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Studijńı program: Fyzika
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Abstrakt. Teorie absorpce světla v izotropńım roztoku molekul byla for-
mulována na základě elektromagnetické teorie částic s přihlédnut́ım k rela-
tivistické povaze jejich interakce a jej́ımu dopadu na spektrum cirkulárńıho
dichroizmu. Byly provedeny výpočty absorpčńıch spekter jednoduchých
systémů pro demonstraci vlastnost́ı matematického modelu. Také byly
provedeny výpočty spekter model̊u dimeru bakteriochlorofyl̊u, které byly
navrženy jako možná základńı jednotka v lamelárńım modelu vnitřńı struk-
tury chlorozomu. Experimentálńı spektra roztoku neagregovaného bakteri-
ochlorofylu byla použita pro nastaveńı parametr̊u matematického modelu
molekuly a pro tyto parametry byla spočtena spektra navržených model̊u
dimeru. Bylo zjǐstěno, že nové neelektrostatické členy v popisu vzájemné
interakce část́ı molekuly jsou zanedbatelné pro výpočet obyčejného ab-
sorpčńıho spektra, ale maj́ı silný vliv na spektrum cirkulárńıho dichroizmu.
Protože prezentovaný model popisuje vazbu elektron̊u a jejich pohyb velice
přibližným zp̊usobem, neńı jej ještě možné použ́ıt pro přesvědčivou analýzu
optických spekter komplikovaných systémů jako jsou molekuly a bakteri-
ochlorofylu a jejich agregáty.

Kĺıčová slova: chlorozom, agregát molekul, bakteriochlorofyl, teoretická
spektroskopie, cirkulárńı dichroizmus
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Abstract. A theory of absorption of light in an isotropic solution of
molecules was formulated on the basis of electromagnetic theory of par-
ticles with attention to relativistic nature of their interaction and its im-
pact on the spectrum of circular dichroism. Calculations of the absorption
spectra of simple systems were performed to demonstrate the properties
of the mathematical model. Also calculations of the absorption spectra
of the models of the bacteriochlorophyll dimer which were proposed as
possible basic unit in the lamellar model of the interior of a chlorosome
were performed. The experimental spectra of solution of non-aggregated
bacteriochlorophyll were used to fit the parameters of the mathematical
model of the molecule and for these parameters the spectra of the pro-
posed models of a dimer were calculated. It has been found that the new
non-electrostatic terms in the description of the mutual interaction of the
parts of the molecule are negligible for calculations of ordinary absorption
spectrum, but they have strong effect on the spectrum of circular dichro-
ism. As the presented model describes the bonding of the electrons and
their motion in a very approximate way, it is not yet possible to use it for
compelling analysis of optical spectra of complicated systems such as the
molecules of bacteriochlorophyll and their aggregates.

Key words: chlorosome, aggregate of molecules, bacteriochlorophyll, the-
oretical spectroscopy, circular dichroism
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Chapter 1

Introduction

1.1 Chlorosome

The study of photosynthesis is an activity on the border of physics, chem-

istry and biology that studies the mechanisms which plants and microscopic

organisms employ to feed directly on Sun’s energy. Besides the study of

photosynthesis in plants, one of the directions is the study of structure and

working mechanism of photosynthetic apparatus of photosynthetic bacte-

ria. Among many different kinds of such bacteria, the green sulfur bacteria

receive special attention due to distinction in the organization of their pho-

tosynthetic apparatus.

In many kinds of photosynthetic bacteria, such as the purple photosyn-

thetic bacteria (e.g. Rhodobacter sphaeroides) the harvest of light energy

is carried out by a large collection of bacteriochlorophyll (BChl) molecules

intermixed with protein molecules, called the antenna complex.

The antenna complex of the green sulfur bacteria such as Chlorobium

tepidum is different; it is all contained within a small body called chloro-

some, an ellipsoid organelle with dimensions of order 200 nm that contains

hundreds of thousands of BChl molecules. Its interior is composed of the

bacteriochlorophyll molecules, most usually the kind c,d and e, and there

are almost no protein molecules inside.1

Inside the chlorosome, the molecules of bacteriochlorophyll are believed

to undergo almost spontaneous aggregation with little or no help from the

protein molecules and to form aggregates - more or less regular structures

of densely packed molecules.2

1Besides BChl molecules, there is also small amount of carotenoids and quinones.
2More introductory information on the chlorosome can be found in the paper G. T.
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1.1. Chlorosome

Based on the observations of chlorosomes by electron microscope and

by other methods, various models of structure of these aggregates were

proposed. According to the model proposed by Staehelin et al. (1980)3 the

BChl molecules are arranged cylindrically into long rods.

This model was (after quite a long time), questioned by Pšenč́ık et al.

(2004)4 who did electron microscopic and X-ray diffraction study of frozen

chlorosome bodies from the bacteria of Chlorobium tepidum and concluded

that for the chlorosome of this bacterium the rod model is unlikely. They

suggested a new model which explains their observations better. In this

model, called the lamellar model, the BChl molecules form stacked sheets

that are parallel to the long axis of the chlorosome and undergo folding

and undulations in the plane perpendicular to it.

The authors suggested two distinct possibilities of how the individual

BChl molecules can be arranged to produce such lamellae - a parallel model

proposed by Smith et al. (1983)5 and an anti-parallel model of Brune et al.

(1988).6 We note that many more models were proposed for the aggregates

of chlorosome bacteriochlorophylls, some of which are variations of these

two. The basic unit of these structures consists of a pair of BChl molecules

weakly bonded to each other, which we shall call dimer.

Oostergetel, H. v. Amerongen, E. J. Boekema, The chlorosome: a prototype for effi-
cient light harvesting in photosynthesis, Photosynth. Res. (2010) 104:245-255, and the
review N.-U. Frigaard, D. A Bryant, Chlorosomes: Antenna Organelles in Photosyn-
thetic Green Bacteria, Microbiol. Monogr. 2006, Springer. See also the www page
http://www.bio.ku.dk/nuf/research/chlorosome.htm .

3L. A. Staehelin, J. R. Golecki and G. Drews, Supramolecular organization of chlorosome
(Chlorobium vesicles) and of their membrane attachment site in Chlorobium Limicola, Biochim.
Biophys. Acta. 589:30–45., (1980).

4J. Pšenč́ık et al., Lamellar Organization of Pigments in Chlorosomes, the Light Harvesting
Complexes of Green Photosynthetic Bacteria, Biophysical Journal, Vol. 87, (2004), p. 1165-
1172.

5K. M. Smith, L. A. Kehres and J. Fajer, Aggregation of the bacteriochlorophylls c, d, and e.
Models for the antenna chlorophylls of green and brown photosynthetic bacteria., J. Am. Chem.
Soc. 105: 1387–1389 (1983)

6D. C. Brune, G. H. King and R. E. Blankenship, Interactions between Bacteriochlorophyll c
molecules in oligomers and in chlorosomes of green photosynthetic bacteria. In: Photosynthetic
Light-Harvesting Systems Scheer H and Schneider S (eds) Photosynthetic Light-Harvesting
Systems, Walter de Gruyter, Berlin (1988), p. 141–151.
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Chapter 1: Introduction

1.2 Bacteriochlorophyll c, d, e

In order to understand the geometry and binding of these dimers, we need

to understand the structure of the chlorosome bacteriochlorophylls first.

The general skeletal formula of these molecules, adopted from Blankenship

et al. (1995)7 is below.8

O

N

N

N

N

R2
O

H

Mg

III

IV III

V

H3C

COOR5

R4

R3
H3C

R1

H

H
132

131

20

3

C H

CH3

*

8

12

31

residue BChl c BChl d BChl e

R1 Me H Me
R2 Me Me CHO
R3 Et, nPr, iBu Et, nPr,iBu, neoPent Et, nPr, iBu, neoPent
R4 Me, Et Me, Et Et
R5 Stearyl, Farn., others Farn. others Farn., others

Table 1.1: Skeletal scheme of molecules bacteriochlorophyll c, d, e and possible
residues substituted on the rim of the central chlorine ring I-II-III-IV. According
to Blankenship et al. (1995).

The bacteriochlorophylls c,d,e differ from the other kinds of bacteri-

ochlorophyll most notably in that they lack the methylcarboxyl group on

the carbon C-132 and contain polar group OH substituted at the carbon

7R. E. Blankenship, J. M. Olson, M. Miller, Antenna Complexes from Green Photosynthetic
Bacteria, Advances in Photosynthesis, vol. 2, Kluwer, 1995, chap. 20.

8The picture file was adopted from https://pl.wikipedia.org/wiki/Bakteriochlorofile and
modified with help of the program Inkscape available on http://www.inkscape.org.
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1.3. Dimers

atom C-31. The spontaneous aggregation of BChl c,d,e into dimers or

larger aggregates with little or no help from proteins is explained by mu-

tual bonding of this OH group of one molecule with the central Mg atom

of another molecule. Chlorosomes may contain mixture of two or more

kinds of the bacteriochlorophylls c, d, e, but the chlorosome of Chlorobium

tepidum contains mainly the bacteriochlorophyll c. In the following text,

we will focus on the kind c only. Detailed information on bacteriochloro-

phylls and chlorophylls can be found in the review by Scheer et al. (2006).9

1.3 Dimers

The two models of organization of bacteriochlorophyll in lamellae are de-

picted in the figures below. In both models, the stacking distance d of

the chlorine rings of the dimer is believed to be in range 3.3 − 4.2 Å, as

suggested by Pšenč́ık et al. (2004).

In the parallel dimer, the second molecule is put below the first and

translated in direction from OH to Mg so that the OH group of the 2nd

molecule ends up below the Mg atom of the first molecule and they can

form weak bond.

In the anti-parallel dimer, the second molecule is again put below the

first, but then it is rotated in the plane of the ring around the Mg atom

by 180◦ and translated in direction from Mg to OH, so that the Mg atom

of the 2nd molecule ends up below the OH group of the 1st molecule and

vice versa and they can form two weak bonds.

However, it is believed that only one arrangement is prevalent in chloro-

some, so the next question is: assuming that these are the only basic possi-

bilities, which one is closer to the actual structure of the aggregates in the

chlorosome?

When such question about three-dimensional arrangement of atoms in

large molecule (e.g. for a protein) arises, the usual course of action is to

grow a crystal composed of many units of the studied molecule, perform

an X-ray diffraction experiment and from the analysis of the diffractogram

infer the structure of the unit cell, which is supposed to be similar to the

natural structure of the molecule in vivo.

9H. Scheer (auth.), B. Grimm, R. J. Porra, W. Rüdiger, H. Scheer (eds.), Chlorophylls
and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications, Advances in
Photosynthesis and Respiration 25, Springer Netherlands, 2006.
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Chapter 1: Introduction

Figure 1.1: Parallel arrangement of bacteriochlorophylls. The molecules are
viewed from the plane of the chlorine ring. According to Pšenč́ık et al. (2004).

Figure 1.2: Antiparallel arrangement of bacteriochlorophylls. The molecules are
viewed from the plane of the chlorine ring. According to Pšenč́ık et al. (2004).

However, in the case of bacteriochlorophyll aggregates, the manufacture

of a crystal of sufficient size seems to be quite difficult task which has not

been accomplished yet. For this reason, other methods have been adopted

by scientists to study the structure of the chlorosome, both on the scale

of the closest molecular neighbours and also on the scale of the assumed

lamellae or rods made of large number of molecules.

1.4 Goal of the work

One of the methods that provides some information on the mutual position

and orientation of the molecules is absorption spectroscopy. The measured

spectrum and the relation between it and the structure can be used to infer

which possible arrangement of the molecules is the most probable.

In this work we attempt to use the measured spectra of bacteriochloro-

23



1.4. Goal of the work

phylls and their aggregates to infer which spatial arrangement of the molecu-

les is most likely. We had at our disposal ordinary absorption spectra

and circular dichroism spectra (differences of absorption of left-handed and

right-handed light) of separate molecules, dimers and even larger aggregates

of bacteriochlorophyll c molecules.

