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Abstract

Currently, a massive amount of temporal gene expression data is available to re-

searchers, which makes it possible to infer Gene Regulatory Networks (GRNs).

Gene regulatory networks are theoretical models to represent excitatory and in-

hibitory interactions between genes. GRNs are useful in understanding how genes

function, and hence they are also useful in pharmaceutical and other applications

in biology and medicine. However, despite the importance of GRNs, the process of

inferring GRNs from observational data is very difficult.

This thesis applies evolutionary algorithms to the problem of GRN inference.

We propose a novel evolutionary algorithm: hierarchical evolution strategy

(HES) to target the specific difficulties in GRN inference. We propose a sparse

matrix representation of GRN to account for sparse connectivity in biological gene

interactions. Unlike traditional evolution strategies, we divide our optimization into

two concurrent processes: connectivity construction and numerical optimization. In

each generation, we first establish connectivity structure of the GRN. Inside the

same generation, we apply a secondary ES to find the best numerical values with

those fixed connections. We also propose a hybrid crowding method to maintain high

population diversity while applying the evolutionary algorithms. High population

diversity leads to broader exploration area in the search space, therefore preventing

premature convergence.

The results obtained show that the proposed HES outperforms other algorithms,

and has the potential to scale up to realistic problems with thousands of genes.
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Chapter 1

Introduction

In this chapter, we start with the problem statement of gene regulatory network

inference. Then we summarize our approach and discuss how it effectively tackles

the difficulties in the problem. Then we discuss benchmark and evaluation of our

algorithm. We conclude the chapter with a synopsis of the rest of the thesis.

1.1 Problem Statement

With rapid advancements in technology, massive amounts of information on tem-

poral gene expression data are available to researchers. The analyses of such data

are valuable and potentially can lead to deeper understanding of the cellular activ-

ities of organisms. These data have meaningful but hidden information. Naturally,

this draws attention to the researchers to make efforts to investigate the temporal

gene expression data in detail to build computational tools to analyze such data. In

this thesis, we attempt to solve for reverse engineering of gene regulatory networks

(GRNs) from the temporal gene expression data.

1
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Figure 1.1: An example of a GRN with 7 genes, in which each gene has 0-2 excita-
tory/inhibitory connections to other genes, whose strengths are shown in the matrix
entries; most genes are not connected to each other, hence most elements in the
matrix representation are zeroes

In our GRN representation, a weighted directed graph represents the relation-

ships between genes in the network. Each node (vertex) in a GRN represents a

gene; for notational convenience, we use the same symbol to refer to a node as well

as the gene it represents. The existence of a directed edge (connection) from X to

Y indicates that the expression of X influences the expression of Y . The edge may

be annotated by a number (weight) that indicates the magnitude of the effect that

X has on Y , with the sign (+/-) indicating whether X increases or inhibits the

expression of Y. The magnitude of the weight may be compared to a threshold in

order to interpret whether X is considered to have an influence on Y.

Typical gene expression datasets contain genetic expressions of a vast number of
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interacting genes, yet the number of time points is significantly small compared to

the number of genes. This leads to a series of difficulties for the inference of GRNs.

Firstly, it is computationally hard for most algorithms to find optimal solutions

for such large networks: as the number of genes increases linearly, the amount of

computation required for traditional algorithms increases exponentially. Secondly,

the the large number of genes results in a well-known computational problem: ’curse

of dimensionality ’. Another difficulty with real data is high noise in the dataset,

some of which is caused by the drawbacks of the experimental equipment used to

obtain the data.

In this thesis, we propose a novel evolutionary algorithm targeting such difficul-

ties in the problem of inferring GRNs.

1.2 GRN and Sparse GRN

As discussed earlier, we represent each gene regulatory network using a matrix whose

(i, j)th entry represents the hypothesized strength of the influence of the ith gene on

the jth gene. Give the expression values of genes at time t, the expression values of

genes at time t+ 1 are obtained by computations using the matrix. GRN inference

is the inverse problem: we are given a set of time series data with gene expression

values. Using such data, we try to infer a model that describe the changes. This

process involves finding the interconnections between genes. The inverse problem

for multivariate time series is computationally hard. As we add more and more vari-

ables into the network, the dimension of problem increases drastically. To overcome

the problem in a biological system, viz., a system with hundreds of thousands of

dependant variables, we propose a special data structure for the characteristics of

such system.

As shown in figure 1.1, a majority of the elements in a realistic GRN matrix are

0s, and connections between genes are sparse. In biological systems, each gene can

directly affect only a small number of other genes. In other words, the true matrix

representation of a dense GRN ought to contain a large number of zeroes, with
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the number of nonzero entries increasing linearly rather than quadratically with the

number of genes.

We propose a row-major sparse matrix representation for GRNs. For a network

of 10,000 genes, the matrix has 10,000 rows, with the kth row representing a list

whose elements are pairs (m, r) indicating that r quantifies the regulatory effect of

the kth gene on the mth gene. If the number of genes directly affected by any specific

gene may vary from 0 to 20, we denote these constraints using lower bound (LB) = 0

and upper bound (UB) = 20; the network description is then written as [10000, 0, 20].

