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statistika a ekonometrie

Praha 2013





Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Karel Musil

Comparison of Methods
for Estimation of Bounded Quantities
with Application to Economic Data

Department of Probability and Mathematical Statistics

Supervisor of the master thesis: Ing. Lenka Pavelková, Ph.D.
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loženým šumem a Sequential importance sampling jako jedna z metod Particle
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vt State disturbance (error) at time t
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1 , . . . , a
T
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T
m, . . . , a

T
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ât+s|t Linear projection of at+s on a set of variables at time t
ât Point estimate of at

a(·) Vector function of a specified dimension
a′(·), a′′(·) Matrix of the first and second partial derivatives of function a(·)
AR(1) Autoregression of the first order
argmax(·) Argument of maximum
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CUKF Constrained unscented Kalman filter
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GP Gain projection
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IUKF Interval unscented Kalman filter
KF Kalman filter
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lim(·) Limit
log(·) Natural logarithm
MAP est. Maximum a posteriori estimation
MC Monte Carlo
MHE Moving horizon estimation
MR Model reduction
MSE Mean squared error
N Positive integers
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max(·) Maximum of values
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t Predicted measurement (variable) error of the i-th variable at time t
PUKF Projected unscented Kalman filter
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R
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SCKF Smoothly constrained Kalman filter
SIS Sequential importance sampling
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By the notation, it is implied that all vectors and matrices have compatible
dimensions, which are omitted for simplicity.
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Introduction

A dynamic estimation problem has received an attention over past decades and
many techniques have been introduced to solve it. However, these methods,
especially in case of non-linear systems, usually ignore constraints or use some
approximations of the model to handle this problem. This can result in inaccurate
results.

The thesis introduces several algorithms to estimate a constrained dynamic
system. Constraints are only in a form of inequalities. Three of them are de-
scribed in details and subsequently applied to an economic data. This enables
to practically compare them with respect to their speed, accuracy, reliability and
initiation.

The thesis also briefly overviews most of the currently available approaches
that can be practically applied to solve the dynamic systems and offer a way how
to avoid a shortcoming of either ignoring or simplifying several aspects of the
initial dynamic estimation - not only with respect to the constraints but also to a
non-Gaussian processes. Additionally, the thesis offers a literature survey about
different filtering techniques and relatively detailed description of the basics be-
hind fundamental filtering techniques - the Kalman filter, filtering with uniformly
distributed and bounded noise and particle filters.

One of a commonly used method is the Kalman filter.1 Based on [88], the
Kalman filter is a set of mathematical equations that provides an efficient com-
putational (recursive2) means to estimate the state of a process, in a way that
minimizes the mean of squared errors. The filter is very powerful in several as-
pects: it supports estimations of past, present, and even future states, and it can
do so even when the precise nature of the modeled system is unknown. Addi-
tionally, the Kalman filter is possible to specify as the minimum-variance state
estimator for linear dynamic systems with Gaussian noise, see [68]. Moreover, the
Kalman filter is the minimum-variance linear state estimator for linear dynam-
ic systems with non-Gaussian noise, see [72]. However, for non-linear systems
it is not possible to find an optimal state estimator in a closed form, but some
modifications must be employed.

The idea behind the Kalman filter is to compute only the mean and the
covariance statistics of variables of our interest. This has the advantage of being
completely tractable. The advantageous power of the filter is that it operates
on-line which implies that to compute the best estimate of the state and its
uncertainty, only an update of the previous estimates by the new measurement is
required. This implies that it is not necessary to consider all previous data again
to compute the optimal estimates. Due to this tractability, the method passed
several modification and extensions.

In case that we have additional information about the system - e.g. the system
satisfies equality and/or inequality constraints - we should choose an approach
not ignoring or reducing this information, but fully and correctly incorporating

1The Kalman filter was originally introduced by Rudolf Kalman in his famous publication
[40] using the construction of the state estimation filter based on probability theory, and more
specifically, on the properties of conditional Gaussian random variables.

2The term recursive means that the estimation is running on-line and the estimates are
permanently refined.

9



it. In this situation the additional information are supposed to improve results
and not only marginally.

If both the system and state constraints are linear, an optimal constrained
linear state estimate (measured by its minimum-variance) of various methods
results in the same state estimate. If the system or/and constraints are non-linear,
then constrained filtering is not optimal in general, and different approaches give
different results, for a further discussion see [73]. This increases an interest in
this area, because these problems are not only theoretical, but also practical - the
state constrained systems include among others navigations [75], camera tracking
[37], fault diagnostic [74], robotics [77], chemical processes [85] and biomedical
systems [17]. Generally, [89] concludes that the Kalman filter in practice can be
used for almost everything that moves or has some dynamics.

Noises of a system describing behavior of unobserved (state) and observed
evolution are often supposed to have normal distribution and the problem is then
solved by means of the Kalman filtering. However, the unbounded support of the
Gaussian distribution can cause difficulties in case when the estimated quantity
is physically restricted.

One of a presented method in this thesis is an algorithm for a state estimation
of the discrete-time dynamic system which uncertainties are bounded. It uses
Bayesian approach and evaluates maximum a posteriori probability estimates
of states and parameters. As the model uncertainties are supposed to have a
bounded support, the searched estimates lie within an area that is described by
the system of inequalities.

A third applicable approach is Monte-Carlo sampling alias particle filtering
which is an estimation technique based on an idea that inequality constraints are
imposed by accept/reject steps in the algorithm. The appropriate constrained
prior distribution is truncated or modified to satisfy the constraints. This ensures
that the posterior also satisfies the constraints. The Monte-Carlo methods are
based on simulation. Therefore, a huge amount of data is required to obtain
acceptable results. The particle filtering technique will be introduced in this
thesis in more details.

Although an area of filtering with state constraints is relatively width, the
thesis aims only at the fundamental approaches. To cover the aim of the the-
sis the following structure is employed. After a general overview, containing a
description of a state-space representation of a dynamic system and basics of
the Bayesian statistics, there is an introduction into the linear Kalman filter and
linear state constraints as a starting point for further extensions. Next chapter
covers various modifications to handle either the non-linear state-space model
or/and non-linear constraints problem. Next two chapters present state uniform
model filtration with bounded noises and particle filters. The second part of the
thesis covers practical implementations of the algorithms on real economic data
resulting in their mutual comparison - especially their speed, accuracy, reliability
and challenges during initializing of each algorithm. The last part summarizes
and concludes.

The practical part introduces a simple economic model applied to Czech econ-
omy data. Matlab and Iris toolbox are used for calculations. Pivotal codes are
open functions and are enclosed in appendices. All the codes for generating results
in this thesis are available upon request.
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1. Overview of Approaches and
Algorithms

This chapter offers an introduction and overview of fundamental principles and
methods used throughout the rest of the thesis. After a detailed description of
the state-space representation of a dynamic system, there is an introduction to
state constraints related to the state-space representation. The last part covers
basics of Bayesian filtering, which is used mainly in Chapter 4 and 5. Although
the linear Kalman filter is a special case of Bayesian filtering under the linear,
quadratic and Gaussian assumptions, it is derived by an alternative method in
the next chapter.

1.1 State-Space Representation

Figure 1.1 illustrates a general application context in which a filter (typically the
Kalman filter) is used. A system is driven by a set of external inputs and controls
and its outputs are evaluated by measurements, such that the knowledge about
the system behavior is solely given by the inputs and observed outputs. The
observations usually convey some errors and uncertainties in this process. For a
general discussion see [67], for further comments about a theory of systems and
controlling see e.g. [35] and [78].

Figure 1.1: Application of a Filter (Source: [67] and author’s modification)

Although dynamic systems and control theories are popular and frequently
used, there are three basic reasons why they do not provide a totally sufficient
means of performing this analysis, see [57]

• no mathematical system model is perfect and any model depicts only char-
acteristics of direct interest and are an approximation,

• dynamic systems are driven not only by control inputs, but also by distur-
bances, which are neither controlled nor modeled deterministically, and

11



• no perfect and complete data about the system are provided.

A dynamic system is usually captured by a dynamic model. Many dynamic
models can be rewritten in a form of a state-space form. This form enables to
do an extremely simple analysis of the dynamics of a model, make forecast or
evaluate the likelihood function. The state-space framework can also be used
as a parsimonious time-series description of an observed vector of variables, see
e.g. [34].

1.1.1 Linear State-Space Representation

A state-space representation of a more complicated linear system captures the
dynamics of an observed (n× 1) vector yt at time t = 1, . . . , T ∈ N, in terms of
a possibly unobserved (r × 1) vector xt - the state vector for the system. The
dynamics of the state vector are taken to be a vector generalization of a first-order
autoregression. In other words, the dynamics of the state vector is governed by a
Markov process, i.e. the state at xt+1 is independent of all other states, given xt,

xt+1 = Fxt + vt+1, (1.1)

where F denotes an (r × r) matrix and the (r × 1) vector vt, is taken to be
i.i.d. N (0,Q). The previous equation is sometimes shifted backward one period,
xt = Fxt−1+vt. From the practical point of view it makes only a little difference,
see [34].

A definition of the state vector xt for any particular model is determined by
its construction. Their elements may or may not be identifiable with components
which have an interpretation (e.g. a trend). From the technical point of view, the
aim of the state-space formulation is to set up xt in such a way that it contains
all the relevant information on the system at time t and that it does so by having
as small a number of elements as possible. A state-space representation which
reflects this fact is said to be a minimal realization. However, it does not imply
that there is a unique representation for any particular problem. In fact a unique
representation is an exception rather than the rule, see [34].

The observed variables are related to the state vector by the following mea-
surement equation

yt = Aut +Hxt +wt. (1.2)

Here H is an (n× r) matrix of coefficients, and wt, is an (n× 1) vector named as
measurement error. It is assumed to be i.i.d. N (0,R) and independent of xt and
vt for t = 1, 2, . . . , T . Equation (1.2) also includes ut, a (k×1) vector of observed
variables that are exogenous (predetermined) entering the equation through the
(n×k) matrix of coefficients A, where k, n, r ∈ N.1 There is a choice if a variable
is defined to be a component of the state vector, or the exogenous vector ut.

2

The state equation (1.1) and observation (measurement) equation (1.2) con-
stitute a linear state-space representation for the dynamic behavior of yyT ≡

1The state-space representation of the model can be defined by using system matrices with
or without transposition, check e.g. [32] or [72]. It represents an equivalent system, only the
Kalman filter equations require recalculations.

2The statement that ut is predetermined or exogenous means that ut provides no information
about xt+s or wt+s for s = 1, 2, . . . beyond that contained in yt−1, . . . ,y1.
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{y1,y2, . . . ,yT}. As a result, the system is linear and any value of yt can be
expressed as a linear combination of present and past of ut, vt, wt+1 and initial
state vector x1.

Regarding the disturbances vt and wt, they are white noise and assumed to
be uncorrelated at all lags

E(vtv
⊤
τ ) =

{

Q for t = τ,
0 otherwise,

(1.3)

E(wtw
⊤
τ ) =

{

R for t = τ,
0 otherwise,

(1.4)

E(vtw
⊤
τ ) = 0 for all t and τ. (1.5)

The state-space system is typically used to describe a finite series of observa-
tions {y1, . . .yT} for which assumptions about the initial value of the state vector
x1 is needed. It is also assumed that x1is uncorrelated with any realization of vt

or wt for all t
E(vtx

⊤
t ) = 0, E(wtx

⊤
t ) = 0. (1.6)

The introduced system is quite flexible and straightforward to generalize the
results to a system where vt is correlated with wt, see e.g. [4]. Moreover,
the state equation (1.1) implies that xt can be rewritten as a linear function
of (x1,vt, . . . ,v2) for t = 2, . . . , T

xt = vt + Fvt−1 + F2vt−2 + . . .+ Ft−2v2 + Ft−1x1. (1.7)

This together with the previous assumptions imply following

E(vtx
⊤
τ ) = 0 for τ = 1, . . . , t− 1, (1.8)

E(wtx
⊤
τ ) = 0 for τ = 1, . . . , T, (1.9)

E(wtx
⊤
t ) = E[wt(Auτ +Hxτ +wτ )] = 0 for τ = 1, . . . , t− 1, (1.10)

E(vty
⊤
τ ) = 0 for τ = 1, . . . , t− 1. (1.11)

Note also that when ut is deterministic, the state vector xt summarizes every-
thing in the past that is relevant for determining future values of yt+m, m ∈ N0,

E(yt+m|xt,xt−1, . . . ,yt,yt−1, . . .)

= E[(Aut+m +Hxt+m +wt+m|xt,xt−1, . . . ,yt,yt−1, . . .)]

= Aut+m +HE(xt+m +wt+m|xt,xt−1, . . . ,yt,yt−1, . . .)

= Aut+m +HFmxt. (1.12)

Having the state-space representation of a model, the general problem is to
find an estimate x̂t+1 of xt+1 given the measurements yyt = {y1,y2, . . . ,yt} using
the state-space representation of the model.

System Stability. The system is stable, for any initial state x1, if the state
vector converges to an equilibrium solution, when ut is constant for all t. The
necessary and sufficient condition for stability is that all characteristic roots of the
transition matrix F lays inside a unit circle. More generally, the key properties
of the state-space representation are those of observability, controllability, de-
tectability and stabilizability, see [34]. When applied to the system they provide
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the basis for assessing statistical properties. In case of the control engineering,
they have their meaning and interpretation.

Used Form. To summarize, the constant-parameter linear state-space model
has the following specification for the rest of the thesis

• State (transition) equation

xt+1 = Fxt + vt+1, (1.13)

E(vt+1v
⊤
t+1) = Q. (1.14)

• Observation (measurement, output) equation

yt = Aut +Hxt +wt, (1.15)

E(wtw
⊤
t ) = R. (1.16)

Writing a model in the state-space form means imposing certain values on
some of the elements of F(r,r), Q(r,r), A(n,k) , H(n,r) and R(n,n), and interpreting
the other elements as particular parameters of interest with respect to the (r×1)
type state vector xt+1, (n× 1) type observed (measurement) vector yt+1, (k× 1)
type exogenous vector ut, (r × 1) type state discrepancy vt+1 and (n × 1) type
measurement error wt, for t = 1, . . . , T , where k, n, r, T ∈ N.

The state-space framework can be further generalized to allow its extension,
time-varying coefficient matrices, non-normal disturbances and non-linear dy-
namics.

1.1.2 Generalization of the Linear State-Space Represen-
tation

The previously introduced state-space representation of the model is easy to ex-
tend to include a drift and external inputs. The drift is a constant change ex-
pressed by adding (r × 1) type vector b to the state equation (1.13)

xt+1 = Fxt + b+ vt+1 = Ḟẋt + vt+1, (1.17)

where the constant is incorporated through the redefinitions of Ḟ = [F,b] and
ẋt = [xt,1]. For the external inputs, it is possible to use an extension of the
exogenous vector ut

xt+1 = Fxt +But + vt+1. (1.18)

This model is used when we want to control the system. This generalization
works in the same way as the original state-space representation introduced earlier
and it is not used later because of a simplification of further calculations.

In practice, the process noise covariance Q and measurement noise covariance
R matrices might change with each time step or measurement, however, here we
assume they are constant.

To conclude this section and to demonstrate a flexibility of the linear state-
space representation of the dynamic system, as discussed in [63], let’s generalize
the state and measurement equations into the following form

xt+1 = B̃tut + F̃txt + D̃t + vt+1, (1.19)

yt = Ãtxt + H̃tut + C̃t +wt, (1.20)
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where again xt, ut and yt are state, input and measurement vectors respectively.
Model matrices Ãt, B̃t, C̃t, D̃t, H̃t and F̃t are of appropriate dimensions. They
are sums of the form

Ãt = At +A, B̃t = Bt +B, . . . , (1.21)

where

• At contains known, generally time-variant entries of Ãt, and

• A contains unknown time-invariant entries of Ãt and zeros.

This holds similarly for other system matrices. A discussion about a time-varying
coefficients of the system matrices is covered in Subsection 2.3.2.

1.1.3 Non-Linear State-Space Representation

Let’s rewrite the discrete state-space representation from Subsection 1.1.1 into a
non-linear form

xt+1 = f(xt) + vt+1 (1.22)

yt = a(ut) + h(xt) +wt. (1.23)

In the above equations, we see that the transition matrix F has been replaced
by the non-linear (real) vector-valued function f : Rr → R

r, and similarly, the
matrix H, which transforms a vector from the state-space into the measurement
space, is replaced by the non-linear (real) vector-valued function h : Rr → R

n.
As before, vt and wt are assumed to be white noise with covariance matrices Q
and R, respectively.

The previous representation is a special case of the following one

xt+1 = f(xt,vt+1) (1.24)

yt = h(ut,xt,wt). (1.25)

The state equation can be further extended by ut,

xt+1 = f(ut,xt,vt+1). (1.26)

1.2 State Constraints

The state-space formulation of a model enables to impose state constraints. The
thesis discusses linear and non-linear systems extended by linear and non-linear
state inequality constraints.

A linear system with linear constraints is presented first. The linear Kalman
filter is introduced together with various ways of including linear constraints.
These include:

• estimate projection [75],

• gain projection [31], and
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• probability density function (PDF) truncation [72], [74].

Under certain conditions, all these approaches result in the same state estimate.

Further, systems which are non-linear or/and have non-linear constraints are
considered. These are:

• the extended and unscented Kalman filter and their various modifications
[72],

• second-order expansion of the constraints [90],

• moving horizon estimation [66], [65], and

• interior point approaches [7].

In this situation, if the system or constraints are non-linear, constraint filtering
is not optimal because different methods give different results.

The state model with uniform innovations (SU model) proposes an alterna-
tive to the standardly used linear and non-linear state-space model with normal
innovations that leads to the Kalman filter or it modifications (see the previous-
ly listed methods). By the SU model, the state and measurement innovations
are considered to have a uniform distribution. The main advantages of the pro-
posed method are the simplicity of the estimation algorithm and a possibility to
estimate both the parameters and states including the innovation boundaries.

Another technique is based on particle filters. They operate by propagat-
ing many state estimates, called particles, and are generated by Monte Carlo
simulations, which are distributed according to the PDF of a state. The sequen-
tial importance sampling, as one of a method of particle filtering, can be easily
extended to incorporate imposed constraints.

Approaches to Constraints. The possible approaches to constrained state es-
timation reflecting a system and constraint type can be delineated by a flowchart
designed by [73] and captured in Figure 1.2.

The used acronyms (in alphabetical order) and references for the methods
(in case they are not stated earlier) are following CIUKF: constrained inter-
val unscented Kalman filter [82], CUKF: constrained unscented Kalman filter
[82], ECUKF: equality constrained extended Kalman filter [81], EKF: extended
Kalman filter [72], EP: estimate projection, GP: gain projection, IPLM: interi-
or point likelihood maximization, IUKF: interval unscented Kalman filter [82],
MHE: moving horizon estimation, MR: model reduction, PDFT: probability den-
sity function truncation, PF: particle filter, PM: perfect measurement, PUKF:
projected unscented Kalman filter [82], SCKF: smoothly constrained Kalman fil-
ter [23], SP: system projection, TIUKF: truncated interval unscented Kalman fil-
ter [82], TUKF: truncated unscented Kalman filter [82], UKF: unscented Kalman
filter, URNDDR: unscented recursive non-linear dynamic data reconciliation [84],
2E: second-order expansion of non-linear constraints, and 2UKF: two-step un-
scented Kalman filter [36].

The references quoted together with the method are also the main sources for
description of the method further in the thesis, if it is not stated otherwise.
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Figure 1.2: Method Overview of the Constrained State Estimation (Source: [73])

1.3 Bayesian Statistics

The state-space formulation and the requirement for the updating of information
on receipt of new measurements are ideally suited for the Bayesian approach. This
provides a rigorous general framework for dynamic state estimation problems.

1.3.1 Bayes’ Rule

During the thesis only joint PDFs with following properties are used with the
support of the PDF (a, b, c), see e.g. [43]

• the chain rule relating conditional PDFs p(a|b, c) and p(b|c) and a marginal
PDF p(c)

p(a, b, c) = p(a|b, c)p(b|c)p(c) (1.27)

yielding
p(a, b|c) = p(a|b, c)p(b|c) = p(b|a, c)p(a|c), (1.28)

• non-negativity
p(a, b|c), p(a|b, c), p(a|b) ≥ 0, (1.29)
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• normalization
∫

p(a, b|c)da db = 1

∫

p(a|b, c)da = 1, (1.30)

• marginalization of PDFs

p(b|c) =

∫

p(a, b|c)da p(a|c) =

∫

p(a, b|c)db. (1.31)

The meaning of basic PDFs is as follow

• p(a, b|c): joint PDF on (a, b) conditioned by c,

• p(a|c): marginal PDF on a conditioned by c (with no information on b),

• p(b|a, c): marginal PDF on b conditioned by a, c.

These properties imply Bayes’ rule

p(b|a, c) =
p(a|b, c)p(b|c)

∫

p(a|b, c)p(b|c)db
=

p(a|b, c)p(b|c)

p(a|c)
∝ p(a|b, c)p(b|c). (1.32)

Based on the Bayesian view, the system is described by probability den-
sity functions. The quantities describing the system consist generally of ob-
servable outputs yyT ≡ {y1,y2, . . . ,yT} and exogenous optional inputs uuT ≡
{u1,u2, . . . ,uT}. They together form data which is a collection of the outputs
and inputs, uyT ≡ {u1,u2, . . . ,uT ,y1,y2, . . . ,yT}.. Internal quantities that are
never observed directly and consist of system states xxT ≡ {x1,x2, . . . ,xT} and
time invariant parameters θ. The PDF

p(uyT ,xxT , θ), (1.33)

describing both observed and internal quantities, can be decomposed into a prod-
uct of the following elements (for all t)

• observation model (the measurements yt are related to past data uyt−1 and
inputs ut):

{p(yt|ut,uyt−1,xt, θ)}
T
t=1, (1.34)

• time evolution model (the evolution of xt):

{p(xt|ut,uyt−1,xt−1, θ)}
T
t=1, (1.35)

• controller (as the controller does not depend on the internal unknown quan-
tities xt and θ, it plays no role in estimation. Therefore, the knowledge of
the controller is not required and the generated input values must be known
only):

{p(ut|uyt−1,xt−1, θ)}
T
t=1 ≡ {p(ut|uyt−1)}

T
t=1, (1.36)

• prior PDF (the initial data uy0 coincide with the prior information about
x0):

p(x0, θ). (1.37)

18



It holds

p(uyT ,xxT , θ)

= p(x0, θ)
T
∏

t=1

p(yt|ut,uyt−1,xt, θ)p(xt|ut,uyt−1,xt−1, θ)p(ut|uyt−1)

∝ p(x0, θ)
T
∏

t=1

p(yt|ut,uyt−1,xt, θ)p(xt|ut,uyt−1,xt−1, θ). (1.38)

The Bayesian state estimation works with characteristics of the joint PDF (1.38).