The methodology of our work should be as follows. First we formulate

the theory explaining the absorption spectrum in terms of a microscopic

model of the bacteriochlorophyll molecule. Then we try to find optimal pa-

rameters of this model to fit the absorption spectrum and circular dichro-

ism spectrum of a solution of non-aggregated bacteriochlorophyll molecules

(monomers). Finally, using these parameters we calculate the spectra for

the proposed geometries of dimer and compare them to measured spectra

of dimers. This procedure may allow us to infer which of the proposed

models of dimer describes best the actual dimers formed spontaneously in

the solution and perhaps also in the chlorosome.
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Chapter 2

Available data

2.1 Measured spectra

Our work is based on the experimental absorption spectra and circular

dichroism spectra of a liquid solution of bacteriochlorophyll monomers,

dimers and larger aggregates in an organic solvent.10 The aggregation

occurs spontaneously in non-polar solvents (such as hexane). The first

figure shows the absorption spectra, the second figure shows the circular

dichroism spectra (CD) of the same solutions.

For the lack of space on this page, the plots are given on the next page.

10These data were made available to us by doc. Jakub Pšenč́ık, PhD.
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2.1. Measured spectra
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Figure 2.1: Absorption spectra of solution of monomers, dimers and larger aggre-
gates. Both quantitites are in unknown units and the relation between the units
is also unknown.
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Chapter 2: Available data

Both intensities are given in unknown units, which means that only the

ratios of two intensities of the same quantity at different wave numbers

have physical meaning. The values of circular dichroism and of absorption

are in different unknown units so unfortunately we cannot infer anything

as to how strong the circular dichroism is.

On the other hand, the wave number axis is common to both plots;

they were created so as to facilitate the identification of the corresponding

bands in both plots.

From the absorption spectra the basic observation is that as the molecules

aggregate into dimers, their resonance frequencies decrease while the cor-

responding bands undergo broadening, and the same thing happens (albeit

less strongly) when passing from dimers to even larger aggregates. The

spectrum of monomer molecule (red) shows three main distinct bands I, II,

III, at wave numbers 15000, 23000 and 29500 cm−1.

Near the band I, there is another satellite band Ia at 15800 cm−1. The

band Ib is not visible well on the monomer spectrum, but is supposed to be

present there since it gets more pronounced as the aggregation proceeds.

Both satellite bands are only mildly pronounced and almost coalesce with

the main band.

The band II has also two satellites with higher frequencies that are so

close together that they coalesce together.

The band III does not have any further recognizable structure, and it

does not change its position with aggregation either.

In the case of circular dichroism, few basic comments can also be made.

The solution of monomer molecule (red) exhibits non-zero circular dichro-

ism at the resonance frequencies corresponding to the above absorption

bands. The band I at 15000 cm−1 has in CD spectrum characteristic glim-

mer, resulting from the subtraction of two bands of two different resonance

frequencies (for left-handed and right-handed light). The negative part of

the band has minimum at 15000 cm−1, so the right-handed light is absorbed

more strongly at this frequency. The positive part is at 15700 cm−1 but

is much lower, which means the left-handed light has a band that is not

so intense as that of right-handed light. The behaviour is converse for the

two other bands II and III, which show stronger absorption of left-handed

light.

As the aggregation proceeds towards dimers, great changes in the CD

27



2.2. Plan of the work

Band Position (cm−1) / Peak intensity
monomer dimer aggregate

I 15000 / 1.57 14000 / 0.69 13500 / 1.04
Ia 15800 / 0.40 14700 / 0.55 14800 / 0.39
Ib 16200 / 0.39 ? 15600 / 0.29 15700 / 0.26

II 23000 / 1.86 22700 / 1.24 22100 / 1.10
IIa 23800 / 1.64 23400 / 1.16 22900 / 1.15
IIb 25200 / 1.33 25000 / 0.88 24900 / 0.91 ?

III 29500 / 1.14 29400 / 0.80 29800 / 0.86

Table 2.1: Positions and intensities of the most pronounced bands in the absorp-
tion spectrum. The question marks denote bands that were almost unrecogniz-
able, so the corresponding numbers should be taken with a grain of salt.

spectrum take place. The peaks of the band I shift to lower frequencies and

are less pronounced, which is consistent with the behaviour of this band in

ordinary absorption spectrum. The changes in the peaks of the bands II

and III are more pronounced - the circular dichroism reverts sign, which

may be a sign of notable structure changes (such as formation of dimers).

2.2 Plan of the work

The plan of our work should be as follows. First we need to formulate

the macroscopic theory of the absorption spectra. Then we need some

microscopic model of the BChl molecule and its dimer. The model of a

bacteriochlorophyll molecule will employ several parameters ak describing

its microscopic structure and behaviour under action of a light wave. We

should choose their values in such a way that the model leads to spectra

of one molecule as similar to the experimental spectra as possible. The

best parameters a∗k may be used to calculate the spectra of the simplest

aggregates - dimers. Comparing them to the measured spectra, we may be

able to infer which geometry of dimers occurs naturally.
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Chapter 3

Macroscopic theory of light
absorption

In this chapter we summarize macroscopic theory describing the phenomena

of ordinary absorption and circular dichroism in isotropic liquids. This will

be useful in later chapters when we will discuss microscopic model of the

aggregate and seek its connection to the measured spectra.

3.1 Ordinary absorption

Linearly polarized light of angular frequency ω and constant intensity I0

is led to pass through a translucent cuvette containing the investigated

substance (e.g. bacteriochlorophylls) dissolved in a liquid solvent. Let us

denote the light intensity by I. This intensity is a function of distance z

the light wave has travelled in the liquid (we neglect the absorption in the

walls of the cuvette and the air).

If the solution is rare, the Lambert-Beer law is known to hold true with

good accuracy - the intensity of light decreases exponentially with distance:

I(z) = I0e
−Az. (3.1)

Here A is the absorption coefficient of the solution. It depends on the

frequency of the light wave and also on the composition of the solution.

As the pure solvent has also non-zero absorption in the studied interval

of wave numbers, the quantity A cannot be regarded as a property of the

solute molecules only.

In order to correct at least for the major part of the solvent absorption

and thus obtain a quantity that characterizes the solute more faithfully, it
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3.2. Circular dichroism

is customary to assume that the total absorption in solution is described

by the formula

I(z) = I0e
−(Nsoluteεsolute+Nsolventεsolvent)z. (3.2)

where Nsolute is the concentration of the solute molecules and εsolute is called

extinction coefficient of the solute.11 Similarly for the solvent.

When the solution in the cuvette is replaced by a pure solvent, we

assume that the intensity behaves according to the formula

I ′(z) = I0e
−N ′

solventεsolventz (3.3)

where the extinction coefficient of the solute is the same as before and

where the concentration of solvent molecules N ′
solvent is slightly different

than Nsolvent. However, if the solution was rare, with great accuracy the

concentration of pure solvent can be approximated by the concentration of

the solvent in solution Nsolvent.

Knowing both quantities for some z = d (width of the cuvette), we can

solve the above equations for the extinction coefficient of the solute:

εsolute =
1

Nsolute d
ln
I ′(d)

I(d)
. (3.4)

In general, the extinction coefficient is a function of frequency of light,

and this function or its plot is sometimes called absorption spectrum.

3.2 Circular dichroism

Another way to measure the ability of the medium to absorb light is to

use circularly polarized light, of which there are two kinds: left-circularly

polarized and right-circularly polarized (also called left-handed and right-

handed). It turns out that most molecules absorb light with different in-

tensity depending on the handedness of the light wave.

11If we imagined that light was some kind of material substance, the density of which was
proportional to the intensity of light I, and that the absorption of light was due to absorption
of this substance upon its impact on small impenetrable absorption centres, the extinction
coefficient would play role of average cross-section area of these centres. However, this picture
is rather misleading if pushed too far, as the wavelength of light is much higher than the
dimensions of such hypothetical absorption centers.
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Chapter 3: Macroscopic theory of light absorption

We can perform similar absorption measurement for the circularly po-

larized light as we described for linearly polarized light, only now the re-

sulting extinction coefficient may depend, besides frequency, also on the

handedness of the light wave. For left-handed light wave, we denote the

corresponding extinction coefficient by εL(ω). For right-handed light wave,

we have εR(ω).

In general, these two absorptions are not the same. Their difference

∆ε(ω) = εL(ω)− εR(ω) (3.5)

is called circular dichroism (CD spectrum). We may call it also differential

absorption coefficient. For common concentrations of organic molecules, it

is a quantity of many orders of magnitude (6-8) smaller than the extinction

coefficients themselves.

3.3 Electromagnetic theory of light

Let us consider the setup from previous section in the framework of elec-

tromagnetic theory. The light ray can be understood as an electromagnetic

wave whose electric field obeys the general wave equation(
1

c2
∂2
t −∆

)
E = −K

c2
∂tj−K∇ρ, (3.6)

where E is the macroscopic electric field vector, j is the macroscopic cur-

rent density and ρ is the macroscopic density of electric charge. The adjec-

tive ”macroscopic” is used in the sense that these are the quantities from

the macroscopic electromagnetic theory; they do not reflect the molecular

structure of matter and thus give only an approximate description of the

actual microscopic fields.

Since we are interested in dielectric liquid, we will neglect any possi-

ble conduction currents, and assume that the only current arises from the

charged particles bound in the molecules. The term K∇ρ can be dropped

out in isotropic medium, because the molecules are oriented randomly and

there is no systematic deviation from charge neutrality.12 Finally, it is

convenient to express j as a time derivative of another quantity, the polar-

ization potential P:

12This will be better explained after the definition of the macroscopic average in terms of the
microscopic quantities is given.
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3.4. Linearly polarized wave

j(z, t) = ∂tP(z, t), (3.7)

We would like to note that the polarization potential P is only an auxil-

iary mathematical quantity without direct physical interpretation; despite

its appearance, it is not necessarily the same as the macroscopic electric

polarization.13 The simplified wave equation governing the macroscopic

electric field is (
1

c2
∂2
t −∆

)
E = −K

c2
∂2
tP. (3.8)

3.4 Linearly polarized wave

We assume that in the medium, our damped wave propagating along the

axis z is described by the functions

E(z, t) = exE0e
−rz cos(Ωt− kz) (3.9)

B(z, t) = eyE0e
−rz cos(Ωt− kz) (3.10)

with frequency Ω, wave number k and absorption coefficient r. On account

of the absorption, the wave is assumed to fall down exponentially with

distance travelled.

In order to be possible for such a damped wave to be a solution of the

above wave equation, the polarization potential P has to oscillate with

phase behind the electric field and the phase lag has to be in the interval

(0, π). The potential P can be written in the convenient form

P(z, t) = ex
1

K
χE0 cos(Ωt− kz − ϕ) (3.11)

where χ is the coefficient of proportionality and ϕ is the phase lag of the

oscillations of P behind the electric field.

Because the considered quantities are harmonic functions of time and

space coordinates, the relation between them is conveniently handled by the

method of phasors. In this method, each harmonically oscillating quantity

13This is because the electric polarization refers to average electric moment of the molecules,
which is not always sufficient to determine the current density j. Actually, the current density
j is the basic quantity. Nevertheless, it is useful to define the potential P and use it to define
susceptibility χ̃.
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Chapter 3: Macroscopic theory of light absorption

is supplemented by a new complex variable - phasor - with the property

that the real part of the phasor gives the actual value of the quantity.

We introduce complex phasor for the electric field of dampe wave. For

field polarized along the axis x, the phasor is

Ẽ = exE0e
iφ′, (3.12)

where

φ′ = Ωt− (k − ir)z. (3.13)

Similarly, the phasor for the polarization potential is

P̃ = exχE0e
i(φ′−ϕ). (3.14)

Introducing complex susceptibility

χ̃ = χe−iϕ, (3.15)

we can write the relation between the electric field phasor and the polar-

ization potential phasor as

P̃ =
1

K
χ̃Ẽ. (3.16)

If the phase lag ϕ is in (0, π), the time average E · j is positive. This

means that the macroscopic field does work on the moving charges and the

Poynting energy of the field decreases.

On the other hand, if the phase is in the interval (π, 2π), the above

temporal average is negative; the medium does work on the field and the

energy of source driving the oscillations of the medium is converted into

the Poynting energy of the macroscopic wave.

Given the wave has frequency Ω and the medium has complex suscepti-

bility χ̃, what are the values of the angular wave number k and the damping

constant r of the electromagnetic wave?