For example, if the first gene has an effect of 0.5, 0.3, 0.1, -2.7 on the 1st, 3rd, 7th,

57th genes, respectively, with no direct measurable effect on any other gene, the first

row in the matrix will be [[1, 0.5], [3, 0.3], [7, 0.1], [57,−2.7]]. Thus, the length of each

row in a matrix is variable and short, instead of being fixed to be an unnecessarily

high value, viz., the number of genes. Only the elements explicitly listed in this

representation need to be considered in updating gene expression values.

1.3 Evolutionary Algorithms

Evolutionary algorithms (EAs) [1] were inspired by the principles of natural selection

during evolution process and behaviors of biological species. Variations that have

been applied to many practical optimization problems include Genetic Algorithms

(GA) [2], Evolution Strategies (ES), and Particle Swarm Optimization (PSO). Each

such algorithm successively evolves a population (or swarm) of multiple individuals

(or chromosomes or particles) that are candidate solutions to the problem being

addressed. The fitness (or quality) of each individual depends on the function to be

optimized, possibly penalized by terms describing hard or soft constraints. Muta-

tion operators modify a single parent individual, while Recombination or Crossover

operators apply to two (or more) parents at a time, generating one or more offspring

individuals that represent new candidate solutions to the problem. Selection may

be applied either by favoring high fitness individuals to be the parents (to which

recombination and mutation operators are applied), or by deciding which subset of
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offspring (and parents) survive into the next generation (or iteration).

1.3.1 Application to GRN Inference

Traditional learning and optimization algorithms rely on the availability of the gra-

dient of the objective function being optimized. If the fitness function of a problem

does not have explicit gradient to follow, then the traditional optimization algo-

rithms will not be applicable. As we convert our GRN to sparse GRN, while we

shrink the dimension of the problem, the gradient of such fitness function also be-

comes increasingly difficult to estimate.

Evolutionary algorithms, on the other hand, can work well with such problems.

This is due to the intrinsic nature of such algorithms; they do not depend on the

gradient to find the optimum, instead, they use selection pressure to filter out the

individuals/chromosomes that are fitter to the environment. From generation to

generation, we get more and more refined solutions to the problem given the con-

straints of the problem, without direct knowledge about the direction in which the

global optimum lies.

We use the temporal gene expression data to assess the fitness of the population.

Each individual in the EA is a GRN. We use a 1-lag prediction model, and the

goal is to minimize the difference between the predicted and actual values of the

gene expression at each time step, where the prediction uses the differential model

in Equation (2.1). As we discuss when describing the implementation details, the

inference of a GRN can be considered as consisting of two steps. First, we find the

optimum connections between the genes in the network, viz., building the backbone

of a structure. Then with a confined backbone, we can use evolutionary algorithms

or gradient descent methods to find the optimum values for these connections, since

we will have a fitness function with clearer defined gradient.

This study has focused on Evolution Strategies (rather than GAs and other EA

variants) for the following reasons:

1. They have been used successfully for other real-valued parameter optimization
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problems.

2. They incorporate strategies for adapting hyper-parameter values (such as mu-

tation rates) depending on the data.

3. Their formulation is simple and intuitive, without requiring elaborate refine-

ments to address premature convergence problems that plague some algo-

rithms.

However, we recognize that other EAs can also be potentially explored for similar

tasks, with appropriate modifications to the core algorithm, e.g., modifying the

discrete GA formulation to address real-valued parameter optimization problems.

Prior work [3] on applying ES for GRN inference has not been very successful,

perhaps because no explicit effort was made to evolve sparse networks, a concern

that is addressed in our work.

1.3.2 Evolution Strategies

Compared to other counterparts in the EA family, Evolution Strategies (ES) have

a more concise implementation. The algorithm itself is straightforward and easy to

implement. In the process of modification for the optimization of the GRN models,

this gives us less variants to worry about and let us focus on the important features

that can be applied to better solve the problem.

In ES, the number of parents in each generation is referred as µ and the number

of offspring generated is λ. In each generation, the parents are selected in pairs, to

swap portion of their chromosomes, to generate offspring in pairs. Then mutation

is applied to the offspring, with respect to the mutation strength they are assigned

individually for each offspring that is inherited from their parents. Then the fitness

of these offspring is calculated as the mean square error of the 1-lag predicted values

compared to the original dataset. The fittest survive into the next generation.

For GRN inference, we start with imperfect GRNs as our candidate solutions to

the gene expression data. With recombination and mutation operations, we generate
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offspring from generation to generation. We use selection pressure to ensure better

solutions to survive into future generations.

Most ES variants can be divided into two categories: (µ+ λ)-ES and (µ, λ)-ES.

• In the (µ, λ)-ES, all the parents die and only the better of the children can be

considered as candidate solutions for the population in next generation.

• In the (µ+λ)-ES, the better among the parents and the children survive into

the next generation; hence all the children may be eliminated if their fitness

is worse than that of the parents.

Elitism can be introduced in a (µ, λ)-ES. The best E (< µ) parents are chosen

for possible survival. The best µ individuals are selected from the λ offspring and

the best E parents.

1.4 Our Approach

The new aspects of our work consist of two main ideas, discussed below: hierarchical

evolution strategy, and sparse matrix representation.