1.3.2 Bayesian Filtering

In the Bayesian approach to dynamic state estimation, one attempts to construct
the posterior PDF of the state based on all available information, including the
set of received measurements. Since this PDF embodies all available statistical
information, it may be said to be the complete solution to the estimation problem.
In principle, an optimal estimate (with respect to any criterion) of the state may
be obtained from the PDF.

Using a Bayesian approach, the prediction stage uses the system model to
predict the state PDF forward from one measurement time to the next. Since
the state is usually subject to unknown disturbances, prediction generally trans-
lates, deforms, and spreads the state PDF. The update operation uses the latest
measurement to modify the prediction PDF. This is achieved using Bayes’ the-
orem, which is the mechanism for updating knowledge about the target state in
the light of extra information from new data.

Consider the linear state space equation in the form of (1.13). From a Bayesian
perspective, we would like to recursively calculate some degree of belief in the
state xt at time t, taking different values, given measurements yyt up to time t.
Thus, it is required to construct the PDF, p(xt|yyt), assuming the initial PDF
p(x0|yy0) ≡ p(x0) of the state vector, the prior, is available. Then, in principle,
the PDF may be obtained, recursively, in two stages: prediction and update.

Suppose that the required PDF p(xt−1|yyt−1) at time t− 1 is available. The
prediction step uses the state equation of the state-space model. The prior PDF
of the state at time t is obtained via the Chapman-Kolmogorov equation

p(xt|yyt−1) =

∫

p(xt|xt−1) p(xt−1|yyt−1)dxt−1. (1.39)

In the previous equation, it was used that p(xt|xt−1,yyt−1) = p(xt|xt−1), as
(1.13) describes a Markov process of the first order. The probabilistic model
of the state evolution p(xt|xt−1) is defined by the state equation (1.13) and the
known statistics of vt.

At every time step, a measurement becomes available and this may be used
to update the prior via Bayes’ rule

p(xt|yyt) =
p(yt|xt)p(xt|yyt−1)

p(yt|yyt−1)
=

p(yt|xt)p(xt|yyt−1)
∫

p(yt|xt)p(yt|yyt−1)p(xt|yyt−1)
, (1.40)

where the normalizing constant depends on the likelihood function p(yt|xt) de-
fined by the measurement model. At the update stage (1.40), the measurement
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yt is used to modify the prior density to obtain the required posterior density of
the current state.

For dynamic systems, a recursive formulation of Bayesian estimation may be
represented by equation (1.40) as

p(xt|yyt−1) ∝ p(yt|xt)p(xt|yyt−1), (1.41)

where the prior, p(xt|yyt−1), is combined with the most current information of
the system, p(yt|xt), to find the posterior, p(xt|yyt−1). Each term in the previous
equation may be obtained as follows. For the prior, p(xt|yyt−1), is used equation
(1.39). Similarly, p(yt|xt) may be found as

p(yt|xt) =

∫

p(yt|xt, νt)p(νt|xt)dνt, (1.42)

where νt is known.
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2. The Linear Kalman Filter and
Linear Constraints

This chapter introduces an algorithm for a sequential updating linear projection
of a dynamic system. The idea is to use the dynamic system in a form called
the state-space representation, which was introduced in the previous chapter. It
is used a linear state-space representation from Subsection 1.1.1 throughout the
whole chapter if it is not stated otherwise. After the filter is derived, properties
of the filter are analyzed. This chapter is based mainly on [32] and [33].

A discrete time Kalman filter construction can be based on probability theory
or deterministic approach. The probabilistic approach assumes a linearity of
the predictor (this formulation based on linearity is mentioned in the original
Kalman’s paper, see [40] and [58] or [89]). If we adopt a Bayesian viewpoint, then
we want the filter to propagate the conditional probability density of the desired
quantities, conditioned on knowledge of actual data coming from measurements.
An alternative construction is completely deterministic and can be followed by
two cases. In the first case, a criterion based on the minimization of the prediction
error is used. In the second case, the criterion can be modified by adding a penalty
term. For further discussion see [70]. The thesis follows the minimization of the
prediction error based on mean square error criterion.

2.1 The Kalman Filter Derivation

Regarding the state-space representation (1.13) – (1.16), the Kalman filter (KF)
is an algorithm for calculating an optimal forecast of the value of xt on the basis
of information observed through time t− 1, assuming that the values of matrices
F,Q,A,H and R are known. If the system matrices do not change over time,
the model is said to be time-invariant or time-homogeneous, see [34]. Here the
discrete time Kalman filter is introduced and derived.

A motivation behind the Kalman filter algorithm is a calculation of the state
vector linear forecast on the basis of data observed till time t,

x̂t+1|t = E(xt+1|xyt), (2.1)

where xyt ≡ {yt,yt−1, . . . ,y1,xt,xt−1, . . . ,x1} for all t. The Kalman filter cal-
culates these forecast recursively, generating x̂1|0, x̂2|1, . . . , x̂T |T−1. At every steps
a mean squared error (MSE) is calculated, represented by the following (r × r)
matrix

Pt+1|t ≡ E[(xt+1 − x̂t+1|t)(xt+1 − x̂t+1|t)
⊤]. (2.2)

Notice that the Kalman filter maintains the first two moments of the state
distribution through x̂t+1|t and Pt+1|t. In other words, state estimate x̂t+1|t re-
flects the mean – the first moment – of the state distribution (it is normally
distributed if the random variables vt and wt are assumed to be independent of
each other, white and with normal probability distributionsN (0,Q) andN (0,R)
respectively). Estimate error covariance Pt+1|t reflects the variance of the state
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distribution – the second central moment. This means that the probability of the
x̂t+1|t conditioned on all measurements (based on Bayes’ rule) is

p(xt+1|xyt) ∼ N (x̂t+1|t,Pt+1|t). (2.3)

For details see [88], for more details about the probabilistic origin of the Kalman
filter see e.g. [12] or [24].

2.1.1 The Kalman Filter: Initialization

The recursion starts with x̂1|0, which denotes a forecast of x1 based on no obser-
vations. This is just an unconditional mean of x1,

x̂1|0 = E(x1) (2.4)

with the associated MSE

P1|0 = E[(x1 − Ex1)(x1 − Ex1)
⊤] = var x1. (2.5)

If the initial state x1 is not available, it is replaced with an arbitrary option
of the analyst’s best guess to the initial value. In this content, P1|0 is a positive
definite matrix summarizing the confidence in this guess. Higher values for the
diagonal elements of P1|0 register greater uncertainty about the truth values of x1.
For the univariate models, it is possible to construct a proper prior information
about x1 and P1|0 - a diffuse prior - based on the first several observations. For an
example see [34]. A generalization of this algorithm offers [25] and some possible
modifications can be found in e.g. [28].

To continue, the Kalman filter is an algorithm for calculating the sequence
{x̂t+1|t}

T
t=1 and {Pt+1|t}

T
t=1, where x̂t+1|t denotes the optimal forecast of xt+1 based

on observation of xyt and Pt+1|t expresses the MSE of this forecast. An iteration
of the filter starts using equations (2.4) and (2.5).

2.1.2 The Kalman Filter: Forecasting and Updating

Given the initial values x̂1|0 and P1|0, the next step is to calculate the values for
the next date, x̂2|1 and P2|1. The calculations for t = 2, 3, . . . , T have the same
basic form, thus they will be described in general term for step t: x̂t+1|t and Pt+1|t

are calculated given values of x̂t|t−1 and Pt|t−1.
1

Forecasting yt. Since wt is independent of ut and xyt−1 (or equaivalently
E(xt|ut,xyt−1) = E(xt|xyt−1) = x̂t|t−1), the forecast of yt conditional on xyt−1

and ut can be inferred from the measurement equation (1.15)

E(yt|ut,xt) = Aut +Hxt. (2.6)

The law of iterated projection yields

ŷt|t−1 = Aut +HE(xt|ut,xyt−1) = Aut +Hx̂t|t−1 (2.7)

1Sometimes instead of forecasting and updating steps, it is used a priori and a posteriori
estimate, see [73], or predicting and correcting step, see [88]. Using the latter terminology, the
algorithm can be labeled as the predictor-corrector algorithm.
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and the forecast error can be rewritten

yt − ŷt|t−1 = (Aut +Hxt +wt)− (Aut +Hx̂t|t−1) = H(xt − x̂t|t−1) +wt (2.8)

and has the following MSE

E[(yt − ŷt|t−1)(yt − ŷt|t−1)
⊤|ut,xyt−1]

= E[(yt − ŷt|t−1)(yt − ŷt|t−1)
⊤]

= E[H(xt − x̂t|t−1)(xt − x̂t|t−1)
⊤H⊤] + E[wtw

⊤
t ]

= HPt|t−1H
⊤ +R. (2.9)

The conditional variance has the previous form because x̂t|t−1 is a linear function
of xyt−1 and wt is independent of both xt and x̂t|t−1 (or equivalently the cross-
product term disappeared because E[wt(xt− x̂t|t−1)

⊤] = 0). Moreover, (1.16) and
(2.2) were employed.

In the next step, an inference about the current value of xt is updated on the
basis of observation of yt,

x̂t|t = E(xt|yt,ut,xyt−1) = E(xt|xyt). (2.10)

Updating xt.
2 The conditional covariance between (2.8) and an error in fore-

casting the state vector is, using again E[wt(xt − x̂t|t−1)
⊤] = 0 and (2.2)

E{[xt − E(xt|ut,xyt−1)][yt − E(yt|ut,xyt−1)]
⊤|ut,xyt−1}

= E{[xt − x̂t|t−1][yt − ŷt|t−1]
⊤|ut,xyt−1}

= E{[xt − x̂t|t−1][yt − ŷt|t−1]
⊤}

= E{[xt − x̂t|t−1][H(xt − x̂t|t−1) +wt]
⊤}

= E{[xt − x̂t|t−1][xt − x̂t|t−1]
⊤H⊤}

= Pt|t−1H
⊤. (2.11)

Equation (2.11) is possible to calculate equivalently resulting in the same out-
come, E{[yt − E(yt|ut,xyt−1)][xt − E(xt|ut,xyt−1)]

⊤|ut,xyt−1} = HPt|t−1.
The distribution of the vector (y⊤

t ,x
⊤
t ) conditional on ut and xyt−1, or more

precisely for

(

yt|ut,xyt−1

xt|ut,xyt−1

)

, is

N

([

Aut +Hx̂t|t−1

x̂t|t−1

]

,

[

HPt|t−1H
⊤ +R HPt|t−1

Pt|t−1H
⊤ Pt|t−1

])

. (2.12)

Based on this, it is clear that xt|ut,xyt−1 is distributed N (x̂t|t,Pt|t)
3 where

x̂t|t = x̂t|t−1 +Pt|t−1H
⊤(HPt|t−1H

⊤ +R)−1(yt −Aut −Hx̂t|t−1) (2.13)

2Sometimes this step itself is labeled as the Kalman filtering or the Kalman-Bucy filtering
in case of the continuous version of the filter, see [18].

3 Let’s z1 and z2 denote (n1 × 1) and (n2 × 1), vectors, n1, n2 ∈ N, and they have a joint
normal distribution:

[

z1
z2

]

∼ N

([

µ1

µ2

]

,

[

Σ1,1 Σ1,2

Σ2,1 Σ2,2

])

.

Then the distribution of z2 conditional on z1 is N (µ,Σ), where µ = µ2 +Σ2,1Σ
−1
1,1(z1 − µ1)

and Σ = Σ2,2Σ
−1
1,1Σ1,2. Thus the optimal forecast of z2 conditional on having observed z1 is
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and the MSE of the updated projection, Pt|t = E[(xt − x̂t|t)(xt − x̂t|t)
⊤], is

Pt|t = Pt|t−1 −Pt|t−1H
⊤(HPt|t−1H

⊤ +R)−1HPt|t−1. (2.14)

Forecasting xt+1. The next step is to calculate a forecast of xt+1 conditional
on xyt. It is clear from (1.13) that xt+1|xyt ∼ N (x̂t+1|t,Pt+1|t). Or in details,
the state equation (1.13) is used to calculate a forecast of xt+1,

x̂t+1|t = E(xt+1|xyt) = F(xt|xyt) + E(vt+1|xyt) = Fx̂t|t + 0 = Fx̂t|t. (2.15)

Using (2.13), it is possible to continue

x̂t+1|t = Fx̂t|t (2.16)

= F[x̂t|t−1 +Pt|t−1H
⊤(HPt|t−1H

⊤ +R)−1(yt −Aut −Hx̂t|t−1)]

= Fx̂t|t−1 +Kt(yt −Aut −Hx̂t|t−1). (2.17)

The coefficient matrix is known as the (Kalman) gain matrix, denoted Kt. The
matrix is a (r × n) type and sometimes it is also labeled as the blending factor,
see [88]

Kt ≡ FPt|t−1H
⊤(HPt|t−1H

⊤ +R)−1. (2.18)

The difference (yt−Aut−Hx̂t|t−1) in (2.17) is called the measurement error,
or the measurement residual. The residual reflects the discrepancy between the
predicted measurement Aut+Hx̂t|t−1 and the actual measurement yt. A residual
of zero means that the two are in complete agreement.

The MSE of the forecast can be calculated by substituting (2.13) into a com-
bination of (2.15) and state equation (1.13) and using (1.14)

Pt+1|t = E[(xt+1 − x̂t+1|t)(xt+1 − x̂t+1|t)
⊤]

= E[(Fxt + vt+1 − Fx̂t|t)(Fxt + vt+1 − Fx̂t|t)
⊤]

= FE[(xt − x̂t|t)(xt − x̂t|t)
⊤]F⊤ + E[vt+1v

⊤
t+1]

= FPt|tF
⊤ +Q (2.19)

= F[Pt|t−1 −Pt|t−1H
⊤(HPt|t−1H

⊤ +R)−1HPt|t−1]F
⊤ +Q. (2.20)

The last equation is known as a Riccati equation.

given by

E(z2|z1) = µ2 +Σ2,1Σ
−1
1,1(z1 − µ1),

with Σ characterizing the MSE of this forecast

E[(z2 − µ)(z2 − µ)⊤|z1] = Σ2,2 −Σ2,1Σ
−1
1,1Σ1,2.

For further discussion and a proof see properties of the multivariate normal distribution in [3].
To apply this result, suppose that the initial value of the state vector x1 of a state-space

model is drawn from a normal distribution and the disturbances vt and wt are normal. Then
the distribution of xt conditional on xyt−1 turns out to be normal for all t. A mean value of
this conditional distribution is represented by the (r × 1) vector x̂t|t−1 and a variance of this
conditional distribution is represented by the (r × r) matrix Pt|t−1. Then the mean of x̂t|t−1

and variance Pt|t−1 is a characterization of a distribution of xt conditional on xyt−1 for the
Kalman filter iteration for step t. The output for step t (and also the input for step t + 1) is
the mean xt+1|t and the variance Pt+1|t of xt+1 conditional on xyt.
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Note that the sequence {Pt+1|t}
T
t=1 is not a function of data and can be evalu-

ated without calculating the forecasts {x̂t+1|t}
⊤
t=1. Because Pt+1|t is not a function

of data, the conditional expectation of the squared forecast error is the same as
its unconditional expectation,

Pt+1|t = E[(xt+1 − x̂t+1|t)(xt+1 − x̂t+1|t)
⊤|xyt]

= E[(xt+1 − x̂t+1|t)(xt+1 − x̂t+1|t)
⊤]. (2.21)

This is a consequence of having assumed normal distributions with constant vari-
ances for vt and wt.

An alternative way of recursion for Pt|t−1 is sometimes useful. Subtracting the
Kalman updating equation (2.17) from the state equation (1.13) and substituting
the observed equation (1.15) gives

xt+1 − x̂t+1|t = F(xt − x̂t|t−1)−Kt(yt −Aut −Hx̂t|t−1) + vt+1

= (F−KtH)(xt − x̂t|t−1)−Ktwt + vt+1. (2.22)

Multiplying the result by its transpose, taking expectations and recalling the
definition of Pt+1|t from equation (2.2) give

Pt+1|t ≡ E[(xt+1 − x̂t+1|t)(xt+1 − x̂t+1|t)
⊤]

= (F−KtH)E[(xt − x̂t|t−1)(xt − x̂t|t−1)
⊤](F⊤ −H⊤K⊤

t ) +KtRK⊤
t +Q

= (F−KtH)Pt|t−1(F
⊤ −H⊤K⊤

t ) +KtRK⊤
t +Q. (2.23)

The previous equation together with the definition of the Kalman gain matrix
of Kt in (2.18) is the equivalent expression for the Kalman filter and produces
the same sequences as generated by equation (2.20).

This step closes one loop of the KF recursion.
Kalman Filter Forecasting Method. A one-period-ahead forecast of the state

vector is directly given by the state equation (1.13). A m-period-ahead forecast
of the vector can be calculated from the same equation by a recursive substitution

xt+m = Fmxt+Fm−1xt+1+ . . .+F1xt+m−1+vt+m, for m = 1, 2, . . . . (2.24)

The projection of xt+m on xt and xyt is given by

E(xt+m|xt,xyt) = Fmxt (2.25)

and the law of iterated projections yields

x̂t+m|t = E(xt+m|xyt) = Fmx̂t|t. (2.26)

An error of the m-period-ahead forecast of the state vector is calculated in
the following way

xt+m − x̂t+m|t = Fm(xt − x̂t|t) + Fm−1vt+1 + . . .+ F1vt+m−1 + vt+m (2.27)

from which it is clear that the MSE of the forecast is

Pt+m|t = FmPt|t(F
⊤)m + Fm−1Q(F⊤)m−1 + . . .+ FQF⊤ +Q. (2.28)
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Now, the forecast of yt on the basis of ut and xyt−1 is calculated. If ut

is deterministic, it is possible to express an exact finite sample m-period-ahead
forecast by using measurement equation (1.15)

yt+m = Aut+m +Hxt+m +wt+m. (2.29)

If the state vector is defined that ut is deterministic, the dynamics of any ex-
ogenous variables can be represented through xt. Applying a law of iterated
expectations results in

ŷt+m ≡ E(yt+m|xyt) = E(yt+m|yt, . . . ,y1) = Aut+m +HFmx̂t|t

= Aut+m +Hx̂t+m|t. (2.30)

The error of this forecast is

yt+m − ŷt+m|t = (Aut+m +Hxt+m +wt+m)− (Aut+m +Hx̂t+m|t)

= H(xt+m − x̂t+m|t) +wt+m (2.31)

with the MSE

E[(yt+m − ŷt+m|t)(yt+m − ŷt+m|t)
⊤] = HPt+m|tH

⊤ +R. (2.32)

2.1.3 The Kalman Filter: Smoothing

Now the Kalman smoother equations are derived. They allow using forward
measurements to help predict the state at the current time. Smoothing estimates
are run because these estimates are usually less noisy than the measurements up
till the current time only.

Up to this point, the Kalman filter was motivated as an algorithm for calcu-
lating a forecast of the state vector at time t, xt, based on information available at
time t− 1, so as a linear function of previous observations: x̂t|t−1 = E(xt|xyt−1).
In some applications, especially the economic ones (see e.g. the forecast and
policy analysis system implemented at the Czech National Bank, check [5] and
[20]), the value of the state vector is of interest in its own and the vector has
a structural interpretation. A goal then might be to form an interference about
the value of xt based on the full set of data collected (including observations on
yt,yt+1, . . . ,yT ,xt,xt+1, . . . ,xT ) or through the end of the sample (date T ) to
help improve the inference about the historical value that the state vector took
on at any particular time t in the middle of the sample. Such an inference is
known as a smoothed estimate of xt, denoted x̂t|T = E(xt|xyT ). The MSE of this
smoothed estimate is denoted Pt|T = E(xt − x̂t|T )(xt − x̂t|T )

⊤. In general, Pt|τ

denotes the MSE of an estimate of xt which is based on observation of yyτ and
xxτ through date τ .

Since the smoother is based on more information than the filtered estimator,
it has a MSE which is smaller than that of the filtered estimator in general. The
smoothed estimator exists if its elements can be estimated with the finite MSE,
that is if Pt|T is bounded.

There are three smoothing algorithms in a linear model, see [34]

• fixed-point smoothing is concerned with computing smoothed estimates of
the state vector at some fixed point in a time,
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• fixed-lag smoothing computes smoothed estimates for a fixed delay, and

• fixed-interval smoothing is concerned with computing the full set of all
smoothed estimates for a fixed span of data.

All these algorithms are recursive and closely related to the Kalman filter. The
fixed-point and fixed-lag algorithms run in parallel with the Kalman filter (by aug-
menting the state-space model by this point estimate and applying the Kalman
filter), while the fixed-interval one is a backward recursion which starts at time T .

Fixed Interval Smoothing. The fixed interval smoothing algorithm consists of
a set of recursions which start with the final quantities (x̂T and PT ) given by the
Kalman filter and work backwards.

Consider the estimate of xt based on observation through date t, x̂t. Suppose
that subsequently the true value of xt+1 is known. Using properties of the mul-
tivariate normal distribution, as it was already used in case of the updating step
of the Kalman filter, the distribution of the vector (x⊤

t+1,x
⊤
t ) conditional on ut

and xyt−1 is
(

xt+1|ut,xyt−1

xt|ut,xyt−1

)

=

(

xt+1|xyt

xt|xyt

)

∼ N

([

x̂t+1|t

x̂t|t

]

,

[

Pt+1|t FPt|t

Pt|tF
⊤ Pt|t

])

.