Inserting the above expressions into the wave equation, we obtain the

equation:

− Ω2

c2
+ (k − ir)2 =

Ω2

c2
χ̃, (3.17)

where

χ̃ = χe−iϕ = R + iI. (3.18)
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3.4. Linearly polarized wave

Introducing the index of refraction n′ = k/(Ω/c), index of absorption

n′′ = −r/(Ω/c) and real (R) and imaginary (I) part of χ̃, we obtain the

equation

(n′ + in′′)2 = 1 +R + iI. (3.19)

The relevant solution is14

n′ =

√
1 +R +

√
(1 +R)2 + I2

2
, (3.20)

n′′ = sgnI

√
−(1 +R) +

√
(1 +R)2 + I2

2
. (3.21)

In case I � 1 + R, the last expression will contain difference of two

close numbers and this may be problematic in computer calculations. In

such case, it is convenient to re-express the corresponding quantity in a

way better adapted to finite-precision arithmetics, for example by use of

approximate Taylor’s series:

n′′ ≈ I

2

√
1

(1 +R)
− I2

4(1 +R)3
. (3.22)

The intensity of light is proportional to square of the electric field and

decreases with distance as

I(z) = I0e
−2rz. (3.23)

Comparing this to the Lambert-Beer law, we infer that the calculated ex-

tinction coefficient is

ε(Ω) =
2r

N
, (3.24)

or

ε(Ω) ≈ |I|
√

1

(1 +R)
− I2

4(1 +R)3

Ω

N c
. (3.25)

The functions R(Ω) and I(Ω) describe the behaviour of the molecules

under action of the light wave. These two functions can be found from a

microscopic model of the medium (molecules).

14The one giving positive index of refraction n′.
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Chapter 3: Macroscopic theory of light absorption

3.5 Circularly polarized wave

In certain media the above linearly polarized wave cannot propagate. For

example, in a solution of chiral molecules (one stereoisomer of glucose) the

light will constantly change direction of its polarization. This is explained

as follows. The medium has such material properties that do not allow

linearly polarized wave. However, it may be that circularly polarized wave

is allowed.

There are two distinct kinds of circularly polarized light, which can

behave differently in the medium. Both kinds can be visualized as a helical

curve made of points to which the electric vectors originating on the z axis

point at the same time.

3.6 Left circularly polarized light wave

If the shape of the helix is that of a left-handed screw, the light wave is

called to be left circularly polarized (or shortly, left-handed) and its electric

field can be described by the function

EL(z, t) = (ex cosφL + ey sinφL)E0e
−rLz, (3.26)

where

φL = Ωt− kLz.

When the image of the electric vector of left-handed wave rotating in

the xy plane is viewed by an eye placed at positive z (so that the light wave

is propagating towards the eye), it rotates counter-clockwise (to the left).

For left circularly polarized wave, E · Ḃ < 0.

The expression for the electric field and Maxwell’s equations determine

the expression for the magnetic field. From Faraday’s law

∇× EL = −1

c

∂BL

∂t
, (3.27)

we infer that

BL = E0

√
k2
L + r2

L

Ω/c
(ex sin(φL + αL) + ey cos(φL + αL)), (3.28)

where

αL = arctan
kL
rL

<
π

2
. (3.29)
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3.7. Right circularly polarized light wave
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Figure 3.1: Electric and magnetic vector of left-handed light wave.

3.7 Right circularly polarized light wave

If the shape of the helix is that of a right-handed screw, the light wave is

called to be right circularly polarized or right-handed and its electric field

can be described by the function

ER(x, t) = (ex cosφR − ey sinφR)E0e
−rRz. (3.30)

where

φR = Ωt− kRz.

When the image of the electric vector rotating in the xy plane is viewed

by an eye placed at positive z (so that the light wave is propagating towards

the eye), it rotates clockwise (to the right). For right circularly polarized

wave, E · Ḃ > 0.

The expression for the electric field and Maxwell’s equations determine

the expression for the magnetic field. From Faraday’s law

∇× ER = −1

c

∂BR

∂t
, (3.31)

we infer that

BR = E0

√
k2
R + r2

R

Ω/c
(ex sin(φR + αR)− ey cos(φR + αR)), (3.32)
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Figure 3.2: Electric and magnetic vector of right-handed light wave.

where

αR = arctan
kR
rR
− π (3.33)

and

− π < αR < −π
2
. (3.34)

3.8 Absorption of a circularly polarized wave

In the following text, the EM wave is supposed to have left circular po-

larization. In analogy with the case of linearly polarized light, we assume

that the medium has such an effect that the amplitude of the electric field

E decreases with distance z according to the formula

E(z) = E0e
−rRz,

where rR quantifies the absorption of left-polarized light.

As in the case of linearly polarized light, we assume that the magnitude

of the polarization potential is proportional to the electric field magnitude,

but its phase has non-zero phase lag behind it:

P =
1

K
χE[ex cos(φ− ϕ) + ey sin(φ− ϕ)]. (3.35)
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3.8. Absorption of a circularly polarized wave

After inserting this expressions into the wave equation, we find out that

χ, ϕ obey exactly the same relations as in the case of linearly polarized

light. The solution of these equations - the expressions for r, k in terms of

the real and imaginary part of susceptibility - are therefore the same. In

phasor notation,

ẼL = (ex − iey)E0e
iφL, (3.36)

P̃L =
1

K
χ̃LẼL (3.37)

and

ẼR = (ex + iey)E0e
iφR, (3.38)

P̃R =
1

K
χ̃RẼR. (3.39)

The same calculations and results hold both for the left-handed and

right-handed light wave. The susceptibilities for the two kinds of wave are

denoted by χL, χR; they differ in general and so do the quantities r, k. We

will denote those belonging to the left-handed wave by rL, kL and those

belonging to the right-handed wave by rR, kR.

The difference between the absorption of left-handed and right-handed

light as a function of frequency Ω is called circular dichroism (CD):

∆ε = εL − εR. (3.40)

The difference is usually a quantity of much lower order of magnitude

than εL or εR; we have to do with difference of two very close numbers.

Experimentally, CD may be 6-8 orders of magnitude smaller than the ordi-

nary absorption εL. This means that if we want to use the above formula

for CD, we should be careful enough to calculate the absorptions εL, εR
accurately to more than 6-8 significant digits.
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Chapter 4

Connections to microscopic theory

In order to infer some information on the microscopic structure of the

molecules from the absorption spectra, we have to understand the process of

absorption in terms of a microscopic mathematical model. Mathematically,

we need to find the connection between the macroscopic current density j

and microscopic current density jµ.

4.1 Orientation of the molecule

Liquid solution contains many molecules placed and oriented in a random

way. The orientation of the molecule has an important effect on the way

the driving forces of light influence the oscillations of its electrons and also

on the way these oscillations influence back the macroscopic light wave. We

need to describe these orientations mathematically and be able to average

over them.

In order to simplify the problem, we will assume that the molecule

behaves as a rigid body, i.e. its configuration with respect to the laboratory

is determined by 3 coordinates x, y, z of its central point and by 3 angles

ϕ, ϑ, α. We want to define these angles in such a way that the probability

distribution function of these angles, corresponding to random orientation,

can be easily found.

The procedure of orienting the body into any orientation is, in few

words, this. First we rotate the body around its Z axis by the angle ϕ

in the positive sense. Then we rotate it around its axis Y by angle ϑ in

the positive sense, so that the axis X ends up below the plane xy of the

laboratory system. At this point, the position of the axis Z is given by the

spherical angles ϕ, ϑ.
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4.1. Orientation of the molecule
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Figure 4.1: Used rotations.
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Chapter 4: Connections to microscopic theory

Finally, we rotate the unit around its axis Z by angle α in the positive

sense. From this it is clear that the angle ϕ takes values from 〈0, 2π), ϑ

from 〈0, π) and α from 〈0, 2π).

The total effect of the three rotations can be written down as the matrix

R that gives the new coordinates r′′′ of the point P in the final position as

a function of the old coordinates r:

r′′′ = Rr. (4.1)

The rotation matrix R is a function of the rotation angles and can be

written as the product

R(ϕ, ϑ, α) = Rz′′(α)Ry′(ϑ)Rz(ϕ). (4.2)

Here the matrix Rz(ϕ) rotates the vector around the axis z. The new

rotated system is S′ and its axes are x′y′z′.

The matrix Ry(ϑ) rotates the vector around the axis y′. The new rotated

system is S′′ and its axes are x′′y′′z′′.

The matrix Rz(α) rotates the vector around the axis z′′. The new

rotated system is S′′′ and its axes are x′′′y′′′z′′′.

We need these matrices expresed in the laboratory system. The mutual

orientation of the laboratory system S and the system S′ is described by

the matrix of transformation C. This matrix is such that

C−1r = r′ (4.3)

or

Cr′ = r, (4.4)

so obviously it is equal to the matrix of the first rotation:

C = Rz(ϕ). (4.5)

Next, the second rotation consists of rotation around the axis y′ of

the system S′. We can express the rotation in the coordinates of S′ and

transform back to S:

Ry′(ϑ) = CM2(ϑ)C−1. (4.6)
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4.1. Orientation of the molecule

The mutual orientation of the laboratory system S and the system S′′

is described by the matrix of transformation D. This matrix is equal to

the matrix of the first two rotations:

D = Ry′(ϑ)Rz(ϕ). (4.7)

The third rotation consists of rotation around the axis z′′ of the system

S′′. Again, we express it in the coordinates of S′′ and transform back to S:

Rz′′(α) = DM3(α)D−1. (4.8)

Putting all pieces together, we obtain slightly surprising result

R = M3(ϕ)M2(ϑ)M3(α), (4.9)

since the order of the angles is exactly the opposite to the one given in the

definition of the rotations.

The basic matrices are

M3(ϕ) =

 cosϕ − sinϕ 0

sinϕ cosϕ 0

0 0 1

 , (4.10)

M2(ϑ) =

 cosϑ 0 sinϑ

0 1 0

− sinϑ 0 cosϑ

 , (4.11)

M3(α) =

 cosα − sinα 0

sinα cosα 0

0 0 1

 . (4.12)

We would like to find the matrix of the whole operation in the laboratory

frame. This matrix has components

R = cosϕ cosϑ cosα− sinϕ sinα − cosϕ cosϑ sinα− sinϕ cosα cosϕ sinϑ
sinϕ cosϑ cosα+ cosϕ sinα − sinϕ cosϑ sinα+ cosϕ cosα sinϕ sinϑ

− sinϑ cosα sinϑ sinα cosϑ

 . (4.13)

The transformation of coordinates to the system S′′′ is effected by

r′′′ = R−1r (4.14)
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Chapter 4: Connections to microscopic theory

where

R−1 = M3(−α)M2(−ϑ)M3(−ϕ), (4.15)

R−1 = cosα cosϑ cosϕ− sinα sinϕ cosα cosϑ sinϕ+ sinα cosϕ − cosα sinϑ
− sinα cosϑ cosϕ− cosα sinϕ − sinα cosϑ sinϕ+ cosα cosϕ sinα sinϑ

sinϑ cosϕ sinϑ sinϕ cosϑ

 . (4.16)

4.2 Averaging

What probability distribution function f(ϕ, ϑ, α) is the most appropriate

one to describe the fact that the molecule has random orientation?

Considering briefly the above definition of the angles, it follows quite

naturally that the pairs of angles ϕ, ϑ have to be chosen from uniform dis-

tribution on a sphere 1
4π sinϑ, since this is the only distribution that gives

equal density of probability for the final position of the axis Z. The remain-

ing angle α does not influence the position of Z and has to be chosen from

uniform distribution 1
2π on the interval 〈0, 2π), since there is no preferred

orientation of the axes X, Y for the already fixed orientation of Z. The total

probability distribution is therefore product of these two distributions:

f(ϕ, ϑ, α) =
1

8π2
sinϑ. (4.17)

4.3 Macroscopic electric current density

From the viewpoint of the molecular theory of matter, it is not clear at

once why the older theory of smooth fields works so well; the electromag-

netic fields between the molecules are not smooth, slowly varying functions

of position as the macroscopic theory assumes. What is the connection

between the smooth macroscopic field and the fluctuating microscopic field

?

Often the macroscopic quantities like current density j are thought to

be generalized spatial averages of the corresponding microscopic quantities,

as explained, for example, in the paper by Russakoff.15 In this approach,

the macroscopic quantity E is defined as an integral of the corresponding

microscopic quantity Eµ with some bell-like weighing function w(ρ) :

15G. Russakoff, A Derivation of the Macroscopic Maxwell equations, Am. J. Phys. 38, 1188
(1970).
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4.3. Macroscopic electric current density

〈Eµ(x)〉 =

∫
Eµ(x + ρ)w(ρ) d3ρ. (4.18)

This integral is over the whole space and the weighing function w(ρ)

has support extending in all directions and is usually isotropic and smooth.

