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ABSTRACT 

 Protein prenylation is a posttranslational modification involving the attachment of a C15 

or C20 isoprenoid group to a cysteine residue near the C-terminus of the target substrate by 

protein farnesyltransferase (FTase) or protein geranylgeranyltransferase type I (GGTase-I), 

respectively. Both of these protein prenyltransferases recognize a C-terminal "CaaX" sequence in 

their protein substrates, but recent studies in yeast- and mammalian-based systems have 

demonstrated FTase can also accept sequences that diverge in length from the canonical four-

amino acid motif, such as the recently reported five-amino acid C(x)3X motif. In this work, we 

further expand the substrate scope of FTase by demonstrating sequence-dependent farnesylation 

of shorter three-amino acid "Cxx" C-terminal sequences using both genetic and biochemical 

assays. Surprisingly, biochemical assays utilizing purified mammalian FTase and Cxx substrates 

reveal prenyl donor promiscuity leading to both farnesylation and geranylgeranylation of these 

sequences. The work herein expands the substrate pool of sequences that can be potentially 

prenylated, further refines our understanding of substrate recognition by FTase and GGTase-I 

and suggests the possibility of a new class of prenylated proteins within proteomes.  

 To identify potential new Cxx substrates in human proteomes, we explored a FRET-

based system using phosphodiesterase delta subunit (PDE) as the acceptor protein for 

potentially prenylated Cxx sequences. While not conclusive, this work lays the foundation for an 

assay not dependent on membrane localization as a signal for prenylation inside cells and 

suggests future studies to improve upon the utility of this assay. Lastly, this work demonstrates 

FTase’s flexibility in accepting a prenyl donor analogue with an azobenzene moiety that can be 

modulated with light. This establishes a potential new avenue for mediating membrane 

localization behavior of prenylated proteins. 
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Chapter 1: Introduction 

 

Portions of this chapter including figures have been previously published and are reprinted with 

permission from the publisher, reference 104, Blanden, M. J.; Ashok, S. A.; Hougland, J. L., 

Mechanisms of CaaX Protein Processing: Protein Prenylation by FTase and GGTase-I, 

Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, Elsevier, 2020. 
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1.1 Protein Post-Translational Modifications 

The central dogma of molecular biology dictates that each organism’s genetic code 

determines its proteome. That is, DNA is transcribed to RNA, and RNA is translated to proteins 

that are essential for proper functioning and development of every organism. However, many 

organisms have proteomes that are far more diverse and complex than would be simply predicted 

from its genome. For example, the human genome is estimated to have 20,000-25,000 open 

reading frames while the total number of molecularly distinct protein forms in the human 

proteome is estimated to be more than a million.1, 2 These numbers show that a single gene can 

code for distinct protein forms. This diversity can be attributed to two phenomena in a cell. First, 

at the transcriptional level, use of multiple promoter and termination sites, alternate mRNA 

splicing, and/or recombination yields protein variation. Second, protein modifications at the co-

translational and post-translational levels result in distinct forms as well.3  

Post-translational modifications (PTMs) refer to covalent chemical modifications of 

target proteins, with these modifications influencing protein structure, localization, stability, and 

protein-protein interactions.4-7 Protein lipidation is one class of PTMs in which proteins are 

altered by attachment of various lipid groups such as fatty acids, isoprenoids, sterols, 

phospholipids and glycosylphosphatidylinositol (GPI) anchors.8, 9 While lipidation commonly 

serves to enhance protein affinity for cell membranes, this modification has been found to both 

facilitate protein-protein interactions and play a role in protein stability.8, 9   

Protein lipidation modifications can be broadly classified into two categories: those that 

occur in the luminal compartments of the endoplasmic reticulum (ER) and Golgi bodies as part 

of secretory pathways, directing the modified proteins to targets outside the cell or the 

extracellular face of the plasma membrane; and those that occur on the cytoplasmic face of 
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membranes, targeting the modified proteins to the inner membrane leaflet or membranous 

compartments in cells. Glycosylphosphatidylinositol (GPI) anchors and cholesterol attachments 

represent the former of the two categories of lipid modifications that occur in the ER and Golgi 

lumen (Figure 1.1). The GPI moiety is composed of a phospholipid, sugars, and ethanolamine 

and is attached to the C-terminal carboxylate of a protein through its ethanolamine functional 

group. This attachment is involved in cell signaling, prion disease pathogenesis, and protein 

incorporation into lipid rafts.10-16 Similarly, cholesterol attachment occurs at the C-terminus of 

target proteins via an ester linkage.17-21 This modification is predominantly found in the 

Hedgehog protein family with the modified proteins playing roles in tissue repair and 

regeneration, organ development and stem cell maintenance.17, 22-25  

Protein myristoylation, palmitoylation, and prenylation belong to the second class of lipid 

modifications that occur on the cytoplasmic face of organelles or in the cytoplasm itself, 

targeting the modified proteins to the inner leaflet of the plasma membrane in addition to 

facilitating associations with other cellular compartments such as the Golgi, ER, and lipid 

vesicles (Figure 1.2).8, 9, 26 Protein myristoylation is the attachment of a 14-carbon myristic acid 

moiety to an N-terminal glycine residue on the target protein through an amide linkage. This 

modification plays a key role in cellular signaling pathways and is also known to act as a 

regulatory switch for proteins’ spatial distribution inside cells.9, 10, 26-33 Palmitoylation usually 

involves the reversible addition of a 16-carbon palmitic acid moiety to a cysteine residue via a 

thioester bond, however, serine and threonine resides are also found to be palmitoylated on select 

proteins.8-10, 34, 35 The reversible nature of this modification via thioester hydrolysis allows 

modified proteins to shuttle between a membrane-bound or membrane-unbound state.36-42 This 

modification is known to serve important roles in protein-protein interactions, protein trafficking 
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and stability.10, 43-50 Lastly, prenylation is the irreversible attachment of a 15-or 20-carbon 

isoprenoid chain to a cysteine residue near the C-terminus of a target protein. Prenylation plays 

an important role in cell signaling by aiding the localization of modified proteins to the plasma 

membrane and protein-protein interactions.51-55  
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Figure 1.1: Types of post-translational lipidations targeting proteins to the extracellular 

environment of a cell. A) Glycophosphatidylinositol (GPI) anchors consist of an ethanolamine 

group, a sugar chain (D-mannose and D-glucosamine), and a phosphatidylinositol group. 

Mannose hydroxyl groups can also consist of various substitutions of long chain fatty acids.13 B) 

A protein-cholesterol ester bond.56 

  



 

6 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2: Types of post-translational lipidations targeting proteins to membrane-bound 

organelles and/or the inner leaflet of the plasma membrane. Myristoylation forms an amide 

bond to the N-terminal amino group of proteins; Palmitoylation occurs on a cysteine residue 

through a thioester linkage; Prenylation (farnesylation or geranylgeranylation) involves the 

formation of a thioether bond on a cysteine reside near the C-terminus.  
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1.2 Prenylation and its enzymes 

Prenylation is a post-translational modification wherein a hydrophobic isoprenoid group, 

either a farnesyl or geranylgeranyl group, is transferred to a cysteine residue near the C-terminus 

of a target protein.7, 52, 53 This modification is necessary for membrane localization of many 

proteins which play important roles in signaling pathways and cellular processes. Prenylation can 

be catalyzed by protein farnesyltransferase (FTase) or protein geranylgeranyltransferase type I 

(GGTase-I), which differ in amino acid sequence recognition and the isoprenoid substrate to be 

attached.52 FTase catalyzes the addition of a 15-carbon isoprenoid group from farnesyl 

pyrophosphate (FPP), while GGTase-I catalyzes the addition of a 20-carbon isoprenoid group 

from geranylgeranyl pyrophosphate (GGPP, Figure 1.3).7, 52-55 GGTase-II is a third enzyme 

responsible for addition of a 20-carbon isoprenoid chain. It requires a Rab escort protein (REP) 

for substrate recognition, with REP binding to the substrate to be prenylated and presenting it to 

the catalytic site of GGTase-II for prenylation.57 The target sequence for GGTase-II is also 

distinct from FTase and GGTase-I, with this enzyme modifying a variety of motifs from the Rab 

family of proteins including CC, CXC, CCXX, CCXXX, where C is a cysteine that undergoes 

modification.58-61 Recently, a fourth protein prenyltransferase GGTase3 was identified as a novel 

human enzyme that modifies a ubiquitin ligase, FBXL2, with a 20-carbon geranylgeranyl 

isoprenoid group.62 This discovery expands our appreciation for the potential extent of 

prenylation within the proteome.  

FTase and GGTase-I are both heterodimeric metalloenzymes comprising of an identical α 

subunit with differing  subunits.63, 64 The active site for both enzymes lies at the interface of the 

 and  subunits and is mainly composed of residues in the  subunit.65 Both enzymes follow an 

ordered sequential mechanism wherein the isoprenoid binds first followed by binding of the 
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peptide or protein substrate. A subsequent conformational change in the first two units of the 

prenyl donor (FPP or GGPP) brings C1 of the prenyl donor near the cysteine side chain thiol to 

be modified.7, 66-70 In FTase, the negatively charged diphosphate group of the isoprenoid is 

stabilized during catalysis through interaction with a bound Mg2+ ion (Figure 1.4).70, 71 GGTase-I 

does not require a magnesium ion for reaction with GGPP, with lysine 311β partially replacing 

the catalytic benefit provided by the magnesium ion in FTase.66, 72 A catalytic Zn2+ ion enhances 

peptide substrate binding and activates the cysteine thiol group for nucleophilic attack (Figure 

1.4).73 The pKa of the thiol is lowered due to coordination with the Zn2+ resulting in the 

formation of a Zn2+-coordinated thiolate anion at physiological pH. This thiolate anion performs 

a nucleophilic attack on the alpha carbon of FPP or GGPP to form a thioether bond between the 

cysteine residue of the peptide/protein substrate and the lipid.71, 73-75 The modification step of this 

reaction is fast and the overall rate of the reaction depends on the slow product release step under 

saturating conditions.76, 77 The prenylated product is released upon binding of a new molecule of 

the respective prenyl donor followed by a conformation change in the peptide substrate.69, 78-80   

FTase and GGTase-I are proposed to recognize their substrates by the presence of a 

“CaaX” motif near the C-terminus of proteins. ‘C’ is the cysteine to be prenylated, ‘a’ is any 

aliphatic amino acid, and ‘X’ is an amino acid which determines enzyme specificity.63, 77, 81 

FTase substrates typically have an X residue of serine, methionine, alanine, or glutamine, while 

GGTase-I usually recognizes leucine or phenylalanine at the X residue position. Some substrates 

may also be recognized by both enzymes as targets for prenylation.82-85 Recent evidence, 

however, from both yeast and mammalian systems supports the expansion of the FTase substrate 

pool with the discovery of farnesylated C(x)3X sequences.86 This again highlights the potential 

extent of prenylation in proteomes. Following prenylation of the CaaX sequence, a majority of 
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prenylated proteins undergo further post-processing steps which are essential for their final 

incorporation into the plasma membrane. The first step involves proteolysis of the last three 

amino acids by the CaaX protease Rce1p or Ste24p in the endoplasmic reticulum (ER), resulting 

in a negatively charged carboxyl group on the C-terminal cysteine which is then methylated by 

the S-adenosylmethionine (AdoMet) dependent isoprenylcysteine methyltransferase (ICMT) 

(Figure 1.3).87-93 Acting together, these two modifications increase protein hydrophobicity and 

lead to localization of prenylated proteins to the cell membrane. Structural and functional studies 

suggest that both enzymes process their substrates on the cytoplasmic surface of the ER.91, 94-97 A 

crystal structure of human metalloprotease Ste24p showed that the catalytic site lies at the apex 

of the enzyme’s membrane-spanning chamber. On the cytoplasmic side of the membrane, a Zn2+ 

ion is coordinated by His residues from the HEXXH zinc metalloprotease motif (HELGH in 

Ste24p), where the Glu residue is predicted to be the catalytic residue that activates the attacking 

water molecule based on similarities with other metalloproteases and mutagenesis analysis.98, 99 

Moreover, the substrate-binding site was predicted to be between the Zn2+ ion and a  sheet 

strand of the metalloprotease, containing hydrophobic pockets proposed to influence enzyme 

specificity.99 More recently, a crystal structure of beetle ICMT revealed a breadth of information 

regarding the enzyme’s ability to catalyze the reaction between two energectically unfavourable 

reactants, AdoMet and prenylcysteine substrates.100 Specifically, ICMT exhibits two distinct 

entry routes for the cytosolic AdoMet and ER bound prenylated substrate. The active site was 

determined to be on the cytosolic leaflet of the membrane and exhibits a slender tunnel that 

brings the methyl group of AdoMet in proximity to prenylcysteine substrate, where the C-

terminal carboxylate is stabilized and oriented for attack through hydrogen bonding with 

positively charged residues.100 Overall, all three modification steps are deemed necessary for 
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function of most prenylated proteins. However, recent reports suggest that certain proteins in 

yeast undergo prenylation without subsequent proteolysis or methylation in what has been 

deemed the “shunt pathway”, with evidence of these processing steps being deleterious to the 

protein’s function.88, 101 

While these post-translational modifications increase the hydrophobicity of prenylated 

proteins, evidence also suggests that in order for these proteins to associate with the plasma 

membrane an additional secondary signal is often required.102, 103 For example, some proteins 

contain a poylbasic region upstream of the CaaX site which promotes plasma membrane 

localzation via electrostatic interactions with the negatively charged bilayer membrane. Other 

proteins require an additional lipid modification such as palmitoylation of residues upstream of 

the prenylated cysteine, which further enhances substrate hydrophobicity.  
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Figure 1.3: The protein prenylation pathway. The canonical protein prenylation pathway 

consists of three modification steps: isoprenoid addition, proteolysis, and carboxymethylation. A 

shunt pathway for proteins undergoing only prenylation absent subsequent processing has 

recently been reported.104 This figure has been reused with permission from reference 104 

(Appendix I).  
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Figure 1.4: Transition state for FTase-catalyzed prenylation. The cysteine side chain thiol 

coordinates to the catalytic zinc ion, leading to an increase in nucleophilicity due to the lower 

pKa of the zinc-coordinated thiolate. The pyrophophate leaving group coordinates to a 

magnesium ion, with this interaction enhancing the prenylation rate ~700-fold.104 This figure has 

been reused with permission from reference 104 (Appendix I).   
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1.3 Structural, biochemical, and computational studies defining substrate selectivity of 

FTase and GGTase-I 

 To understand the biological impact of prenylation, it is important to define the extent 

and nature of the prenylated proteome. Numerous studies have aimed to gain insight into the 

substrate specificty for prenyl donor and CaaX substrates of prenyltranferases through various 

techniques such as structural studies, structure-function studies, peptide library studies and 

computational approches.63, 105-110 Studies have also utilized radiolabeling, affinity tagging and 

similar techniques to identify prenylated proteins in cells as described below.105, 111-114  

Prenylation and the corresponding requirement of a CaaX motif were first described more 

than 30 years ago, when yeast mating pheromone a-factor, Ras GTPases, and nuclear lamins 

were found to be lipid-modified.115-119 Since their identification, studies of FTase and GGTase-I 

have focused on substrate selectivity and their preference for amino acids within the CaaX 

motif.120 Several structural studies revealed that FTase and GGTase-I are both heterodimeric 

metalloenzymes consisting of an identical  subunit and distinct but homologous  subunits 

(Figure 1.5).63, 64, 66, 121 The active site for both enzymes lies at the interface of the  and  

subunits and is predominantly composed of residues in the  subunit. The most obvious 

functional difference between FTase and GGTase-I, their respective preferences for FPP and 

GGPP as prenyl donor cosubstrates, was readily explained by comparison of their structures in 

complex with FPP and GGPP mimics.66, 85, 121 The binding sites for GGPP in GGTase-I and FPP 

in FTase are very comparable, constituting a cavity lined with conserved aromatic residues. 

However, selectivity of FTase for the shorter FPP substrate is determined by the presence of 

bulky tryptophan and tyrosine residues (W102 and Y365) which block binding by the larger 

20-carbon GGPP prenyl donor.66 In comparison, GGTase-I has smaller threonine and 
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phenylalanine residues at the corresponding positions which allows this enzyme to accommodate 

the fourth isoprene unit of GGPP.66 The amino acid contacts responsible for determining 

isoprenoid substrate selectivity were further confirmed via targeted mutagenesis of FTase to 

enable its use of GGPP as the prenyl donor.122 The FTase isoprenoid preference was converted 

by performing single and double mutations of the two bulky residues which contact FPP to their 

smaller counterparts in GGTase-I. Interestingly, mutating a single W102 residue in FTase to 

threonine was sufficient for efficient catalysis with the longer GGPP prenyl donor. Of note, these 

mutations only changed FTase preference for its prenyl donor but did not change the peptide 

substrate preference to favor sequences recognized by GGTase-I.122  
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Figure 1.5: Structures of mammalian FTase and GGTase-I. Alpha subunits are shown in 

blue, with the FTase beta subunit in orange and the GGTase-I beta subunit in red. The catalytic 

zinc ions in both structures are depicted as grey spheres. Figure generated from PDB 1D8D 

(FTase) and 1TNO (GGTase-I) using Pymol.104 This figure has been reused with permission 

from reference 104 (Appendix I).   
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In structural studies to identify the enzyme-substrate contacts responsible for FTase and 

GGTase-I CaaX peptide substrate selectivity, a series of peptide substrates were co-crystallized 

with FTase and GGTase-I. These substrates incorporated a series of different amino acids at the 

a1, a2, and X positions to explore the structural determinants governing peptide specificity for 

FTase and GGTase-I.85 This study revealed that the various CaaX sequences adopt essentially 

the same conformation along one side of the funnel-shaped active site in both prenyltransferases 

except for the C-terminal X residue as discussed below. These structures showed the a1 residue 

in a solvent-exposed conformation at the interface of the α and β subunits, consistent with the 

relaxed selectivity observed at the a1 position in biochemical studies.123-125 Although FTase and 

GGTase-I generally exhibit broad amino acid tolerance at the a1 position, the amino acids most 

commonly found at this position include V, A, K, and N, with the presence of a polar amino acid 

at this position proposed to enhance substrate binding via direct or water-mediated hydrogen 

bonding with the enzymes.85  

The a2 and X residues, on the contrary, form interactions with enzyme residues within a 

solvent-excluded binding pocket. With this restricted location, steric and electrostatic 

interactions greatly influence amino acid specificity as compared to the a1 position.82, 84, 85, 126 

The a2 binding pocket in FTase, for example, is composed of both the residues of the  subunit 

(W102β, W106β, and Y361β) and the third isoprene unit of FPP. Specificity at this position was 

therefore proposed to be restricted to nonpolar residues such as I, L, and V. A similar binding 

site and specificity prediction is seen in GGTase-I with its analogous T49β, F53β, and L321β 

residues.85  

Structural studies of FTase enzyme-substrate complexes with peptide substrates bearing 

varying amino acids at the C-terminal X position suggest that FTase utilizes two complementary 
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binding pockets for the X residue, which defines specificity at this position within the substrate 

sequence.85 An X residue of S, Q and M interact with a binding pocket comprised of Y131α, 

A98β, S99β, W102β, H149β, A151β and P152β. This differs from substrates terminating in F, L, 

H and N that interact with a separate binding pocket comprised of L96β, S99β, W102β, W106β, 

A151β, the third isoprene unit of FPP and the a2 residue. GGTase-I differs greatly in its X 

residue specificity in that it is composed of one binding pocket which contains the residues T49β, 

H121β, A123β, F174β, as well as the fourth isoprene unit of GGPP and the a2 residue of the 

peptide substrate. GGTase-I prefers hydrophobic residues such as L, F, I, M and V given this 

hydrophobic binding pocket. In comparing the interactions of the a1, a2, and X residues with 

FTase and GGTase-I, it is the differences in X residue binding in these two enzymes that largely 

give them their varied preference for substrate targets and can allow for predictions of whether a 

substrate is more likely to be farnesylated or geranylgeranylated.85 

Functional studies utilizing peptide libraries have also proved useful for determining 

substrates recognized by FTase and GGTase-I, as well as defining what components of these 

substrates engender their recognition. Changes in peptide reactivity are correlated to changes in 

amino acid properties such as size or charge thereby, providing insights into the substrate 

recognition strategies employed by prenyltransferases. This method is based on monitoring 

reactivity of fluorescently tagged short peptides with prenyltransferases.73, 84, 123-130 For example, 

several peptide studies use a dansyl fluorophore attached to the N-terminus of the peptide 

allowing monitoring of prenylation via fluorescence assays.131 Utilizing the environmentally 

sensitive dansyl fluorophore facilitates real-time monitoring of prenylation through fluorescence 

enhancement upon cysteine alkylation with the hydrophobic farnesyl or geranylgeranyl groups.  
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The availability of high-throughput fluorescence assays has made peptide reactivity 

studies amenable for analyzing large peptide libraries.82, 123, 125-127, 132 CaaX peptide libraries have 

been employed in multiple studies to examine these effects by varying a1, a2, and X positions on 

fluorescent peptides.123, 126, 127 A study by Hartman and co-workers tested the specificity of 

prenyltransferases at the ‘X’ position of the substrate by investigating the TKCVIX peptide 

library derived from the K-Ras4B sequence TKCVIM.77 This study showed that the specificity 

for FTase versus GGTase-I arises from peptide reactivity rather than relative binding affinity and 

that the reactivity strongly correlates with the hydrophobicity, volume and structure of the ‘X’ 

residue. FTase and GGTase-I were found to exhibit contrasting hydrophobicity preferences at the 

‘X’ position, with GGTase-I preferring the more hydrophobic ‘X’ residues.77 Krzysiak and co-

workers also highlighted the ability for some substrates to undergo both farnesylation and 

geranylgeranylation depending on the amino acid at the X position, a phenomenon known as 

“leaky prenylation”.84 

Study of the a2 position has provided further insight into the structure-function 

relationship of prenyltransferases with their substrates.126 In this study, the relative reactivity of a 

series of peptides which varied at the a2 position (-GCVa2S and -GCVa2A) revealed that a2 

selectivity of FTase substrates depends on both size and hydrophobicity of the residue, with the 

enzyme discriminating against polar amino acids and both the largest and the smallest amino 

acids at this position. Moreover, this study found evidence for context dependent a2 recognition, 

wherein the a2 selectivity was influenced by the ‘X’ residue of the CaaX motif.126 In a 

subsequent study, structure-targeted mutagenesis of GGTase-I was applied in combination with a 

series of dansyl-peptide substrates to better understand selectivity at the a2 position.127 Mutations 

of residues within GGTase-I, predicted to interact with the a2 residue of the substrate, drastically 
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change substrate selectivity at the a2 position. In addition, these variant GGTase-I enzymes not 

only accept non-natural peptide substrates in which the a2 residue bears a charge, they are able to 

retain reactivity with a natural substrate (dns-GCVLL). In comparison to FTase variants with 

similarly reengineered substrate selectivities, it is evident that these two enzymes employ 

analogous mechanisms for substrate recognition with distinct sets of active site residues. These 

biochemical studies support the substrate recognition interactions predicted by structural studies 

of FTase and GGTase-I.63, 85  

In another study, Hougland and co-workers investigated the FTase substrate selectivity 

patterns by analyzing the reactivity of large scale peptide libraries whose sequences were derived 

from C-termini of human proteins.123 The peptides from these libraries were screened under both 

multiple turnover conditions (MTO, [E] << [S]) and single turnover conditions (STO, [E] >> 

[S]). MTO conditions most closely represent the scenario inside the cell where multiple 

substrates compete for prenylation by FTase or GGTase-I. From this study, it was found that of 

the roughly 300 C-terminal -Cxxx sequences tested, 67% were farnesylated under single-

turnover conditions ([E] >> [S]), suggesting that there are peptide sequence-dependent effects 

within the FTase catalytic cycle on steps such as the binding of FPP to the enzyme-farnesylated 

peptide complex and/or release of the farnesylated product. Moreover, the amino acid 

distribution at both the a2 and X positions influences the preference for MTO vs STO reactivity, 

with non-canonical amino acids at both positions favoring STO reactivity. This provided insight 

into the role played by these positions on substrate binding, chemistry, and product release 

during farnesylation. For MTO peptides, specificity occurs before or at the step of farnesylation, 

while STO peptides exhibit a rate-limiting step at product release. The discovery that different 

substrate classes exist for FTase provides valuable insights into the regulation and reactivity of 
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FTase within the cell as well as the development of therapeutics for prenylation-dependent 

diseases.  

Building upon the structural and biochemical data, several computational approaches 

have been developed to enable large scale prediction of prenylated proteins. Maurer-Stroh and 

Eisenhaber developed the algorithm PrePS to predict prenyltransferase substrates.109 PrePS is 

based on data from experimentally derived recognition motifs to predict the likelihood of new 

motifs acting as a substrate for farnesylation or geranylgeranylation. This data resulted in 

learning sets which consist of 692 FTase and 486 GGTase-I substrates which were developed 

through a series of methods including a search of literature and BLASTP analysis with known 

prenylated substrates against an NCBI database. In addition, an 11 amino acid sequence 

upstream of the prenylcysteine was added to refine the algorithm. With this refinement of PrePS, 

the algorithm expands the rules which predict the prenylation of a substrate to a 15-amino acid 

sequence. However, due to the experimentally based nature of the algorithm development, PrePS 

has the potential for many false negatives for a given set of motifs with a reported false negative 

prediction near 40% when compared to substrates identified in peptide library screenings.108, 123  

FlexPepBind is another computational approach for predicting FTase substrates, 

developed by London and coworkers in 2011.108 This algorithm predicts peptide binding through 

a structure-based modeling approach by aligning different peptide sequences onto a template 

peptide-receptor complex. Using the structure of the binding site of FTase, FlexPepBind is a 

more powerful tool than PrePS as it is not limited to information based on experimental data and 

was able to identify a range of novel potential targets in the human genome. In validation 

experiments, authors were able to verify 26 of the 29 tested peptides as being able to bind to 

FTase in in vitro assays. In comparison to PrePS, FlexPepBind is predicted to have a 44% true 
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positive rate and a 2% false positive rate but eliminates the large number of false negative 

predictions seen with PrePS.  

A recent statistical analysis of the number of substrates capable of undergoing 

prenylation in yeast suggests that many prediction tools are biased against non-canonical motifs 

which may undergo prenylation but not the subsequent processing steps of proteolysis and 

methylation.133 To remedy this bias, authors used yeast Hsp40 Ydj1p chaperone as a genetic 

reporter. Ydj1p is prenylated but is subject to the shunt pathway in which the prenylated protein 

does not undergo further processing steps and stays cytosolic. Prenylated Ydj1p produces a 

thermotolerant phenotype in yeast which serves as a proxy for the authors to monitor the 

prenylation state of Ydj1p given different mutations within the Cxxx motif. Using this genetic 

screen, the authors evaluated over 67,000 recombination events, correlating to 93.5% of the 

possible amino acid combinations in the Cxxx motif. The sequences found capable of 

undergoing prenylation using Ydj1p did not greatly overlap with those found in other screenings 

that utilized common targets such as Ras, suggesting a much larger set of motifs capable of 

prenylation than was previously thought. This includes a largely unbiased preference at each 

position in the motif to accept amino acids that vary in their hydrophobicity, size, and charge. In 

contrast to other predictive algorithms, very few sequences identified using the Ydj1p-based 

screening were identified as having a high probability of prenylation by FlexPepBind and PrePS 

with results of 27% and 7%, respectively. However, it is important to note that this discrepancy 

may reflect different substrate selectivities for the mammalian and yeast enzymes.  