(2.33)
where x̂t|t+1 = E(xt+1|yt,ut,xyt−1) = E(xt+1|xyt) is used and similarly x̂t|t =
E(xt|yt,ut,xyt−1) = E(xt|xyt), see (2.10). Additionally, the covariance matrix
calculation uses (2.2)

Pt+1|t ≡ E[(xt+1 − x̂t+1|t)(xt+1 − x̂t+1|t)
⊤]

= E[(xt+1 − E(xt+1|xyt))(xt+1 − E(xt+1|xyt))
⊤] (2.34)

and similarly for Pt|t. Additionally

E[(xt − x̂t|t)(xt+1 − x̂t+1|t)
⊤] = E[(xt − x̂t|t)(Fxt + vt+1 − Fx̂t|t)

⊤] (2.35)

and because vt+1 is uncorrelated with xt and x̂t|t, it yields

E[(xt − x̂t|t)(xt+1 − x̂t+1|t)
⊤] = E[(xt − x̂t|t)(xt − x̂t|t)

⊤F⊤] = Pt|tF
⊤. (2.36)

Then the conditional mean value is

E(xt|xt+1,xyt) = E(xt|xyt) + (Pt|tF
⊤)(Pt+1|t)

−1(E(xt+1|xyt)− x̂t+1|t)

= x̂t|t +Pt|tF
⊤P−1

t+1|t(xt+1 − x̂t+1|t), (2.37)

for all t.
Defining

Jt = Pt|tF
⊤P−1

t+1|t, (2.38)

the previous equation can be rewritten as

E(xt|xt+1,xyt) = x̂t|t + Jt(xt+1 − x̂t+1|t). (2.39)

Note that because of E(xt|xt+1,xyT ) = E(xt|xt+1,xyt), knowledge of yt+j or
ut+j for j > 0 would be of no added value if the value of xt+1 is already known.
To clarify this, yt+j can be rewritten as

yt+j = Aut+j +H(Fj−1xt+1 + Fj−2vt+2 + Fj−3vt+3 + . . .+ vt+j) +wt+j (2.40)
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for all j > 0. The error xt − E(xt|xt+1,xyt) is uncorrelated with xt+1 and ut+j,
wt+j and vt+j,vt+j−1, . . . ,vt+2 under the maintained assumptions. Thus, the
error is uncorrelated with yt+j or ut+j for j > 0 resulting into

E(xt|xt+1,xyT ) = x̂t|t + Jt(xt+1 − x̂t+1|t). (2.41)

The first term x̂t|t indicates a particular exact linear function of xyt (the
coefficients of this functions are constructed from population moments and they
should be viewed as deterministic constants). The term Jt is also a function of
population moments and is again treated as deterministic.4 The term x̂t+1|t is
another exact linear function of xyt, thus

E(xt|xyT ) = x̂t|t + Jt

(

Ex̂t+1|xyT − x̂t+1|t

)

, (2.42)

or equivalently

x̂t|T = x̂t|t + Jt(x̂t+1|T − x̂t+1|t), (2.43)

for t = T − 1, . . . , 1 and x̂T |T = x̂T .
Calculation of the MSE associated with the smoothed estimate, starting from

(2.43) and subtracting both sides from xt, yields

xt − x̂t|T = xt − x̂t|t − Jtx̂t+1|T + Jtx̂t+1|t (2.44)

xt − x̂t|T + Jtx̂t+1|T = xt − x̂t|t + Jtx̂t+1|t. (2.45)

Multiplying the equation by its transpose and taking expectations yield

E
[

(xt − x̂t|T )(xt − x̂t|T )
⊤
]

+ JtE
[

x̂t+1|T x̂⊤
t+1|T

]

J⊤
t =

E
[

(xt − x̂t|t)(xt − x̂t|t)
⊤
]

+ Jt

[

x̂t+1|t x̂
⊤
t+1|t

]

J⊤
t , (2.46)

which states

Pt|T = Pt|t + Jt

[

−E(x̂t+1|T x̂⊤
t+1|T ) + E(x̂t+1|t x̂

⊤
t+1|t)

]

J⊤
t . (2.47)

The cross-product terms disappeared because x̂t+1|T is a linear function of xyT

and is uncorrelated with the projection error xt − x̂t|T . Similarly, x̂t+1|t is uncor-
related with xt − x̂t|t.

Notice the following relations

E
[

xt+1 x̂⊤
t+1|T

]

= E
[

(xt+1 − x̂⊤
t+1|T + x̂⊤

t+1|T )x̂
⊤
t+1|T

]

= E
[

(xt+1 − x̂⊤
t+1|T )x̂

⊤
t+1|T

]

+ E
[

x̂⊤
t+1|T x̂⊤

t+1|T

]

= E
[

x̂⊤
t+1|T x̂⊤

t+1|T

]

, (2.48)

because the projection error (xt+1− x̂⊤
t+1|T ) is uncorrelated with x̂⊤

t+1|T . Similarly

E(xt+1 x̂⊤
t+1|t) = E(x̂⊤

t+1|t x̂
⊤
t+1|t). (2.49)

4A theory about linear projection is solely used for derivation of the smoothing equation in
[32]. The previously used approach employing properties of the multivariate normal distribution
can be an alternative way of the derivation proposed by the author of this thesis.
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Let’s recalculate the bracketed term in (2.47) using the previous two relations

−E(x̂t+1|T x̂⊤
t+1|T ) + E(x̂t+1|t x̂

⊤
t+1|t)

=
[

E(xt+1 x⊤
t+1)− E(x̂t+1|T x̂⊤

t+1|T )
]

−
[

E(xt+1 x⊤
t+1)− E(x̂t+1|t x̂

⊤
t+1|t)

]

= E
[

(xt+1 − x̂t+1|T )(xt+1 − x̂t+1|T )
⊤
]

− E
[

(xt+1 − x̂t+1|t)(xt+1 − x̂t+1|t)
⊤
]

= Pt+1|T −Pt+1|t. (2.50)

Substituting the previous result back into (2.47) establishes that the smoothed
estimate x̂t|T has the MSE given by

Pt|T = Pt|t + Jt(Pt+1|T −Pt+1|t)J
⊤
t (2.51)

for t = T − 1, . . . , 1 and PT |T = PT .
From the previous is clear that the smoothed algorithm requires that sequences

{x̂t|t}
T
t=1, {x̂t+1|t}

T
t=1, {Pt|t}

T
t=1 and {Pt|t−1}

T
t=1 are stored for all t so that they can

be combined with x̂t+1|T and Pt+1|T . If Pt+1|T is singular for some t, it may be
replaced by a generalized inverse as it is suggested in [45].

2.1.4 The Kalman Filter: Set of Equations

To conclude the derivation of the Kalman filter equations for prediction and
updating, the key equations are reproduced here again. These are (2.13), (2.14),
(2.16) and (2.19)

x̂t|t = x̂t|t−1 +Pt|t−1H
⊤(HPt|t−1H

⊤ +R)−1(yt −Aut −Hx̂t|t−1) (2.52)

Pt|t = Pt|t−1 −Pt|t−1H
⊤(HPt|t−1H

⊤ +R)−1HPt|t−1 (2.53)

x̂t+1|t = Fx̂t|t (2.54)

Pt+1|t = FPt|tF
⊤ +Q. (2.55)

Equation (2.54) can be equivalently replaced by (2.17)

x̂t+1|t = Fx̂t|t−1 +Kt(yt −Aut −Hx̂t|t−1) (2.56)

and (2.55) can be substituted either by (2.20) or by (2.23)

Pt+1|t = F[Pt|t−1 −Pt|t−1H
⊤(HPt|t−1H

⊤ +R)−1HPt|t−1]F
⊤ +Q (2.57)

Pt+1|t = (F−KtH)Pt|t−1(F
⊤ −H⊤K⊤

t ) +KtRK⊤
t +Q. (2.58)

where the (Kalman) gain matrix, defined as (2.18), is

Kt ≡ FPt|t−1H
⊤(HPt|t−1H

⊤ +R)−1. (2.59)

Sometimes, see e.g. [67], [72], or [89], the Kalman gain matrix (2.59) is defined
alternatively as

K̇t ≡ Pt|t−1H
⊤(HPt|t−1H

⊤ +R)−1, (2.60)

which means that K̇t = FKt for all t. This also implies that (2.52) and (2.53)
can be rewritten

x̂t|t = x̂t|t−1 + K̇t(yt −Aut −Hx̂t|t−1) (2.61)

Pt|t = Pt|t−1 − K̇tHPt|t−1 = (I− K̇tH)Pt|t−1. (2.62)
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This definition of K̇t expresses an idea that the gain matrix is chosen to
minimizes the MSE of the update Pt|t, see [12] and [88] or [24]. This minimization
can be accomplished by substituting equation (2.61) in a forecasting estimate
error (xt − x̂t|t−1), substituting this into definition of Pt|t, taking the derivative
of the trace of the result with respect to Kt, setting that result equal to zero
and then solving for Kt, resulting in (2.60).5 Looking at (2.60), it is clear that
as the measurement error covariance R approaches zero, the gain K̇t weights the
residual more heavily. Specifically,

lim
Rt→0

K̇t = H−1. (2.63)

Contrary, as the estimate error covariance Pt|t−1 approaches zero, the gain K̇t

weights the residual less heavily. Specifically,

lim
Pt|t−1→0

K̇t = 0. (2.64)

From the computational point, using the Kalman filter equations written in
the previous form is not necessarily the best way to proceed. An alternative
algorithm is the information filter, see [4] and [34]. Rather than yielding a set of
recursion for the MSE matrix Pt, the information filter gives a set of its inverse
P−1

t , which is known as the information matrix. The filter gives recursions for
the vector P−1

t x̂t. The information filter is quite convenient when the initial
covariance matrix P0 is infinite, since then P−1

0 = 0. It also appears to become
attractive when a number of series is significantly greater than the dimension of
the state. This is because it is not required to calculate the inverse matrix in
(2.52), (2.53), (2.57) and (2.59) respectively.6

Another option is to use the square filter which operates on matrix Ṗt such
that Pt = ṖtṖt. By doing so, the problem that the Kalman filter may failure
due to Pt not being non-negative definite is avoided. This algorithm is also more
numerically stable that the previous ones, but it requires higher computational
burden. For further discussion see [34].

Once the system of equation for the Kalman filtering is introduced, it is easy
to forecast yt+1 and calculate the associated MSE

ŷt+1|t ≡ E(yt+1|ut+1,xyt) = Aut+1 +Hx̂t+1|t, (2.65)

E
[

(yt+1 − ŷt+1|t)(yt+1 − ŷt+1|t)
⊤
]

= HPt+1|tH
⊤ +R. (2.66)

For the MSE calculation, equation (2.9) was used.
The smoothing procedure by the Kalman filter is composed by these equations

(2.43), (2.51) and (2.38)

x̂t|T = x̂t|t + Jt(x̂t+1|T − x̂t+1|t) (2.67)

Pt|T = Pt|t + Jt(Pt+1|T −Pt+1|t)J
⊤
t , (2.68)

5The original way of thinking about the weighting by Kt, used for derivation of the gain,
is that as the measurement error covariance R approaches zero, the actual measurement yt is
more and more reliable, while the predicted measurement ŷt|t−1 is trusted less and less. On
the other hand, as Pt|t−1 approaches zero the actual measurement yt is trusted less and less,
while the predicted measurement ŷt|t−1 is trusted more and more.

6It is generally assumed that the inverse matrix exists. This can be replaced by a pseudo-
inverse.
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where
Jt = Pt|tF

⊤P−1
t+1|t (2.69)

for t = T − 1, . . . , 1.

2.2 Maximum Likelihood Estimation

So far it was used an assumption that the coefficients in the matrices F,Q,A,H
and R are known. In case the values of the matrices are unknown, the Kalman
filter can be used to evaluate the likelihood function. It can be proved that the
forecast of x̂t|t−1 and ŷt|t−1 are optimal within the set of forecasts that are linear
in (ut,xyt−1), see [72]. If the initial state x1 and the innovations {vt,wt}

T
t=1 are

multivariate Gaussian, then a stronger claim that the forecasts x̂t|t−1 and ŷt|t−1

calculated by the Kalman filter are optimal among any functions of (ut,xyt−1),
see [72]. Moreover, if x1 and {vt,wt}

T
t=1 are Gaussian, then the distribution of

yt conditional on (ut,xyt−1) is Gaussian with mean given by (2.65) and variance
given by (2.66), so

(yt|ut,xyt−1) ∼ N
(

(Aut +Hx̂t|t−1), (HPt|t−1H
⊤ +R)

)

, (2.70)

which is

p(yt|ut,xyt−1) = (2π)−
n
2 |HPt|t−1H

⊤ +R|−
1

2 exp{−
1

2
(yt −Aut −Hx̂t|t−1)

⊤

(HPt|t−1H
⊤ +R)−1(yt −Aut −Hx̂t|t−1)}, (2.71)

for t = 1, 2, . . . , T
From the previous equation, it is possible to construct the sample log likeli-

hood in the standard way:
∑T

t=1 log p(yt|ut,xyt−1).

2.2.1 Maximum Likelihood Estimation of Parameters

When the values of matrices F,Q,A,H and R are not known, it is possible to
proceed as follows. Collect the unknown elements of these matrices in a vector
θ. Make an arbitrary initial guess as to a value of θ, denoted θ(0), and calculate
the sequences {x̂yt|t−1(θ

(0))}Tt=1 and {Pt|t−1(θ
(0))}Tt=1 that result from this value

in (2.17) and (2.20). Recall from (2.12) that if data are generated from the
state-space model (1.13) – (1.16) with this value of θ, then

(yt|ut,xyt−1, θ
(0)) ∼ N

(

µt(θ
(0)),Σt(θ

(0))
)

, (2.72)

where

µt(θ
(0)) = [A(θ(0))]ut + [H(θ(0))]x̂t|t−1(θ

(0)), (2.73)

Σt(θ
(0)) = [H(θ(0))][Pt|t−1(θ

(0))][H(θ(0))]⊤ + [R(θ(0))]. (2.74)

The value of the log likelihood is then

T
∑

t=1

log p(yt|ut,xyt−1, θ
(0)) = −

nT

2
log(2π)−

1

2

T
∑

t=1

log |Σt(θ
(0))|−

−
1

2

T
∑

t=1

{

[yt − µt(θ
(0))]⊤[Σt(θ

(0))]−1[yt − µt(θ
(0))]

}

, (2.75)
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which reflects how likely it would have been to have observed data if θ(0) were
the true value for θ.7

The maximum likelihood estimation procedure supposes that the model is
identified. This assumes that a change in any of the parameters would imply a
different probability distribution for {yt}

T
t=1.

Although the state-space representation gives a convenient way to calculate
the exact likelihood function, a problem of identification can occur. In the absence
of restrictions on F,Q,A,H or R, the parameters are unidentified - more that
one set of the parameters can give the identical value of the likelihood function.
Following [69], the model is not either globally or locally identified.

2.2.2 Asymptotic Properties

The maximum likelihood estimate θ̂ based on the sample of size T is consistent
and asymptotically normal if the following conditions are satisfied, see [13]

• the model is identified,

• eigenvalues of F are all inside the unit circle,

• the exogenous variable ut (i.e. apart from a constant term) behave asymp-
totically like a full rank linearly non-deterministic covariance-stationary
process, and

• the true value of θ does not fall on the boundary of the allowable parameter
space.

2.3 The Kalman Filter Alterations

The derivation of the linear Kalman filter assumed no correlation between vt and
wt for all t. However, this is straightforward to generalize, see [4]. Predeter-
mined or exogenous variables can also be added to the state equation with few
adjustments, see e.g. [70] or [90]. Moreover, the Kalman filter is a convenient
algorithm for handling missing observations. If yt, is unobserved at some time t,
one can simply skip the updating equations (2.52) and (2.53) for this date and
replace them with x̂t|t = x̂t|t−1 and Pt|t = Pt|t−1, see e.g. [46]. Modifications
of the Kalman filtering and smoothing algorithms to allow for singular Pt|t are
described in [26].

In the following two subsections, an assumption of normality of disturbances
and time varying parameters as additional alterations of the Kalman filter are
discussed in more details.

7In case of a notation simplification and θ(0) parameter omission, it is possible to write

T
∑

t=1

log p(yt) = −
Tn

2
log(2π)−

1

2

T
∑

t=1

log |Σt| −
1

2

T
∑

t=1

ν⊤t Σ−1
t νt,

where νt = yt − ŷt|t−1 = yt − Eyt|t−1 = yt − (Aut +Hxt|t−1) for t = 1, . . . , T using the state
equation (1.15). The equation is sometimes known as the prediction error decomposition form
of the likelihood, see [34].
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2.3.1 The Kalman Filter with Non-Normal Disturbances

In case that the disturbances vt and wt are not normally distributed, the Kalman
filter can be calculated in the same way.

Under an assumption of normality, x̂t|t−1 is the function of x̂yt−1 that mini-
mizes the MSE (see the definition of Pt+1|t by equation (2.2))

E[(xt − x̂t|t−1)(xt − x̂t|t−1)
⊤] (2.76)

in the sense that any other forecast has a mean squared error matrix that differs
from that of x̂t|t−1 by a positive semidefinite matrix. This optimal forecast turned
out to be a constant plus a linear function of x̂yt−1. The minimum value achieved
for (2.76) was denoted Pt|t−1.

If vt and wt are not normal, one can pose a related problem of choosing
x̂t|t−1 to be a constant plus a linear function of xyt−1 that minimizes (2.76). The
solution to this problem turns out to be given by the Kalman filter iteration (2.56)
and its unconditional mean squared error is still given by (2.56). Similarly, when
the disturbances are not normal, expression (2.31) can be interpreted as the linear
projection of yt+m on xyt−1, and a constant, with (2.32) its unconditional mean
squared error. Thus, while the Kalman filter forecasts need no longer be optimal
for systems that are not normal, no other forecast based on a linear function of
xyt−1 will have a smaller mean squared error. See a discussion in [4] for more
details.

Also function (2.75) is formed in the same way and maximized with respect
to θ even for non-normal systems. This quasi-maximum likelihood estimations
still yield consistent and asymptotically normal estimates of the elements of
F,Q,A,H and R, see [87].

2.3.2 Time-Varying Coefficients

The analysis above treated the coefficients of the matrices F,Q,A,H and R as
known constants. One of a possible generalization is obtained if these are known
functions of ut

xt+1 = F(ut)xt + vt+1, (2.77)

E(vt+1v
⊤
t+1) = Q(ut), (2.78)

yt = a(ut) +H(ut)xt +wt, (2.79)

E(wtw
⊤
t ) = R(ut), (2.80)

where F(ut),Q(ut),H(ut) and R(ut) denote matrix-valued functions of ut, and
a(ut) is an (n × 1) vector-valued function of ut. As before, it is assumed that
ut provides no information about xτ or wτ for any τ beyond that contained in
xyt−1.

Even if vt and wt are normal with ut stochastic, the unconditional distribu-
tions of xt and yt are no longer normal. However, the system is conditionally
normal in the following way. Suppose that the distribution of xt conditional on ut

and xyt−1 is N (x̂t|t−1,Pt|t−1). Then xt conditional on ut and xyt−1 has the same
distribution. Moreover, conditional on ut, all of the matrices can be treated as
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deterministic. Hence the derivation of the Kalman filter goes through essentially
as before, with the recursions (2.56) and (2.57) replaced by

x̂t+1|t = F(ut)x̂t|t−1 +Kt

[

yt − a(ut)−H(ut)x̂t|t−1

]

(2.81)

Pt+1|t = F(ut)
{

Pt|t−1 −Pt|t−1H(ut)
⊤
[

H(ut)Pt|t−1H(ut)
⊤ +R(ut))

]−1

[H(ut)]
⊤Pt|t−1

}

F(ut)
⊤ +Q(ut) (2.82)

Kt ≡ F(ut)Pt|t−1H(ut)
⊤
[

H(ut)Pt|t−1H(ut)
⊤ +R(ut)

]−1
(2.83)

It is worth noting three elements of the earlier discussion that was changed
by the time-varying parameter matrices

• the distribution calculated for the initial state in (2.4) and (2.5) is only
valid if F(ut) and Q(ut) are fixed matrices,

• m-period-ahead forecasts of yt+m or xt+m for m > 1 are no longer simple
to calculate when F(ut),H(ut), or A(ut) vary stochastically, and

• if vt, and wt are not normal, then the one-period-ahead forecasts of x̂t+1|t

and ŷt+1|t are no longer interpreted as linear projections, since (2.81) is
non-linear in ut.

The time-varying coefficient model with discrete-valued state variables can be
useful way of dealing with changes occurring in economic policies. These changes
often take a form of dramatic and discrete events. It is thus of interest to consider
time-series models in which coefficients change only occasionally as a result of such
changes (especially in case of changes in policy regimes). The discrete analog to
the state equation is a based on an assumption that the probability distribution of
the state vector depends on past events only through its lagged value. When this
probabilities does not depend on the previous state, the system is the Markov-
switching model (originally developed by [29] and further elaborated by others).8

2.4 Linear Constraints

Generally, the constraints can be of two basic types - equality and inequality.
The thesis copes only with the inequality ones.

There are two ways how to incorporate state inequality constraints, see [73].
Hard (Strong) Constraints. The first method incorporated hard constraints

to maintain the state variable estimates within a user-defined envelope. The
constraints represent some relations between state variables which are known
exactly and hence are used to describe the relation.

In case of the Kalman filter and hard inequality constraints, the resultant
filter is a combination of a standard Kalman filter and a quadratic programming
problem.

Soft (Weak) Constraints. The second method incorporates soft constraints
to ensure that the state variable estimates vary slowly with time. The soft con-
straints are constraints that are required to be approximately rather than exactly

8In the Markov-switching model, the matrix F in (2.81) represents a Markov chain matrix
with probabilities of transitions among states.
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satisfied. They are used in case that the constraints are not rigorous or the
constraint function has some uncertainty.

We impose inequality constraints to our system in the following way

Dxt ≤ d (2.84)

where D is a known matrix and d is a known vector. In this chapter several ways
how to modify the Kalman filter to incorporate these constraints are introduced.

The Kalman filter with constraints in a form of (2.84) is constructed by di-
rectly projecting the unconstrained state estimate x̂t onto the constrained surface
S = {xt : Dxt ≤ d}, S ⊆ R

r. In case of the Kalman gain, this constraint surface
is labeled as SS (SS ⊆ R

r×n), see later.
The constraint is to be applied using the architecture shown in Figure 2.1.

The filter is initialized, predicted, and updated with the measurement to give
an unconstrained estimate of the state vector with the covariance matrix. The
constraint is applied, and the resulting estimate obeys the required constraint.
This form is consistent with Alouani’s suggestion: the constraint is only applied
to the updated estimate and is thus likely to be most accurate, see [2].

Figure 2.1: Constrained Filter Approach (Source: [36])

Inequality constraints are inherently more complicated than equality con-
straints, but standard quadratic programming results can be used to solve the
Kalman filter problem with inequality constraints.

In case of inequality constraints, an active set method can be applied. For
each constraint it is tested if the constraint is satisfied (then it is considered as
an equality constraint, Dxt = d) or the inequality is not satisfied. The same
approach is used in case of soft constraints. Thus all the inequality constraints
are transformed to the equality ones, see [76].

Generally, it is possible to suppose that at each time step t = 1, . . . , T , xt is
subject to the following linear inequality constraint Dtxt ≤ dt. Furthermore, Dt

is supposed to be a full rank matrix (if it is not the case, it means that there are
some redundant constraints, which can be eliminated).