This definition can be used for any other microscopic field - electric charge

density, elecric field, etc. It has the advantage that the formal derivation

of the relation

∇ ·P = −ρp, (4.19)

between macroscopic polarization P and macroscopic density of the bound

or ”polarization” charge ρp, known from the macroscopic electromagnetic

theory of dielectric, is straightforward provided both of these quantities are

defined as the above integrals of certain microscopic quantities.

However, this approach has also its disadvantages and there are reasons

which make it unsatisfactory for the description of dispersion phenomena.

For example, the above integral depends on the choice of the weighing func-

tion and is thus arbitrary, so we cannot expect to have a definite relation

between the microscopic and the macroscopic field, like the one considered

in the Lorentz local field theory. Also, the integration seems to be a re-

versible transformation for most regular functions w(ρ), so the microscopic

field Eµ can be reconstructed back from the so defined macroscopic field

〈Eµ〉 by inverting the integral operator, while the macroscopic field E used

in the dispersion theory carries no such information.

The weighing function is often imagined to be such that non-zero con-

tributions come from places having distances much greater than the typical

dimension of a molecule in every direction. This is to make the result not

vary appreciably over the molecular distances. However, the variation of

the macroscopic electric field over the length of the molecule in the direc-

tion of the wave propagation is a necessary part of the very explanation of

the phenomenon of optical activity and circular dichroism in particular. It

does not seem advisable to define macroscopic electric field by averaging

microscopic field from places with different coordinates z, which have dif-

ferent expected phases. What is the purpose of macroscopic electric field

on the plane z = z0, where z is the coordinate along the axis of wave

propagation? In the theory of dispersion, the macroscopic electric field on

the plane z is used to calculate the driving forces acting on the molecules.
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Chapter 4: Connections to microscopic theory

The average field thus has the role of estimate of the actual microscopic

field acting on the molecule at z. It makes no sense to spoil the quality of

this estimation by using macroscopic field defined as average of quantities

belonging to different z. Also from the numerical point of view, adding

numbers with different expected values (due to different z) would spoil the

speed of convergence of the averaging process.

For these reasons, we introduce different averaging method, which is free

of the above mentioned objections. Instead of averaging over the whole

space with arbitrary weighing function, the macroscopic electric field at

z0 is defined as an average of the microscopic electric field over a large

square lying in the plane z = z0 perpendicular to the direction of wave

propagation:

E(z0, t) =
1

L2

L/2∫
−L/2

L/2∫
−L/2

Eµ(x, y, z0, t) dxdy. (4.20)

Similarly for the current density and other quantities whose macroscopic

version depends only on the coordinate z and time t.

However, should we use this formula for electric current density, we

would have to consider individually many different molecules at random

positions with random orientations and numerically integrate microscopic

current density due to them on a large plane, a task which is very de-

manding since great many molecules would be required to obtain average

comparable to the measurements. It would be better to estimate the result

of such averaging by some faster and more convenient method.

This can be achieved by replacing the spatial integration of current

density of many molecules by integration of the current density of one

molecule J over a probability distribution of its position and orientation.

Consider a molecule whose configuration s – its position and orientation

with respect to the laboratory – is given by three coordinates of its centre

and three angles of rotation (we assume that the molecule is a rigid body)

as written in the list

s = (xc, yc, zc, ϕ, ϑ, α). (4.21)

The set of all such configurations forms a configuration space of the molecule.
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4.3. Macroscopic electric current density

Let the microscopic current density due to this molecule at the point

x, y, z0 at time t be denoted as

J(x, y, z0, t|xc, yc, zc, ϕ, ϑ, α), (4.22)

or simply as

J(x, y, z0, t|s). (4.23)

In a liquid solution, there are many molecules that contribute to the

total microscopic current density jµ. We will assume that these molecules

can have any orientation and position with equal probability, but for the

sake of simplicity we will restrict their position to be inside of a box B of

dimensions L× L× L.

We introduce density function ρ(s) such that the expression∫
I
ρ(s) ds (4.24)

gives the expected number of molecules that have their configuration within

the subset I of the just introduced configuration space. The total expected

number of molecules in the box is

∫ 2π

0
dα

∫ π

0
dϑ

∫ 2π

0
dϕ

L/2∫
−L/2

dzc

L/2∫
−L/2

dyc

L/2∫
−L/2

dxc ρ = (4.25)

= N L3 (4.26)

where N is the concentration of the molecules. From this and from the

definition of the angles we infer that the density function is

ρ(s) = N
1

8π2
sinϑ. (4.27)

We now come back to averages. Instead of the actual spatial average

suggested above, we propose this formula for the average current density

at any point xyz0:

j(x, y, z0, t) =

∫
J(x, y, z0, t|s) ρ(s) ds. (4.28)
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Note that instead of the spatial averaging of the actual current density jµ
at different points of space, here we average different currents at one point

of space due to many possible, differently spaced and oriented molecules.

Because the box is finite, the points with the same z0 but different x, y

are not entirely equivalent and the resulting average will slightly vary with

x, y. However, because we consider plane waves, we are interested only in

the variation of macroscopic quantities in the direction of the axis z. It is

therefore useful to simplify the next considerations by extending the box

and the corresponding integration to infinity in all directions. This way,

the arbitrary L is removed as well. Then we write the integral as

j(x, y, z0, t) =

∫
J(x, y, z0, t|s) ρ(s) ds, (4.29)

or in more detail,

j(x, y, z0, t) =

∫ 2π

0
dα

∫ π

0
dϑ

∫ 2π

0
dϕ

∞∫
−∞

dzc

∞∫
−∞

dyc

∞∫
−∞

dxc

J(x, y, z0, t|xc, yc, zc, ϕ, ϑ, α, [Ωt− kzc]) N
1

8π2
sinϑ. (4.30)

The quantity in the brackets [ ] reminds the relevant phase of the wave

of the macroscopic electric field at the position of the molecule zc at time

t; k is the wave number of the macroscopic wave.

Since the integration has been extended to the whole space and the

concentration N is uniform in space, the result should be independent

of the coordinates x, y. The resulting current density should depend only

on the coordinate z0. It is expected to behave as a wave with the same

wavelength as the macroscopic electric field.

The last expression is more promising than the original definition, since

it refers to one function J describing the kind of molecule considered, not

many different functions due to many molecules. Still, it has one apparent

disadvantage. When the integration is expressed as a large sum, it requires

repetition of the calculation of the microscopic current density for many

molecules of different configuration s and then uses only a thin slice of

the molecule’s current density at plane z = z0; the rest of the current

density at planes z 6= z0 is discarded. Since the numerical calculations of

the molecular current density in their simplest form will yield the current
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4.3. Macroscopic electric current density

distribution in the whole space already, this is not a very efficient use of

the calculated data. It is desirable to find a way to use the results of these

calculations more efficiently.

We do this by ”displacing all the molecules into the origin” and ”adding

the currents at different positions at correspondingly different times”.

Figure 4.2: Schematic picture of electric current density of the molecule (blue)
in two equivalent situations: a) at the point x, y, z0 at time t; b) at the point
x, y, z0 − zc at time t − zc

vf
. The red line pictures the phase of the macroscopic

electromagnetic wave and the arrow its direction of propagation.
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Chapter 4: Connections to microscopic theory

Since we deal with wave propagation, the microscopic current density

at the point x, y, z0 at time t due to a molecule centred at xc, yc, zc is the

same as the microscopic current density at the point x− xc, y − yc, z0 − zc
due to molecule centred at x = y = z = 0 at time t− zc

vf
. The quantity vf

is the phase velocity of the macroscopic wave.

In this way, we can move all the molecules to the same place with

coordinates x, y, z = (0, 0, 0) and rewrite the integral as

∫ 2π

0
dα

∫ π

0
dϑ

∫ 2π

0
dϕ

∞∫
−∞

dzc

∞∫
−∞

dyc

∞∫
−∞

dxc

J(x− xc, y − yc, z0 − zc, t−
zc
vf
|0, 0, 0, ϕ, ϑ, α, [Ωt]) N

1

8π2
sinϑ. (4.31)

Now we introduce new coordinates x′, y′, z′ referring to the coordinate

system centred in the molecule:

x′ = x− xc, (4.32)

y′ = y − yc, (4.33)

z′ = z0 − zc. (4.34)

The macroscopic current density is given by

j(z0, t) =

∫ 2π

0
dα

∫ π

0
dϑ

∫ 2π

0
dϕ

∞∫
−∞

dz′
∞∫
−∞

dy′
∞∫
−∞

dx′

J(x′, y′, z′, t− z0 − z′

vf
|0, 0, 0, ϕ, ϑ, α, [Ωt]) N

1

8π2
sinϑ. (4.35)

This expression has the advantage that the whole calculated current

density is used. It suffices to calculate it for the molecules that are centred

at the same point 0,0,0; however, we still need to calculate it for different

orientations of the molecule and average over them.
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4.4. Acting field and effective field

4.4 Acting field and effective field

In order to find the microscopic current density of a molecule, we need to

find electromagnetic fields acting on the molecule - the ”acting” fields. Now

we will consider only the electric field.

In stationary regime, when the molecule oscillates under action of har-

monically oscillating external forces, we know that the current density is

an harmonic function of time too.16 But to describe optical activity the

time dependence of the acting field is no longer sufficient; we need also the

spatial dependence of this acting field.

Although the acting field will have the same angular frequency at any

fixed point of space, spatially it will vary in a complicated manner, since

other randomly spaced molecules scattering the primary wave are present.

We do not want to consider many molecules individually, so we will

not attempt to find this acting field from the configurations of those many

molecules. Rather we would like to use a simple function of spatial coordi-

nates - the effective field Eeff - to describe approximately the actual acting

field.

We assume that the macroscopic field of a left-circularly polarized wave

at the point O is given by

E(0, 0, 0, t) = E0

(
ex cos Ωt+ ey sin Ωt

)
. (4.36)

The effective field Eeff which we shall use has the following properties.

Its oscillation at the point of the molecular centre is in phase with the

oscillations of the macroscopic field at that point; when the molecule is at

z = 0, we assume that the effective field at that point can be written as

Eeff(0, t) = κE(0, t) (4.37)

with some constant κ.17

For the calculation of the molecular oscillations we need also the spatial

dependence of the effective field. One may think that similar relation holds

true for any point on the axis z, in other words that the equation

16At least in the first approximation.
17This assumption is taken from the theory of ordinary absorption and dispersion, where it

is quite fruitful.

50



Chapter 4: Connections to microscopic theory

Eeff(z, t) = κE(z, t) (4.38)

is true. However, this cannot be so, since E(z, t) is a wave with phase

velocity of macroscopic wave which does not obey Maxwell’s equations for

vacuum, while the effective field is in vacuum. Since the particles forming

the molecule are in vacuum, the most appropriate expected field acting on

them seems to be that of a plane wave in vacuum, which has phase velocity

c. That is, the appropriate wave number to be used seems to be k0 = Ω
c ,

not the wave number k of the macroscopic wave. For the left-handed light

wave, the effective field around the point (0,0,0) is assumed to be

Eeff(z′, t) = κE0

(
ex cos(Ωt− k0z

′) + ey sin(Ωt− k0z
′)

)
. (4.39)

In reality, of course, due to the other molecules, the acting field varies

with the coordinates x′, y′ as well; and for each different molecule, this field

will be different. However, the method of effective plane wave works quite

well in the theory of ordinary dispersion and absorption. We will use it for

circular dichroism as well and assume it describes the average acting field.

If the synchronization of E and Eeff occurs at the centre of the molecule,

it cannot occur at the other points on the z-axis, since the wavelength of

the fields is not the same. The choice of the centre to be the point of

synchronization seems to be somewhat arbitrary and unsatisfactory. Here

we will simply assume that it does not cause any significant troubles.

4.5 Application to point-like particles bound to immovable centers

We consider a rigid aggregate of many interacting localized oscillators a.

The radius vector of the a-th immovable center is denoted by Ra; the aggre-

gate is placed into the point (0,0,0) of the laboratory coordinate system.

The position of the a-th negatively charged particle is Ra + ua(t). The

microscopic current density is given by

jµ(x, t) =
∑
a

qava(t)δ(x−Ra − ua(t)). (4.40)

We find the macroscopic current density as a function of z by applying

the general formula derived above. The result of spatial integration is
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4.6. Vanishing of ∇ρ in isotropic dielectric liquid

approximately

j(0, t|ϕ, ϑ, α) = N
∑
a

qava

(
t+

Ra,z

vf

)
. (4.41)

where the possible higher harmonics were discarded.18 In order to obtain

the macroscopic current density, this expression has to be further averaged

over all orientations.