Many of the techniques used to study prenylation, while useful, examine the prenylation 

state of proteins in vitro. Use of fluorescent proteins within cells has been an indispensable 

technique in the study of prenylation at endogenous levels, providing better insight into both the 
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biological significance of prenylation and the effects of prenyltransferase inhibitors. The earliest 

examples of fluorescent localization studies include immunofluorescence microscopy. One study 

investigated the ability of prenyltransferase inhibitors to selectively target oncogenic Ras 

isoforms in cancer cells.134 Upon treatment with two FTIs which block Ras protein farnesylation, 

cells studied with immunofluorescence of nuclear lamins did not show an impact on lamin ability 

to be farnesylated as reflected by proper localization to the nuclear membrane and metabolic 

labeling. This work provided some of the first insight into the effect of prenyltransferase 

inhibitors at a cellular level to better understand their potential as therapeutics.  

 Localization studies have evolved over the years to include conjugation of fluorescent 

proteins directly to the protein of interest.86, 127, 128, 135-142 In this method, an N-terminal 

fluorescent protein is appended to a protein of interest allowing direct visualization of protein 

localization. Fluorescence and protein localization at cellular membranes serves as a proxy for 

protein prenylation, whereas diffuse fluorescence throughout the cell indicates cytoplasmic 

localization. The latter implies a protein either not undergoing prenylation or becoming 

prenylated without further processing as noted in the shunt pathway. These fluorescent reporter 

proteins have been used to determine the sequence requirements and roles of CaaX 

modifications. Early studies into the role of post-prenylation processing include use of these 

fusion proteins to observe the effect of proteolysis and methylation on localization of prenylated 

proteins. In defining the mammalian Rce1 gene and its role in localization, Young and coworkers 

used Rce1+/+ and Rce1-/- fibroblast cells transfected with a fusion protein containing green 

fluorescent protein and mouse Ki-Ras. Fluorescence was localized to the plasma membrane in 

Rce1+/+ cells but diffuse in Rce1-/- cells, identifying proteolysis as necessary for Ras localization 

and introducing a new target for potential inhibitors.138  
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A study in 2008 by Der et al. supported the requirement of proteolysis and methylation of 

Rho proteins following prenylation in determining cellular localization and protein function.139 

With green fluorescent protein cloned to several Rho proteins and grown in both wild-type cells 

and cells lacking either Rce1 (Rce1–/–) or ICMT (Icmt–/–), it was found that sensitivity to Rce1p 

and ICMT differed between Rho proteins. RhoB appeared to be more sensitive to loss of Rce1p, 

while RhoA was more dependent on ICMT as evidenced by the loss of fluorescent protein at the 

cell membrane.  

Prenylated reporter protein cellular localization has also been employed to define the 

intrinsic reactivity required for a given FTase substrate sequence to be prenylated within a 

mammalian cell.128 Development of a fluorescent reporter fusion protein terminating in C-

terminal CaaX sequences with known levels of reactivity with FTase allowed for a calibrated 

sensor for protein farnesylation, with membrane localization indicating modification of the 

reporter protein. This study showed that in addition to the intrinsic reactivity of the reporter 

protein with FTase, the expression level of the reporter played a role in the extent of 

farnesylation of the reporter protein pool within the cell. This finding strongly suggested that 

results from overexpression studies of FTase substrates must be interpreted critically. Further, 

analysis of these panels of reactivity-defined reporter proteins provided the first cell-based 

quantitative measurements of FTase activity and provided potential reactivity thresholds for 

biologically relevant FTase substrates. 

Another method for facilitating the detection of prenylated proteins is direct in vivo 

determination. The first approaches towards defining protein prenyltransferase selectivity 

included studies using radiolabeled 3H FPP and GGPP for protein labeling, as well as 

radiolabeled precursors of these prenyl donors.112, 143, 144 In these studies, cells were grown in the 
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presence of these radiolabeled donors with subsequent 3H incorporation into proteins 

endogenously prenylated in cells. This method was limited in its ability to provide a high yield of 

labeled protein against competing endogenous FPP or GGPP and in the limitation of pulling 

down the target protein from cells. While antibodies have been developed to aid in the selection 

of prenylated proteins from cells, they are unable to discriminate prenylation from other lipid 

posttranslational modifications.145 

Improvements upon this approach have centered around development of FPP and GGPP 

analogs that are functionalized with immunogenic tags, affinity tags or tags for chemoselective 

biorthogonal labeling (Figure 1.6). For example, Spielmann and co-workers showed the 

application of an immunogenic tag by using anilinogeraniol (AGOH) to detect FTase 

substrates.146 Anilinogeraniol is an analog of an upstream precursor of FPP. It is converted to 8-

anilinogeranyl diphosphate (AGPP) in vivo and replaces the third isoprene unit of FPP with an 

aniline moeity that then serves as an epitope for detection by Western blot.146, 147 Further, 

Alexandrov and co-workers developed biotin-geranyl diphosphate (BGPP) for use as an affinity 

tag.148 BGPP only allowed for the efficient identification of GGTase-II substrates as the bulky 

nature of the biotin group was found to interfere with the protein substrate binding for FTase and 

GGTase-I. Reengineered FTase and GGTase-I variants that were capable of utilizing BGPP as a 

donor for protein modification were developed. Cell lysates were incubated with BGPP and 

wild-type or mutant prenyltransferases, with biotin-tagged proteins being subsequently pulled 

down using streptavidin beads and identified via mass spectrometry. This resulted in the 

identification of many Rab proteins as GGTase-II substrates, as well as various substrates which 

were identified from the lysates containing engineered FTase and GGTase-I.148  
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Recently, new alkyne-tagged isoprenoid analogues which closely mimic FPP and GGPP 

have been used for direct detection of prenylated proteins via mass spectrometry.149 These 

analogues not only allow for identification and quantification of prenyltransferase targets, they 

are able to maintain their transferase specificity and allow for a proteome-scale investigation of 

prenylated proteins at endogenous levels. Upon addition of the alkyne tagged analogue, proteins 

are captured via click CuAAC ligation to azide-containing reagents which have been 

functionalized with fluorophores or affinity tags such as biotin. These functionalizations allow 

for enrichment of the prenylated proteins and subsequent analysis via LC-MS/MS. In this study, 

proteins were identified at various stages of post-prenylation processing including ones in which 

cleavage of -aaX residues occurred but the protein (or the C-terminus) did not undergo 

subsequent methylation. The analogues also proved useful in determining the effects of 

prenyltransferase inhibitors (PTIs) across the prenylated proteome thus, providing a new avenue 

into the design of therapeutics that target prenylation specific diseases. 
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Figure 1.6: Selected FPP and GGPP analogues utilized for prenylated protein labeling and 

identification.104 This figure has been reused with permission from reference 104 (Appendix I).  
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Overall, these analogues have enabled high-throughput identification of several FTase 

and GGTase-I substrates including members of the Ras, Rho, Rac, Rheb, Rab protein family 

members that were known to be prenylated.150-153 However, this approach also has certain 

limitations. Specifically, the use of FPP and GGPP analogues may alter the protein substrate 

specificity since the isoprenoid forms a part of the protein substrate binding pocket.154-156 

Further, the use of mutant enzymes with certain analogues may not reflect the behavior of the 

wild type enzyme.122 Lastly, analogues used in several studies failed to identify known 

prenylated proteins, reflecting inefficient incorporation of the analog into substrates because of 

competition with endogenous prenyl donors.148 In light of the limitations associated with 

chemical analogues and recent observations in yeast suggesting the prenylation of non-canonical 

C(x)3X and Cxx motifs in the context of a heat-shock protein, Ydj1p (see chapter 2), it is 

important that we expand our approaches for the identification of potential prenyltransferase 

substrates.  
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1.4 Biological significance of prenylation 

Prenylation plays an important role in signal transduction, control of cell differentiation 

and proliferation, cell survival and death, and cell migration.157-161 This post-translational 

modification has been implicated in numerous diseases, with cancer receiving the most attention. 

The well-known GTPases H-Ras, N-Ras, K-Ras4 and N-Ras are involved in signal transduction 

and cell growth and have known oncogenic forms that are in an “always active” form, causing 

over-proliferation of cells.162-168 Prenylation is also not only crucial for plasma membrane 

localization and normal biological function of Ras proteins, but also for the transformation of 

cells by oncogenic Ras.60, 169, 170 Therefore, targeting Ras prenylation for mitigating oncogenesis 

has been of great interest.  

Proteins beyond Ras family members have also been of interest in studying the role of 

prenylation in cancer. Certain members of the Rap family of proteins are implicated in 

tumorigenesis. For example, mutational activation of Rap1A signaling is associated with 

myeloproliferative disorder, a type of cancer involving aberrant development of blood cells. 

Abnormal Rap1 activity has also been linked to prostate cancer and osteosarcoma,171-174 while 

Rap2B protein has been reported to promote invasion, proliferation and migration in breast 

cancer.171 The Rho proteins which are predominantly geranylgeranylated are involved in 

regulation of actin cytoskeleton. Both RhoA and RhoB play a role in actin stress fibers and focal 

adhesions formation.175-178 CDC42 is associated with control of cell cycle, cell polarity, and 

filopodia formation. And Rac is involved in the regulation of lamellipodia and membrane ruffles, 

which are motile cell surface formations that are crucial for cell motility.179, 180 Several of these 

Rho proteins have been linked to angiogenesis and metastasis.181-183  
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With prenylation heavily implicated in cancer and tumor growth as described, several 

farnesyltransferase inhibitors (FTI) and geranylgeranyltransferase inhibitors (GGTI) have been 

explored as potential therapeutics.184-187  Despite the wide range of developed FTIs and GGTIs, 

all have shown limited success at the clinical level for treating cancer.184, 188-190 The low level of 

effectiveness for these inhibitors in cells and human patients stems from the observation that 

there is no correlation between inhibition of tumor growth and the mutations of Ras. While Ras 

is mutated and involved in cancer, the efficacy of these prenyltransferase inhibitors potentially 

lies in their ability to inhibit both prenyltransferases.191, 192 For example, K-Ras and N-Ras have 

been found to undergo geranylgeranylation when subjected to FTI treatment.193 This realization 

highlights the importance of identifying other proteins that undergo prenylation in order to 

design new, better therapeutic inhibitors or improve upon previously developed ones. 

Protein prenylation of prelamin A has also been implicated in Hutchinson-Gilford 

progeria syndrome (HGPS). HGPS is a rare genetic disorder that manifests with reduced weight 

gain, loss of body fat, alopecia, and a variety of bone and dental abnormalities resulting in 

premature aging and death caused by myocardial infarction or stroke during teenage years.194 

Following prenylation and subsequent CaaX proteolysis, the final step in lamin maturation 

involves cleavage of the C-terminal 15 amino acid peptide by the endoprotease ZMPSTE24.195-

197 However, in HGPS, the ZMPSTE24 cleavage site is lost due to alternative splicing of the 

prelamin A transcript due to a point mutation in LMNA, resulting in an in-frame deletion of 50 

amino acids.198, 199 Consequently, the farnesylated and carboxymethylated prelamin A 

accumulate on the nuclear envelope leading to misshapen cell nuclei and ultimately to the 

phenotypic manifestations of HGPS. Several clinical trials for the use of FTIs as therapeutic 

agents were initiated after promising results in cells and mice.200-203 The use of FTIs such as 
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lonafarnib, pravastatin, and zoledronic acid increased life expectancy for children with progeria 

and improved their quality of life through measurement of weight gain and arterial density.204-207 

Moreover, FTI treatment was also shown to decrease neurological symptoms such as seizures 

and headaches in one study, which are common comorbidities in HGPS patients.208 It is 

important to note however, that while FTIs proved useful in managing progeria symptoms and 

helped prolong life, they do not represent a cure for the disease. Investigations are focusing on 

gene therapy through stem cells and CRISPR-Cas9 gene editing as a potential avenue for curing 

patients who suffer from HGPS.209  

Prenylation is also involved in infectious diseases. More specifically, Legionella 

pneumophila, a gram-negative pathogenic bacterium that causes Legionnaires’ disease, was 

found to encode proteins that undergo prenylation.210-212 This bacterium employs a Dot/Icm 

secretion system where it introduces numerous effectors that modulate and allow for bacterial 

proliferation as well as induce host cell apoptosis.213-215 The F-box effector Ankyrin B (AnkB) 

protein is one such vital effector that enables bacterial proliferation. It was shown that 

prenylation of this effector protein by the host’s prenylation machinery is essential for anchoring 

the protein to the LCV membrane. This supports prenyltransferase inhibitors as attractive 

therapeutic agents to pursue for the treatment of Legionnaires’ disease.212  

Candida albicans is a yeast organism where the role of prenylation has been studied to 

gain a better understanding of the etiology of various types of yeast infections.216, 217 A genetic 

study by Song and coworkers reported that RAM2, a gene that encodes the common alpha-

subunit of both FTase and GGTase-I, is essential for C. albicans survival, suggesting that protein 

prenylation is an essential modification in the development of this organism.218 Indeed, genetic 

and pharmacological interventions that target the C. albicans GGTase-I resulted in a 
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morphologically abnormal phenotype. However, this treatment failed to inhibit yeast growth, 

most likely due to the cross-reactivity with FTase.217 

There has also been much interest in the prenylated proteome of the protozoan parasite, 

Plasmodium falciparum, which causes malaria. Studies show that P.falciparum exhibits protein 

prenyltransferase activity and can incorporate both farnesyl and geranylgeranyl moieties onto 

protein substrates.219-221 Howe and coworkers noted that inhibition of isoprenoid biosynthesis by 

chemical treatment blocks protein prenylation and is lethal to cultured P.falciparum, suggesting a 

critical role for prenylation in this parasite’s growth.222 Other studies report that parasite 

prenyltransferase activity inhibition blocks parasite replication.223-225 Taken together, these 

studies demonstrate the essential nature of prenylation for parasitic growth and provide an 

alternative potential avenue for the treatment of malaria as drug resistance to current 

antimalarials develops.226, 227  
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1.5 Importance and objectives 

 As discussed, prenylation serves as an important post-translational modification step for 

the proper functioning of several proteins that are implicated in many diseases. With over 1166 

proteins estimated to contain a CaaX motif in the human proteome, gaining a more 

comprehensive picture of the prenylome represents a key step in understanding the roles played 

by prenylation in protein maturation and disease. While current investigations into the prenylome 

have limited their scope of investigation into the four amino acid C-terminal CaaX motif, recent 

evidence for prenylation of non-canonical C(x)3X sequences in yeast and mammalian systems 

calls for the expansion of the classically recognized prenylation motif.86  

 This work aims to further expand the substrate selectivity of FTase by presenting 

evidence for the prenylation of a new motif, Cxx, by both yeast and mammalian enzymes 

through yeast genetic screening and biochemical characterization at the peptide and protein level. 

In addition to sequences identified from yeast genetic screening, a library of potential Cxx 

prenylation motifs was generated and tested for activity with mammalian FTase. In addition, 

studies were performed to assess the viability of FPP analogues with azo-benzene moieties that 

can be modulated with light as potential FTase donor substrates. In the last data chapter, efforts 

to develop a FRET-based system using phosphodiesterase delta subunit (PDE) as the acceptor 

protein for potentially prenylated Cxx sequences are presented. The main objective of this work 

is to characterize, identify, and expand upon the list of proteins that can be potentially prenylated 

in both in vitro and cellular contexts using a Cxx C-terminal motif.  
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Chapter 2: Investigation of shortened “Cxx” target sequence 

recognition by FTase and GGTase-I  

 

Portions of this chapter including figures and experimental results have been published and 

reprinted with permission from the publisher, reference 44, Ashok, S.;  Hildebrandt, E. R.;  Ruiz, 

C. S.;  Hardgrove, D. S.;  Coreno, D. W.;  Schmidt, W. K.; Hougland, J. L., Protein 

farnesyltransferase catalyzes unanticipated farnesylation and geranylgeranylation of shortened 

target sequences. Biochemistry 2020, 59 (11), 1149-1162. Copyright (2020) American Chemical 

Society.   

 

Co-author contributions include: ERH, CSR, DSH, and WKS performed the yeast screens and 

yeast-based biological assays. DWC assisted with FTase expression and purification and steady-

state analysis.   
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2.1 Introduction 

Protein lipidation is a posttranslational modification (PTM) that plays an essential role in 

the proper biological function of many proteins including protein trafficking and protein-protein 

interactions.1-9 Prenylation is one such modification wherein proteins are modified by the 

covalent attachment of an isoprenoid group to a cysteine residue near the C-terminus of the 

substrate protein. FTase catalyzes cysteine alkylation with a 15-carbon (C15) farnesyl group 

from farnesyl diphosphate (FPP) (Scheme 2.1), whereas GGTase-I performs this reaction with a 

20-carbon (C20) geranylgeranyl group.2-6, 9 Prenylation augments the hydrophobicity of modified 

proteins, which can influence membrane association and/or protein-protein interactions that are 

essential to the biological function of many prenylated proteins.7, 8, 10-12 

Following prenylation of the cysteine residue, many prenylated proteins undergo two 

additional processing steps.13, 14 Proteolytic removal of the amino acids C-terminal to the 

prenylcysteine is performed by the Rce1p or Ste24p proteases, and the C-terminal prenylcysteine 

is subsequently methylated by isoprenylcysteine carboxyl methyltransferase (ICMT). These 

additional post-prenylation modifications are vital for the proper function of many prenylated 

proteins.14-17 These additional modifications are not, however, necessarily coupled to prenylation 

as has been commonly accepted. For example, farnesylation of yeast Ydj1p HSP40 occurs 

without proteolysis or methylation.18, 19 While farnesylation is required for optimal Ydj1p 

function, proteolysis and carboxymethylation are detrimental to Ydj1p’s role. Continuing studies 

indicate that the protein prenylation pathway is more complex than originally proposed. 

The ‘CaaX’ motif has served as the defining paradigm for substrate selectivity for FTase 

and GGTase-I for three decades, beginning with the discoveries of prenylation in the context of 

yeast mating factors, Ras GTPases, and nuclear lamins.20-30 This sequence consists of an 
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invariant cysteine residue that is alkylated on its side-chain thiol, two amino acids commonly 

described to be aliphatic, and an X residue that can vary and influences peptide reactivity with 

FTase versus GGTase-I.25, 26, 31 The expanding number of known prenylated proteins stimulated 

biochemical, cell-based, and structural examinations of substrate determinants for selectivity by 

FTase and/or GGTase-I, which defined rules governing selectivity at each amino acid position 

within the CaaX motif.4, 26, 29, 32-37 Structural studies provided a needed framework for 

understanding FTase and GGTase-I substrate selectivity by revealing specific molecular 

interactions involved in recognizing both the CaaX substrate sequence and the FPP and GGPP 

prenyl donor cosubstrates.25, 26, 38, 39 Studies guided by FTase and GGTase-I structural models 

have allowed for efficient reengineering of both peptide and prenyl donor selectivity, reinforcing 

the importance of the interactions observed in these models for enzyme-substrate recognition.36, 

40, 41 More recently, bioinformatics and computational/docking approaches have facilitated 

prediction of CaaX motifs as likely FTase and/or GGTase-I substrates.27, 28, 30, 42 

Expanding upon the well-established ability of protein prenyltransferases to recognize 

and modify CaaX sequences, recent work supports the ability of FTase to modify cysteine 

residues in other sequence contexts. Both yeast and mammalian FTase can accept longer five 

amino acid ‘C(x)3X’sequences as substrates.6 We now show that both yeast and mammalian 

FTase can prenylate shorter three-amino acid Cxx sequences. We demonstrate that yeast FTase 

can modify Cxx sequences in vivo in the context of Ydj1p Hsp40 while mammalian FTase can 

modify Cxx reporter peptides in vitro. Surprisingly, we found that mammalian FTase can accept 

both FPP and GGPP as the prenyl donor cosubstrate for modification of certain Cxx substrate 

sequences in the first reported example of wild type FTase catalyzing peptide 

geranylgeranylation with comparable efficiency to farnesylation.43 This new class of FTase 
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substrates and the potential for their promiscuous modification with farnesyl and geranylgeranyl 

groups increases the complexity of protein prenylation, expanding the potential range of 

prenylation within proteomes and the roles played by these prenylated proteins in biological 

systems.  
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Scheme 2.1. The protein farnesylation and processing pathway. FTase catalyzes the covalent 

attachment of a 15-carbon farnesyl group to proteins terminating in CaaX (n=2) or C(x)3X (n=3) 

sequences, with subsequent proteolytic and carboxymethylation steps required for many but not 

all farnesylated proteins. Modification of CaaX (n=2) sequences is well-documented in various 

organisms; modification of C(x)3X sequences (n=3) has not yet been verified for a naturally 

occurring protein but has been demonstrated using an in vivo reporter. This figure has been 

reused with permission from reference 44 (Appendix II). 
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2.2 Genetic screening in yeast reveals prenylation of Cxx sequences can occur in vivo  

Note: This data was collected and analyzed by our collaborator Walter K. Schmidt (University 

of Georgia).  

Our research group recently reported that pentapeptide C(x)3X sequences can support 

prenylation of yeast genetic reporters based on the a-factor mating pheromone and Ydj1p Hsp40 

chaperone.6 Using these same reporters and complementary selection screens, our studies show 

that certain tripeptide Cxx sequences are also recognized and modified by yeast FTase in vivo. 

The biological activity of the yeast a-factor mating pheromone normally depends on 

farnesylation, proteolysis, and carboxylmethylation of the CVIA CaaX motif associated with its 

precursor. To explore whether shorter sequences could be similarly modified, a genetic selection 

scheme using a plasmid library of a-factor-Cxx variants was examined. Using MATa mfa1 mfa2 

yeast that cannot make a-factor on their own, the plasmid-encoding a-factor mutants were 

introduced, and the a-factor halo assay was performed. In this assay, MATa cells are either 

spotted or replica printed onto a thin lawn of MAT sst2-1 yeast that are super sensitive to a-

factor mating pheromone. The release of a-factor by MATa cells results in a zone of MAT cell 

growth inhibition (i.e. halo) surrounding the MATa cells. We pursued a yeast mating approach 

(i.e. positive selection) over the halo assay approach (i.e. screening) for easier identification of a-

factor producing colonies. 

Out of ~8,100 colonies screened; 45 diploid colonies were identified. The corresponding 

haploid parents were recovered from the replica master and scored for their a-factor production 

phenotype using the halo assay. A subset of 19 colonies having the strongest halo production was 

identified and associated plasmids were recovered and sequenced.44 A reduced set of 10 plasmids 
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represented the unique Cxx sequences after eliminating duplicate sequences (i.e. CII, CTI, and 

CVI). We estimate that ~99% of Cxx sequence space was evaluated during the selection strategy 

(see the Materials and Methods for description of coverage estimate). The plasmids were 

retransformed into MATa mfa1 mfa2 yeast and retested for the ability to confer a-factor 

production using the halo assay (Figure 2.1a). The halos formed with Cxx sequences were 

similar in size to each other and all smaller than that associated with wild type a-factor (CVIA), 

implying overall less a-factor production was associated with this wide variety of Cxx 

sequences. Of note, the a-factor halo assay is an extremely sensitive and qualitative method for 

measuring a-factor production that quickly saturates at low levels of pheromone.18  

A quantitative mating assay of a-factor production revealed that Cxx sequences were far 

less effective at promoting mating than wild type a-factor (Figure 2.1b); similar results were 

previously observed with longer C(x)3X sequences.6 Nonetheless, mating for Cxx sequences was 

reproducible and higher than that observed for unprenylated a-factor variants (i.e. a-factor-C, -

CV, -AVI, and -SVI) for which no mating was ever observed. Following mating analysis, we 

assessed whether increased expression of genes associated with a-factor production could 

improve mating of a-factor-CVI (Figure 2.1c). While over-expressed RAM1 (FTase  subunit) 

and STE24 (protease) had comparable levels of mating to the vector control, over-expressed 

RCE1 (CaaX protease) improved mating, suggesting that proteolysis of CVI by Rce1p may be 

limiting for production of a-factor in this instance. 

By comparison to the a-factor reporter, the Hsp40 Ydj1p only requires farnesylation of its 

CASQ CaaX motif to support its role in yeast thermotolerance. It does not undergo CaaX 

proteolysis and carboxymethylation, which are detrimental to its function.6, 18, 19, 45 Ydj1p thus 

served as a more direct reporter for farnesylation of Cxx sequences. A plasmid library of Ydj1p 
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Cxx mutants was transformed into ydj1∆ yeast in order to identify thermotolerant colonies .6 Out 

of ~1,200 colonies screened, 13 thermotolerant colonies were identified. The associated plasmids 

were recovered and sequenced. A reduced set of 10 plasmids represented the unique sequences 

after eliminating duplicate sequences (CAL, CEV, and CLL). We estimate that ~82% of Cxx 

sequences were evaluated during the screen (see the Materials and Methods for description of 

coverage estimate). The ability of these Cxx sequences to support prenylation was confirmed 

using a thermotolerance assay (Figure 2.2a). Moreover, several Cxx sequences identified in the 

a-factor halo assays were transferred onto Ydj1p and evaluated (i.e. CTI, CII, CFV and CVI). 

The growth observed for all mutants was qualitatively better than that observed for a non-

prenylated Ydj1p mutants that fail to grow at 40 °C (i.e. AVI and SVI). Most test sequences 

exhibited a thermotolerance phenotype like that observed for wildtype Ydj1p (CASQ) that is 

prenylated but uncleaved, while a few displayed an intermediate phenotype similar to that 

observed for a prenylated and cleaved Ydj1p mutant (CTLM).  

In addition to the thermotolerance phenotypic manifestations, prenylation of Ydj1p 

affects its mobility in SDS-PAGE counterintuitively such that the farnesylated protein has 

increased mobility (i.e. smaller apparent kDa) relative to unprenylated. The latter can be 

produced by expression in a FTase-deficient yeast strain (i.e. ram1). All the Ydj1p Cxx hits 

exhibited prenylation, albeit partially in most cases (Figure 2.2b). Importantly, Ydj1p-AVI and -

SVI variants were neither thermotolerant nor displayed a gel-shift, implying lack of prenylation 

and consistent with results derived using a-factor-AVI and -SVI. To confirm that observed gel-

shift phenotypes were not due to plasmid-based overexpression of the Ydj1p reporter, each Cxx 

hit was subsequently integrated into the genome as the sole copy of Ydj1p and gel-shift 

reassessed; thermotolerance was also assessed. More complete prenylation of Ydj1p-Cxx 
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variants was quantifiably observed, with several displaying complete modification (Figures 

2.2b). The Cxx sequences recovered with the a-factor reporter (i.e. CTI, CII, CFV and CVI) 

were generally prenylated to a higher extent than those directly recovered with the Ydj1p 

reporter as assessed by gel-shift, while two displayed weaker thermotolerance (i.e. CFV and 

CVI). These results are consistent with the hypothesis that a-factor-derived sequences are likely 

more extensively modified after initial prenylation (i.e. cleaved and carboxylmethylated), which 

is known to diminish Ydj1p-based thermotolerance.18, 19 Overall, complete or near complete 

prenylation of Cxx sequences in the context of Ydj1p supports the possibility that such 

sequences may be modified when in a natural protein context. 
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Figure 2.1. Phenotypes of a-factor Cxx variants. a) The spot halo assay is a highly sensitive 

and qualitative measure of a-factor production. SM2331 (MATa mfa1 mfa2) was transformed 

with plasmids encoding a-factor mutants or vector (CEN LEU2), resultant strains cultured as 

spots on YPD for 48 hours at 30 °C, and spots replica transferred onto a thin lawn of RC757 

(MATa sst2-1). A zone of growth inhibition (i.e. halo) indicates pheromone production. b) The 

mating assay is used for relative measures of a-factor production. The MATa strains described in 

panel a) were tested in combination with IH1793 (MAT lys1). All values are relative to diploid 

production (i.e. mating events) observed with MATa yeast expressing wildtype a-factor (CVIA; 

set to 100% mating efficiency). Mating values were determined from two experiments in which 

each sample was minimally evaluated in duplicate. c) The mating efficiencies for a-factor-CVI 

were determined as described in panel b) under conditions where the indicated CaaX modifying 

enzyme was overexpressed via a 2µ plasmid. All values are relative to diploid production (i.e. 

mating events) observed with an empty vector 2µ plasmid. Values represent the average of three 

biological replicates. RCE1 encodes the Ras Converting Enzyme 1 (Rce1p) CaaX protease. 

