indicative of the ligand molecules on the surface 

monolayer being replenished from the bulk of the gel in a continuous manner.  

 

 Based on these concepts, we designed a bacterial motility binding enabled motility assay 

allowing us to observe direct binding between proteins and rhamnolipids on the gel surface. Pilin 

proteins are introduced onto the gel surface either by spreading pilin solution on the entire 

surface of the soft hydrated gel (Fig. 3.6A) or placing microliter-droplets of the protein solution 

on the gel surface. Followed by brief air-drying, a droplet of P. aeruginosa culture is inoculated 

to for the swarming motility (Fig. 3.6B).  
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Figure 3.6 Design of the bacterial motility enabled binding assay. The surface of soft gels 

containing ligand molecules that either inhibit swarming of PAO1 or promote swarming of rhlA 

are introduced with a receptor protein candidate by either (A) spreading a solution of protein 

(10.5 nmol; 150 μL of 70 μM), or (B) placing droplets of protein (250 pmol; 2.5 μL of 100 μM). 

Bacteria (3uL, OD600 ~ 0.6) is inoculated on the center of gel surface and incubated to monitor 

the swarming motility. 

 

The premise of the experimental design is that the proteins applied on the surface will 

come into direct contact with the ligands that settle on the air-gel partition (Fig. 3.7). The 

externally added pilin will compete with protein receptors, if any, are present on the bacterial 

surface for binding to the ligands. If the protein added on the gel is a receptor of the ligand, the 

ligands will not be available for the protein on the bacteria.  
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Figure 3.7 Modified swarming binding enabled assay scheme describing case 1:  proteins on the 

gel do not bind ligands and case 2:  proteins bind ligands. 

 

We carried out two separate studies for this experimental approach. First, we used non-

swarming rhlA mutant, for which rhamnolipids in the gel activates the swarming motility of 

rhlA. Adding pilin monomers on the gel surface may bind and sequester the rhamnolipid 

molecules near the air-gel interface creating a deficiency of available rhamnolipids to the pili 

appendage on the bacterial surface, rendering the rhlA mutant unable to swarm again. Second, 

we used the wild-type PAO1, for which rhamnolipids are self-secreted by the bacterium into the 

surrounding environment on the soft gel, needed for the PAO1 to swarm. Adding pilin proteins 

on the gel may bind and sequester the bacteria-secreted rhamnolipids, making the molecules 

unavailable for the pilin on PAO1, rendering the PAO1 unable to swarm. 

 

3.2.2 Individual rhamnolipids components control P. aeruginosa swarming motility. 

Rhamnolipids, present as a mixture of monorhamnolipid and dirhamnolipid, is essential 

for the swarming motility of P. aeruginosa. However, there are limited number of studies on the 
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individual components of rhamnolipids. O’ Toole and co-workers purified rhamnolipids, 

rhamnolipids precursors and monorhamnolipid excreted by P. aeruginosa from the growth 

media.59 They reported that rhamnolipids and monorhamnolipid inhibits the swarming of PA14. 

However, dirhamnolipid was not isolated and studied. The role of each component still remains 

unclear. 

To test the effects of the individual components of rhamnolipids, Felicia Burns from Luk 

lab isolated monorhamnolipid and dirhamnolipid from a commercially available mixture of 

rhamnolipids, extracted from bacterial supernatant (AGAE Technologies) then tested the 

molecules for swarming activity.  The individual monorhamnolipid or dirhamnolipid molecules, 

with well-defined concentrations, were dissolved in soft agar solution prior to gelation by air-

drying. Once the gel has dried, the non-swarming transposon mutant of PAO1, rhlA, was then 

inoculated on the soft gel. When either monorhamnolipid or dirhamnolipid is added into the gel, 

the swarming motility of rhlA is activated (Fig. 3.8).  Monorhamnolipid promotes swarming of 

rhlA at 3 μM, whereas dirhamnolipid promotes at 4 μM.  When the concentrations of both 

molecules are further increased, we observe that only monorhamnolipid inhibits the rhlA 

swarming at 5 μM and 20 μM, but dirhamnolipid still promotes swarming at the same 

concentrations. These results indicate that both rhamnolipids components are crucial to the 

swarming motility of P. aeruginosa. Interestingly, inhibition of swarming motility at high 

concentrations of monorhamnolipid suggest that the mechanism of action is not due to the 

surfactant activity. We note that concentrations of rhamnolipids used do not inhibit growth or kill 

P. aeruginosa. Hence, we believe that rhamnolipids likely act as a signaling molecule in 

modulating swarming motility.  Similar results of promotion and inhibition were previously 

observed for the rhamnolipids mixture.23  Interestingly, the “activity reversal” of activating 
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swarming motility at low concentration, and promoting swarming motility at high concentration 

is consistent with monorhamnolipid being a signaling molecule that modulates specific 

bioactivities.59 Surprisingly, dirhamnolipid is the major component from the mixture (3:1 

dirhamnolipid: monorhamnolipid), but the monorhamnolipid dominates in controlling the 

swarming. Because rhamnolipids aer produced as a mixture by bacteria, the mixture of these two 

molecules with different activities may help regulate the swarming motility. Furthermore, 

rhamnolipids have been found to exhibit anti-bacterial properties for other microbial species, and 

thus may play a role in distinguishing species. 

 

 

Figure 3.8  Swarming motility of rhlA on soft gel mixed with increasing concentrations of 

monorhamnolipid or dirhamnolipid. 

 

3.2.3 Truncated pilin inhibits the rhamnolipids- induced swarming of P. aeruginosa. 

We hypothesize that the pilin protein on the P. aeruginosa recognize and bind to the 

rhamnolipids leading to the regulation of the swarming motility of the bacterium. Previous 

results by Dr. Hewen Zheng75 have shown that the native pilin protein purified from P. 

aeruginosa PA1244N3(pPAC46) is able to inhibit the swarming of both P. aeruginosa strains 
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wild-type PAO1 and the clinical isolate strain PA14 using the swarming motility assay.   These 

results show that rhamnolipids are recognized by pilin proteins from different Pseudomonas 

aeruginosa strains.  

To further characterize the binding between pilin and rhamnolipids, the three truncated 

pilin proteins- pilin Δ(1-31), pilin Δ(1-28) and pilin Δ(1-23)  were tested to determine if they will 

bind to rhamnolipids using the bacterial motility binding-enabled motility assay (Fig. 3.9). For 

ease of reference, will refer to the pilin from PA1244N3( pPAC46) as native pilin in this chapter.  

We used the conditions that were initially defined, by spreading 1mL of 0.5 mg/mL of purified 

native pilin (35 nmol), pilin Δ(1-31) (41 nmol),  pilin Δ (1-28) ( 40 nmol) and  Δ pilin (1-23) (38 

nmol) on the  air-dried gel surface and allowed to air dry. The P. aeruginosa PAO1 was 

inoculated in the middle of the gel surface and incubated overnight. For the same amount of 

proteins added on the gel, we observe that only the native pilin and the truncated pilin Δ(1-31)  

inhibits the swarming motility of  PAO1 while the other truncated pilin proteins did not. This 

result indicates that removing 31 amino acid residues from the N’-terminus of the pilin protein 

yields a protein that exhibits the same functionality as the native pilin protein. Furthermore, it is 

highly likely that either pilin Δ(1-31) or the binding region of pilin Δ(1-31) adopts a 

conformation that is similar to the native pilin, allowing for recognition and binding of 

rhamnolipids.  
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Figure 3.9 Swarming motilities of wild-type PAO1 with and without pilin proteins. Proteins 

spread on the gel: 1 mL of 0.5 mg/mL native pilin (35 nmol), pilin Δ(1-31) (41 nmol),  pilin Δ 

(1-28): ( 40 nmol) and  Δ pilin (1-23) (38 nmol). Protein solutions were prepared in 25 mM Tris, 

100 mM NaCl buffer, pH= 7.5, and in 40 mM sodium phosphate buffer, pH= 7.2. Images were 

taken 24 hours after inoculation. 

 

Next, we tested if localizing the pilin in one spot on the gel will inhibit the swarming of 

PAO1. Droplets of proteins (2.5 μL of 250 pmol) - native pilin (1.6 mg/mL) and BSA (6.6 

mg/mL) were placed at different areas surrounding the bacterial inoculation, while keeping the 

inoculation spot in the center. (Fig. 3.5B).  PAO1 is observed to swarm on the soft agar gel, but 

the swarm “avoids” the areas where the pilin droplets were placed on the gel. BSA droplets have 

no effect on swarming of PAO1 (Fig. 3.10). Here, we demonstrate that the ligand-binding assay 

both when the proteins are spread on the surface of concentrated as a drop is a selective test for 

P. aeruginosa pilin binding to rhamnolipids.  
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Figure 3.10 Bacterial motility enabled binding assay. The effect of protein droplets on the 

swarming motility of P. aeruginosa PAO1 on soft agar gel (top). Scheme of the swarming 

motility-based ligand-binding assay (bottom). The amount of protein in each drop on the surface 

of the gel is 250 pmol (●) 2.5 µL of native pilin (1.6 mg/mL; 100 μM) or BSA (6.6 mg/mL; 100 

μM)  spot and (x) 3 µL PAO1 (OD~ 0.7) inoculation spot on soft agar gel. Protein solutions were 

prepared in 40 mM sodium phosphate buffer, pH= 7.2. 

   

To determine standard conditions for spreading pilin on the gel surface that inhibits the 

swarming of PAO1, we used a minimum volume of pilin solution (150 µL instead of 1 mL) that 

is enough to cover the surface of the gel. We conducted a concentration study by spreading 150 

μL solutions of native pilin with increasing concentrations from .00016 to 21 nmol (0.000016 

mg/mL – 2.2 mg/mL) (Fig. 3.11). PAO1 was then inoculated on the gel and incubated overnight. 

We observed swarming inhibition starting at 10.5 nmol pilin protein (70 μM, ~1.1 mg/mL) until 

21 nmol (140μM ~2.2 mg/mL). Therefore, we will use 150 μL of 10.5 nmol (70 µM, ~1.1 
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mg/mL) of native pilin as the standard in the next experiments for the bacterial motility binding 

enabled assay.  

 

Figure 3.11 Swarming motilities of wild-type PAO1 with increasing amount of native pilin 

protein spread on the gel; Volume spread: 150 μL.  Protein solutions was prepared in 40 mM 

sodium phosphate buffer, pH= 7.2 Images were taken 24 hours after inoculation. 

 

Next, we checked if pilin Δ(1-31) inhibits the swarming of PAO1 at same concentrations 

as the native pilin using the standard conditions (Fig. 3.12). Pilin Δ(1-31) solutions (150 μL) 

containing 10.5 to 30 nmol (0.84 mg/mL – 2.4 mg/mL) were spread on the gel surface, the same 

concentration range that the native pilin inhibits swarming of PAO1. For all the concentrations 

used, pilin Δ(1-31)  was able to inhibit the swarming of PAO1. Consistent with the previous 

results (Fig. 3.9), pilin Δ(1-31) exhibits the same  activities as the native pilin. We note that BSA 

does not inhibit swarming of PAO1 at 10.5 nmol spread on the gel.  These results would suggest 

that rhamnolipids are not ligands for BSA.  While there is a possibility that nonspecific 

interactions may exist between the ligands on the interface and the proteins spread on the gel, the 

fact that PAO1 swarms when BSA is spread on the gel suggest that the selective binding between 

the ligands and the pili (on the PAO1) is strong and can out-compete and strip the non-

specifically absorbed ligands from BSA. 
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Figure 3.12 Swarming motilities of wild-type PAO1 with increasing amount of pilin Δ(1-31); 

Volume spread: 150 μL. Protein solutions were prepared in 25 mM Tris, 100 mM NaCl buffer, 

pH= 7.5. Images were taken 24 hours after inoculation. 

 

Next, both pilin proteins (native and pilin Δ(1-31)) were tested on the rhlA strain. (Fig. 

3.13, 3.14). The swarming of rhlA oscillates (promotes then inhibits) when increasing 

concentrations of rhamnolipids are added in the gel; swarming is promoted from 5- 10 μM 

rhamnolipids and inhibited from 15- 20 μM.23 First, we tested if the pilin proteins will be able to 

inhibit the rhamnolipids-induced swarming of rhlA. Rhamnolipids (5 μM) was added to the agar 

gel prior to gelation, the concentration at which enables rhlA swarms. Then, 150 μL of pilin with 

increasing concentrations, 0.1 -21 nmol of native pilin (0.0112 – 2.2 mg/mL)  and pilin Δ(1-31), 

from 0.1 – 21 nmol (0.009 – 1.7 mg/mL) were spread on gel, allowed to air-dry, followed by the 

inoculation of rhlA (Fig. 3.12)  We observe that both proteins inhibit the rhamnolipids-activated 

swarming of rhlA, but at different pilin amounts spread on the gel. Native pilin inhibits swarming 

at 10.5 nmol and pilin Δ(1-31) inhibits at 7.5 nmol. These results are consistent with previous 

findings that pilin bind to the rhamnolipids and control the swarming motility of P. aeruginosa.  

Furthermore, the pilin spread on the surface bind and sequester the rhamnolipid molecules near 
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the air-gel interface creating a deficiency of available rhamnolipids for the pili appendage on the 

bacterial surface, rendering the rhlA mutant unable to swarm.  

 

 

Figure 3.13 Swarming motility of rhlA on soft gels with 5 μM rhamnolipids mixture with 

increasing amounts of pilin proteins. Proteins spread on the gel: 150 μL native pilin (top) and 

pilin Δ(1-31) (bottom).   Native pilin was prepared in 40 mM sodium phosphate buffer, pH= 7.2.  

Solution of pilin Δ(1-31) was prepared in 25 mM Tris, 100 mM NaCl buffer, pH= 7.5.  Images 

were taken 24 hours after inoculation. 

 

Next, we tested the binding motility enabled assay at inhibiting concentrations of 

rhamnolipids ( 20 μM) (Fig. 3.14).  Here, we checked if added pilin will bind and sequester 

rhamnolipids, lowering the rhamnolipids concentration to a range that promotes swarming. No 

significant effect was observed at the native pilin concentrations spread on the gel surface ( 0.5 – 

10.5 nmol; 0.056 – 1.1 mg/mL) (Fig. 3.14). At all concentrations, rhlA swarming is inhibited. 
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Based on these results, swarming modulation by rhamnolipids- pilin binding can be observed at 

low concentrations added on the gel. At 20 μM, the rhamnolipids concentration might be too 

high, that the externally added pilin on the surface are all saturated, and because the 

rhamnolipids at the surface is continuously replenished from the bulk, excess rhamnolipids bind 

to the pilin on the rhlA that still inhibits the swarming. 

 

 

Figure 3.14 Swarming motility of rhlA on soft gels with 20 μM rhamnolipids mixture with 

increasing amounts of pilin proteins. Proteins spread on the gel: 150 μL native pilin (top) and 

BSA (bottom).   Protein solutions were prepared in 25 mM Tris, 100 mM NaCl buffer, pH= 7.5, 

and in 40 mM sodium phosphate buffer, pH= 7.2. Images were taken 24 hours after inoculation. 
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3.2.4 Pilin-rhamnolipids interactions modulate the swarming motility of P. aeruginosa. 

An earlier study reported that pilin-pilin interactions promote cell-to-cell interactions that 

influence the swarming motility of bacterial cells.  When pili sense other pili, the individual cells 

cluster together rather than swarming on the agar gel.100 To investigate whether swarming 

inhibition by pilin occurs as a result or pilin-pilin or pilin-rhamnolipids binding,  we spread and 

inhibiting concentration of pilin (10.5 nmol)  on gels containing two concentrations of 

rhamnolipids- one that promotes ( 25 μM) and one that inhibits (30 μM) PAO1 swarming. (Fig 

3.15). If the swarming inhibition is by pilin-pilin interactions, we would expect that pilin-pilin 

interactions should be able to inhibit swarming at any rhamnolipid concentration added in the 

gel, even at 25 μM.  We observe that at 25 μM rhamnolipids in the gel, PAO1 still swarms even 

in the presence of 10.5 nmol native pilin or pilin Δ(1-31) on the gel surface. In the case where an 

inhibiting concentration, 30 μM of rhamnolipids is added in the gel, adding native pilin or pilin 

Δ(1-31) causes the PAO1 to re-swarm. These results suggest that pilin-rhamnolipids is the main 

binding interactions that control the swarming of PAO1.  As the spread pilin on the surface gets 

saturated with the rhamnolipids from the gel, the concentration of available rhamnolipids 

decreases to the promoting concentration range. Furthermore, the unbound rhamnolipids (either 

from the bulk or produced by PAO1) will be available for the pilin on PAO1 to bind and enable 

swarming. With these two reasons, we can explain the observed re-swarming of PAO1 on the 

agar gel when inhibiting concentrations of rhamnolipids (30 μM) and pilin (10.5 nmol) are on the 

swarm gel. Collectively, these results suggest that in the inhibition of swarming by externally 

added pilin protein is unlikely to be caused by pilin-pilin interaction, but added pilin sequesters 

the secreted rhamnolipids by specific ligand-receptor binding events.  
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Figure 3.15 The swarming motility of P. aeruginosa strain PAO1 on soft gel without and with 

(25 or 30 μM) rhamnolipids.  Proteins spread on the gel surface: 10.5 nmol of native pilin (150 

μL of 1.1 mg/ mL) and 10.5 nmol pilin Δ(1-31) (150 μL of  0.84 mg/ mL). Native pilin was 

prepared in 4 mM sodium phosphate buffer, pH=7.2 and pilin Δ(1-31) pilin was prepared in 50 

mM Tris, 100 mM NaCl, pH=7.5. Swarm plates were inoculated overnight at 37 °C.  

 

The importance of the D-loop in the recognition and binding of rhamnolipids were 

determined by the modified swarming assay.   The single amino acid mutants were spread on the 

surface of the air-dried gel at concentrations within the inhibiting concentration ranges of both 

the native pilin and pilin Δ(1-31) (10.5- 30 nmol). For the mutants, 150 μL of truncated I98D – 

17.7 nmol, truncated P111G- 13.8 nmol and W105K – 12 nmol were spread on the gel (Fig. 

3.16). We observe that none of the single amino acid mutants inhibited the swarming motility of 
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PAO1 at these concentrations. These results suggest that changing a single amino acid in the 

sequence of the D-loop renders the truncated pilin inactive in inhibiting the swarming of PAO1. 

It is important that the sequence of the D-loop is conserved, confirming that the integrity of this 

region is important for recognition and binding of pilin to rhamnolipids.  

 

 

Figure 3.16 The swarming motility of P. aeruginosa strain PAO1 on soft gel with pilin Δ(1-31) 

mutants- 17.7 nmol (150 μL of 1.41 mg/mL) I98D, 13.8 nmol (150 μL of 1.11 mg/mL) P111G, 

12 nmol W105K (150 μL of 0.96 mg/mL)  spread on the gel surface. Proteins were prepared in 

50 mM Tris, 100 mM NaCl buffer, pH=7.5. 

 

 

3.3 Conclusion 

We show that monorhamnolipid and dirhamnolipid function as signaling molecules in 

controlling the swarming of P. aeruginosa, with monorhamnolipid being more dominant. We 

have demonstrated, by the “bacterial motility enabled” binding assay that pilin is a receptor for 
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rhamnolipids and the specific binding between the two, not pilin-pilin interactions, controls the 

swarming motility of  P. aeruginosa. For PAO1, the externally added pilin sequesters the 

rhamnolipids produced by the bacterium and creates a lack of rhamnolipids for the pilin on 

PAO1, resulting in the inhibition of PAO1 swarming. Parallelly, externally added pilin inhibits 

the rhamnolipids-induced swarming of rhlA, indicating that the pilin on the gel surface binds and 

sequesters the rhamnolipid molecules in the gel, leaving a deficiency of the  available 

rhamnolipids for the pilin on the rhlA, rendering the bacterium unable to swarm. Furthermore, 

we have identified that deletion of 31 amino acids of pilin from the N- terminus retains the 

binding activity of the truncated pilin and that the integrity of the D-loop’s primary sequence 

plays an important role in the recognition and binding of rhamnolipids and disaccharide analogs.  

  

3.4 Experimental Section 

3.4.1 Bacteria strains used in this study 

The wild-type strain P. aeruginosa, PAO1 were from Dr. Guirong Wang (SUNY Upstate 

Medical University, Syracuse, NY). The non-swarming mutant of P. aeruginosa, rhlA (PW6886, 

rhlA-E08::ISphoA/hah) was obtained from PA two-allele library (PAO1 transposon mutant 

library).108 

 

3.4.2 Rhamnolipids and Synthetic Ligands Stocks Preparation 

Synthetic ligands were either purchased from Agae Technologies or synthesized by Luk 

lab as previously reported.23 Stocks were prepared by dissolving solids stocks in Millipore water 
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to 11.5 mM, then sterilized by passing through a 0.2 um syringe filter. The stocks were stored in 

a sealed vial and kept in the -20 °C refrigerator.   