1.4.1 Hierarchical Evolution Strategy

We propose a hierarchical evolution strategy (HES) algorithm with sparse matrix

representation to solve the problem.

We divide our optimization into 2 stages: backbone construction and connection

weights optimization. Computations for the two stages are performed with a hier-

archical organization. The backbone construction, as its name suggests, finds the

connectivity within the gene network. Once the backbone is established in each gen-

eration, the individual with different connectivity evolve to find optimum connection

weights.
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1.4.2 Utilizing Sparsity

Gene regulatory network inference is a difficult problem because of the computa-

tional expense, and a major issue is the curse of dimensionality. Currently, re-

searchers tend to work with small datasets, for which efficient inference may be

possible, with a gene network of 100 genes at most. As the number of genes in-

creases linearly in the network, the computational effort increases exponentially.

For a system of 100 genes, there are about 10,000 gene relations to be inferred for

an algorithm. For a more realistic gene network, with 1,000 or 10,000 genes, millions

of parameter values need to be learnt from the data, which is impossible in practice.

To overcome this problem, we exploit sparse matrix representations in addition to

the evolution strategy we propose. We take advantage of the sparsity connections in

the actual gene network. A gene in a 1,000 gene network does not exhibit interactions

with every other gene in the system. We focus on those connections with high

magnitudes which are more significant in GRN constructions.

Unlike other optimization algorithms that rely on gradient descent methods,

evolutionary algorithms do not rely on the availability or estimation of a gradient.

For a sparse matrix representation, the estimation of gradients is particularly difficult

since the matrix is subject to the change of connections. In our algorithm, we can

freely add or delete connections and adjust the structure based on what we need.

Since our model depicts the derivatives/changes in unit time for a gene system,

we can use GRN to better explain the biological meanings behind gene interactions.

By contrast, if prediction is attempted using another model, such as a neural net-

work, even if they can accurately predict for small gene networks, the connection

weights in a neural network cannot be used to explain the real interactions within

a gene network.

1.4.3 Evaluation of Our Solution

We evaluate our algorithms based on two benchmarks: efficiency and accuracy. We

calculate 1-lag mean squared errors for multiple trials with gene network datasets
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and compare the results. We use fitness evaluation counts as our measurements for

computational efforts. We compare the results of our algorithm with another recent

evolutionary algorithm: FABSO.

1.5 Synopsis

This thesis is constructed as follows:

• chapter 2 introduces related work;

• chapter 3 discusses the implementation of the project chronologically;

• chapter 4 discusses the datasets we use and the compare the results we find

with PSO, Greedy and ES;

• chapter 5 gives a summary of what we do, the new features we implement with

the old algorithms, and possible future work.



Chapter 2

Related Work

In this chapter, we will discuss the prior work on GRN models and inference.

2.1 Different GRN Models

Many variations of GRN models have been formulated, addressing gene expression

analysis.

• Boolean network models assume a binary representation of the gene regula-

tory network, where each gene is in one of two states: 0 (inactive) or 1 (active)

[4]–[7]. For example, [8] presents a Boolean model for the cardiac gene net-

work. But this approach unrealistically assumes that the Boolean functions

are synchronous, and ignores intermediate states of genes.

• The Bayesian network model [9]–[13], annotates edges with conditional prob-

ability and likelihood measures which are used to determine whether a gene

is likely to be activated as a result of other genes being active. Variations in

expression levels cannot be captured easily, due to the underlying assumption

that each gene is either active or inactive.

• Linear additive network models consider each gene’s expression value to be the

weighted sum of the expression values of other genes connected to it[14]–[17].

10
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• Although our approach can also be applied with such models and others such

as S-Systems [18], our experiments assume the following differential additive

discrete-time model [19]:

G(xi, tn+1) = G(xi, tn) +
∑
k

W [k, i]G(xk, tn) (2.1)

where G(xi, tn) is the gene expression for the ith gene at time tn, and W [k, i]

is the connection weight expressing the influence of the kth gene on the ith

gene. For example, for a network with 3 genes, the GRN may be represented

as the following matrix:


0.2 0.4 1.2

1.1 2.2 −0.3

−0.9 0.2 −0.3


If, at time tn, the gene expression levels were 0.3, 0.5, and 0.7, respectively,

then at time tn+1 the change in the gene expression level of the first gene

is(0.2)(0.3) + (0.4)(0.5) + (1.2)(0.7) = 1.1. The gene expression of gene 1 at

time tn+1 becomes G(x1, tn+1) = 0.3 + 1.1 = 1.4. If the goal is to interpret

each gene as being having a binary ON/OFF value, thresholding against a

predetermined cutoff value (such as 2) may then result in interpreting this

gene as inactive or insufficiently expressed to influence other genes.

2.2 Prior Work on EAs for GRN Inference

In [20], the authors use recurrent neural network (RNN) and BAPSO (a variant

of the Particle Swarm Optimization algorithm) to construct GRNs. They have good

performance with small-scale gene networks of 3 to 5 genes. The algorithm start to

struggle with mid-scale networks of 20 genes. We conclude that using RNN as an

intermediate calculation tool is not sufficient for efficient inference of the GRN.

In [21] and [22], the authors study different evolutionary algorithms on different
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computational models. In both papers, they could not obtain good performance

with ES.