STE24 encodes Sterile Protein 24 (Ste24p). Both Rce1p and Ste24p can cleave the a-factor CaaX 

motif. RAM1 encodes the FTase  subunit, whose overexpression improves FTase activity in 

some yeast strains.46 This figure has been reused with permission from reference 44 (Appendix 

II). This data was collected and analyzed by our collaborator Walter K. Schmidt (University of 

Georgia). 
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Figure 2.2. Phenotypes and isoprenylation status of Ydj1p Cxx variants. a) The indicated 

Ydj1p Cxx variants were transformed into the yWS2544 (ydj1::NATR) strain background and 

assessed for farnesyl-dependent biological activity using a thermotolerance assay. At 37 °C, 

yeast cannot grow in the absence of Ydj1p (i.e. vector). At 40 °C, yeast cannot grow in the 

absence of farnesylated Ydj1p (i.e. AVI and SVI), and shunted Ydj1p (i.e. CASQ) supports 

better growth than cleaved and carboxylmethylated Ydj1p (i.e. CTLM); shunted refers to 

sequences that are farnesylated but not additionally modified (see Scheme 1). Each set of spots 

represents a 10-fold dilution series derived from a saturated culture initially grown in selective 

media. b) The mobility shift assay assesses the prenylation level of each Ydj1p Cxx variant. It 

relies on the observation that unmodified and farnesylated Ydj1p can be separated by SDS-

PAGE, with the farnesylated species exhibiting a counterintuitive smaller apparent molecular 

mass relative to unmodified. Whole cell extracts were prepared as two sets then analyzed by 

SDS-PAGE and anti-Ydj1p immunoblot. One set was prepared from yWS2544 and yWS2542 

(ram1::KANR ydj1::NATR) strain backgrounds that were transformed with the same plasmids 

used for thermotolerance testing; see panel a); RAM1 encodes the FTase  subunit, and its 

absence eliminates endogenous FTase activity. Bands associated with the yWS2544 extracts 

shown in panel b) were quantified using ImageJ, and these values were used to plot the percent 

modification for each Cxx sequence (black bars, single biological replicate). ND – not 

determined; A – Cxx sequences initially identified using a-factor reporter and subsequently 

transferred onto Ydj1p; B – Cxx sequences directly identified using Ydj1p reporter. This figure 

has been reused with permission from reference 44 (Appendix II). This data was collected and 

analyzed b your collaborator Walter K. Schmidt (University of Georgia). 
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2.3 Farnesylation of Cxx peptide substrates by mammalian prenyltransferases  

Yeast and mammalian FTase orthologs have been shown to exhibit non-identical but 

largely overlapping peptide selectivities.47 Accordingly, the ability of purified mammalian FTase 

and GGTase-I to prenylate Cxx sequences was determined in the context of fluorescently labeled 

synthetic peptides (i.e. dns-GCxx). To supplement the 10 Cxx sequences selected from those 

identified as prenylation substrates by genetic screening (see Figures 2.1 and 2.2), a peptide 

panel of Cxx sequences derived from the human proteome was constructed. A Prosite database 

scan revealed 1074 human proteins with C-terminal Cxx sequences, with 847 of these not 

contained within longer CaaX or C(x)3X sequences or associated with CC or CxC sequences that 

can serve as Rab GGTase-II substrates (Table 2.1).48 From this pool, 75 candidate Cxx 

sequences were selected for detailed analysis based on the requirements of annotated membrane 

localization of the parent protein; conservation of the cysteine in at least two other species; 

evidence of protein expression; and lack of any predicted transmembrane helices (Table 2.2). 

This list of human-derived sequences included 12 sequences that were identified by genetic 

screening in yeast. 

The panel of 85 dns-GCxx peptides were screened for prenylation activity with rat FTase 

and GGTase-I using RP-HPLC to directly detect the prenylated product.6 Farnesylation of 64 of 

the 85 peptide sequences was confirmed, with the extent of peptide farnesylation following 

overnight incubation (~16 hours) varying across these 64 sequences and 26 peptides reacting to 

completion (Table 2.3 and Figure 2.3). The varying reactivity of these Cxx peptides suggests that 

FTase exhibits sequence selectivity with these truncated prenylation motifs rather than 

recognizing the cysteine thiol sidechain alone. In contrast to FTase, peptide geranylgeranylation 
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with GGTase-I and GGPP under analogous conditions was not observed, indicating that these 

shorter peptide sequences do not serve as GGTase-I substrates. 

To confirm dns-GCxx farnesylation, two representative dns-GCxx peptides were found to 

be modified by FTase via mass spectrometry (Figure 2.4). Two major ions were observed for 

dns-GCYL, corresponding to the farnesylated peptide (M+H = 892 Da) and a higher molecular 

weight peak consistent with oxidation of the farnesyl cysteine thioether to a sulfone, (S=O, 

M+16+H = 908 Da) as noted in mass spectrometry of related molecules.49 For dns-GCWI, only 

one major species was identified, corresponding to an oxidized farnesylated product (S=O, 

M+16+H = 931 Da). 
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Table 2.1. Potential FTase substrate sequences within the human proteome 

Potential FTase substrate sequences  Prosite search stringb Number of sequences 

unconstrained searches   

Cxx Cxx> 1074 

CaaX Cxxx> 1208 

C(x)3X Cxxxx> 1015 

   

constrained searchesa   

Cxx not within CaaX or C(x)3X {c}C-{c}C{c}{c}> 847 

CaaX without downstream Cys C{c}{c}{c}> 1062 

C(x)3X without downstream Cys C{c}{c}{c}{c}> 824 

 
anoted constraints were applied to ignore Cxx sequences that were part of a longer sequence (e.g. 

CCxx and CxCxx) and potential GGTase-II consensus sequences (e.g. CxC, xCC). 

 
blower case c denotes positions where Cys was a negative constraint; > denotes the C-terminal 

constraint.  



 

77 
 

Table 2.2. Peptide information table for C-terminal Cxx sequences tested in the human 

genome. 

Human-

derived 

sequences 

Uniprot 

ID Protein Notes 

CAF* P36551 

Oxygen-dependent coproporphyrinogen-III oxidase, 

mitochondrial Isoform 2 only 

  Q8NI17 Interleukin-31 receptor subunit alpha Isoform 11 only 

CAG Q9NP78 ATP-binding cassette sub-family B member 9 Isoform 5 only 

  A8MXD5 

Glutaredoxin domain-containing cysteine-rich 

protein 1 Isoform 1 only 

CAL* Q9NUI1 Peroxisomal 2,4-dienoyl-CoA reductase Isoform 2 only 

  Q1HG43 Dual oxidase maturation factor 1 

Isoforms 1 & 3 

only 

  Q6IA86 Elongator complex protein 2 

Isoforms 1, 2, 3, 5, 

6, & 7 only 

  O15504 Nucleoporin-like protein 2 Isoform 2 only 

  Q9UKA8 Calcipressin-3 

Isoforms 1, 2, 5, & 

6 only 

CAP P19419 ETS domain-containing protein Elk-1 Isoform 2 only 

  Q6NT32 Carboxylesterase 5A 

Isoforms 1, 2, 3, & 

4 only 

  P10914 Interferon regulatory factor 1 Isoform 1 only 

  P15941 Mucin-1 Isoform 13 only 

CAV Q8N4H5 

Mitochondrial import receptor subunit TOM5 

homolog Isoform 2 only 

CDI Q8N1A6 UPF0462 protein C4orf33 Isoform 1 only 

  O95475 Homeobox protein SIX6 Isoform 1 only 

CDP O14990 Protein phosphatase inhibitor 2 family member C Isoform 1 only 

CDV O95343 Homeobox protein SIX3 Isoform 1 only 

CEF Q8IWL1 Pulmonary surfactant-associated protein A2 Isoform 1 only 

  Q8IWL2 Pulmonary surfactant-associated protein A1 

Isoforms 1 & 2 

only 

  P35247 Pulmonary surfactant-associated protein D Isoform 1 only 

  P04155 Trefoil factor 1 Isoform 1 only 

CEG P78346 Ribonuclease P protein subunit p30 Isoform 1 only 

  P0CG00 

Putative zinc finger and SCAN domain-containing 

protein 5D Isoform 1 only 

CEV* P56559 ADP-ribosylation factor-like protein 4C Isoform 2 only 

  Q7L8W6 Diphthine--ammonia ligase Isoform 2 only 

  Q86UE6 

Leucine-rich repeat transmembrane neuronal protein 

1 Isoform 1 only 

  O43300 

Leucine-rich repeat transmembrane neuronal protein 

2 Isoform 1 only 
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  Q86VH5 

Leucine-rich repeat transmembrane neuronal protein 

3 Isoform 2 only 

CEY A1A4Y4 Immunity-related GTPase family M protein Isoform 1 only 

CFS P31358 CAMPATH-1 antigen Isoform 1 only 

  Q86YW9 

Mediator of RNA polymerase II transcription 

subunit 12-like protein 

Isoforms 2 & 3 

only 

CFT* Q8N957 

Ankyrin repeat and fibronectin type-III domain-

containing protein 1 Isoform 1 only 

  Q13111 Chromatin assembly factor 1 subunit A Isoform 2 only 

  O15440 Multidrug resistance-associated protein 5 Isoform 2 only 

CFV* P05997 Collagen alpha-2(V) chain Isoform 1 only 

  Q96L33 Rho-related GTP-binding protein RhoV Isoform 1 only 

CGF P0DML2 Chorionic somatomammotropin hormone 1 Isoform 1 only 

  P0DML3 Chorionic somatomammotropin hormone 2 

Isoforms 1 & 3 

only 

  Q14406 Chorionic somatomammotropin hormone-like 1 

Isoforms 1, 2, 3, & 

4 only 

  Q13772 Nuclear receptor coactivator 4 Isoform 4 only 

  P01242 Growth hormone variant 

Isoforms 1 & 3 

only 

  P01241 Somatotropin 

Isoforms 1, 2, 3, 4, 

& 5 only 

CGI Q8WVE0 EEF1A lysine methyltransferase 1 Isoform 1 only 

  O15533 Tapasin Isoform 2 only 

CGV Q15059 Bromodomain-containing protein 3 Isoform 2 only 

  P61626 Lysozyme C Isoform 1 only 

  Q9BRL7 Vesicle-trafficking protein SEC22c Isoform 1 only 

CHF O60548 Forkhead box protein D2 Isoform 1 only 

CHP Q9H3Y6 Tyrosine-protein kinase Srms Isoform 1 only 

CIE Q96DP5 Methionyl-tRNA formyltransferase, mitochondrial Isoform 1 only 

  Q9Y6K9 NF-kappa-B essential modulator 

Isoforms 1, 2, & 3 

only 

CII* Q5T1H1 Protein eyes shut homolog Isoform 2 only 

  Q96CV9 Optineurin 

Isoforms 1, 2, & 3 

only 

  Q6WBX8 Cell cycle checkpoint control protein RAD9B 

Isoforms 1 & 4 

only 

  P82675 28S ribosomal protein S5, mitochondrial Isoform 2 only 

CIL P08174 Complement decay-accelerating factor Isoform 3 only 

  Q13278 Putative protein RIG Isoform 1 only 

CIQ Q96NS5 Ankyrin repeat and SOCS box protein 16 Isoform 1 only 

  Q6ZVN8 Hemojuvelin 

Isoform 1, 2, & 3 

only 

CKH O14905 Protein Wnt-9b Isoform 1 only 
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CKI P26371 Keratin-associated protein 5-9 Isoform 1 only 

  P61244 Protein max Isoform 5 only 

  Q7RTM1 Proton channel OTOP1 Isoform 1 only 

CKK O76000 Putative olfactory receptor 2B3 Isoform 1 only 

  P25398 40S ribosomal protein S12 Isoform 1 only 

  O43147 Small G protein signaling modulator 2 Isoform 5 only 

  P04179 Superoxide dismutase [Mn], mitochondrial 

Isoforms 1, 2, 3, & 

4 only 

CKP P28335 5-hydroxytryptamine receptor 2C Isoform 2 only 

  Q15131 Cyclin-dependent kinase 10 

Isoforms 1, 2, 3, & 

7 only 

CKS P16671 Platelet glycoprotein 4 Isoform 2 only 

  Q9NYP9 Protein Mis18-alpha Isoform 1 only 

  P08949 Neuromedin-B Isoform 2 only 

  Q9Y3N9 Olfactory receptor 2W1 Isoform 1 only 

CKV P30443 

HLA class I histocompatibility antigen, A-1 alpha 

chain Isoform 1 only 

  P01892 

HLA class I histocompatibility antigen, A-2 alpha 

chain Isoform 1 only 

  P04439 

HLA class I histocompatibility antigen, A-3 alpha 

chain Isoform 1 only 

  P13746 

HLA class I histocompatibility antigen, A-11 alpha 

chain 

Isoforms 1 & 2 

only 

  P30447 

HLA class I histocompatibility antigen, A-23 alpha 

chain Isoform 1 only 

  P05534 

HLA class I histocompatibility antigen, A-24 alpha 

chain Isoform 1 only 

  P18462 

HLA class I histocompatibility antigen, A-25 alpha 

chain Isoform 1 only 

  P30450 

HLA class I histocompatibility antigen, A-26 alpha 

chain Isoform 1 only 

  P30512 

HLA class I histocompatibility antigen, A-29 alpha 

chain Isoform 1 only 

  P16188 

HLA class I histocompatibility antigen, A-30 alpha 

chain Isoform 1 only 

  P16189 

HLA class I histocompatibility antigen, A-31 alpha 

chain Isoform 1 only 

  P10314 

HLA class I histocompatibility antigen, A-32 alpha 

chain Isoform 1 only 

  P16190 

HLA class I histocompatibility antigen, A-33 alpha 

chain Isoform 1 only 

  P30453 

HLA class I histocompatibility antigen, A-34 alpha 

chain Isoform 1 only 

  P30455 

HLA class I histocompatibility antigen, A-36 alpha 

chain Isoform 1 only 
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  P30456 

HLA class I histocompatibility antigen, A-43 alpha 

chain Isoform 1 only 

  P30457 

HLA class I histocompatibility antigen, A-66 alpha 

chain Isoform 1 only 

  P01891 

HLA class I histocompatibility antigen, A-68 alpha 

chain Isoform 1 only 

  P10316 

HLA class I histocompatibility antigen, A-69 alpha 

chain Isoform 1 only 

  P30459 

HLA class I histocompatibility antigen, A-74 alpha 

chain Isoform 1 only 

  Q09160 

HLA class I histocompatibility antigen, A-80 alpha 

chain Isoform 1 only 

  Q9Y271 Cysteinyl leukotriene receptor 1 Isoform 1 only 

  Q14680 Maternal embryonic leucine zipper kinase 

Isoforms 1, 2, 3, 4, 

5, 6, 7, & 8 only 

CLD Q8NBU5 ATPase family AAA domain-containing protein 1 Isoform 1 only 

  Q9BSJ5 Uncharacterized protein C17orf80 

Isoforms 1 & 2 

only 

  O95402 

Mediator of RNA polymerase II transcription 

subunit 26 Isoform 1 only 

  Q9UJV8 Purine-rich element-binding protein gamma Isoform 1 only 

  Q8WVN8 Ubiquitin-conjugating enzyme E2 Q2 Isoform 2 only 

CLG Q9UNE2 Rab effector Noc2 

Isoforms 1 & 2 

only 

  Q9BU02 Thiamine-triphosphatase Isoform 1 only 

CLK Q8IX21 SMC5-SMC6 complex localization factor protein 2 Isoform 2 only 

  Q8TDI7 Transmembrane channel-like protein 2 Isoform 4 only 

  P61081 NEDD8-conjugating enzyme Ubc12 Isoform 1 only 

  Q86YA3 Protein ZGRF1 Isoform 3 only 

CLL* Q6ZUX7 LHFPL tetraspan subfamily member 2 protein Isoform 1 only 

  Q9NVC6 

Mediator of RNA polymerase II transcription 

subunit 17 Isoform 1 only 

  Q75NE6 Putative microRNA 17 host gene protein Isoform 1 only 

  Q00765 Receptor expression-enhancing protein 5 Isoform 2 only 

  Q7Z2W9 39S ribosomal protein L21, mitochondrial 

Isoforms 1 & 2 

only 

  Q96I59 Probable asparagine--tRNA ligase, mitochondrial 

Isoforms 1 & 2 

only 

CLP P02545 Prelamin-A/C Isoform 4 only 

  Q9Y5Y2 Cytosolic Fe-S cluster assembly factor NUBP2 Isoform 1 only 

  Q9Y6I8 Peroxisomal membrane protein 4 Isoform 2 only 

  Q96HL8 SH3 domain-containing YSC84-like protein 1 Isoform 5 only 

  Q9P2F9 Zinc finger protein 319 Isoform 1 only 

CLV* Q9H694 Protein bicaudal C homolog 1 Isoform 2 only 

  O60308 Centrosomal protein of 104 kDa Isoform 2 only 
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  Q14166 Tubulin--tyrosine ligase-like protein 12 Isoform 1 only 

CMF Q6NVY1 3-hydroxyisobutyryl-CoA hydrolase, mitochondrial Isoform 2 only 

  Q9GZX9 Twisted gastrulation protein homolog 1 Isoform 1 only 

CNL Q9C091 GREB1-like protein Isoform 4 only 

  P29728 2'-5'-oligoadenylate synthase 2 Isoform 3 only 

  P22234 Multifunctional protein ADE2 

Isoforms 1 & 2 

only 

  Q9UJT1 Tubulin delta chain 

Isoforms 1, 2, 3, 4, 

5, & 6 only 

CNR O15194 CTD small phosphatase-like protein 

Isoform 1 & 2 

only 

CPG Q6ZMM2 ADAMTS-like protein 5 

Isoform 1 & 2 

only 

  Q8TDQ1 CMRF35-like molecule 1 

Isoform 2, 4, & 5 

only 

  Q8N9R0 

Putative uncharacterized protein encoded by 

LINC00304 Isoform 1 only 

  Q6TCH4 Membrane progestin receptor delta Isoform 2 only 

  Q9Y6S9 Ribosomal protein S6 kinase-like 1 Isoform 2 only 

CPH Q8NFI3 Cytosolic endo-beta-N-acetylglucosaminidase Isoform 3 only 

  Q9Y5X2 Sorting nexin-8 Isoform 1 only 

CPI Q9BSY4 

Coiled-coil-helix-coiled-coil-helix domain-

containing protein 5 Isoform 2 only 

  Q9GZS3 WD repeat-containing protein 61 Isoform 1 only 

CPK Q9H9Q2 COP9 signalosome complex subunit 7b Isoform 3 only 

  Q3SYA9 Putative POM121-like protein 1 Isoform 1 only 

  Q96LQ0 Protein phosphatase 1 regulatory subunit 36 Isoform 1 only 

CPL P30926 Neuronal acetylcholine receptor subunit beta-4 Isoform 2 only 

  Q9UP79 

A disintegrin and metalloproteinase with 

thrombospondin motifs 8 Isoform 1 only 

  P38398 Breast cancer type 1 susceptibility protein Isoform 2 only 

  Q8TDM6 Disks large homolog 5 

Isoforms 1, 2, 4, & 

5 only  

CPP Q7Z695 

Uncharacterized aarF domain-containing protein 

kinase 2 Isoform 1 only 

  Q00975 

Voltage-dependent N-type calcium channel subunit 

alpha-1B Isoforms 2 only 

  P56202 Cathepsin W Isoform 1 only 

  Q00535 Cyclin-dependent-like kinase 5 

Isoform 1 & 2 

only 

  Q8NEG7 Protein DENND6B Isoform 1 only 

  O15527 N-glycosylase/DNA lyase Isoform 2 only 

  O75818 Ribonuclease P protein subunit p40 

Isoforms 1 & 2 

only 

CPR O95863 Zinc finger protein SNAI1 Isoform 1 only 
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  O43435 T-box transcription factor TBX1 Isoform 3 only 

CPT P25067 Collagen alpha-2(VIII) chain Isoform 1 only 

  Q99689 Fasciculation and elongation protein zeta-1 Isoform 1 only 

  Q9UHY8 Fasciculation and elongation protein zeta-2 

Isoforms 1 & 2 

only 

  Q93038 

Tumor necrosis factor receptor superfamily member 

25 

Isoforms 5 & 6 

only 

CPV P60981 Destrin 

Isoforms 1 & 2 

only 

  P55265 

Double-stranded RNA-specific adenosine 

deaminase 

Isoforms 1, 2, 3, 4, 

& 5 only 

  Q7Z7L9 Zinc finger and SCAN domain-containing protein 2 Isoform 4 only 

CPY P51460 Insulin-like 3 Isoform 1 only 

CQA Q92784 Zinc finger protein DPF3 Isoform 1 only 

  Q5VZR4 Hippocampus abundant transcript-like protein 2 Isoform 1 only 

  P09086 POU domain, class 2, transcription factor 2 Isoform 4 only 

CQL* Q8WXX0 Dynein heavy chain 7, axonemal Isoform 4 only 

  P55082 Microfibril-associated glycoprotein 3 

Isoforms 1 & 2 

only 

CQS P04054 Phospholipase A2 Isoform 1 only 

  A6NFN3 RNA binding protein fox-1 homolog 3 Isoform 2 only 

CQV Q96M34 Testis-specific expressed protein 55 Isoform 1 only 

  P0C0L4 Complement C4-A 

Isoforms 1 & 2 

only 

  P0C0L5 Complement C4-B Isoform 1 only 

  Q8IWL8 Saitohin Isoform 1 only 

CRD Q86UQ0 Zinc finger protein 589 

Isoforms 1 & 2 

only 

CRE Q96CX2 BTB/POZ domain-containing protein KCTD12 Isoform 1 only 

  Q15615 Olfactory receptor 4D1 Isoform 1 only 

CRF P09466 Glycodelin 

Isoforms 1, 2, & 3 

only 

CRL Q8TDW5 Synaptotagmin-like protein 5 

Isoforms 1 & 2 

only 

CRQ P08908 5-hydroxytryptamine receptor 1A Isoform 1 only 

  Q6P2C8 

Mediator of RNA polymerase II transcription 

subunit 27 

Isoforms 1 & 2 

only 

  Q4G0F5 Vacuolar protein sorting-associated protein 26B Isoform 1 only 

CRV Q9Y2C4 Nuclease EXOG, mitochondrial Isoform 2 only 

CSA Q1MX18 Protein inscuteable homolog Isoform 6 only 

  Q8N983 39S ribosomal protein L43, mitochondrial Isoform 1 only 

  P51811 Membrane transport protein XK Isoform 1 only 

CSF Q9BTY2 Plasma alpha-L-fucosidase Isoform 2 only 
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  Q6QHF9 

Peroxisomal N(1)-acetyl-spermine/spermidine 

oxidase Isoform 8 only 

  Q9Y2Y8 Proteoglycan 3 Isoform 1 only 

  P12757 Ski-like protein Isoform 2 only 

CSG P41223 Protein BUD31 homolog Isoform 1 only 

  O43866 CD5 antigen-like Isoform 1 only 

  Q96KN8 Phospholipase A and acyltransferase 5 Isoform 2 only 

  Q12794 Hyaluronidase-1 Isoform 4 only 

  Q9BXT6 RNA helicase Mov10l1 Isoform 5 only 

CSI Q9Y2T5 G-protein coupled receptor 52 Isoform 1 only 

  Q9Y5Q9 General transcription factor 3C polypeptide 3 Isoform 1 only 

CSK Q53EZ4 Centrosomal protein of 55 kDa Isoform 1 only 

  P04275 von Willebrand factor Isoform 1 only 

CSL Q9P2M7 Cingulin Isoform 2 only 

  O95278 Laforin 

Isoforms 1, 3, 6, 7, 

& 8 only 

  O75593 Forkhead box protein H1 Isoform 1 only 

  Q6KB66 Keratin, type II cytoskeletal 80 Isoform 2 only 

  P14598 Neutrophil cytosol factor 1 Isoform 2 only 

  Q9NQB0 Transcription factor 7-like 2 Isoform 12 only 

  Q96N03 

V-set and transmembrane domain-containing 

protein 2-like protein Isoform 1 only 

  Q9ULD5 Zinc finger protein 777 Isoform 1 only 

CSQ Q5HY92 Fidgetin Isoform 1 only 

  Q8IVF1 NUT family member 2A Isoform 1 only 

  A6NNL0 NUT family member 2B Isoform 1 only 

  Q5VT03 NUT family member 2D Isoform 1 only 

  B1AL46 NUT family member 2E Isoform 1 only 

  A1L443 NUT family member 2F Isoform 1 only 

  Q5VZR2 NUT family member 2G Isoform 1 only 

  P33764 Protein S100-A3 Isoform 1 only 

CSS Q5T1V6 Probable ATP-dependent RNA helicase DDX59 Isoform 2 only 

  Q9H0R5 Guanylate-binding protein 3 Isoform 4 only 

  P05112 Interleukin-4 

Isoforms 1 & 2 

only 

  Q86X10 Ral GTPase-activating protein subunit beta 

Isoforms 1, 2, 3, & 

4 only 

  Q9NY57 Serine/threonine-protein kinase 32B 

Isoforms 1 & 2 

only 

CST Q9BPY3 Protein FAM118B Isoform 1 only 

  Q8TC05 Nuclear protein MDM1 Isoform 3 only 

  P16471 Prolactin receptor Isoform 9 only 

  Q7Z4G4 tRNA (guanine(10)-N2)-methyltransferase homolog Isoform 3 only 
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CSV* Q9UEW3 Macrophage receptor MARCO 

Isoforms 1 & 2 

only 

  Q9H3H1 tRNA dimethylallyltransferase 

Isoforms 1, 2, 3, 4, 

5, & 6 only 

  A8MW92 PHD finger protein 20-like protein 1 Isoform 1 only 

  Q9UKA9 Polypyrimidine tract-binding protein 2 

Isoforms 5 & 6 

only 

  O95969 Secretoglobin family 1D member 2 Isoform 1 only 

CSY P13727 Bone marrow proteoglycan 

Isoforms 1 & 2 

only 

  A4D1P6 WD repeat-containing protein 91 Isoform 3 only 

CTE Q9H3K6 BolA-like protein 2 Isoform 2 only 

  Q14204 Cytoplasmic dynein 1 heavy chain 1 Isoform 1 only 

  Q14141 Septin-6 Isoform 1 only 

  Q6PF04 Zinc finger protein 613 

Isoforms 1 & 2 

only 

CTH P02790 Hemopexin Isoform 1 only 

CTP Q9UBL6 Copine-7 

Isoforms 1 & 2 

only 

  Q5T1A1 DC-STAMP domain-containing protein 2 Isoform 2 only 

  O43776 Asparagine--tRNA ligase, cytoplasmic Isoform 1 only 

CTS P28222 5-hydroxytryptamine receptor 1B Isoform 1 only 

  Q6UX04 Spliceosome-associated protein CWC27 homolog Isoform 2 only 

  O15534 Period circadian protein homolog 1 Isoform 1 only 

CTV* A6H8Y1 Transcription factor TFIIIB component B'' homolog Isoform 2 only 

  O75044 SLIT-ROBO Rho GTPase-activating protein 2 Isoform 1 only 

CVF P59541 Taste receptor type 2 member 30 Isoform 1 only 

  P29144 Tripeptidyl-peptidase 2 Isoform 1 only 

CVG Q96PK6 RNA-binding protein 14 Isoform 3 only 

  Q9BWF3 RNA-binding protein 4 Isoform 3 only 

  Q9Y336 Sialic acid-binding Ig-like lectin 9 Isoform 2 only 

CVK P01008 Antithrombin-III Isoform 1 only 

  Q9C0E2 Exportin-4 Isoform 1 only 

CVL* Q32MH5 Protein FAM214A Isoform 2 only 

  P23510 Tumor necrosis factor ligand superfamily member 4 

Isoforms 1 & 2 

only 

CVM Q12946 Forkhead box protein F1 Isoform 1 only 

  Q12947 Forkhead box protein F2 Isoform 1 only 

  Q9NS66 Probable G-protein coupled receptor 173 Isoform 1 only 

CVY Q14156 Protein EFR3 homolog A 

Isoforms 1, 2, & 3 

only 

  Q9Y2G0 Protein EFR3 homolog B 

Isoforms 1 & 2 

only 

  Q6ZUU3 FOXL2 neighbor protein Isoform 1 only 
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  Q92750 Transcription initiation factor TFIID subunit 4B Isoform 2 only 