 

3.4.3 Proteins used in this study.   

Both native and pilin Δ( 1-31) expression and purification were both discussed in Chapter 

2. The purities of the proteins (>95%) were check by SDS-PAGE gel. The concentrations were 

check by taking A280 by UV/Vis spectroscopy with the calculated (ExPASy) extinction 

coefficient of 171085 M-1 cm-1 for the native pilin, 14105 M-1 cm-1 for pilin Δ( 1-31) 8605 M-1 

cm-1 (truncated W105K) and 14105 M-1 cm-1 (truncated P111G and truncated I98D).BSA was 

purchased from Sigma Aldrich. Proteins were prepared in appropriate buffers, filter sterilized by 

passing thru a 0.22 μm filter and kept in -80 °C until needed.  

 

3.4.4 General swarming motility assay. 

The swarming motility assay was previously described with some modifications.23 The 

swarming gels were prepared by autoclaving 0.5 wt% Bacto Agar in M8 medium ( 0.6 %  

Na2HPO4, 0.3 %  KH2PO4 and 0.05 %  NaCl) supplemented with 0.2 % glucose, 0.5 % casamino 

acid and 1 mM MgSO4. The gel solution was cooled to ~60 ºC, and then poured into a Falcon 

tube for 20 mL, followed by adding aliquots of rhamnolipids in sterile water (11.5 mM) to 

achieve the desired concentrations. The rhamnolipids-added gel solution was poured into a petri 

dish (10 cm in diameter) and allowed to cool down and air dry in a Biosafety level II laminar 

hood for 1 h to solidify the gel. Bacterial culture (3 μL) at OD600~ 0.6 was inoculated in the 

middle of the agar gel. The inoculated agar plates were incubated at 37°C for 12 hours, and then 
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incubated for additional 12 hours at room temperature. Pictures of the swarming plates were 

taken at desired time points during this 12 hours and 12 hours incubation. For each set of 

experiments, freshly prepared agar plates were used within the same day.    

 

3.4.5 Binding enabled motility (modified swarming) assay. 

The swarming motility assay was previously described with some modifications.23 The 

swarming gels were prepared by autoclaving 0.5 wt% Bacto Agar in M8 medium ( 0.6 %  

Na2HPO4, 0.3 %  KH2PO4 and 0.05 %  NaCl) supplemented with 0.2 % glucose, 0.5 % casamino 

acid and 1 mM MgSO4. The gel solution was cooled to ~60 ºC, and then poured into a Falcon 

tube for 20 mL then transferred to a 10-cm diameter petri dish. The gel solution was allowed to 

cool down and air dry in a Biosafety level II laminar hood for 1 h to solidify the gel.  For 

spreading the protein on the gel surface,  solutions (150 μL) of  proteins in buffers (native pilin 

was prepared in 4 mM sodium phosphate buffer, pH=7.2 and truncated pilin, truncated pilin 

single amino acid mutants and BSA were prepared in 2 mM Tris and 7 mM NaCl, pH= 7.5.) 

were spread on the solidified agar gel surface with a sterile cell spreader. The protein solution on 

the gel was air dried in the hood for 45 minutes. For droplets (2.5 μL) of 100 μM proteins (native 

pilin and BSA) in 40 mM sodium phosphate buffer, pH= 7.2 were placed on the solidified agar 

gel surface at different areas near the intended bacterial inoculation droplet. The distances were 

not measured. The protein droplets on the gel were air dried in the hood for ~15 minutes. 

Bacterial culture (3 μL) at OD600~ 0.6 was inoculated in the middle of the agar gel. The 

inoculated agar plates were incubated at 37°C for 12 hours, and then incubated for additional 12 

hours at room temperature. Pictures of the swarming plates were taken at desired time points 
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during this 12 hours and 12 hours incubation. For each set of experiments, freshly prepared agar 

plates were used within the same day.    

 

3.4.6 Separation of Rhamnolipids 

The mono- and di-rhamnolipids mixture (90% pure) was obtained from AGAE 

Technologies. Isolation and purification of monorhamnolipid and dirhamnolipid was performed 

by column chromatography using DCM:MeOH:H2O (87.5:10:2.5) as the eluent. The crude 

extract was dissolved in minimal eluent and loaded onto a wet-packed silica gel 60 (40–63 μm 

mesh, from SiliaFlash®) column. The eluent was kept under stirring conditions and added onto 

column in aliquots to prevent separation of solvent layers. Separation of the mono- and di-

rhamnolipid was confirmed by thin-layer-chromatography (TLC Silica gel 60 F254) developed 

with DCM:MeOH (4:1) with rf values 0.58 and 0.30, respectively. TLCs were visualised using a 

p-anisaldehyde (PAA) stain (3% PAA in acidified absolute ethanol).  The separation of 

rhamnolipids and collection of  1H NMR spectra were done by Felicia Burns, Luk lab member. 
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1H NMR Spectra of monorhamnolipid* 

 

 

 

 

 

  

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

*This spectrum was taken by Felicia Burns. 
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1H NMR Spectra of dirhamnolipid* 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*This spectrum was taken by Felicia Burns. 
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Chapter 4. Rhamnolipids and Synthetic Disaccharides Induce Structural Changes in 

Pilin Upon Ligand-Binding Characterized by Circular Dichroism, Nuclear Magnetic 

Resonance and Dynamic Light Scattering  

 

4.1 Background and Significance 

 

4.1.1 Tools to characterize protein structures and their interactions with ligands.  

 

A variety of tools are available for structural characterization and ligand-binding of 

proteins. Different proteins have distinct amino acid sequences that drive the protein’s 

intramolecular and intermolecular interactions to further fold into their native structures. There 

are four levels by which proteins structures are characterized. The primary structure of a protein 

is its amino acid sequence. The amino acids are covalently linked, forming the peptide bond 

between the carbonyl carbon of one amino acid and the nitrogen of another amino acid. Based on 

Anfinsen’s “thermodynamic hypothesis”, the amino acid sequence plays an important role in 

proteins folding into their native conformation to achieve the lowest free energy.109 The amino 

acids can further form hydrogen bonds with each other that results in local structures, also known 

as the secondary structure of the protein. The common secondary structures of proteins are α-

helices, β-sheets and random coils, a third classification for structures that are neither helices nor 

sheets. The tertiary structure is the three-dimensional shape or the native conformation of the 

protein as the secondary structures and their amino acid side chains form stabilizing salt bridges, 

hydrogen bonding, disulfide bonds and hydrophobic interactions. The tertiary structure a protein 

adopts is the most stable or has the lowest free energy system.109 Lastly, proteins form 

quaternary structures form when they are comprised of different subunits that associate to form 

multi-subunit complexes. Furthermore, it is imperative to understand the dynamics of proteins 

and their structure to also be able to understand the biological activities of these macromolecules. 
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4.1.1.1 Circular Dichroism gives an insight on the secondary structure of proteins. 

Circular dichroism (CD) spectroscopy is commonly used to identify the secondary 

structure of proteins. Chiral molecules, such as proteins, absorb left- and right- circularly 

polarized light and the sum of the absorbances from each component results in the peaks of the 

CD spectrum. 110, 111  Each secondary protein structures results in a distinct spectrum (Fig. 4.1), 

providing its value when structurally characterizing recombinant proteins. Absorption in the far-

UV region (< 240 nm) primarily arises from two electronic transitions by the peptide bond. The 

n → π* transition results in the signal at 210-220 nm, and the π→π* transition results in the 

signals below 210 nm, and absorption signals are unique for each type of protein secondary 

structure.110 Additionally, CD spectroscopy can also be used for detecting changes in the protein 

secondary structure resulting from ligand-binding, protein aggregation or denaturation.110-115 The 

addition of small molecules can induce changes the protein secondary and/or tertiary structure or 

a change in the intensity of the CD signal.110, 111 Typically, achiral ligands are used when 

studying ligand-binding to proteins to avoid any signal interference from the ligand on the CD 

spectrum.  This method provides a rapid way of detecting the secondary structure of proteins; 

however, CD spectroscopy needs to be coupled with other biophysical methods such as NMR or 

X-ray crystallography to provide a more detailed structural information of the proteins.  
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Figure 4.1 Circular dichroism spectra of secondary structures of proteins. 

 

 

4.1.1.2 Nuclear Magnetic Resonance (NMR) is used to study protein structure and ligand 

binding. 

Nuclear magnetic resonance (NMR) spectroscopy is a widely used tool for the structural 

characterization of proteins. Different parameters when running NMR spectroscopy can be used 

to provide a wide variety of information. Generally, a 1D 1H NMR can be used for preliminary 

structural evaluation of the protein folding. Typically, a properly folded protein contains a 

dispersed spectra indicative of the protons exposed to different microenvironments. 

Alternatively, two-dimensional (2D) NMR techniques are also of value to efficiently study both 

scalar coupling and dipole-dipole coupling of macromolecules such as proteins. Nuclear 

Overhauser Effect (NOE) spectroscopy detects interactions between protons within a 5Å 

distance.116, 117 Heteronuclear Single Quantum Coherence (HSQC) spectroscopy is a 2D NMR 

technique that measures the coupling between two connected nuclei such as the hydrogen and the 

nitrogen or carbon atoms in the protein. HSQC is commonly done on proteins isotopically 
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labeled during bacterial expression with 13C and/or 15N.  The HSQC method will provide a more 

delineated way of studying proteins by NMR since it reduced the spectral overlap by looking at 

1H alone and providing information of the protein backbone and side chain interactions.116 NMR 

can be used to determine amino acid residues corresponding to the NMR peaks in the spectra. 

Furthermore, not only is NMR valued for structural characterization, but also for studying 

protein-ligand interactions. Monitoring the changes in the chemical shifts in the absence and the 

presence of ligands can often indicate ligand-binding. NMR is a robust way of doing this study 

as it is less prone to artifacts. However, this method also has some limitations. NMR is suitable 

for smaller proteins < 30 kDa.118 The diffusion or tumbling rate of proteins need to be controlled 

so viscosity of solutions needs to be controlled to ensure that the relaxation time of the proteins 

give peaks that are measurable.  Another interference to the studies of proteins by NMR is the 

formation of higher-order oligomers in solution. Provided that the right conditions are used for 

the NMR, this technique will provide meaningful information about the protein and its 

interactions with ligands.  

 

4.1.1.3 Dynamic Light Scattering (DLS) measures sizes of proteins. 

Dynamic light scattering (DLS) is a useful method to study of submicron particles 

suspended in liquids. Particles in solution exhibit Brownian motion as they collide with the 

solvent molecules. The resulting random movement of the particles can scatter light when 

monochromatic light is passed through the solution.119, 120 DLS correlates the measured light 

scattering to provide information such as the diffusion coefficient, hydrodynamic radii and 

homogeneity of the sample.. The relationship of the light scattering and the size is defined by the 

Stokes-Einstein equation (Eq. 4.1) where DT is the diffusion coefficient, kB is the Boltzmann 
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constant (1.380 × 10−23 kg m2 s−2 K−1), T is the absolute temperature, ɳ is the viscosity of the 

medium. Rh is the hydrodynamic radius which is the radius of a spherical particle that is assumes 

to move at the same velocity as the particle. From the experiment, it would be seen that the 

movement of particles in a solution is affected by factors such as temperature, viscosity of the 

solution and the size of the particles. DLS can measure particles in the range of 0.3 nm – 100 μm 

of aggregates in the solution (Malvern Instruments). This method is useful to determine the 

hydrodynamic radius to estimate the size of proteins in solution.  

 

𝐷𝑇 =  
𝑘𝐵𝑇

6𝜋ɳ𝑅ℎ
 

Equation 4.1. Stokes-Einstein equation 

 

 

4.1.2 Ligand binding between pilin protein and rhamnolipids and SF-disaccharides 

 

Based on past studies by Luk group, a bulky aliphatic chain of disaccharide derivatives, like 

SFβM and SFβC, are more potent than rhamnolipids in controlling the swarming motility of P. 

aeruginosa.23 These molecules, for rhamnolipids and SFβM at least, control swarming motility 

through binding to pilin of P. aeruginosa.  Pilin extend and retract upon contact with chemicals 

or external stimuli, that elicits a biological response. To cause swarming inhibition and 

activation, these molecules most likely induce a conformational change on the pilin protein that 

mediates signal transduction from the pili tip, throughout the pili assembly, and into the 

bacterium. The expressed and isolated pilin proteins from PA1244N3(pPAC46) is active for 

controlling swarming motility, but it is not clear if its conformation is the same as that in the 

assembled state on the bacterial surface. Furthermore, the truncated pilin, pilin Δ(1-31) is also 
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active for swarming but we do not know the structural details of this protein. Gaining insight on 

the structure and ligand-induced structural changes for these proteins can help in understanding 

how rhamnolipids and disaccharide derivatives elicit a biological response upon binding.  

 

4.1.3 Chapter aim: To characterize the secondary structure of recombinant truncated pilin 

proteins and effects of interactions with small molecules on the pilin structure. 

 

In this chapter, we aim to structurally characterize the expressed pilin Δ(1-31) protein by 

different biophysical techniques. Prompted by previous results that rhamnolipids and SF-

disaccharide analogs control swarming, we determine the binding between pilin and these small 

molecules at a molecular level. The bioactive truncated pilin, pilin Δ(1-31) was used as the 

model pilin protein to identify ligands of the pilin protein. Circular dichroism was used to 

determine the secondary structure of the expressed pilin Δ(1-31)pilin and how it compared to the 

native, full-length pilin protein. Nuclear magnetic resonance was also used to determine the 

folding and structure of native pilin.  We used all three techniques, circular dichroism, nuclear 

magnetic resonance, and dynamic light scattering to identify and understand binding between 

pilin Δ(1-31) and candidate ligand molecules.   

 

4.2 Results and discussion 

4.2.1 The secondary structure of truncated pilin Δ(1-31)  is mainly comprised of coiled 

structures and β-sheets. 

 

The CD spectra of 25 µM native, full-length pilin from Pseudomonas aeruginosa 

PA1244N3(pPAC46) and pilin Δ(1-31) expressed in E. coli BL21(DE3) were measured and 

reported as mean residue ellipticity peaks (MRE) (Fig. 4.2, 4.3). The native pilin showed two 
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negative peaks at ~208 nm and 220 nm, and a positive peak at ~195 nm, consistent with a protein 

primarily comprised of an α-helix structure (Fig. 4.2). The resulting spectra of native pilin is 

consistent with both the PAK and PAO1 pilin proteins for which  the native structure is a 

mixture of α-helix and a β-sheet despite the CD  showing a predominantly α-helix signal.121 The 

CD spectra from both strains show roughly an α-helical structure, but  calculations on the CD 

signals revealed a secondary structure of a mixture of 47% α-helix and 42% β-sheet.121  Analysis 

of circular dichroism signals of proteins containing a mixture of α-helices, β-sheets, such as the 

pilin proteins, can be tricky. Generally, α-helices have regular structures that give well-defined 

CD peaks. In contrast, β- sheets are more structurally variable with the possibility of parallel, 

anti-parallel or turn orientations that result in different and even weak CD peaks.122, 123 

 

 

Figure 4.2 Circular dichroism spectrum of 25 μM native 1244 pilin expressed in P. aeruginosa 

(left). Model of the native pilin generated by Phyre2 (right). Protein was prepared in 4 mM 

sodium phosphate buffer, pH= 7.2. 
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 The spectrum of the pilin Δ(1-31) expressed in E. coli showed two negative peaks at 202 

nm and 218 nm (Fig. 4.3). The negative peak at 202 nm corresponds to the signal for a random 

coil protein. However, we did not observe a positive peak at ~217 nm that is also observed for 

random coils. Instead, we observed a negative peak at ~218 nm that is characteristic of a β-sheet 

(Figure 4.3).111, 112 Interestingly, there is a large change in the CD spectrum of the pilin Δ(1-31) 

from the full-length, native pilin. By removing the first 31 amino acids (excluding the leader 

peptide) that form the α-helix of the native pilin, the CD spectrum of the truncated pilin reveals 

the remaining structures of the C’-terminal globular domain, which are mainly comprised of β-

sheets and coiled structures. This secondary structure of a mixture of coiled structures and β-

sheet is consistent with the reported structures of other truncated pilin.77, 81, 84 We therefore 

conclude that removing a part of the N-terminal α-helix of the native pilin retains most of the C’-

terminal globular domain of the native pilin. 

 

 

Figure 4.3 Circular dichroism spectrum of 25 μM pilin Δ(1-31) heterologously expressed in E. 

coli (left). Model of the native pilin generated by Phyre2 (right). Protein was prepared in 2 mM 

Tris and 7 mM NaCl, pH= 7.5. 
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Next, the effect of the single amino acid mutations on the secondary structure of pilin 

Δ(1-31) (Fig. 4.4) was checked. CD measurements were done on 25 µM pilin Δ(1-31), pilin Δ(1-

31) W105K, pilin Δ(1-31) I98D and 20 µM pilin Δ(1-31) P111G. Comparing the CD with the 

unmutated pilin Δ(1-31), we observe that only W105K has a similar secondary structure with 

negative peaks at 202 nm and 218 nm. The P111G mutant still has the negative peak at 202 nm 

and with a reduced signal at 218 nm. The I98D has an intense negative peak at 198 nm and a 

reduced 218 nm peak suggesting that I98D is predominantly a random coil with a minimal β-

sheet character.110  While the spectra shows that the single amino acid mutants signals that are 

generally considered as coiled structures, we can see that the peaks, especially for ~220 nm have 

different intensities. These results show that changing a single amino acid in the pilin Δ(1-31) 

can induce minor changes in the protein that is enough to render the single amino acid mutants 

inactive for binding to rhamnolipids. 

 

Figure 4.4 Circular dichroism (CD) spectra of 25 µM pilin Δ(1-31)  (black) and single amino 

acid mutants: 25 µM pilin Δ(1-31) W105K (green), 25 µM pilin Δ(1-31)  I98D (blue), and 20 

µM pilin Δ(1-31) P111G (red). Proteins were prepared to a final volume of 300 μL in 2 mM Tris 

and 7 mM NaCl, pH= 7.5. 
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4.2.2 Rhamnolipids and synthetic disaccharides induces a change in the secondary structure of  

pilin Δ(1-31).  

 

The binding of pilin Δ(1-31) to rhamnolipids  was determined using CD spectroscopy.  

First, 200 µM rhamnolipids mixture (3:1 dirhamnolipid: monorhamnolipid) was mixed with 22 

µM pilin Δ(1-31) and allowed to incubate overnight at ambient temperature. The changes in the 

CD spectrum of pilin Δ(1-31) before and after adding rhamnolipids were observed.  After adding 

rhamnolipids to pilin Δ(1-31), the CD spectrum of pilin shows a negative peak at ~218 nm, and 

the disappearance of the signal at ~202 nm, indicative of rhamnolipids induced a change in  the 

secondary structure from a coiled structure/β-sheet to a β-sheet (Fig. 4.1, 4.5) This change in the 

secondary structure could be indicative of binding between pilin and rhamnolipids (Fig. 4.5).  

 

Figure 4.5 CD spectra of 22 μM pilin Δ(1-31) only (blue) and with 200 μM rhamnolipids 

mixture (black). Both proteins and ligands are dissolved in 2 mM Tris and 7 mM NaCl, pH= 7.5. 
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Next, we titrated 25 μM of pilin Δ(1-31) with increasing amounts of rhamnolipids to a 

final concentration of 200 µM. When 0-50 µM rhamnolipids are added to pilin Δ(1-31), we 

observe signals appearing at 202 nm and 218 nm, and the signal intensity decreases as the 

concentration of rhamnolipids is increased.  When the rhamnolipids concentration is increased to 

100 until 200 µM rhamnolipids, the CD spectra changes and one negative signal at 218 nm 

appears. Based on these results, 100 μM of rhamnolipids changes the secondary structure of pilin 

Δ(1-31) from the coiled/β-sheet to a β-sheet (Fig. 4.6). The change in the secondary structure, 

together with the decrease in signals observed as the concentration increases, our findings 

indicate that rhamnolipids bind to pilin Δ(1-31). 

 

  

Figure 4.6 CD spectra of 25 μM pilin Δ(1-31) with increasing amounts of rhamnolipids mixture. 