There are two possibilities of using the constraints: either the updated state
estimate will satisfy the constraint at each iteration, as below

Dx̂t|t ≤ d, (2.85)

or the state prediction to be constrained, which would allow a better forecast for
the system

Dx̂t+1|t ≤ d. (2.86)

In the following subsections, we will mainly discuss constraining the updated
state estimate The basic principle for the forecast state estimate holds as well.
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A weaker but more general constraint may exist on the expected value of the
state, see [75]

DExt ≤ dt. (2.87)

The incorporation of state variable constraints commonly increases the com-
putational effort of the filter but significantly improves its estimation accuracy.
Using an appropriate estimation method also depends on a particular application.

2.4.1 Estimate Projection

One possible approach to the constrained filtering is to project the unconstrained
estimate x̂t|t of the Kalman filter onto the constraint surface, see [75]. The esti-
mate projection approach has an advantage that it can be applied to both equality
and inequality constraints. This problem is a quadratic programming problem,
see e.g. [27].

Generally, we want to estimate the state xt satisfying the linear constraint.
We keep a notation that x̂t is the state estimated at time t by an unconstrained
estimator (i.e. an estimator which does not take into account any constraint).
Then x̃t is an estimate provided by same estimator, but which take into account
a linear constraint. The principle of the projection approach is illustrated in
Figure 2.2. For further discussion see [76].

Figure 2.2: Principle of the Projection Approach (Source: [76] and own adjust-
ments)

The Projection Method. At each time step of the constrained Kalman filter,
a quadratic programming problem is solved to obtain the constrained state es-
timate. Here a brief tour through a transformation of the original problem to a
form of the quadratic dynamic problem is presented first. It is based on [74].

From [4] is clear that the Kalman filter estimates of x̂t|t and {y1,y2, . . . ,yt}
are jointly Gaussian, in which case x̂t|t is conditionally Gaussian with given
{y1, . . . ,yt}. The PDF of xt given {y1, . . . ,yt} is

p(xt|y1,y2, . . . ,yt) =
1

(2π)r/2|P|1/2
exp

{

−
1

2
(xt − x̂t|t)

⊤P−1(xt − x̂t|t)

}

, (2.88)

where r is a dimension of xt and the covariance of the conditional distribution
is P = Pt|t for all t, see equations (2.13) and (2.14) together with the proper
footnote in Subsection 2.1.2.

The constrained Kalman filter can be derived using the maximum probability
method by finding an estimate x such that the conditional PDF is maximized
and x satisfies the required constraints (without loss of generality an inequality
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constraint is used). Maximizing PDF is the same as maximizing its natural
logarithm. So the problem can be given by

max log p(x|y1,y2, . . . ,yt) ⇒ min
x∈S

(x− x̂t|t)
⊤P−1(x− x̂t|t) (2.89)

such that
Dx ≤ d. (2.90)

The problem can be rewritten as

min
x∈S

(x⊤P−1x− 2x̂⊤
t|tP

−1x) such that Dx ≤ d. (2.91)

From the previous formulation is clear that that this problem statement depends
on the conditional Gaussian nature of x̂t|t, which in turn depends on the Gaussian
nature of x0, {v1, . . .vt} and {w1, . . . ,wt}.

9

The constrained Kalman filtering problem can also be specified directly by
projecting the unconstrained state estimate x̂t|t onto the constraint surface. The
problem is

min
x∈S

(x− x̂t|t)
⊤W(x− x̂t|t) such that Dx ≤ d, (2.92)

where W is an symmetric positive definite weighting matrix. The problem can
be again equivalently rewritten as

min
x∈S

(x⊤Wx− 2x̂⊤
t|tWx) such that Dx ≤ d. (2.93)

The constrained estimation problems derived by the maximum probability
method and the mean square method can be obtained from the previous equation
by setting W = P−1 and W = I respectively. Note also that this derivation of
the constrained estimation problem does not depend on the conditional Gaussian
nature of x̂t|t.

Estimate Projection with Inequality Constraints. If the constraint is in a form
Dx̂t ≤ d, then a constrained estimate can be obtained by the problem of the
estimate projection with equality constraints. It solves the problem specified
as (2.92), which is a quadratic programming problem. Various approaches can
be used to solve these problems. One of a possible methods are interior point
approaches and active set methods, see e.g. [11].

An active set method uses the fact that only those constraints, that are active
at the solution of the problem, are significant in the optimality conditions. Sup-
pose that there is totally s inequality constraints, and only q of the s inequality
constraints are active at the solution of the quadratic programming system. The
method consists in testing at each time step and checks the inequality constraints.
For each inequality only two scenarii can occur: either the inequality is satisfied

9 The constrained Kalman filtering problem can also be derived by using a mean square
minimization method. The conditional mean square error is minimized subject to the state
constraints

min
x∈S

E(||x̂t|t − x||2|y1,y2, . . . ,yt) such that Dx ≤ d.

The first order condition necessary for a minimum, after some algebra (see [75]), is the same as
equation (2.91).
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and so do not have to be taken in account, or the inequality is not satisfied and it
is applied to a boundary. The active set is made up of those inequality constraints
with non-zero Lagrange multipliers.

Denote by D̃ the q rows of D that correspond to the active constraints, and
denote by d̃ the corresponding q components of d that are linked to the active
constraints. If the set of active constraints is known then the solution of this
problem is also a solution of the equality constrained problem

x̃t|t = argmin
x∈S

(x− x̂t|t)
⊤W(x− x̂t|t) such that D̃x = d̃. (2.94)

The inequality constrained problem is thus equivalent to the problem with
equality constraints, which is introduced in the following paragraph. All of the
properties of the equality constrained state estimate are applied to the inequality
constrained state estimate.

Estimate Projection with Equality Constraints. The constrained estimate can
be written as

x̃t|t = argmin
x∈S

(x− x̂t|t)
⊤W(x− x̂t|t) such that Dx = d, (2.95)

where W is a symmetric positive-definite weighting matrix.10 The solution to
this problem is

x̃t|t = x̂t|t −W−1D⊤(DW−1D⊤)−1(Dx̂t|t − d) (2.96)

= x̂t|t −C(Dx̂t|t − d), (2.97)

where C = W−1D⊤(DW−1D⊤)−1. Using a reduced form for xt − x̃t|t and the

10 Generally, the problem can be specified

x̃t = argmin
x̃∈S

(x̃− x̂t)
⊤Wt(x̃− x̂t) such that Dtx̃t = dt.

The solution is obtained through the use of the Lagrange multiplier. The Lagrangian is

L(t, x̃, λ) = (x̃− x̂t)
⊤Wt(x̃− x̂t) + 2λ⊤(Dtx̃t − dt).

The first order conditions for a minimum are

∂L(t, x̃, λ)

∂x̃
= 0 ⇒ Wt(x̃− x̂t) +D⊤

t λ = 0

∂L(t, x̃, λ)

∂λ
= 0 ⇒ Dtx̃t − dt = 0.

This gives the solution

x̃t = x̂t −W−1
t D⊤

t (DtW
−1
t D⊤

t )
−1(Dtx̂t − dt)

λ = (DtW
−1
t D⊤

t )
−1(Dtx̂t − dt).
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definition of the error covariance matrix (2.2), the following expression arrives

xt − x̃t|t = xt − xt|t +C
(

Dx̂t|t − d− (Dxt − d)
)

= xt − xt|t +C
(

Dx̂t|t −Dxt

)

= −(I−CD)(xt − xt|t) (2.98)

P̃t|t = E(xt − x̃t|t)(xt − x̃t|t)
⊤

= E(I−CD)(xt − xt|t)(xt − xt|t)
⊤(I−CD)⊤

= (I−CD)Pt|t(I−CD)⊤

= Pt|t −CDPt|t −Pt|tD
⊤C⊤ +CDPt|tPt|tD

⊤C⊤

= Pt|t −CDPt|t

= (I−CD)Pt|t. (2.99)

If the process and measurement noises are Gaussian and W = P−1
t|t is set,

the maximum probability estimate of the state subject to state constraints is
obtained. Moreover, the constrained estimated state has the following properties,
see [75] and [76]

• it is unbiased for any symmetric positive definite weighting matrix W, for
all t = 1, . . . , T : Ext = Ex̃t,

• if W = P−1
t|t , then it has an error covariance that is less than or equal

to that of the unconstrained state estimate: cov(xt − x̃t) ≤ cov(xt − x̂t),
see (2.99),11 and it results into the minimum variance estimator (filter):
cov(x̃P−1

t|t
) ≤ cov(x̂W) for all x̂t and W,

• if W = I, the least squares estimate of the state subject to state constraints
is obtained and the constrained estimates is closer to the true state than
the unconstrained one: ||xt − x̃t|| ≤ ||xt − x̂t|| for all t.

If the constrained forecasting step for the x̂t+1|t is based on the constrained
estimate, then the constrained filter uses (2.52) adjusted (2.54) and (2.96) in the
following way

x̂t|t = x̂t|t−1 +Pt|t−1H
⊤(HPt|t−1H

⊤ +R)−1(yt −Aut −Hx̂t|t−1) (2.100)

x̂t+1|t = Fx̃t|t (2.101)

x̃t|t = x̂t|t −W−1D⊤(DW−1D⊤)−1(Dx̂t|t − d). (2.102)

If D is a square matrix (the number of constraints is equal to the number of
states) then the state vector is fully constrained. In this case, remembering the
assumption that D is full rank, equation (2.102) reduces to

x̃t|t = x̂t|t−W−1D(D−⊤WD−1)(Dx̂t|t−d) = D−1d ⇔ Dx̃t|t = d. (2.103)

11At first sight, it seems counterintuitive, because the standard Kalman filter is by definition
the minimum variance filter. However, the problem was changed by introducing state variable
constraints. Therefore, the standard Kalman filter is no longer the minimum variance filter and
better results are obtained by the constrained Kalman filter.
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2.4.2 Kalman Gain Projection

Before the Kalman gain projection method is introduced, it is useful to recalculate
matrix Pt|t in a different form compared to (2.53).

Kalman Gain Recalculation. The difference between the observed and pre-
dicted measurement is the predicted measurement error (measurement residual).

rt = yt − ŷt. (2.104)

The associated covariance for the error, which is the expectation of the mea-
surement error with itself, E(rtr

⊤
t ), is (see equation (2.9))

St = E(rtr
⊤
t ) = HPt|t−1H

⊤ +R. (2.105)

The updated state estimate in a form of (2.61), the prediction plus some per-
turbation, is given by a weighting factor times the forecast error. The weighting
factor is the Kalman gain.

x̂t|t = x̂t|t−1 + K̇trt (2.106)

rt = yt −Aut −Hx̂t|t−1. (2.107)

The gain K̇minimizes the mean square state estimate error, E|xt−x̂t|t−1|
2. This is

the same as minimizing the trace of the updated error covariance matrix, because
rtr

⊤
t = Tr(rtr

⊤
t ). The optimal gain, that achieves this, is (2.111).12

Recalculating a form for xt − x̂t|t using (2.106), predicted measurement error
(2.104) and its reformulation in a form of (2.8) give

xt − x̂t|t = xt − x̂t|t−1 + K̇trt

= xt − x̂t|t−1 + K̇t(yt − ŷt)

= xt − x̂t|t−1 + K̇t

[

H(xt − x̂t|t−1) +wt

]

= (I− K̇tH)(xt − x̂t|t−1) + K̇twt. (2.108)

Using the definition of the error covariance matrix (2.2) and E[wt(xt− x̂t|t−1)
⊤] =

0 yield

Pt|t = E(xt − x̂t|t)(xt − x̂t|t)
⊤

= E

[

(I− K̇tH)(xt − x̂t|t−1) + K̇twt

] [

(I− K̇tH)(xt − x̂t|t−1) + K̇twt

]⊤

= E

[

(I− K̇tH)(xt − x̂t|t−1)(xt − x̂t|t−1)
⊤(I− K̇tH)⊤

]

+ E(K̇twtw
⊤
t K̇

⊤
t )

= (I− K̇H)Pt|t−1(I− K̇H)⊤ + K̇RK̇⊤. (2.109)

Based on [72] and using the previous result, the Kalman filter can be derived
by solving the following problem

K̇t = argmin
K̇∈SS

Tr (Pt|t) = argmin
K̇∈SS

Tr
[

(I− K̇H)Pt|t−1(I− K̇H)⊤ + K̇RK̇⊤
]

.

(2.110)

12The covariance matrices in the Kalman filter provide a measure for uncertainty in predic-
tions and updated state estimate. This is an important feature for the various applications of
filtering since it identifies how much to trust predictions and estimates.
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The solution to this problem gives the optimal Kalman gain in a form of equation
(2.60)

K̇t = Pt|t−1H
⊤(HPt|t−1H

⊤ +R)−1 = Pt|t−1H
⊤S−1

t , (2.111)

where St is expressed as (2.105).
Imposing Inequality Constraints. The gain projection method was applied to

the inequality constraints in [76]. The method solves the minimization problem
of the gain projection (2.110) – a Kalman gain is found such that the updated
state estimate will be forced to lie in the constrained space. However, the method
will no longer be able to be found an analytic solution compared to a case of the
equality constraints, using the method of the Lagrange multipliers, see [31].

This problem can be solved by restricting the optimal Kalman gain – we seek

the optimal ˜̇Kt that satisfies the constrained optimization problem

˜̇Kt = argmin
K̇∈SS

Tr
[

(I− K̇H)Pt|t−1(I− K̇H)⊤ + K̇RK̇⊤
]

. (2.112)

such that
Dx̂t|t = D(x̂t|t−1 + K̇trt) ≤ d. (2.113)

This can be solved using any inequality constrained optimization method.
Constraints for the State Forecasting. If the estimate of x̂t+1|t satisfies the

constraints, but the unconstrained update estimate x̂t|t does not satisfy them,
then x̂t+1|t can be projected in the direction of x̂t|t until it reaches the constraint
boundary at each forecasting step of the state vector. This finally gives a modi-
fication of the unconstrained Kalman gain K̇t in the form of

K̇modified
t = βtK̇t, (2.114)

where βt ∈ (0; 1) for all t.

2.4.3 Probability Density Function Truncation

In the probability density function truncation approach, the PDF of the state
estimate, which is computed by the Kalman filter, is taken, assuming that it is
Gaussian, and truncated at the constraint edges. The constrained state estimate
is equal to the mean of the truncated PDF. This approach is designed for in-
equality constraints on the state. It can also be applied to equality constraints
with some modifications.

Figure 2.3 shows an example of a one-dimensional state estimate before and
after truncation. Before truncation the state estimate is outside of the state
constraints. After truncation, the state estimate is set equal to the mean of the
truncated PDF. The Gaussian PDF is truncated at the constraint boundaries, and
the constrained estimate is equal to the mean of the truncated PDF. An initial
consideration of the left picture might indicate that the constrained estimate
should lie on the constraint boundary. In fact, this is exactly the philosophy of the
projection approach to constrained filtering, see Subsection 2.4.1. However, the
PDF truncation approach considers both the constraints and the unconstrained
Kalman filter’s Gaussian distribution of the estimate. The resulting constrained
estimate lies at a place within the constraint boundaries that is determined by
both the information from the unconstrained filter and the constraints.
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Figure 2.3: Unconstrained and Constrained PDF - The Unconstrained Estimate
Does Not Satisfy the Constraint (Source: [74])

Figure 2.4 shows another example of the PDF truncation. In this case the
unconstrained state estimate is inside the state constraints. However, truncation
changes the PDF and so the constrained state estimate changes to the mean of the
truncated PDF. It could be argued that the estimate should not be changed if it
satisfies the constraints. In fact, the PDF truncation filter could be implemented
either way. Whether to modify estimates that already satisfy the constraints (as
shown in Figure 2.4), or leave those estimates unchanged, is an implementation
decision that depends on the application and a judgment.

Figure 2.4: Unconstrained and Constrained PDF - The Unconstrained Estimate
Satisfies the Constraints (Source: [74])

This method is complicated when the state dimension is more than one. In this
case the state estimate is normalized using an assumption that the components
of the state estimation are statistically independent of each other. Then the
normalized constraints are applied together at a time. After all the constraints
are applied, the normalization process is reversed to obtain the constrained state
estimate.

On top of that, this method imposes a bias on the state estimate. The un-
constrained Kalman filter has the property that the state estimate is the mean
of the true state conditioned on the measurements. However, the truncated state
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estimate is biased. This is a drawback to this method of constraint enforcement,
especially since other methods of constraint enforcement preserve unbiasedness.
However, if other features of the estimate are more important to the user than un-
biasedness (e.g. root mean square estimation error) then the truncation approach
to constraint enforcement may remain attractive.

Details about the PDF truncation algorithm for equality and inequality con-
straints are given in [72] and especially in [74]. Although this algorithm was
introduced only for linear state constraints, it is not conceptually difficult to
extend to non-linear constraints. If the state constraints are non-linear, they
can be linearized. The PDF truncation method has been extended to non-linear
unscented Kalman filters in [81].

2.4.4 State Prediction Constraints

Forcing the constraints on the state equation should provide a better prediction.
Ideally, the transition matrix F is time-varying, see Subsection 2.3.2, and will take
an updated state estimate satisfying the constraints at time t − 1 and make a
prediction that will satisfy the constraints at time t. Of course this may not be the
case. In fact, the constraints may depend on the updated state estimate, which
would be the case for non-linear constraints. Constraining the state prediction
increases computational cost per iteration.

For a simplification, the prediction of the transition time-varying matrix of
the state equation is labeled Ft|t+1.

There are three methods which are commonly used, see [31]. On top of
that, different approach for state prediction constraints was introduced within
the Kalman gain projection method.

Projection of Matrix Ft|t+1 onto the Constrained Space. This method is fea-
sible for the equality constraints only, as there is no trivial way to project Ft|t+1

to an inequality constrained space. The same projector as in (2.99) is used

F̃t|t−1 = (I−CD)Ft|t−1. (2.115)

This new transition matrix will make a prediction that will keep the estimate in
the equality constrained space.

Minimization Problem. If the previous assumptions are weakened, i.e., we
are not constraining the updated state estimate, we could solve the minimization
problem analogous to (2.95). Then it is possible to incorporate inequality con-
straints. In this situation the covariance matrix is constrained, similarly to the
estimate projection method, see Subsection 2.4.1.

Additional Constraints. The idea of this method is to add to the constrained
problem the additional constraints, which ensure that the chosen estimate will
produce a prediction at the next iteration that is also constrained. This allows
to have time-varying matrix Dt and vector dt. To solve the problem, an iterative
method is employed for the constraints

DtFt|t−1xt = dt DtFt|t−1xt ≤ dt. (2.116)
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2.4.5 Soft Constraints

Soft constraints, as opposed to hard constraints (which were discussed so far),
are constraints that are only required to be approximately satisfied rather than
exactly satisfied. They can be implemented in the Kalman filter in various ways

• the perfect measurement approach, where state equality constraints are
treated as perfect measurements with zero measurement error, can be ex-
tended to soft constraints by adding small non-zero measurement noise to
the perfect measurements, see e.g. [55] or [86],

• soft constraints can be implemented by adding a regularization term to the
standard Kalman filter, see [74],

• soft constraints can be enforced by projecting the unconstrained estimates
in the direction of the constraints rather than exactly onto the constraint
surface, see [56].

The incorporation of state variable constraints increases the computational ef-
fort of the filter, but significantly improves its estimation accuracy. Additionally,
[74] shows that the algorithms with soft constraints provide improved performance
over unconstrained Kalman filtering.

Note that, if d is uncertain, then the constraints can be replaced by a noisy
inequality constraint, see e.g. [44]

Dxt + ρ ≤ d. (2.117)

Noise ρ is generally assumed to be a zero-mean Gaussian random vector with
appropriate covariance which reflects the level of uncertainty in the constraint. By
considering ρ as a measurement noise, the unconstrained Kalman filter estimate
can be modified to which the constraint is not yet applied. Since the constraint
is used as a measurement, this method is also termed the pseudo-measurement
method.13

Adding a Regularization Term. This approach uses a Kalman filter-based
state estimate for state variables which we know a priori vary slowly with time.
To simplify the situation, let’s assume that matrix F in state equation (1.13) is
an identity matrix.

We can use the results of the estimate projection, especially (2.92), to formu-
late the problem for all t

min
x̃t∈S

(x̃t − x̂t|t)
⊤W(x̃t − x̂t|t) such that x̃t varies slowly, (2.118)

where, similarly as before, W is a constant symmetric positive definite weighting
matrix. This is a type of regularization: some additional structure is incorporated
into the Kalman filter estimate, see e.g. [71]. The problem can be reformulated
as

min
x̃t∈S

[

(x̃t − x̂t|t)
⊤W(x̃t − x̂t|t) + (x̃t − x̃t−1)

⊤Vt(x̃t − x̃t−1)
]

, (2.119)

13In case of the inequality constraints, they can be replaced by the equality ones with a
specific properties of the measurement noise ρ.
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where Vt is a (possibly time-varying) symmetric positive definite weighting ma-
trix that balances the desire for a close approximation to x̃t and smooth estimate
x̂t|t. The solution14 to the previous problem is

x̃0 = Ex0 (2.120)

x̃t = (W +Vt)
−1(Wx̂t|t +Vtx̃t−1). (2.121)

The soft constrained estimated state has the following properties, see [74]

• the solution x̃t is an unbiased state estimator for any symmetric positive
definite weighting matrices W and Vt: Ex̃t = Ext for all t,

• the constrained state estimate approaches the unconstrained estimate in
the limit as time goes to infinity, assuming that vt = 0: lim

t→∞
x̃t = lim

t→∞
x̂t|t,

• if Vt = (t − 1)W in (2.121) then x̃t is the aritmetic average of x̂t|t. The

(aritmetic) average of x̃t is defined simply asXt =
1
t

∑t
i=1 x̂i|i, which implies

that Xt+1 =
1

t+1
(x̂t+1|t+1+tXt). If Vt = (t−1)W then using (2.121) implies

x̃t = ((t+ 1)W)−1 (Wx̂t+1|t+1+ tWx̃t) =
1

t+1
(x̂t+1|t+1+ tx̃t), which is is the

average as defined earlier.

14Because W and Vt are both positive definite, (W +Vt)
−1 exists.
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3. The Non-Linear Kalman Filter
and/or Non-Linear Constraints

So far, we have dealt with linear models and constraints in the Kalman filter.
Traditionally, problems using the Kalman filter are complex and non-linear. Many
advances have been made in the direction of dealing with non-linearities (e.g., the
extended or unscented Kalman filter). These problems also tend to have inherent
state-space inequality constraints.

The linear models (and constraints) are often employed for an approximated
description of the non-linear controlled system (or constraints) due to the simplic-
ity of identification algorithms. However, these models have only limited validity.
The non-linear models describe the system generally much better than the linear
ones but their identification is a non-trivial task.