CWF Q9UF11 

Pleckstrin homology domain-containing family B 

member 1 

Isoforms 1, 2, 3, & 

4 only 

CWI Q68EM7 Rho GTPase-activating protein 17 Isoform 5 only 

CYL Q9BQ51 Programmed cell death 1 ligand 2 Isoform 3 only 

 *sequences that were also recovered from yeast genetic screening 
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Table 2.3. Reactivity of Cxx peptides with mammalian FTase and prenyl donorsa,b 

Complete prenylation by both prenyl donors (3 total)b 

CFTc  CFVd  CMF   

       

Complete prenylation with FPP; partial prenylation with GGPP (22 total)b 

CAFc   CIL   CQA   CVLc 

CALc  CLLc  CQLc  CWF 

CAV   CLVd   CQV   CWI 

CEVc  CNVc  CSI  CYL 

CFS  CPI  CSVc   

CIId  CPV  CTVc   

       

Complete prenylation with FPP; no prenylation with GGPP (1 total)b
 

CGI       

       

Complete prenylation with GGPP; partial prenylation with FPP (2 total) b 

CGF   CVF       

       

Partial prenylation with FPP and GGPP (11 total)b 

CEF  CLP  CSY  CVM 

CHF  CPL  CTS  CVY 

CLG  CSF  CVG   

       

Partial prenylation with FPP; no prenylation with GGPP (25 total)b 

CAG  CIE  CPH  CST 

CAP  CIQ  CPT  CTH 

CDI  CKI  CRL  CTP 

CDV  CKV  CRV  CVK 

CEG  CLD  CSA   

CEY  CLK  CSL   

CHP  CNL  CSQ   

       

Non-reactive with either prenyl donor (21 total)b 

CDP  CNR   CQS  CSK 

CGV  CPG  CRD  CSS 

CKH  CPK  CRE  CTE 

CKK  CPP  CRF   

CKP  CPR  CRQ   

CKS  CPY  CSG   

       

Peptide sequences from a-factor screen that were not tested (7 total) 

CVId  CTId  CLId  CLAd 

CRId  CCId  CFYd   
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a Sequences were analyzed in the context of the indicated dns-GCxx peptide; each dns-GCxx 

peptide (3 μM) was reacted with FTase (200 nM) and FPP or GGPP (10 µM) and products 

analyzed by RP-HPLC as described in Materials and Methods. 
b Peptide reactivity was assigned into one of three levels: “Complete”, 85% or greater substrate 

to product conversion by peak integration; “Partial”, detectable substrate to product conversion 

(up to 84%); or no detectable product. 
c Peptide sequence identified from Ydj1p screen. 
d Peptide sequence identified from a-factor screen. 
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Figure 2.3. FTase-catalyzed farnesylation of Cxx peptides confirmed by RP-HPLC 

analysis. a) dns-GCFV; b) dns-GCFS; c) dns-GCSL; d) dns-GCDV. Purple and black lines 

denote reactions with or without 10 μM FPP, respectively. Reactions and RP-HPLC analysis 

were carried out as described in Materials and Methods. This figure has been reused with 

permission from reference 44 (Appendix II).  
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Figure 2.4. LC-MS confirmation of FTase-catalyzed dns-GCxx peptide farnesylation. a) 

LC-MS analysis of farnesylated dns-GCYL, with peaks at 892 m/z and 908 m/z corresponding to 

non-oxidized and oxidized farnesylated peptide, respectively; b) LC-MS analysis of farnesylated 

dns-GCWI, with peak at 931 m/z representing the oxidized farnesylated peptide. (Fr) denotes the 

farnesylation of cysteine sidechain. This figure has been reused with permission from reference 

44 (Appendix II). LC-MS analysis of prenylated peptides was assisted by Tongyin Zheng from 

the Castañeda Lab (Syracuse University).  
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2.4 Geranylgeranylation of Cxx peptide sequences by FTase 

The selectivity of FTase for FPP over GGPP as prenyl donor has been attributed to steric 

clashes between FTase active site residues and the larger GGPP isoprenoid chain when it 

occupies the active site. Certain engineered FTase active site mutations have been shown to 

relive this clash.39, 41, 50 With the Cxx sequences being one amino acid shorter than the 

established CaaX prenylation motif, we hypothesized that FTase might be able to accommodate 

the larger isoprenoid donor GGPP for prenylation. Indeed, geranylgeranylation was observed for 

38 of the 85 dns-Cxx peptides by RP-HPLC when reactions contained FTase and GGPP (Figure 

2.5 and Table 2.3). FTase-catalyzed geranylgeranylation of Cxx peptides displayed sequence-

dependent variation of peptide reactivity as well with only 5 peptides exhibiting complete or 

near-complete modification. Geranylgeranylation of two representative dns-GCxx peptides, dns-

GCFT (S=O, M+16+H = 948 Da) and dns-GCYL (S=O, M+16+H = 976 Da), was verified by 

mass spectrometry (Figure 2.6).  
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Figure 2.5. FTase-catalyzed geranylgeranylation of dns-GCxx peptides. a) dns-GCVF; b) 

dns-GCMF; c) dns-GCAL; d) dns-GCLV. Orange and black lines denote reactions with or 

without 10 μM GGPP, respectively. Reactions and RP-HPLC analysis were carried out as 

described in Materials and Methods. This figure has been reused with permission from reference 

44 (Appendix II).  
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Figure 2.6. LC-MS confirmation of FTase-catalyzed dns-GCxx peptide 

geranylgeranylation. a) LC-MS analysis of geranylgeranylated dns-GCYL, with peak at 976 

m/z corresponding to the oxidized geranylgeranylated peptide; b) LC-MS analysis of 

geranylgeranylated dns-GCFT, with peak at 948 m/z representing the oxidized 

geranylgeranylated peptide. (Gr) denotes the geranylgeranylation of cysteine sidechain. This 

figure has been reused with permission from reference 44 (Appendix II). LC-MS analysis of 

prenylated peptides was assissted by Tongyin Zheng from the Castañeda lab (Syracuse 

University). 
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2.5 Competition assay to assess FTase preference for FPP versus GGPP 

We used a direct competition assay to delineate the relative lipid preference for FTase between 

FPP and GGPP given that it can use either to modify Cxx sequences. The five peptides (dns-

GCFT, dns-GCFV, dns-GCGF, dns-GCMF and dns-GCVF) that displayed the highest activity 

with GGPP in the RP-HPLC assay were selected to assess lipid preference by FTase (Tables 

2.3). Each peptide was incubated with FTase and 10 μM total prenyl donor, where the molar 

ratio of lipid varied from 100% GGPP to 100% FPP. Following the overnight reaction (~16 

hours), the modification associated with the product (farnesylation or geranylgeranylation) was 

determined by its RP-HPLC retention time (Figure 2.7a). For each peptide, the relative amount 

of geranylgeranylated product decreased in favor of farnesylation even when GGPP comprised 

the majority (i.e. 75%) of the prenyl pool available (Figure 2.7b-f). Unsurprisingly, this indicates 

a strong preference for FPP as an FTase co-substrate under most conditions but allows for 

unexpected use of GGPP in the absence of a farnesyl donor. 
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Figure 2.7. Prenyl donor competition reveals FTase preference for FPP over GGPP for 

modifying dns-GCxx peptides. a) Representative chromatogram for prenyl donor competition 

experiment with the dns-GCFV peptide and a 25:75 FPP:GGPP ratio; b) Product distribution for 

dns-GCFT; c) Product distribution for dns-GCFV; d) Product distribution for dns-GCVF; e) 

Product distribution for dns-GCMF; f) Product distribution for dns-GCGF. Purple and orange 

lines and symbols denote farnesylated and geranylgeranylated products, respectively. Each plot 

represents two independent trials per peptide reaction. Reactions were performed and analyzed 

as described in Materials and Methods. This figure has been reused with permission from 

reference 44 (Appendix II).  
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2.6 Steady state analysis of dns-GCxx peptide prenylation by FTase 

For steady-state analysis of Cxx prenylation by FTase and GGTase-I, we used an 

established fluorescence-based assay that employs the environmentally sensitive dansyl 

fluorophore which allows continuous monitoring of peptide prenylation.51, 52 As described in 

section 1.3, upon prenylation, dansylated peptides exhibit fluorescence enhancement which 

permits for more facile measurement of initial reaction rates compared to HPLC-based assays 

(Figures 2.8 and 2.9). Surprisingly, only 12 of the 85 peptides in our study set displayed 

fluorescence enhancement when reacted with FTase and FPP, consistent with peptide 

farnesylation. By comparison, 64 peptides were found to be farnesylated by RP-HPLC analysis 

under identical reaction conditions (Table 2.3). The high false negative rate for detecting peptide 

farnesylation through the fluorescence-based assay mirrors that observed for longer C(x)3X 

peptides sequences,6 suggesting limitations on the utility of the fluorescence-based assay for 

determining peptide reactivity with FTase. Importantly, no false positives were observed with the 

fluorescence-based assay for peptides that were deemed unreactive by RP-HPLC analysis. In 

reactions with FTase and GGPP, 4 of the 85 peptides exhibited fluorescence enhancement (dns-

GCFT, dns-GCII, dns-GCLL, and dns-GCYL). None of the 85 dns-GCxx peptides yielded 

fluorescence enhancement when reacted with mammalian GGTase-I and GGPP, consistent with 

the lack of Cxx peptide reactivity with GGTase-I as noted by RP-HPLC analysis. 

Steady-state characterization of peptide reactivity was performed for dns-GCxx peptides 

exhibiting fluorescence enhancement upon prenylation with either FPP or GGPP in the presence 

of saturating (10 μM) prenyl donor cosubstrate (Table 2.4 and Figures 2.8 and 2.9). Saturation of 

prenylation velocity was not observed within the experimentally accessible peptide concentration 

range for any of the peptides tested, allowing only measurement of kcat/Km for these FTase 
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substrates. In reaction with FPP, dns-GCxx peptides exhibited much less reactivity as compared 

to highly reactive CaaX sequences, such as the H-Ras derived CVLS sequence.53 For example, 

one of the more active dns-GCLL peptide sequence was farnesylated ~40-fold less efficiently by 

FTase than dns-GCVLS under subsaturating (kcat/Km) conditions. For the Cxx peptides for which 

steady state reactivity with both FTase and GGPP could be determined, all peptides exhibited 

comparable reactivity (within 2-fold) in the presence of saturating FPP or GGPP. 
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Figure 2.8. Steady state characterization of FTase-catalyzed dns-GCxx peptide 

farnesylation with FPP. a-l) Representative plots for dependence of farnesylation activity on 

peptide substrate concentration catalyzed by FTase in the presence of 10 μM FPP: a) dns-GCFT; 

b) dns-GCEV; c) dns-GCII; d) dns-GCLL; e) dns-GCNV; f) dns-GCQL; g) dns-GCRL; h) dns-

GCSV; i) dns-GCTV; j) dns-GCVL; k) dns-GCWI; l) dns-GCYL. The curve represents the best 

fit to the Michaelis-Menten equation. Reactions were performed and analyzed as described in 

Materials and Methods. This figure has been reused with permission from reference 44 

(Appendix II).  
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Figure 2.9. Steady state characterization of FTase-catalyzed dns-GCxx peptide 

geranylgeranylation with GGPP. a-d) Representative plots for dependence of farnesylation 

activity on peptide substrate concentration catalyzed by FTase in the presence of 10 μM GGPP: 

a) dns-GCLL; b) dns-GCYL; c) dns-GCFT; d) dns-GCII. The curve represents the best fit to the 

Michaelis-Menten equation. Reactions were performed and analyzed as described in Materials 

and Methods. This figure has been reused with permission from reference 44 (Appendix II).  
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Table 2.4. Steady state reactivity of dns-GCxx peptides catalyzed by FTasea 

 

 

 

 

 

 

 

 

 

 

aSteady state analyses were carried out at saturating FPP or GGPP (10 μM) and varying peptide 

concentrations (0.5 – 10 μM) as described in Materials and Methods. Reported values are the 

average of at least three independent determinations, with the error indicating the standard 

deviation. 
bNo detectable activity. This assay has a lower limit for measuring kcat/Km of 0.4 M-1 s-1 per 

reference 29.  
cPreviously reported per reference 29. 

 

  

dns-GCxx 

sequence 

Prenyl donor 

10 μM FPP 10 μM GGPP 
 kcat/Km (M-1 s-1) kcat/Km (M-1 s-1) 

dns-GCEV 950 ± 200 ndb 

dns-GCFT 1900 ± 70 1700 ± 300 

dns-GCII 1400 ± 200 700 ± 100 

dns-GCLL 4000 ± 100 6100 ± 1000 

dns-GCNV 1900 ± 100 nd 

dns-GCQL 2500 ± 90 nd 

dns-GCRL 340 ± 100 nd 

dns-GCSV 1000 ± 90 nd 

dns-GCTV 1900 ± 40 nd 

dns-GCVL 2200 ± 200 nd 

dns-GCWI 2600 ± 200 nd 

dns-GCYL 1300 ± 100 920 ± 30 

dns-GCVLS 170000 ± 40000c nd 
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2.7 Prenylation of Cxx motifs by FTase is inhibited by tipifarnib 

 There are several FTase inhibitors that have been developed as targets for cancer 

treatment.54, 55 One such inhibitor is tipifarnib, also known as Zarnestra, which is currently under 

investigation as a treatment for squamous cell carcinomas with HRas mutations.56 This 

compound prevents the prenylation of C-terminal motifs by binding at the peptide substrate 

binding site of FTase. When treated with varying amounts of tipifarnib, farnesylation of dns-

GCWI and dns-GCYL by FTase was efficiently blocked with an IC50 value of 9.5 +/- 5.6 nM and 

6.8 +/- 7.9 nM, respectively (Figure 2.10A and B). In addition, tipifarnib blocked 

geranylgeranylation by FTase of dns-GCYL with an IC50 value of 7.4 +/- 12.2 nM (Figure 2.11). 

These results suggest prenylation of these shortened Cxx sequences occurs through the same 

binding interaction as of classical CaaX motifs.   
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A)                                                                             B) 

 

Figure 2.10. Inhibition of FTase-catalyzed farnesylation of dns-GCxx peptides by 

tipifarnib. A) dns-GCWI; B) dns-GCYL. Initial slopes were normalized to reactions without 

tipifarnib and IC50 values were calculated as described in Materials and Methods. 
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Figure 2.11. Inhibition of FTase-catalyzed geranylgeranylation of dns-GCYL by tipifarnib. 

Initial slopes were normalized to reactions without tipifarnib and IC50 values were calculated as 

described in Materials and Methods. 
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2.8 Investigating prenylation of Cxx c-terminal sequences via in cell fluorescence 

localization studies 

 To be considered biologically relevant in mammalian systems, proteins terminating in 

Cxx sequences must exhibit sufficient reactivity to be modified by endogenous FTase within an 

intact human cell. The minimum reactivity is estimated to be in the range of kcat/Km = 0.5-2 x 104 

M-1s-1 when peptide reactivity was determined in an in vitro assay using purified FTase.57 The 

reactivity of several dns-GCxx peptides with purified FTase (see Table 2.4) falls closer to the 

lower limit of the range determined in the aforementioned study, suggesting that these shorter 

prenylation motifs might be reactive enough to support protein prenylation within mammalian 

cells. In addition, the apparent reactivity observed for several Cxx sequences within yeast cells 

suggests the ability of these motifs to be modified in a biological context.  

 We tested for the ability of 9 Cxx C-terminus sequences to undergo prenylation in 

HEK293 cells using a pEGFP-KRas vector (gift from Casey Lab, Duke University), which has 

the canonical motif -CVIM at its C-terminus. The vector was modified to contain the Cxx 

sequence of interest through PCR and subsequent ligation (see Materials and Methods). The use 

of an eGFP-KRas fusion protein serves as a proxy for directly detecting prenylation through 

visualization of eGFP fluorescence at the membrane (prenylated) or diffused throughout the cell 

(not prenylated, or prenylated but not processed).58 The 9 sequences tested in this study included, 

-CLL, -CQI, -CQL, -CSI, -CQV, -CMF, -CQA, -CFV, and -CVF. These sequences represented 

the most active sequences from the 85 sequences investigated in vitro using purified FTase based 

on either steady-state analysis or RP-HPLC analysis (see Tables 2.3 and 2.4).  

Transfection of 6x104 cells with 1 µg DNA and 2 µL Turbofect (Promega) in a 24-well 

plate was found to be the ideal transfection condition with 24-hour incubation post-transfection. 



 

104 
 

Of the 9 sequences tested, all were found to be diffuse throughout the cell, which does not 

provide evidence these proteins are modified inside cells (Figure 2.12). The positive control 

containing the canonical -CVIM sequence was confirmed to be membrane localized. While not 

promising, these results do not conclusively indicate that Cxx sequences are not modified inside 

mammalian cells. It is highly plausible that these sequences do not undergo the subsequent post-

processing steps required for them to be shuttled to the cell membrane after prenylation. Analysis 

of these non-canonical sequences in a mammalian system requires a different approach that is 

not reliant on membrane localization to serve as the signal for detecting prenylation.  
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Figure 2.12. Fluorescence imaging of HEK293 cells expressing eGFP-KRas-C(x)(x) at 24 

hours post transfection.  a) -CVIM (positive control).  b) -CLL.  c) -CWI.  d) -CQL.  e) -CSI.  

f) -CQV.  g) -CMF.  h) -CQA. i) -CFV. j) -CVF. All images were collected at 20x magnification 

with 470/40 nm excitation filter, a 495 nm beam splitter and a 525/50 nm emission filter.  
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2.9 Investigating prenylation of Cxx c-terminal sequences in a biological context via protein 

lipidation quantification (PLQ) 

Note: The PLQ data was collected and analyzed by Stanislav Beloborodov in the Krylov Lab 

(York University).  

Despite not observing evidence for membrane localization of the modified eGFP-KRas 

protein that had Cxx sequences appended at its C-terminus, we could not conclusively interpret 

that these sequences were not modified inside HEK293 cells because these motifs may not 

undergo the subsequent post-processing steps required for them to be shuttled to the cell 

membrane following prenylation. To further evaluate the biological relevance of non-canonical 

Cxx sequences, we utilized another strategy for directly detecting protein lipidation inside a 

mammalian system that is not reliant on membrane localization as a proxy for prenylation. 

One such approach is Protein Lipidation Quantification (PLQ), which is derived from an 

established method of Micellar Electro-Kinetic Chromatography (MEKC) that utilizes detergent 

micelles to provide molecular separation during capillary electrophoresis.59-61 In this method, a 

detergent such as SDS is used to form micelles in the running buffer with which the analyte can 

interact. These micelles serve as pseudo-stationary phase and travel relatively slowly through the 

capillary tube compared to free analyte or buffer because of an electrophoretic drag associated 

with the viscosity and charge of the micelle as it moves through the electric field within the 

capillary. The electrophoretic mobility of the micelle is opposite to the direction of the 

electroosmotic flow (EOF) in the capillary resulting in micelle-associated analytes that exhibit a 

slower overall velocity towards the cathode. PLQ has been successfully used to separate 

prenylated full length fluorescent protein with a C-terminus CaaX motif in in-cell studies.61  
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Before we could probe prenylation of non-canonical Cxx motifs in a mammalian system 

via PLQ, we established standards using bacterially expressed and purified eGFP proteins 

appended with a canonical motif, -CVLS and two non-canonical motif of the form, -CLL and -

CVL. The plasmids for these proteins were obtained by performing site-directed mutagenesis on 

a pJExpress414-eGFP-CVDS plasmid (see Materials and Methods). This plasmid has a His-tag 

at the N-terminus allowing for Ni2+-resin based purification. Following expression and 

purification of eGFP-CVLS, eGFP-CVL, and eGFP-CLL, reactions were carried out to 

farnesylate the purified proteins with purified FTase enzyme and FPP donor (see Materials and 

Methods). Negative controls were performed in parallel without FPP. Reactions were incubated 

overnight under foil and then stored in -80°C the following day. PLQ analysis was performed by 

our collaborators in the Krylov Lab, York University. The results in Figure 2.13 show that we 

were able to detect the non-prenylated eGFP-CVLS/-CVL/-CLL and their prenylated 

counterparts at a longer retention time. However, it is important to note that the prenylated 

eGFP-Cxx protein products are modified to a smaller extent compared to the eGFP-CVLS 

positive control suggesting that these shorter sequences are not as reactive as CVLS, which is in 

agreement with our steady-state analysis (Section 2.6). Nonetheless, this study laid the 

groundwork for using PLQ to analyze prenylation of eGFP-CVLS/-CVL/-CLL proteins in a 

mammalian cellular context. 
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Figure 2.13.  Prenylation assessment of purified eGFP samples appended with various c-

terminal motifs via PLQ at 520 nm: a) eGFP-CLL in presence of FTase and FPP. b) eGFP-

CLL in presence of FTase only. c) eGFP-CVL in presence of FTase and FPP. d) eGFP-CVL in 

presence of FTase only. e) eGFP-CVLS (positive control) in presence of FTase and FPP. f) 

eGFP-CVLS in presence of FTase only. PLQ analysis was performed by Stanislav Beloborodov 

from the Krylov Lab (York University).  
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After establishing bacterial standards as described, we transfected HEK293 cells with 

eGFP reporter proteins fused to canonical and non-canonical peptide sequences at the C-terminus 

to determine if prenylation of non-canonical Cxx sequences inside cells could be detected by 

PLQ. Six total plasmids were transfected, including pCAF1-eGFP-CVLS/-CVL/-CLL and their 

respective serine negative controls of the form, pCAF1-eGFP-SVLS/-SVL/-SLL. The serine 

mutants should block prenylation. Transfection of 2x105 with 4 µg DNA and 6 µL Turbofect 

(Promega) in a 6-well plate was found to be the ideal transfection condition with 24-hour 

incubation post-transfection (see Materials and Methods). Robust eGFP expression was 

confirmed via fluorescence imaging, following which cells were collected by scraping, re-

suspended in 1X PBS, harvested by centrifugation, and stored immediately in -80°C.   

The results obtained did not provide evidence for prenylation of non-canonical Cxx 

sequences in a mammalian context as both -Cxx sequences and their serine negative controls 

displayed the same pattern of detection (Figure 2.14). We were able to detect the prenylated 

eGFP-CVLS protein, confirming that the system is viable for this study, with the serine mutant 

not shown to be prenylated. Of note, we observed additional peaks that may represent different 

phosphorylation states of the serine residues in the proteins tested; this phenomenon will be the 

focus of further studies.  
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Figure 2.14.  Prenylation assessment via PLQ of HEK293 cell lysate expressing eGFP-

C(S)xx: a) -SLL. b) -CLL. c) -SVL. d) -CVL. e) -SVLS. f) -CVLS. Blue arrows indicate peaks 

representing both the unmodified eGFP sample and modified products. Black dotted lines serve 

as reference points for retention times of the unmodified substrates, while red dotted lined serve 

as reference points for potentially phosphorylated products. The mono- and di-phosphorylated 

labeled products are assigned purely hypothetically and require further investigation. PLQ 

analysis was performed by Stanislav Beloborodov in the Krylov Lab (York University).  
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2.10 Conclusions 

Prenylation by FTase and GGTase-I is an important post-translational modification 

within eukaryotic proteomes. The canonical CaaX C-terminal motif is generally accepted as the 

most prevalent class of substrates for these enzymes. The recent finding that FTase can target 

longer C(x)3X sequences has expanded the potential substrate scope for this enzyme,6 which we 

have further expanded by our current findings that FTase can accept shorter Cxx sequences. The 

Cxx sequences that we identified in vivo using yeast-based a-factor and Ydj1 reporter assays 

were also among the most reactive in in vitro studies using human FTase, suggesting these 

identified Cxx sequences have potential biological relevance. In this study, we additionally 

demonstrate that mammalian FTase can utilize GGPP as the prenyl donor for modification of a 

subset of Cxx sequences. While FTase can be mutated to allow GGPP to serve as the prenyl 

donor,41 this is the first reported example of wild type FTase catalyzing peptide 

geranylgeranylation with comparable efficiency to farnesylation of the same sequences. Our 

findings support the further investigation of proteins terminating in Cxx sequences in cellular 

systems to determine their prenylation status and impact of such modification on the biological 

activities of Cxx proteins. 

This work expands both the peptide and prenyl donor substrate pools for FTase, which 

further highlights the truly remarkable degree of substrate flexibility exhibited by this enzyme. 

By contrast, the inability of GGTase-I to accept dns-GCxx sequences as substrates demonstrates 

that it displays stricter peptide length and sequence determinants than FTase. While the outcome 

of our FPP/GGPP competition assay clearly shows FTase prefers FPP over GGPP as a prenyl 

donor, the promiscuous utilization of GGPP as a prenyl donor could lead to alternative 

prenylation when FPP levels are depleted. It is also possible that certain Cxx sequences can be 
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preferentially geranylgeranylated by FTase, as it is well established for CaaX sequences that 

there is interplay between peptide sequence and prenyl donor selectivity.53, 62-64 Indeed, in this 

study using a-factor and Ydj1p reporters, while we assume the Cxx sequences are modified with 

farnesyl, we cannot formally discount that geranylgeranylation has also occurred. We expect to 

gain a better understanding of how FTase utilizes FPP and GGPP for prenylation of Cxx 

sequences through future structural and computational modeling studies of peptides from this 

new substrate class in complex with FTase and prenyl donors. 

In interpreting the biochemical significance of FTase-catalyzed Cxx sequence 

prenylation, it is important to consider whether these sequences are being recognized as 

peptide/protein sequences or merely as thiols with appended functional groups. Previous work 

has shown FTase can farnesylate nonpeptidic thiols such as dithiothreitol and methyl 

thioglycolate (MTG).65 That study demonstrated that thiol coordination to the catalytic zinc ion 

of FTase can lead to substrate binding, but peptide interactions enhance binding and catalysis. 

Our data suggests that the latter occurs with Cxx sequences. First, the steady state parameters 

(kcat/Km) determined for Cxx sequences range from 200- to 2300-fold higher than the highest 

kcat/Km reported for a nonpeptidic thiol (MTG, 1.7 M-1s-1).65 Second, the substrate selectivity 

between Cxx peptides exhibited in FTase reactions with both FPP and GGPP prenyl donors 

indicates the peptide sequence strongly influences the ability of FTase to accept these peptides as 

substrates. Together, our findings support that the Cxx substrates are recognized by FTase as 

peptide sequences, although with lower reactivity than CaaX sequences.  