Both proteins and ligands are dissolved in 2 mM Tris and 7 mM NaCl, pH= 7.5. 
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The individual rhamnolipids components, monorhamnolipid and dirhamnolipid, were 

then tested for binding to pilin Δ(1-31) (Fig. 4.7). Monorhamnolipid, from 0-100 µM, added to 

the pilin Δ(1-31), two negative peaks at 202 nm and 218 nm are observed. When the 

concentration of monorhamnolipid is increased to 150 – 200 µM, the two negative peaks at 202 

nm and 218 nm disappear and a negative peak appears around ~210 nm to 220 nm. Whereas 

when dirhamnolipid is added, we only observe the CD spectra to have the two negative peaks at 

202 nm and 218 nm at all concentrations added.  The results demonstrate that monorhamnolipid 

and dirhamnolipid when mixed with pilin Δ(1-31) have different effects on the protein. 

Monorhamnolipid inducing a change in the structure from a random coil to a β-sheet, whereas 

dirhamnolipid retains the coiled structure and only decreases the intensity of the signal. This 

result is consistent with previous swarming results that monorhamnolipid is more active at 

controlling swarming motility than dirhamnolipid. 
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Figure 4.7 CD spectra of 30 μM pilin Δ(1-31) with increasing amounts of monorhamnolipid (top) 

and dirhamnolipid (bottom). Both proteins and ligands are dissolved in 2 mM Tris and 7 mM NaCl, 

pH= 7.5. 

 

We then study binding of rhamnolipids and SFβM to pilin Δ(1-31). First, rhamnolipids 

and SFβM to pilin Δ(1-31)  (10:1 ligand: protein) were tested separately. The addition of 

rhamnolipids to pilin Δ(1-31)  induced a change to the secondary structure of pilin Δ(1-31)  from 

a coiled structure/β-sheet to a β-sheet conformation. However, adding SFβM did not change the 

secondary structure of the pilin Δ(1-31), with the negative signals appearing at ~200 nm and 



86 
 

~220 nm. Next a competitive binding assay was performed by adding the two ligands at the same 

time to the pilin Δ(1-31). The CD signal resulted in a curve that is consistent with the pilin Δ(1-

31) binding to SFβM. (Fig. 4.8) Adding the two individual ligands separately resulted in two 

different CD signals, we believe that binding of pilin Δ(1-31) to rhamnolipids or SFβM, causes 

two possible conformations of the protein. Furthermore, the competitive binding assay resulted 

in a CD signal wherein pilin Δ(1-31) exists in a conformation bound to SFβM. These results 

suggest that SFβM may exhibit a higher affinity for binding to pilin than rhamnolipids. These 

results are consistent with previous findings by Luk lab23, 75 where the swarming motility and the 

binding assays suggest that SFβM binds stronger to pilin than rhamnolipids.  

 

 

Figure 4.8 CD spectra of 22 μM pilin Δ(1-31) with 220 μM rhamnolipids (blue),  SFβM (green), 

(SFβM & rhamnolipids) (competitive assay) (red). Spectrum of pilin Δ(1-31) only (black). 

Proteins and ligands were dissolved in 2 mM Tris and 7 mM NaCl, pH= 7.5. 
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Furthermore, we also looked at the native pilin with rhamnolipids and SFβM (Fig. 4.9). 

In the presence of the ligands, the intensity of the peaks at ~208 nm and ~222 nm change but the 

secondary structure remains as an α-helix. Because the native pilin retains its assembly structure, 

the CD signal could arise because of the exposed α-helices from the protein assembly even if 

there is binding at the C’-terminus, the change could be so small that it could not be detected by 

CD.  By CD, it would be quite challenging to determine binding of the native pilin with 

rhamnolipids and SFβM because of the lack of changes on the protein structure observed.  

 

 
 

Figure 4.9 CD spectra of 25 μM native 1244 pilin without(black) and with 250 μM rhamnolipids 

(blue),  SFβM (green), (SFβM & rhamnolipids) (competitive assay) (red). Spectrum of pilin Δ(1-

31) only (black). Proteins and ligands were dissolved in 4 mM sodium phosphate buffer, pH= 

7.2. 
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4.2.3 H1 NMR of spectrum of native pilin from P. aeruginosa 1244N3 (pPAC46) shows 

interference of polyethylene glycol 8000 and protein assembly formation. 

 

 

Due to the purification process of the native pilin, the final solution of the pilin protein 

contains polyethylene glycol (PEG) -8000. Therefore, the 1H NMR of native pilin is dominated 

by the PEG-8000 signal at approximately 3.7 ppm (Fig. 4.10). Looking into 1H NMR spectrum, 

the PEG-8000 peak at ~3.7 ppm interferes in the region where the alpha and aliphatic protons of 

the protein appear (~3-5 ppm). Furthermore, most of the proton peaks appear to be broadened 

and not well dispersed due to fact that the pili purified from P. aeruginosa are in assembly form 

and the presence of PEG-8000 increase the viscosity of the solution.  In order to dissociate the 

pili into the monomeric form, it would require the used either strong denaturants such as SDS or 

high concentrations  of octyl-glucoside,121 which would further complicate the pilin spectra. 

Also, it has been reported that even when the detergents are removed, the pilin has been found to 

self-associate.121  
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Figure 4.10 1H NMR of native 1244 pilin expressed from P. aeruginosa PA1244N3(pPAC46). 

Original spectra (inset).  Protein was prepared in 90%/10% H2O/D2O containing 50 mM sodium 

phosphate buffer, 2.6 mM NaN3 and 2.6 mM DSS, pH=5.55. The spectrum was taken on a 800 

MHz Bruker NMR by Deborah Kerwood (Syracuse University). 

 

4.2.4 Ligand-binding studies by 15N HSQC show additional peaks after adding ligands to pilin 

Δ(1-31).  

 

The 15N -labelled native pilin was expressed from P. aeruginosa strain 1244N3(pPAC46) 

for structural studies and investigate ligand binding (Fig. 4.11).  Initial HSQC studies of the full 

pilin spectrum shows peaks mainly in the 8.0 -8.5 ppm which initially would indicate a protein in 

a random coil. However, in this case, since the CD spectra shows that the pilin has an α- helix 

secondary structure, the results would suggest that the pilin in solution are mainly in assembly 

form (Fig. 4.11). In addition, the purification method of the full pilin is the same as the unlabeled 

full pilin and using PEG-8000 to precipitate the final protein causes the solution to have a high 



90 
 

viscosity. The viscosity of the solution could possibly influence the HSQC by decreasing the 

molecular mobility of the protein thus resulting in a spectrum that shows a coiled protein 

structure.124, 125  We therefore diluted the sample to decrease the viscosity as well as the potential 

assembly formation of the pilin in solution. We diluted from 350 µM to 120 µM of pilin for the 

HSQC experiment. While the spectra show that diluting the protein causes additional peaks to 

show, the pilin remains in the assembly form as seen by the peaks within 8.0-8.55 ppm.  

 

 

Figure 4.11 15N HSQC of full pilin from PA1244 overlay spectra. 350 μM native pilin in black, 

120 μM native pilin in red. The sample solution was prepared in 90%/10% H2O/D2O containing 

50 mM sodium phosphate buffer, 2.6 mM NaN3 and 2.6 mM DSS, pH=5.55. The spectra were 

taken on a 800 MHz Bruker NMR by Deborah Kerwood (Syracuse University). 

 

Next, we added the SF-disaccharide, SFβC to the native pilin and performed 15N- HSQC 

to detect any changes in the protein peaks upon addition of the ligand. Our approach was to add 
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the SFβC at increasing concentrations one at 50 µM and then 100 µM (Fig. 4.12, 4.13). When 50 

μM of SFβC was added, we observe that additional peaks in the spectrum appeared. However, 

since the peaks are still within the 8-8.5 ppm region, it would be difficult to assign the residues 

corresponding to the peaks.  When the SFβC concentration added to the native pilin was 

increased to 100 μM, most of the peaks remain unchanged compared to the 50 μM SFβC 

spectrum (Fig. 4.13).  These results would indicate that there is binding between native pilin and 

SFβC, but due to the pilin in the solution mostly in assembly form, the changes might be too 

subtle for the NMR to detect even when the SFβC is increased.  

 

 

Figure 4.12 15N HSQC of native pilin from PA1244 overlay spectra. 120 μM native pilin in 

black, w/ 50 μM SFβC in blue. The samples were prepared in 90%/10% H2O/D2O containing 50 

mM sodium phosphate buffer, 2.6 mM NaN3 and 2.6 mM DSS, pH=5.55. The spectra were taken 

on a 800 MHz Bruker by Deborah Kerwood (Syracuse University). 
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Figure 4.13  15N HSQC of native pilin from PA1244 overlay spectra with 50 μM SFβC in blue 

and 120 μM in pink. The samples were prepared in 90%/10% H2O/D2O containing 50 mM 

sodium phosphate buffer, 2.6 mM NaN3 and 2.6 mM DSS, pH=5.55. The spectra were taken on 

a 800 MHz Bruker NMR by Deborah Kerwood (Syracuse University). 

 

4.2.5 Truncated Native Pilin Structure with Coiled and β-sheet Structures.  

The truncated pilin, pilin Δ(1-31), recombinantly expressed in E. coli and purified by the 

Nickel affinity column does not require the use of PEG-8000.  No interference of PEG-8000 to 

the NMR spectrum is expected. Furthermore, since the proteins are expressed in E. coli, without 

the α-helix, the truncated pilin will less likely self-associate and exist as monomers in the 

solution.   The 1H NMR spectrum of the truncated pilin was taken to determine the folding of the 

protein (Fig. 4.14). The protein seems to adopt an unfolded conformation, as seen by the spectral 

overlap of the proton peaks. There is little dispersion in the observed peaks especially along the 
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side chain to the backbone region (6-10 ppm), where broadened peaks and concentrated peaks 

around 7.5-8.5 ppm appear. This spectrum indicates that Δ(1-31) is an unfolded protein with a 

flexible structure, consistent with the CD results that the protein consists of β-sheets and coiled 

structures (Fig. 4.3).    The presence of coiled structured of the pilin Δ(1-31) allows for the 

flexibility of the protein, exposing the amino acids in the same solvent environment, hence, the 

NMR recognizes an average of the chemical shifts resulting in overlapping of the peaks.126 

 

 

Figure 4.14 1H NMR of 120 μM pilin Δ(1-31). Protein was prepared in 50 mM 90%/10% 

H2O/D2O containing 50 mM NaPB buffer, pH= 7.5. The spectrum was taken on a 400 MHz 

Bruker NMR by Deborah Kerwood (Syracuse University). 
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4.2.6 Ligand-binding studies by 15N HSQC show additional peaks after adding ligands to pilin 

Δ(1-31). 

15N - HSQC NMR analysis was first performed to detect structural changes caused by 

ligand-binding to the pilin Δ(1-31) (Fig. 4.15). The 15N HSQC spectrum is consistent with the 1H 

NMR having a flexible structure with most peaks appearing within 8 – 8.5 ppm (Fig. 4.14).   

 

Figure 4.15 15N- Heteronuclear quantum coherence (HSQC) NMR spectra of pilin Δ(1-31). 

Proteins were prepared in 90%/10% H2O/D2O, 25 mM Tris, 100 NaCl, 2.6 mM NaN3 and 2.6 

mM DSS, pH=7.5. The spectrum was taken on a 400 MHz Bruker NMR. 

 

Next, 2 mM SFβM and rhamnolipids were then added to 220 μM pilin Δ(1-31) and the 

HSQC spectra was taken. For both cases, adding the ligands resulted in additional peaks in the 

spectra, indicative of changes in the protein upon ligand-binding. The additional peaks are less 

for SFβM compared to rhamnolipids. (Fig. 4.16). We anticipate that rhamnolipids will induce a 
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more structured pilin Δ(1-31) conformation, as previously seen in the CD spectra where the 

coiled structure/β-sheet to a β-sheet conformation at the same ligand: protein ratio. (Fig. 4.6) 

Although most of the structure exhibits a coiled structure, the fact that additional peaks appeared 

in the spectra suggest that ligands induced a change in the pilin Δ(1-31), which could possibly be 

a result of binding of the ligand to the protein.  

 

Figure 4.16 15N- Heteronuclear quantum coherence (HSQC) NMR spectra of pilin Δ(1-31)   with 

ligands added (A) SFβM overlay spectra:  pilin Δ(1-31)  control (black), pilin Δ(1-31)   + SFβM 

(red), (B) rhamnolipids overlay spectra. pilin Δ(1-31)   control (black), pilin Δ(1-31)   + 
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rhamnolipids (blue). Proteins were prepared in 90%/10% H2O/D2O, 25 mM Tris, 100 NaCl, 2.6 

mM NaN3 and 2.6 mM DSS, pH=7.5. The spectra were taken on a 400 MHz Bruker NMR. 

 

4.2.7 Dynamic light scattering shows an increase in particle size upon addition of ligands. 

 

The dynamic light scattering of 25 μM pilin Δ(1-31) was measured before and after 

adding ligands (Fig. 4.17). For the solution containing 25 μM pilin Δ(1-31)  alone, aggregates 

with particle sizes 4.187, 4.849 and 15.69 nm were detected.  For solutions of pilin Δ(1-31)with 

200 μM rhamnolipids, aggregates with particle sizes 50.75 and 37.84 nm are observed and for 

solutions where SFβM is added, aggregates with particle sizes 91.28 nm and 105.7 nm are 

observed.  From these results, the size of pilin Δ(1-31)  monomers is approximately 4 nm. The 

observed 15 nm could be nonspecific binding of pilin monomers forming assemblies in solution. 

As dynamic light scattering requires a large concentration of sample, we used 25 μM.  We note 

this high concentration of the protein which could then lead to possible protein- protein 

interactions. With the ligands, we observe significantly larger aggregates than the pilin Δ(1-31) 

alone. We observe that rhamnolipids induce aggregates that are 4-10x the size of the monomers 

while SFβC induces larger aggregates that are 20-26x the monomers.  
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Figure 4.17 The number distribution measured by dynamic light scattering of (A) 25 μM pilin 

Δ(1-31), (B) w/ 200 μM rhamnolipids, (C) w/ 200 μM SFβM. Measurements were done on 50 

μL solutions in 25 mM Tris and 100 mM NaCl, pH= 7.5. 

 

 

Because of the high ligand concentration used, there is a possibility that surfactant 

assemblies interfere with the scattering data. The ligands alone were also measured by dynamic 

light scattering (Fig. 4.18). The observed sizes of the particles in the ligand solutions at 200 μM 

are 3-4 nm for SFβC and 15-20 nm for rhamnolipids. These results confirm the detected particles 

in the mixtures of pilin Δ(1-31) and ligands are due to proteins and not the ligand.  
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Figure 4.18 The number distribution measured by dynamic light scattering of (A) 200 μM 

rhamnolipids, (B) 200 μM SFβM. Measurements were done on 50 μL solutions in 25 mM Tris 

and 100 mM NaCl, pH= 7.5. 

 

To eliminate the possibility of interference by the ligands, dynamic light scattering was 

done with lower concentrations of the ligand, monorhamnolipid (10 nM and 1 μM), mixed with 

25 μM of pilin Δ(1-31) (Fig 4.19). The measured sizes of the particles in solution increased from 

~4-6 nm (pilin Δ(1-31)  alone)  to 5-10 nm (with 10 nM monorhamnolipid) and 10, 15 and 20 

nm ( with 1 μM monorhamnolipid).  These results confirm that the pilin protein form higher 

order structures in the presence of ligands even at low concentrations.   We therefore confirm by 

DLS the presence of large assemblies of pilin Δ(1-31) when mixed with ligands.  
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Figure 4.19 The number distribution measured by dynamic light scattering of (A) 25 μM pilin 

Δ(1-31), (B)  w/ 10 nM monorhamnolipid, (C) w/ 1 nM monorhamnolipid and (D) 10 nm 

monorhamnolipid . Measurements were done on 50 μL solutions in 25 mM Tris and 100 mM 

NaCl, pH= 7.5. 

  

 

4.3 Conclusion 

In this chapter, we characterized the pilin proteins and determined ligand-binding using 

different biophysical techniques such as circular dichroism, NMR and dynamic light scattering. 

The secondary structure of the native pilin from 1244N3(pPAC46) is mainly comprised of an α-

helix. When the native pilin is truncated, pilin Δ(1-31), removing 31 from the  N-terminal α-

helix, the secondary structure is comprised of coiled structures and β-sheets. Nuclear magnetic 
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resonance show that the native pilin is possibly in aggregate form and the structure of pilin Δ(1-

31) reflects a coiled structure.  By both circular dichroism and NMR, we were able to detect 

binding between pilin Δ(1-31)  and rhamnolipids and SFβM. Rhamnolipids and SFβM result in 

two different secondary structures of pilin Δ(1-31)  when mixed in solution. The 15N-HSQC of 

native pilin and pilin Δ(1-31) showed additional peaks when mixed with SFβC and rhamnolipids. 

Lastly, dynamic light scattering shows that the addition of rhamnolipids of SFβC at both high 

and low concentrations cause the formation of the larger aggregates of pilin in solution. These 

results strengthen the hypothesis that pilin is the receptor for rhamnolipids and SF- disaccharide 

analogs, and that the binding epitope is in the C-terminal globular head of the protein. Further 

characterization of binding between the pilin Δ(1-31) and these ligands need to be performed to 

understand the mechanism of binding.  

 

4.4 Experimental Section 

 

4.4.1 15N -labelled native pilin expression, purification and SDS-PAGE analysis.   

The expression and purification of 15N full pilin was done similarly as the unlabeled full pilin 

with some exceptions. Briefly, PA1244N3(pPAC46) was streaked on Luria Bertani (LB) agar 

plates (1.5 wt%) with Tc50 and Cb200 then grown overnight at 37°C. The following day a single 

colony was inoculated in 25 mL Luria Bertani (LB) media treated with Tc50 and Cb200, grown 

overnight with shaking at 250 rpm, 37°C. The overnight culture was subcultured using a 1:100 

ratio in M9 media (0.048 M Na2HPO4, 0.022 M KH2PO4, 0.0085 M NaCl, 0.002 M MgSO4, 

0.0001 M CaCl2, 0.6 % (w/v) glucose, 0.1 % (w/v) 15NH4Cl, 0.05 % 1000x metals, 1 % MEM 

vitamins) treated with Tc50 and Cb200 then allowed to grow for 5 hours or until cloudy. The 

subculture was grown in a larger volume of M9 media treated with Tc50 and Cb200 followed by 
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adding 1mM IPTG to induce pilin protein expression for 14 hours with shaking at 250 rpm, 

37°C. The protein expression and purification by nickel affinity column was the same reported 

procedure for the unlabeled pilin. Pilin protein was stored in storage buffer.   Pili protein was 

checked by SDS-PAGE gel using 15 % separating gel and 4 % stacking gel.   

 

4.4.2 15N -labelled truncated pilin expression, purification and SDS-PAGE analysis. 

  15N-labelled pilin Δ(1-31) protein was expressed as previously discussed with modifications. 

Briefly, the truncated pilA gene was cloned from the pPAC46 plasmid of P. aeruginosa 

PA1244N3(pPAC46). The gene was ligated in the pET-SUMO vector and inserted in E. coli 

BL21(DE3) cells. The cells were initially grown in LB media with Kan50   for ~4 hours or until 

cloudy. The culture was transferred in 20 mL of M9 media (0.048 M Na2HPO4, 0.022 M 

KH2PO4, 0.0085 M NaCl, 0.002 M MgSO4, 0.0001 M CaCl2, 0.6 % (w/v) glucose, 0.1 % (w/v) 

15NH4Cl, 0.05 % 1000x metals, 1 % MEM vitamins) with Kan50, grown for 2 hours with shaking 

at 250 rpm, 37°C until cloudy. The small M9 culture of BL21 cells were transferred in a larger 

volume of M9 media treated with kanamycin (50 ug/mL). The protein expression and 

purification by nickel affinity column was the same reported procedure for the unlabeled pilin 

Δ(1-31). Pilin protein was stored in storage buffer.   Final protein concentration was check by 

UV-Vis spectroscopy, measuring absorbance at 280 nm (A280).  Purity of the protein was 

checked by SDS-PAGE analysis with a 15% separating gel and 4% stacking gel.  

 

4.4.3 Circular dichroism of pilin proteins.   

Solutions of proteins with known concentrations (see above) were diluted to desired concentrations 

between 20 to 30 μM. Native pilin was prepared in 4 mM sodium phosphate buffer, pH= 7.2 and 
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pilin Δ(1-31) was prepared in 2 mM Tris and 7 mM NaCl, pH= 7.5. Stock solutions of ligands (10 

mM; prepared in the same buffers as proteins) were added to the protein solution with the 

appropriate volumes to achieve the desired final concentrations. For example, 294 μL of 22 μM 

pilin Δ(1-31) was mixed with 6 μL of 10 mM rhamnolipids or SFβM to yield final concentrations 

of 21.6 μM pilin Δ(1-31) and 200 μM ligands in solution. The solutions were incubated for 24 

hours in the shaker at 125 rpm, 25 °C.   Circular dichroism (CD) spectra were acquired on a Jasco 

J-715 CD spectrometer collecting ten scans (4 s averaging time) for each spectrum and using a 

quartz cuvette with a 1 mm path length. Care was taken that the sample absorbance never exceeded 

1.5 at all wavelengths to produce reliable ellipticity values. Mean residue ellipticity (MRE, 

deg*cm2*dmol-1) values were calculated using the following equation, where  is ellipticity 

(mdeg), l is pathlength (cm), C is peptide concentration (M), N is number of residues. 