4.6 Vanishing of ∇ρ in isotropic dielectric liquid

Now we can explain why we could drop out the term K∇ρ from the macro-

scopic wave equation in the previous chapter. In microscopic theory, the

wave equation is (
1

c2

∂2

∂t2
−∆

)
Eµ = −K

c2

∂jµ
∂t
−K∇ρµ. (4.42)

The term K∇ρµ is present and is nonzero at places where the charged

particles are present. The passage to macroscopic theory is made by the

procedure we indicated in previous sections. The charge density ρµ is inte-

grated over large sheet to give macroscopic charge density:

ρ(z0) =
1

L2

∫ L

−L

∫ L

−L
ρµ(x, y, z0)dx dy. (4.43)

Since the EM field oscillates in the plane xy and the molecules are

oriented randomly, the systematic oscillations of the charges occur also in

the plane xy. There is no systematic loss or increase of charge at one such

plane z = z0, so the above average is to be assigned value 0 for all z0.19

Consequently, the wave equation for averaged quantities is(
1

c2

∂2

∂t2
−∆

)
E = −K

c2

∂j

∂t
. (4.44)

4.7 On the microscopic model

18We assume that the amplitude of oscillation of ua is much lower than the typical distance
between the oscillators.

19This is not true in crystals, where the molecules are oriented in one direction and EM
oscillations in one plane can excite systematic oscillations of charges in other plane.
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In order to calculate the spectrum of the solution of the BChl molecules, we

have to formulate a microscopic model that will enable us to calculate the

microscopic current density due to these molecules. We have to go to such

a level of sophistication that the resulting model will be capable to account

for different behaviour of the molecule in the presence of left-handed and

right-handed light wave.

There have been many distinct attempts to formulate such microscopic

model. The basic two approaches are 1) models based on the Schrödinger

equation and 2) models based on the Newtonian equations of motion.

The Schrödinger equation has been very successful in explaining various

properties of molecules and there also exists significant literature on the

theory of optical activity based on it. An introduction to these theories

can be found in the review by Moscowitz20 and Tinoco.21 They express the

circular dichroism spectrum as a function of (theoretically infinite number

of) matrix elements of molecular electric moment and magnetic moment.

These models pose certain difficulties. For example, they do not allow

simple inclusion of the phenomenon of damping (line broadening). This is

usual for any Hamiltonian model; the necessary irreversibility is often put in

the model by theoretically not very satisfactory application of the ”golden

rule”, or better, it is simulated by connecting the system to another, much

larger system that acts as a source of noise and, on average, also as a source

of damping.

In contrast, a model based on the Newtonian equations of motion can be

easily supplemented by a damping term with no need to simulate another

complicated system. That being said, the Schrödingerian model is still very

useful even without ability to describe the damping, as it provides a general

method for predictions of resonance frequencies of the molecules.

However, when we pass to calculations of circular dichroism and optical

rotatory dispersion, another drawback of the Hamiltonian formalism ap-

pears. As is generally known, the difference in the response of the system

to left-handed and right-handed wave arises because the driving field is not

constant throughout the molecule, but varies harmonically in space along

20A. Moscowitz, Theoretical aspects of optical activity, Part One: Small molecules, Advances
in Chemical Physics, Vol. IV, p. 67-112 (1962).

21I. Tinoco, Theoretical aspects of optical activity, Part Two: Polymers, Advances in Chem-
ical Physics, Vol. IV, p. 113-160, (1962).
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4.7. On the microscopic model

the direction of propagation of the wave. It is the difference in the field at

different parts of the molecule that enables it to ”feel” the chiral character

of the driving wave. If the wave number of the wave propagating along the

axis z is k = 2π
λ , the electric field strength amplitude E0 and the dimen-

sion of molecule in the direction of propagation R, the actual field values

differ from the value at the center of the molecule by quantity of order of

magnitude of 2πRλE0.

This quantity is much smaller than the amplitude E0, so it can be said

that circular dichroism is a quantity very sensitive to small variations of

the driving wave. However, the driving electric field is not the total field

affecting the internal motions in the molecule. There are also interaction

electromagnetic fields acting on one part of the molecule due to its other

parts. These fields oscillate at the same frequency as the driving wave,

and may have amplitude F0 comparable or even higher than E0, if the test

point is close enough to the charged electrons. From the point of view of

charged particle, it does not matter whether the field originates in distant

source or nearby part of the molecule; for calculation of circular dichroism,

a systematic account of the wave-like character of the EM field seems to

be necessary.

For this reason we cannot replace the interaction fields by the electro-

static dipole fields as is done in ordinary absorption spectroscopy; such

approximation may give value for the interaction field that differs from the

actual one by quantity comparable to 2πRλF0 and the calculation of the CD

spectrum may be spoiled by too great errors.

This point of view will perhaps appear less strange after some numerical

estimates are made. We will estimate the various corrections needed to

correct the approximate electrostatic dipole field to give exact retarded

electromagnetic field of an oscillating charge.

Let the position, velocity and acceleration of the charged particle b in

an inertial reference frame be described by functions of time rb(t), vb(t)

and ab(t). We now state the exact retarded electromagnetic fields at the

point x, t due to this particle. We will need the radius vector rb, velocity

vb and acceleration ab at a past time such that the light signal from [rb]

will arrive at position x at time t. We denote these retarded quantities by

[rb], [vb], [ab]. If we introduce the retarded distance
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Chapter 4: Connections to microscopic theory

R = x− [rb], (4.45)

and its magnitude R, from the above definition we obtain the condition

defining R:

R = x− rb

(
t− R

c

)
. (4.46)

We also introduce the quantities

n =
R

R
, (4.47)

βb =
[vb]

c
, (4.48)

γb =
[ab]

c
. (4.49)

The retarded electric field at the position x and time t can be written

as a sum of two parts

Eb = Eb,near + Eb,far, (4.50)

which we may call the ”near” field and the ”far” field.22 The near field is

Eb,near(x, t) =
Kqb
4π

(
1− β2

b

)
(1− βb · n)

3

n− βb
R2

, (4.51)

and the far field is

Eb,far(x, t) =
Kqb
4π

1

(1− βb · n)
3

n× {(n− βb)× γb}
cR

. (4.52)

The far field seems negligible in the vicinity of the molecule, but falls

off more slowly with distance, so it becomes important for the interaction

of more distant molecules. The electromagnetic field (light) from distant

sources is given almost entirely by the far field.

We remind that all the quantities right of the constant prefactor are to

be taken at the retarded time. Derivation of these formulae can be found

in Jackson’s textbook.23

22These names are already in use in the antenna theory, where they have somewhat different
meaning.

23J. D. Jackson, Classical Electrodynamics, John Wiley & Sons, 3rd ed., 2001, sec. 14.1 .
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Let us estimate the magnitudes of the contributions to the field due

to electron oscillating under action of an oscillating external field. For

moderate fields the amplitude of the electron will be very small and we

can simplify the expression for the retarded field by linearization in the

electronic position vector ub. The result is

E(rb, t) =
Kqb
4π

[
n0

R2
0

+
1

R3
0

(
[ub]− 3([ub] · n0)n0

)
+ (4.53)

+
1

cR2
0

(
[u̇b]− 3([u̇b] · n0)n0

)
+ (4.54)

+
1

c2R0

(
[üb]− ([üb] · n0)n0

) ]
, (4.55)

where R0 is the distance from the average position of the electron to the test

point x and n0 is unit vector pointing from the average position towards

the test point. We may call the various terms Coulomb field, dipole field,

velocity field and acceleration field. The three last of them are functions

of past motion of the electron.

We will assume that the electron oscillates under driving wave of op-

tical wavelength λ = 600 nm described by E(t) = ezE0 cos Ωt with E0 =

10−15 N/e.24 The electron will perform oscillations in antiphase described

approximately by

ub(t) = −ezx0 cos Ωt

with amplitude

x0 =
qE0

mΩ2
. (4.56)

We can easily evaluate the magnitude of all of the interaction terms. For

each term, we also calculate the correction to its instantaneous simplifica-

tion due to retardation. Since all the terms oscillate at angular frequency

2πc/λ and we consider distances R � λ, the retardation correction is al-

ways 2πRλ times the contributing term. The resulting values in the above

table show that on the atomic and molecular scale R ≈ 1 − 10 Å the

retardation correction to the electrostatic dipole field and the velocity field

24Intensity corresponding to light of a pocket laser with mW power and light ray cross-section
in orders of mm2.
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Field term magnitude (N/e) R = 1 Å R = 10 Å R = 100 Å

Eext E0 10−15 10−15 10−15

δEext
2πR
λ
E0 1.0 · 10−18 1.0 · 10−17 1.0 · 10−16

Edip Kq2E0
λ2

16π3mc2R3 2.6 · 10−14 2.6 · 10−17 2.6 · 10−20

δEdip Kq2E0
λ

8π2mc2R2 2.7 · 10−17 2.7 · 10−19 2.7 · 10−21

Evel Kq2E0
λ

8π2mc2R2 2.7 · 10−17 2.7 · 10−19 2.7 · 10−21

δEvel Kq2E0
1

4πmc2R
2.8 · 10−20 2.8 · 10−21 2.8 · 10−22

Eacc Kq2E0
1

4πmc2R
2.8 · 10−20 2.8 · 10−21 2.8 · 10−22

δEacc Kq2E0
1

2mc2λ
3.0 · 10−23 3.0 · 10−23 3.0 · 10−23

Table 4.1: Magnitudes of various contributions to the electric field at test point x
separated from the electron by distance R. The quantities denoted by the symbol
δ denote the corrections due to retardation.

are of the same order of magnitude as the correction δEext to the external

field necessary for the calculation of circular dichroism.

Based on these arguments, it seems important for circular dichroism to

model the interactions in the system in such a way that these relativistic

effects are taken into account. However, both the Hamiltonian description

and the Schrödinger equation describe the interaction of the particle of the

system with the internal fields due to other particles of the system as if the

interaction was a function of instantaneous position and possibly velocity

of the other particles (if the Darwin terms or the Breit equation is used);

no acceleration-dependent terms or retardation of interaction can be easily

incorporated into such models.

When we want to account for these effects, we have to either formulate

non-Hamiltonian equations for the particles or augment the Hamiltonian

description by the field variables.

It is perhaps possible in principle to do the latter in the framework of

quantum electrodynamics where the field variables are taken into account,

but due to complexity of this theory, the formulation and evaluation of

such a model would be most probably a very difficult task.

On the other hand, similarly to the case with damping, the general equa-

tions of motion do not suffer the limitations of the Hamiltonian formalism
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for particles; the interaction forces can be prescribed as due to retarded

electromagnetic fields of the other particles and eventually expressed as

functions of their past state of motion. This leads to a system of delayed

differential equations which can be simplified into linear differential equa-

tions. These have the advantage that for periodic driving term they can

be easily solved with the help of the computer. We will present this model

in the next chapters.
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Chapter 5

Microscopic theory: general
considerations

One reasonable model of a molecule is a system that consists of heavy

point-like nuclei of positive charge and light point-like electrons of negative

charge. The nuclei maintain their mutual configuration and move only very

little, while the electrons move erratically from one to another and around

them.25

We will begin our considerations with the electromagnetic theory of

point-like particles proposed by J. Frenkel.26 This theory is the simplest

consistent electromagnetic theory of charged particles, but unfortunately

it is virtually unknown, so we take some place here to explain its basics.

5.1 Electromagnetic theory of point-like particles.

Let us consider a system of N charged particles contained inside a simple,

non-moving and closed surface Σ of volume V . The equation of motion of

the charged particle a is

dpa
dt

= F−a, (5.1)

where pa = γamava is the momentum of the particle and F−a is the force

acting on it. We assume that this force is a sum of contributions due to all

other particles except for the particle itself; there is no ”self-force” in this

theory.

25Discussion regarding the applicability of the idea of a point-like charge can be found in the
Appendix.

26J. Frenkel, Zur Elektrodynamik punktförmiger Elektronen, Zeits. f. Phys., 32 (1925), p.
518-534.
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5.1. Electromagnetic theory of point-like particles.