3.1 Non-Linear Kalman Filters

As described earlier in Chapter 2, the Kalman filter addresses the general prob-
lem of trying to estimate the state of a discrete-time controlled process that is
governed by a linear stochastic difference equation. If the process or/and the
measurement relationship to the process is non-linear, it is necessary either to
adjust the Kalman filter or find another method.

In this section, a non-linear state-space model is considered in a form of (1.22)
and (1.23).

3.1.1 The Extended Kalman Filter

The method proposed by the extended Kalman filter (EKF) is to linearize the
non-linearities around the current state prediction (or estimate). That is, we
choose Ft as the Jacobian of f(xt) evaluated at x̂t|t, and Ht as the Jacobian of
h(xt) evaluated at x̂t|t−1 and proceed as the linear Kalman filter.1

In this situation a fundamental flaw of the EKF is that the distributions (or
densities in the continuous case) of the various random variables are no longer
normal after undergoing their respective non-linear transformations. The EKF
is simply an ad hoc state estimator that only approximates by the first order
linearization. Some interesting work has been done in developing a variation to
the EKF, using methods that preserve the normal distributions throughout the
non-linear transformations, see [39]. Additionally, in practice, the use of the EKF
has two drawbacks, see [39]

• linearization can produce highly unstable filters if the assumptions of local
linearity are violated,

• the derivation of the Jacobian matrices are non-trivial in most applications
and often lead to significant implementation difficulties.

1Expanding some vector function f(x) in Taylor series about x0 yields f(x) ≡ f(x0) +
Jf (x

0)(x−x0)+ . . ., where Jf is the Jacobian of f(x) and the higher order terms are considered
negligible. Hence, the extended Kalman filter is also called the first-order filter, see [83].
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To estimate a process with non-linear difference and measurement relation-
ships, we begin by writing new governing equations that linearize an estimate
about (1.22) and (1.23). One iteration of the EKF is composed by the following
consecutive steps, see [67]

• consider the last filtered state estimate x̂t|t,

• linearize the system dynamics xt+1 = f(xt) + vt+1 around x̂t|t,

• apply the prediction step of the Kalman filter to the linearized system dy-
namics just obtained, yielding x̂t+1|t and Pt+1|t,

• linearize the observation dynamics yt = a(ut) + h(xt) +wt around x̂t+1|t,

• apply the filtering or update cycle of the Kalman filter to the linearized
observation dynamics, yielding x̂t+1|t+1 and Pt+1|t+1.

It is important to state that the EKF is not an optimal filter, but rather it is
implemented based on a set of approximations. Thus, matrices Pt|t and Pt+1|t do
not represent the true covariance of the state estimates. Moreover, contrary to
the linear Kalman filter, the EKF may diverge, if the consecutive linearizations
are not a good approximation of the linear model in all associated uncertainty
domain.

For a detailed description and a derivation of the equations for the EKF see
[67] or [83].

3.1.2 The Unscented Kalman Filter

The unscented Kalman filter (UKF) is a filter for non-linear systems which is
based on an idea that the unscented transformation is easier to approximate a
Gaussian distribution than to approximate an arbitrary non-linear function or
transformation. A set of points (sigma points) are chosen so that their sam-
ple mean and covariance remain unchanged to the original PDF. For a further
description of the algorithm and equations see [81].

The previous implies also an assumption that it is not difficult to find a set
of vectors (sigma points) in state-space whose sample PDF approximates a given
PDF, see [39]. The UKF uses between (r + 1) and (2r + 1) sigma points, where
r is the dimension of the state vector. The sigma points are transformed and
combined in a special way in order to obtain an estimate of the state and an
estimate of the covariance of the state estimation error. For a detailed discussion
about this transformation and its application to the Kalman filter see [39].

It means that instead of analytically or numerically linearizing non-linear
state and measurement equations, the UKF employs the unscented transforma-
tion (UT), which approximates the posterior mean and covariance matrix of a
random vector yyT obtained from the non-linear transformation of the measure-
ment equation (1.23). The UT yields the true mean and the true covariance of
yyT if h(xt) = h1(xt) + h2(xt), where h1(xt) is linear and h2(xt) is quadratic.
Otherwise, we speak about a pseudo mean and a pseudo covariance matrix. For
more details see [38].
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3.1.3 Modifications of the Unscented Kalman Filter

To complete the survey in this area, here is only a brief introduction of basic
methods among a bunch of modification of the UKF, based on [73]. For a detailed
discussion see the quoted references.

One possibility is to base the forecasted state estimate on the unconstrained
UKF with updated state estimate from the previous time step, [81] and [82]. In
this case the standard unconstrained UKF runs independently of the constrained
UKF. At each time the state estimate of the unconstrained UKF is combined
with the constraints, which are treated as perfect measurements, to obtain a con-
strained a posteriori UKF estimate. This filter is referred to as the projected UKF
(PUKF) and is analogous to (2.100) – (2.102) for linear systems and constraints
in case of the estimate projection, see Subsection 2.4.1.

Another way is to base the forecasted state estimate on the constrained UKF
with updated state estimate from the previous time step [81]. At each time the
state estimate of the unconstrained UKF is combined with the constraints, which
are treated as perfect measurements, to obtain a constrained a posteriori UKF
estimate. This constrained updated estimate is then used as the initial condition
for the next time update. This filter is referred to as the equality constrained
UKF (ECUKF) and is also identical to the measurement-augmentation UKF
in [81]. The ECUKF is analogous to results for the estimate projection with
inequality constraints for linear systems and linear constraints. A similar filter
is explored in [36], where it is argued that the covariance of the constrained
estimate is expected to be larger than that of the unconstrained estimate since
the unconstrained estimate approximates the minimum variance estimate.

The two-step UKF (2UKF) in [36] projects each updated sigma point onto
the constraint surface to obtain constrained sigma points. The state estimate is
obtained by taking the weighted mean of the sigma points in the usual way and
the resulting estimate is then projected onto the constraint surface. Note that the
mean of constrained sigma points does not necessarily satisfy a non-linear con-
straint. 2UKF is unique in that the estimation error covariance increases after the
constraints are applied. The argument for this increase is that the unconstrained
estimate is the minimum variance estimate, so changing the estimate by applying
constraints should increase the covariance. Furthermore, if the covariance de-
creases with the application of constraints (e.g. using the algorithms in [75] and
[82]) then the covariance might become singular, which might lead to numerical
problems with the matrix square root algorithm of the unscented transformation.

Unscented recursive non-linear dynamic data reconciliation (URNDDR), see
[84], is similar to 2UKF. URNDDR projects the updated sigma points onto the
constraint surface, and modifies their weights based on their distances from the a
posteriori state estimate. The modified updated sigma points are passed through
the dynamic system in the usual way to obtain the a priori sigma points at the
next time step. The next set of a posteriori sigma points is obtained using a non-
linear constrained MHE with a horizon size of one. This approach requires the
solution of a non-linear constrained optimization problem for each sigma point.
The updated state estimate and covariance are obtained by combining the sigma
points in the normal way. The constraints are thus used in two different ways for
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the a posteriori estimates and covariances.2

The constrained UKF (CUKF) is identical to the standard UKF, see [82]. Sig-
ma points are not projected onto the constraint surface, and constraint informa-
tion is not used to modify covariances. The constrained interval UKF (CIUKF)
combines the sigma point constraints of URNDDR with the measurement up-
date of the CUKF. That is, the CIUKF is the same as URNDDR except instead
of using MHE to constrain the updated sigma points, the unconstrained sigma
points are combined to form an unconstrained estimate, and then MHE is used
to constrain the estimate.

The interval UKF (IUKF) combines the post-measurement projection step of
URNDDR with the measurement update of the standard unconstrained UKF,
see [82]. That is, the IUKF is the same as URNDDR except that it skips the
MHE-based constraint of the a posteriori sigma points.

The truncated UKF (TUKF) combines the PDF truncation approach, de-
scribed in Subsection 2.4.3. After each measurement update of the UKF, the
PDF truncation approach is used to generate a constrained state estimate and
covariance. The constrained estimate is used as the initial condition for the follow-
ing time update. The truncated interval UKF (TIUKF) adds the PDF truncation
step to the a posteriori update of the IUKF. As with the TUKF, the constrained
estimate is used as the initial condition for the following time update, see [82].

3.2 Constraints

Consider the non-linear system of (1.22) and (1.23) with state linear constraints.
The constraints can be applied in the same way as in the linear Kalman filter, see
Section 2.4. In case that the state constraints are non-linear, it is used instead of
(2.84) in the form of Dxt ≤ d the following specification

g(xt) ≤ h. (3.1)

Then a Taylor series expansion of the constraint equation around x̂t+1|t is used

g(xt) ≈ g(x̂t+1|t) + g′(x̂t+1|t)(xt − x̂t+1|t)

+
1

2

s
∑

i=1

ei(xt − x̂t+1|t)
⊤g′′(x̂t+1|t)(xt − x̂t+1|t), (3.2)

where s is the dimension of g(xt), ei is the i-th canonical basis vector in R
s, and

the entry in the p-th row and q-th column of the (n × n) matrix of the second
partial derivatives g′′

i (x) is given by

[g′′
i (x)]pq =

∂2gi(x)

∂xp∂xq

, (3.3)

for i = 1, . . . , s and p, q = 1, . . . , r. Similarly for the first partial derivatives,
where [g′

i(x)]p =
∂gi(x)
∂xp

.

2URNDDR is called the sigma point interval UKF in [82].
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Neglecting the second-order term in the Taylor expansion, rearranging and
using (3.1) give

g′(x̂t+1|t)xt ≤ g(xt)− g(x̂t+1|t) + g′(x̂t+1|t)x̂t+1|t

= h− g(x̂t+1|t) + g′(x̂t+1|t)x̂t+1|t. (3.4)

This equation is equivalent to the linear constraint Dxt ≤ d if

D = g′(x̂t+1|t) and d = h− g(x̂t+1|t) + g′(x̂t+1|t)x̂t+1|t. (3.5)

Therefore all of the methods presented in Subsection 2.4 can be used with
non-linear constraints after the constraints are linearized. The first-order Taylor
expansion is frequently used to linearize either the constraints, see e.g. [21] or
[75], or the non-linear Kalman filter, see the extended Kalman filter.

If the state constraint is non-linear (especially in case when higher order non-
linearities are encountered) and linearization is employed to obtain an approx-
imately linear constraint around the current state estimate, the linearized con-
strained Kalman filter is subject to approximation errors and may suffer from a
lack of convergence, see e.g. [90]. Figure 3.1 illustrates this linearization pro-
cess, which identifies possible errors associated with a linear approximation of a
non-linear state constraint, see equation (3.4).

Figure 3.1: Errors in Linear Approximation of Non-Linear Constraints (Source:
[90] and own adjustment)

There is a bunch of constrained non-linear optimization techniques, see [53].
Suitable methods usually search through the feasible region determined by the
constraints. Penalty and barrier methods approximate constrained optimization
problems by unconstrained problems through modifying the objective function
(e.g., add a penalty term if a constraint is violated). Instead of the original con-
strained problem, dual methods attempt to solve an alternate (dual) problem
whose unknowns are the Lagrangian multipliers of the original problem. Cut-
ting plane algorithms work on a series of ever-improving approximating linear
programs whose solutions converge to that of the original problem. Lagrangian
relaxation methods are widely used in discrete constrained optimization prob-
lems.
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In the following subsections there is a brief tour through the most used meth-
ods for non-linear state constraints handling. This list is not complete and states
only commonly used techniques.

3.2.1 Second-Order Expansion

This method allows for the use of second-order non-linear state constraints. It can
provide better approximation to higher order of non-linearities. Considering only
second-order constraints is a tradeoff between reducing approximation errors to
higher-order non-linearities and keeping the problem computationally tractable.

An idea behind the second-order expansion is similar to the extended Kalman
filter, which relies on linearization of the system and measurement equations.
It can be improved by retaining second-order terms to obtain the second-order
extended Kalman filter, see e.g. [72]. This means that the second-order term in
the Taylor expansion of the constraint in (3.2) is kept and the EKF is run.

3.2.2 Moving Horizon Estimation

Moving horizon estimation (MHE) is another optimization approach that uses a
series of measurements observed over time, containing noise (random variations)
and other inaccuracies, and produces estimates of unknown variables or param-
eters. Unlike deterministic approaches like the Kalman filter, MHE requires an
iterative approach that relies on linear programming or non-linear programming
solvers to find a solution.

In order to obtain a tractable solution, MHE relies on the assumption of
Gaussian prior and noise to obtain a least-squares estimation problem. However,
a closed-form solution is not available anymore. Instead, MHE needs to solve a
constrained optimization problem over each moving window. In addition, MHE
lacks an accurate and fast algorithm for propagating the posterior, thus fails to
enjoy a full recursive formulation.

MHE reduces to the Kalman filter under certain simplifying conditions. A
critical evaluation of the extended Kalman filter and MHE found improved per-
formance of MHE with the only cost of improvement being the increased com-
putational expense. MHE is attractive in the generality of its formulation. But
because of the computational expense, MHE is usually applied to systems where
there are greater computational resources.

For further references see [73], or in more details [65] and [66].

3.2.3 Interior Point Method

A relatively new approach to inequality-constrained state estimation is called
interior point likelihood maximization (IPLM), introduced in [7]. This approach
is based on interior point methods, which are fundamentally different from active
set methods for constraint enforcement.

One difficulty with active set methods is that computational effort grows
exponentially with the number of constraints. Interior point approaches solve
inequality-constrained problems by iterating using a Newton’s method that is
applied to a certain subproblem. The IPLM approach also relies on linearization.

52



4. State Uniform Model
Filtration

In the previous chapters, there was an assumption that the noises of state evolu-
tion and observations have a normal distribution and the problem is then solved
by means of the Kalman filter. This can cause difficulties and there are several
ways how to deal with this drawback. One of a possible solution is a discrete-time
state-space model with uniformly distributed state and measurement noises which
is introduced in this chapter. For the state estimation, the Bayesian approach is
applied.

This chapter is based on [62] and [64] if it is not emphasized otherwise.1 An
extension to a non-linear system is presented in [61].

4.1 State-Space Model with Bounded Noise

A discrete-time linear state-space model, defined by (1.13) and (1.15), is used
for this chapter. The vectors of the state and measurement (output) noises vt

and wt are zero mean with constant variances, mutually conditionally indepen-
dent and identically distributed. Additionally, they are assumed to have uniform
distribution on the multivariate boxes with the 0 center and half-widths of the
support interval equal to p and q, respectively

vt ∼ U(0,p) wt ∼ U(0,q), (4.1)

where 0 is a vector of zeros of an appropriate size. These assumptions and using
the state-space representation of the model imply

(xt+1|xt,ut,p,q) ∼ U(Ext+1,p) (yt|xt,ut,p,q) ∼ U(Eyt,q). (4.2)

Further, x0, p, and q are supposed to be a priori mutually independent and
restricted

x0 ≤ x0 ≤ x0 x ≤ xt ≤ x (4.3)

0 ≤ p ≤ p 0 ≤ q ≤ q (4.4)

These restrictions are defined by the user so that they reflect the reality and
specify user’s prior information.

State-space model equations (1.13) and (1.15) together with the uniform dis-
tribution assumptions (4.1) and restrictions (4.3) and (4.4) define the state uni-
form (SU) model.

The introduced SU model provides the following advantages

• it respects natural bounds on stochastic disturbances,

• it allows estimation of the innovation range, and

1Similar idea about an approximate estimation of autoregressive model with exogenous vari-
ables (ARX model) with a uniform noise is introduced in [42].
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• it allows to respect prior bounds on model parameters and states.

To simplify a notation, the column vector X consists of

X =
[

(xxT )
⊤ p⊤ q⊤

]⊤
. (4.5)

The joint PDF (1.38) of data uyT , the state trajectory xxT and unknown
parameters θ = [p⊤,q⊤]⊤ of the SU model takes the form

p(uyT ,xxT , θ) ∝

(

r
∏

i=1

pi

n
∏

j=1

qj

)−T

IS , (4.6)

where r and n are the lengths of the state and measurement vector, respectively,
and IS is the indicator of the support S of this PDF,

S = S0 ∩ S1 ∩ S2, (4.7)

where restrictions on the state values, based on (4.3), are in the following form

S2 = {xt ≤ xt ≤ xt}
T
t=1. (4.8)

Further S1 is a set of X that fulfills state-space model equations (1.13) and (1.15)
at each time point t, i.e.,

S1 = {−p ≤ xt+1 − Fxt ≤ p; −q ≤ yt −Aut −Hxt ≤ q}Tt=1 (4.9)

and S0 is a set ofX that meets the first inequality in (4.3) and innovations bounds
(4.4)

S0 = {x0 ≤ x0 ≤ x0; 0 ≤ p ≤ p; 0 ≤ q ≤ q}. (4.10)

They are assumed a priori mutually independent, hence

p(xt,p,q) = p(xt)p(p)p(q) (4.11)

yielding into (4.6).
This approach is possible to further generalize by introducing partially un-

known system matrices in the state-space model representation, see [64].

4.2 Linear State and Noise Boundary Estima-

tion

The required posterior PDF can be calculated according to Bayes’ rule. How-
ever, the number of vertices of the support S is proportional to the number of
data, which is a large number for realistic situations. Consequently, evaluation of
moments of this PDF is computationally demanding. This is why the maximum
a posteriori probability (MAP) estimate is evaluated, see e.g. [9].

The method of the MAP estimation provides a point estimate of an unob-
served X on the basis of observed data uyT and prior information about X,

X̂ = argmax
X∈X

p(uyT |X)p(X)
∫

X
p(uyT |X)p(X)dX

= argmax
X∈X

p(uyT |X)p(X). (4.12)
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The denominator of the posterior distribution does not depend onX and therefore
plays no role in the optimization.

Using the system described by the SU model (4.6), vector X (that is states
xxT and noise bounds p and q) is estimated

X̂ = argmax
X∈S

(

r
∏

i=1

(pi)
−T +

n
∏

j=1

(qj)
−T

)

. (4.13)

The support S defines the maximization domain. For further calculation, the
MAP estimate X̂ of X is used with negative linearized logarithm of a posteriori
PDF and divided by T

X̂ = argmin
X∈S

(

r
∑

i=1

log(pi) +
n
∑

j=1

log(qj)

)

. (4.14)

Using the Taylor approximation for the logarithm of pi and qi, we obtain

X̂ = argmin
X∈S

(

r
∑

i=1

pi +
n
∑

j=1

qj

)

. (4.15)

Thus, the state and parameter estimations become a linear programming task,
for all t, see [27]

min
X∈S

a⊤X =
r
∑

i=1

pi +
n
∑

j=1

qj (4.16)

such that

CX ≤ b, (4.17)

X ≤ X ≤ X, (4.18)

where

• vector a is
a⊤ ≡ [0⊤,1⊤], (4.19)

and 0 and 1 are the vectors of zeros and ones of the following lengths
(n(T + 1)) and (r + n) respectively,

• C is a known matrix and and b is a known vector. They result from the
inequalities describing the set S1 by equation (4.9). They are reorganized
so that terms containing entries from X are on the left-side and have the
form of (4.17), where

C =

[

C11 C12

C21 C22

]

b =

[

b1

b2

]

(4.20)

and

C11 = Lr

(

I(T ) ⊗K⊗ I(r)
)

−Rr

(

I(T ) ⊗K⊗ F
)

(4.21)

C12 = −1(2T ) ⊗Rn

(

I(r)
)

(4.22)

C21 = Lr

(

I(T ) ⊗K⊗H
)

(4.23)

C22 = −1(2T ) ⊗ Lr

(

I(n)
)

(4.24)

b1 = 0(2T,1) (4.25)

b2 =
[

I(T ) ⊗K⊗ I(n)
]

yyT −
[

I(T ) ⊗K⊗A
]

uuT , (4.26)
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where symbol ⊗ denotes the Kronecker product, Lcol(·) and Rcol(·) are
operators adding zero columns of col length to the specified matrix from
the left or right,

• X and X are known vectors - they stem from the set S0 and S2, defined by
equations (4.8) and (4.10), and have the following forms

X =









x0

1(2rT ) ⊗ x
0(r,1)

0(n,1)









X =









x0

1(2rT ) ⊗ x
p
q









. (4.27)

In general, the parameter estimation can be done by two possibilities

• off-line state and parameter estimation, where one shot estimation of states
xt for t = 1, . . . , T and the innovation boundaries p and q is run, or

• real-time (on-line) estimation which provides the state and/or parameter
estimates in each time step, once new data is available.

For a detailed description see [64].

Estimation of the State. Matrix C and vector b are given by the inequalities
describing the set S1 rearranged into the following form

xt+1 − Fxt − p ≤ 0 (4.28)

−xt+1 + Fxt − p ≤ 0 (4.29)

Hxt+1 − q ≤ yt −Aut (4.30)

−Hxt+1 − q ≤ −yt +Aut (4.31)

for t = 1, . . . , T . Both C and b can be expressed by (4.20) as b =

[

b1

b2

]

and

C =

[

C11 C12

C21 C22

]

where

b1 = 0(2T,1) (4.32)

b2 =















y1 −Au1

−y1 +Au1
...

yT −AuT

−yT +AuT















(4.33)

C11 =















I(r) −F 0(r,r) · · · 0(r,r) 0(r,r) 0(r,r)

−I(r) F 0(r,r) · · · 0(r,r) 0(r,r) 0(r,r)
...

...
...

. . .
...

...
...

0(r,r) 0(r,r) 0(r,r) · · · 0(r,r) I(r) −F
0(r,r) 0(r,r) 0(r,r) · · · 0(r,r) −I(r) +F















(4.34)

C12 = 1(2T ) ⊗
[

−I(r), 0(r,n)

]

(4.35)
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C21 =















H · · · 0(n,r) 0(n,r) 0(n,r)

−H · · · 0(n,r) 0(n,r) 0(n,r)
...

. . .
...

...
...

0(n,r) . . . 0(n,r) H 0(n,r)

0(n,r) . . . 0(n,r) −H 0(n,r)















(4.36)

C22 = 1(2T ) ⊗
[

−0(n,r), − I(n)
]

(4.37)

Because vector X has ((T + 2)r + n) entries, the matrix C has (2T (n+ r)) rows
and ((T + 2)r + n) columns and the number of entries of the column vector b
equals to the number of rows of C, i.e. (2T (n+ r)). Under assumption that the
SU model matrices are time-invariant (it is possible to specify the model more
generally, see equations (1.19) and (1.20)), the construction of the b and C can
be simplified into the form of (4.21) – (4.25).