 

MRE = 
𝜃

10∗𝐶∗𝑙∗𝑁
 

 

 

4.4.4 15N HSQC studies on pilin protein.  

15N-labelled pilin Δ(1-31)  was prepared in 90%/10% H2O/D2O containing 22.5 mM Tris, 2.6 mM 

NaN3 and 2.6 mM DSS, pH=7.5 with a final concentration ~250 μM. Ligands (SFβM, 

rhamnolipids) were added (100:1 protein: ligand) and incubated for 24 hours in the shaker at 250 

rpm, 25 °C to bind to the pilin.  HSQC of both free pilin Δ(1-31) and ligand + pilin Δ(1-31) were 

done in 400 MHz Bruker NMR.  15 N full pill pilin was prepared in 90%/10% H2O/D2O containing 

50 mM sodium phosphate buffer, 2.6 mM NaN3 and 2.6 mM DSS, pH=5.55 with a final 
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concentration ~120 μM.  HSQC of full pilin was done in 800 MHz Bruker NMR. NMR spectra 

were processed by CcpNmr software or Bruker software. 

4.4.5 Dynamic light scattering.  

Dynamic Light Scattering (DLS) experiments were measured on Malvern Zetasizer Nanoseries at 

a scattering angle of 173° at 25 °C.  The DLS measurement were done on 50 μL samples of 25 μM 

native pilin Δ(1-31) with ligands all dissolved in 25 mM Tris, 100 mM NaCl, pH=7.5.  Samples 

were measured in triplicates.   
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Chapter 5. Rhamnolipids and Synthetic Disaccharides Bind to Pilin at Low Picomolar 

Concentrations and Induce Different Assembly Structures  

 

5.1 Background and Significance 

 

5.1.1 Importance of hydrophobic groups to protein-ligand binding 

 

Multiple noncovalent interactions drive the molecular recognition of proteins to their ligands. 

In biological systems, the multivalent effect is often used to describe molecular interactions 

between that involve hydrogen bonding between protein and ligands.127 However, reports have 

also shown that hydrophobic interactions also play a role in protein-ligand binding as the major 

associative force that brings the ligands closer to the protein binding site.  In well-known “tight” 

small molecule-protein binding such as biotin-avidin (Kd~ 10-15 M),128 drug-receptor interactions 

such as WAY 100635- 5HT1A receptor (Kd ~ 0.087 x10-9M)129, other arylpiperazines with 5HT1A 

(Kd~ nM) and Olmesartan- Human angiostensin II AT1 receptor (Kd ~ 0.087 x10-9- M)130, 

moenomycin and penicillin binding proteins (Kd ~nM)131, 132 and retinol and retinol binding 

proteins (Kd ~nM)133-136, the contribution of hydrophobic interactions have been reported.  

 

Similarly, previous reports have also described hydrophobic interactions influencing the 

binding between pilin and small molecules. 9, 24, 75, 137    Irvin and co-workers previously reported 

that aliphatic chains enhanced the binding of the disaccharide, β-D-GalNAc(1→4)β-D-Gal,  to 

the pilin protein.9 The propylation of the hydroxyl group at the C-4 of the galactose group 

increased binding by one order of magnitude relative to the unmodified β-D-GalNAc(1→4)β-D-

Gal. To a lesser extent, the methylation of the hydroxyl group at the C-2 of the N-

acetylgalactosamine increased the binding twice compared to the unmodified β-D-

GalNAc(1→4)β-D-Gal.   Furthermore, Audette and co-workers have reported that hydrophobic 
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compounds such as 143 mM of 1-undecanethiol and 90 mM 2-methyl-2,4-pentanediol bind to 

truncated pilin from P. aeruginosa K122-4, inducing a conformational change that triggers the 

self-assembly of the pilin into linear assemblies with 5-6 nm diameter. 24, 137   Interestingly, 

studies by Dr. Hewen Zheng from Luk lab demonstrated the direct binding between pilin and the 

saturated farnesyl (SF) group through covalent ligation of a SF-EG4-epoxy molecule to pilin, and 

other proteins do not bind to these molecules.75 Collectively, these findings indicated that 

proteins can have cavities to accommodate large hydrophobic groups (with a less important 

hydrophilic group) to achieve tight binding. 

 

5.1.2 Fluorescence spectroscopy as a method to determine ligand-binding of pilin and ligands. 

 

Proteins have intrinsic fluorescence properties that arise from the aromatic acids 

phenylalanine, tryptophan and tyrosine.133-136 Most commonly, the excitation and emission of 

tryptophan is used for protein fluorescence studies due to the residue’s high quantum yield and 

extreme sensitivity to the environment.134 Tryptophan is typically excited around 280-295 and 

emits in between 300-400 nm.135, 138 The emission profile of tryptophan depends on the protein 

environment the protein is exposed to.139-146  For example, when tryptophan changes its 

environments and is exposed to a hydrophobic environment, fluorescence maxima is blue-shifted 

and when exposed to a  hydrophilic environment, the fluorescence maxima is red-shifted.138, 142   

A protein’s fluorescence can be utilized to study the protein’s structure and dynamics.139-146  

Hence, the intrinsic fluorescence of protein is valuable in investigating ligand-binding between  

protein and small molecules as well as any changes in the tryptophan environment caused by 

folding or denaturation of the protein.139, 141, 142, 144-147   
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There is little known information on ligands for pilin protein.  Our studies on swarming 

suggest that rhamnolipids and SF-disaccharides are ligands for pilin, however, the ligand-binding 

has not been studied and characterized. Structurally, our compounds possess surfactant-like 

properties and could potentially form assemblies when higher concentrations are used. The 

advantage of using a small amount of protein (nanomolar to micromolar concentrations) for 

fluorescence spectroscopy would also require minimal amounts of ligands for binding studies. 

Further, because of the sensitivity of this assay to the environment, it could provide us an idea on 

whether the environments of the tryptophan residues in pilin are altered by binding to these 

molecules.  

 

5.1.3 Molecules induce the assembly of truncated pilin protein. 

 

Proteins interact with each other to form higher order structures. Proteins have structural 

diversity that allows a myriad of noncovalent intermolecular interactions such as H-bonding, 

electrostatic interactions and hydrophobic interactions that lead to protein assemblies.148 

Biological macromolecules are known to form assemblies in vivo and in vitro given that 

conditions are suitable.149 The pili assembly is comprised of circular stacks of 4-6 pilin 

monomers that form fibers with a diameter of 5-6 nm. 45, 76, 79, 80, 84 In the assembly, each pilin 

monomer is associated by the N-terminal α-helix and the β-sheet exposed at the periphery of the 

fiber.45, 76, 79, 80, 84 The exposed α-helix is deemed to be important for the pilin assembly.79 

However, past studies by Audette and co-workers have shown that even truncated pilin without 

the exposed α-helix can self-associate to form fibrous assemblies with ~6 nm in diameter.24, 137  

In that work, the pilin self-assembly is triggered by the presence of hydrophobic compounds, 
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including 143 mM of 1-undecanethiol and 90 mM 2-methyl-2,4-pentanediol. While the 

mechanism remains unclear,137 the hydrophobic compounds is believed to induce a 

conformational change in the truncated pilin that facilitates the fiber assemblies.24, 137 

 

To characterize the nature of the protein assembly induced by the ligands, kinetic studies are 

often used to monitor changes in signals that arise from the assembly formation.139, 150, 151  There 

are two general models of assembly that proteins follow – the cooperative and isodesmic model 

(Fig. 5.1).  In the cooperative model, the formation of the assemblies is concentration-dependent 

where a certain concentration of proteins must be reached, known as the critical aggregation 

concentration, before larger assemblies will form.  Generally, in a time study, there is an initial 

lag phase reflecting the formation of small assemblies. The signal will start to increase over time, 

only when the critical aggregation concentration is reached. The signal will eventually saturate 

when larger assemblies are formed. Meanwhile, in the isodesmic process, protein assembly 

follows a “linear” model where there is no requirement of a critical aggregation concentration for 

protein assembly to occur.139, 152-155 In a time study, the expected curve for isodesmic assembly 

will yield an immediate increase in the signal ( no lag time observed) as each monomer adds 

continuously to the growing assembly and only when the assembly is large enough will the 

signal saturate. 
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Figure 5.1 Scheme of protein assembly models by cooperative (left) and isodesmic (right) 

assembly. 

 

 

5.1.4 Chapter aim: To characterize Binding of Truncated Pilin with Rhamnolipids and 

Synthetic Disaccharides.  

 

In this chapter, we aim to identify the ligands of pilin protein using fluorescence 

spectroscopy. With previous results showing that rhamnolipids and structural analogs, SF-

disaccharides, control the biological activities of P. aeruginosa such as swarming, we 

hypothesize that these molecules are ligands of pilin protein.  To conduct binding studies, we 

used pilin Δ(1-31)pilin and study its binding to the ligand candidates by measuring the changes 

in the fluorescence emission of the truncated pilin after adding increasing concentrations of the 

ligands.  We identified rhamnolipids and SF-disaccharides bind to pilin at low picomolar 

concentrations that lead to further assembly formation of the pilin Δ(1-31) in solution. Kinetic 

studies were also performed to determine the process by which the ligand induces the pilin to 
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form assemblies in solution. Transmission electron microscopy was used to visualized and 

characterize the pilin assemblies and differentiate the assemblies formed by rhamnolipids and 

SF-disaccharide molecules.   

 

5.2 Results and Discussion 

 

5.2.1 Rhamnolipids and synthetic disaccharides bind to pilin protein at low picomolar 

concentrations. 

 

To characterize the binding between the ligands and the pilin proteins, we discovered that the 

intrinsic fluorescence 138, 139, 141, 142, 156 of pilin protein is highly sensitive to the ligand binding. 

Here, we used fluorescence spectroscopy to study the in vitro binding of the protein with the 

ligands SFβC, SF-EG4OH, monorhamnolipid and dirhamnolipid. Pilin protein (100 nM) was 

excited at 260 nm to minimize the signal distortion from the Raman peak, and emission was 

collected from 300-400 nm. The fluorescence signals of both native pilin and pilin Δ(1-31) 

measured and observed in between 320-340 nm (Fig. 5.2).  
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Figure 5.2  Fluoresce emission of native 1244 pilin (black) and Δ(1-31) (blue) excited at 260 nm. 

Proteins were prepared as 1 mL solutions of 100 nM proteins in 50 mM Tris, 100 mM NaCl, 

pH=7.5.    

First, selectivity of binding was determined by adding 1 μM rhamnolipids or SDS to the pilin 

proteins and measuring the fluorescence emission of the final solution (Fig. 5.3). When 

rhamnolipids were added to both pilin proteins, an increase in the fluorescence signal were 

observed for both proteins, whereas SDS had no significant effect on the fluorescence emission 

of either pilin. The selectivity of binding is consistent with the previous swarming results where 

rhamnolipids and not SDS were observed to regulate P. aeruginosa swarming motilities which 

we correlate to pilin proteins binding to rhamnolipids but not to SDS. Furthermore, the observed 

increase in the fluorescence emission and slight blue shift after adding rhamnolipids suggest a 

change in environment of the tryptophan residues in both pilin proteins, specifically an increase 

in the  hydrophobicity in the environment of the tryptophan residues. 138, 142  The observed 

changes in the spectra are likely a result of the rhamnolipids binding to the pilin proteins. 

However, the mechanism is not clear whether the rhamnolipids causes an indirect change in the 
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tryptophan environments by binding to the protein and changes the protein conformation or if 

tryptophan directly interacts with the rhamnolipids that changes the environment. The same 

fluorescence results for native pilin and pilin Δ(1-31)pilin suggest that deletion of the N-terminus 

of native pilin retains the ligand-binding region in the pilin Δ(1-31)and that the tryptophan 

residues in both proteins possess the same accessibility to the ligands. Therefore, we could use 

the fluorescence emission of pilin Δ(1-31) to study the binding of the pilin protein to different 

ligands.  

 

 

Figure 5.3 Fluorescence emission of native 1244 pilin (top) and pilin Δ(1-31) (bottom) with ligands 

1 μM rhamnolipids and 1 μM SDS. Proteins with and without ligands were prepared in 50 mM 

Tris, 100 mM NaCl, pH=7.5 with a total final volume of 1 mL. 
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The fluorescence emission of the single amino acid mutants of truncated pilin after adding 

rhamnolipids were measured (Fig. 5.4). While truncated I98D did not show any increase in the 

fluorescence emission, truncated P111G and W105K showed some increase but not as 

significant as seen with the native and pilin Δ(1-31)when mixed with rhamnolipids.  The small 

increase in the fluorescence is most likely a partial exposure of one or both of the tryptophan 

residues to the rhamnolipids  as an effect of a change in protein folding resulting from changing 

the single amino acid in the protein rather than binding because the mutants are inactive in 

controlling the swarming of P. aeruginosa.   

 

 

Figure 5.4  Fluorescence emission spectra of 100 nM pilin Δ(1-31) single amino acid mutants 

I98D, W105K and P111G (bottom) with ligands 1 μM rhamnolipids. Proteins with and without 

ligands were prepared in 50 mM Tris, 100 mM NaCl, pH=7.5 with a total final volume of 1 mL. 
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Next, pilin Δ(1-31) (100 nM) was mixed with different ligands SFβC, SF-EG4OH, 

monorhamnolipid, dirhamnolipid and SDS to study binding between the protein and ligands. 

Increasing concentrations of the different ligands were added to individual solutions of 100 nM 

pilin Δ(1-31). The fluorescence emission of the truncated pilin solutions after adding the ligands 

were measured from 300-360 nm (Fig 5.5).  We observed that for four ligands, SFβC, SF-

EG4OH, monorhamnolipid, and dirhamnolipid, the fluorescence emission increase with 

increasing concentrations added in the solution.  We note the increase in the fluorescence 

emission of the pilin Δ(1-31) occurs at a low concentration of the ligand, at picomolar 

concentration ranges. Meanwhile, no significant change in the pilin Δ(1-31) fluorescence signal 

was observed for SDS.  
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Figure 5.5 Fluorescence emission spectra of 100 nM of pilin Δ(1-31) with (A)SF-EG4OH, (B) 

SFβC, (C) dirhamnolipid, (D) monorhamnolipid and (E) SDS. Proteins and ligands were dissolved 

in 50 mM Tris and 100 mM NaCl, pH= 7.5. Samples were equilibrated for 16 hours prior to 

fluorescence measurements. 

 

For each ligand added, the maximum fluorescence for each solution were plotted as a 

function of ligand concentration. The maximum fluorescence signals were observed in between 

320 -340 nm. (Fig. 5.6).  At 10 fM, the lowest concentration of ligands added, only SFβC and 

SF-EG4OH increased the fluorescence signal of pilin Δ(1-31) while monorhamnolipid and 
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dirhamnolipid had no effect on the fluorescence signal. For each of the curves, the half-maximal 

points were determined at approximately 300 fM SFβC, 500 fM SF-EG4OH, 700 fM 

monorhamnolipid and 1 pM dirhamnolipid. The fluorescence signals immediately reach a 

saturation point at approximately 1 pM SFβC, 1 pM SF-EG4OH, 10 pM dirhamnolipid and 5 pM 

monorhamnolipid added to pilin Δ(1-31).  Our results indicate that at low ligand concentrations, 

10 fM SFβC, 10 fM SF-EG4OH, 30 fM dirhamnolipid and 50 fM monorhamnolipid, the ligands 

interact with the pilin Δ(1-31) altering the environment of the tryptophan residues causing an 

increase in intrinsic fluorescence of the protein. We note that the SF-disugar compounds 

immediately cause an increase in the fluorescence followed by dirhamnolipid then 

monorhamnolipid. As the fluorescence emission increases with ligand concentration, the half-

maximal point in each curve represent the apparent binding constant (Kd) of the ligand to pilin 

Δ(1-31) where the lowest to the highest values are for the SF-disugar compounds, followed by 

monorhamnolipid then dirhamnolipid. For all ligands, saturation of the signals occurs at low 

picomolar concentrations. Collectively, these results suggest that pilin Δ(1-31)has a higher 

affinity for SF-disaccharides over rhamnolipids 
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Figure 5.6 Plot of intrinsic fluorescence vs. ligand concentration for individual solutions of 100 

nM pilin Δ(1-31) with different ligands: (A) SF-EG4OH, (B) SFβC, (C) dirhamnolipid and (D) 

monorhamnolipid and (E) SDS. Proteins and ligands were dissolved in 50 mM Tris and 100 mM 

NaCl, pH= 7.5. Fluorescence measurements were taken after 16 h of incubation, n=3. 

 

For most of the ligands tested, the saturation occurs at 1 picomolar of the ligand, which is 

much lower than the protein concentration (1 pM vs. 100 nM). We note the difference in the 

binding concentrations for the swarming (~μM) and the fluorescence measurement (~nM) which 
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could be due to the variation in the number of pilin proteins in the two systems. In swarming, the 

bacteria number is concentrated in the drop and the ligand surrounding the bacterium is low. 

Whereas in the fluorescence experiments, the number of pilin and ligands are accurately 

quantified and mixed in solution. While the observed apparent binding constants (Kd’s) at low 

ligand concentrations are indicative of binding of the ligand to the pilin Δ(1-31), the immediate 

saturation of the fluorescence signal at low ligand concentrations could also reflect some other 

binding process happening sequentially. First, we believe that this immediate saturation of 

signals could be due to the presence of some large species in the solution. Second, the formation 

of protein assemblies could cause a change in the microenvironment of the tryptophan to a more 

hydrophobic one which results in the increase of the fluorescence of pilin Δ(1-31).   

 

5.2.2 Tight-binding between ligand binding between pilin and SF-compounds and rhamnolipids 

induces pilin assembly 

 

The measurements of the intrinsic fluorescence of the assembled proteins indicates that the 

half-maximal of the signals of pilin assembly reveals the transition of the pilin monomers to 

larger assemblies. Our results show that around 1 pM of ligands (monorhamnolipid, 

dirhamnolipid, SFβC and SF-EG4OH) can cause such transition for 100 nM pilin Δ(1-31). We 

note that this picomolar effect does not directly reveal the binding constant between the ligand 

and the pilin protein, but rather offers two possibilities. First, the ligands indeed bind with high 

affinity to the pilin proteins at picomolar range, followed by causing the protein to assemble. 

Second, the ligands bind to the pilin protein with a weaker binding strength, and function as 

catalysts to induce the assembly of pilin proteins. In the second case, while the pilin proteins 
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form assembly, the ligand has a significant dissociation rate, and the dissociated ligands induces 

other free pilin proteins to form assembly.  

 

To distinguish between these two scenarios, we performed a titration experiment, in which a 

solution of ligand, monorhamnolipid, in excess (100 nM) was added sequentially with pilin Δ(1-

31) to reach the concentrations of 100 pM, 10 nM, 100 nM and 110 nM. The fluorescence 

signals were measured for each pilin addition (Fig. 5.7). If the ligand binds to the receptor with a 

high binding constant, close to low picomolar range as observed for inducing pilin assembly, 

when pilin concentration is titrated to close to 100 nM, the ligands would be largely bound and 

unavailable to induce nascent pilin assembly. In contrast, if ligand functions as a catalyst with a 

relatively weak binding constant, the formation of nascent pilin assembly will still be possible 

for newly added pilin proteins, even when the pilin and ligand concentration comparably close.   

 

The mixture after each addition of pilin was equilibrated for 12 hours prior to measuring the 

fluorescence (Fig. 5.7). pilin Δ(1-31) at 100 pM in the presence of an excess of 

monorhamnolipid (100 nM) exhibited fluorescence signal (~ 9 x 104 units). Further addition of 

pilin concentration to 10 nM, and 100 nM increased the fluorescence signal from ~ 11.6 x104 to~ 

12.5 x 104. But, further addition of pilin to 110 nM did not cause an increase in fluorescence 

(Fig. 7). This lack of increase in the fluorescent signal indicates that there is no nascent 

formation of pilin assemblies, and suggests that the ligands are bound, and free ligands are 

unavailable. This result thus supports a tight binding model, rather than a weak binding catalysis 

model.  
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Figure 5.7 (A) Fluorescence emission spectra of 100 nM monorhamnolipid titrated with 

increasing concentrations of pilin Δ(1-31). (B) Plot of intrinsic fluorescence vs. pilin conc. 

titrated into monorhamnolipid solution. Proteins and ligands were dissolved in 50 mM Tris and 

100 mM NaCl, pH= 7.5. Measurements were made ~12h after adding 10 μL aliquots of 10 nM, 1 

μM and 9 μM of truncated pilin into 1 mL of 100 nM of monorhamnolipid. 