In [21] they systematically compare the performance of ES, GA and hybrid EA

algorithms with S-system and ANN, they show that pure EAs can work well with

small scale problems, but a hybrid approach is required to solve larger scale prob-

lems. They also show that parallelism is necessary for large-scale problems along

with the optimization algorithm. From these results, we conclude that special design

of data structures is required for larger problems, viz., sparse matrix GRNs.

In [22], the authors show that ES can work with up to 6 gene networks efficiently.

We still believe in the potentials in ES and we think more attention and efforts need

to be made to make ES work with larger-scaled problems.

More recently, in [23], the authors propose fuzzy cognitive maps (FCM) to

infer large-scale GRNs. Instead of a sparse matrix, they focus on the decomposition

of a dense matrix.

In [24], the authors comprehensively discuss details of GRNs. The authors talk

about different mathematical models and computational methods of GRN inference.

The authors also introduce the application of EAs for GRN inference. They discuss

the performance of regular EAs in general for solving such problems. They propose

different EAs for different computational models such as Biclustering analysis of

gene expression data using EAs and inference of Vohradsky’s Models of genetic

networks using genetic algorithm. Also in [25], the author thoroughly introduces

different computational models. By functionality and representation of models, He

divide them into different categories. He explains the advantage and disadvantage

for each category.

In [26], the authors use evolutionary algorithms and H filtering techniques to infer

GRNs. In the paper, the authors argue that gene expression data are usually noisy,

and evolutionary algorithms are more consistent and combined with H filtering,

small size GRNs can be inferred accurately.

In [27], the authors propose a parallel computing method for running evolution-
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ary algorithms on GRN inference problems with cloud computing to speed up the

optimization process. They propose a decomposed S-system for the representation

of GRN and a hybrid GA-PSO algorithm.

In [28], the authors propose a interactive evolutionary algorithm to solve for

small size GRN inference problem. The algorithm is GA based. In the paper, the

authors only address the experiments with synthetic data.



Chapter 3

ES for Sparse GRN Inference

In this section, we introduce our design of the project chronologically. We first

discuss our data generator. Then we address full matrix GA and ES for small

gene network prediction problems. Then we present a modified version of ES to

compile with sparse matrix design. To improve efficiency, we rebuild a new data

structure using Scipy.Sparse and update the sparse-ES algorithm. We also improve

the algorithm learning from early experiences with the sparse ES algorithm. Then

we develop the final version Hierarchical Sparse ES algorithm.

3.1 Data generator

One challenge in the project was the lack of data. Even though the topic is not

new, there is little work done on the large gene network for reasons discussed in

previous chapter. Therefore, we are using generated datasets from simulation. The

simulator closely follows the rules of gene networks. We generate a gene regulatory

network and the initial conditions for a set of genes randomly. The data generator

then calculates the time series gene expression according to the equation 2.1 and

the control parameters. The control parameters are as follows:

• the number of genes in the network (G);

• threshold value for gene expression;

14
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• the number of time points in a simulated trial;

• the number of trials;

• upper bound for the gene expression value;

• upper bound for the initial condition of the gene expression; and

• maximum noise permitted at each time point.

3.2 Full Matrix GA, ES

We started with simple algorithms for the inference problem. We want to test

whether EAs work well with small-sized problems. We specifically test two algo-

rithms on a 3-genes network. The first algorithm is 1+1-ES. This is the simplest

version of ES. In each generation, there is only 1 parent. The parent mutates to

generate offspring. If the quality/fitness is better than that of the parent, the off-

spring replaces the parent in the next generation until the stopping criterion, which

tests whether the permitted maximum number of generations has been reached.

For comparison, we need a control algorithm to monitor the performance of ES,

for which we choose a genetic algorithm. We first initialize a small population of

individuals; in each generation, we rely heavily on crossover to generate offspring,

and we occasionally let offspring mutate. At this point we find that both algorithms

can work with small full matrix GRN optimization. As we increase the dimension

of the problem to 10, these algorithms are no longer efficient enough to solve the

problem.

3.3 Sparse ES

In order to work with larger networks of hundreds of thousands of genes, we change

our GRN representation from full matrix to sparse matrix. For each GRN candi-

dates, we have a predefined limit UB and LB for upper and lower bounds of the



16

number of gene connections permitted for each gene. For example in a system of 20

genes, we have LB = 2 and UB = 5. Therefore, each gene in the network at least

affects 2 genes in the network (including itself) and at most 5 genes in the network

(including itself). We use abbreviation [20,2,5] to represent this configuration for

the network. We implement with tuple expression for this structure. Take the same

example of the 20 genes system, If the 1st gene affects the 1st, 3rd and 15th genes by

0.2, 0.6 and -1.5. We write the 1st row of the matrix to be [[0,0.2],[2,0.6],[14,-1.5]]1.

During preliminary experiments, we observed the problem of premature conver-

gence with traditional (µ+λ)-ES. The structures of individuals become very similar

in very early generations and show the same gene interactions. For example, for a

system of 3 genes network, if the beginning structure

[[[1, X1], [2, X2]], [[0, Y1]], [[0, Z1], [1, Z2], [3, Z3]]]

has the highest fitness, soon all individuals in the population have the same There-

fore, the effect of crossover becomes insignificant; we can only change the values

of the gene impact from mutation, and modify the gene impact by edge mutation.