Looking to the future, assessing the impact of Cxx sequence prenylation in biological 

systems represents the most important research avenue motivated by our current findings. Within 

yeast, we have demonstrated the ability of these sequences to support effective prenylation of 
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Ydj1p and a Ydj1p-based thermotolerance phenotype, indicating that Cxx sequences can exhibit 

biologically relevant reactivity. While no prenylated Cxx proteins have been identified by mass 

spectrometry-based proteomics studies utilizing chemically modified prenyl donors,66-71 this may 

reflect multiple factors including reduced reactivity with prenyl donor analogues used for 

proteomics analysis, low Cxx sequence reactivity or protein abundance, or mass spectrometry 

complications such as neutral loss or peptide oxidation. The lack of evidence for the prenylation 

of Cxx sequences inside cells suggests that the sequences tested in this study are not reactive 

enough to be modified by FTase in our cell-based assay. The subset of Cxx sequences derived 

from the human proteome that were examined in this work are less reactive than canonical CaaX 

sequences (e.g. dns-GCLL peptide is ~40 fold less reactive than dns-GCVLS),53 but the 

reactivity of dns-GCLL lies near the range established as viable for prenylation within a 

mammalian cell.57 Thus, prenylated yeast and human Cxx proteins remain an intriguing 

possibility with a significant number of proteins bearing Cxx-terminal sequences predicted in the 

human proteome (Table 2.1). In addition to the selectivity rules defining Cxx sequence reactivity 

with FTase with both FPP and GGPP prenyl donors, cell-based studies of novel prenylated Cxx 

sequences will be essential for defining the biological roles potentially played by these proteins 

and the expanding importance of prenylation within proteomes.  
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2.11 Materials and Methods 

2.11.1 Miscellaneous Methods: All in vitro FTase and GGTase-I assays were performed at 33 

°C. All curve fitting was performed with KaleidaGraph (Synergy Software, Reading, PA). 

Geranylgeranyl diphosphate (GGPP) and farnesyl diphosphate (FPP) were purchased from 

Isoprenoids.com (Tampa, FL). Peptides were commercially synthesized (Sigma-Genosys, The 

Woodlands, TX) and exhibited >90% purity, as determined by RP-HPLC or after semi-prep 

purification via RP-HPLC. Peptides were solubilized in ethanol containing 10% (v/v) DMSO 

and stored at -80 °C. Peptide concentrations were determined spectrophotometrically using 

Ellman’s reagent. The isoprenoid analog C15Alk-OPP was prepared as previously described.72  

 

2.11.2 Yeast strains (These experiments were performed in the Schmidt laboratory, 

University of Georgia): Several of the yeast strains used in this study have been previously 

described: IH1793 (MAT lys1), RC757 (MAT sst2-1 rme his6 met1 can1 cyh2), SM2331 

(MATa trp1 leu2 ura3 his4 can1 mfa1 mfa2), BY4741 (MATa his3∆1 leu2∆0 met15∆0 ura3∆0), 

yWS304 (MATa his3∆1 leu2∆0 met15∆0 ura3∆0 ydj1::KANR).73-76 Multiple other strains were 

created for this study.44 yWS2542 (MATa his3∆1 leu2∆0 met15∆0 ura3∆0 ram1::KANR 

ydj1::NATR) was created by replacing the YDJ1 open reading frame with the nourseothricin 

resistance cassette (NATR) in yWS1632 (MATa his3∆1 leu2∆0 met15∆0 ura3∆0 ram1::KANR). 

This was accomplished by transformation of the strain with a restriction enzyme digestion of 

pWS1623 (BamHI, HindIII, PvuII) and selection on yeast rich media agar plates (YPD) 

containing 100 µg/ml nourseothricin. yWS2544 (MATa his3∆1 leu2∆0 met15∆0 ura3∆0 

ydj1::NATR) was made in similar fashion using BY4741 as the parent strain. yWS2938-2951 and 

yWS2958-2959 were created by integrating Ydj1p-Cxx mutants into the ydj1::NATR locus of 
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yWS2544. Integrating DNA fragments were derived by restriction digestion from appropriate 

CEN URA3 YDJ1-Cxx plasmids (BamHI, XhoI, PvuI, BglI). Candidate colonies were scored for 

improved thermotolerance and concomitant loss of nourseothricin resistance. The gene 

replacements and integrations were confirmed by PCR using primers external and internal to the 

integrated fragment and sequencing of PCR products derived from the Cxx encoding genomic 

DNA. Yeast strains were propagated at 30 °C (IH1793, RC757, SM2331, yWS2938-2952, 

yWS2958-2959) or room temperature (yWS2542, yWS2544) on either YPD or appropriate 

selective media when plasmid transformed. 

 

2.11.3 Yeast plasmids and oligo designs (These experiments were performed in the Schmidt 

laboratory, University of Georgia): The plasmids used in this study were either pre-existing or 

newly constructed for this study as noted.44 Unless noted otherwise, new constructs were created 

in vivo by recombination of a linearized parent plasmid and appropriate PCR amplified DNA 

fragments. Plasmids encoding a-factor mutants (i.e. CVI, CV, C, AVI, SVI) were created using 

parent plasmids pWS610 (MluI) or pWS817 (PstI, MluI). Plasmids encoding Ydj1p mutants (i.e. 

CTI, CII, CFV, CVI, AVI, SVI) were created using parent plasmid pWS1132 (NheI, or NheI and 

AflII).6, 77 pWS1623 (CEN URA3 ydj1::NATR) was created using a NATR PCR product and 

pWS1132 (NheI and BsaBI). The NATR PCR product was derived from p4339 and was designed 

to have flanking sequence identical to the 5´ and 3´ UTRs of the YDJ1 ORF. pWS114 (2µ URA3 

RCE1) was constructed by subcloning the BglI fragment from pSM1275 (CEN URA3 RCE1) 

into the BglI site of pSM217.75, 78 pWS1808 (2µ URA3 RAM1) was constructed in two steps. 

First, pWS1767 (CEN URA3 RAM1) was created through in vivo recombination of HindIII-

linearized pRS316 (CEN URA3) and a PCR-derived DNA fragment containing the RAM1 gene 
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that was amplified from BY4741 genomic DNA. Second, the XhoI-SacI fragment from 

pWS1767 was subcloned into the same sites of pRS426 (2µ URA3).79 Introduction of plasmids, 

plasmid digests, and PCR-derived DNA fragments into yeast strains was via a lithium acetate-

based transformation procedure.80 

The synthetic oligonucleotides used for generating random Cxx sequences that underwent 

genetic screening were based on the CaaX encoding region of either MFA1 or YDJ1 as encoded 

in pWS1024 and pWS1132, respectively. The forward PCR oligo encoded the Cxx sequence and 

was flanked by sequences on the 5´ and 3´ ends that were homologous to the target gene; the 5´ 

sequence facilitates recombination and the 3´sequence facilitates PCR priming. All nucleotides 

were allowed at the x positions, allowing for the formation of all 400 Cxx permutations and two 

nonsense mutations (i.e. C-stop and Cx-stop). The reverse oligo matched a region in the 

polylinker sequence adjacent to the 3´ UTR of each gene. The synthetic oligonucleotides used 

for generating specific Cxx sequences were as described above for random Cxx sequence but 

were individually designed to create the desired Cxx sequence. The synthetic oligonucleotides 

used to amplify the RAM1 gene contained 5´ sequences homologous to the recipient vector 

pRS316 to facilitate recombination and 3´ sequences homologous to intergenic regions 

surrounding the RAM1 gene to facilitate PCR priming such that 491 and 271 nucleotides of the 

5´ and 3´ intergenic regions were amplified, respectively. 

 

2.11.4 a-factor mating pheromone screen, halo assay, and mating test (These experiments 

were performed in the Schmidt laboratory, University of Georgia): MATa yeast lacking the 

MFA1 and MFA2 a-factor genes (SM2331) were co-transformed with digested pWS1024 (MluI, 

SphI) and a PCR product encoding randomized Cxx sequences. The transformation mix was 
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plated on synthetic complete agar plates lacking leucine (SC-leucine) and incubated at 30 °C for 

72-96 hours to allow for colony formation. Colony counts were determined before replica plating 

the colonies onto an SC-leucine plate (replica plate) and a minimal media plate (diploid-

selective) containing a thin lawn of IH1793 yeast. Plates were incubated at 30 °C for 72-96 

hours, diploid colonies were identified, and the corresponding MATa parent colony recovered 

from the SC-leucine replicate plate. The MATa strains were individually cultured to saturation, 

spotted onto a lawn of MAT sst2-1 yeast (RC757), and strains visually scored for strength of 

halo production. Plasmids were isolated and sequenced from the strongest halo producing strains. 

For figure production, plasmid transformants of SM2331 were cultured to saturation in selective 

SC-leucine liquid media, cultures pinned onto SC-leucine plates, plates incubated for 24-36 

hours at 30 °C, and the dense spots of growth were replica transferred onto a thin lawn RC757 

yeast. Plates were scanned as described below after incubation at 30 °C for 16-20 hours. 

Quantitative mating was performed as previously described.6, 18 MATa strains derived from 

SM2331 to express indicated a-factor Cxx mutants were cultured to saturation in selective liquid 

media, diluted to A600 ~1.0 using fresh culture media, then mixed with an excess of IH1793 

MAT lys1 strain cultured and diluted in the same manner but with non-selective YPD. The 

number of colony forming units (CFUs) were determined on both SC-lysine and synthetic 

minimal media agar plates (SD) using empirically determined dilutions; SC-lysine selects for the 

total of MATa haploid and MATa/ diploid cells, while SD selects for diploids only. Mating 

frequencies (CFUdiploid/CFUtotal) were determined for each mutant and were reported as a 

percentage relative to a strain producing wild type a-factor. 
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2.11.5 Thermotolerance screen and assays (These experiments were performed in the 

Schmidt laboratory, University of Georgia): The Ydj1p screen was performed essentially as 

previously described.6 In brief, yeast lacking the YDJ1 gene (yWS304) were co-transformed with 

the PCR product encoding randomized Cxx sequences and digested pWS1132 (NheI). A portion 

of the transformation mix was plated on SC-uracil solid media and incubated at 25 °C for 96 

hours to assess the total number of CFUs in the mix. The remaining transformation mix was 

plated on YPD solid media and incubated at 40 °C for 96 hours. Plasmids were recovered from 

thermotolerant colonies, sequenced, and re-introduced into yWS304 to confirm plasmid-linked 

thermotolerance prior to detailed thermotolerance analysis involving incubation at various 

temperatures (25 °C, 37 °C, or 40 °C). In brief, saturated cultures grown at room temperature in 

SC-uracil liquid media were serially diluted into YPD, dilutions pinned onto YPD solid media, 

and plates incubated for several days at desired temperature. Each experiment was performed at 

least twice on separate days, and each strain was evaluated in duplicate within each experiment. 

 

2.11.6 Estimate of Cxx complexity in a-factor and thermotolerance screens (These 

experiments were performed in the Schmidt laboratory, University of Georgia): The 

GLUE-IT algorithm was used to estimate coverage of the screen.81 The algorithm takes into 

account the CFUs evaluated for each screen and the number and redundancy of the codons used 

for amino acid randomization. The number of colonies associated with transformation of 

linearized plasmids or PCR products alone (i.e. false positives) were not counted toward the CFU 

total. The false positive rate was typically low (<2%) relative to co-transformed sample. In the 

case of the thermotolerance screen, the CFU value derived from growth observed on SC-uracil 

solid media at 25 °C (i.e. ~8,400) was adjusted to 14% of its value to account for the observation 
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that incubation at 40 °C reduces transformation efficiency.19 

 

2.11.7 Immunoblot analysis for protein prenylation in yeast (These experiments were 

performed in the Schmidt laboratory, University of Georgia): Whole cell lysates of mid-log 

yeast were prepared as previously described, separated by SDS-PAGE (14%), transferred onto 

nitrocellulose, and blots incubated with rabbit anti-Ydj1p primary antibody (courtesy of Dr. 

Avrom Caplan) and HRP-conjugated goat anti-rabbit secondary antibody (Kindle Biosciences, 

Greenwich, CT).18, 82 Immune complexes were detected using a KwikQuant Imager at multiple 

exposure times after development of blots with the KwikQuant Western Blot Detection Kit 

(Kindle Biosciences). 

 

2.11.8 Image analysis for yeast plates and immunoblot films (These experiments were 

performed in the Schmidt laboratory, University of Georgia): A flat-bed scanner was used to 

image plates at 300 dpi (grayscale). Plates were scanned face down without lids using a black 

background. Digitized TIFF images of plates and immunoblots were imported into Photoshop for 

minor adjustments (i.e. image rotation, contrast, cropping, etc.) then copied to PowerPoint for 

final figure assembly. Contrast settings within Photoshop were adjusted for all plate images to be 

identical and to maximize dynamic range of signal; settings for immunoblot images were 

unchanged. 

 

2.11.9 Expression and purification of FTase and GGTase-I: Rat FTase and GGTase-I were 

expressed in BL21(DE3) E. coli and purified as previously described.6, 40 
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2.11.10 RP-HPLC-based assay for screening the reactivity of dns-GCxx peptides and 

assessing prenylation preference by FTase: Dns-peptides (3 μM) were diluted into 1x FTase 

reaction buffer (50 mM HEPPSO-NaOH, pH 7.8, 5 mM TCEP, 5 mM MgCl2; 50 μL total) and 

incubated for 20 minutes in 0.65 mL low-adhesion microcentrifuge tubes. Prenylation reactions 

were initiated by adding an enzyme mix (200 nM rat FTase, 10 μM FPP or GGPP, in 1x FTase 

reaction buffer). Reactions were incubated at 33 °C for 16 hours and then quenched with an 

equal volume of 20% acetic acid in isopropanol. RP-HPLC analysis was performed at ambient 

temperature on an Agilent 1260 HPLC system with auto-sampler, UV-Vis, and fluorescence 

detection using a C18 reversed-phase analytical column (Zorbax XDB-C18) with a linear 

gradient from 30% acetonitrile in 25 mM ammonium acetate to 100% acetonitrile flowing at 1 

mL/min over 30 minutes; peptides and products were detected by fluorescence (ex 340 nm, em 

496 nm). Chromatogram analysis and peak integration was performed using Chemstation for LC 

(Agilent Technologies). 

For prenyl donor preference assays, the reactivity of dns-GCxx peptides (CFT, CFV, 

CGF, CMF, and CVF) was evaluated as described above with varying concentration of FPP and 

GGPP (10 µM FPP only, 7.5 µM FPP + 2.5 µM GGPP, 5 µM FPP + 5 µM GGPP, 2.5 µM FPP + 

7.5 µM GGPP, and 10 µM GGPP only). 

 

2.11.11 Fluorescence-based assay for screening reactivity of dns-GCxx peptides, 

determining prenyl donor saturating concentration, and determining steady-state kinetic 

parameters: Steady-state kinetic parameters were determined for FTase from a time-dependent 

increase in fluorescence (ex 340 nm, em 520 nm) upon prenylation of the dansylated peptide, 
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with assays performed with 0.5–10 μM dansylated peptide, 100 nM purified rat FTase, and 10 

μM FPP or GGPP in 1x FTase reaction buffer at 33 °C in a 96-well plate (Corning); reactivity 

screening was performed using 3 µM peptide. Peptides were incubated in reaction buffer for 20 

minutes prior to reaction initiation by addition of FTase and prenyl donor. The fluorescence was 

monitored over a period of 7-8 hours at 33 °C in the BioTek H1 Synergy plate reader (ex 340 

nm, em 520 nm) with fluorescence measured at intervals of 30-40 seconds. Initial velocity for 

prenylation of dns-GCxx peptides was determined from a time-dependent increase in 

fluorescence upon prenylation of the dansylated peptide. To confirm that 10 μM FPP and GGPP 

represented a saturating concentration of these cosubstrates (Figure 2.15), assays were performed 

as described above with 3 μM dns-GCFT peptide, 100 nM purified rat FTase, and 2–10 μM FPP 

or GGPP in 1x FTase reaction buffer at 33 °C in a 96-well plate (Corning). The initial velocities 

for dns-GCFT prenylation using both FPP and GGPP prenyl donors decrease less than 2-fold 

when the prenyl donor concentration is reduced from 10 μM to 2 μM, consistent with 10 μM 

representing saturating prenyl donor (Figure 2.15). 

To obtain steady state (kcat/Km) parameters for peptide reactivity, the total fluorescence 

change observed upon reaction completion was divided by the initial concentration of the peptide 

substrate in a given reaction to yield a conversion factor from fluorescence units to product 

concentration (μM). These values were averaged over several peptide concentrations to give an 

amplitude conversion (AmpConv), whose units are fluorescence units per micromolar of product 

formed (Fl/μM). The linear initial rate, whose units are fluorescence intensity per second 

(Fl/Sec), was converted to a velocity (μM/sec) using equation 1, where V is velocity (μM/s), R is 

the velocity (Fl/s), and AmpConv is the ratio described above (Fl/μM). 

V = R/AmpConv (equation 1) 
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The reaction velocities (V) were divided by the enzyme concentration (μM) to get V/[E] 

ratios having units of sec-1. A steady-state kinetic parameter (kcat/Km) was determined from a fit 

of the Michaelis-Menten equation to the dependence of the initial velocity divided by the enzyme 

concentration (V/[E]) on the peptide concentration in presence of saturating prenyl donor (10 

μM). Errors represent the standard deviation from three replicate measurements. 

 

  



 

123 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.15. Determination of saturating FPP and GGPP concentrations for FTase-

catalyzed prenylation of dns-GCFT. a) Time course for FTase-catalyzed farnesylation of dns-

GCFT in the presence of various FPP concentrations (2 μM, red; 5 μM, blue; 10 μM, green); b) 

Determination of initial velocities for FTase-catalyzed farnesylation of dns-GCFT in the 

presence of various FPP concentrations (2 μM, red; 5 μM, blue; 10 μM, green). c) Time course 

for FTase-catalyzed geranylgeranylation of dns-GCFT in the presence of various GGPP 

concentrations (2 μM, red; 5 μM, blue; 10 μM, green); b) Determination of initial velocities for 

FTase-catalyzed geranylgeranylation of dns-GCFT in the presence of various GGPP 

concentrations (2 μM, red; 5 μM, blue; 10 μM, green). This figure has been reused with 

permission from reference 44 (Appendix II). 
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2.11.12 RP-HPLC-based and fluorescence-based assays for screening the reactivity of dns-

GCxx peptides by GGTase-I: Dns-peptides (3 μM) were diluted into 1x GGTase-I reaction 

buffer (50 mM HEPPSO-NaOH, pH 7.8, 5 mM TCEP; 50 μL total) and incubated for 20 minutes 

in 0.65 mL low-adhesion microcentrifuge tubes. Prenylation reactions were initiated by adding 

an enzyme mix (200 nM rat GGTase-I, 10 μM GGPP, in 1x reaction buffer). Reactions were 

incubated at 33 °C for 16 hours then quenched with an equal volume of 20% acetic acid in 

isopropanol. RP-HPLC analysis was performed similarly to reactions with FTase. The 

fluorescence-based assay was monitored over a period of 10 hours at 33 °C in the BioTek H1 

Synergy plate reader (ex 340 nm, em 520 nm) with fluorescence measured at intervals of 37 

seconds. 

 

2.11.13 LC-MS analysis of dns-GCxx peptides modified by FTase (LC-MS experiments 

were performed in the Castaneda laboratory with assistance from Tongyin Zheng, 

Syracuse University): In vitro reactions with dns-GCxx peptides (3 μM) were prepared in 1x 

FTase reaction buffer in the presence of rat FTase (200 nM) and prenyl donor (10 µM) and 

incubated at 33 °C for 16 hours before isolation of the farnesylated or geranylgeranylated peptide 

by RP-HPLC. Reactions (2 mL) were purified via semipreparative RP-HPLC (Zorbax Eclipse 

XDB-C18 column 9 x 250 mM) using a linear gradient of 30:70 TFA in water 

(0.05%):acetonitrile (HPLC grade) with a flow rate of 3.2 mL/min over 42 min. The peak 

corresponding to the prenylated peptide was detected by UV absorbance at 360 nM, with this 

peak collected and dried under reduced pressure overnight before re-dissolving in 50% 

acetonitrile. Product peptide mass was determined by LC-MS (ESI) using a Shimadzu LCMS-

8040 mass spectrometer with a mobile phase of 5% ACN, 95% water used at a flow rate of 0.2 
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mL/min using 5 μL of purified prenylated peptide dissolved in 50% ACN and DI water; peak 

intensity was monitored from m/z = +200 to +2000.  

2.11.14 Determination of tipifarnib inhibition of dns-GCxx peptide prenylation: Assays 

were performed as described in our plate-reader based activity screening, with varying 

concentrations of tipifarnib (0-500 nM) included in the reaction. Initial slopes (fluorescence 

change per second) were determined for each reaction and normalized to the reaction without 

tipifarnib. Normalized slope values were plotted against tipifarnib concentration and analyzed 

using the equation shown below to calculate IC50 values.  

Normalized Slope = 1 – [tipifarnib]/[tipifarnib] + IC50 

 

2.11.15 Construction of eGFP-KRas-CLL/-CWI/-CQL reporter protein plasmids: The 

vector plasmids encoding for eGFP-KRas-Cxx were prepared by PCR using the pEGFP-KRas 

vector obtained from the Casey Lab (Duke University) serving as a template and -CLL, -CWI, 

and -CQL C-terminal sequence and KpnI restriction site present in the 3’ primers (Integrated 

DNA Technology, Coralville, IA): 

eGFP-KRas-CLL: 

5’-GAAAAAGAAGTCAAAGACAAAGAGTACTGGATGTCTGCTGTAAGGTACCCTAAG-3’ 

eGFP-KRas-CWI: 

5’-GAAAAAGAAGTCAAAGACAAAGAGTACTGGATGTTGGATCTAAGGTACCCTAAG-3’ 

eGFP-KRas-CQL: 
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5’-GAAAAAGAAGTCAAAGACAAAGAGTACTGGATGTGAACTGTAAGGTACCCTAAG-3’ 

The PCR reaction (50 μL) consisted of 1x Standard OneTaq buffer, 10 mM dNTPs, 125 ng 

reverse and forward primers each, 10 ng template plasmid, and OneTaq DNA polymerase (0.25 

µL, 5U/µL). The PCR reactions were performed in a BioRad Mycycler thermal cycler using the 

following program: Initial denaturation (94°C, 1 min); thirty cycles of denaturation (94°C, 30 

sec), annealing (56°C, 1 min), and extension (68°C, 2 min); final extension (68°C, 5 min); and a 

final hold (10°C, ∞). PCR products were purified using BIO Basic Inc. EZ-10 Spin Column PCR 

purification Kit following the manufacturer’s protocol. Following digestion by Nhe1 and Kpn1, 

the eGFP-KRas-Cxx insert was ligated into the pEGFP-KRas plasmid using the Quick Ligase kit 

(NEB), following the manufacturer’s instructions. Insert ligation was verified by analytical 

restriction digest and gene sequencing (Genewiz). 

 

2.11.16 Site-directed mutagenesis of eGFP-KRas-CLL reporter protein to generate 6 

remaining -Cxx sequences: PCR mutagenesis primers were designed to obtain the desired Cxx 

sequence per manufacturer’s protocols (Stratagene) and were synthesized by Integrated DNA 

Technologies. Primers were dissolved in ultra-pure water and concentrations were measured by 

UV absorbance at 260 nm (1 OD= 33 µg/mL). Each PCR mutagenesis reaction (50 µL) 

contained the following components: 10x Pfu reaction buffer (5 µL), template plasmid (10 ng), 

forward primer (125 ng), reverse primer (125 ng), dNTP mixture (1 µL of 10 mM). The reaction 

was gently mixed, centrifuged, and 1 µL of Pfu Turbo DNA polymerase (Agilent) was added. 

PCR mutagenesis reactions were performed in a BioRad Mycycler thermal cycler using the 

following temperature program: Initial denaturation (95°C, 1 min); 18 cycles of denaturation 
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(95°C, 50 sec); annealing (60°C, 50 sec) and extension (68°C, 12 min) followed by final 

extension (68°C, 12 min). Following PCR, reactions were treated with DpnI (1 µL, 10 units/ µL) 

and incubated at 37°C for 1 hour. Z-competent DH5α E. coli cells (Zymo Research) were thawed 

on ice for 10 minutes and then transformed with 5 µL of the PCR reaction following which the 

cells were plated on pre-warmed LB-Amp plates and incubated overnight at 37°C. Two colonies 

were picked from each plate and inoculated into LB media (5 mL) containing 100 µg/ mL 

ampicillin and incubated with shaking (225 rpm) overnight at 37°C. Following overnight growth, 

a 10% glycerol stock was prepared stored at -80°C. Plasmid DNA was purified from the 

remaining saturated culture using EZ-10 spin column DNA purification kit (BioBasic) per the 

manufacturer’s protocol. The mutations were confirmed by DNA sequencing (Genewiz). 

 

2.11.17 Transfection and visualization of eGFP-KRas-Cxx fusion proteins in HEK293 cells: 

HEK293 cells were maintained in 75 mL vented tissue culture flasks (Celltreat), and were split 

once reaching 80% confluency. Cells were grown in complete DMEM (DMEM supplemented 

with 10% fetal bovine serum (FBS) and 1 % (v/v) penicillin-streptomycin (MediaTech) in 5% 

CO2 at 37°C. After allowing cells to adhere for 24 hours in complete DMEM media, a reaction 

mixture consisting of 1 µg DNA, 2 µL Turbofect reagent (Promega), and supplement free 

DMEM for a total volume of 500 µL was prepared and incubated at RT for 20 min. During this 

time, fresh complete DMEM was added to the HEK293 cells to a total volume of 1 mL per well. 

The reaction mixture was then added dropwise to 6x104 HEK293 cells in a 24-well plate and 

incubated at 37°C, 5% CO2 with humidity, for 24 hours. Following incubation, live cells were 

imaged using a Zeiss Axio Vert.A1 inverted fluorescence microscope with a 470/40 nm 

excitation filter, a 495 nm beam splitter and a 525/50 nm emission filter to verify successful 
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fluorescent protein expression and analyze fluorescence localization.  

 

2.11.18 Site-directed mutagenesis of pJExpress414-eGFP-CVLL reporter protein to -

CVLS/-CLL/-CVL sequences: PCR mutagenesis primers were designed to obtain the desired 

C-terminal sequence per manufacturer’s protocols (Stratagene) and were synthesized by 

Integrated DNA Technologies. Primers were dissolved in ultra-pure water and concentrations 

were measured by UV absorbance at 260 nm (1 OD= 33 µg/mL). Each PCR mutagenesis 

reaction (50 µL) contained the following components: 10x Pfu reaction buffer (5 µL), template 

plasmid (10 ng), forward primer (125 ng), reverse primer (125 ng), dNTP mixture (1 µL of 10 

mM). The reaction was gently mixed, centrifuged, and 1 µL of Pfu Turbo DNA polymerase 

(Agilent) was added. PCR mutagenesis reactions were performed in a BioRad Mycycler thermal 

cycler using the following temperature program: Initial denaturation (95°C, 1 min); 18 cycles of 

denaturation (95°C, 50 sec); annealing (60°C, 50 sec) and extension (68°C, 12 min) followed by 

final extension (68°C, 12 min). Following PCR, reactions were treated with DpnI (1 µL, 10 

units/ µL) and incubated at 37°C for 1 hour. Z-competent DH5α E. coli cells (Zymo Research) 

were thawed on ice for 10 minutes and then transformed with 5 µL of the PCR reaction 

following which the cells were plated on pre-warmed LB-Amp plates and incubated overnight at 

37°C. Two colonies were picked from each plate and inoculated into LB media (5 mL) 

containing 100 µg/ mL ampicillin and incubated with shaking (225 rpm) overnight at 37°C. 