 

 

5.2.3 Ligand-binding to pilin induces pilin assembly formation in vivo via the isodesmic 

process. 

 

 

Here, we utilized the tryptophan fluorescence of pilin Δ(1-31) to monitor the signal changes 

over time after the protein is mixed with ligands. In general, the rate of the protein assembly will 

depend on the protein concentration for both isodesmic and cooperative assembly. The higher the 

protein concentration, the faster the protein assembly will occur (Fig 5.8). We studied a range of 

pilin Δ(1-31) concentrations (360 nM, 100 nM and 75 nM) with excess ligand (500 nM 

monorhamnolipid) and the fluorescence signal was measured immediately after mixing to over a 

course of 24 hours (Fig. 8) The ligand was added in excess in order to ensure all pilin Δ(1-31) 

binds to the ligand and prevent any nonspecific binding between the pilin Δ(1-31) monomers 

from happening, which can interfere with the fluorescence signal measurements. The 
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fluorescence emission of the solutions was measured from 0 – 24 hours (Fig. 8) to determine 

how the protein assembly proceeds. At 360 nM pilin Δ(1-31) + monorhamnolipid, the initial 

fluorescence signals decrease from 0 – 30 minutes of incubation, then at 1 hour, the fluorescence 

signal starts to flatten out then slightly increase at 5 hours. At lower concentrations, 100 and 75 

nM pilin Δ(1-31) + monorhamnolipid, the increase in the fluorescence immediately occurs after 

0 hours on mixing ligand to the protein. In general, we observe that for all pilin-short 

concentrations added, the fluorescence intensity continually increases until the last time point 

that the fluorescence signal measurement was taken, at 24 hours (Fig. 8). For 360 nM pilin Δ(1-

31), we observe that the fluorescence signal is already high at time 0 and although there is some 

slight decrease from 0-30 minutes, the signal remains unchanged from 30 minutes to 4 hours, 

and only slightly increases at 5 hours. This result could be due to the high concentration of pilin-

short used, and the rate of the assembly happens too fast, as soon as the ligand is added to the 

pilin-short. The high fluorescence signal at time zero and the unchanged fluorescence signal 

from 30 minutes to 4 hours could be due to   the immediately population of the solution with 

protein assemblies. We then used lower pilin concentrations, 100 nM and 75 nM, to slow down 

the assembly rate and increase the time frame for observing how the protein assembly proceeds. 

For 100 nM pilin Δ(1-31), the fluorescence signal immediately increases after time 0 but the 

significant increase in the fluorescence signal appears at the 2-hour time mark. For 75 nM pilin 

Δ(1-31), there is also an immediate increase in the fluorescence signal after time 0, but the large 

increase takes more time, observed at the 4-hour time mark.  These results would confirm that 

the addition of ligands induce protein assembly of pilin Δ(1-31). The progression of the 

fluorescence signals over time shows an immediate increase in the pilin Δ(1-31) signals, without 

a lag time, and the fluorescence signal continuously increases over time. The curve resembles an 
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isodesmic process of assembly where each monomer assembles without the need for nucleation 

of a critical concentration. 139, 152-155   

 

Figure 5.8 Plot of intrinsic fluorescence vs. time (hr) of 500 nM mono-rhamnolipid and varying 

concentrations of pilin Δ(1-31) (360, 100 and75 nM). Proteins and ligands were dissolved in 50 

mM Tris and 100 mM NaCl, pH= 7.5. 

 

We also looked at the case when the pilin is in excess compared to the ligand 

concentration (Fig. 5.9). We tested 1 nM of monorhamnolipid with 100 nM pilin and 50 nM 

pilin. The observed transition of the fluorescence signal increase occurred at around 1 pM of 

ligands for 100 nM of pilin Δ(1-31), a 10-5: 1 ratio. For this experiment, we used 1 nM 

monorhamnolipid to ensure that the proteins will form assemblies. We also picked low 

concentrations of the pilin to minimize any nonspecific binding between the proteins that could 
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interfere with the fluorescence readings. We observe that there is an immediate increase in the 

fluorescence from 0-3 hours and this increase continues from 20-24 hours. These results also 

show that the assembly occurs via the isodesmic process. 

 

 
Figure 5.9. Plot of intrinsic fluorescence vs. time (hr) of 1 nM mono-rhamnolipid and varying 

concentrations of pilin Δ(1-31) (100 and 50 nM). Proteins and ligands were dissolved in 50 mM 

Tris and 100 mM NaCl, pH= 7.5. 

 

Here, we have demonstrated that the intrinsic fluorescence of pilin Δ(1-31) is a useful tool to 

determine binding of ligands to pilin protein and ligand selectivity.  We discovered that ligands 

bind to the pilin-short at low ligand concentrations and induces the assembly of pilin-short in 

solution. Furthermore, the kinetic studies confirm that the ligand induced assemblies are of 

isodesmic in nature. 
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To describe the pilin assembly induced by ligand-binding, we propose the binding model 

described by Equation 1. Our model suggests two binding sites at the protein: (1) ligand site and 

(2) protein site. We hypothesize that the newly assembled proteins also adopt a conformational 

change similar to the ligand-induced one, and thus leading to further recruitment of proteins and 

assembly. We assume that the molecular details of protein-protein binding do not change 

significantly as the linear assembly increases. Thus, we further propose that this ligand induced 

protein assembly is controlled by two sets of rate constants, one for ligand receptor binding and 

dissociation (k1 and k-1, respectively), the other for protein-protein binding and dissociation (k2 

and k-2, respectively). 

𝐿 + 𝑛𝑃 
𝑘1

⇌
𝑘−1

𝐿𝑃 + (𝑛 − 1)𝑃
𝑘2

⇌
𝑘−2

𝐿𝑃2 + (𝑛 − 2)𝑃
𝑘2

⇌
𝑘−2

… 
𝑘2

⇌ 
𝑘−2

 𝐿𝑃𝑖 + (𝑛 − 𝑖)𝑃 

Equation 5.1 Equation to describe ligand-induced protein binding.  
 

 

 

5.2.4 Transmission electron microscopy shows linear and amorphous assemblies of pilin 

induced by rhamnolipids and synthetic disaccharides.  

 

The formation of assemblies by pilin in the presence of ligands were visualized by 

transmission electron microscopy (TEM).  Here, we prepared 80 µM of pilin Δ(1-31) with 8 nM 

of monorhamnolipid and SFβC corresponding to a ratio of ligand: pilin corresponding to 10-4:1. 

The observed transition of the fluorescence signal increase occurred at around 1 pM of ligands 

for 100 nM of pilin Δ(1-31) , a 10-5: 1 ratio. Passing this concentration of ligands, the 

fluorescence signal starts to plateau, suggesting that the pilin species in this regime are mainly 

assemblies. We observe that the TEM images of pilin Δ(1-31) alone showed scattered small 
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aggregates with amorphous structures (Fig. 5.10A). Adding 8 nM monorhamnolipid to pilin Δ(1-

31) (80 µM) resulted in the formation of large aggregates with linear assembly structures with a 

diameter measuring at 5-6 nm. These linear assemblies are aligned to form large assembly with a 

rough width of 14 nm (Fig.5. 10, 5.11). Under the same conditions, SFβC induces truncated pilin 

to form larger aggregates with amorphous details (Fig. 5.10, 5.12).  

 

Figure 5.10 TEM images of 80 μM pilin Δ(1-31)  (A), + 8 nM monorhamnolipid (B), and + 8 

nM SFβC (C). Micrographs were taken on a FEI Tecnai 12 BioTwin TEM. (Cornell Center for 

Materials Research, NY, USA) operating at 120 kV. 
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Figure 5.11 Transmission electron micrographs of negatively stained assemblies from a solution 

of 80 μM pilin Δ(1-31)  with 8 nM monorhamnolipid (A) and 8 nM SFβC (B). Micrographs were 

taken on a FEI Tecnai 12 BioTwin TEM (Cornell Center for Materials Research, NY, USA) 

operating at 120 kV. 
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Figure 5.12 TEM images of 80 μM pilin Δ(1-31)  with 8 nM SFβC from three different 

aggregates on the grid. Micrographs were taken on a FEI Tecnai 12 BioTwin TEM (Cornell 

Center for Materials Research, NY, USA) operating at 120 kV. 

 

 

To further examine the assembly structures, we examined pilin Δ(1-31)   assembly at a high 

concentration, 266 μM with 400 μM monorhamnolipid or SFβC (Fig. 5.13). Here, we study the 

case when the ligand is in excess of the protein concentration. Under these conditions, we 

observe similar results as when the protein is in excess of the ligands (Fig. 5.10).  The truncated 

pilin alone forms amorphous aggregates. When ligands monorhamnolipid and SFβC are added, 

we observe large amount of linear fibrous and amorphous assemblies for the two ligands, 

respectively.  In this case, monorhamnolipid induces the assemblies of linear fibers with 1-5 nm 

diameter (Fig. 5.14).   
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Figure 5.13 TEM images of 266 μM pilin Δ(1-31)  (A), + 400 μM monorhamnolipid (B), and + 

400 μM SFβC (C). Images were taken at SUNY-ESF using the JEOL JSM-2000EX microscope. 
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Figure 5.14 Transmission electron micrographs of negatively stained assemblies from a solution 

of 266 μM pilin Δ(1-31)  and 400 μM monorhamnolipid. Scale bar: 10 nm. Images were taken at 

SUNY-ESF using the JEOL JSM-2000EX microscope. 

 

At the concentrations of pilin Δ(1-31) for TEM imaging (80 and 266 μM), which are about 

800-  to 2000-fold higher than that for the intrinsic fluorescence experiments, we observed some 

spontaneous self-association of pilin Δ(1-31) monomers. In contrast, both monorhamnolipid and 

SFβC at 10-4 equivalence induce pilin proteins to form assemblies. While SFβC caused truncated 

pilin to form amorphous aggregates, monorhamnolipid caused that to form linear fibrous 

assemblies that can further align to form super-assembly of proteins. We believe for 

monorhamnolipid, at least, that the mechanism by which the pilin Δ(1-31) forms assemblies is by 



129 
 

the initially the formation of linear assemblies that further align to form super-assemblies. 

(Scheme 5.1).  

 

Figure 5.15 Proposed scheme of ligand-induced protein assembly for rhamnolipids. 

 

 

5.3 Conclusion 

 

 Pilin Δ(1-31) binds to rhamnolipids and SF-disaccharides by measurement of the intrinsic 

fluorescence of pilin Δ(1-31). Fluorescence spectroscopy show that 1 picomolar of these ligands 

is enough to cause 100 nM of truncated pilin to form assemblies in solution by a tight-binding 

model. The presence of ligand-induced protein assemblies was confirmed by transmission 

electron microscopy. TEM shows that monorhamnolipid induces the formation of linear 

filaments, while SFβC induces the formation of amorphous aggregates. Furthermore, the 

assemblies induced by monorhamnolipid are of 10-20 nm in diameter. Finally, the assembly 

formation does not require a critical concentration to occur, consistent with the isodesmic 

process of assembly.  The rhamnolipids and synthetic molecules being the ligands for pilin 

proteins open the opportunity for studying and controlling the bacterial signaling, and related 

bioactivities, particularly those related to biofilm formation and virulence factors. 
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5.4 Experimental Section 

 

5.4.1 Cloning, recombinant expression and purification of truncated native pilin protein and 

mutants. 

The cloning, recombinant expression and purification of truncated native pilin protein and 

mutants were previously reported in Chapter 2.  

 

5.4.2 Fluorescence spectroscopy.   

5.4.2.1 General.  Solutions of pilin Δ(1-31)with known concentrations in 50 mM Tris, 100 

mM NaCl, pH= 7.5 were diluted with the same buffer to the desired protein concentration for 

fluorescence spectroscopy. Stocks solutions of ligands (rhamnolipids, SFβC and SDS) were 

prepared in the same buffer. The intrinsic protein fluorescence was measured using the 

Fluoromax Spectrofluorometer (Horiba Scientific) by exciting the samples at 260 nm, to reduce 

the peak distortion caused by Raman scattering, and by recording the emission spectra 300 to 

400 nm. Slit widths used for both excitation and emission are 5 nm.  

5.4.2.2 Binding Studies.  Individual solutions (1 mL) of 100 nM pilin Δ(1-31)with different 

ligand concentrations ranging from 10 pM to 1 μM were prepared.  For each required final ligand 

concentration, stock solutions of the ligands were prepared such that 10 μL of the ligand stock 

solution is added to each individual solution to ensure the final concentration of protein is 

consistent in each sample.  For example, 990 μL of 101 nM of pilin Δ(1-31) is mixed with 10 μL 

of 100 μM of ligand to yield final concentrations of 100 nM pilin Δ(1-31) and 1 μM ligand. Each 

1 mL solution was aged with shaking at 150 rpm, 25 °C for approximately 16 hours prior to 
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measuring the fluorescence. The graphs were generated from an average of measurements for 

three different samples. 

5.4.2.3 Protein Assembly Kinetics.  Different pilin Δ(1-31)  (75 nM, 100 nM and 360 nM) with 

500 nM monorhamnolipid solutions were prepared. The fluorescence of the solution was 

monitored and measured at different time points from 0 – 24 hours after mixing the proteins and 

monorhamnolipid in solution. The graphs were generated from an average of measurements for 

two different samples. 

5.4.3 Transmission electron microscopy of pilin assemblies.  

The assembly of pilin Δ(1-31) was induced by mixing equal volumes of pilin Δ(1-31)solution 

and ligands (of monorhamnolipid or SFβC) to a final volume of 40 µL in 50 mM Tris, 100 mM 

NaCl buffer, pH=7.5. The prepared solutions were then aged overnight for about 16 hours at 

ambient temperature. The solutions were applied on Transmission Electron Microscopy (TEM) 

grids for visualization by dispensing a 5 µL drop of the solution on a 300-mesh Formvar/Carbon 

coated copper grids.  The excess liquid was blotted with a filter paper. The samples on the grids 

were stained with uranyl acetate (5 µL of 2 % solution) and allowed to incubate for 2 minutes. 

The excess uranyl acetate was removed by dipping the grids in sterile Millipore water 

approximately 15-20 times, followed by blotting the grids with filter paper.  The grids were kept 

in a dessicator or in a vacuum chamber for at least 24 hours prior to imaging by TEM. 

Micrographs were taken on a FEI Tecnai 12 BioTwin TEM. (Cornell Center for Materials 

Research, NY, USA) operating at 120 kV or on a JEOL JEM 2100F Transmission Electron 

Microscope (SUNY-ESF, NY, USA) operating at 200 kV. 
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Chapter 6. Cromoglycate Mesogen Forms Isodesmic Assembly Promoted by Peptides and 

Induce Aggregation of a Range of Proteins. 

6.1 Background and Significance 

6.1.1 Disodium Cromoglycate (5’DSCG) is a biocompatible nonamphiphilic mesogen. 

Liquid crystals (LC’s) have been explored for biological studies and applications.157-167 

Disodium cromoglycate (5’DSCG) belongs to a class of nonamphiphilic molecules that forms 

nematic chromonic liquid crystals in aqueous solution. As the concentration increases, it is 

believed that the molecules first form isodesmic assemblies in water, which further align to form 

liquid crystal phases.157  Because the chromonic mesogen 5’DSCG does not have a well-

separated oily and water-soluble region within its structure (Fig. 6.1), this molecule is benign to 

protein folding, and appears to be highly compatible for biological applications and studies.166, 167 

The nematic or liquid crystal phase of this molecule in water has been used for studying surface-

oriented movement of bacteria for potential biosensing applications,158-163 specific antibody-

antigen binding,166 and protein crystallization.167 Far from the LC phase concentration, at ~0.14 

wt%, 5’DSCG has been demonstrated to promote the crystallization of lysozyme.167 More 

surprisingly, this liquid crystal appears to promote the binding between antigens and 

antibodies,166 while other conventional surfactant-based liquid crystals do not support the 

antigen-antibody binding, presumably due to their ability to denature proteins.  
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Figure 6.1 Chemical structure of disodium cromoglycate (5’DSCG). 

 

6.1.2 Disodium Cromoglycate (5’DSCG) is a crystallizing agent for proteins. 

Among different types of liquid crystals, lyotropic chromonic liquid crystals differ from 

the conventional surfactant-based lyotropic liquid crystals. Chromonic liquid crystals consist of 

nonamphiphilic molecules assembled in water, and the assemblies further align to form LC 

phases.157, 168-181 Due to the nonamphiphilic nature of the mesogen, the assembly of the 

molecules does not proceed with the assembly process of surfactants (conventional lyotropic 

liquid crystals). Rather, it is believed to proceed with an isodesmic assembly process,169-171, 181-183 

that is similar to a dynamic noncovalent polymerization without a critical aggregation 

concentration or a nucleation process. Many novel assembly properties have been observed for 

this chromonic liquid crystal.171, 173, 174, 176 But, it is surprising that the observation and studies for 

the isodesmic assembly for this class of liquid crystals are scarce,169, 170, 178, 180 suggesting that the 

concentration range for isodesmic assembly may be narrow.  

Previous work done by Luk and co-workers crystallized lysozyme using 5’DSCG as a 

crystallizing agent.171  The ability of 5’DSCG to self-assemble in aqueous solution and form 

liquid crystals enables protein crystallization.  In the liquid crystal phase, the assembly of 

5’DSCG is highly hydrated and is able to sequester water molecules in the bulk, leading to favor 
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proteins to crystallize. This is observed when a solution of lysozyme and 5’DSCG is mixed in 

water, the liquid crystal phase is achieved at very low concentrations of 5’DSCG (0.14 wt%) 

compared to 5’DSCG alone in water (11-12 wt%). Consequently, lysozyme crystals also form 

under these conditions indicating a demixing mechanism between 5’DSCG and lysozyme in 

aqueous solution. This demixing mechanism between two noncovalent assemblies in aqueous 

solution can be further characterized and provide a possible general mechanism for crystallizing 

a wide range of proteins. 

 

6.1.3 Limited available crystal structure of pilin proteins 

 The pilin assembly is comprised of individual pilin monomers that are collected and 

assembled as appendages on the surface of the bacteria. Pilin is a general class of protein 

consisting of an α-helix and a β-sheet domain.   The appendage consists of circular assemblies of 

4-5 pilin monomers that linearly stack on top of each assembly. These pili appendages can 

extend and retract in response to chemical signals or environmental stimuli, and are responsible 

for a wide range biological function of bacteria including swarming motility, twitching motility, 

recognizing the sugar moieties (asialo-GM1) on mammalian cells, and the hydrophobic surface 

of abiotic surfaces.37, 68, 77, 78, 81, 84, 184-187 Because of the importance of this class of proteins, 

vaccine development has been explored for these proteins and several crystal structures of pilin 

exist,68, 77, 78, 81, 84, 187 most of which are of the truncated versions of pilin.77, 81, 84 Because of the 

nature of the pilin structure, with a long, protruding hydrophobic N’-terminal α-helix, the protein 

is partially insoluble and difficult to crystallize. It would be difficult to achieve a saturated 

solution of the protein without the risk of the protein aggregating in aqueous solution. Hence, 

most of the successful pilin proteins crystallized are of the truncated pilin proteins,  removing the 
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first 28 amino acids of the α-helix, which results in a more soluble protein for crystallization 

studies.77, 81, 84    Meanwhile, the crystal structures of ligand-bound pilin complexes are still 

lacking.  

 

6.1.4 Chapter Aim: Crystallization of pilin protein from P. aeruginosa by utilizing the 

isodesmic assemblies of 5’DSCG. 

In this chapter, we aim to demonstrate that the presence of peptides promotes the isodesmic 

assembly of 5’DSCG over a broad range of concentrations before reaching the liquid crystal 

phase. We will also study the effect of non-ionic polymers in promoting the isodesmic assembly 

of 5’DSCG in aqueous solution. These assemblies were detected by measuring absorbance at 600 

nm (OD600) and corroborated by nuclear magnetic resonance (NMR).  We further explored this 

demixing mechanism to precipitate a wide range of proteins, including lectin A, esterase, lipase, 

bovine serum albumin, trypsin, native pilin protein from bacterium Pseudomonas aeruginosa 

PA1244N3(pPAC46), and the truncated pilin, pilin Δ(1-31) recombinantly expressed in E. coli.  