Estimation of the Noise Bounds. Prior information on X reflecting S0 and S2

is assumed to be in the form X ≤ X ≤ X using (4.27).
State and Parameter Estimation. The real-time (on-line) estimation provides

the state and parameter estimates at each time step. A moving horizon estimator
principle is used (see Subsection 3.2.2) and performs the Bayesian estimation on
a sliding window of the length δ ∈ N (it keeps the computational feasibility in
the reasonable ranges and at the same time it allows to catch the slow parameter
changes). Data {uT

t−δ, . . . ,u
T
t ,y

T
t−δ, . . . ,y

T
t }

T
t=δ+1 and prior information on xt−δ−1,

p and q are used for an estimation of the states {x⊤
t−δ, . . . ,x

⊤
t }

T
t=δ+1.

Let’s denote an estimated quantity as Xt which has the following form as used
in (4.5) for X

Xt =
[

{x⊤
t−δ, . . . ,x

⊤
t }

T
t=δ+1 p⊤ q⊤

]⊤
. (4.38)

The superfluous state xt−δ−1 and data item yt−δ−1, ut−δ−1 from the previous
estimation step are integrated out from the posterior PDF in every time step t.
This integration induces non-uniform term in the posterior PDF. This term is
described by a piecewise polynomial function containing t powers of this state at
each time instant t. With increasing t, the estimation becomes intractable because
of increasing complexity of the support of the posterior PDF. An approximation
of the non-uniform term in each step is applied - it consists in the replacing of
the oldest state by its point estimate from the previous step. For more details
see [60].

This technique can be applied also to the discrete-time state-space model
with bounded innovations consisting of non-linear state and linear measurement
equations. See [60] for necessary adjustments of the algorithm and reformulations
of the MAP estimation into a form of a non-linear mathematical programming.
In the following section, a generalization of this problem is introduced.

4.3 Non-Linear State-Space Model with Miss-

ing Data

A discrete-time state-space model defined by (1.22) and (1.23) is used for this
chapter. Neither the state nor the measurement equation contain the exogenous
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vector ut. Similarly to the previous sections, vectors of the state and output
noises (vt and wt) are assumed to have uniform distribution on a multivariate
box with the 0 center and unknown half-widths of the support intervals p and q,
see specification (4.1).

In the following, only a single uninterrupted data outage is considered. This
means that available data are now yya:b

t ≡ {y1,y2, . . . ,ya,yb,yb+1, . . . ,yt} for
1 < a < b < t ≤ T . The number of all available data items is K, K ≤ T . Note
that an extension to the more data outages is straightforward.

The original PDF in a form of (1.38) is now replaced by

p(yya:b
T ,xxT , θ) ∝ p(x0, θ)

T
∏

t=1

p(yt|xt, θ)p(xt|xt−1, θ)

=

(

r
∏

i=1

pi

)−T ( n
∏

j=1

qj

)−K

IS , (4.39)

where T and K are numbers of available states and outputs, respectively, IS is the
indicator of the support S of this PDF. The set S is a set of X, see (4.5), such
that (for given realization of yya:b

t ) the noise terms in state and measurement
equations of the non-linear state-space model are inside multivariate box defined
by their uniform distribution (4.1) and restrictions (4.3) and (4.4)

S = {X ∈ S3; ∀t ∈ {1, . . . , T} : |xt+1 − g(xt)| ≤ p, |yk − f(xk)| ≤ q} , (4.40)

where S3 is the set of X that meet the restrictions (4.3) and (4.4). The output
outages are introduced by using different time indexes, t and k, in (1.22) and
(1.23). Thus the measurement equation (1.23) is rewritten as

yk = h(xk) +wk. (4.41)

4.4 Non-Linear State and Noise Boundary Es-

timation

We aim to estimate vector X considering the system described by the SU model
(4.39). Again as in case of the linear system, a maximum a posteriori (MAP)
estimation is used. It provides a point estimate X̂ of the internal quantity X.
The problem is equivalently transformed into an estimation of negative logarithm
of a posteriori PDF in the following form

X̂ = argmin
X∈S

(

r
∑

i=1

log(pi) +
K

T

n
∑

j=1

log(qj)

)

, (4.42)

where S is given by (4.40).
The previous implies that the problem of missing measurement data can be

easily incorporated into the estimation algorithm. If all measurements are avail-
able, then K = T . The missing measurement causes that the corresponding
entry of the output inequality coming from (4.41) is missing in the respective
time instant. The more missing data, the smaller is the number of corresponding
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constraint conditions in the set S in (4.40) and the smaller is the weight of the
second term in (4.42).2

The MAP estimate of (4.42) can be solved by the following non-linear pro-
gramming form3

min
X∈S

r
∑

i=1

log(qi) +
K

T

n
∑

j=1

log(pj) (4.43)

such that

c(X) ≤ 0, (4.44)

X ≤ X ≤ X, (4.45)

where

• the optimized function is a real function of X, Rn+(r+2)T → R,

• c(·) is a real vector function that corresponds to the inequalities describing
S as (4.40)

x1 − f(x0)− p ≤ 0 y1 − h(x1)− q ≤ 0

−x1 + f(x0)− p ≤ 0 − y1 + h(x1)− q ≤ 0

...
... (4.46)

xT − f(xT−1)− p ≤ 0 yT − h(xT )− q ≤ 0

−xT + f(xT−1)− p ≤ 0 − yT + h(xT )− q ≤ 0

• X and X are known vectors - they stem from the set S3, defined by inequal-
ities in (4.3) and (4.4), and have the following form

X =









x0

1(T ) ⊗ x
0(r,1)

0(n,1)









X =









x0

1(T ) ⊗ x
p
q









. (4.47)

2To prevent the state-estimates divergence in case of measurement outage, data have to be
present both at the beginning and end of estimated time interval.

3To solve the non-linear programming problem, the function fmincon from optimization
toolbox of Matlab is used. This function starts with searching of X̂ at user supplied point X̂0.
The starting point X̂0 of the optimization has to be set appropriately, because its improper
setting causes numerical instability.
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5. Particle Filters

Particle filters form another group of algorithms for incorporating linear and non-
linear state constraints into filtration. Bayesian estimation of a dynamic process
through Monte Carlo sampling tries to avoid problems of linear approximation
and divergence, deterministic choice of sigma points or a fixed shape of distri-
bution (either Gaussian for the moving horizon estimate or uniform for the SU
model). The particle filters are more rigorous, but the trade-off is that they
can require a lot of computational effort. Therefore they may not be feasible,
depending on the application.

Roughly speaking, a Monte Carlo technique is a kind of stochastic sampling
approach aiming to tackle the complex systems which are analytically intractable.
The power of Monte Carlo methods is that they can attack difficult numerical
integration problems. The attention of this chapter is focused on the Monte
Carlo methods and particularly sequential Monte Carlo estimation. One of the
attractive features of sequential Monte Carlo approaches lies in the fact that they
allow on-line estimation by combining the powerful Monte Carlo sampling meth-
ods with Bayesian inference, at an expense of reasonable computational cost. In
particular, the sequential Monte Carlo approach has been used in parameter esti-
mation and state estimation, for the latter of which it is sometimes called particle
filter. The basic idea of particle filter is to use a number of independent random
variables called particles, sampled directly from the state space, to represent the
posterior probability, and update the posterior by involving the new observations.

The particle filters operate by propagating many state estimates, particles,
that are distributed according to the PDF of the true state. Just as the UKF can
be considered as a generalization of the EKF, the particle filter can be considered
as a generalization of the UKF. Given enough particles, a particle filter always
performs better than a UKF, but this might be at the expense of unacceptable
computational requirements, because the Monte Carlo methods are based on
simulation, see [73].

State-constrained particle filtering has been solved by various methods. Some
of these approaches can be used with Kalman filtering, such as reparameterizing
the problem, see [1]. Other approaches are specific to particle filtering, such as
modifying the particles’ likelihood functions based on their level of constraint
satisfaction, see [49] and [50], or generating process noise which ensures that the
propagated particles satisfy the constraints, see [10]. Also, many of the methods
can be potentially applied to constrained particle filtering, such as projection or
PDF truncation, see Section 2.4. These methods could be applied to individual
particles or they could be applied only to the state estimate at each time, giving
rise to a large family of constrained particle filters.

In [51], inequality constraints are imposed by accept/reject steps in the algo-
rithm. The appropriate constrained prior distribution is truncated or modified
to satisfy the constraints, which ensures that the posterior also satisfies the con-
straints.

The approach introduced here relies on sequential Monte Carlo sampling to
obtain the Bayesian solution in a computationally efficient manner without relying
on simplifying assumptions. Given information about the state and measurement
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equations and their parameters, the approach only needs to select the number of
samples to simulate at each time point. This approach allows the distributions to
adopt any shape at each time point, making the estimates quite accurate. This
method is introduced in more details here.

This chapter is based on [6] and [51] if it is not stated otherwise. The original
work, which introduced the Monte Carlo sampling for unconstrained estimation
in dynamic systems, is in [15].

5.1 Sequential Importance Sampling

Using Monte Carlo sampling to solve estimation problems requires an approach
for generating samples from the posterior, since direct drawing from the posterior
distribution is not feasible. This may be accomplished via sequential importance
sampling.

The sequential importance sampling (SIS) algorithm is a MC method that
forms the basis for most sequential MC filters.1 It is a technique for implementing
a recursive Bayesian filter by MC simulations. The key idea is to represent the
required PDF by a set of random samples with associated weights and to compute
estimates based on these samples and weights. As the number of samples becomes
large, this MC characterization becomes an equivalent representation to the usual
functional description of the posterior PDF, and the SIS filter approaches the
optimal Bayesian estimate.

One can draw samples {x1,x2, . . . ,xN}, N ∈ N, from a convenient importance
function π(x). A basic requirement on the importance function is that its support
should include the support of the true distribution and the samples are easily
generated. The estimate of the mean of a nonlinear function, E ϕ(x), regarding
a posterior distribution p(x) is given by2

E ϕ(x) =

∫

ϕ(x)p(x) dx =

∫

ϕ(x)
p(x)

π(x)
π(x) dx ≈

1

N

N
∑

i=1

ϕ(xi)q̇i, (5.1)

where

q̇i =
p(xi)

π(xi)
. (5.2)

Since it is usually impossible to sample from the true posterior, it is common to
sample an easy-to-implement distribution, the importance density (also called a
proposal density, see [16]).

Both p(x) and π(x) are assumed to be known up to a constant, in which case

q̇i are normalized
(

∑N
i=N qi = 1

)

,

E ϕ(x) ≈
1

N

N
∑

i=1

ϕ(xi)qi, qi =
q̇i

∑N
i=1 q̇

i
(5.3)

1The sequential MC approach is known variously as bootstrap filtering [30], the condensation
algorithm [54], interacting particle approximations [59], or survival of the fittest [41].

2To avoid intractable integration in the Bayesian statistics, the PDF is empirically repre-
sented by a weighted sum of N samples drawn from the posterior distribution. When N is
sufficiently large it is possible to approximate the true posterior (by the law of large numbers,
as the number of samples goes to infinity, this estimate approaches the true value).
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for i = 1, . . . , N .
Information about the relevant posterior distribution is contained in the pairs

of samples and weights, {xi, qi}Ni=1, known as particles.
For a dynamic system, a prediction step is applied recursively by passing each

sample through the state equation (1.13) to obtain samples corresponding to the
prior at time t, p(xt|y1, . . . ,yt−1). This prediction step utilizes information about
process dynamics and model accuracy without making any assumptions about the
nature of the dynamics and shape or any other characteristic of the distributions.
Once the measurement yt is available, it can be used to recursively update the
previous weights by the following equation, see [6]

q̇it ∝ q̇it−1

p(yt|x
i
t)p(x

i
t|x

i
t−1)

π(xi
t|x

i
t−1,yt)

. (5.4)

for t = 1, . . . , T .
The previous relation is based on the following approach. If the samples

xxi
t = {xi

1,x
i
2, . . . ,x

i
t} were drawn from an importance density π(xxi

t|yy
i
t), where

yyi
t = {yi

1,y
i
2, . . . ,y

i
t}, then the weights are defined to be

qit =
p(xxi

t|yy
i
t)

π(xxi
t|yy

i
t)
. (5.5)

Returning to the sequential case, at each iteration, one could have sam-
ples constituting an approximation to p(xxt−1|yyt−1) and want to approximate
p(xxt|yyt) with a new set of samples. If the importance density is chosen to
factorize such that

π(xxi
t|yy

i
t) = π(xt|xxt−1,yyt) π(xxt−1|yyt−1) (5.6)

then one can obtain samples xxi
t ∼ π(xxt|yyt) by augmenting each of the existing

samples xxi
t−1 ∼ π(xxt−1|yyt−1) with the new state xxi

t ∼ π(xt|xxt−1,yyt).
To derive the weight update equation, p(xxt|yyt) is first expressed in terms of
p(xxt−1|yyt−1), p(yt|xt) and p(xt|xt−1). Bayes’ rule gives

p(xxt|yyt) =
p(yt|xxt,yyt−1)p(xxt|yyt−1)

p(yt|yyt−1)

=
p(yt|xxt,yyt−1)p(xt|xxt−1yyt−1)

p(yt|yyt−1)
p(xxt−1|yyt−1)

=
p(yt|xt)p(xt|xt−1)

p(yt|yyt−1)
p(xxt−1|yyt−1)

∝ p(yt|xt)p(xt|xt−1)p(yyt − 1|yyt−1). (5.7)

By substituting (5.6) and the last previous equation into (5.5), the weight
update equation is

q̇it ∝
p(yt|x

i
t)p(x

i
t|x

i
t−1)p(xx

i
t−1|yyt−1)

π(xi
t|xxt−1,yyt)π(xx

i
t−1|yyt−1)

=
p(yt|x

i
t)p(x

i
t|x

i
t−1)

π(xi
t|xxt−1,yyt)

. (5.8)

Furthermore, if π(xt|xxt−1,yyt) = π(xt|xt−1,yt) then the importance density
becomes dependent only on xt−1 and yt. This is particularly useful in the common
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case when only a filtered estimate of p(xt|yyt) is required at each time step. From
this point on, we will assume such a case, except when explicitly stated otherwise.
In such scenarios, only xi

t need be stored, therefore one can discard the path xxi
t−1

and history of observations yyt−1. The modified weight is then

q̇it ∝ q̇it−1

p(yt|x
i
t)p(x

i
t|x

i
t−1)

π(xi
t|x

i
t−1,yt)

, (5.9)

which is (5.4).
The updating step utilizes the measurement equation and information about

the measurement error. Again, no assumptions about the type of model or dis-
tributions are required. The result of these prediction and updating steps is the
particles at time t, {xi

t, q
i
t}

T
t=1. Any posterior moment may then be calculated

by equation (5.3). The resulting algorithm is fully recursive and computationally
efficient since it avoids integration for obtaining the moments at each time step,
nonlinear optimization in a moving window, or restrictive assumptions about the
nature of the error or prior distributions and models.

The fundamental concept of sequential importance sampling is illustrated in
Figure 5.1.

Figure 5.1: Sequential Importance Sampling Algorithm (Source: [14])

Convergence. Based on the previous calculation, convergence properties of
the sequential Monte Carlo simulations are, see [48]

• the empirical distribution of the particles converges to the underlying true
posterior density when the number of particles is increased,

• the asymptotic variance of the MC estimate stays bounded.3

Degeneracy Problem. A common problem with the SIS particle filter is a
degeneracy phenomenon, where after a few iterations, all but one particle will

3The central limit theorem shows that under very weak conditions, the sequential MC ap-
proximation of the estimate based on the empirical distribution converges to the true estimate.
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have negligible weight.4 The variance of the importance weights is increasing
over time, which implies that a large computational effort is devoted to updating
particles whose contribution to the approximation of the PDF to is almost zero.
This undesirable effect in particle filters can be solved by two methods, see [6]

• proper choice of importance density - additionally, the importance density
requires an ability to sample from it, or

• resampling - it is used whenever a significant degeneracy is identified.

Resampling. An intuitive solution for the degeneracy is to multiply the par-
ticles with high normalized importance weights, and discard the particles with
low normalized importance weights. This can be done in the resampling step. To
monitor how bad the weight degeneration is, we need a measure. A suggested
measure for degeneracy can be the so-called effective sample size, introduced in
[47]. However in practice, the true effective sample size is not available, thus its
estimate is used, see [16].

When the effective sample size is below a predefined threshold, the resampling
procedure is performed. The procedure was also used in the rejection control that
combines the rejection method and importance sampling. The idea is following:
when the effective sample size is lower than the threshold, then each sample
is accepted with some given probability and all the accepted samples are given
a new weight, and the rejected samples are restarted and rechecked at the all
previously violated thresholds. It is obvious that this procedure is computational
expensive as a number of MC simulations increases. For details see the code for
the sequential importance sampling in the Appendix.

Other Particle Filters. The sequential importance sampling algorithm forms
the basis for most particle filters. The various versions of particle filters proposed
in the literature can be regarded as special cases of this general SIS algorithm.
These special cases can be derived from the SIS algorithm by an appropriate
choice of importance sampling density and/or modification of the resampling
step. The most commonly considered ones are

• sampling importance resampling filter (bootstrap filter),

• auxiliary sampling importance resampling filter,

• regularized particle filter,

• likelihood particle filter.

For a description of the methods and further extensions, see [16]

5.2 Constrained Sequential Importance Sam-

pling

The proposed approach extends previous algorithms to satisfy inequality con-
straints. Equality constraints may be imposed by including them in the state

4Another problem is that although the approach is asymptotically convergent, in practice,
a poor initial guess can cause the convergence to be very slow.
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or measurement equations. We impose only constraints on state in the form of
(2.84): Dxt ≤ d.

The implementation of the algorithm uses a convenient choice of importance
function as

π(xt|xt−1,yt) = p(xt|xt−1). (5.10)

This choice simplifies the recursive weight calculation by (5.4) to the following
form

q̇it ∝ q̇it−1 p(yt|x
i
t). (5.11)

Updating the prior with the current information then only requires the likelihood
value.

Algorithm for Estimation by Constrained Sequential Importance Sampling.
This approach is represented by the following steps. For every t = 1, 2, . . . , T
run this sequence

1. For samples i = 1, 2, . . . , N :

• Until {xi
t+1,vt+1} satisfy the imposed constraints

– Draw sample vt+1 from system noise,

– Calculate xi
t+1 using state equation,

• Assign a weight q̇it to xi
t+1.

2. Normalize q̇it to find qit.

3. Implement resampling if necessary.

Enforcement of constraints in the sequential importance sampling is imple-
mented by the extra steps during point 1. in the algorithm. These accept/reject
steps evaluate the samples vt+1 and the corresponding xi

t+1 generated by the
prediction step, via the state equation. Only those samples of the generated
{xi

t+1,vt+1} that satisfy constraints are accepted. Note that, the noise dis-
tributions (including the prior distribution) may be subject to the constraints
and therefore drawing samples from these distributions may require another ac-
cept/reject step whenever it is inconvenient to sample directly from the underlying
distributions.

Convergence. The algorithm ensures that the accepted particles are truly
generated from the correct transition densities under the constraints. It means
that the accept/reject operation leads to particles that correctly represent the
posterior distribution, which ensures validity of the unconstrained convergence
theorems also for the constrained simulations.
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6. Application: Economic Data
Filtering

The aim of this chapter is to apply three of early mentioned algorithms to real
economic data. After a simple semi-structural model is introduced, its state-space
representation is proposed. Then the model is applied to Czech economy data
and some particular results are discussed, including inequality constraints which
are used later. The presented methods are the Kalman filter with a probability
density function truncation, the state uniform model filtration and particle filters
with sequential importance sampling. Results of these methods are mutually
compared and discussed.

6.1 A Monetary Policy Semi-Structural Model

Now the simplest type of a model, a small closed economy defined by three key
variables and three structural equations, is introduced. The complete model is
composed of these three structural equations, some identities and autoregression
(AR) processes.

A reduced-form New Keynesian model, that is calibrated to fit stylized facts of
the Czech economy, is presented. It is a simplified version of a generic Quarterly
Projection Model used in several central banks, see e.g. [8]. The objective of this
class of models is to help decide on an appropriate level of the policy interest
rate, given the inflation target and the current state of the economy. A closed
economy version of the model is used for a simplicity.1

The structural equations of the model are:

• Aggregate Demand (IS curve),

• Aggregate Supply Block (Phillips curves), and

• Monetary Policy Rule.

Aggregate Demand. The aggregate spending relationship corresponds to the
closed economy version of the traditional IS curve and takes the form

l y gapt = a1 l y gapt−1 + a2 (rt−1 − r tndt−1) + shock l y gapt, (6.1)

where l y gapt is the deviation of the log of output from its noninflationary level,
the output gap; (rt−1− r tndt−1) is a lagged deviation (gap) of the long-term real
interest rate, rt−1, from its neutral (noninflationary) level, r tndt−1. This gap
represents a monetary policy stance. Variable shock l y gapt is an aggregate de-
mand shock. The aggregate demand shocks are governed by a normal distribution
and have no serial correlation. The coefficients a1 and a2 capture the persistence
of output and the impact of the lagged real interest rate gap, respectively.

1Although the Czech economy is an open one, the closed economy model is able to satisfac-
torily capture its behavior and can be easily extend to a form of an open economy model.
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Aggregate Supply Block. The supply block consists of a standard backward
looking Phillips curve for the overall consumer price index (CPI) inflation

dl cpit = b1 dl cpit−1 + b2 l y gapt + shock dl cpit. (6.2)

The inflation depends on past CPI inflation values, dl cpit−1, and on the current
value of the real marginal costs approximated by the output gap, l y gapt. A way
of thinking about parameter b1 is the persistence of inflation - the more persistent
inflation, the higher is the coefficient. The coefficient b2 captures an influence of
the gap in the real marginal costs on inflation (the slope of the Phillips curve)
and also measures the sacrifice ratio – how much output will be lost in order to
bring inflation down by 1 percentage point.

Monetary Policy Rule. The model is closed by a policy reaction function of the
monetary authority. The rule is defined typically for a central bank implement-
ing inflation targeting monetary policy. For simplicity, we take the three-month
interest rate to be an instrument of monetary policy. The authority is assumed
to respond to deviations of inflation from its target and to the output gap.2 The
last period policy stance affects the current policy stance allowing the authority
to smooth interest rates by adjusting them gradually to the desired level implied
by the deviations of inflation and output from equilibrium,

it = c1 it−1 + (1− c1) [(r tndt + dl cpit) + c2 dl cpit + c3 l y gapt] + shock it,
(6.3)

where it is the domestic short-term nominal interest rate and shock it is a policy
shock. The policy neutral rate is (r tndt + dl cpit).