Following overnight growth, a 10% glycerol stock was prepared stored at -80°C. Plasmid DNA 

was purified from the remaining saturated culture using EZ-10 spin column DNA purification kit 

(BioBasic) per the manufacturer’s protocol. The mutations were confirmed by DNA sequencing 

(Genewiz). 
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2.11.19 Expression and purification of pJExpress414-eGFP-CVLS/-CVL/-CLL: Chemically 

competent BL21 (DE3) E. coli were transformed with pJExpress414-eGFP-CVLS/-CVL/-CLL 

vectors. Following transformation and antibiotic selection, a colony from the transformation 

plate was inoculated into LB media (5 mL) containing 100 µg/mL ampicillin. Cultures were 

incubated and shaken at 225 rpm for 4 h at 37°C and then transferred to 0.5 liter of prewarmed 

auto-induction media (5 g tryptone, 2.5 g yeast extract, 10 mL 50X 5052 media [25% glycerol, 

10% lactose, 2.5% glucose], 25 mM Na2HPO4, 25 mM KH2PO4, 50 mM NH4Cl, 5 mM Na2SO4, 

2 mM MgSO4, 100 µL trace metals [50 µM FeCl2, 20 µM CaCl2, 10 µM MnCl2, 10 µM ZnCl2], 

100 µg/mL ampicillin. Expression cultures were incubated for 19 h at 37˚C with shaking. Cells 

were harvested by centrifugation and resuspended in 50 mL resuspension buffer (20 mM 

NaH2PO4, 300 mM NaCl, and 10 mM imidazole). Bacterial cell suspensions were lysed by 

sonication, clarified by centrifugation, and purified by affinity chromatography using a Ni-NTA 

HisTrap column (GE S4 Healthcare). Fractions containing the protein were combined and 

concentrated using a centrifugal concentrator. Concentrated samples were buffer exchanged to 

50 mM Tris buffer (pH 7.8), divided into 20 µL aliquots, and stored at −20°C. Protein 

concentration was determined using the molar absorption of eGFP at 488 nm. 

 

2.11.20 Farnesylation of purified His6-eGFP-CVLS/-CVL/-CLL: 2 µM eGFP-CVLS/-CVL/-

CLL were incubated with both 1X reaction buffer (50 mM HEPPSO-NaOH, pH7.8, 5 mM 

TCEP) and 5 mM MgCl2 (0.5 mL total) for 20 minutes in 1.5 mL low-adhesion eppendorf tube. 

Farnesylation reactions were initiated by adding an enzyme mix (0.5 mL) containing 200 nM 
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FTase, 5 mM MgCl2, 1X reaction buffer, and 10 µM FPP. Reactions were incubated at RT for 16 

hours under foil before storage at −80°C. Negative controls were also set up without FPP.  

 

2.11.21 Site-directed mutagenesis of pCAF1-eGFP-CVLS vector to obtain -CVL/-CLL/-

SVLS/-SVL/-SLL vectors: PCR mutagenesis primers were designed to obtain the desired C-

terminus sequence per manufacturer’s protocols (Stratagene) and were synthesized by Integrated 

DNA Technologies. Primers were dissolved in ultra-pure water and concentrations were 

measured by UV absorbance at 260 nm (1 OD= 33 µg/mL). Each PCR mutagenesis reaction (50 

µL) contained the following components: 10x Pfu reaction buffer (5 µL), template plasmid (10 

ng), forward primer (125 ng), reverse primer (125 ng), dNTP mixture (1 µL of 10 mM). The 

reaction was gently mixed, centrifuged, and 1 µL of Pfu Turbo DNA polymerase (Agilent) was 

added. PCR mutagenesis reactions were performed in a BioRad Mycycler thermal cycler using 

the following temperature program: Initial denaturation (95°C, 1 min); 18 cycles of denaturation 

(95°C, 50 sec); annealing (60°C, 50 sec) and extension (68°C, 12 min) followed by final 

extension (68°C, 12 min). Following PCR, reactions were treated with DpnI (1 µL, 10 units/ µL) 

and incubated at 37°C for 1 hour. Z-competent DH5α E. coli cells (Zymo Research) were thawed 

on ice for 10 minutes and then transformed with 5 µL of the PCR reaction following which the 

cells were plated on pre-warmed LB-Amp plates and incubated overnight at 37 °C. Two colonies 

were picked from each plate and inoculated into LB media (5 mL) containing 100 µg/mL 

ampicillin and incubated with shaking (225 rpm) overnight at 37 °C. Following overnight 

growth, a 10% glycerol stock was prepared stored at -80°C. Plasmid DNA was purified from the 

remaining saturated culture using EZ-10 spin column DNA purification kit (BioBasic) per the 

manufacturer’s protocol. The mutations were confirmed by DNA sequencing (Genewiz). 
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2.11.22 Preparation of HEK293 cells expressing eGFP-CVLS/-CVL/-CLL/-SVLS/-SVL/-

SLL: The mammalian cell line HEK293 (ATCC) was maintained in 75 mL vented tissue culture 

flasks (Celltreat), and were split upon reaching 80% confluency. The cells were grown in 

complete DMEM (Dulbecco's Modified Eagle's Medium supplemented with 10% fetal bovine 

serum (FBS) and 1% (v/v) penicillin streptomycin (MediaTech)) in a humidified atmosphere 

with 5% CO2 at 37 °C.  For expression of the eGFP reporter proteins, 2 x 105 cells were placed 

in 2 mL of complete DMEM per well of a tissue culture treated 6-well plate (Corning) (total of 5 

wells).  The cells were incubated 24-28 hours prior to transfection.  The DNA-transfection 

reagent complex was prepared by incubating 4 µg of each reporter protein expression plasmid 

pCAF-eGFP-CVLS/-SVLS/-CVL/-SVL/-CLL/-SLL and 6 µL of the Turbofect transfection 

reagent (Thermo Scientific) in a total volume of 500 µL supplement free DMEM for 15 minutes 

at room temperature.  The cells were then transfected with the prepared DNA-transfection 

reagent complex by drop wise addition into the wells of a 6-well tissue culture plate.  Following 

transfection for 24 h, live cells were imaged using a Zeiss Axio Vert.A1 inverted fluorescence 

microscope with a 470/40 nm excitation filter, a 495 nm beam splitter and a 525/50 nm emission 

filter to verify fluorescent protein expression.  The cells were then scraped and resuspended in 

PBS followed by centrifugation to harvest the cell pellet.  The cell pellets were stored at −80 °C. 

 

2.11.23 Preparation and analysis of proteins by PLQ (PLQ experiments were performed in 

the Krylov laboratory, York University): Prior to the CE experiments, HEK293 cells were 

centrifuged for 2 min at ∼13000 × g (Eppendorf 5417R centrifuge with F45−30−11 rotor (Fisher 
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scientific, PA, USA)) at 4 °C and the supernatant was collected. The obtained supernatant as well 

as purified proteins were diluted with the sample buffer consisting of 50 mM HEPES sodium salt 

(NaHEPPSO), 10 mM MgCl2, 5 mM tris(2-carboxyethyl)- phosphine hydrochloride (TCEP), and 

10 mg/mL bovine serum albumin (BSA) at pH 7.8. The BSA was added to reduce adsorption of 

the proteins onto capillary surface. 

PLQ analysis was carried out with MDQ-PACE instrument (Sciex, formerly 

BeckmanCoulter, Caledon, ON, Canada) using laser-induced fluorescence (LIF) detection with 

excitation at 488 nm and emission at 520 nm for the detection of eGFP derivatives. Fused silica 

capillaries with total length of 50 cm were preconditioned by sequential washing with 100 mM 

HCl, 100 mM NaOH, Milli-Q water and running buffer (25 mM Borax, 20 mM SDS, pH 10.0) 

each for 2 min at 30 psi. The samples were injected into the capillary by 0.5 psi pressure pulse of 

10 s. Electrophoretic separation was carried out with a positive electrode at the injection end of 

the capillary, with electric field strength of 15 kV at 25 oC. 
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Chapter 3: Investigating photo-switchable FPP analogs as donors 

for FTase 

The work presented herein is unpublished.  

Syntheses and characterization of both azo-benzene FPP analogs were completed by our 

collaborator Johannes Morstein from the Trauner Group (Department of Chemistry, New York 

University).  
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3.1 Introduction 

Given prenylation’s impact on many signaling pathways, gaining a comprehensive 

understanding of its function in terms of time and space represents an intriguing challenge and is 

limited by the current utilization of genetic or pharmacological interventions. Spatiotemporal 

details of prenylated proteins are lost when studied under in vitro conditions with purified 

protein.  Genetic approaches such as gene knockouts lack temporal precision as they eliminate 

the function of prenylated proteins at all times and positions. While small molecules offer better 

temporal control, they suffer from off-target issues.1 And although several functionalized 

isoprenoid analogs have been developed (see Chapter 1), their utility is limited to identification 

of prenylated proteins and does not offer the dynamic control that may influence membrane 

localization in a reversible manner. An ideal approach for probing the role of a specific 

prenylated protein in its native environment is one that allows for spatial and temporal control on 

a time frame and spatial scale comparable to that which occurs naturally.2-5  

 Light is a promising external chemical and biological modulator of protein function 

because it exhibits a high level of spatiotemporal resolution, is generally non-invasive (for a 

range of wavelengths) and well-tolerated by most chemical and biochemical elements leading to 

minimal interference with living systems, and does not cause contamination. Moreover, its 

wavelength and intensity can be precisely controlled allowing for unparalleled manipulations of 

biological phenomena.1, 5 Light can influence the biological activity of synthetic molecules that 

are modified with a light-sensitive group by changing their pharmacokinetic or 

pharmacodynamic properties. This approach is termed photopharmacology.1  

The most widely used method for rendering biomolecules light sensitive is the “caging” 

approach, in which, a key functional group is protected with a light-sensitive “caging” group. 
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This causes the biomolecule to be in its inactive form until the caging group is removed with 

light. There are several examples of light-sensitive protecting groups used in biological studies.6-

9 However, this approach is limited by the irreversible nature of this photochemistry because 

once “uncaged”, the bioactive molecule remains active until it is removed or degraded. In 

contrast, “photoswitches” represent a class of chemical compounds that may undergo a 

reversible change in their structure and properties multiple times. While several classes of such 

light-responsive compounds have been developed, azobenzene has received considerable 

attention in biological applications.1-4, 10 Azobenzene groups are relatively small, allowing them 

to be easily incorporated into a drug-like molecule of low molecular weight. Furthermore, they 

can be synthesized through a wide variety of methods, including classical azo-coupling to Mills 

reactions or the cross-couplings of hydrazine derivatives followed by oxidation.10, 11 The 

repertoire of azobenzene incorporated compounds has grown substantially recently. 

Photoirradiation of azobenzene results in a trans to cis isomerization that is accompanied 

by a large change in geometry and a considerable change in polarity.12 The trans conformation of 

azobenzene is 10-12 kcal mol-1 more stable than the cis isomer, which means that trans is the 

dominant isomer (>99.99%) in the dark at equilibrium.2, 12, 13 The trans conformation is near 

planar and has a dipole moment near zero.14, 15 A substantial amount of the cis isomer can be 

induced by irradiation with 340 nm light, which causes azobenzene to adopt a bent confirmation 

with its phenyl rings twisted out of the plane from the azo group and has a dipole moment of ~3 

Debye (Figure 3.1).14 Relaxation to the thermodynamically more stable trans-isomer can be 

achieved by either irradiation with ~450 nm light or may proceed spontaneously by thermal 

isomerization in the absence of light. The photoisomerization events occur with high quantum 

yields and minimal photo-bleaching.2, 14 Moreover, photo-induced isomerization of azobenzene 
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results in a substantial difference between the end-to-end distance of each isomer and 

isomerization occurs on a picosecond timescale, much faster than most biological events.14, 16, 17  

Photoswitchable lipids have emerged as tools useful in the control of cell signaling in a 

reversible manner.3, 10 They rely on the incorporation of an azobenzene photoswitch in the 

hydrophobic tail and mediate optical control of lipid function by reversible, light-induced 

isomerization between a cis and trans isomer, as described. In comparison to caged lipids, 

photoswitchable lipids require less intense radiation and do not lead to the formation of side 

products. To date, photoswitchable lipids have been applied in the optical modulation of ion 

channels,18-20 the fatty acid receptor GPR40,21 lipid rafts,22 lipid vesicle budding and fission,23 

lipid-protein interactions in canonical lipid signaling and sphingolipid metabolism.24, 25  

Inspired by the success of recent studies on photoswitchable lipids in modulating cell 

signaling events in various contexts,3 we examined the reactivity of two FPP azobenzene-

containing “azologs” (AzoFPP1 and AzoFPP2) developed by the Trauner Group (Department of 

Chemistry, New York University) (Figure 3.2) in reactions with mammalian prenyltransferases. 

As with other compounds incorporating azobenzene, azo-FPP analogs favor their thermally 

stable trans isoform but can be isomerized to their less stable cis isoform by irradiation at 365 

nm. Moreover, both azologs thermally relax to the trans isomer with a half-life of ~24 hours or 

can be induced by irradiation with 460 nm light allowing reversible control (Figure 3.3). We 

tested these Azo-FPP analogs in a proof of principle in vitro assay to validate incorporation by 

protein prenyltransferase using peptide substrates. This work moves towards the goal of utilizing 

the photo-isomerization ability of these azologs in cells to modulate membrane localization 

behavior and thus potentially influence protein function and consequential downstream events in 

cells. 
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Figure 3.1. Structure and absorption spectra of trans- and cis-azobenzene: (a) Structures of 

trans and cis isomers of azobenzene. (b) Space-filling models colored by electrostatic potential 

(red—negative to blue—positive). (c) Electronic absorption spectra of the trans and cis isomers 

of azobenzene dissolved in ethanol. This figure has been reproduced from Reference 2 with 

permission from The Royal Society of Chemistry (Appendix III).  
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Figure 3.2. Structures of Azo-FPP1 and Azo-FPP2. Both azologs were inspired by 

farnesylpyrophosphate (FPP) and an aryl-derivative FPP analog26, respectively.  
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Figure 3.3. Photophysical properties of Azo-FPP1. Ultraviolet-visible spectra of Azo-FPP1 in 

the dark-adapted (black, trans), 365 nm-adapted (gray, cis) and 460 nm-adapted (blue, trans) 

photostationary states. Reversible cycling between photoisomers with alternating illumination at 

365/460 nm. A.U., arbitrary units. Azo-FPP2 exhibited similar photophysical properties (data not 

shown). This data was collected and analyzed by our collaborator Johannes Morstein from the 

Trauner Group (Department of Chemistry, New York University). 
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3.2 WT FTase-catalyzed prenylation of dns-GCVLS peptide using Azo-FPP1 

 We performed an initial assay to validate incorporation of the two azologs without any 

irradiation by monitoring the reaction between the canonical FTase/GGTase-I peptide substrates 

dns-GCVLS and dns-GCVLL, respectively with Azo-FPP donors by reverse phase HPLC.27-30 

HPLC analysis indicated that of the two Azo-FPP analogs, Azo-FPP1 was incorporated in a 

reaction with FTase and dns-GCVLS whereas Azo-FPP2 was unable to be utilized by FTase as a 

donor (Figure 3.4). In contrast, GGTase-I did not accept either of the two analogs as the prenyl 

donor in a reaction with dns-GCVLL (Figure 3.5).  

 Following confirmation that Azo-FPP1 could serve as a substrate for FTase, we probed 

the photo-isomerization of Azo-FPP1 and whether we could detect the two different isomers by 

monitoring reactions via HPLC. After incubating peptide reactions with FTase and Azo-FPP1 

overnight in the dark, reactions were stopped by adding stop solution and irradiated for three 

minutes with either 365 nm light to induce the cis-isomer favoring photo-stationary state or with 

460 nm light to enrich the trans-isomer favoring photo-stationary state prior to HPLC analysis of 

the modified peptides (see Materials and Methods). By this approach, we were able to 

unambiguously assign distinct peaks in the HPLC chromatogram to the peptide substrates 

appended with the two different photo-isomers of the Azo-FPP1 group (Figure 3.6). This study 

supported further testing of Azo-FPP1 to determine its steady-state reaction parameters with 

FTase and canonical FTase substrates.  

  



 

152 
 

a)  

 

 

 

 

 

b) 

 

 

 

 

c) 

 

 

 

 

 

d) 

 

 

 

 

 

Figure 3.4. Modification of dns-GCVLS by FTase using Azo-FPP analogs as monitored by 

RP-HPLC. a) Negative control consisting of peptide and FTase only. b) Peptide reaction with 

FTase and FPP (positive control). c) Peptide reaction with FTase and Azo-FPP1. d) Peptide 

reaction with FTase and Azo-FPP2. Asterisks represent background peaks. Reactions and HPLC 

analysis carried out as described in Materials and Methods.  
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Figure 3.5. Modification of dns-GCVLL by GGTase-I using Azo-FPP analogs as monitored 

by RP-HPLC. a) Negative control consisting of peptide and GGTase-I only. b) Peptide reaction 

with GGTase-I and GGPP (positive control). c) Peptide reaction with GGTase-I and Azo-FPP1. 

d) Peptide reaction with GGTase-I and Azo-FPP2. Asterisks represent background peaks. 

Reactions and HPLC analysis carried out as described in Materials and Methods.  
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Figure 3.6. RP-HPLC detection of modified dns-GCVLS with photoisomers of Azo-FPP1 

generated by post-enzymatic reaction illumination. A) Negative control consisting of peptide 

only. b) Peptide reaction with Azo-FPP1 (non-illuminated post-reaction). c) Peptide reaction 

with Azo-FPP1 (illuminated with 460 nm light post-reaction). d) Peptide reaction with Azo-

FPP1 (illuminated with 365 nm light post-reaction). Asterisks represent background peaks. 

Reactions, illumination, and HPLC analysis were carried out as described in Materials and 

Methods. 
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3.3 Azo-FPP1 exhibits sufficient reactivity with FTase to be considered for cellular studies 

 To completely define the functional role of prenylated proteins in their native 

environment by use of azologs, it is imperative to establish if Azo-FPP1 can be utilized inside 

cells by endogenous FTase. Following confirmation of FTase’s ability to incorporate Azo-FPP1 

onto purified peptides, we determined steady-state parameters for Azo-FPP1 with FTase and 

canonical FTase substrates by carrying out a time course study. This allows us to gauge the 

reactivity of the azolog and compare its reactivity to known FPP analogs that have been 

successfully used in cell studies. To determine the time-course of FTase-catalyzed prenylation 

using Azo-FPP1, reactions with dns-GCVLS were stopped at various time points and product 

conversion was determined via RP-HPLC. In our initial studies, we assessed the time required to 

reach completion for both the trans and cis isomers (Figures 3.7 and 3.8). We determined the 

peptide prenylation reaction with trans Azo-FPP1 reached complete conversion to product more 

quickly than the cis Azo-FPP1 isomer reaction, suggesting that the trans isomer is a more 

reactive substrate for FTase under these conditions. More specifically, the time required to reach 

reaction completion was 120 minutes for trans Azo-FPP1 compared to 240 minutes required for 

the cis isomer for reaction completion (Figure 3.9).  

 We also tested parallel reactions with FTase and farnesyl pyrophosphate containing a 

terminal alkyne group (AlkC15OPP). This allowed us to compare the reactivity of trans Azo-

FPP1 with another FPP analog prenyl donor which has been successfully used in cells to 

prenylate canonical and non-canonical substrates.31-33 Since peptide modification with the 

AlkC15OPP probe results in a greater fluorescence enhancement than the AzoFPP1 analog, 

HPLC chromatograms were analyzed at by UV absorbance of 340 nm for the dansyl group to 

allow direct comparison between these two analogs. The extent of reaction progress at any one 
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point was calculated based on the integration of the UV absorbance peak, which was converted 

to concentration by normalization to the final peak integration with the assumption of 100% 

conversion to product. Through this analysis, we found the non-irradiated Azo-FPP1 donor 

showed comparable reactivity to AlkC15OPP with reactions involving both analogs going to 

completion in approximately 120 minutes (Figure 3.10). This supports that trans Azo-FPP1 is 

sufficiently reactive to support cell-based studies for protein modification with this light-

switchable farnesyl group, provided that this analog can enter the cell.  
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Figure 3.7.  RP-HPLC detection of dns-GCVLS modified with trans-Azo-FPP1 at various 

time points under no illumination. a) Negative control consisting of peptide only. b) Peptide 

reaction with Azo-FPP1 at 30 mins. c) Peptide reaction with Azo-FPP1 at 60 mins. d) Peptide 

reaction with Azo-FPP1 at 120 mins.  e) Peptide reaction with Azo-FPP1 at 240 mins. Asterisks 

represent background peaks. Reactions and HPLC analysis carried out as described in Materials 

and Methods.   
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Figure 3.8. RP-HPLC detection of dns-GCVLS modified with cis-Azo-FPP 1 at various 

time points after illumination with 365 nm light. a) Negative control consisting of peptide 

only. b) Peptide reaction with Azo-FPP1 at 30 mins. c) Peptide reaction with Azo-FPP1 at 60 

mins. d) Peptide reaction with Azo-FPP1 at 120 mins. e) Peptide reaction with Azo-FPP1 at 240 

mins. f) Peptide reaction with Azo-FPP1 at 360 mins. Asterisks represent background peaks. 

Reactions, illumination, and HPLC analysis were carried out as described in Materials and 

Methods. 
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Figure 3.9. Time course for FTase-catalyzed modification of dns-GCVLS by both photo-

isomers of Azo-FPP1. Data reflect integration of substrate and product peaks shown in Figures 

3.7 and 3.8, as described in the Materials and Methods. Reactions with the trans-isomer are 

represented in red, while the cis-isomer reactions are shown in blue.   
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Figure 3.10. Time course for FTase-catalyzed modification of dns-GCVLS by both trans 

Azo-FPP1 and AlkC15OPP. Data reflect integration of substrate and product peaks, as 

described in the Materials and Methods. Reactions with the trans-Azo-FPP1 are represented in 

red, while the C15AlkOPP reactions are shown in blue.   
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3.4 Conclusions 

 We employed an in vitro RP-HPLC based assay to determine whether FTase and/or 

GGTase-I can incorporate two different prenyl donor analogs with azobenzene in their 

hydrophobic chain to target peptide substrates. These azologs represent intriguing molecules as 

they are photo-sensitive, with dramatic structural changes controllable by light irradiation. This 

photoswitching ability could be harnessed to potentially mediate membrane localization behavior 

of prenylated proteins. Our initial analysis showed that FTase, but not GGTase-I, can utilize 

Azo-FPP1 as a viable donor to modify the canonical dns-GCVLS peptide substrate. This 

observation again speaks towards the flexibility exhibited by FTase in substrate selection in 

comparison to GGTase-I.33, 34 As for the preference of FTase for Azo-FPP1 over Azo-FPP2, we 

speculate that the aryl-ether moiety of Azo-FPP2 could be out of plane when bound to FTase and 

is not recognized by FTase. Alternatively, the location of the azobenzene in the middle of Azo-

FPP2, rather than the distal end as in Azo-FPP1, is not as well accommodated by FTase. 

Moreover, Azo-FPP1 is more structurally similar to FPP than Azo-FPP2 is to FPP, which could 

also explain FTase selectivity of Azo-FPP1. These hypotheses require further investigation, 

perhaps through mutagenesis studies. In addition, we were able to observe the two different trans 

and cis photostationary states of Azo-FPP1 when bound to peptide substrate (dns-GCVLS) in our 

HPLC analysis, consistent with the distinct polarity / hydrophobicity predicted for these two 

isomers. These results suggest that due to the differing polarities observed, irradiation of Azo-

FPP1 in cells could potentially modulate membrane localization behavior of proteins modified 

with Azo-FPP1.  

 In terms of reactivity, comparison with a known prenyl analog successfully used in cell 

studies provided useful insight that non-irradiated Azo-FPP1 exhibits sufficient reactivity to be 
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applied in cellular studies with endogenously expressed FTase.33 As noted above, for these 

studies this azolog would need to cross the plasma membrane from the cell growth media in 

order to be utilized for protein modification within the cell. Current efforts by our collaborators 

are underway to test the utility of Azo-FPP1 in cell-based studies of protein modification, 

membrane localization, and biological function. Success in these studies will open interesting 

new options for modulating the behavior of lipidated proteins modified by Azo-FPP1, which 

could help further define the functional roles of prenylated proteins and investigate associated 

signaling pathways within biological systems.  
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3.5 Materials and Methods 

3.5.1 Synthetic schemes of Azo-FPP analogs (Both synthetic procedures were completed by 

Johannes Morstein of the Trauner Group (Department of Chemistry, New York 

University): 

 

 

 

Synthesis Scheme 3.1: Chemical synthesis of Azo-FPP1. This synthetic procedure was 

performed by our collaborator Johannes Morstein from the Trauner Group (Department of 

Chemistry, New York University). 
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Synthesis Scheme 3.2: Chemical synthesis of Azo-FPP2. This synthetic procedure was 

performed by our collaborator Johannes Morstein from the Trauner Group (Department of 

Chemistry, New York University). 

 

3.5.2 Assessing activity of Azo-FPP analogs with FTase and dns-GCVLS via RP-HPLC: 

dns-GCVLS (3 μM) were incubated with both 1x reaction buffer (50 mM HEPPSO-NaOH, pH 

7.8, 5 mM TCEP) and 5 mM MgCl2 (50 μL total) for 20 minutes in 0.65 mL low-adhesion 

eppendorf tubes. Peptide reactions were initiated by adding an enzyme mix (50 μL) containing 

100 nM FTase, 5 mM MgCl2, 1x reaction buffer, and 10 μM prenyl donor [FPP (positive 

control), Azo-FPP1 or Azo-FPP2]. Reactions were incubated at RT for 16 hours before adding 

an equal volume of 20% acetic acid in isopropanol to stop the reaction. HPLC analysis was 

performed at ambient temperature on an Agilent 1260 HPLC system with auto-sampler, UV-Vis, 

and fluorescence detection using a C18 reversed-phase analytical column (Zorbax XDB-C18) 

with a linear gradient from 30% acetonitrile in 25 mM ammonium acetate to 100% acetonitrile 

flowing at 1 mL/min over 30 minutes; peptides and products were detected by fluorescence (ex 
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340 nm, em 496 nm).  

 

3.5.3 Assessing activity of Azo-FPP analogs with GGTase-I and dns-GCVLL via RP-

HPLC: dns-GCVLL (3 μM) was incubated with both 1x reaction buffer (50 mM HEPPSO-

NaOH, pH 7.8, 5 mM TCEP) (50 μL total) for 20 minutes in 0.65 mL low-adhesion eppendorf 

tubes. Peptide reactions were initiated by adding an enzyme mix (50 μL) containing 100 nM 

GGTase-I, 1x reaction buffer, and 10 μM prenyl donor [FPP (positive control), Azo-FPP1 or 

Azo-FPP2]. Reactions were incubated at RT for 16 hours before adding an equal volume of 20% 

acetic acid in isopropanol to stop the reaction. HPLC analysis was performed at ambient 

temperature on an Agilent 1260 HPLC system with auto-sampler, UV-Vis, and fluorescence 

detection using a C18 reversed-phase analytical column (Zorbax XDB-C18) with a linear 

gradient from 30% acetonitrile in 25 mM ammonium acetate to 100% acetonitrile flowing at 1 

mL/min over 30 minutes; peptides and products were detected by fluorescence (ex 340 nm, em 

496 nm).  