 

6.2 Results and discussion 

 

6.2.1 Components of Luria Bertani media promote isodesmic assembly of 5’DSCG 

   Additives such as ions and water-soluble organic molecules can have an impact on the 

transition concentration of 5’DSCG from isotropic solutions to nematic liquid crystal phases.169, 

173, 179, 188-190 The isodesmic assembly formation is predicted to be a step towards the formation of 

the LC phase as these isodesmic assemblies align in solution.169, 170, 183 However, the extensive 
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studies and characterization of these isodesmic assemblies are lacking. Some studies showed the 

assembly of 5’DSCG molecules form small noncovalent oligomers that is consistent of 

isodesmic assemblies.174, 191   Here, we discover a simple system containing chemical additives 

that promote the formation of large and readily detectable isodesmic assembly 5’DSCG (Fig. 

6.2).   

 

 

Figure 6.2 Schematic representation of formation of isodesmic assembly of 5’DSCG induced by 

chemical additives. 

 

To explore the potential biological applications using 5’DSCG phases, we first conducted 

a study on the effect of Luria Bertani (LB) media for culturing bacteria (1 wt% tryptone, 1 wt% 

sodium chloride, 0.5 wt% yeast extract) on the assembly and phase property of 5’DSCG. Initial 

studies show that LB media caused 5’DSCG to form nematic phases at a lower concentration 

than in deionized water (8 wt% rather than 11 wt%) (Fig. 6.3), suggesting that the components of 

LB media induced the assembly of 5’DSCG. These results led to the discovery that isodesmic 
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assemblies of 5’DSCG can be readily measured by the light scattering of the solution via the 

absorbance at 600nm (OD600). Measuring OD600 is commonly used for measuring bacteria 

densities by light scattering of the bacterial cells. Isodesmic assemblies, if existing, are 

comprised of different oligomers and polymers in equilibria.169-171, 181, 183 Light scattering of the 

solution provides a readily accessible method to detect the presence of these isodesmic 

assemblies in solution.  

 

 

Figure 6.3 Images of 5’DSCG solutions at different concentrations in (A) Millipore water (B) 

Luria Bertani (LB) media (1 wt% sodium chloride, 1 wt% tryptone and 0.5 wt% yeast extract) 

viewed under cross polars. Scale bar = 760 μm. 

 

Measurement of the optical density (OD600) revealed the formation of assemblies of 

5’DSCG. The OD600 of 5’DSCG in deionized water did not change significantly until the 

concentration reached the transition to form the liquid crystal phase (11-12 wt%); whereas in LB 

media, the OD600 readings increase rapidly with concentration starting around 1.5 wt % of 
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5’DSCG, then reaching a plateau at around ~3.5 wt% (Fig. 6.4). These low concentrations are of 

a large contrast to the nematic concentrations of 5’DSCG in water (11-14 wt%).  Between the 

saturation of the OD600 reading at around 3.5 wt% and the appearance of liquid crystals at around 

8 wt%, we believe that this concentration range is saturated with isodesmic assemblies of 

increasing sizes and not with increasing number of assemblies. 

 

 

Figure 6.4 Optical density (OD600) measurements versus the concentrations 5’DSCG in 

deionized water and in LB medium. Arrows indicate the concentrations at which the liquid 

crystal (LC) phase forms. 

 

To confirm that the rise of the (OD600) readings is due to the assembly of 5’DSCG in LB 

media rather than the aggregation of LB components, we studied the proton NMR spectra of the 
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5’DSCG in D2O and in LB media (Fig. 6.5). Proton (1H) NMR has been used to study 5’DSCG 

assembly in solution.191  The self-assembly of 5’DSCG results in the slow diffusion of the 

molecules and causes the proton peaks to broaden in the 1H NMR spectra. Furthermore, an 

upfield shift is usually observed due to the protons being shielded, resulting from the 

intramolecular assembly.171, 174, 191 These results enable a direct correlation between assembly 

characteristics and the identity of molecules that assemble in isotropic solutions. We prepared 

samples of 1.5 wt% of 5’DSCG and 2.5 wt% of 5’DSCG with and without LB components in 

D2O (see Experimental section), as well as only LB components in D2O. The presence of LB 

components (1 wt% tryptone, 1 wt% sodium chloride, 0.5 wt% yeast extract) caused the proton 

signals of 5’DSCG to broaden and shift upfield. When LB components were present in 1.5 wt% 

5’DSCG, the isopropyl linkage protons He and Hf at 4.38 and 4.49 ppm were shifted upfield to 

4.30 and 4.47 ppm, respectively. The aromatic protons Hd, Ha, Hc and Hb  ̧at 6.52, 6.90, 6.99 and 

7.57 ppm  ̧were shifted upfield to 6.49, 6.85, 6.92 and 7.52 ppm, respectively. At this 

concentration (1.5 wt% of 5’DSCG), there was no significant broadening of the peaks observed 

due to the presence of LB components, but a new splitting fine structure of He was observed, 

suggesting a change in the molecular conformation. In contrast, for 2.5 wt% 5’DSCG with LB 

components, we observe significant broadening and upfield shifting of the peaks as compared to 

that without LB components. The isopropyl linkage protons He and Hf shifted upfield from 4.33 

and 4.47 ppm to 4.24 and 4.45 ppm respectively; and the aromatic protons Hd, Ha, Hc and Hb  ̧at 

6.50, 6.87, 6.94 and 7.54¸ shifted upfield to 6.43, 6.80, 6.85 and 7.47 ppm, respectively. These 

results are consistent with the molecular aggregation of 5’DSCG,191 and that presence of LB 

components has caused assembly of 5’DSCG at  concentration as low as 1.5 wt%. There was no 

noticeable peak broadening of the LB components with or without the presence of 5’DSCG. 
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Figure 6.5 1H NMR spectra of 1.5 wt% of 5’DSCG without (A) and with (B) LB components, 2.5 

wt% 5’DSCG without (C) and with (D) LB components, and (E) LB components in D2O. The 

protons of 5’DSCG and peak assignments are labelled in red. 

  

The observed peak broadening and shifts are consistent with the formation of slow 

tumbling assemblies of 5’DSCG in the solution. The past study by Robinson and co-workers 

showed that the proton NMR signals of 5’DSCG broaden and shift upfield rapidly from 1 wt% to 

about 6 wt%.191 Beyond 6 wt%, the peak broadening starts to plateau; however, the peaks 

continue to shift upfield. They suggested that the rapid peak broadening was caused by the 

formation of 5’DSCG oligomers that are not micelles, and that the slow tumbling at 

concentrations above 6 wt% were due to large micelle-like aggregates. Our results using light 

scattering revealed that in just water, no significant optical density reading was observed until 

the concentration of 5’DSCG reached 12 wt%. We believe that the light scattering measurement 
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is sensitive to large molecular assemblies, whereas NMR is sensitive to small molecular 

assemblies that lead to reduced molecular dynamics. Interestingly, we observed that the presence 

of LB components caused the optical density reading to increase when the concentration of 

5’DSCG was as low as 1.5 wt% (Fig. 6.4). This result suggests the presence of certain 

components in the LB media promotes readily detectable and large isodesmic assemblies, 

whereas without the presence of additives, 5’DSCG may only progressively form small 

oligomers. Together, these results indicated that LB components have a significant impact on 

promoting 5’DSCG to form large aggregates in water, and these aggregates did not form liquid 

crystal phase until about 8 wt%.  We note that the fine structure (splitting pattern) of 1H NMR 

signal of the methylene unit of the isopropyl linkage (He) is more collapsed with the presence of 

LB components (Fig. 6.5B) than without LB (Fig. 6.5A). When the concentration of 5’DSCG is 

increased in water without LB components, we also observed similar collapse of the fine 

structure (Fig. 6.6). These results suggest that there is a change in the average conformation of 

the molecule when they are in the assembly in compared to when they are individually solvated 

in solution. However, the presence of LB components only lowers the concentration of assembly 

formation, without causing a significant difference to the assembly structure formed in just water 

without LB components. 
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Figure 6.6  1H NMR spectra of 5 wt% 5’DSCG (A), 4 wt% 5’DSCG (B), 2 wt% 5’DSCG 

without (C) and with LB components (D) in D2O. The protons of 5’DSCG and peak assignments 

are labelled in red. 

 

To explore the assembly structure of 5’DSCG, we studied the Nuclear Overhauser Effect 

(NOE) of the sample with and without LB components. Examining the NOESY spectra of 

5’DSCG (2 wt%) with LB components, we did not observe any NOE signals between the LB 

components and the 5’DSCG molecules (Fig. 6.7). This result suggests that there is no direct 

molecular interaction (within 5 Å) between 5’DSCG and LB components.  
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Figure 6.7 NOESY spectra of 2 wt% 5’DSCG with LB components (1 wt% sodium chloride, 1 

wt% tryptone and 0.5 wt% yeast extract). 

 

Comparing the NOESY spectra of 2 wt% 5’DSCG with and without LB components, we 

observed extra NOE signals for 5’DSCG when LB components were present (Fig. 6.7, 6.8) 

between the isopropyl linkage protons (He and Hf) and the aromatic protons (Hd, Ha, Hc, and Hb), 

which were not present in the sample without LB components. Furthermore, although an NOE 

between He and Ha is observed for both samples, this NOE signal is positive for the sample with 

LB components, and is negative for the sample without LB. The negative NOE signals suggest a 

fast dynamic of the conformational changes. Together, these results indicate that, without LB 

components, the negative NOE’s are due to the intramolecular interaction between protons He 

and Ha within a 5’DSCG molecule. With LB components, cross peak 1 of protons Hf and Hd; 

cross peak 2 of protons He and Hd; and cross peak 5 of He and Hb are intermolecular NOE 
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transfers between stacked 5’DSCG molecules, whereas cross peak 3 of protons Hf and Ha/Hc, 

and cross peak 4 of protons He and Ha/Hc are the results of a mixture of intermolecular and 

intramolecular NOE signals. 

 

 

Figure 6.8 NOESY spectra of 2 wt% 5’DSCG with (A) and without (B) LB components in D2O. 

With LB, cross peaks 1, 2, 5 are intermolecular NOEs; 3 and 4 are a mixture of inter- and 

intramolecular NOEs. Without LB, cross peaks 3 and 4 are intramolecular NOEs. 

 

To confirm the nature of isodesmic assembly, we studied NOESY as a function of 

temperature. We first established that the assemblies “melted” at relative low temperature, at ~ 

31-33°C.  We then followed the NOEs of the protons of 5’DSCG (Fig. 6.8A-E) as a function of 

temperature between ambient condition (21 °C) to complete melting of the assembly. In general, 

we observed that as the temperature was decreased from 33 °C (when there was no 

intermolecular NOE observed), the intermolecular NOEs emerged and their intensities increased. 

Because cross peak 2 represents solely the NOE between the stacked molecules, this signal is an 
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indication of the assembly progression. Plotting the intensity of cross peak 2 versus temperature 

(Fig. 6.8F) reveals a curve of concave shape, rather than convex.  

   

Figure 6.9 NOESY spectra of 2 wt% 5’DSCG with LB components at different temperatures: 

221°C (A), 27°C (B), 29°C (C), 31°C (D) , and 33°C (E). Plot of NOE intensity of peak 2 vs. 

temperature (F). 

 

We note that plots of intensity versus temperature for the all observed NOE signals from 

5’DSCG exhibited a concave shape (Fig. 6.10).  This concave relation supports that the 
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disassembly process are gradual, rather than cooperative, and is consistent with an isodesmic 

assembly or disassembly process.  

 

Figure 6.10 Plot of intensity of NOE cross peaks vs. temperature for 2 wt% 5’DSCG with LB 

components. 

 

6.2.2 Peptides promote the isodesmic assembly of 5’DSCG. 

LB media consists of 1 wt% tryptone, 1 wt% sodium chloride, 0.5 wt% yeast extract. The 

tryptone and yeast extract are mixtures of mainly peptides. We examined each of these three 

components individually to determine which component promoted the isodesmic assembly of 

5’DSCG. At 7 wt% in water, 5’DSCG alone does not give a significant OD600 reading.  Adding 

each LB component at this 5’DSCG concentration can potentially induce the formation of 

5’DSCG isodesmic assemblies leading to measurable optical densities (absorbance at 600 nm). 

We found that mixing 7 wt% 5’DSCG with tryptone or with yeast extract caused an increase in 

OD600 readings, but at higher concentrations than they are in LB media. LB media contains 1 
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wt% of tryptone and 0.5 wt% of yeast extract. For tryptone alone, we observed increase in 

OD600 only when the tryptone concentration reached 3 wt%. For yeast extract alone, we 

observed OD600 increase only when the concentration reached 2 wt% (Fig. 6.11). Sodium 

chloride did not cause an increase in the OD600 readings. These results led us to believe that 

peptides cause a demixing with 5’DSCG, which further promote 5’DSCG to form isodesmic 

assembly, while other ions only play a secondary role in assisting the demixing between peptides 

and 5’DSCG.   

 

Figure 6.11 Optical density (OD600) measurements of solutions containing 7 wt% 5’DSCG mixed 

with individual LB media components: yeast extract, tryptone and sodium chloride at different 

concentrations. (7 wt% 5’DSCG with yeast extract at concentration higher than 2.5 wt% caused 

precipitation). 
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We also tested peptone and casitone, which are similar peptide mixtures to tryptone used 

for culturing bacteria. Adding these peptide mixtures at similar concentrations as tryptone in LB 

media (~1 wt%) to a range of 5’DSCG concentrations revealed that these peptides also promoted 

the isodesmic assembly of 5’DSCG (Fig. 6.12).  We observe a similar light scattering trend 

between the LB components (Fig. 6.4) and other peptides when added to a range of 5’DSCG 

concentrations. The addition of tryptone caused the OD600 readings to increase at 2 wt% 5’DSCG 

and remained at a similar OD600 (~0.2) for the rest of the high concentrations we studied. For 

peptone and casitone, the OD600 readings started to increase at 2 wt% of 5’DSCG until reaching 

a plateau at around 6 wt% of 5’DSCG. Overall, these results show that among the LB media 

components, peptides are the primary cause for promoting assemblies of 5’DSCG in water that 

are detectable by light scattering.   

 

Figure 6.12 Optical density (OD600) measurements of the solutions containing 1 wt% peptide 

mixtures (peptone, casitone, and tryptone) mixed with different concentrations of 5’DSCG. The 

arrow indicates 5’DSCG concentration at which the liquid crystal (LC) droplets appear. 
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While 1 wt% of these peptide mixtures promoted the aggregation signal of 5’DSCG 

differently, we explored the effect of different concentrations of peptide mixtures on a fixed 

amount of 5’DSCG (Fig. 6.13).  We observed that the addition of increasing concentrations of 

peptides (peptone, tryptone, or casitone) to 3 wt% 5’DSCG caused the formation of isodesmic 

assemblies detectable by OD600 measurements. The amount of peptide needed ranges between 2 

wt% to 4 wt% (peptone at ~2 wt%, casitone at ~3 wt%, and tryptone at ~4 wt%). The results 

suggest that effect of peptide on 5’DSCG is quite general.  

 

Figure 6.13 Optical density (OD600) measurements of solutions containing 3 wt% 5’DSCG mixed 

with different concentrations of peptides: casitone, peptone, and tryptone. 

 

Together, we believe that these results indicate a demixing process between the peptides 

and 5’DSCG molecules in solution. As the assemblies of 5’DSCG stay in solution rather than 

forming precipitates, we believe that water molecules are sequestered and bound to the 
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assemblies for solvation of the assemblies in water. Thus, the presence of peptides (~1 wt%) 

causes the transition of 5’DSCG (individual) → 5’DSCG (isodesmic assembly) in aqueous 

solution.  To further confirm that peptides are the primary component that enabled the assembly 

of 5’DSCG, we tested components, including individual amino acids, salts, and urea, and found 

that none of these small molecules promoted the isodesmic assembly of 5’DSCG in solution 

(Fig. 6.14).   

 

Figure 6.14 Optical density (OD600) measurements of solutions containing additives: 4.6 wt% 

NaCl, 1 wt% casamino acids, 31.5 wt% urea, 8.53 wt% L- glutamic acid, 2.35 wt% L-alanine 

and 2.94 wt% L-arginine mixed with different concentrations of 5’DSCG. 

 

6.2.3 Non-ionic polymers do not promote 5’DSCG to form isolated isodesmic assemblies 

We have previously shown that certain non-ionic water-soluble polymers, poly-

vinylpyrrolidone (PVP), poly-vinylalcohol (PVA), and poly-acrylamide (PAAm), when mixed 

with 5’DSCG, can cause a water-in-water emulsion, for which 5’DSCG assemblies align to form 



151 
 

water-based LC droplets in an aqueous solution.171, 173 Here, we study the effect of the three non-

ionic polymers (PVP, PVA and PAAm) on the isodesmic assembly formation of 5’DSCG. The 

non-ionic polymers were mixed with isotropic solutions of 5’DSCG (7 wt%) and the optical 

density (OD600) was measured as a function of the polymer concentration (Fig. 6.15). At 7 wt% 

5’DSCG, we recorded the OD600 of the 5’DSCG/polymer mixtures when the PVP concentration 

reached 8 wt% and PVA concentration reached 4 wt%. LC droplet phases were also observed 

around these concentrations, indicating that the promotion of isodesmic assemblies is likely 

accompanied with formation of LC phases, and that there is a narrow range of concentration over 

which only isodesmic assembly forms. Interestingly, over a broad range of concentrations 

studied (0-12 wt%), PAAm did not cause any significant increase in OD600 readings when mixed 

with 7 wt% of 5’DSCG (Fig. 6.15).  

 

Figure 6.15 Optical density (OD600) measurements of solutions containing 7 wt% 5’DSCG 

mixed with different concentrations of non-ionic polymers:  poly-vinylalcohol (PVA, mw ~ 

9,000-10,000), poly-vinylpyrrolidone (PVP, mw ~40,000), and poly-acrylamide (PAAm, mw~ 
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9,000-10,000). Arrows indicate the polymer concentration mixed with 7 wt% 5’DSCG at which 

the the liquid crystal (LC) droplets appear. 

Meanwhile, we also tested the effect of non-ionic polymers on 3 wt% 5’DSCG and no 

measurable isodesmic assembly was detected (Fig. 6.16). We note the liquid crystal phases 

mixed with isotropic solution was observed at 4 wt% and 5 wt% of PVA and PVP, respectively, 

which contributed to the large errors of the scattering at higher concentrations.  

 

Figure 6.16 Optical density (OD600) measurements of solutions containing 3 wt% 5’DSCG 

mixed with different concentrations of non-ionic polymers: poly-vinylalcohol (PVA, mw ~ 

9,000-10,000), poly-vinylpyrrolidone (PVP, mw ~40,000), and poly-acrylamide (PAAm, mw~ 

9,000-10,000) 

 

Furthermore, we note that there is a correlation between the ability of a polymer to 

promote isodesmic assembly and the type of liquid crystal droplet that forms. Polymers, PVP and 

PVA, promoted isodesmic assemblies of 5’DSCG (along with liquid crystal droplets) at 
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relatively low concentrations, whereas PAAm did not promote isodesmic assembly. PVP and 

PVA cause spherical liquid crystal droplets with the 5’DSCG assemblies that align perpendicular 

to the droplet surfaces, whereas PAAm causes ellipsoidal droplets with the assemblies align 

parallel to the droplet surfaces (Table 6.1).  

Table 6.1 Correlation between the effect of polymers on 5’DSCG assembly and the types of 

liquid crystal droplets promoted by the polymers. 

a By optical density measurement.  
b Shape of the water-based liquid crystal droplets in a polymer aqueous solution.  
c see ref. 23.  
d see ref. 13.  
e Mixed with liquid crystal droplets. 
f To the surface of the droplets 

 

6.2.4 Protein aggregation is induced by 5’DSCG. 

We examined the effect of presence of proteins on the assembly behaviour of 5’DSCG. 

The proteins have a lower solubility than peptides, and readily cause foaming when 

concentration increases. At the usual operable concentrations of proteins (0.5 to 5 mg/mL, or 

0.05 to 0.5 wt%), we did not observe any promotion of isodesmic assemblies that is detectable 

by scattering. However, the formation of isodesmic assemblies of 5’DSCG in the presence of 

peptides does suggest a demixing process between the two components. In a previous work,167 

we have shown that 5’DSCG at a low concentration (~0.14 wt% or ~2.74 mM) caused the 

crystallization of lysozyme. Furthermore, 5’DSCG appears to be non-disruptive to protein 

folding by being able to facilitate the specific recognition and binding between proteins and their 

 Isodesmic assembly a Droplet shape b Assembly orientation in droplets c, d 

PVP Yes e Spherical c Perpendicular f 

PVA Yes e Spherical d Perpendicular f 

PAAm No Ellipsoidal d Parallel f 
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antibody.166  Based on these observations, we explore the use of 5’DSCG to precipitate or 

crystallize a range of different proteins in solution.  