The model includes other identities and transformations:

• an adjusted Fisher equation to relate nominal and real interest rates,

rt = it − dl cpit, (6.4)

• a real gross domestic product (GDP) identity, dividing the log of GDP,
l yt, into the log of potential product (noninflationary) growth, l y tndt,
and output gap, and identities for a calculation of the annualized quarter-
to-quarter (QoQ ann.) growth (in a log approximation) of real GDP, dl yt,
and potential product, dl y tndt,

l yt = l y tndt + l y gapt (6.5)

dl yt = 4 (l yt − l yt−1) (6.6)

dl y tndt = 4 (l y tndt − l y tndt−1), (6.7)

• a law of motion for potential product growth and the real interest rate trend
captured by an AR(1) with parameters d1 and e1, and shocks shock dl y tnd
and shock r tndt, respectively,

dl y tndt = d1 dl y tndt−1 + shock dl y tndt. (6.8)

r tndt = e1 r tndt−1 + shock r tndt (6.9)

2Inflation targeting regime is aimed at the expected inflation in one year horizon. In our
framework, the monetary authority does its decisions based on the current inflation for simplic-
ity and because of a relative stable inflation dynamics in the Czech Republic.
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6.1.1 State-Space Representation of the Model

The model consists of a set of linear equations (6.1) – (6.8). All the model
variables are declared with a time t subscript, t = 1, 2, . . . , T . These are state
variables and a disturbance term (structural shocks and measurement errors),

xt = [l y gap t, dl cpit, it, rt, l yt, dl yt, l y tndt, dl y tndt, r tndt]
⊤ (6.10)

vt = [shock l y gapt, shock dl cpit, shock it, shock dl y tndt, shock r tndt]
⊤ ,

(6.11)

and the system can be rewritten as

Bxt = Cxt−1 +Dvt, (6.12)

where
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The model is solved numerically using the Matlab software and IRIS Toolbox
only.3 The model code in Iris is in Appendix 1.

3IRIS is a free, open-source toolbox for macroeconomic modeling and forecasting in Matlab.
It integrates core modeling functions (such as flexible model file language, simulation, estima-
tion, or forecasting) with a wide range of supporting features (such as time series analysis, data
management, or reporting).
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After a simple algebra assuming an existence of B−1, the state equations has
the following form

xt = B−1Cxt−1 +B−1Dvt = Fxt−1 +B−1Dvt, (6.16)

where F = B−1C. Notice that matrix B−1D introduces an additional connection
among the structural shocks included in vt (vt can be respecified to enter the
equation directly multiplied only by an identity matrix) and rescales a covariance
matrix of the disturbance term (which is important for a calibration of standard
deviations of the shocks, see later). The last equation is a state equation of the
state-space representation of the model.

Compared to the 9-element state vector, the measurement vector and output
disturbance (measurement error) vector consists of only 3 elements,

yt = [obs dl cpit, obs dl yt, obs it]
⊤ (6.17)

wt = [meas dl cpit,meas dl yt,meas it]
⊤ . (6.18)

Because there is a one-to-one mapping of the measurement variables to the
state ones (common in economic practice) and there is no control variable ut (see
the data description), the measurement equation has the following form

yt = Aut +Hxt +wt = 0ut +Hxt +wt = Hxt +wt. (6.19)

Then A = 0(3,1) and H is a (3 × 9) type matrix including only ones and zeros.
Notice that the measurement equation contains also a measurement error term
capturing an inaccuracy in observing and measuring economic variables.

6.1.2 Data

The model is applied to the Czech economy and the used data are the followings

• CPI: the time series is published by the Eurostat as a monthly index with
a base in 2005, seasonally unadjusted.

• Real GDP: the time series is calculated from the nominal GDP adjusted by
the GDP deflator, both published by the Eurostat. They are available on
quarterly frequency and seasonally unadjusted as the nominal GDP level
in millions of Czech crowns and the price index 2000=100 based on Czech
crowns.

• Short-Term (Three-Month) Nominal Interbank Interest Rate: average an-
nual reference interest rate with three-month maturity on the Czech inter-
bank financial market, published by Eurostat on a monthly basis.

Time series of CPI and real GDP in 100 log(·) transformation are seasonally
adjusted by Census X12 ARIMA (part of IRIS). The seasonal pattern, on the
available range, is depicted in Figure 6.1. There are no missing data in the used
sample.

A historical range for the filtration and parameter calibration was set for
2006Q1–2012Q4 period. At the beginning of 2006, the Czech National Bank
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Figure 6.1: Seasonal Adjustment of Data (Source: author’s calculation)

started to implement a point headline inflation targeting instead of a target band.
Starting at this point ensures a consistency of the implemented monetary policy.

Because the model is the quarterly one, nominal interest rate and CPI are
converted by a simple arithmetic average into a quarterly frequency. Except the
interest rate, real GDP and CPI inflation are calculated as the natural logarithm
and growth rates in QoQ annualized terms for these relevant variables. Subse-
quently, mean values of the variables are subtracted

• obs dl cpit: CPI inflation target announced by the Czech National Bank is
taken away from the CPI inflation. The inflation target captures the mean
value of inflation. It was set at 3 percent for 2006Q1–2009Q4 period and 2
percent afterwards,

• obs dl yt: a mean value of 1.71 percent QoQ ann. (for 2006Q1–2012Q4) is
subtracted form the QoQ ann. real GDP growth,

• obs it: the calculation is done in the same way as for the real GDP growth,
using a mean value of 2.16 percent p.a.

Subtracting the mean values and using the above introduced specifications of
equations mean that the model has a gap form.4

4Using original data, including their mean values means, would require to extend the mea-
surement equation by adding a control variable to capture the means.
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Figure 6.2 shows both original data including its mean values and the time
series used as a measurement variables for the model. Visual inspection of data
is a useful check of your prior intuition about the economy.
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Figure 6.2: Measured Variables of Model (Source: author’s calculation)

6.1.3 Economic Interpretation

Before we impose inequality constraints to some states, we discuss calibration
and filtration with respect to their analysis and interpretation first.

In setting the parameters values we follow

• the economic theory,

• experience, and

• stylized facts about the economy, based on impulse responses, variance de-
composition, historical simulations, etc.

The calibration of parameters and standard deviation of the structural shocks
and measurement errors is presented in Table 6.1.

The KF estimates all the unobserved variables, gaps and trends, based on the
observed variables and the model structure, ensuring that the results are model-
and calibration-dependent. Due to the presence of trends within the model and
resulting non-stationarity of some variables, the unconditional variance does not
have a finite value and a diffuse KF is applied. In this subsection, a smoothing
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a1 0.60
a2 -0.30
b1 0.50
b2 0.30
c1 0.80
c2 0.20
c3 0.10
d1 0.70
e1 0.80

std: shock l y gap 1.40
std: shock dl cpi 1.50
std: shock i 0.40
std: shock dl y tnd 1.00
std: shock r tnd 0.70

std: meas dl cpi 0.75
std: meas dl y 0.75
std: meas i 0.25

Table 6.1: Calibration of the Model

step of the KF is employed which, as opposed to the prediction and filtration
steps, uses complete information from observed data.

A smoothed values of the measurement error for all three measurement vari-
ables reflect the model calibration and are depicted in Figure 6.3. CPI inflation
without measurement error is smoother (reflecting a calibrated persistency for
the Phillips curve). In case of real GDP growth and the nominal interest rate,
measurement errors are almost negligible.

Although the KF algorithm itself appears to be quite general and straight-
forward, its successful implementation tends to be very problem-specific, relying
heavily on judgments to adjust and tune process and the model. In case of the
KF, these rules are recommended to follow, see [22]:

• Understand your data and processes generating data (maximum and mini-
mum ranges, etc.) and learn by looking at available data and appreciating
what kind of information is likely to be available to the filter. It can be
quite pointless designing a filter without knowing what information will be
available for use,

• Model your system because the performance of the filter will be directly
dependent on the adequacy of this model. To build as accurate a truth model
as possible means to describe all aspects of the process to be estimated. On
the other hand, it is necessary to reduce the model to have a direct and
significant impact on filter performance. This has to be done on a case-by-
case basis,

• Coding, which is very often the easiest part of the implementation,

• The recursive formulation of the KF algorithm means that we must provide
some reasonable guess for the initial conditions,
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Figure 6.3: Measurement Errors after Filtration (Source: author’s calculation)

• Run filtration and do analyses of results, which can be based on discrepancy
sequence, steady-state performance, robustness of filtration, interpretation
of results, etc.

The last item of the rules covers the rest of this subsection.

The filtered trend and gaps are presented in Figure 6.4. Despite the model
simplicity and the fact that the Czech economy heavily depends on the world
economy development (especially Eurozone which is not included in the model
framework), potential growth of the economy is higher before the global economic
crisis and slowdowns after 2008. Similarly, the filtration identifies positive output
gap till the end of 2008 and negative (or neutral) afterwards. Additionally, after
2009 there is a clear w-shape of the output gap, which is unofficially discussed
and believed among economists. After 2010, a neutral real interest rate gap
corresponds to a fact that monetary policy is not efficient in influencing the real
economy. The authority started to use additional non-ordinary instruments and
monetary policy transmission channels (a set of these tools is usually labeled as
a quantitative easing).

A decomposition of the structural equations for the output gap, CPI inflation
and nominal interest rate into structural shocks (the upper row) and into a con-
tribution of the structural variables (the lower row) is shown in Figure 6.5. Based
on this set of pictures, it is possible to conclude that the structure of the model
and its calibration approximate the Czech economy behavior satisfactorily and
the model can be used for an analysis of the monetary policy implementation.

Based on the previous results, it is useful to discuss smoothed trajectory of the
real interest rate trend and neutral nominal monetary policy rate in more details.
Both variables with their mean values are presented in Figure 6.6 (trajectories are
calculated out of the KF). In reality, it is possible that the real interest rate trend
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Figure 6.4: Trends after Filtration (Source: author’s calculation)

can be negative temporarily, but not for a long period. The negative real interest
rate trend implies dissaving and disinvestment behavior changing consumption
dynamics, redistributes welfare from creditors to debtors, produces changes in
securities trading, etc. Let’s impose a constraint to the real interest rate trend
to remain non-negative. This means that the demeaned real interest rate trend
in the model, r tndt, should not drop bellow -0.86 percent p.a. during the period
of 3 percent inflation target and 0.16 percent p.a. after the inflation target was
reduced to 2 percent.5 The negative rate appeared partly during 2008 (because
of high CPI inflation fueled by a sharp increase in imported world food and oil
prices) and especially after 2011 (the common monetary policy was not efficient
in influencing a real economy performance as a result of the global crisis). For
simplicity, let’s constrain the real interest rate trend at nonnegative values for
the whole range used for filtration.

In other words by imposing the constraint, we are asking about a stance of
fiscal policy: in case there is a coordination between monetary and fiscal author-
ities, what kind of fiscal expenditures (measured by fiscal impulses and shocks to
the output gap through the IS curve) is necessary to run that the real interest
rate remain non-negative in the long run.

Similar problem is connected to the neutral monetary policy rate. This rate,
capturing a trend in nominal interest rate in the model, should not be negative
for a long time (the Czech National Bank can not set negative nominal rates as its
equilibrium). This is not the case of the previous filtration, however, by raising
the real interest rate trend, there will be an increase in the neutral rate (the

5The inflation target was set at 3 percent for 2006Q1-2009Q4 and 2 percent afterwards.
This together with the mean value of 2.16 percent p.a. for the nominal interest rate implies
the previously calculated numbers based on the Fisher equation, see data subsection and equa-
tion (6.4).
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Figure 6.5: Structural Variables Decomposition after Filtration (Source: author’s
calculation)

neutral rate is a real interest rate trend plus CPI inflation identity). Reflecting
this fact, any constraint for non-negativity of the neutral interest rate should be
a passive one and thus it is not imposed.6

6.2 Imposing an Inequality Constraint

In this subsection, an inequality constraint for the real interest rate trend (as a
state variable which is not directly measured) is imposed

r tndt ≥ 0, (6.20)

for all t. This means that a state prediction is constrained in a form of an
inequality, see (2.86).

For solving an inequality constrained state vector problem, it is possible to
use a variety of methods introduced in the previous sections. The following three
methods are applied to economic data and their results are compared

• Probability density function truncation,

• State uniform model filtration, and

• Sequential importance sampling.

A motivation behind this selection is following. The PDF truncation, using a
KF calculation, is one of the most commonly employed method. The SU filtra-
tion with noise boundary estimation is used for some economic data for the first

6The problem of a zero-nominal-interest-rate bound appeared during the global crisis and
still attracts a lot of attentions, see e.g. [80].
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Figure 6.6: Neutral Nominal and Real Interest Rate Trend Filtration (Source:
author’s calculation)

time here. The SIS algorithm, as one of the method based on Monte Carlo simu-
lations, has recently started to be popular and formed an alternative against the
traditional Kalman filtering.7 Additionally, it is possible to relax an assumption
about Gaussian state estimation and after a simple adjustment, the SIS can be
confronted with the SU filtration relying on uniform distribution of disturbances.

For a comparison, all three algorithms are run with the same data set (includ-
ing the time span), model specification and calibration of structural parameters
and standard deviations of the shock (in case of the SU model filtration, a bound
for filtered values of the shocks is estimated) and also for the initial conditions.
The initial conditions for all state variables are set to zero (their mean values).
Specific settings of particular algorithms are discussed within the relevant parts.

Due to a comparison reason, the prediction step of algorithms is used and a
comparison of the methods is based on a predicted error for the measurement
equation (predicted measurement error).

The prediction step of the filtration at time t for t+ 1 use all available infor-
mation till time t, but not the full information set of observations till T compared
to the smoother.8 Thus the results can suffer by a big error. See Figure 6.7 to
demonstrate the difference between the trajectories of the measurement variables.
Using the state-space model representation and calibration of the parameters in-
troduced earlier, there is a comparison between smoothed and predicted trajec-
tories. Whilst the difference for nominal interest rate is almost negligible, big

7A comparison among MC sampling, the extended Kalman filter and moving horizon esti-
mation (another frequently used method) has been already covered by [14] and can be easily
extended for a state constraint problem.

8As an alternative to the smoothing step in the Kalman filter, an off-line estimation in the
SU model can be used.
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errors are contributed for real GDP growth.
Similarly, there is a different dynamics for the real interest rate trend, see

Figure 6.7. However, the problem of negative real interest rate trend appears
after 2009 and it is valuable to continue with the analysis based on the prediction
step of filtrations.

The Matlab codes for a core part of all three algorithms are supplied in Ap-
pendices.
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Figure 6.7: Kalman Filter: Smoothed and Predicted Values of Measurement
Variables and Real Interest Rate Trend (Source: author’s calculation)

6.2.1 Probability Density Function Truncation

Results of the prediction step for the PDF truncation are depicted in Figure 6.8.
The KF with the PDF truncation preserves relatively big prediction error for the
real GDP growth measurement. Prediction step of the filtration for CPI inflation
is smoother compared to its measurement.

By imposing the inequality constraint, the real interest rate trend is non-
negative and hovers between 0.6 – 0.9 percent after 2009 (during the period when
the unconstrained KF prediction of the trend stucks negative on average). This
implies more negative real interest rate gap compared to the gap without any
constraint (the predicted one by the unconstrained KF) after 2009. It contributes
to a faster closing of the output gap during 2009 and more positive gap afterwards.
In other words, the simulation shows that a fiscal policy expansion, supporting
domestic aggregate demand, enables the monetary authority to keep non-negative
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real interest rate (and consequently also non-negative neutral nominal interest
rate which is not plotted in the figure).

Technically, a modified Gram-Schmidt orthonormalization calculation was
used. The code is partly based on [73].9 It can be easily modified to imple-
ment an inequality constraint for an upper bound for any of the state variables or
to use the constraint for an updating step of the KF - using inequality constraints
in a form of (2.85).

6.2.2 State Uniform Model

Results of the SU model filtration exhibit relatively low prediction error for real
GDP growth, similarly also for CPI inflation and nominal interest rate with an
exception of some periods, see Figure 6.9. Real interest rate trend and potential
growth are stick on zero values apart from the first two years of the historical data
range. After this period, the dynamics of both output and real interest rate gap
is similar to the unconstrained KF. This results into a higher real GDP growth
and higher nominal interest rate (it is filtered through measurement errors at the
end of the sample).

The filtration logically says that in case that the real interest rate trend can
not be negative, it remains zero. It partially increases nominal interest rate, to
eliminate an effect of monetary policy restriction on the output gap, and the
fiscal policy must be more pro-active. It results in higher real GDP growth. The
real interest rate trend, real GDP growth and CPI inflation show relatively high
volatility in this simulation. Whilst the high volatility is a desirable characteristic
of measurement variables in this simulation, it is something undesirable for trends.
This property reflects disturbances with a uniform distribution. The estimated
measurement error boundaries for measurement variables, see (4.4), are shown in
Figure 6.10.

A calibration of the standard deviation of the structural shocks and measure-
ment errors is not used, but it is estimated as a part of the filtration process.
The algorithm is based on a linear programming and the Optimization Toolbox
in Matlab is required. As it was described in Chapter 4, it is necessary to set
lower and upper boundaries for the state vector, state and output noise, and a
memory for the linear programming – length of a sliding window δ, see (4.38). By
iterative simulations, the boundaries are finally set to give a reasonable results
and the memory for programming is four. The coded algorithm was provided by
the supervisor of the thesis.

6.2.3 Sequential Importance Sampling

The MC simulation was run for 2000 samples, however, there is no convergence of
the chain. Despite no statistical tests, only a visual inspection of the convergence
was carried out, but a rerunning of simulations has not resulted into the same
results.10 Even without the convergence, the prediction of the measurement and

9See http://academic.csuohio.edu/simond/ConstrKF.
10The code for running the sequential importance sampling itself is not optimized, but whilst

500 simulations required 44 seconds, 2000 simulations required 2912 seconds, using Intel Core
Duo CPU, P8600 @ 2.4 GHz, 2 GB RAM.
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Figure 6.8: PDF Truncation: Results (Source: author’s calculation)
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Figure 6.9: SU Model: Results (Source: author’s calculation)
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Figure 6.10: SU Model: Noise Boundaries for Measurement Variables (Source:
author’s calculation)

state variables does not differ significantly and keeps the same dynamics on aver-
age. Reflecting this non-convergence problem, the presented results are believed
to be satisfactory for general discussion and a comparison of introduced methods
in this section.

Predicted measurement variables closely follow the observed pattern with
some exceptions particularly for real GDP growth, see Figure 6.11. A predic-
tion of the real interest rate trend is relatively volatile and after 2011 implies a
negative real interest rate gap for the following two years. This implies a positive
output gap for the same period (it means positive aggregate demand shocks as
fiscal policy impulses).

The code for a SIS calculation is marginally based on [14], where errors were
fixed and a section for imposing inequality constraints was added. To run the
simulations, it is necessary to specify a number of simulations and a threshold to
avoid a degeneracy problem. The threshold was set as a third of the total number
of MC simulations.

6.3 Comparison of Algorithms

In this part there is a comparison of the previously introduced and applied three
algorithms with respect to their speed, accuracy, reliability and initiation.

To compare a performance of the algorithms, it can be used several criteria.
Regarding [81], the accuracy of the state estimate can be quantified by the root
mean square error (RMSE). Next, it can be assessed how informative (based on
[52]) the state estimate is by evaluating the mean square error (MSE), in case of
the Kalman filter the mean trace of Pt|t or Pt|t−1 for t = 1, 2, . . . , T . It measures
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Figure 6.11: SIS: Results (Source: author’s calculation)
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the uncertainty of an estimate of a state. Another way is to use an absolute
error estimate, see [60]. It is defined as a absolute difference between values of
measured variables and estimated values. In case of running MC simulations,
[51] suggests to evaluate the performance by the overall mean-squared error and
specifically by the MSE averaged over realizations for each time. By examining
this adjusted statistics over time, it is likely to indicate the long-term behavior of
the tested method and provide insight into the distribution of errors over time.

Accuracy and Reliability. To compare the results of these heterogenous meth-
ods, it is necessary to use general and easily comparable and interpretable statis-
tics - mean, standard deviation and root mean square error for the prediction
error for the measurement variables (CPI inflation, real GDP growth and nomi-
nal interest rate). A prediction ability of the method is compared with observed
data and then a predicted measurement error is calculated. The statistics are
summarized in Table 6.2.

CPI Real GDP Nominal
Inflation Growth Interest Rate

Mean
KF Unconstrained -0.0313 -0.0271 0.0608
PDF Truncation 0.1242 0.7061 0.2590
SU Filtration 1.3934 0.3572 0.3411
PF - SIS -0.2121 -0.5132 0.4040

Standard Deviation
KF Unconstrained 2.4210 5.0085 0.3858
PDF Truncation 1.5045 5.5293 0.4117
SU Filtration 1.4360 1.1572 0.4653
PF - SIS 2.8895 6.5271 0.5457

RMSE
KF Unconstrained 2.3776 4.9183 0.3837
PDF Truncation 1.4826 5.4753 0.4801
SU Filtration 1.9802 1.1887 0.5694
PF - SIS 2.8453 6.4300 0.6711

Table 6.2: Comparison of Predicted Measurement Errors

The predicted measurement error of the i-th variable at time t (PMEi
t) is

calculated as

PMEi
t = ŷi

t|t−1 − yi
t|t−1 = x̂i

t|t−1 − yi
t|t−1 = ŵi

t|t−1, (6.21)

for t = 1, . . . , T , superscript i goes for CPI inflation, real GDP growth and
nominal interest rate and x̂i

t|t−1 is a prediction of the respective state variable
to the measurement one – there is a mapping of the measured variable to the
relevant state variable through an identity matrix without any control variable,
see equation (6.19). The PMEi

t corresponds to the prediction error term ŵi
t|t−1

in the measurement equation. Based on this, the root mean square error for the
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i-th measurement variable (RMSEi) is

RMSEi =

√

√

√

√

1

T

T
∑

t=1

PMEi 2
t =

√

√

√

√

1

T

T
∑

t=1

(

x̂i
t|t−1 − yi

t|t−1

)2

. (6.22)

Regarding a mean value of the prediction error, the unconstrained KF signifi-
cantly outperform the rest of the methods. But it does not fulfill the non-negative
real interest rate trend constraint. By imposing the required constraint, the SIS
is better on average compared to the PDF truncation and the SU filtration for the
measurement variables. The SU filtration is significantly worse for CPI inflation,
the PDF truncation for real GDP growth. By analyzing standard deviations of
the predicted errors, the situation is completely opposite - the worst performance
for all three variables is connected with the SIS. Except of real GDP growth, the
PDF truncation is similar to the SU model. This means that the SIS gives the
smallest average predicted error, but the average magnitude of these errors is big
compared to the rest methods. Using these two criteria, the SU model can be
assesses as the most suitable technique.