 

3.5.4 Detection of Azo-FPP1 photoisomers via RP-HPLC analysis: dns-GCVLS (3 μM) was 

incubated with both 1x reaction buffer (50 mM HEPPSO-NaOH, pH 7.8, 5 mM TCEP) and 5 

mM MgCl2 (50 μL total) for 20 minutes in 0.65 mL low-adhesion eppendorf tubes. Peptide 

reactions were initiated by adding an enzyme mix (50 μL) containing 100 nM FTase, 5 mM 

MgCl2, 1x reaction buffer, and 10 μM Azo-FPP1. Reactions were incubated at RT for 16 hours 

before adding an equal volume of 20% acetic acid in isopropanol to stop the reaction. Following, 

the reaction mixtures were illuminated with either 365 nm or 460 nm LED lights for three 
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minutes before performing the HPLC analysis. HPLC analysis was performed at ambient 

temperature on an Agilent 1260 HPLC system with auto-sampler, UV-Vis, and fluorescence 

detection using a C18 reversed-phase analytical column (Zorbax XDB-C18) with a linear 

gradient from 30% acetonitrile in 25 mM ammonium acetate to 100% acetonitrile flowing at 1 

mL/min over 30 minutes; peptides and products were detected by fluorescence (ex 340 nm, em 

496 nm). 

 

3.5.5 Time course study to determine reactivity of trans- and cis-Azo-FPP1: Peptide mix 

consisting of dns-GCVLS (3 μM) incubated with both 1x reaction buffer (50 mM HEPPSO-

NaOH, pH 7.8, 5 mM TCEP) and 5 mM MgCl2 (50 μL total) for 20 minutes in 0.65 mL low-

adhesion eppendorf tubes. Before peptide reactions were initiated by adding an enzyme mix (50 

μL) containing 100 nM FTase, 5 mM MgCl2, 1x reaction buffer, and 10 μM Azo-FPP1, the 

enzyme mix was either non-illuminated or illuminated with 365 nm LED light (cis isomer) for 3 

minutes in dark. Reactions were incubated at RT for different time points; 30 minutes, 60 

minutes, 120 minutes, 240 minutes, or 360 minutes. HPLC analysis was performed at ambient 

temperature on an Agilent 1260 HPLC system with auto-sampler, UV-Vis, and fluorescence 

detection using a C18 reversed-phase analytical column (Zorbax XDB-C18) with a linear 

gradient from 30% acetonitrile in 25 mM ammonium acetate to 100% acetonitrile flowing at 1 

mL/min over 30 minutes; peptides and products were detected by fluorescence (ex 340 nm, em 

496 nm). Reaction progress was calculated by % peptide conversion to prenylated product, with 

substrate and product peaks assigned per retention times: 

% conversion = Product Integration / (Product + Substrate Integration)  
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3.5.6 Time course study to gauge reactivity of non-illuminated Azo-FPP1 in comparison to 

AlkC15OPP:  To probe the reactivity of Azo-FPP1 and to determine if the reactivity of Azo-

FPP1 is sufficient to potentially support cell-based metabolic labeling, this analogue was 

compared with C15AlkOPP (an isoprenoid alkyne analogue from DiStefano Lab, University of 

Minnesota) using a time course experiment with peptide substrate. A peptide mix consisting of 

dns-GCVLS (3 μM) was incubated with both 1x reaction buffer (50 mM HEPPSO-NaOH, pH 

7.8, 5 mM TCEP) and 5 mM MgCl2 (50 μL total) for 20 minutes in 0.65 mL low-adhesion 

eppendorf tubes. Peptide reactions were initiated by adding an enzyme mix (50 μL) containing 

100 nM FTase, 5 mM MgCl2, 1x reaction buffer, and either 10 μM Azo-FPP1 or C15AlkOPP. 

Following addition of equal volume of 20% acetic acid in isopropanol stop solution at different 

time intervals, 30 minutes, 60 minutes, 120 minutes, and 240 minutes; reaction mixtures were 

analyzed by reverse-phase HPLC to determine the extent of peptide prenylation by both donor 

substrates. Since the C15AlkOPP probe results in a greater fluorescence enhancement/detection 

on the HPLC, UV chromatograms were analyzed at absorbance of 340 nm for the dansyl group. 

Reaction progress was obtained by calculating the concentration of product formation (μM) with 

normalization to the UV absorbance observed upon reaction completion. HPLC analysis was 

performed at ambient temperature on an Agilent 1260 HPLC system with auto-sampler, UV-Vis, 

and fluorescence detection using a C18 reversed-phase analytical column (Zorbax XDB-C18) 

with a linear gradient from 30% acetonitrile in 25 mM ammonium acetate to 100% acetonitrile 

flowing at 1 mL/min over 30 minutes; peptides and products were detected by fluorescence (ex 

340 nm, em 496 nm). 
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Chapter 4: Development of a FRET assay to monitor protein 

prenylation within cells 

 

The work presented herein is unpublished.  

 

FLIM-FRET microscopy and analysis was performed by Peter Calvert (Center for Vision 

Research, Upstate Medical University). HEK293 cell maintenance and preparation for 

microscopy was assisted by Himanshu Malhotra from the Calvert Lab (Center for Vision 

Research, Upstate Medical University).  

 

David W. Coreno (Syracuse University) assisted with expression and purification of His6-PDEδ. 
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4.1 Introduction 

As described in Chapter 2, membrane localization studies in mammalian cells using the 

modified eGFP-KRas fusion protein did not provide evidence for the prenylation of non-

canonical Cxx sequences. This could be because Cxx sequences are not prenylated inside cells as 

in vitro steady-state analysis showed that the sequences tested are not as reactive as the most 

reactive CaaX sequences (see section 2.6).1 Or these Cxx proteins are modified by FTase, but are 

shunted (i.e. not proteolysed and methylated following prenylation) as several of the sequences 

tested were recovered from a Ydj1p-based assay.2, 3 Therefore, membrane localization studies 

would not help identify potential substrates in a mammalian context, as post-processing of 

prenylated proteins is often required for localization at the plasma membrane.  

To expand our ability to monitor protein prenylation, we aimed to develop a FRET based 

assay that would allow us to detect prenylation of Cxx sequences in cells. Förster Resonance 

Energy Transfer (FRET) is a photo-physical process by which energy (non-radiative) is 

transferred from an excited state of one fluorophore (termed the donor (D*)) to another 

fluorophore (the acceptor (A)) via a dipole-dipole interaction.4 For this energy transfer to occur, a 

number of criteria must be satisfied. First, the absorption spectra of the acceptor must have 

sufficient overlap with the emission spectra of the donor. Second, the transition dipole moments 

of the donor and acceptor must be favorably aligned. Finally, the donor and acceptor must be 

near each other for energy transfer to occur (generally within ~10 nm).5-7 The energy transfer 

rate from the donor to the acceptor decreases with the sixth power of the distance. Due to the 

dependence on the distance between the donating and the accepting fluorophores, FRET has 

become a valuable tool for studying biological phenomena.8-11 By labeling different proteins 
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with the donor and the acceptor, FRET can be used to ascertain if proteins interact with each 

other.  

One common approach for monitoring FRET utilizes the increase in acceptor 

fluorescence due to the energy transfer from the donor.12 However, these measurements must 

account for the concentration dependence of the fluorescence intensities of the donor and the 

acceptor. In addition, there can be complications from ‘donor bleed through’ due to the overlap 

of the donor fluorescence into the acceptor emission band and non-FRET fluorescence from 

directly excited acceptor molecules. Therefore, such measurements require careful calibration of 

these factors using data of samples containing only the donor and only the acceptor.13-16  

In addition to the fluorescence intensity, detecting changes in the fluorescence/excited 

state lifetime of a donor molecule provides another option for monitoring FRET. When a 

molecule absorbs a photon, it enters an electronically excited singlet state. From this excited 

state, the molecules can return to the ground state by emitting a photon, by internally converting 

the absorbed energy into heat, by passing the energy to its molecular environment, or by crossing 

into the triplet state and returning to the ground state by phosphorescence or internal 

conversion.17 For a homogenous population of molecules, the resulting fluorescence decay can 

be fit to a single exponential function. The time constant of this function, the fluorescence 

lifetime, is the reciprocal sum of the rate constants of all possible return paths. The fluorescence 

lifetime is dependent on the fluorescent molecule’s conformation and the way the molecule 

interacts with its environment.18 Of all fluorescence parameters, it is the fluorescence decay 

function that provides the most direct insight into the molecular interactions with its biological 

environment.18 For in cellulo studies, fluorescence lifetime imagining microscopy (FLIM) of the 
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donor is the gold standard for FRET measurements as FRET results in a quenching of the donor 

fluorescence and thus, decreases the donor lifetime (Figure 4.1).6, 7, 18, 19 

To establish a FRET assay for assessing the prenylated state of non-canonical Cxx 

sequences in cells, a prenyl binding protein is required which will associate with the modified 

“Cxx” protein. This bimolecular association can be used to place donor and acceptor groups in 

proximity to allow FRET between them. The cytoplasmic prenyl binding factor PDEδ has been 

reported as a binding partner for various prenylated small G proteins including K/HRas and non-

prenylated small G proteins such as Arl1 and Arl3.20-23 PDEδ has also been proposed to assist in 

H/N/KRas signaling in a similar way to Rho- and Rab-GDIs (Guanine-nucleotide Dissociation 

Inhibitors) that bind to prenylated GDP-bound small G-proteins and thus constitute a 

cytoplasmic pool of inactive G-proteins.20 The Bastiaens group showed that PDEδ plays a role in 

modulating cell signaling through Ras family G proteins by sustaining their dynamic distribution 

in cellular membranes.24 Moreover, they also showed that farnesylation of target proteins was 

necessary for the observed modulation by PDEδ. This work utilized FLIM-FRET to study the 

impact of PDEδ on the dynamic distribution of multiple prenylated Ras proteins and inspired the 

efforts reported in this chapter.24  

The work herein describes development of a FRET based assay which would allow for 

the detection of prenylated non-canonical Cxx motifs in a biological context. First, we attempted 

an in vitro characterization using purified His6-mCherry-PDEδ fusion protein with purified eGFP 

protein appended with prenylation motifs to determine if PDEδ binds prenylated non-canonical 

Cxx sequences. Followed by studies that utilized purified His6-PDEδ with purified prenylated 

dansyl peptides. We also report initial studies towards in cellulo characterization utilizing FLIM-
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FRET to detect binding of non-canonical Cxx sequences in the context of two different fusion 

proteins.  
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Figure 4.1. Fluorescence resonance energy transfer. Left panel: FRET is an interaction of two 

fluorophore molecules with the emission band of one overlapping the absorption band of the 

other. Right panel: FRET results in a quenching of the donor fluorescence and consequently, 

decrease in the donor lifetime. This figure has been reused with permission from reference 18 

(Appendix IV).   
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4.2 Establishing an in vitro FRET assay to assess binding of mCherry-PDEδ and prenylated 

eGFP-fusion peptide  

 We aimed to design another system for detecting prenylation of non-canonical sequences 

inside a mammalian cell. This assay is based on a mCherry-PDEδ fusion protein, the mammalian 

plasmid for which was generously provided by the Bastiaens Group (Max Planck Institute of 

Molecular Physiology). Phosphodiesterase 6 (PDE6) delta subunit (PDEδ) is a cytoplasmic 

prenyl binding factor that has been proposed to assist in H/N/KRas intracellular trafficking by 

binding to the prenylated domain.21, 22 In their study, Chandra et al. demonstrated the role of 

PDEδ in modulating signaling through Ras family G proteins by using a FRET system consisted 

of mCherry-PDEδ and various Ras proteins fused to the monomeric yellow fluorescent protein 

Citrine.24 Interactions between the prenylated mCitrine-Ras proteins and mCherry-PDEδ 

produced a FRET signal allowing them to visualize the direct interaction of these two proteins. 

We aimed to develop a similar FRET signaling system to investigate prenylation of non-

canonical Cxx sequences in cells. 

 Towards that goal, we first investigated whether this system would be viable for 

monitoring Cxx prenylation within an intact cell by establishing an in vitro model assay. After 

sequence confirmation of the mammalian mCherry-PDEδ vector, the mCherry-PDEδ insert was 

cloned into a pET-28a bacterial expression vector. The pET-28a vector inserts a His-tag at the N-

terminus of the expressed protein to allow for affinity purification. Successful cloning was 

confirmed via sequencing. Expression of His6-mCherry-PDEδ in a bacterial cell culture was 

visually detected by the bright pink color change in the bacterial culture and visualization of a 

pink band when analyzing the cell lysate on SDS-PAGE gel. While the predicted molecular 

weight for His6-mCherry-PDEδ is 46.8 kDa, the pink band representing the fluorescent protein 
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was observed to run aberrantly low closer to the 40 kDa ladder band suggesting incomplete 

denaturation of the expressed protein (Figure 4.2A). Following protein expression, the His6-

mCherry-PDEδ protein was purified using Nickel resin-based metal affinity chromatography 

(Figure 4.2B). Again, His6-mCherry-PDEδ’s pink band was observed to run aberrantly low when 

analyzed via a denaturing SDS-PAGE. Of note, we also observed two bands for the purified 

protein when diluted. A non-denaturing SDS-PAGE analysis was carried out on purified His6-

mCherry-PDEδ where only a single band was observed running at ~40 kDa, consistent with the 

non-denatured protein exhibiting lower apparent molecular weight (Figure 4.2C). 
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Figure 4.2. Expression and purification of His6-mCherry-PDEδ shown in white. A) 

Denaturing SDS-PAGE gel analysis of His6-mCherry-PDEδ purification. B) Serial dilution of 

purified His6-mCherry-PDEδ under denaturing conditions. C) Purified His6-mCherry-PDEδ 

under non-denaturing conditions; the doublet in gel B) lane 2 collapses to the lower band in C). 

Bands on all three SDS-PAGE Gels were assigned for the expressed and purified protein based 

on the visualization of a clear pink band. His6-mCherry-PDEδ was expressed and purified as 

described in Materials and Methods. 
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B)  
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Following expression and purification, His6-mCherry-PDEδ was used in assays to 

measure FRET activity that would reflect binding to a prenylated eGFP fluorescent protein. A 

binding event is expected to produce a FRET signal, as the mCherry and eGFP fluorescent 

proteins are compatible with FRET given their overlapping emission (eGFP) and absorption 

(mCherry) spectra.25 To ensure the two protein constructs were FRET compatible, emission 

spectral scans of both His6-mCherry-PDEδ and eGFP-CVIA were performed. However, as 

shown in Figure 4.3A and 4.3B, we observed a strong emission from His6-mCherry-PDEδ at the 

excitation wavelengths of 420 nm and 450 nm, where we expected to only observe emission 

from eGFP. Moreover, we found that both fluorescent fusion proteins emit at 510 nm during an 

excitation scan, where we again expected to only see eGFP emit (Figure 4.3C). These 

unexpected excitation and emission spectral results for His6-mCherry-PDEδ suggest that it is not 

an ideal FRET pair for eGFP, at least for this in vitro analysis.  

 Despite these results, purified prenylated eGFP-CVIA and mCherry-PDEδ were 

incubated together under foil and analyzed on the plate reader at 15- and 60-minutes increments 

by exciting eGFP at 488 nm and observing emission of mCherry at 610 nm. A negative control 

with purified non-prenylated eGFP-CVIA was also analyzed (Figure 4.4). No appreciable change 

in mCherry fluorescence was observed between the two tested conditions, suggesting that 

binding between the two proteins was not achieved.  
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Figure 4.3. Spectral characterization of His6-mCherry-PDEδ and eGFP-CVIA.  A) 

Emission spectral scan of His6-mCherry-PDEδ and eGFP-CVIA obtained via plate-reader 

monitoring (ex = 420 nm) B) Emission spectral scan of His6-mCherry-PDEδ and eGFP-CVIA 

obtained via plate-reader monitoring (ex = 450 nm) C) Excitation spectral scan of His6-

mCherry-PDEδ and eGFP-CVIA obtained via plate-reader monitoring (em = 510 nm).  

 

A)                           B) 

 

        C) 
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Figure 4.4. FRET analysis to assess binding interaction of His6-mCherry-PDEδ with 

farnesylated and non-farnesylated eGFP-CVIA at 15- and 60-minutes post-incubation.  

Fluorescence measurements obtained via plate-reader monitoring of FRET-based emission from 

mCherry (ex = 488 nm, em = 610 nm), which do not provide evidence for FRET.   

 

  

 

 

 



 

186 
 

4.3 Expression and purification of PDEδ and development of FRET assay using PDEδ and 

a prenylated dansyl-peptide 

With our initial efforts to measure FRET activity between His6-mCherry-PDEδ and 

prenylated eGFP-CVIA unfruitful, we sub-cloned PDEδ into the pET-28a vector to directly 

examine binding of a prenylated dansyl-peptide and PDEδ based on previous work.26 This 

system utilizes direct excitation of tryptophan residues in PDEδ and FRET-based emission from 

the dansyl fluorphore in the peptide. Successful sub-cloning was verified via Sanger sequencing. 

Expression of His6-PDEδ was verified by the visualization of a prominent band on a non-

denaturing SDS-PAGE gel at ~20 kDa corresponding to the His6-PDEδ molecular weight (~17.4 

kDa). The His6-PDEδ protein was purified using Ni2+-affinity resin (Figure 4.5). 

Following purification of His6-PDEδ protein, assays were performed to determine the 

presence of FRET signal indicating binding of farnesylated dns-GCVLS to His6-PDEδ. Spectral 

scans of His6-PDEδ in presence of farnesylated dns-GCVLS were obtained by exciting the 

tryptophan residues in His6-PDEδ at 282 nm and monitoring dansyl group emission at 515 nm. 

Negative controls consisted of His6-PDEδ with non-farnesylated dns-GCVLS, His6-PDEδ alone, 

and both prenylated and non-prenylated dns-GCVLS alone. Emission spectral scans were carried 

out following overnight incubation (see Materials and Methods). These scans did not provide a 

consistent increase in fluorescence signal from the dansyl group in the peptide- His6-PDEδ 

sample compared to negative control of His6-PDEδ only and/or His6-PDEδ with non-prenylated 

dns-GCVLS peptide (Figure 4.6). Inconsistency in readings between wells makes interpreting 

results more difficult. We failed to observe any consistent increase in fluorescence of the dansyl 

group for the prenylated peptide in presence of His6-PDEδ, suggesting that PDEδ does not bind 

the prenylated dns-GCVLS peptide under the conditions tested.  
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These results are not overly surprising as studies have shown that PDEδ prefers binding 

proteins that are processed post-prenylation, including a crystal structure of PDEδ bound to 

KRas protein.26, 27 Specifically, PDEδ exhibits a greater affinity for proteins that are 

carboxymethylated at their C-terminus following prenylation. In our assay, the dns-GCVLS 

peptide used still has the three amino acids following the prenylated cysteine. In comparison, the 

in vitro study performed by Zhang and co-workers utilized synthesized prenylated dansyl-

cysteines with a carboxylmethyl moiety following the prenyl cysteine. Based on the crystal 

structure and the Zhang study, we reasoned that the binding pocket of PDEδ may not be able to 

accommodate the extra amino acids present in our tested peptide.  
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Figure 4.5. Serial dilution of purified His6-PDEδ analyzed by SDS-PAGE Gel under non-

denaturing conditions, MW = 17.4 kDa, as shown in white. His6-PDEδ was expressed and 

purified as described in Materials and Methods. 

 

 

 

  



 

189 
 

Figure 4.6. FRET measurements to determine binding interaction of PDEδ with 

farnesylated and non-farnesylated dns-GCVLS via plate-reader. A)1 µM PDEδ incubated 

with 500 nM prenylated or non-prenylated dns-GCVLS peptide overnight. B) 5 µM PDEδ 

incubated with 500 nM prenylated or non-prenylated dns-GCVLS (two separate trials). Emission 

spectral scans were obtained (ex = 282 nm, em = 400-600 nm) the following day as described in 

Materials and Methods.  
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4.4 Investigating prenylation of non-canonical Cxx sequences in HEK293 cells via FLIM-

FRET using GRK1 protein construct 

Note: FLIM-FRET microscopy and analysis was performed by Peter Calvert (Center for 

Vision Research, Upstate Medical University). Cell maintenance and preparation was assisted 

by Himanshu Malhotra from the Calvert Lab (Center for Vision Research, Upstate Medical 

University). 

 Despite unsuccessful efforts towards the development of an in vitro FRET assay based on 

mCherry-PDEδ or PDEδ binding prenylated eGFP or prenylated dansyl-peptides, respectively; 

we explored FLIM-FRET studies using live cells to gauge the prenylation status of non-

canonical Cxx sequences in the context of two mammalian fluorescent fusion proteins, mCherry 

and eGFP. This work was based on an established study where the Bastaeins group used FLIM-

FRET to delineate the spatial organization of Ras proteins conferred by PDEδ activity.24  

 In collaboration with the Calvert Group (Upstate Medical University), we designed 

FLIM-FRET experiments utilizing mCherry-PDEδ and an eGFP-GRK1 construct that was 

modified at its C-terminus to contain prenylation motifs of interest. We chose the eGFP-GRK1 

construct for this study for several reasons. First, numerous studies have reported that PDEδ 

serves as a binding partner for GRK1, a rhodopsin kinase, for the proper localization of GRK1.28, 

29 Second, as described in Chapter 1, prenylated protein usually require a secondary signal in 

order to membrane associate. That signal can be an additional lipid modification, such as 

palmitoylation, or it can be in the form of electrostatic interactions with the negatively charged 

plasma membrane inner leaflet. The GRK1 sequence used in this study lacks multiple positively 

charged residues that would aid its membrane localization and is not known to go under any 
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further modifications once prenylated and processed, which makes this prenylated construct 

more cytosolically available for binding interactions with PDEδ. It is also important to note, 

however, that the Maza study utilized endogenously expressed PDEδ in rods of Xenopus laevis 

in contrast to the human PDEδ sequence we utilized in this study,33 and that study used the 

GRK1 sequence expressed in Xenopus laevis, which is also different from the human form.  

 For this study, the eGFP-GRK1 construct was modified to contain the following C-

terminal sequences: -CVLS, -AVLS, and -CVL. These sequences were selected based on known 

steady-state kinetic parameters (see section 2.6), representing the most active CaaX and Cxx 

sequences tested.1 The alanine mutant serves as the negative control as it is not expected to be 

prenylated or modified in any form, while -CVLS serves as the positive control as it is known to 

be prenylated, processed, and bind to PDEδ.24  

We initially expressed only the eGFP-GRK1-CVLS/-AVLS constructs in HEK293 cells 

to establish a baseline FLIM-FRET signal that may result from the normal lifetime for eGFP or 

homoFRET, i.e. eGFP to eGFP energy transfer. Robust expression of eGFP-GRK1 bearing -

CVLS and -AVLS sequences at their C-terminus was confirmed via fluorescence microscopy 

and the resulting FLIM-FRET signals were analyzed to exhibit similar lifetimes for both eGFP 

donor (Figure 4.7). Both eGFP-GRK1-CVLS and eGFP-GRK1-AVLS expressed proteins 

showed lifetimes of approximately 2300-2400 ps. The fluorescence lifetimes observed are 

shorter than the reported lifetime of eGFP at 2800 ± 70 ps (Mamontova), suggesting that 

homoFRET might be playing a role in the values obtained (Figure 4.7). Moreover, eGFP-GRK1-

CVLS expression was found to be diffuse throughout the cell, making it available to bind with 

mCherry-PDEδ.  
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Figure 4.7. FLIM-FRET measurements in HEK293 cells expressing either eGFP-GRK1-

CVLS or eGFP-GRK1-AVLS. Left panel: HEK293 cells transfected with eGFP-GRK1-CVLS 

or eGFP-GRK1-AVLS demonstrating diffuse fluorescence. Right panel: Mean florescence 

lifetime plots of each respective sample.  

  



 

194 
 

Following FLIM-FRET measurements of eGFP-GRK1 constructs alone, co-expression of 

mCherry-PDEδ and eGFP-GRK1 constructs was performed in HEK293 cell with protein 

expression verified by fluorescence microscopy. FLIM-FRET studies of co-transfected cells 

were then performed and analyzed. In these experiments, a successful binding interactions would 

be indicated by a larger reduction in the fluorescence lifetime of eGFP-GRK1-CVLS (presumed 

prenylated) with mCherry-PDEδ than any changes observed with eGFP-GRK1-AVLS which is 

expected to not be prenylated. In our experimental analysis, eGFP-GRK1-AVLS co-expressed 

with mCherry-PDEδ exhibited a lower lifetime compared to eGFP-GRK1-AVLS alone (Figure 

4.8). The lifetime of eGFP-GRK1-CVLS in presence of mCherry-PDEδ was similarly lower in 

comparison to eGFP-GRK1-CVLS by itself. Moreover, we detected small peaks at a lower 

fluorescence lifetime in the FLIM plot which correspond to a small proportion of the expressed 

eGFP-GRK1-CVLS population in presence of mCherry-PDEδ (Figure 4.8), suggesting binding 

of fraction of eGFP-GRK1-CVLS by mCherry-PDEδ likely due to prenylation. However, the 

majority of the FLIM signal from eGFP-GRK1-CVLS in presence of mCherry-PDEδ was 

comparable with the signal generated by the co-expression of eGFP-GRK1-AVLS and mCherry-

PDEδ. This highlights that these results should be interpreted carefully and require further 

control experimentation, such as the co-expression of the eGFP-GRK1 constructs with mCherry 

only to examine the possibility for non-prenylation dependent interactions with PDEδ. In the 

case of the eGFP-GRK1-CVL construct expressed with mCherry-PDEδ, the FLIM-FRET results 

were comparable to the negative control involving only eGFP-GRK1 constructs, suggesting that 

a significant binding event between eGFP-GRK1-CVL and mCherry-PDEδ did not occur (Figure 

4.8). Again, a control experiment with the eGFP-GRK1 constructs and mCherry only will help 
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interpret these results and provide a comprehensive assessment about the viability of this assay 

for detection of prenylation on Cxx sequences.  
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Figure 4.8. FLIM-FRET measurements in HEK293 cells co-expressing eGFP-GRK1-CVLS 

or eGFP-GRK1-AVLS or eGFP-GRK1-CVL and mCherry-PDEδ. Left panel: HEK293 cells 

co-transfected with eGFP-GRK1-CVLS or eGFP-GRK1-AVLS or eGFP-GRK1-CVL and 

mCherry-PDEδ. Right panel: Mean fluorescence lifetime plots of each respective sample. 
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4.5 Investigating prenylation of non-canonical Cxx sequences in HEK293 cells via FLIM-

FRET using modified eGFP-KRas protein constructs with mCherry-PDEδ 

Note: FLIM-FRET microscopy and analysis was performed by Peter Calvert (Center for 

Vision Research, Upstate Medical University). Cell maintenance and preparation was assisted 

by Himanshu Malhotra from the Calvert Lab (Center for Vision Research, Upstate Medical 

University). 

As described, the results from the FLIM-FRET analysis of live HEK293 cells co-

expressing the modified eGFP-GRK1 constructs and mCherry-PDEδ did not provide a clear 

representation regarding PDEδ binding the GRK1 constructs that is dependent on prenylation. It 

is also important to note that the GRK1 construct utilized in that study was based on the Xenopus 

Laevis GRK1 protein’s C-terminal amino acid sequence, which differ from the human version, 

while the PDEδ protein expressed in live cells is of human origin. Therefore, it is conceivable 

that these two proteins do not bind or bind as well as their respective human orthologs. To 

mitigate the possibility that the observed lack of significant difference in FLIM signal between 

the positive and negative controls is due to the utilization of cross-species proteins, we employed 

a known binding partner of human PDEδ, human KRas protein.24, 27, 30  

For this study, only an initial test with eGFP-KRas that has a canonical -CVIM motif was 

carried out in the presence and absence of mCherry-PDEδ. Using live cells, completely 

processed prenylated eGFP-KRas with its canonical C-terminus motif is expected to membrane 

localize and bind PDEδ.27, 31 PDEδ is proposed to play a role in continuously sequestering 

mislocalized KRas from endomembranes to ultimately restore KRas enrichment on the plasma 

membrane.32 Consequently, the cytosolic fraction of prenylated KRas available to bind with 
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mCherry-PDEδ is minimal compared to the GRK1 construct tested in section 4.4.24 Therefore, it 

is not surprising that the FLIM-FRET results observed from the co-expression of eGFP-KRas 

and mCherry-PDEδ in live HEK293 cells do not provide evidence for any binding interactions. 