To solve this, this paper reports results for sparse GRN evolution using ξ(µ+λ)-ES

with linear ranking, which yielded slightly better results than fitness proportionate

(roulette wheel) selection.

In this approach, instead of applying linear ranking to parent selection, we apply

linear ranking to select surviving individuals; the list of all µ individuals from the

preceding generation and all λ offspring is sorted by individual quality, and the

probability of selecting an individual to survive into the next generation is a linear

function of its rank, i.e., its position in the sorted list. Linear ranking is a robust

approach, and the probabilities are the same whether the best individual is better

than the next best individual by a factor of 1.2 or 1200; in the latter case, fitness

proportionate selection would lead to rapid loss in population diversity.

Additionally, we have implemented weak elitism, ensuring that the best individ-

1the indexing starts with 0
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ual (considering all parents and offspring) always survives into the new generation.

For example, with µ = 3 and λ = 6, assuming that the fitness function is

to be maximized, let the parent [P1, P2, P3] fitness values be [6, 4, 9] and let the

offspring [O1, . . . , O6] fitness values be [7, 5, 3, 1, 9, 8]. The sorted list of individuals

is [O5, P3, O6, O1, P1, O2, P2, O3, O4], with P3 and O5 being the fittest. This list is

used to select µ − 1 elements of the new generation; if linear ranking is performed

with the fittest individual assigned twice the probability of the least fit individual,

the respective probabilities of selecting from this list (in each of the two trials chosen

to select µ−1 = 2 individuals) are approximately [0.15, 0.14, . . . , 0.08, 0.074], so that

even the ill-fitted individuals O3, O4 may survive (with low probability). However,

O5 will also survive into the new generation (due to elitism)2.

Traditional ES uses a mutation operator in which a small change is made to some

component of the individual. For the sparse ES, since most of the edges in the GRN

model are missing, randomly generated sparse GRNs are highly unlikely to contain

the right edges in the network. Hence we also consider mutation by the possible

deletion of a small number of randomly chosen edges in the network, followed by

the insertion of new randomly chosen edges, subject to keeping the number of edges

within predetermined bounds.

The fitness of each individual is calculated using the linear additive model. We

use our individuals (GRNs) and gene expression levels to predict the gene expres-

sion levels for next time step in the dataset. We then use the MSE of the difference

between the expected gene expression level and actual gene expression level to rep-

resent the fitness for each individual.

During the evolution process, each crossover or recombination step is followed

by such edge mutations applied to the new offspring. During the early generations,

because individuals are initialized randomly, GRNs are less likely to contain the right

edges, hence edge mutation is applied with relatively high probability pb. During the

later generations, since selection pressure would have resulted in obtaining GRNs

2Ties among equal-fitness candidates can be broken arbitrarily, but preference should be given
to offspring over parents, in the interest of better exploration of the search space.
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with low prediction error, edge mutations are applied with lower probability. We

implement a constant decrement in pb with each iteration, using prespecified (initial)

upper and (final) lower bounds. We may then characterize evolution as involving

two phases, with the first phase focusing on searching for the right edges in the GRN,

and the second phase finalizing the edge weights that capture the actual amount of

influence each gene has on other genes (to which it is connected).

ES permits mutation parameters to be adapted during the evolutionary process,

in various ways. We use a simple variant in which each individual’s representation

includes its own mutation parameter value (σ) which is subjected to recombination

and mutation along with the edge weights of the parents.

We include recombination operations defined so that offspring contains edges

from all possible parents. This facilitates solving multimodal functions with a more

diverse population.

1: function ξSparseES(µ+ λ)
2: Initialize µ parents, each with its own σ;
3: While computational effort < an upper bound, Do
4: Repeat
5: Select parents randomly;
6: Apply recombination (to edges and σ values);
7: Until λ offspring are generated;
8: Decrement pb by a small amount;
9: Apply edge mutation to offspring with prob. pb;

10: Mutate edge weights of offspring using σ values;
11: Calculate offspring fitness;
12: Select µ survivors by linear ranking (µ+ λ);
13: EndWhile
14: end function

3.4 Algorithm for Comparison: FABSO

Particle Swarm Optimization (PSO) variants constitute another popular class

of evolutionary algorithms. It mimics the movements of groups of animals in nature

to locate the best individuals. PSO is inspired by the swarming behaviors of fish

and birds, and is constructed with similar core idea. Particles (candidate solutions
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to a problem) are initialized with a velocity within the search space for the problem;

throughout each cycle, they move with the current velocity. They also adjust their

velocity based on the best position they find individually, and the best position they

acquire globally.

PSO has many variants. We use a recently published version, FABSO [29].

Based on empirical experience and observation of nature, FABSO assumes that closer

and better particles influence more heavily on particles. Therefore, FABSO keeps

track of archive of particles with better performance in the swarm. When updating

the velocity, individuals no longer refer to the global best position. Instead, they

refer to the closest position in the archive.