The electromagnetic field of each particle is assumed to obey the Maxwell-

Lorentz equations with localized sources:

∇ · Ea = Kρa, (5.2)

∇ ·Ba = 0, (5.3)

∇× Ea = −1

c

∂Ba

∂t
, (5.4)

∇×Ba =
Kja
c

+
1

c

∂Ea

∂t
, (5.5)

where

ρa(x) = qaδ(x− ra), (5.6)

ja(x) = qavaδ(x− ra). (5.7)

If only electromagnetic forces are present, the total force acting on a

particle a is a sum of the Lorentz forces due to fields of all other charged

particles:

dpa
dt

=
∑
b

′
qaEb(ra) + qa

va
c
×Bb(ra). (5.8)

The prime
′

after the summation sign reminds that the summation is

over all charged particles b except the particle a. We will call this equation

the Newton - Lorentz equation.

These equations of motion allow us to derive the following theorem

similar to the Poynting theorem from the macroscopic theory:

∑
a

∑
b

′
Ea · jb =

− ∇ ·
(
c

K

∑
a

∑
b

′
Ea ×Bb

)
− ∂t

(
1

2K

∑
a

∑
b

′
Ea · Eb + Ba ·Bb

)
. (5.9)

This theorem can be used to define energy of the system and formu-

late a law describing its change in time. The total power of forces acting

on the particles within the volume V consists of two contributions: the
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internal power of forces due to particles belonging to the region V , and

the driving power F due to all other forces. These other forces can be

either electromagnetic forces from the particles outside the region V or

non-electromagnetic forces. The power being transmitted to the particles

can be written as

P =

∫
V

∑
a

∑
b

′
Ea · jb dV + F . (5.10)

At the same time, this power is equal to the rate of change of the total

energy of the particles:

P =
d

dt

(
γamac

2
)
. (5.11)

Combining the last two expressions and taking advantage of the above

theorem, we arrive at the equation

d

dt

(∑
a

γamac
2 +

∫
V
wdV

)
+

∮
Σ

s · dΣ = F , (5.12)

where

w =
1

2K

∑
a

∑
b

′
Ea · Eb + Ba ·Bb (5.13)

can be interpreted as a density of electromagnetic energy of the system and

s =
c

K

∑
a

∑
b

′
Ea ×Bb (5.14)

can be interpreted as a surface density of flux of electromagnetic energy of

the system.

The equation for energy can be stated in this way: the power be-

ing transmitted to the particles inside Σ by the external or other non-

electromagnetic forces is equal to the sum of rate of change of the total en-

ergy inside the surface and the power radiated away by the system through

the surface.

Note that the quantities w, s do not give the total electromagnetic en-

ergy and radiation power; the corresponding expressions contain only the

fields due to the particles of the system, not all the fields. The integral∫
V
w dV (5.15)
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should therefore be called electromagnetic energy of the system in the vol-

ume V . This distinction seems natural and useful, since usually we are not

interested or knowledgeable about the electromagnetic energy of distant

particles. Also, the inertial mass of our system of particles can be shown to

be given by this energy alone; the electromagnetic energy of the extraneous

particles is present in the region V too, but it does not influence the inertia

of the system.

In the first decades of 20th century, Niels Bohr and other physicists

who attempted to explain properties of atoms came to conclusion that the

Rutherford planetary model of atom cannot be stable in classical electro-

magnetic theory. The main argument was that the accelerating electrons

would radiate energy away from the atom, so the atom should lose its in-

ternal energy, the electron should fall on the nucleus and the atom should

collapse. This lead many scientists to abandon such pictorial concept of

atoms and molecules in favor of more abstract concepts.

However, from the standpoint of the presented theory, the basic argu-

mentation seems to be based on unwarranted assumptions: that the atom

is left undisturbed by other bodies and that the energy it radiates comes

from its internal energy. In other words, the power of driving forces F

figuring on the right-hand side of the above energy equation was assumed

to be zero. However, it seems much more realistic to assume that the atom

is under action of myriads of different elementary fields from other par-

ticles that can supply or withdraw energy from it. If the average energy

of the atom remains constant, it is an indication that the radiated power

is supplied by forces other than the internal electromagnetic forces. This

conclusion is similar to the picture suggested by T. Boyer in the framework

of stochastic electrodynamics.27

The stability of a molecule and the empirical laws governing its chemical

behaviour are not apparent from the basic laws of this electromagnetic

theory, but they are not in direct contradiction to them either.28

27T. H. Boyer, Random electrodynamics: The theory of classical electrodynamics with classical
electromagnetic zero-point radiation, Phys. Rev. D 11, 790–808 (1975). Approximate numerical
calculations of the trajectory of the electron in fluctuating electromagnetic field seem to support
this picture. For example, see the paper: D. C. Cole, Yi Zou, Quantum mechanical ground state
of hydrogen obtained from classical electrodynamics, Physics Letters A 317 (2003), p. 14–20.

28They are contradicted by Larmor’s formula for the power of energy radiation from acceler-
ated particle, but this formula is not valid in the present theory. To the best of our knowledge,
all ”confirmations” of this formula were based on measurements of radiation due to great num-
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Chapter 5: Microscopic theory: general considerations

5.2 Electromagnetic fields

In order to use the above theory to analyze the motion of the particle a, we

need to have the fields Eb,Bb due to other particles expressed explicitly and

substituted into the equations of motion. The Maxwell-Lorentz equations

for these fields admit an infinity of different solutions for the same motion

of charged particles. One solution differs from another by a solution of the

homogeneous Maxwell equations.

Which solution is realized on the microscopic level is not an easy ques-

tion to answer; usually we think in terms of retarded fields (fields are

determined by the past motion of the charged particles) but there are the-

ories that come close to recovering the familiar behaviour of the charged

bodies from the macroscopic theory with the use of mixed half-retarded,

half-advanced fields (determined by both the past and the future positions

of the particles).29

In stochastic electrodynamics one assumes the presence of fluctuating

background fields with no definite connection to past of future motion of

charge bodies and this seems to help to explain the stability of atoms

and also many other phenomena involving charged particles and thermal

radiation.

In this work, we will assume that the best fields to work with are the

retarded fields. These solutions provide the most natural picture. The

background fields can be regarded as retarded fields of distant sources, but

for simplicity and focus on our goals we will not consider them.

The retarded electric field was already given in the previous chapter,

but for readability we give it again here. The near field is

Eb,near(x, t) =
Kqb
4π

(
1− β2

b

)
(1− βb · n)

3

n− βb
R2

, (5.16)

and the far field is

Eb,far(x, t) =
Kqb
4π

1

(1− βb · n)
3

n× {(n− βb)× γb}
cR

. (5.17)

The magnetic field is given by

ber of particles in correlated motion, for which the present theory gives virtually the same
radiation power per electron as the Larmor formula.

29J. A. Wheeler, R. P. Feynman, Interaction with the Absorber as the Mechanism of Radia-
tion, Rev. Mod. Phys. 17, p. 157–181 (1945).
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5.3. Model of the molecule

Bb(x, t) = n× Eb. (5.18)

and is non-zero only if the particle was moving at the retarded time.

5.3 Model of the molecule

The total force acting upon the negative particle a consists of more con-

tributions. These are the forces due to nuclei and electrons co-forming the

molecule, due to other molecules in the solution and farther away, due to

source of light (laser, lamp), the forces of the background fields of distant

sources and possibly also non-electromagnetic forces:

F−a = Fnuclei
−a + Felectrons

−a + Fmolecules
−a + Fsource

−a + Fbackground
−a + FNE

−a . (5.19)
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Chapter 6

Lorentzian model

We will not attempt to use the exact theory from the previous chapter

directly to describe the complex system of many particles forming the

molecule. The reason is that the number of particles in the BChl molecules

is very large and an exact mathematical treatment of such system would

be numerically too demanding.

Instead of insisting on the exact formulae for fields given above, we will

use the corresponding theory in a more liberal way. We use it as an inspira-

tion for the formulation of a model which will include the most important

phenomena - the stability of configuration and damping of electronic oscil-

lations - more easily. Hopefully it may be made both simple and faithful

enough to allow to connect to the spectroscopic measurements.

The first important thing to consider when simplifying the above equa-

tions is the fact that for the description of low intensity monochromatic

light, the behaviour of the medium seems to be quite well described by

simple harmonic oscillation equal to that of the primary wave. Deviations

from the harmonic oscillation seem to be unimportant for the shape of or-

dinary absorption spectra. Perhaps the same is true also for the circular

dichroism, although due to smallness of this effect the small non-linearities

perturbing the harmonic motion may have important contributions.

Similar harmonic behaviour is found in the stationary solutions of sys-

tems of linear differential equations with periodic right-hand side (driving

term). Such system has stationary solutions that perform harmonic oscil-

lations at the frequency of the driving term, albeit with a possible phase

shift.

Hence it seems to be a good idea to simplify the exact scheme from the
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previous chapter and base the model of molecule and its interaction with

light on linear differential equations, in the spirit of the classical Lorentz-

Drude model of atomic oscillator.

In order to do that, we imagine the molecule as a rigid system of point-

like immovable nuclei a of positive electric charge Qa placed at positions

Ra of the laboratory coordinate system. Each nucleus has attached to it

by elastic force one negatively charged point-like particle of mass Zame

and negative charge qa which has equilibrium position at the position of

the nucleus and can move in its vicinity. The radius vector of the negative

charge with respect to the nucleus will be denoted by ua. The couple

nucleus-negative particle will be called (physical) oscillator.

We will assume that the various contributions to the force can be sepa-

rated into groups of distinct character.

The electrons are bound to the molecule and the main part of the bond-

ing force is presumably the electrostatic field of the nuclei. This attracts

the electrons and contributes to the stability of the system. However, this

field is not the only one relevant for the stability; as explained above, there

are many other fields from the other particles both near and far from the

molecule which probably contribute in an important way; they balance the

radiative loss of energy. Instead of dealing with such complex interacting

many-particle system, we will introduce an effective attractive force to sub-

stitute for this combined effect of many stabilizing forces. Since the spectra

of atoms and molecules show high preference for harmonic motions, we will

use linear elastic force Felastic
−a = −maω

2
aua that leads to elliptic orbits with

coordinates oscillating harmonically in time.

Similarly, another part of the combined action of all the particles leads to

effective damping of the oscillations set by the external field. We will model

this by force Fdamping
−a = −maγava. There is also the residual fluctuating

force Ffluct
−a from the same agents, which however we will neglect. Different

electrons interact among each other, so there is also the sum of forces due

to all other neutral pairs (nucleus - negative charge) Fcoupling
−a . Finally, there

is the force due to combined action of the molecules of the solution and of

the primary source of light Fdriving
−a that drives the oscillating motion of the

molecule. Overall the total force can be written as

F−a = Felastic
−a + Fdamping

−a + Ffluct
−a + Fcoupling

−a + Fdriving
−a . (6.1)
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Chapter 6: Lorentzian model

We will look into the two last forces more closely.

6.1 Forces of interaction

Here we take an inspiration from the above exact theory of electromag-

netic fields. We imagine that the negative particles oscillate only a little

around their equilibrium positions. The force on the negative particle a

from all other oscillators b is given by the Lorentz formula with the re-

tarded fields given above. We will approximate these by expressions linear

in the displacement vector ua and its derivatives.

The notation used in the following text requires some explanation. Since

the force considered is due to b on a, the important quantities are the

position ua of the a-th particle at the present time t and the position [ub]

of b at the retarded time. The quantity uab denotes their difference:

uab = ua − [ub]. (6.2)

We also define the vector

Rab = Ra −Rb (6.3)

and denote its magnitude by Rab. The symbol nab denotes unit vector in

the same direction:

nab =
Rab

Rab
. (6.4)

Using this notation, the retarded radius vector of b is approximately equal

to

[ub] = ub

(
t− Rab

c

)
. (6.5)

The main static part of the field of the negative particle cancels the elec-

trostatic field of the nucleus, so the remaining linear part of the field due

to the negative particles is

Fcoupling
−a =

∑
b

′Kqaqb
4π

[
uab − 3(uab · nab)nab

R3
ab

− (6.6)

− [u̇b]− 3([u̇b] · nab)nab
cR2

ab

− (6.7)

− [üb]− ([üb] · nab)nab
c2Rab

]
. (6.8)
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6.2. Driving force

We will need the negative acceleration due to this force. We write this as

− 1

ma
Fcoupling
−a =

∑
c

′
− Kac

1

R3
ac

(
uac − 3(uac · nac)nac

)
+ (6.9)

+ Kac
1

cR2
ac

(
[u̇c]− 3([u̇c] · nac)nac

)
+ (6.10)

+ Kac
1

c2Rac

(
[üc]− ([üc] · nac)nac

)
, (6.11)

where

Kac =
Kqaqc
4πma

. (6.12)

6.2 Driving force

We will assume that the driving force is the electromagnetic force due to

fields of the source of light and the molecules in the path of the light ray:

Fdriving
−a = qaE

driving(ra) + qa
va
c
×Bdriving(ra). (6.13)

The magnetic term is linear in the displacement of the particle and thus

should be included into our scheme on the linear level of approximation.