Based on the RMSE, both the PDF truncation and the SU model evidently
outperform not only the SIS, but also the unconstrained Kalman filtration. From
this point, it is possible that by imposing some constraints to a system, the
filtration uses additional available information, which can improve the overall
results (measured by the RMSE). The RMSE of the SU filtration is comparable
with the PDF truncation for CPI inflation and interest rate, but it is better for
real GDP growth.

Using mean value, standard deviation and RMSE based on predicted mea-
surement errors, the SU model seems to outperform the rest techniques.

The previous analysis is further supplemented by a visual inspection of pre-
dicted trajectories of the measurement variables, see Figure 6.12. An inappropri-
ate method for a prediction of real GDP growth is the SIS, because the volatility of
the predicted time series is significantly higher than the observed one. Contrary,
the unconstrained KF and the PDF truncation capture only a trend component
of the real GDP growth. Whilst all the methods except of the SU model sat-
isfactorily follow a trend in CPI inflation and are very close to each other, the
SU model is completely inappropriate. During some period the prediction of CPI
inflation by the SU model does not follow the observed dynamics. In case of the
nominal interest rate, all methods are close to the measured dynamics, correct-
ly predicting a peak in 2008 and subsequent fast drop. In the last third of the
sample, all methods (including the unconstrained KF) predict higher nominal
interest rate to satisfy the imposed constrained. In other words, if the Czech
National Bank had kept non-negative real interest rate trend (as a permanent
component of the real interest rate), it would have been connected with higher
nominal interest rates. This is a logical and expected result.

Before we proceed, let’s check also a comparison of the prediction of the real
interest rate trend in Figure 6.13. Except the unconstrained KF, the real interest
rate trends are non-negative. Economically, it is intuitive that in case that there
is a constraint for the real interest rate trend, the trend sticks to this constraint
during periods when the constraint is active. This is a case of the SU model.
However, this series is a trend and it is expected to be a smooth line. From a
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Figure 6.12: Comparison of Predicted Measurement Error (Source: author’s cal-
culation)
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point of the economic theory, it is impossible to change some trend values by
about 150 bp by quarter to quarter (see 2006Q3 or 2007Q3). Similar problem
also faces the SIS filtration. Only the result of the PDF truncation seems to be
appropriate.
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Figure 6.13: Comparison of Real Interest Rate Trend (Source: author’s calcula-
tion)

Speed of Algorithms. The PDF truncation and the SU model filtration run
recursively and once the filtration at time t is done, it continues. In case of
the SIS, or generally particle filters, the MC simulations are more time demand-
ing. By imposing any constraints and resampling due to a degeneracy problem,
the algorithm is incomparably slower. Additionally, due to a problem of a slow
convergence, it is suitable to run extra simulations.

Based on the previously analyzed results, the PDF truncation and the SU
model filtration require less computational time and the results are not substan-
tially worse compared to the SIS outcomes.11 Thus they are preferable from a
point of a speed and time consumption of calculations.

Algorithm Initiation. As it was already discussed earlier, all three algorithms
must be initialized by some values of particular variables.

The KF recursion, either unconstrained or constrained, starts with x̂1|0, which
denotes a forecast of x1 based on no observations with the associated MSE ex-
pressed by P1|0. Generally, if the initial state is not available, it is replaced with
an arbitrary option of the analyst’s best guess to the initial value and a guess
about its confidence, see Subsection 2.1.1. Not to make any algorithm advan-
tageous, the initial state is set to zero for all its elements (a mean value for all
the states, because the model is specified in a gap form) and the uncertainty
is based on the estimation of the covariance matrix P1|0 from the KF smoother
introduced in Subsection 6.1.3. Additionally, it is necessary to calibrate standard
deviations of structural shocks and measurement errors. This is done relatively
to each other (not in absolute terms), but it requires an iterative process based

11On top of that, by a 2000-run MC simulation is not still ensured a convergence of the chain,
however, this takes at about one hour. See Subsection 6.2.3.
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on model structure, stylized facts about the modeled economy, checking filtered
results and judgments as well.

The same initialization is required for the SIS method - an initial value for
the state vector (again all elements of the vector are set to zero) and calibration
of the standard deviations of structural shocks. There is no setting of an initial
confidence about the state vector. It is expressed by a calibration of the stan-
dard deviations of the structural shocks and measurement errors. This is a big
advantage, but a value of the threshold in case of the degeneracy problem and a
number of MC simulations for convergence must be specified instead.

The SU model is estimated using the technique described in Section 4.2. To
successfully run a non-linear programming algorithm, a starting point for X of
the optimization has to be set appropriately. Improper setting causes numerical
instability. However, in case of the linear algorithm, nothing else is required to
be set for an initialization of the algorithm.

6.4 Discussion of Results

Based on the results in this chapter, the SU model filtration technically outper-
forms the PDF truncation and the SIS methods. Results of the SU model are
comparable to the KF with the PDF truncation and to the SIS filtration. They
are even better in case of the RMSE for the predicted measurement errors. An
advantage of the SU model is that no initialization of the algorithm was required
and just a very rough knowledge about the actual value of noise boundaries is
required only.

On the other hand, economic background and interpretation behind the SU
model filtration is weak and beat by the SIS and especially by the PDF truncation.
The model is designed to be a monetary policy model of the Czech economy,
focusing especially on CPI and nominal interest rate dynamics. In case of CPI
inflation, the unsatisfactory results of the SU model occur mostly when an outage
is placed on the sharp turns of the trajectory - e.g. a peak in inflation during
2008 and 2011. Reflecting these outcomes, economic analysts would very likely
prefer the PDF truncation as an appropriate method for the filtration.

To conclude the comparison of the methods, it is necessary to stress that
the results can be influenced by several aspects. Only three statistical criteria
were introduced - mean, standard deviation and RMSE of the predicted error
for the measurement variables. They do not offer unambiguous outcomes and
introducing different criteria might change preferences about a suitable method.
There is no deep analysis of an effect of initial conditions - adjusting the initial
conditions to every particular method can improve overall results. A poor initial
guess can be typical in many practical situations, however, it can cause a slow
initial convergence and poor accuracy especially in case of MC simulations. It is
convenient to check a robustness of results to a different set of initial conditions.
Due to a simplification, only one set of the initial conditions were used.

Finally, all three algorithms use different techniques for filtration and estima-
tion of an unobserved state vector. This may require a slightly different calibra-
tion or specification of the semi-structural model to offer appropriate results. For
the comparison, the structure of the model, calibration of parameters and other
settings is exactly the same one. It would be useful to discuss some properties of
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the calibration and designed model structure in more details and point out some
possible drawbacks and potential areas for an improvement.
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Conclusion

The thesis introduces a set of methods to identify unobserved variables using a
constrained dynamic system. Three of them are described in details and sub-
sequently applied to economic data and semi-structural simple macroeconomic
model for monetary policy analysis. The thesis does not present a novel approach
to the filtration techniques, but rather offers a general overview of algorithms with
a relatively wide literature survey including up-to-date techniques.

An application part deals with only a linear model and a linear constraint al-
though several methods for non-linear problems are described. Introducing non-
linear filtration and/or non-linear constraints is very often based on linearization
and thus completes an overview of the techniques. The used codes in the appli-
cation part can be easily extended to the non-linear case.

The thesis considers a problem of a state-space representation of a model
and an application of a Kalman filter-type estimator to a system with and with-
out state constraints. This is extended by imposing a non-linear constraints
and/or non-linear KF techniques. The thesis proposes several different ways of
constraints. A detailed derivation of the KF is motivated by a fact that the
KF is one of the most widely used methods for estimation due to its simplicity,
optimality, tractability and robustness. However, the application of the KF to
non-linear systems and/or constraints is challenging. Moreover, this area has not
been satisfactorily explored so far.

In many situations, not only the economic ones, certain information about a
dynamical system is most naturally represented using constraints. Including such
information can compensate for model approximation errors and can improve
the state estimates. Strategies for including equality constraints can be found
in the literature. However, handling inequality constraints is a much harder
problem due to the complexity of identifying those constraints that are active at
the solution. Nonetheless, estimates using inequality constraints may significantly
change results, as it was discussed in the application part of the thesis.

The second proposed algorithm, the SU model with boundary noise, is an
alternative to the KF based algorithms. It is simple to perform and it needs no
demanding initial setting. This feature can be important for practitioners. With
proposed model, they avoid a complicated theoretical setting that is necessary for
a successful running of KF based algorithms. The thesis applied this algorithm
to an economic problem and filtration of macroeconomic data for the first time.
Based on the application part, the algorithm exhibits two glamorous character-
istics. First, it allows an estimation of the innovation range and second, it allows
(without excessive computational demands) to respect prior bounds on model
parameters and states.

The third introduced method is a general approach for estimation of nonlin-
ear dynamic process systems. This approach is based on a rigorous Bayesian
formulation of estimation problems that uses sequential Monte Carlo sampling
to propagate all information recursively, while minimizing assumptions about the
system. The resulting approach does not rely on common assumptions of Gaus-
sian or fixed-shape distributions, which can be easily violated in (non-) linear
dynamic systems. Therefore, this approach is expected to handle broader range
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of problems and result in more accurate estimation than existing approaches. In
practice it means, that a comparison with the SU model filtration can be more
rigorous using an assumption of uniformly distributed structural disturbances.
This is one of a proposed direction for the future work.

The application part compares the unconstrained KF, the KF with the PDF
truncation, the SU model filtration and the SIS with resampling and an accep-
tance/rejection algorithm. The three later techniques enforce the inequality con-
straint for one of state variables. A comparison with respect to several aspects is
done. Results confirm the fact that an appropriate method depends on an aim of
the filtration. From a technical point, the SU model seems to be the most proper
one. Contrary, the PDF truncation is the easiest one for an economic interpreta-
tion and the closest one to an economic intuition. Because of a relatively simple
model framework with a Gaussian structural shocks and measurement errors, the
SIS has not shown its full capability and power to overweight the computational
burden. This confirms a fact that a proper method reflects an aim of the filtra-
tion, depends on a measurement variable trajectory shape and measurement data
and a final goal of an analysis. None of the used methods outperform the rest of
them in majority of the analyzed aspects.

There are a number of directions for future work which formed limits for the
previous comparison.

First, a prediction step of the filtration was used although it is more common
in practice to use either an update or a smoothed step of the filtration. This
very likely results in a different dynamics of the state variables and measurement
errors identified by the dynamic system.

Second, with an exception of the SU model, the prediction of the real interest
rate trend, as a constrained state variable, resulted in a non-zero value filtration,
which is out of the economic intuition. It would be interesting to check an outcome
of imposing either zero equality constraint or upper inequality constraints in
periods when the unconstrained filtration for the real interest rate trend was
negative. More advanced exercise can be connected to an introduction of the
non-linear inequality constraints, e.g. a penalty function in case of a negative
real interest rate trend.

Third and closely connected to the previous area, it would be useful to com-
pare the performance of different algorithms to see if an over-constrained repre-
sentation provides benefits or not.

Fourth, the used model was a monetary policy model, but it lacks of the
exchange rate dynamics. It means that the model should be extended into a form
of an open economy model. The nominal exchange rate can be another channel
(under a direct control of the authority) through which the monetary authority
can influence the domestic economy to avoid a long-term negative interest rate.
It means that the non-negative real interest rate need not be necessarily fully
offset by an increase in the nominal interest rate and a fiscal expansion through
the domestic aggregate demand increase.

Fifth, it has already been stressed that the imposed inequality constrain can
be time-varying to better fit a changing structure of the economy. This reflects
mainly a change of the inflation target which was reduced from 3 to 2 percent in
2010Q1. A code adjustment should be relatively simple in this situation.

Finally, a given structure and calibration of the employed model raises ques-
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tion as to what is the best structural representation and calibration of the model
and what is an impact of this on estimator performance.

To conclude, the thesis can offer a fundamental overview of the filtering tech-
niques using inequality constraints and it can also contribute to the recent discus-
sion about constraints faced by the monetary policy. Using inequality constraints
or non-linear systems with non-linear constraints prove to be useful, because eco-
nomic behavior of developed countries during and after the global financial crisis
exhibits significant non-linear features, e.g. non-negative nominal interest rate,
non-linearly changing country and governmental risk premium with respect to the
public debt development, or coordinated monetary and fiscal policies expansion
inefficiently influencing the real economic performance and unemployment.
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[63] Pavelková, Lenka. Approximate On-line Estimation of Uniform State
Model with Application on Traffic Data. Regular Paper. International Work-
shop on Assessment and Future Directions of NMPC, Pavia, Italy, 5 - 9
September, 2008.
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Appendix

This part contains technical overview and a core of codes used in the application
part of the thesis.

Appendix 1: Model Code in Iris

A complete model code including declaration of all variables, parameters, and
shocks has the following form.

!variables:transition

’Real GDP (100*log)’ l y

’Potential output (100*log)’ l y tnd

’Output gap (percent)’ l y gap

’Real GDP growth (percent, QoQ ann.)’ dl y

’Potential output growth (percent, QoQ ann.)’ dl y tnd

’CPI inflation (percent, QoQ ann.)’ dl cpi

’Nominal interest rate (percent, p.a.)’ i

’Real interest rate (percent, p.a.)’ r

’Real interest rate trend (percent, p.a.)’ r tnd

!variables:measurement

’CPI inflation (percent, QoQ ann.)’ obs dl cpi

’Real GDP growth (percent, QoQ ann.)’ obs dl y

’Nominal interest rate (percent, p.a.)’ obs i

!shocks:transition

shock l y gap

shock dl cpi

shock i

shock dl y tnd

shock r tnd

!shocks:measurement

meas dl cpi

meas dl y

meas i

!parameters

a1 = 0.6;

a2 = -0.3;

b1 = 0.5;

b2 = 0.3;

c1 = 0.8;

c2 = 0.2;

c3 = 0.1;

d1 dl y tnd = 0.7;
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e1 r tnd = 0.8;

std shock l y gap = 1.4;

std shock dl cpi = 1.5;

std shock i = 0.4;

std shock dl y tnd = 1.0;

std shock r tnd = 0.7;

std meas dl cpi = 0.75;

std meas dl y = 0.75;

std meas i = 0.25;

!equations:transition

l y gap = a1*l y gap{-1} + a2*(r{-1} - r tnd{-1}) + shock l y gap;

dl cpi = b1*dl cpi{-1} + b2*l y gap + shock dl cpi;

i = c1*i{-1} + (1-c1)*((r tnd + dl cpi) + c2*dl cpi + c3*l y gap)

+ shock i;

r = i - dl cpi;

l y = l y tnd + l y gap;

dl y = (l y-l y{-1})*4;
dl y tnd = (l y tnd-l y tnd{-1})*4;
dl y tnd = d1*dl y tnd{-1} + shock dl y tnd;

r tnd = e1 r*r tnd{-1} + shock r tnd;

!equations:measurement

obs dl cpi = dl cpi + meas dl cpi;

obs dl y = dl y + meas dl y;

obs i = i + meas i;

Appendix 2: Matlab Code for PDF Truncation

The core of a calculation of the PDF truncation is the following. It requires the
MGS function to calculate the modified Gram-Schmidt transformation. The code
deals only lower bound inequalities.

for t = 1:length(hdata(1,:))

z = hdata(:,t);

% Run the Kalman filter.

P0 = A * P0 * A’ + Q;

x = A * x;

K = P0 * H’ * inv(H * P0 * H’ + R);

x = x + K * (z - H * x);

P0 = (eye(n, n) - K * H) * P0;

% Constrained filtering via PDF truncation

P trunc = P0;

x trunc = x;

for k = 1 : r

[ U trunc, W trunc, V trunc ] = svd(P trunc);
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T trunc = U trunc;

TT = T trunc * T trunc’;

% Compute the mod. Gram-Schmidt transf. S*A mgs=[W mgs;0]:
% A mgs is a given n x m matrix,

% S is an orthogonal n x n matrix, and

% W mgs is an m x m matrix.

A mgs = sqrt(W trunc) * T trunc’ * D(k,:)’;

[ W mgs, S ] = MGS(A mgs);

S = S * sqrt(D(k,:) * P trunc * D(k,:)’) / W mgs;

c trunc = (d(k) - D(k,:) * x trunc) / sqrt(D(k,:) * ...

P trunc * D(k,:)’);

d trunc = (Inf - D(k,:) * x trunc) / sqrt(D(k,:) * ...

P trunc * D(k,:)’);

alpha = sqrt(2/pi) / (erf(d trunc/sqrt(2)) - ...

erf(c trunc/sqrt(2)));

mu = alpha * (exp(-c trunc^ 2/2) - exp(-d trunc^ 2/2));

sigma2 = alpha * (exp(-c trunc^ 2/2) * (c trunc - ...

2 * mu) - exp(-d trunc^ 2/2) * (d trunc - 2 * mu)) + ...

mu^ 2 + 1;

z trunc = zeros(size(x trunc));

z trunc(1) = mu;

Z cov = eye(length(z trunc));

Z cov(1,1) = sigma2;

x trunc = T trunc * sqrt(W trunc) * S’ * z trunc + x trunc;

P trunc = T trunc * sqrt(W trunc) * S’ * Z cov * S * ...

sqrt(W trunc) * T trunc’;

end

% Compute prediction step

x pred = A * x;

x trunc pred = A * x trunc;

% Save data in arrays

x array = [x array x];
x trunc array = [x trunc array x trunc];
x pred array = [x pred array x pred];
x trunc pred array = [x trunc pred array x trunc pred];

end

Appendix 3: Matlab Code for SU Model Filtra-

tion

The core of a code for the SU model is following. It requires to link the Opti-
mization Toolbox in Matlab and the lsuestlin function for the linear SU model
estimation.

DATA(ychns,TIME)=hdata(:,1);

% SU model estimation

[LsuMem,xest,rxest,ryest,Eest,Fest,lagrange] = lsuestlin(LsuMem);
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Lagrange{TIME}=lagrange;
lenx=size(xest,2);

jj=0;

StatesE(:,TIME)=LsuMem{1}.state;
for ii=TIME:-1:max(TIME-lenx+1,1)

StatesEcell{ii}=[StatesEcell{ii} xest(:,lenx-jj)];
jj=jj+1;

end

% Estimated noise boundaries

xrE(:,TIME)=rxest;

yrE(:,TIME)=ryest;

% Estimated parameters if necessary

EE{TIME}=Eest;
FE{TIME}=Fest;
% Update of the predictor

Pred{1}.Ec=Eest;
Pred{1}.Fc=Fest;
Pred{1}.xr=rxest;
Pred{1}.yr=ryest;
% Output prediction with estimated states

[Pred,y,x]=lsusimul(Pred,DATA(uchns,TIME),LsuMem{1}.state);
DATA(ychns pred,TIME)=y;

% On-line state and parameters and noise bounds estimation

for TIME = 3:ndat;

mem1=min(mem,TIME-1);

DATA(ychns,TIME)=hdata(:,TIME-1);

[LsuMem,xest,rxest,ryest,Eest,Fest,lagrange] = lsuestlin(LsuMem);

Lagrange{TIME}=lagrange;
lenx=size(xest,2);

jj=0;

% Estimated newest state

StatesE(:,TIME)=LsuMem{1}.state;
for ii=TIME:-1:max(TIME-lenx+1,1)

% All estimated states

StatesEcell{ii}=[StatesEcell{ii} xest(:,lenx-jj)];
jj=jj+1;

end

% Estimated noise boundaries

xrE(:,TIME)=rxest;

yrE(:,TIME)=ryest;

% Estimated parameters

EE{TIME}=Eest;
FE{TIME}=Fest;
% Update of the predictor

Pred{1}.Ec=Eest;
Pred{1}.Fc=Fest;
Pred{1}.xr=rxest;
Pred{1}.yr=ryest;
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% Output prediction with states estimated

[Pred,y,x]=lsusimul(Pred,DATA(uchns,TIME),LsuMem{1}.state);
DATA(ychns pred,TIME)=y;

% Computation of state estimates characteristic

StatesEmean(:,TIME-mem1)= mean(StatesEcell{TIME-mem1},2);
StatesEstd(:,TIME-mem1) = std(StatesEcell{TIME-mem1},0,2);
xxx=StatesEcell{TIME-mem1};
for i=1:stsize

% Sort state estimates in ascending order

xxxs=sort(xxx(i,:),2,’ascend’);

nn=length(xxxs);

% The smallest estimate

StatesElowint(i,TIME-mem1)=xxxs(1,1);

smin=xxxs(1,1);

% The biggest estimate

StatesEupint(i,TIME-mem1) =xxxs(1,length(xxxs));

smax=xxxs(1,length(xxxs));

% Computation of rho expectation

Ero=comput ero(smin,smax,nn);

Eroall(i,TIME-mem1)=Ero;

% Computation of x expectation

Ex = comput ex(smin,smax,nn);

Exall(i,TIME-mem1)=Ex;

% Lower boundary of interval estimate of x

StatesEroExmin(i,TIME-mem1)=Ex-Ero;

% Upper boundary of interval estimate of x

StatesEroExmax(i,TIME-mem1)=Ex+Ero;

end

% Update of prior information

LsuMem{i}.lbx0=Ex-Ero;
LsuMem{i}.ubx0=Ex+Ero;

end

Appendix 4: Matlab Code for SIS Particle Fil-

tering

The core of a code for the SIS has the following structure. It incorporates an
inequality constraint and solves a degeneracy problem by finding an effective
sample size and resampling.

x = zeros(n,m);

W pred = 1/N*ones(1,N);

for t = 1:m

disp([’Running for time: ’, num2str(t)]);
x pred = zeros(n,N);

e = zeros(length(hdata(:,1)),N);

for i = 1:N % particles
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% Step 1. Drawing samples from the importance function

x pred(:,i) = T*x0(:,i) + Q*randn(n,1);

while x pred(9,i) < 0 % constraint

x pred(:,i) = T*x0(:,i) + Q*randn(n,1);

end

% Step 2. Updating the weight

e(:,i) = hdata(:,t)-Z*x pred(:,i);

% Find the likelihood value, normalize and update the weight

log lik = exp(-0.5.*diag(e’*inv(R.^ 2)*e))’;

W = log lik./sum(log lik);

W pred = (W pred.*W)./sum(W pred.*W);

end

% Step 3. Deciding if resampling is necessary

N eff = inv(sum(W pred.^ 2)); % estimating effective sample size

% Resampling when necessary

if N eff < N threshold % resampling is running

W tmp = cumsum(W pred);

rndn u = rand(N,1); % uniform random pick

smcRSI = zeros(1,N); % index for a chosen sample

for i = 1:N

smcRSI(i) = min(find(rndn u(i)-W tmp<0));

end

x0 = x pred(:,smcRSI);

W pred = 1/N*ones(1,N);

else % resampling is not necessary

x0 = x pred;

end

% Calculate states

for i = 1:n

x(i,t) = sum(W pred.*x0(i,:));

end

end
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