1: function FABSO
2: Initialize the particles randomly, and an empty archive;
3: While computational effort < an upper bound, Do
4: Update velocity of particles
5: Update position of particles
6: Evaluate the fitness of each particle
7: Update archive, add/replace
8: if best archive element fitness not changed for certain cycles, then
9: Generate new sets of particles in the swarm (not changing the archive)

10: EndWhile
11: end function

3.5 Modified Sparse ES

We found a series of problems with the proposed ξ(µ+λ)-Evolution Strategies:

• Tuple expressions are slow to access and not efficient enough to run large gene

networks.

• In ξ(µ+λ)-Evolution Strategies, the population is randomly initialized. The

chances of having right connections is low, and decrease exponentially as the

size of the network increases. Edge mutation operations are intended to search

for new connections within a well-established network, and thus not efficient

to find optimum connections for a randomly initialized population.
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• Premature convergence problem can be solved without altering the traditional

style of survival mechanism.

• (µ, λ) can be used to explore greater search space.

3.5.1 Granger-Causality Test

Granger-Causality test is a scientific method of measuring if variables are related to

each other in a multivariate time series dataset. We can run the test on our gene

pairs in time series to detect connections in the network. Since we have multiple

trials for each gene expression, we can execute different trials, then we can calculate

the probability of having connections between gene pairs for results from all trials.

Based on the probability table of connections in the gene network, we can initialize

our population accordingly.

We discovered that running Granger-causality test directly on the dataset is not

realistic because of excessive computational effort. We hence decided to simplify the

dataset by shrinking the time points to three stages: early, middle, and late. We

also transform numerical values into binary states, active and inactive. This method

was not found to be helpful. The purpose of the Granger-causality test is to find

relationship between genes, but if dataset is shrunk too much, it loses information

needed to determine the connections in the network.

Upon empirical comparisons, we discovered that it random initialization of GRNs

was more effective than utilizing the Granger-causality test.

3.5.2 Implementation Refinements

To improve computational efficiency, we replaced the tuple expression GRN with

scipy sparse matrix module, from the Python scientific numpy library.

We explored further refinements of our implementation. First, we found that

premature convergence can by avoided by using (µ, λ) ES instead of (µ+λ) ES, and

careful code management. Therefore, we decide not to change the traditional way
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of survival mechanism: the fittest survive without chances. Another advantage of

(µ, λ) is better exploration with parents leaving the population. There are better

chances of exploring the search space with more offspring in the population instead

of the old ones.

To ensure retaining high quality individuals, we also include a small number of

elite individuals from the past generation. Therefore, we do not lose information if

we get extremely unlucky during random mutations. We also make σ available to

mutate as we mutate the chromosomes, because we want to find not only individuals

with high fitness values, but also with good σ values.

We also add termination criterion check at the end of each generation. We record

different statistics including average, best and variance of fitness value to monitor

the performance of algorithm, and to make adjustments accordingly.

3.5.3 Adjustments to Operators

Compared to normal individuals, elites tend to have better connection structures.

Therefore, when making edge mutation to individuals, we make elites less likely

to change the connectivity in their structures. This does not slow down the per-

formance of the algorithm. This may cause one concern, that elite structures are

persistent in the population and are less likely to change therefore staggering the

whole optimization process. For one, we still make small edge adjustments to the

elite structures, hoping for better structures from a good model. Secondly, we still

recombine offspring between elites and average individuals, so all structures are sub-

ject to changes. We also decide to differentiate elites from the average by focusing

more on the numerical changes made to the elite individuals. We decrease the fre-

quency of mutations to the average individuals to balance out the workload from

elites. Since the number of average individuals is larger than that of the elites, the

effect of decrease is averaged out and diminished largely.

There are two types of increase in fitness in the process. One is small and

consistent and the other is big and abrupt. The former results from the adjustments
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to the numerical values of the existing structure. The latter, which is a breakthrough

compared to the former, results from adjustment to the structure of the connections.

Based on earlier experiment results, we find that modifications to the elite structures

lead to abrupt increases while modifications to the average structures rarely do.

When applying mutation to an individual, we are hoping to accomplish two

goals: refine the good structure, and explore possibilities in the search space. In

each generation, the recombination applies to parents that include elite and average

individuals. This spreads the good connectivity from elites among the entire pop-

ulation. We apply mutation to the average individuals, hoping to refine the good

structure inherited from the recombination. As long as elites are improving between

generations, we do not need to explore their mutations for further search space,

instead, we can focus on the refinement to the existing structure. Therefore, at the

end of each generation, we check for the performance of the elites, and we only turn

on edge mutation to the average individuals when the fitness stops improving for a

considerable period of generations. Unlike traditional EAs, we also make changes

to the elites. To preserve elite individuals, we make copies of the elites and make

changes to the copies.

3.5.4 Multimodal Functions and Population Diversity

Population diversity can save computation power. If individuals are similar in the

population, all mutations only explore the vicinity of the current individuals. Many

mutations may overlap with each other therefore wasting computation power in a

large search space. For a multimodal fitness function, there can be many different

local optimum, and the global optimum may lie in between such local optimums. If

we have high diversity in the population, we are making progress towards different

local optima at the same time. When recombining these individuals, we may come

very close to the vicinity of the global optimum.

We make various attempts to maintain high population diversity.