However, since the term oscillates at double the frequency of the source, it

would complicate the procedure of solving the equations of motion. The

term is small when compared to the electric term, but again, for circular

dichroism it may still be important. We will leave the investigation of the

effect of this contribution on circular dichroism to other works and neglect

it here for the sake of simplicity.

The driving field is much more complicated than the smooth macro-

scopic field and cannot be faithfully described by a plane wave. The scat-

tering of the primary wave from the other molecules leads to a total mi-

croscopic field that has quite complicated spatial pattern, albeit the same

frequency. The driving field acting on any molecule will be similar in this

respect - almost no molecule will experience driving field in the direction

or amplitude of the macroscopic field.

Nevertheless, we will replace this complicated driving field by field of a

plane wave and assume that it still is a useful approximate representation

of the driving field, at least on the average. What amplitude and wave

number should this idealized wave have?
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Chapter 6: Lorentzian model

Figure 6.1: Depiction of the total electric field passing through a cube of oscilla-
tors interacting with the primary wave and among each other. The electric field
is polarized linearly in the direction z normal to the plane of the paper, green
color shows regions where the value of Ez is positive, red those where the value
negative, and the cyan lines shows the node surface where Ez is zero. Notice
how the total field deforms due to random positions of the scatterers and that it
differs from the simple plane wave one uses in macroscopic theory.

The microscopic field that acts on the molecule propagates in vacuum

and obeys source-free Maxwell equations. For this reasons, it seems that

the wave number k0 = Ω
c suits it much better than the macroscopic wave

number k (which is usually higher but changes significantly with frequency

near the absorption bands).

As for the amplitude, for simplicity we will assume that the best ampli-

tude to use for the driving field is a one proportional to the amplitude of

the macroscopic field E0:

E0 = κE. (6.14)

This seems like a reasonable assumption within linear theory. We have

already shown how the macroscopic field amplitude may be obtained from

the microscopic one: by averaging, which is a linear operation.

According the the macroscopic theory of optical activity of liquid solu-

tion, we have two distinct fields to consider.

Left-circularly polarized light. The macroscopic field is described by

the electric vector
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6.3. Equation of motion

EL(x, t) = {ex cos(Ωt− kL · x) + ey sin(Ωt− kL · x)}E. (6.15)

We assume that the microscopic driving field is given by

Edriving
L (x, t) = {ex cos(Ωt− k0 · x) + ey sin(Ωt− k0 · x)}E0. (6.16)

In the complex phasor notation,

Edriving
L (x, t) = Re

{
(ex − iey)ei(Ωt−k0·x)E0

}
. (6.17)

Right-circularly polarized light. The macroscopic field is described by

the electric vector

ER(x, t) = {ex cos(Ωt− kR · x)− ey sin(Ωt− kR · x)}E. (6.18)

We assume that the microscopic driving field is given by

Edriving
R (x, t) = {ex cos(Ωt− k0 · x)− ey sin(Ωt− k0 · x)}E0. (6.19)

In the complex phasor notation,

Edriving
R (x, t) = Re

{
(ex + iey)e

i(Ωt−k0·x)E0

}
. (6.20)

6.3 Equation of motion

Finally we come to formulation of the equation of motion for the oscillators.

Since we are restricting the description to linear terms, we approximate

relativistic momentum

pa =
mava√
1− v2a

c2

(6.21)

by the main part linear in coordinates, which is mava. We introduce the

radius vector with respect to nuclei ua. The equations of motion are then

as follows. For left circular polarization:

üa + γau̇a + ω2
aua −

1

ma
Fcoupling
−a =
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Chapter 6: Lorentzian model

=
qaE0

ma
(ex sin(Ωt− k0 ·Ra)) + ey cos(Ωt− k0 ·Ra)) . (6.22)

For right circular polarization:

üa + γau̇a + ω2
aua −

1

ma
Fcoupling
−a =

=
qaE0

ma
(ex sin(Ωt− k0 ·Ra))− ey cos(Ωt− k0 ·Ra)) . (6.23)

Notice that the two cases differ only by different sign in the driving term

on the right-hand side of the equation.

6.4 Solution by the method of phasors

Since we are interested in stationary oscillating solutions the equations

admit, we can neglect the effect of initial conditions and seek the solution

in the form of harmonic oscillations. This is most efficiently handled by

the complex phasor method. We focus on the new complex equations of

motion

Left c.p.:

¨̃Ua + γa
˙̃Ua + ω2

aŨa −
1

ma
F̃coupling
−a =

qaE0

ma
(ex − iey) ei(Ωt−k0·Ra). (6.24)

Right c.p.:

¨̃Ua + γa
˙̃Ua + ω2

aŨa −
1

ma
F̃coupling
−a =

qaE0

ma
(ex + iey) e

i(Ωt−k0·Ra). (6.25)

It is easy to see that the real part of both equations gives the actual

equations of motion from above. We seek stationary solutions (for all a):

Ũa = Uae
iΩt (6.26)

where Ua is a complex vector describing the amplitude and phase of oscil-

lations of the a-th oscillator. The retarded quantities [uc] in the coupling

terms are replaced by Uce
i(Ωt−ϕac). The time-dependent term eiΩt drops

out of the equation and we arrive at the system of equations for Ua:
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6.4. Solution by the method of phasors

Left c.p.:

(−Ω2 + iγaΩ + ω2
a)Ua + Ia =

qaE0

ma
(ex − iey) e−ik0·Ra.

Right c.p.:

(−Ω2 + iγaΩ + ω2
a)Ua + Ia =

qaE0

ma
(ex + iey) e

−ik0·Ra.

where the interaction is described by the vectors

Ia = − 1

ma
F̃coupling
−a e−iΩt, (6.27)

which has expression

Ia =
∑
c

′
−Kac

R3
ac

(Ua − 3Ua · nacnac) + (6.28)

+
Kace

−iϕac

R3
ac

(Uc − 3Uc · nacnac) + (6.29)

+
KaciΩe

−iϕac

cR2
ac

(Uc − 3Uc · nacnac) + (6.30)

+
Kac(−Ω2)e−iϕac

c2Rac
(Uc −Uc · nacnac) , (6.31)

and

ϕac = Ω
Rac
c

(6.32)

is the phase shift due to retardation of the field acting on a due to c.

We can see that the equations are linear and thus easy to solve. In order

to solve them, we would like to rewrite the system of equations into the

matrix form

∑
b,l

Ma,k|b,lUb,l = ba,k. (6.33)

After some manipulations, we arrive at this expression for the matrix M :

Ma,k|b,l = σaδabδkl +
∑
c

Aacδab(δkl − 3nac,knac,l) +Babδkl + Cabnab,knab,l

(6.34)

where
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Chapter 6: Lorentzian model

σa = −Ω2 + iγaΩ + ω2
a, (6.35)

and

Aac = −Kac

R3
ac

, (6.36)

Bac = Kace
−iϕac

(
1

R3
ac

+
iΩ

cR2
ac

− Ω2

c2Rac

)
, (6.37)

Cac = Kace
−iϕac

(
− 3

R3
ac

− 3iΩ

cR2
ac

+
Ω2

c2Rac

)
(6.38)

for a 6= c and Aaa = Baa = Caa = 0 for the diagonal elements. The

right-hand sides are

Left c.p.:

bL
b,l =

qbE0

mb
(al − ibl)e−ik

∑
m cmRb,m, (6.39)

Right c.p.:

bR
b,l =

qbE0

mb
(al + ibl)e

−ik
∑

m cmRb,m, (6.40)

where we introduced the symbols al, bl, cl for the l-th coordinate of the

unit vectors ex, ey, ez in the laboratory system. In the following text, we

will calculate only the case of left-handed light wave and will drop the

superscript L to make the text more readable.

Once we have the matrix M and the right-hand side b, we can solve for

the quantities U formally by means of an inverse matrix. In order to do

so, we introduce new indices α, β by

α = 3(a− 1) + k, (6.41)

β = 3(b− 1) + l. (6.42)

The inverse transformation is, for the indices a and k, given by

a = (α + 2) div 3, (6.43)

k = [(α + 2) mod 3] + 1 (6.44)
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6.5. Susceptibility

and similarly for b and l. We introduce the notation

Uα = Ua,k, (6.45)

Mαβ = Ma,k|b,l, (6.46)

bβ = bb,l. (6.47)

The equations to be solved are

∑
β

MαβUβ = bα. (6.48)

We write the solution in terms of an inverse matrix :

Uα =
∑
β

M−1
αβ bβ. (6.49)

In the laboratory frame, both the matrix M and the right-hand side

b depend on the angles of rotation ϕ, ϑ, α. The inverse matrix will de-

pend also on these angles in a somewhat complicated way and averaging

U analytically over all orientations would be quote difficult.

However, the same equations of motion and the same linear algebraic

equations hold also in the coordinate frame of the molecule, where we write

U ′α =
∑
β

M ′−1
αβ b

′
β. (6.50)

The matrix M ′ referring to the molecular coordinate system remains the

same for all its orientations, and only the right-hand side b′β depends on

the angles ϕ, ϑ, α.

6.5 Susceptibility

According to the general definition of the macroscopic current density de-

rived in the chapter on the connection to the macroscopic theory, in the

laboratory coordinate system the current density is given by

j(0, t) = N

〈∑
a

qau̇a

(
t+

Ra · ez
vf

)〉
(6.51)

where the angles 〈 〉 denote rotational averaging. This expression equals to
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j(0, t) =
∂

∂t

[
N

〈∑
a

qaua

(
t+

Ra · ez
vf

)〉]
. (6.52)

The polarization potential is thus given by the expression

P(t) = N

〈∑
a

qaua

(
t+

Ra · ez
vf

)〉
. (6.53)

In order to find an expression for the complex susceptibility χ̃, and then

the absorption spectrum from it, we pass to complex phasors. Since the

quantities ua oscillate harmonically in time, the phasor for the polarization

potential is30

P̃(t) = N

〈∑
a

qaUae
ik·Ravf

〉
eiΩt, (6.54)

where

k = kez (6.55)

is the wave vector of the macroscopic wave. The macroscopic electric field

for the left-handed light has the phasor

Ẽ(t) = E(ex − iey)eiΩt. (6.56)

According to the macroscopic theory of absorption and dispersion, these

two quantities are related by

P̃(t) =
χ̃

K
Ẽ(t). (6.57)

Calculating dot product of both sides of this equation with ex+ iey (for

left-handed wave), we obtain the expression for the complex susceptibility

χ̃ =
KN

2E

∑
a

qa
〈
Ua · (ex + iey)e

ik·Ra

〉
. (6.58)

This expression contains the molecular quantities in dot products, which

are invariant quantities with respect to change of coordinates. We can

therefore quite as well express the susceptibility via the coordinates in the

molecular coordinate frame:

30Once again we can see that the polarization potential is not the same as density of electric
moment (electric polarization). The two differ by the factor eik·Ra in every term which is in
the summation.
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6.5. Susceptibility

χ̃ =
KN

2E

∑
a

qa
〈
U′a · (e′x + ie′y)e

ik′·R′a
〉

(6.59)

or

χ̃ =
KN

2E

∑
αβ

qa
〈
M ′−1

αβ b
′
β(a′k + ib′k)e

ik′·R′a
〉
. (6.60)

However, we do not know the wave number k before we have the suscepti-

bility χ̃. We will therefore approximate k by k0 = Ω
c :

χ̃ ≈ KN

2E

∑
α

qaM
′−1
αβ

〈
b′β(a′k + ib′k)e

ik′0·R′a
〉
. (6.61)

The matrix M−1 does not depend on the rotation angles and thus can

be put in front of the averaging bracket. Since

b′β =
qbE0

mb
(a′l − ib′l)e−ik

′
0·R′b, (6.62)

we obtain

χ̃ ≈ 1

2
κKN

∑
αβ

M ′−1
αβ T

′
βα. (6.63)

For left-handed light, we obtain

T ′Lβα =
qbqa
mb

〈
(a′l − ib′l)(a′k + ib′k)e

−ik′0·R′ba
〉

(6.64)

Similarly, for right-handed light, we obtain

T ′Rβα =
qbqa
mb

〈
(a′l + ib′l)(a

′
k − ib′k)e−ik

′
0·R′ba

〉
. (6.65)

The value of rotational average seems difficult to evaluate exactly. We

therefore expand the exponential term into the Taylor series of 1st order

and calculate

T ′βα ≈
qbqa
mb

〈
(a′l − ib′l)(a′k + ib′k)

(
1− ik0

∑
m

R′ba,mc
′
m

)〉
, (6.66)

After the expansion, the averaged expression for left-handed light is〈
a′la
′
k + ia′lb

′
k − ib′la′k + b′lb

′
k − ik0

∑
m

R′ba,m(a′la
′
k + ia′lb

′
k − ib′la′k + b′lb

′
k)c
′
m

〉
.