Chemical agents that can precipitate or aggregate proteins are critical for protein 

crystallization,192-200 and yet, there is no theoretical or empirical set of rules to guide the choice 

of precipitants to crystallize a specific protein. For this reason, chemical screening kits have been 

developed to screen for the large sets of reagents and conditions for protein crystallization.192-196 

Rather surprisingly, poly(ethylene glycol) (PEG) is often one of the major component for these 

kits and research.192-195 PEG does not denature proteins and presumably excludes proteins in the 

solution.197-199 Other non-denaturing chemicals such as cyclodextrins have also been used as 

nucleants for seeding of protein aggregates and crystals.200 For this consideration, we note that 

5’DSCG also does not denature protein folding.166 Furthermore, it appears that using PEG as a 

precipitant for protein crystallization requires a higher concentration range (~5-45 wt%)193-197  

compared to 5’DSCG shown in this study (See below).  Based on these observations, we explore 

the use of 5’DSCG to precipitate or crystallize a range of different proteins in solution. Here, we 

examined the effect of 5’DSCG on the aggregation or crystallization of a range of proteins, 

including lectin A, esterase, lipase, bovine serum albumin, trypsin and a pilin monomer from 

Pseudomonas aeruginosa, as well as the truncated version of the pilin protein monomer. Using 

hanging droplet setups and over the course of 5-15 days, we observed that the presence of 

5’DSCG causes all proteins, except trypsin, to form aggregates (Fig. 6.17).  In parallel, we also 

studied the effect of using sodium chloride in place of 5’DSCG at different concentrations. We 

found that sodium chloride is less capable of aggregating proteins; truncated pilin, trypsin and 

BSA did not form aggregate at the conditions we studied. A general feature of using 5’DSCG to 
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aggregate or precipitate proteins is that only relatively low concentrations of 5’DSCG are 

required.  

 

Figure 6.17  Different protein aggregates induced by 5’DSCG in hanging droplets. The droplets 

(5 μL) contained (A) 0.625 wt% 5’DSCG and 25 mg/mL pilin, (B) 0.625 wt% 5’DSCG and 1 

mg/mL lectin A, (C) 0.625 wt% 5’DSCG and 20.5 mg/mL esterase, (D) 0.625 wt% 5’DSCG and 

20.5 mg/mL bovine serum albumin, and (E) 0.14 wt% 5’DSCG + 37.5 mg/mL lipase. The reservoir 

solution contained 350 μL of (A, B, C, D) 1.25 wt% 5’DSCG, and (E) 0.28 wt% 5’DSCG. Hanging 

drops kept at ambient temperature were observed over 5-15 days. All solutions were prepared 

using 25 mM Tris buffer, pH = 7.5; except for (D) where pH = 6.5. Scale bar = 380µm. 

 

Particularly, various concentrations of less than 1 wt% of 5’DSCG induced aggregation 

of the native pilin protein (Fig. 6.18, Table 6.2). These native pilin aggregates differ from other 

protein aggregates in two characters (Fig. 6.17, 6.18). First, there are branches extending from 

the center of the aggregation; and second, there is a dark circular region surrounding the 
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aggregate. We observe the same aggregate morphology for pilin when varying concentrations of 

5’DSCG or sodium chloride was used (Fig. 6.18D). We believe that the dark region represents a 

concentrated solution of pilin protein.  

 

Figure 6.18 Native pilin aggregates induced by different precipitants in hanging droplets. The 

droplets (5 μL) contained (A) 0.15 wt% 5’DSCG and 50 mg/mL pilin, (B) 0.375 wt% 5’DSCG 

and 5 mg/mL pilin, (C) 0.625 wt% 5’DSCG and 25 mg/mL pilin, (D) 0.5 wt% NaCl and 10 

mg/mL pilin, and (E) 1.5 wt% PEG8000 and 5 mg/mL pilin. The reservoir solution contained 

350 μL of (A) 0.30 wt% 5’DSCG, (B) 0.75 wt% 5’DSCG, (C) 1.25 wt% 5’DSCG, (D) 1 wt% 

NaCl, and (E) 3 wt% PEG8000. Hanging drops kept at ambient temperature were observed over 

5-15 days. All solutions were prepared using 25 mM Tris buffer, pH = 7.5. Scale bar = 380µm. 
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Table 6.2 Native pilin protein precipitation with NaCl and 5’DSCG as precipitants. 

Precipitate observed after 3 days1 and 5 days2 

 

For the truncated pilin, pilin Δ(1-31), we observed birefringent crystalline aggregates induced 

by 5’DSCG (Fig. 6.19).  Notably, the crystalline aggregates are smaller when a higher 5’DSCG 

concentration is used as a precipitant (Fig 6.19C, D vs. 6.19E, F). No aggregates were observed 

when sodium chloride was used to aggregate the truncated pilin.  However, when sodium 

chloride was added with 5’DSCG together, the aggregates had smaller domains of birefringence 

and appeared to be more compact and polycrystalline (Fig. 6.19G, H). In contrast, although PEG 

also induced formation of aggregates for pilin and truncated pilin, the aggregate morphology is 

grossly different than those induced by 5’DSCG. The aggregates induced PEG are thread-like 

and spread out with aqueous solution in between the threads (Fig. 6.18E, 6.19I). These results, 

together with past studies,166, 167 suggest that 5’DSCG is a potent agent for inducing protein 

aggregation and when combining with other chemicals, has the potential to induce protein 

crystallization.   

 
Reservoir Solution 

 
2.8 wt% NaCl 0.25 wt% 5’DSCG 0.5 wt%  5’DSCG 1 wt% 5’DSCG 

 5 mg/mL powder no precipitate with precipitate
1
 with precipitate

2
 no precipitate 

10 mg/mL powder no precipitate with precipitate
1
 with precipitate

2
 no precipitate 

20 mg/mL powder no precipitate with precipitate
1
 with precipitate

2
 no precipitate 
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Figure 6.19 Truncated pilin (pilin Δ(1-31)),  aggregates induced by different precipitants in 

hanging droplet. The droplets (5 μL) contained 0.375 wt% 5’DSCG & 5 mg/mL truncated pilin, 

without polarizer (A), and under cross polars (B); 0.625 wt% 5’DSCG &  1 mg/mL truncated 

pilin, without polarizer (C), and under cross polars (D); 1.25 wt% 5’DSCG & 5 mg/mL truncated 

pilin, without polarizer (E), and under cross polars (F); 0.15 wt% 5’DSCG & 0.375 wt% NaCl & 

2.5 mg/mL truncated pilin without polarizer (G) and under cross polars (H)  and 25 wt% 

PEG4000 & 1 mg/mL truncated pilin without polarizer (I). The reservoir solution contained 350 

μL of (A, B) 0.75 wt% 5’DSCG, (C, D) 1.25 wt% 5’DSCG, (E, F) 2.5 wt% 5’DSCG and (G,H) 

0.3 wt% 5’DSCG & 0.75 wt% NaCl, and (I) 50 wt% PEG4000. Hanging drops kept at ambient 

temperature were observed over 5-15 days. All solutions were prepared using 25 mM Tris buffer, 

pH = 7.5. Scale bar = 76 µm. 

 

6.3 Conclusion 

We have demonstrated that measuring the light scattering (OD600) of a solution is highly 

effective for detecting isodesmic assemblies of chromonic mesogens. We found that the presence 
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of peptides can promote the formation of isodesmic assemblies at low concentrations of 

5’DSCG, as low as 1.5 wt% indicating a demixing between 5’DSCG and peptides in solution. 

The isodesmic assembly of 5’DSCG in solution is corroborated by the chemical shift changes 

and peak broadening of proton NMR signals of 5’DSCG. Water-soluble non-ionic polymers, 

PVP, PVA and PAAm, demix with 5’DSCG and promote 5’DSCG to form LC droplet phases, 

but do not promote isolated isodesmic assemblies. With this general demixing observation 

between 5’DSCG and other water-soluble molecules, we demonstrated that 5’DSCG also caused 

the aggregation of a wide range of proteins and have the potential to be a potent protein 

precipitant for enabling protein crystallization.  

 

6.4 Experimental Section  

6.4.1 Chemicals 

Disodium cromoglycate (5’DSCG), 98% purity, was obtained from TCI Chemicals (Philadephia, 

PA). Tryptone, yeast extract, sodium chloride, Tris base, urea, lauryldimethylamine N-oxide and 

poly(ethylene) glycol (PEG8000) were purchased from Fisher Scientific (Fair Lawn, NJ), and 

were used to make Luria Bertani media and buffers. All aqueous solutions were dissolved in 

deionized water with resistivity greater than 18.2 MΩ◦cm. or deuterium oxide (D2O, 99.9%) 

(Cambridge Isotope Laboratories, Inc., Andover, MA).  Casamino acids (Amresco, Solon, OH), 

peptone (Bio Basic, Amherst, NY) and casitone (BD Biosciences, MD). L-amino acids (L-

glutamic acid, L- alanine, L- arginine), poly-vinylpyrrolidone (PVP, MW ~40,000), poly-

vinylalcohol (PVA, MW ~ 9,000-10,000), poly-acrylamide (PAAm, MW~ 9,000-10,000), 

poly(ethylene) glycol (PEG4000), and proteins (lectin A, esterase, lipase, bovine serum albumin 
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and trypsin) were purchased from Sigma Aldrich (St. Louis, MO). Pseudomonas aeruginosa 

strain PA1244N3 (pPAC46) was from Dr. Castric and Dr. Horzempa.85, 88  

 

6.4.2 Preparation of Isodesmic assemblies of disodium cromoglycate (5’DSCG). 

Deionized water was used to prepare all solutions. 5’DSCG were prepared in Luria Bertani (LB) 

media (1 wt% tryptone, 1 wt% sodium chloride, 0.5 wt% yeast extract), or mixed with additives 

including, peptides (peptone, casitone, casamino acids), amino acids (L-glutamic acid, L-alanine, 

L-arginine), urea; and non-ionic polymers, poly-vinylpyrrolidone (PVP, MW ~40,000), poly-

vinylalcohol (PVA, MW ~ 9,000-10,000), and poly-acrylamide (PAAm, MW ~9,000-10,000). 

The optical density at 600 nm (OD600) of each solution was measured in triplicates using Biotek 

ELx800 Microplate Reader. 

 

6.4.3 1H NMR Spectroscopy Measurements 

Stock solutions of 5’DSCG were prepared and dissolved in either deionized water or LB media 

(1 wt% tryptone, 1 wt% sodium chloride, 0.5 wt% yeast extract). The stock solutions were 

diluted with the same solvent (deionized water or LB media) to prepare 1 mL solutions with the 

final concentrations of 1.5 and 2.5 wt% 5’DSCG. The 1mL solutions were lyophilized overnight 

to remove H2O. The resulting powder was dissolved in 1 mL D2O to maintain the same 5’DSCG 

concentration of 5’DSCG. 1H NMR spectroscopy measurements were done on 400-MHz Bruker 

spectrometer.  
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6.4.4 Pilin Expression 

Both native and truncated native pilin expression were described in Chapter 2. 

6.4.5 Hanging drops precipitation of proteins 

Proteins (lectin A, esterase, lipase, bovine serum albumin, trypsin, whole and truncated pilin 

proteins from P. aeruginosa) were prepared in 25 mM Tris, pH=7.5 at varying concentrations. 

Reservoir solutions were prepared individually with different concentrations of NaCl or 5’DSCG 

in the same buffer, 25 mM Tris, pH= 7.5.  Both protein and reservoir solutions were passed 

through a 0.2 µm syringe filter to remove any impurities. Hanging drops were prepared by 

mixing equal volumes (2.5 μL each) of the filtered protein- and reservoir-solution and 

suspending as an inverted drop on a coverslip over a well with 350 μL reservoir solution. 

Aggregation in the drops were observed within 5-15 days of incubation at ambient temperature. 
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Chapter 7.  Exploring Filamentous Bacteria as Hosts for Protein Expression 

 

7.1 Background and Significance 

7.1.1 Antibiotics induce surface-mediated bacterial growth.  

 Previous studies led by Yuchen Jin from Luk lab have demonstrated that 

antibiotics, particularly β-lactams such as carbenicillin, colistin, aztreonam and penicillin induce 

the filamentous bacterial growth.17 These antibiotics are known to bind penicillin binding 

proteins and to alter the cell-wall of bacteria resulting in filament growth.201 Filaments form as 

cells grow by elongation but does not undergo cell division.202 In the same study, different 

conditions that result in filaments formation were identified.17 More filaments grow for bacteria 

in the lag phase than in the log phase, suggesting that antibiotic selection occurs to allow 

filament growth of the younger bacterial cells and kill the older ones. The process of filament 

formation is rapid, observed over a course of 2 hours then followed by detachment on the 

surface.  Surface proteins also play a crucial role in the formation of filaments allowing for 

protein adsorption on surface to mediate the filaments to form.   However, it is unclear if 

filament formation is exclusive for cells that express surface proteins. Filament formation is 

favored when bacteria are grown under stationary conditions compared to shaking conditions.  It 

has been previously reported that  filaments enhance bacterial adhesion on surfaces.203 Further 

confirmation that the surface chemistry affects the filament formation where APS-coated and 

plastic surfaces form more filaments than glass surfaces. Interestingly, in an effort to optimize 

the geometry of the container of filament for increasing the surface area and thus the amount of 

filaments produced, Felicia Burns from Luk lab showed that both increasing the surface area for 

filament attachment and maintaining oxygen gas accessibility are important. These efforts are 
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currently (Fall 2020) being pursued to engineer container for maximal filaments culture and 

production.  Collectively, Luk lab has proposed a mechanism for filamentous growth, which 

starts with adhesion of bacteria on a surface, followed by the selection of the young bacteria at 

the lag phase followed by the elongation of the cells to form filaments then surface detachment. 

With the reported lifestyle of filaments, we believe that they can be candidates as hosts for 

protein expression by controlling their growth on surfaces and a rapid turnover of cell expressing 

proteins.  

 

7.1.2 Chapter Aim: Explore filamentous bacteria for potential as protein expression hosts 

We aim to use optimal conditions determined by Luk lab members to grow filamentous 

bacteria and explore these filaments as hosts for recombinant protein expression. It is unknown if 

cell lines such as E.coli BL21(DE3), specifically engineered protein expression and do not 

express fimbriae, are susceptible to antibiotic-induced filament formation.204 Using E. coli BL21 

(DE3) carrying the pET-26b plasmid expressing proteorhodopsin, we explore the filament 

formation and protein expression of the filaments of this strain. Because filament growth is rapid, 

we would like to explore if protein expression can be maximized over a short time scale.  

Furthermore, attempts to identify, purify and quantify of proteorhodopsin from filamentous 

bacteria will also be discussed in this chapter. 
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7.2 Results and Discussion 

7.2.1 Carbenicillin induces filament formation of E. coli BL21(DE3).  

Filament formation of E. coli BL21 (DE3) containing plasmid expressing 

proteorhodopsin was performed under shaking conditions. The formation of filaments can be 

induced anywhere between 9 -100 μg/mL carbenicillin, as previously reported by Luk lab.17 We 

used 50 μg/mL carbenicillin to induce the filaments of E. coli BL21(DE3).  Conditions similar to 

previously used by Luk lab were used to induce filament formation. Filaments were induced by 

adding carbenicillin at A600 ~0.2 with Carbenicillin and allowed to growth for 4 hours with 

shaking. After growing, we observe that the tube without antibiotics are cloudier than the tube 

without the antibiotics (Fig. 1). These results were consistent with previous findings where the 

filaments form a less turbid solution than the non-filaments. Measuring the absorbance at 600 nm 

(OD600) cannot be used to detect the growth of filaments17 because the morphology between 

filamentous and regular bacteria are different. Aliquots (5 μL) of the cultures were sandwiched 

under two microscope slides and observed under the microscope (Fig. 7.1).  The tube is turbid 

shows more spherical cells while the tube that is less turbid shows more elongated filamentous 

species. The images confirm that carbenicillin induces the formation of filamentous bacteria of 

E. coli BL21 (DE3).  
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Figure 7.1 Cell cultures of E. coli BL21(DE3) with pET-26b plasmid expressing proteorhodopsin 

grown with shaking at 250 rpm, 37 °C (top) and microscope images of the cell culture (bottom). 

 

7.2.2 Filament growth of E. coli BL21(DE3) is promoted by stationary growth and containers 

with a large surface area. 

Carbenicillin filaments are believed to be mediated by surface attachment and stationary 

growth promotes more filaments to form.17 In addition, it was discovered by Felicia Burns from 

Luk lab that filaments grow on containers that have a larger surface area. We then grew the 

filaments under stationary conditions. Similar to previous experiments, the subcultures were 

grown to A600~ 0.2, then carbenicillin was added to a final concentration of 50 μg/mL then 

poured on a plastic petri dish with 10-cm diameter and incubated at 37 °C for 4 hours without 

shaking. The appearance of the cultures in the petri dish without and with carbenicillin are 

distinct (Fig 7.2). The culture without carbenicillin looks homogenous while the culture of the 



166 
 

induced filaments shows the appearance of clumped white particles consistent with reports that 

filaments form aggregates.17 We then looked at both cultures under the microscope by taking 5 

μL aliquots sandwich between glass slides (Fig. 7.2). We observe similar results as the shaking 

conditions. The culture without carbenicillin shows round cells, while the culture with 

carbenicillin shows filaments formed. These results indicate that stationary growth forms more 

filaments than under shaking conditions with the same carbenicillin concentration used (Fig 7.1 

vs. 7.2).  We also believe the increased surface area of the petri dish compared to the Falcon tube 

contributed to the increased filament formation.  

 

 

Figure 7.2  Cell culture of E. coli BL21(DE3) with pET-26b plasmid expressing proteorhodopsin 

grown under stationary conditions (top) and microscope images of the cell culture (bottom). 
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The concentration dependency of filament formation by E. coli BL21 (DE3) to the 

carbenicillin concentration was studied.  Two carbenicillin concentrations were compared- 20 

and 100 μg/mL for stationary growth of filaments (Fig. 7.3). Our results show that more 

filaments are induced at 100 μg/mL than 20 μg/mL. The higher carbenicillin concentration must 

provide a higher antibiotic stress to the lag phase bacteria, thus forming more filaments 

compared to the lower carbenicillin concentration.   

 

 

Figure 7.3  Images of E. coli BL21(DE3) with pET-26b plasmid expressing proteorhodopsin 

grown under stationary conditions at two different carbenicillin concentrations: 20 and 100 

μg/mL. 

 

7.2.3 Filament formation of E. coli BL21(DE3) favors plastic vs. glass substrates. 

The effect of different surface to the growth of the E. coli BL21(DE3) filaments were 

then observed. Stationary growth of the filaments was performed on two different surfaces, on a 

10-cm diameter plastic and glass petri dish (Fig. 7.4). Filaments were induced with 100 μg/mL 

carbenicillin. More filaments are observed to grow on a plastic petri dish compared to a glass 
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petri dish, consistent with previous findings.17 These results would suggest that there could be 

some adhesion mechanism by E. coli BL21 (DE3) that interacts with the hydrophobic plastic 

surface of the plastic and promotes the formation of filaments. However, this mechanism still 

needs to be further characterized.  

 

 

Figure 7.4 Images of E. coli BL21(DE3) with pET-26b plasmid expressing proteorhodopsin 

grown under stationary conditions with 100 μg/mL. 

  

7.2.4  Filamentous bacteria produce red cell pellets when proteorhodopsin expression is 

induced.  

The protein expression of filamentous bacteria was explored. Two controls were 

prepared. First, the filaments of E. coli BL21 without inducing the proteorhodopsin expression. 

Second, nonfilament E. coli BL21 induced to express proteorhodopsin.  For filamentous bacterial 

protein expression, the proteorhodopsin expression was induced at the same time that the 
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filaments were formed, A600 ~0.2, then grown with shaking at 37 °C for four hours. The cell 

pellets for each culture were collected by centrifugation (Fig 7.5).  The filaments without protein 

expression yielded a yellowish white cell pellet (85 mg/ 30 mL culture). The nonfilament with 

protein expression yielded a pinkinsh pellet (141 mg/ 30 mL culture). While the filament with 

protein expression yielded a dark red pellet (28 mg/ 30 mL culture). The resulting pink or red 

color indicates the presence of proteorhodopsin expressed indicating the formation of a Schiff 

base between all-trans retinal and proteorhodopsin.205  In addition, we also observe that the 

nonfilaments result in a heavier cell pellet than the filaments, and filaments that express proteins 

have lower cell pellet yield than filaments without proteins expressed. These results are 

consistent with the nonfilaments being able to divide while growing, while filaments can only 

elongate so the number of the cells would not increase. Furthermore, the process of protein 

expression could also add to the stress of the cells while they form filaments, hence the less cell 

pellet weight of the filament without and with induction ( 85 vs. 28 mg).   
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Figure 7.5 Cell pellets of E. coli BL21(DE3) with pET-26b plasmid expressing proteorhodopsin 

grown under shaking conditions. The growth conditions are indicated for each tube, chemicals 

were added at A600 ~0.2 for all tubes. 