Firstly, we explored fitness sharing, a strategy in which similar individuals are
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punished by decreasing their fitness. Each individual has a niche radius, and if two

individuals are within the same radius, they are considered as similar individuals.

Then the fitness of such an individual is penalized, dividing by the number of similar

individuals. More similar individuals in a population means more decrease in the

fitness of those individuals. This approach did not work well with our algorithm.

It is difficult to determine the niche radius. Also, because our algorithm alters the

structure of connection consistently, the number of individuals who share fitness

changes constantly, resulting in an unstable fitness calculation.

We also try to delete individuals that are similar to the elites, hoping to maintain

greater diversity in structures in the population. At the end of each generation, we

calculate the Euclidean distance between each individuals and the elites, and we

discarded the similar individuals. After pruning, if the number of individuals is less

than the number of parents, we replenish with newly generated individuals. How-

ever, we discovered that the frequency of new individuals is high and this approach

makes the optimization process unstable.

We also explored a hybrid of standard and deterministic crowding strategies.

During selection, we first sort the offspring by their fitness. Starting with a empty

list of offspring to survive into the next generation, we add the first individual from

the sorted offspring; for the remaining individuals, we first calculate the Euclidean

distance between the individual and the offspring in the list; if the distance is below

a threshold, we compare the fitness, and replace the one in the list if the individual

has higher fitness. If the Euclidean distance is higher than a threshold with all

elements in the list, we compare the fitness of that model with the individual with

the lowest fitness in the list, and replace if better. After applying hybrid crowding,

we find in the experiments that we have more unique individuals in the population.

3.5.5 Hierarchical Sparse ES Algorithm

The hierarchical sparse ES is a revision of (µ, λ)-ES. In addition to the normal

operators: crossover and mutation, we also add edge mutation in each generation.
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We also add elitism. In each generation, we randomly add and delete the edge

connections of the elite individuals by random number (between 0 and x). x is a

predefined parameter; for example, for a system of 100 genes; if x = 3, it means at

most we can add or delete 3 connections to the elite solutions while making sure

after the changes, the number of connection is within the lower and upper bound.

Then we find the optimum weights associated with the fixed GRNs of those elite

individuals. Then we must decide whether to make edge mutations to the normal

individuals. If so, we add and delete a random number of edges between (0 and y).

y here is calculated using the current number of edges, the lower and upper bounds.

We observe that y > x, since elite individuals are more stable individuals with

higher possibilities with better connections. Then we make numerical mutations to

those normal individuals with fixed GRNs. Then we select the individuals to survive

into next generation using hybrid crowding techniques. We also want to check for

individual statistics, such as average, best fitness, to make termination checks, and

a Boolean check for determining whether to turn edge mutation on or off.

1: function Hierarchical Sparse ES(µ, λ,E)
2: initialize µ individuals randomly;
3: While termination criterion not met, Do
4: add copies of best E individuals to the population;
5: make edge mutation (small) and numerical mutation to the copies
6: Repeat
7: select parents with linear ranking;
8: apply recombination (to edges and σ values);
9: Until λ offspring are generated;

10: apply edge mutation(optional);
11: For each λ individual
12: While generation counter < limit, Do
13: apply numerical mutation;
14: replace if the offspring is better than parent;
15: calculate offspring fitness;
16: termination criterion check;
17: select µ survivors from (λ+2E) individuals;
18: end function
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Results

We first describe the datasets used in our experiments. We then discuss the effects

of population diversity on the performance of ES by showing the performance com-

parison. We also compare different sets of hyperparameters to find the proper values

for large scale problems. Finally, we compare performance between ES and FABSO.

For each algorithm, we report the averages of the best results found in ten trials.

4.1 Datasets

We used the E.coli dataset from DREAM4 challenge [30], a dataset of 10 trials, 21

time steps, 10 genes network, with upper bound 5 for gene expression values. In

order to be able to evaluate different algorithms using larger data sets, we also use

synthetic data obtained using the data generator presented earlier.

4.2 ES hyperparameter tuning

First, we consider the effects of using crowding in our algorithm. After applying

crowding, the algorithm gains more population diversity. Furthermore, crowding

adds a different layer of meaning to the individuals as parents. To begin with, they

are outperforming other individuals in the population, which makes them survive.

Also, they are of different connection structures. For example, we have µ = 4,

25
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(a) 100 genes network

(b) 50 genes network

Figure 4.1: Comparison between performance of the algorithm with and without
crowding on problem sizes of 100 (a) and 50 (b). In both cases, better results are
obtained with crowding.
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Table 4.1: Run-time comparisons for a 100 gene network

algorithm fitness calculation (s) operation time (s)

ES 0.03 1.1

FABSO 0.04 0.02

this means we have 4 different connection structure types in the population. After

running the algorithm for a while, the new generated solution structures have less

accurate connection weights. The old individuals exist as parents in the popula-

tion for many generations, and thus are optimized more. With crowding, the new

generated structures still have a chance to compete and join the population.

With more structure types, the crossover operator can combine different struc-

tures, and the algorithm has better opportunities to combine and keep good connec-

tions. Therefore, we see in figure 4.1, the algorithm with crowding converges faster

than that without crowding.

An interesting feature in Figure 4.1b is the presence of a ball of points floating.

This is when the algorithm turns on edge mutation for the normal population.