As shown in Figure 4.9, membrane localization of eGFP-KRas at the plasma membrane and the 

lifetime of eGFP-KRas in presence of mCherry-PDEδ was comparable to the lifetime of eGFP-

KRas by itself. This result was expected and is in agreement with prior reports.24  

While the results from this experiment do not provide evidence for PDEδ binding due to 

the aforementioned reason, this system might still prove useful for detecting prenylation of non-

canonical Cxx sequences. This is because KRas membrane localization is not only dependent on 

farnesylation, but the polybasic residues upstream of the prenylated cysteine that utilize 

electrostatic interactions to membrane associate with the negatively charged inner leaflet.31 

Chandra and co-workers were able to increase the cytosolic fraction of KRas by mutating the 

polybasic lysine residues to negatively charged glutamate residues and demonstrated a lower 

lifetime for the mutated mCitrine-KRas construct in presence of mCherry-PDEδ, suggestive of 

binding interactions.24 Therefore, future work should aim to utilize a KRas construct that is more 

available in the cytosol for assessing binding with PDEδ.  
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Figure 4.9. FLIM-FRET measurements in HEK293 cells co-expressing eGFP-KRas and 

mCherry-PDEδ. Left panel: HEK293 cells transfected with eGFP-KRas or co-transfected with 

eGFP-KRas and mCherry-PDEδ. Right panel: Mean fluorescence lifetime plots of each 

respective sample. 
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4.6 Conclusions 

In this study, both in vitro and in vivo FRET-based techniques were explored to 

investigate prenylation of non-canonical Cxx sequences. In vitro FRET assays to evaluate 

binding of the prenylated protein/peptide to PDEδ using mCherry-PDEδ with prenylated eGFP-

CVIA and PDEδ alone with prenylated dns-GCVLS did not yield consistent FRET behavior 

indicative of any binding events. We suggest that these negative results may arise from the 

presence of unprocessed prenylated protein/peptide. Specifically, PDEδ exhibits a higher affinity 

for prenylated substrates that have a carboxymethyl moiety following the prenylated cysteine 

compared to prenylated substrates that still have an intact CaaX motif.26  

In a more biologically relevant context, FLIM-FRET was utilized to assess binding of 

fluorescent protein constructs by mCherry-PDEδ that is dependent on prenylation of the 

fluorescent protein construct. FLIM-FRET provides a powerful avenue for quantifying binding 

interactions. Two different fluorescent constructs were used in this study including the C-

terminal 18 amino acid sequence of rhodopsin kinase (GRK1) protein, and full-length KRas. It is 

important to note that the modified eGFP-GRK1C18 constructs were based on the GRK1 protein 

expressed in Xenopus Laevis and are expected to be cytosolic when prenylated, while the eGFP-

KRas construct is based on human KRas protein and is expected to membrane associate 

following prenylation and processing. PDEδ has been reported to bind both prenylated 

proteins.20-24  

For the eGFP-GRK1 constructs expressed with mCherry-PDEδ, the FLIM-FRET analysis 

provided some evidence for the binding of eGFP-GRK1-CVLS by mCherry-PDEδ through the 

presence of eGFP subpopulations with markedly reduced fluorescence lifetimes. However, the 

test construct of eGFP-GRK1-CVL with mCherry-PDEδ provided results similar to the negative 
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control. Overall, these initial results are not conclusive and do not completely rule out the 

utilization of this assay for detecting Cxx prenylation, but would be aided by the addition of a 

negative control in which the eGFP-GRK1 constructs are co-expressed with mCherry only to 

fully evaluate their lifetimes and binding potential. Further, utilization of the human GRK1 

protein sequence is recommended to assuage any discriminatory behavior human PDEδ might 

exhibit towards the Xenopus Laevis GRK1.   

Leveraging human KRas, a known binding partner for PDEδ, also proved unfruitful in 

this FLIM-FRET based study. The results indicated a clear membrane associative behavior for 

eGFP-KRas, demonstrating the lack of cytosolic KRas available to bind PDEδ and produce a 

FRET signal. Increasing the cytosolic fraction of prenylated KRas by mutating the lysine rich 

area of KRas to glutamate residues would provide a better system for evaluating the viability of 

this assay for detecting prenylation of non-canonical 3mer sequences.  

Lastly, it is important to mention PDEδ’s binding preference again and how that may 

influence the utility of this proposed assay. As described in section 4.3, PDEδ exhibits a higher 

affinity for farnesylated proteins that are processed compared to their unprocessed 

counterparts.26, 27 Therefore, it is important to consider if PDEδ can serve as a potential binding 

partner for non-canonical sequences that are longer compared to processed farnesylated 

canonical sequences. Future work towards the development of this detection method should take 

this into account and aim to employ a mutagenesis strategy based on the proteins crystal 

structure that would facilitate binding of longer PDEδ substrates. 
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4.7 Materials and Methods 

 

4.7.1 Construction of pET28a-mCherry-PDEδ bacterial vector:  The mammalian vector for 

mCherry-PDEδ obtained from Bastiaens Group (Max Planck Institute of Molecular Physiology) 

was sequence verified to confirm the presence of both EcoR1 and Nhe1 restrictions sites 

(Genewiz). Both the mammalian inserts and the pET28a vectors were double digested using 

EcoR1 and Nhe1-HF restriction enzymes in a reaction containing 1 µg DNA, 2 µL 10x Buffer, 1 

µL of each restriction enzyme in 20 µL total volume. The double digest reaction was incubated 

for 2 hours at RT and then ran on a 0.8 % agarose gel to confirm successful digestion. The 

digested products were purified from the gel using EZ-10 Spin Column DNA Gel Extraction kit 

(BioBasic) per the manufacturer’s protocol. 1 µg of the double digested pET28a vector was 

ligated with a 3-fold molar excess of the mCherry-PDEδ insert to get the pET28a-mCherry-

PDEδ vector. The ligation reaction was carried out as follows: 50 ng double digested pET28a 

vector, 33.8 ng mCherry-PDEδ insert, 2X QuickLigase buffer (10 µL), and 1 µL of Quick ligase 

enzyme (NEB) were added in a total reaction volume of 20 µL. A negative control reaction 

without the mCherry-PDEδ insert was also carried out. The reactions were incubated at RT for 5 

min before chilling them on ice and adding 2 µL of each the ligation reaction and the negative 

control into separate tubes with 100 µL of DH5 cells. After transformation, DH5 cells were 

incubated for 30 min on ice. 250 µL 1X LB Media was added to each transformed cell tube and 

shaken for 1 hour at 37°C before plating the cells on LB-Kan plates and incubating overnight at 

37°C. Colonies from the ligation reaction plate were inoculated into 5 mL of LB containing 50 

µg/mL kanamycin and incubated overnight at 37°C with shaking at 225 rpm. The plasmids from 

the overnight cultures were purified using the EZ-10 spin column plasmid purification kit 
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(BioBasic) per manufacturer’s protocol and sequenced (Genewiz) to confirm the presence of 

mCherry-PDEδ insert in the pET28a vector. 

 

4.7.2 Expression and purification of pET28a-mCherry-PDEδ protein: Chemically competent 

BL21 (DE3) E. coli were transformed with pET28a-mCherry-PDEδ vector. Following 

transformation and antibiotic selection, a colony from the transformation plate was inoculated 

into LB media (5 mL) containing 50 µg/mL kanamycin. Cultures were incubated and shaken at 

225 rpm for 4 h at 37°C and then transferred to 0.5 liter of prewarmed auto-induction media (5 g 

tryptone, 2.5 g yeast extract, 10 mL 50X 5052 media [25% glycerol, 10% lactose, 2.5% glucose], 

25 mM Na2HPO4, 25 mM KH2PO4, 50 mM NH4Cl, 5 mM Na2SO4, 2 mM MgSO4, 100 µL 

trace metals [50 µM FeCl2, 20 µM CaCl2, 10 µM MnCl2, 10 µM ZnCl2], 50 µg/mL kanamycin. 

Expression cultures were incubated for 19 h at 37˚C with shaking. Cells were harvested by 

centrifugation and resuspended in 50 mL resuspension buffer (20 mM NaH2PO4, 300 mM NaCl, 

and 10 mM imidazole). Bacterial cell suspensions were lysed by sonication, clarified by 

centrifugation, and purified by affinity chromatography using a Ni-NTA HisTrap column (GE S4 

Healthcare). Fractions containing the fluorescent protein were combined and concentrated using 

a centrifugal concentrator. Concentrated samples were buffer exchanged to 50 mM Tris buffer 

(pH 7.5), divided into 20 µL aliquots, and flash frozen with liquid nitrogen for storage at −80°C. 

Protein concentration was determined using the molar absorption of mCherry at 587 nm. 

 

4.7.3 Construction of pET28a-PDEδ bacterial vector: The vector plasmid encoding for PDEδ 

was prepared by PCR using the pET28a-mCherry-PDEδ vector with a 5’ primer containing the 
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BamHI restriction site and a 3’ primer containing the HindIII restriction site (synthesized by 

IDT, Inc.). The PCR reaction (50 μL) consisted of 1x Standard OneTaq buffer, 10 mM dNTPs, 

125 ng reverse and forward primers each, 10 ng template plasmid, and OneTaq DNA polymerase 

(0.25 µL, 5U/µL). The PCR reactions were performed in a BioRad Mycycler thermal cycler 

using the following program: Initial denaturation (94°C, 1 min); thirty cycles of denaturation 

(94°C, 30 sec), annealing (56°C, 1 min), and extension (68°C, 2 min); final extension (68°C, 5 

min); and a final hold (10°C, ∞). PCR products were purified using BIO Basic Inc. EZ-10 Spin 

Column PCR purification Kit following the manufacturer’s protocol. Following digestion by 

BamHI and HindIII of the amplified product and pET28a, the PDEδ insert was ligated into the 

pET28a plasmid using the Quick Ligase kit (NEB), following the manufacturer’s instructions. 

Insert ligation was verified by analytical restriction digest and gene sequencing (Genewiz). 

 

4.7.4 Expression and purification of pET28a-PDEδ: Chemically competent BL21 (DE3) E. 

coli were transformed with pET28a-PDEδ vector. Following transformation and antibiotic 

selection, a colony from the transformation plate was inoculated into LB media (5 mL) 

containing 50 µg/mL kanamycin. Cultures were incubated and shaken at 225 rpm for 4 h at 37°C 

and then transferred to 0.5 liter of prewarmed auto-induction media (5 g tryptone, 2.5 g yeast 

extract, 10 mL 50X 5052 media [25% glycerol, 10% lactose, 2.5% glucose], 25 mM Na2HPO4, 

25 mM KH2PO4, 50 mM NH4Cl, 5 mM Na2SO4, 2 mM MgSO4, 100 µL trace metals [50 µM 

FeCl2, 20 µM CaCl2, 10 µM MnCl2, 10 µM ZnCl2], 50 µg/mL kanamycin. Expression cultures 

were incubated for 19 h at 37˚C with shaking. Cells were harvested by centrifugation and 

resuspended in 50 mL resuspension buffer (20 mM NaH2PO4, 300 mM NaCl, and 10 mM 

imidazole). Bacterial cell suspensions were lysed by sonication, clarified by centrifugation, and 
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purified by affinity chromatography using a Ni-NTA HisTrap column (GE S4 Healthcare). 

Fractions containing the protein were combined and concentrated using a centrifugal 

concentrator. Concentrated samples were buffer exchanged to 50 mM Tris buffer (pH 7.8), 

divided into 20 µL aliquots, and stored at −20°C. Protein concentration was determined using the 

molar absorption of PDEδ at 280 nm. 

 

4.7.5 Farnesylation of purified eGFP-CVIA: Purified eGFP-CVIA was provided by Elizabeth 

Cleverdon, Hougland Laboratory. 5 µM eGFP-CVIA was incubated with both 1X reaction buffer 

(50 mM HEPPSO-NaOH, pH7.8, 5 mM TCEP) and 5 mM MgCl2 (.5 mL total) for 20 minutes in 

1.5 mL low-adhesion eppendorf tube. Farnesylation reaction was initiated by adding an enzyme 

mix (.5 mL) containing 100 nM FTase, 5 mM MgCl2, 1X reaction buffer, and 10 µM FPP.  

Reaction was incubated at RT for 16 hours under foil before removing excess FPP through use of 

a 0.5 mL illustra NAP-5 column (GE Healthcare). NAP-5 column was equilibrated with 50 mM 

Tris-HCl (10 mL, pH7.8) before application of the 1 mL reaction sample. Elution followed with 

50 mM Trish-HCl (1.0 mL, pH 7.8) into a low-adhesion eppendorf tube. Concentration of the 

protein was calculated using UV-Vis absorbance of the eluent at 488 nm. 

 

4.7.6 FRET assay to probe mCherry-PDEδ binding prenylated eGFP-CVIA: 300 nM 

mCherry-PDEδ was incubated in 50 mM Tris-HCl (pH 7.8) at RT for 20 mins under foil before 

adding prenylated eGFP-CVIA at various concentration, including, 25 nM, 50 nM, 100 nM, 200 

nM, and 500 nM in a 96-well plate (Corning).  Fluorescence measurements were obtained 15- 

and 60-mins post-incubation in the BioTek H1 Synergy plate reader (ex 488 nm, em 610 nm). 
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Relative fluorescence units were plotted against eGFP-CVIA concentrations. Controls consisted 

of a non-prenylated eGFP-CVIA negative control.  

 

4.7.7 Farnesylation and purification of dns-GCVLS: 3 µM dns-GCVLS was incubated with 

both 1X reaction buffer (50 mM HEPPSO-NaOH, pH7.8, 5 mM TCEP) and 5 mM MgCl2 (.5 mL 

total) for 20 minutes in 1.5 mL low-adhesion eppendorf tube. Farnesylation reaction was 

initiated by adding an enzyme mix (.5 mL) containing 100 nM FTase, 5 mM MgCl2, 1X reaction 

buffer, and 10 µM FPP. Reaction was incubated at RT for 16 hours under foil. Following 

overnight incubation, the peptide reaction was purified by semi-preparative reverse phase HPLC 

(Zorbax Eclipse XDB column, 9.4 x 250 mm) using a gradient mobile phase of 30%-100% 

acetonitrile in aqueous 0.05 % trifluoroacetic acid (TFA) over 30.2 minutes, at a flow rate of 4.2 

mL/min. Prenylated dansyl peptide elution was detected by fluorescence (ex 340 nm, em 496 

nm), and fractions containing the prenylated peptide were collected and dried under vacuum at 

room temperature and resuspended in 1:1 H2O: acetonitrile. Concentration of the protein was 

calculated using UV-Vis absorbance of the eluent at 340 nm. 

 

4.7.8 FRET assay to probe PDEδ binding prenylated dns-GCVLS: 500 nM or 1 µM 

prenylated or non-prenylated dns-GCVLS were incubated in 1X reaction buffer (50 mM 

HEPPSO-NaOH, pH7.8, 5 mM TCEP) at RT for 20 mins under foil before adding 3 or 5 µM 

PDEδ in a 96-well plate (Corning). Spectral scans were obtained post-overnight incubation in the 

BioTek H1 Synergy plate reader (ex 282 nm, em 320-550 nm). Relative fluorescence units were 

plotted against emission wavelengths. Controls consisted of a non-prenylated dns-GCVLS and 
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PDEδ only negative controls.  

 

4.7.9 Generation of pCDNA-eGFP-GRK1ct18 mammalian vectors: The vector plasmids 

encoding for eGFP-GRK1ct18-C/Axx(x) were prepared by PCR using the XOP-eGFP-

GRK1ct18 vector obtained for the Calvert Lab, Upstate Medical University serving as a 

template. 5’ primer containing the BamHI restriction site and 3’ primers containing -CVLS, -

AVLS, -CVL, and -AVL C-terminal sequences and NotI restriction site were designed (IDT, 

Inc.). The PCR reaction (50 μL) consisted of 1x Standard OneTaq buffer, 10 mM dNTPs, 125 ng 

reverse and forward primers each, 10 ng template plasmid, and OneTaq DNA polymerase (0.25 

µL, 5U/µL). The PCR reactions were performed in a BioRad Mycycler thermal cycler using the 

following program: Initial denaturation (94°C, 1 min); thirty cycles of denaturation (94°C, 30 

sec), annealing (56°C, 1 min), and extension (68°C, 2 min); final extension (68°C, 5 min); and a 

final hold (10°C, ∞). PCR products were purified using BIO Basic Inc. EZ-10 Spin Column PCR 

purification Kit following the manufacturer’s protocol. Following digestion by BamHI and NotI, 

the eGFP-GRK1ct18-C/Axx(x) inserts were ligated into the pCDNA plasmid using the Quick 

Ligase kit (NEB), following the manufacturer’s instructions. Insert ligation was verified by 

analytical restriction digest and gene sequencing (Genewiz). 

 

4.7.10 Transfection and FLIM-FRET analysis of various eGFP-GRK1ct18 and eGFP-KRas 

fusion proteins in HEK293 cells: HEK293 cells were maintained in 75 mL vented tissue culture 

flasks (Celltreat) and were split once reaching 80% confluency. Cells were grown in complete 

DMEM (DMEM supplemented with 10% fetal bovine serum (FBS) and 1 % (v/v) penicillin-
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streptomycin (MediaTech) in 5% CO2 at 37°C. For co-expression of the eGFP-GRK1ct18 and 

eGFP-KRas constructs and mCherry-PDEδ, 2 x 105 cells were placed in 2 mL of complete 

DMEM per well of a tissue culture treated 6-well plate (Corning), each containing a 25 mm glass 

coverslip #1.5 thickness (Celltreat). The cells were incubated 24-28 hours prior to transfection. 

The DNA-transfection reagent complex was prepared by incubating 4 µg each of eGFP-

GRK1ct18 and eGFP-KRas (provided by Casey Lab, Duke University) and mCherry-PDEδ and 

6 µL of the Turbofect transfection reagent (Thermo Scientific) in a total volume of 500 µL 

supplement free DMEM for 20 minutes at room temperature. The cells were then transfected 

with the prepared DNA-transfection reagent complex by drop wise addition into the wells of a 6-

well tissue culture plate. Following transfection for 24-28 h, glass coverslips were prepared for 

imaging by washing with 1X PBS and placing them in an imaging chamber. FLIM-FRET 

microscopy and analysis was performed by Peter Calvert (Center for Vision Research, Upstate 

Medical University). 
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Chapter 5: Conclusions and Future Work 

5.1 Summary 

 Prenylation is a form of post-translational lipidation that is involved in cell signaling and 

growth, influencing protein structure, localization, and function.1-5 For the past 30 years, the 

four-amino-acid, C-terminal “CaaX” box motif has served as the defining paradigm for 

prenyltransferase substrate recognition, as first identified through study of yeast mating factors 

and lamins.1, 3-11 Consequently, studies of prenylation targets for FTase and GGTase-I have 

mainly focused on amino acid selectivity within the CaaX motif. Numerous biochemical, 

crystallographic, and computational works have led to the development of general rules for 

selectivity based on the four amino acids and have greatly enhanced our understanding of these 

prenyltransferase substrate targets.7, 12-26  

 Recently, yeast genetic screening utilizing the Hsp40 co-chaperone Ydj1p revealed that 

yeast FTase could efficiently prenylated shorter Cxx sequences.27 This finding motivated 

fluorescent-based biochemical and cell-based studies at both the short peptide and full-length 

protein level. These determined that mammalian FTase can recognize and prenylate a three 

amino acid recognition motif in an in vitro context, as described. In addition, the recent finding 

that FTase can target longer C(x)3X sequences has expanded the potential substrate scope for this 

enzyme.28 A search of the human genome (as of May 2020) using Prosite results in 1074 proteins 

ending in a Cxx sequence with the potential to undergo prenylation, expanding the number of 

proteins that can be explored not only in humans but other organisms such as yeast. With 

previous studies and current computational prediction models restricted to four amino acids, 
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innovative approaches to determining the role of this novel selectivity will need to be addressed 

for such a large scale of potential prenylated proteins.  

 This finding suggests a broader impact for prenylation in a biological context and raises 

many new questions regarding the role of these Cxx proteins. With FTase and GGTase-I 

showing a stark contrast in their acceptance of these shorter sequences, it is sensible to question 

why these “sister” enzymes exhibit such a discrepancy in their flexibility for substrates. It is also 

important to question how FTase recognizes these shorter sequences, and to determine the 

biological role of potential Cxx proteins with both FPP and GGPP prenyl donors. Lastly, the 

work herein failed to capture any membrane localization behavior of potentially prenylated Cxx 

sequences in cells. This result suggests the potential for a shunt pathway in mammals, as seen 

with yeast, which would define a new cytosolic role for prenylation in mammalian systems.29  

 The FLIM-FRET based system discussed in this work may prove useful in studying 

lipidation for these new Cxx sequences in cells. The ability of FLIM-FRET to provide 

quantitative information concerning potentially prenylated Cxx sequences as binding partners for 

PDE gives an opportunity to identify endogenous Cxx substrates and explore the 

aforementioned potential cytosolic function for prenylated Cxx substrates. However, this system 

requires further refinement as our studies to date have not provided evidence for binding of 

unprocessed prenylated substrates.  
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5.2 Future directions 

5.2.1 Investigation of FTase vs. GGTase-I in Cxx substrate selectivity  

 One of the most surprising findings, after determining the ability of FTase to prenylate 

Cxx sequences using either FPP or GGPP prenyl donors, is the inability of GGTase-I to accept 

any of the sequences tested.27 These two enzymes recognize the same classic CaaX motif with 

variations in the amino acids they accept and the type of isoprenoid group they select to attach to 

their respective substrates.3, 30, 31 FTase and GGTase-I exhibit distinct amino acid preference in 

the “X” position of the CaaX prenylation motif with FTase accepting X = M, Q, S, T, and A and 

GGTase-I most efficiently prenylating sequences of X = I or L.1 These closely related enzymes 

have the ability to cross-talk in cells, with one enzyme rescuing prenylation of certain sequences 

when the other is inhibited.32 For example, KRas has been shown to be geranylgeranylated in the 

presence of FTase inhibitors. Despite the overlapping substrate selectivity of these two enzymes, 

not a single Cxx sequence tested was found to be accepted by GGTase-I.  

 With the aim of understanding the difference between the enzymes, one of the next steps 

is to determine the crystal structures of FTase interacting with Cxx motifs using both prenyl 

donors. The ability to prenylate these short sequences with both prenyl donors suggests a 

flexibility within the FTase active site not currently predicted through computational studies, and 

also not present in GGTase-I. Understanding the contact points and spacing of amino acids 

within the FTase binding site will provide valuable insight into why GGTase-I is much stricter in 

its substrate selectivity and moreover, how FTase is able to incorporate both prenyl groups on 

Cxx substrate targets.  
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5.2.2 Utilizing metabolic labeling to investigate prenylation of Cxx sequences in cells 

 One approach not yet utilized in this work for investigating prenylation of Cxx sequences 

inside cells is metabolic labeling. To provide definitive evidence for the prenylation of shortened 

sequences within human cells, the protein can be enriched through metabolic labeling with an 

alkyne-modified FPP analogue allowing subsequent conjugation with an affinity handle.33 This 

approach was successfully employed in confirming the prenylation of a reporter protein bearing 

a longer C(x)3X sequence.28  

 In this approach, following transfection with a reporter protein bearing the sequence of 

interest, cells are incubated with the alkyne-modified FPP analogue for alkyne functionalization 

of the expressed protein. Subsequent derivatization with TAMRA-N3 followed by in-gel imaging 

of TAMRA fluorescence allows for the visualization of the potentially prenylated Cxx target.28, 

33 Such an approach could prove fruitful in providing evidence for prenylation of non-canonical 

Cxx sequences inside cells.  

 

5.2.3 Identification of endogenous Cxx proteins and the potential of a human shunt 

pathway 

 In light of the results presented in this work, this newly discovered activity of non-

canonical Cxx sequences nearly doubles the number of proteins that can be potentially 

prenylated, even after rejecting sequences containing other cysteines within the motif. Through a 

Prosite search it was found that 1074 human proteins (accessed May 2020) follow a C-terminal 

Cxx sequence, with 847 of those sequences containing no other cysteine other than that required 

for prenylation (see Table 2.1). This is comparable to the 1208 potential Cxxx proteins in the 
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human proteome. These numbers underscore the importance of exploring and characterizing 

more Cxx proteins, to determine their prenylation state within the cell.  

 The Cxx sequences identified for analysis in this work from yeast used a screening tool 

that discriminates for proteins that are prenylated but not proteolyzed. This raises the question as 

to whether all Cxx sequences that serve as prenyltransferase substrates are unable or resistant to 

undergoing subsequent processing. This possibility makes identifying prenylated Cxx sequences 

through fluorescence microscopy difficult, as membrane localization can no longer be used as a 

proxy for prenylation. Despite this challenge, implications of this newly discovered Cxx 

sequence reactivity call for reassessing the role prenyl groups play beyond serving as a 

membranous anchor, with the possible existence and role of a “shunt pathway” in mammalian 

cells.29  

 An ultimate goal in examining human Cxx proteins is to identify one such protein that 

undergoes endogenous prenylation. Due to the high number of potential proteins to test, this 

objective presents a “needle in the haystack” obstacle. However, while there are 1074 human 

proteins with a C-terminal Cxx sequence, the number of proteins with a unique Cxx sequence is 

400, 85 of which have been tested in this work. While screening peptides via HPLC analysis can 

be performed quickly, production of the peptides required to test all 315 remaining sequences 

may prove to be a costly and time-consuming endeavor. This is even more true in testing 

potential Cxx prenylation substrates in a biological context; steps of cloning, transfection, 

imaging, and metabolic labeling of the proteins whose sequences produce a product peak on 

HPLC is even more of a financial and time-insensitive effort than the initial screening.  

 One reasonable approach to tackle the number of potential sequences is to employ a tactic 

similar to that used in this work to select peptides for an initial screening (see section 2.3). The 
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requirements used to select potential substrates could be further refined to exclude proteins with 

a C-terminal Cxx motif that results upon gene splicing. Protein splice variants are produced 

during regulation of gene expression and allow for a single gene to produce several functional 

proteins. By excluding such proteins, the complexity of proteins being examined can be reduced.  

 Moving towards yeast (and eventually other species), its smaller proteome makes for an 

easier target to finding potentially prenylated Cxx proteins. Future work could also include 

pathogenic organisms that employ either endogenous or host-mediated farnesylation, such as 

Plasmodium falciparum, Candida albicans, and Legionella pneumophila, all of which have a 

significantly lower number of potential targets.20, 33-39  

Overall, this work lays the foundation to examine Cxx sequence prenylation by yeast and 

mammalian FTase in biological systems. Moreover, we provide the first reported example of 

wild type FTase catalyzing peptide geranylgeranylation with comparable efficiency to 

farnesylation of the same sequences. This work expands both the peptide and prenyl donor 

substrate pools for FTase, which further highlights the truly remarkable degree of substrate 

flexibility exhibited by this enzyme. It supports further investigation of proteins terminating in 

Cxx sequences in cellular systems to determine their prenylation status and impact of such 

modification on the biological activities of Cxx proteins.  
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