 

Next, the proteorhodopsin expression was check by UV-Vis spectroscopy. 

Proteorhodopsin can be detected  at λmax=  520 nm.205 The cell pellets were re-suspended in 0.9 

wt% saline and the absorbance of the solution was measured (Fig. 7.6). We observe a slight peak 

at ~520 nm for the filaments with induced protein expression, but we do not observe this peak 

for the uninduced filaments. We also would like to note that the filaments are slimy and difficult 

to resuspend in saline. Only some cells would re-suspend and most of the pellet settles at the 

bottom even when more saline was added which poses a challenge for the detection of 

proteorhodopsin by UV-Vis spectroscopy. For absorbance measurements, only the liquid was 

measured leaving the undissolved cells in the tube. 
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Figure 7.6 Absorbance spectra of resuspended filaments E. coli BL21(DE3) with pET-26b 

plasmid expressing proteorhodopsin in 0.9 % NaCl solution. 

 

The effect of adding different carbenicillin concentrations to the protein expression was 

studied (Fig. 7.7). Carbenicillin was added at 6, 13, 33 and 66 μg/mL to the cells and were 

induced to express protein at the same time. We observe that the higher the carbenicillin culture, 

the less cell pellet mass is produced, but the redder the cell pellet is. These results would indicate 

that the higher carbenicillin concentration produces more filaments and more proteorhodopsin. 

The resulting cell pellets were also slimy and difficult to re-suspended in saline. The resulting 

solution of re-suspended pellets and the absorbance was measured (Fig 7.7). We observe an 

inverse relationship between the carbenicillin added and the intensity of the absorbance peaks. 

There are two possible explanations for the results. First, this could possibly be because of the 

weight of the resulting cell pellets where the lowest carbenicillin concentration produces more 

pellets than the higher concentrations of carbenicillin, hence the absorbance at 6 μg/mL is higher 
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than 13 μg/ mL, 33 μg/ mL and 66 μg/mL. Second, since the filaments are difficult to resuspend, 

most the filaments that settle at the bottom of the tube still contain the proteorhodopsin and this 

undetected by the UV-Vis.  

 

 

Figure 7.7 Absorbance measurements of the resuspended filaments from 300 -700 nm (left). Cell 

pellets of induced filaments of E. coli BL21(DE3) with pET-26b plasmid expressing 

proteorhodopsin grown under shaking conditions with different carbenicillin concentrations. The 

growth conditions are indicated for each tube. All tubes have 0.5 mM IPTG and 21 μM retinal 

(right). 

 

To solve the difficulty in resuspending the filaments, we tried to resuspend induced 

filaments in buffer sonicate using a tip sonicator to completely break down the cells (Fig 7.8). 

The resulting solution was shown to have an intense yellow color which could indicate that the 

proteorhodopsin has denatured and free retinal is released in the solution, also confirmed by the 

UV-Vis measurements (Fig. 7.9).  The peak observed in between 300-400 nm indicate the free 

retinal in the solution.206  
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Figure 7.8 Cell pellets of induced filaments of E. coli BL21(DE3) with pET-26b plasmid 

expressing proteorhodopsin grown under shaking conditions with different carbenicillin 

concentrations (top). Post-sonication solutions (bottom). Filaments were resuspended in 50 mM 

HEPES, 150 mM KCl, 2% DβM and 0.5 mM PMSF, pH = 7. All tubes have 0.5 mM IPTG and 

21 μM retinal. 
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Figure 7.9 Absorbance measurements of the sonicated E. coli BL21(DE3) with pET-26b plasmid 

expressing proteorhodopsin grown under shaking conditions filaments from 300-600 nm. 

  

  Proteorhodopsin expression by filaments, induced with 50 μg/mL carbenicillin, grown 

stationary on different surfaces (plastic vs. glass petri dish) (Fig. 7.10). Consistent with previous 

results, more filaments formed on the plastic rather than the glass petri dish. While the resulting 

cell pellets had color, the color is yellow. An attempt to measure the absorbance of the filaments 

were performed, but the resulting pellets were too small, and the absorbance spectra showed no 

significant peaks.   
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Figure 7.10 Absorbance measurements of the resuspended filaments from 300 -700 nm (left). 

Cell pellets of induced filaments of E. coli BL21(DE3) with pET-26b plasmid expressing 

proteorhodopsin grown under stationary conditions with different carbenicillin concentrations. 

The growth conditions are indicated for each tube. All tubes have 0.5 mM IPTG and 21 μM 

retinal (right). 

 

7.3 Conclusion 

We have demonstrated that previously determined optimal conditions for filament growth of 

fimbriated bacteria can also induce the filament growth of E. coli BL21 (DE3) with the plasmid 

expressing proteorhodopsin. These conditions include inducing filament formation with 

carbenicillin concentrations from 6-100 μg/mL, more favorable filament growth in plastic 

compare to glass substrates, and more filaments observed in a container with a larger surface 

area.  As this strain is reported to have no fimbriae, the mechanism of filament formation is still 

unclear and yet to be determined. Inducing the filaments to express proteorhodopsin results in a 

colored pellet with a reddish color characteristic of a successful proteorhodopsin expression by 

cells. The filaments are quite slimy posing a challenge to handle for further studies. Attempts to 
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quantify and purify the proteorhodopsin were made, however, these were unsuccessful. This is 

an avenue that need to be explored in the future. Overall, this chapter has provided insight that 

filaments can potentially be used as a protein expression host given the short time needed to 

express proteins.  

 

7.4 Experimental Section 

7.4.1 Aerobic filament growth and protein expression.  

Grow the frozen stock of bacteria (E. coli BL21(DE3) with pET28b expressing proteorhodopsin 

(a gift from Dr. John Franck) in LB, shaking at 250 rpm, 37 °C, overnight.  The next day, 

subculture the bacteria by pipetting 150 μL of the overnight culture into 15 mL of LB media. 

Two 15 mL of LB treated with 3 ug/mL, 6 ug/mL, 13 ug/mL and 66 ug/mL of carbenicillin each 

were prepared.  The subcultures were grown for ~2 hours to reach OD600~ 0.2, shaking at 250 

rpm, 37 °C.  After 2 hours, the corresponding Carbenicillin concentrations (3 ug/mL, 6 ug/mL, 

13 ug/mL and 66 ug/mL) were added to each set (2 x 15 mL) of the subcultures, followed by 

adding 15 μL of 21 mM retinal to achieve 21 μM retinal and 7.5 μL of 1 M IPTG to achieve 0.5 

mM IPTG in each 15 mL subculture. The Falcon tubes were covered with foil and allowed to 

shake at 250 rpm, 37 °C for 4 hours to induce the filament formation. After 4 hours, the cultures 

were spun down for 20 minutes at 6000 rpm, RT.    Discard the supernatant. To lyse the cells, 

resuspend the pellet in 1 mL buffer (50 mM HEPES, 150 mM KCl, 2% DβM and 0.5 mM 

PMSF, pH = 7) and sonicate 3 seconds sonicate, 3 seconds break for 2 minutes. The supernatant 

was subjected to UV-Vis measurements to check a peak at 520-580 nm.  
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7.4.2 Stationary filament growth and protein expression.  

Grow the frozen stock of bacteria (E. coli BL21DE3) overnight in LB, shaking at 250 rpm, 37 

°C. The next day, subculture the bacteria by pipetting 200 μL of the overnight culture into 20 mL 

of LB media.  The subcultures were grown for ~2 hours to reach OD600~ 0.2, shaking at 250 rpm, 

37 °C. After 2 hours, the carbenicillin was added to achieve 20 ug/mL and 100 ug/mL in the 

subculture, followed by adding 21 μM retinal and 0.5 mM IPTG to both subcultures. The IPTG-

induced subcultures were poured in separate petri dishes (glass and plastic), then covered with 

the lid. The petri dishes were placed in the incubator for 4 hours at 37 °C. After 4 hours, the 

cultures were pipetted from the petri dish into a Falcon tube then spun down for 20 minutes at 

6000 rpm, RT.  Discard the supernatant. To lyse the cells, resuspend the pellet in 1 mL buffer (50 

mM HEPES, 150 mM KCl, 2% DβM and 0.5 mM PMSF, pH = 7) and sonicate 3 seconds 

sonicate, 3 seconds break for 2 minutes. The supernatant was subjected to UV-Vis measurements 

to check a peak at 520-580 nm.  
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Chapter 8. Conclusions and Future Directions 

8.1 Conclusions from this thesis  

8.1.1 Clarification of the effect of individual components of rhamnolipids. The pili of P. 

aeruginosa control multiple bioactivities such as swarming  motility. Rhamnolipids are 

biosurfactants produced by P. aeruginosa that are also important for the swarming motility of 

this bacterium. However, the role of each individual component -monorhamnolipid and 

dirhamnolipid to control swarming motility is not clear. In this thesis, we show that 

monorhamnolipid is more potent at controlling swarming compared to dirhamnolipid supported 

by the observed oscillation (promotion at low concentrations and inhibition at  high 

concentrations)  of the swarming motility of P. aeruginosa as a function of the monorhamnolipid 

concentration but not for dirhamnolipid. 

 

8.1.2 Identification of pili as the receptor for rhamnolipids and synthetic ligands. Luk lab 

previously demonstrated the same specific control of rhamnolipids on the swarming of P. 

aeruginosa, but evidence of a ligand-receptor binding event that connects this swarming control 

to pili is lacking. The work in this dissertation provides a direct evidence that pili is the receptor 

for rhamnolipids (natural) and synthetic ligands primarily by fluorescence spectroscopy and 

transmission electron microscopy (TEM). Supporting evidence on  the binding was also obtained 

by other characterization methods such as circular dichroism (CD), nuclear magnetic resonance 

(NMR) and  dynamic light scattering (DLS), however,  these are less compelling because of the 

small changes in the pilin conformation upon binding, and the high ligand concentration 

requirement. 
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8.1.3 Picomolar binding induces pilin protein assembly. Fluorescence spectroscopy 

results show that about 1 pM of ligands- monorhamnolipid, dirhamnolipid, SFβC and SF-

EG4OH is enough to saturate the fluorescence signal of 100 nM of truncated pilin. Furthermore, 

fluorescence spectroscopy also reveals that the ligand-binding induces pilin assemblies  in vitro. 

Kinetic studies show that pilin assembly induced by monorhamnolipid occurs via the isodesmic 

process. Transmission electron microscopy (TEM) was used to visualize the assemblies, showing 

that rhamnolipids and SFβC induce two different pilin assemblies, linear and amorphous, 

respectively. 

 

8.1.4 Bacterial Motility Enabled binDing assay (BMED). Most importantly, we obtained 

direct binding evidence of pilin to ligands from a new design of ligand receptor binding assay by 

utilizing bacterial swarming motility. In this assay, we added microliter droplets of pilin on the 

surface of solidified soft hydrated gel followed by the inoculation of the P. aeruginosa. The 

bacterium does not swarm where the droplet is placed but swarms around the vicinity of the 

droplet. The result of this assay demonstrates that the added pili on the surface of the gel inhibits 

the swarming of the wild type P. aeruginosa by binding and sequestering the rhamnolipids 

secreted by the bacterium. Spreading the pilin on the surface of the soft hydrated gel also inhibits 

the swarming of the wild type strain by sequestering rhamnolipids and also binds to synthetic 

inhibitors added in the soft gel to reactivate the swarming motility of P. aeruginosa.   

 

8.1.5. Mutant study is consistent with D-loop being the binding pocket. This work 

involves the expression of truncated pilin mutants in E. coli BL21(DE3) using recombinant 
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techniques and evaluated their binding to rhamnolipids using BMED. Our results show that 

deleting 31 amino acids is the minimum structure that inhibits swarming and thus, binds to 

rhamnolipids. Three single amino acid mutants in the D-loop of the truncated pilin Δ(1-31) were 

also expressed and tested by BMED, showing that these mutants were inactive for swarming 

inhibition, thus do not bind to rhamnolipids. Collectively, these results confirmed that the D-loop 

in the C’-terminal globular head of pilin is an important region for recognizing and binding 

rhamnolipids and the synthetic ligands.  

 

8.2 Future work and thoughts: 

 

8.2.1 Hypothesis of Chemo mechanics: alpha-helix and beta-sheet sequence shift to 

transmit signals and control extension and retraction, and motilities. It is widely recognized that 

the filamentous pili assembly is driven by the hydrophobic interactions and subsequent insertion 

of the α-helices in the core of the circular, helical assembly with 4-6 monomers per turn and the 

C’-terminal globular heads are exposed at the surface of the pili assembly (Fig 8A, B).24, 84, 207 

However, the exact role that the C’-terminal globular head plays in the assembly is poorly 

understood. In particular, the chemo mechanics of the pili assembly and how the tip-binding of 

pili transmits signals through the pili assembly and cause the depolymerization of the pilin 

monomers (retraction) and assembly (extension) resulting in different bioactivities remains a big 

question. We hypothesize that stacking of each circular assembly of the pili is also aided by the 

C’-terminal globular head, in particular, the D-loop. We propose that ligand binding and  surface 

attachment of the D-loop causes a conformational change in the pilin monomer that alter the β-
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sheet and α- helix content, resulting in the D-loop to adopting a distinct conformation from the 

unbound state. While the bound state and change in the D-loop conformation may not affect the 

global structure of the pilin monomer, the binding to D-loop possibly cause an amino acid shift 

and change the α-helix and β-sheets contents of pilin. This bound conformation of the  D-loop 

structure will transmit a signal through the linear pili structure resulting in different biological 

responses such as retraction and extension leading swarming motility or irreversible retraction 

leading to swarming inhibition. We propose this hypothesis because first, the proximity of the 

C’-terminal globular heads in the ring stacking of the pili assembly makes it probable to transmit 

signals to the adjacent loops in the pili assembly (Fig. 8C).  Second, the modelling of the full 

1244 pilin and the truncated pilin Δ(1-31) show that the pilin secondary structure is sensitive to 

changes in the amino acid sequence. These calculated structures using Phyre2 show that the 

truncation of the pilin results in the disappearance of the helix in the C’-terminal loop shown in 

the full 1244 pilin structure (Fig 8D). While these structures are only calculated and the actual 

structure still needs to be confirmed, the fact that we see structural sensitivity may suggest that 

pili could also experience a similar structural sensitivity when binding to ligands  that transmit 

signals through the pili assembly and cause extension and retraction.   

Furthermore, twitching motility of P. aeruginosa occurs as a result of cycles of pili 

extension, attachment to surfaces, and retraction.29, 54, 55 These steps generate a force that is 

strong enough to translocate bacterial cells on surfaces.47, 48   Factors such as surface viscosity 

and chemical signals have been reported to influence the twitching motility.29 However, the 

molecular understanding of how these factors induce the twitching is still under tremendous 

research. The attachment and recognition of surfaces by pili is primarily mediated by the D-loop 

but how this attachment causes the pili assembly to retract and start the cycle of the pili to cause 
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twitching is unknown. By the same reasoning as our hypothesis, we believe that the D-loop 

adopts a conformational change that transmit a signal through the pili assembly that will induce 

the  depolymerization of the pili assembly that will cause retraction and the subsequent cycle of 

extension, attachment will occur.  

 

 

Figure 8.1 (A) Cryoelectron micrograph of P. aeruginosa pilin. Red rectangles indicate boxed 

pilus filaments. Reprinted with permission from reference 207.  Copyright © 2017 Elsevier Ltd. 

(B) Axial view of a single turn of the type IV pilus. The α-helix in blue, β-sheet in green, and 

loops in purple are shown. Reprinted with permission from reference 29. Copyright © 2004, 
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American Chemical Society . (C) P. aeruginosa PAK pilin fiber model based on the assembly 

parameters described by Parge et al. (1995). The α-helix (blue) and major β-sheet (green) are 

shown. The minor β-sheet region (yellow coils), the C-terminal disulphide-bonded loop (red 

coils) and the remainder of the residues (purple coils) are also shown. The graphical elements of 

the second monomer from the bottom are enclosed in bold lines to highlight the boundary of a 

pilin monomer. The receptor analogue β-d-GalNAc(1→4)-β-d-Gal, represented as a ball-and-

stick model, is shown in a position suggested by molecular docking studies. It has been included 

to illustrate the location of the binding site and the size of the disaccharide relative to the pilus. 

However, the depicted binding mode is not expected to be correct in its details. Adopted from 

reference 84. Copyright © 2000 Academic Press. All rights reserved.  (D) Predicted full P. 

aeruginosa 1244 pilin (left) and truncated pilin Δ(1-31)  using Phyre2 and visualized by PyMOL.  

 

Further studies to understand how ligand binding controls the chemomechanics is an area 

that will be explored in the future. The pili structure is widely studied, but there is limited  

knowledge on how the assembly structure and conformational  changes are induced by surface 

sensing or by chemical binding.  Furthermore, it is unclear how the dynamic control correlates to 

the extension and retraction of the pili assembly.  It is also unknown whether only pili tip, or the 

stem of pili, or both are important for the sensing and mechanics. The specific ligand binding 

results in this thesis form the basis for future study in this area. The exact experimental design is 

the task for future scientists.   
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8.2.2 Structure optimization. Luk lab conducting ongoing research on the structural 

optimization of the synthetic molecules that functions as ligands of pilin to inhibit pili-mediated 

activities. While Luk lab has a number of ligands that control pili-mediated activities, research is 

still underway to identify the best structure of synthetic ligands for this function. Together with 

the structural optimization of the synthetic ligand molecules, a number of other applications for 

these molecules are also being studied.  First, the use of the synthetic molecules in combination 

with existing antibiotics to reduce drug tolerance, persistence and resistance by P. aeruginosa.  

Our synthetic molecules have the potential to reduce drug tolerance and persistence  by biofilm 

reduction and lowering levels of cyclic di-GMP in the bacterium; while drug resistance is 

reduced by of inhibiting horizontal gene transfer mediated by pili.  Second, exploring the 

integration of bacterial killing activity while maintaining the pili inhibition activities. Swarming 

and other motilities are major mechanisms for infections. The effectiveness of our molecules in 

the of swarming inhibition coupled with bacterial killing is also one avenue to be explored for 

our molecules.  

 

8.2.3 New principles of antibiotics.   The antibiotic resistance in P. aeruginosa remains a 

big problem in the medical field. Thus, the development of novel approaches to eliminate 

infections by drug-resistant bacteria strains are continuously being pursued. The molecules 

developed by Luk lab bind to pilin and inhibit biological activities such as swarming motility and 

biofilm formation, but do not kill bacteria. Preliminary studies on eradicating drug-resistant 

biofilms have shown that our molecules enhance the killing of biofilms when mixed with 

existing antibiotics in the market such as Tobramycin (aminoglycoside) and Aztreonam (β-

lactam). We believe that our molecules bind to protein receptors such as pili and lectin A to 
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control the drug-tolerance and persistence. While for the observed increased resistance to 

Aztreonam is possibly mediated by the inhibition of β-lactamase production. Efforts to 

understand how the combination of our molecules and antibiotics are still underway. This 

observed synergistic effect open new opportunities to study our molecules in combination with 

existing antibiotics in market to provide greater efficiency to eliminate drug-tolerant and 

persister cells of P. aeruginosa.  

 

8.2.4 Expansion to other microbes. The class of synthetic molecules our lab developed binds to 

the pili protein which exhibits dual functionality in recognizing the polar sialic acid groups on 

human cells and binds to nonpolar abiotic surfaces. Other microbes and viruses, such as envelope 

viruses, have surface protein appendages on their membrane envelope that could also bind to 

both human cell receptors and abiotic nonpolar surfaces.208, 209 These microbes could thrive for 

days on these surfaces and could lead to infections. As the binding of our molecules to pilin is in 

the picomolar range, and both pili and surface proteins exhibit dual functions,  these molecules 

can provide an novel approaches to develop potential treatments to inhibit biological activities. 

The use of the BMED, can also be used to evaluate the binding between the synthetic molecules 

and other surface proteins exhibiting dual binding functionality and determine strong ligand 

candidates. Further direct binding approaches can be used to validate the approach and later 

develop a new therapeutic approach that could inhibit microbial activities. 
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