Because edge mutation makes random changes to the individual, the changes to the

fitness are less stable. Therefore, the average fitness value becomes a lot higher,

which causes this floating effect.

4.3 Comparison Between FABSO and ES

As we see in figure 4.2, HES outperforms FABSO. The speed of optimization of

FABSO decreases a lot more than that of HES. As shown in table 4.1, fitness calcu-

lation of ES is slightly faster than that of FABSO, this is because FABSO requires

more fitness calculation for the update of archive. The operation time of ES is slower

because we need to generate random matrix with specific rows and columns filled

with non zero values to mutate, while in FABSO, we only need to do simple matrix

calculations.
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Figure 4.2: Comparison between FABSO and HES

Table 4.2: Fitness Comparisons

PSO ES

mean variance mean variance

10 genes 0.82 0.05 1e-4 0.00

50 gene 8.63 0.50 0.93 0.05

100 gene 9.23 0.60 0.38 0.02

DREAM4 0.79 0.05 1e-4 0.00



Chapter 5

Summary

5.1 Summary

We developed a novel evolution algorithm to solve the GRN inference problem.

We propose sparse matrix representation to mimic the biological interactions be-

tween gene, viz. each gene in the network is connected to limited number of other

genes, rather than the entire gene network. Sparse matrix representation speeds up

the optimization process by a large factor. On the basis of (µ, λ)-ES, we propose

new operators, edge mutation, which is in accord with the proposed sparse matrix

GRN. Edge mutation operators randomly modify edge connections between genes:

adding new connections and taking away existing connections. Our new algorithm is

characterized by two repeated processes: we search for good connections, then with

established connections we evolve the best weights–these processes are repeated over

multiple generations. We also studied methods to retain population diversity for this

problem. We discovered that a hybrid crowding method can be effective in main-

taining population diversity, and also increase the speed of optimization. We also

propose the novel hierarchical structure of the optimization process: using another

evolution strategies for numerical optimization for the edge concurrently with the

optimization of edge connections.

29
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5.2 Discussion of results

We compared our ES with a new variant of PSO, called FABSO. The run time of ES

is slower than that of FABSO. Specifically, the mutation time ES takes longer than

velocity calculation time in FABSO. This is because in FABSO, we only have simple

matrix calculation like addition and multiplication. In ES, we need to generate

random matrix with specified rows and columns filled with non zero elements to

make small changes to the individuals, which is an extra step for our ES algorithm.

As for solution quality, ES outperforms FABSO by large amount. For a small

network (e.g., with 10 genes), FABSO still manages to obtain a good solution, but

for a high-dimensional problem, only ES is capable to do so. To notice, for a 100

gene network, the performance of ES is actually better than that the performance of

50 gene network. This is because for 100 gene network, more gene connections are

allowed to establish; therefore, we can have a more solution-oriented population. In

fact, this tells us that lower and upper bounds should be considered and analyzed for

GRN inference problem. Higher amount of connections may result in more accurate

solutions, but they also cost more computational power, and the risk of overfitting.

The algorithm is stochastic, meaning that running the algorithm will not generate

the same model every time. In fact, because the model is not perfectly fitted, the

solutions are subject to a lot of variations, which doesn’t mean the quality/fitness

of the solutions is.

5.3 Generalization and Future Work

This algorithm can be used to solve large graph problems with sparse connections.

Specially, the advantage of this algorithm compared to other popular algorithm in

the field is that the transparency of the model. Not only does this algorithm predicts

the outcomes but also it clearly generates the model. On the other hand, neural

network, even though gives accurate predictions, is black box optimization, meaning

it is pointless to interpret the model.
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5.4 Concluding Remarks

Human and chimpanzees share a 99% similarity in DNA. What really makes humans

different, is the everlasting curiosity and the consistent pursuit for new knowledge.

As the ancient Greek physicists looked up into the night sky and wondered with

queries of the universe for the first time, the exploration to the outer and inner

world begins. Science becomes the tool to aid us through the questions we have

from the simplest to the most complicated ones. This represents the growth of

scientific development from step to step between us. In physics, we study particles,

wave functions and the universe to understand the origin of everything when it

all begins. In biology, we study DNA, mRNA to understand ourselves. Whether

it is the exploration of a gigantic star, or the smallest cell of an living organism,

scientific efforts represent the desire to learn. As a student, I am intrigued by the

most delicate design of our universe, no matter it is the 100 billion stars in the sky,

or the subtle clever balance within our biological system. I devote myself to all the

mysteries of the universe.
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increase the speed of optimization process. The size of solvable gene network problem increase from 5-20 to 1000.

HERO
• DOTA 2 hero picker to suggest heroes during strategy time.
• LSTM and SOM neural networks are used to solve the selection problem.

BREAD
• DOTA 2 tournament/professional matches predictor
• Use KNN and neural network to solve the classification problem.
• Evolution algorithm such as evolution strategy and genetic algorithm are used to optimize the problem.

Related Course Work
Analytical data mining, Evolutionary machine learning, Artificial neural network, Design and analysis of algorithm,

Principal of operating system

mailto:ywang552@syr.edu
https://github.com/300 University Avenue, APT-350 Syracuse, NY, 13210 
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