(6.67)
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This can be calculated with help of the matrix R−1 given in the section on

rotations in the chapter on the connections to the macroscopic theory. It

turns out that most terms vanish after averaging and the quantities T ′ can

be written as

T ′Lβα ≈
qbqa
mb

(
2

3
δlk +

∑
m

1

3
εlkmk0Rba,m

)
(6.68)

for left-handed light and

T ′Rβα ≈
qbqa
mb

(
2

3
δlk −

∑
m

1

3
εlkmk0Rba,m

)
(6.69)

for right-handed light. If the susceptibilities are written as

χ̃L = RL + iIL, (6.70)

χ̃R = RR + iIR, (6.71)

the extinction coefficients are

εL(Ω) ≈ |IL|
√

1

(1 +RL)
− I2

L

4(1 +RL)3

Ω

N c
. (6.72)

εR(Ω) ≈ |IR|
√

1

(1 +RR)
− I2

R

4(1 +RR)3

Ω

N c
. (6.73)

The spectrum of circular dichroism is the difference between these two

spectra:

∆ε(Ω) = εL(Ω)− εR(Ω). (6.74)
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Chapter 7

Control calculations

Before we try to apply our theory to such complicated molecules as bac-

teriochlorophylls, we use it to make some control calculations on simpler

systems.

7.1 Pair of undamped oscillators

The system of two oscillators has its nuclei on a line and thus is not chiral.

We thus expect that CD of such a system vanishes. The parameters of the

system are given in the table. We prescribe positions of both oscillators (in

Angströms), their resonance wave numbers and damping constants (both

in cm−1), effective electronic charge (in e) and mass (in kg). In the first

example, the oscillators have zero damping constants.

Key No. x y z ν0 γ q m
OSC 1 0 1 0 13000 0 -0.000025 9.1E-31
OSC 2 0 -1 0 15000 0 -0.000025 9.1E-31

Table 7.1: Parameters of a pair of oscillators.

The results of calculations are presented in the form of self-explanatory

plots of absorption spectra and circular dichroism. Each plot has a title

giving the information on which parameters were used to calculate the

interaction forces. The first number signifies inclusion of retardation, the

second inclusion of velocity fields, and the third inclusion of the acceleration

fields. If the number is 1, the effect was included, if 0, it was neglected.

The purpose of this is to show the effect of the new non-electrostatic terms

we introduced in the previous chapter.
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7.1. Pair of undamped oscillators
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Figure 7.1: Absorption spectra of pair of oscillators.
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Figure 7.2: Absorption spectra of pair of oscillators.
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Figure 7.3: Absorption spectra of pair of oscillators.
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Figure 7.4: Absorption spectra of pair of oscillators.
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Figure 7.5: Absorption spectra of pair of oscillators.

 0
 2e-30
 4e-30
 6e-30
 8e-30
 1e-29

 1.2e-29
 1.4e-29
 1.6e-29
 1.8e-29

ε
 (

m
2
)

pair 1 1 1

Abs. Left c. p.
Right c. p.

-1

-0.5

 0

 0.5

 1

 12000  15000  18000  21000  24000  27000  30000

∆
ε
 (

m
2
)

Wave number (per cm)

Abs.

CD

Figure 7.6: Absorption spectra of pair of oscillators.
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From these plots we can see that if all non-electrostatic contributions

are neglected, there is no absorption, which is natural since we prescribed

zero external damping. However, if the retardation is turned on, the system

exhibits absorption on both resonance frequencies. This is because the in-

clusion of retardation to the interaction forces introduces effective damping

of the motion of the oscillators, since the differential equation has delayed

terms. As the oscillator loses energy, the energy of the electromagnetic

field increases, since the two oscillators move with acceleration in a corre-

lated way. The delayed terms therefore provide a model of de-excitation

accompanying the phenomenon of spontaneous emission.

Further inclusion of the velocity and acceleration fields leads to further

broadening of the spectral line and notable increase in its intensity.

7.2 Pair of damped oscillators

Even with inclusion of all interaction terms, the absorption lines are very

sharp and if the system interacts with surroundings, we expect it to have

much broader spectral bands. This can be modelled by inclusion of a

descriptive damping constant. An example of damped pair of oscillators

with damping constants γ = 1000 cm−1 follows.

Key Name x y z ν0 γ q m
OSC 1 0 1 0 13000 1000 -0.000025 9.1E-31
OSC 2 0 -1 0 15000 1000 -0.000025 9.1E-31

Table 7.2: Parameters of a damped pair of oscillators.

We can see that the non-electrostatic effects have notable influence even

on the ordinary absorption spectrum.
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Figure 7.7: Absorption spectra of pair of oscillators.
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Figure 7.8: Absorption spectra of pair of oscillators.
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7.3 Tetrahedron system

The simplest system that can exhibit non-zero circular dichroism consists of

4 distinct atoms, since simpler systems are not chiral in three-dimensional

space. We use 4 distinct oscillators placed at vertices of a regular tetra-

hedron, with non-zero damping constants. The oscillators have mutual

distance 2 Å .

Key Name x y z ν0 γ q m
OSC A 1.732 0 0 13000 1000 -0.00000025 9.1E-31
OSC B 0 1 0 15000 1000 -0.00000025 9.1E-31
OSC C 0.577 0 1.633 17000 1000 -0.00000025 9.1E-31
OSC D 0 -1 0 19000 1000 -0.00000025 9.1E-31
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Figure 7.9: Absorption spectra of a chiral tetrahedron.
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Figure 7.10: Absorption spectra of a chiral tetrahedron.
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Figure 7.11: Absorption spectra of a chiral tetrahedron.
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Figure 7.12: Absorption spectra of a chiral tetrahedron.
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Figure 7.13: Absorption spectra of a chiral tetrahedron.simple chiral system.
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Figure 7.14: Absorption spectra of simple chiral system.

The calculation has shown very surprising result: the acceleration fields

are necessary to obtain non-zero circular dichroism. The noisy CD curves

on the plots without acceleration fields are numerical artifacts of finite

precision arithmetics, since the maximum value of CD they give is 15 orders

smaller than the extinction coefficient.

The necessity of the acceleration term in the interaction is very surpris-

ing and unexpected, since many calculations exist which apparently do not

use such relativistic description yet still give non-zero circular dichroism

for simple systems, and also since the acceleration terms are the smallest.

Whether the acceleration fields really play such a great role in the spectra

of interesting molecules requires another careful study.

7.4 Tetrahedron of same atoms

If the oscillators are taken all the same, the tetrahedron loses chiral asym-

metry and the circular dichroism should vanish. We take two systems

according to the following tables; the first is loosely a regular tetrahedron,

while the second is much closer to regularity (it is impossible to prescribe

exact coordinates of a regular tetrahedron due to finite precision arith-
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Chapter 7: Control calculations

metics.) Otherwise the systems are same.

Key Name x y z ν0 γ q m
OSC A 1.732 0 0 15000 1000 -0.00000025 9.1E-31
OSC B 0 1 0 15000 1000 -0.00000025 9.1E-31
OSC C 0.577 0 1.633 15000 1000 -0.00000025 9.1E-31
OSC D 0 −1 0 15000 1000 -0.00000025 9.1E-31

Table 7.3: Parameters of tetrahedron system with same oscillators.

Key Name x y z ν0 ...
OSC A 1.73205080756887730 0 0 15000 ...
OSC B 0 1 0 15000 ...
OSC C 0.57735026918962576 0 1.63299316185545210 15000 ...
OSC D 0 -1 0 15000 ...

Table 7.4: Parameters of precise tetrahedron system with same oscillators.
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Figure 7.15: Absorption spectra of tetrahedron made of 4 same atoms.
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Figure 7.16: Absorption spectra of precise tetrahedron made of 4 same atoms.
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These two cases have the same absorption spectra, as could be expected.

The CD spectra do not vanish, which may seem strange at first, since the

system is supposed to be achiral. However, the prescribed coordinates are

not exactly those of a regular tetrahedron, but of a configuration very close

to it, which is most probably chiral. As the shape of the quadruple comes

closer to perfect tetrahedron, the intensity of the CD spectrum decreases.

From this we see that the shape of the CD spectrum is a very sensitive

quantity which can be affected by the slightest changes in the arrangement

of the atoms.

The reader has indubitably noticed that the effective charge of oscilla-

tors is unusually small considering that one electron has charge 1. Such

small charges were chosen to prevent the interaction terms from ”taking

over”, which exhibits itself as complete extension of the absorption over

all wave numbers. We are not sure why this occurs or what it means, but

partial reason may be that our description of the bonding of electrons to

nuclei is rather too approximate and in many ways flawed; it may allow

the interaction effects to grow unrealistically strong. Further analysis of

this behaviour is needed, but clearly something has to be done to make the

description of bonding and electronic motion more realistic.
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Calculations for BChl

In order to calculate the spectra of BChl molecule and its dimers, we need

the coordinates of their atoms. The data on bacteriochlorophyll c molecule

seem to be hard to find, but the coordinates of atoms in bacteriochlorophyll

a are easily found in many PDB files available on the Protein Data Bank site

http://www.pdb.org. We extracted a smaller PDB file with skeletal atoms

of such BChl a molecule and edited it into the skelet of BChl c molecule.

The hydrogen atoms were added by means of the service MolProbity ac-

cessible on http://molprobity.biochem.duke.edu/index.php,31 and in case

of the methyl group attached to carbon C-20, the hydrogens were added

manually.

The resulting structure consists of 135 atoms. Each atom has its own

name in the PDB file. The pictures of the molecule with atoms and their

names follow.32.

Description of the meaning of the various entries in the PDB file can

be found on http://deposit.rcsb.org/adit/docs/pdb atom format.html and

also at ”Protein Data Bank Contents Guide: Atomic Coordinate Entry

Format Description” on

http://www.wwpdb.org/documentation/format33/v3.3.html

31V. B. Chen et al., MolProbity: all-atom structure validation for macromolecular crystallog-
raphy , Acta Crystallographica D66:12-21 (2010).

32The pictures were created by the program VMD, available on https://www-
s.ks.uiuc.edu/Research/vmd/
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Figure 8.1: Names of atoms in the head part of the BChl c molecule.

Figure 8.2: Names of the atoms in the tail part of the BChl c molecule.

94



Chapter 8: Calculations for BChl

8.1 Definition of the molecular axes of BChl c

We define the orientation of the molecular cartesian axes according to

Blankenship (2002).33 The orientation is shown on the following figures.

For the purposes of calculations, we need to define the exact position of

the axes with respect to the equilibrium positions of the atoms given in the

PDB file. The nitrogen atoms do not need to lie exactly on the vertices of a

rhombus, so it may not be possible to put the perpendicular axes through

them.

We define the X axis of the molecule as the oriented line passing from

the atom NA to the atom NC. The center of the molecule is defined as the

point half-way from the nitrogen NA to the nitrogen NC.

Next, the Y axis is defined as the oriented line obtained by orthonor-

malization of the vector NB−ND with respect to the axis X. The axis Z

is chosen perpendicular to the axes X, Y so that the resulting system is

right-handed.

y
x

Figure 8.3: Coordinate system of the BChl c molecule; plane of the ring.

The calculation of absorption spectra require the coordinates of the

atoms and also certain parameters describing the electronic properties of

the molecule. Our model uses three such free parameters: resonance fre-

33R. E. Blankenship, Molecular Mechanisms of Photosynthesis, Blackwell Science 2002, Fig.
4.9.
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8.1. Definition of the molecular axes of BChl c

z

Figure 8.4: Coordinate system of the BChl c molecule; plane perpendicular to
the ring.

quency, damping constant and effective charge for each oscillator (atom),

so there is potentially as much as 3 × 135 = 405 parameters. Of course,

such number of parameters allows one to produce almost any spectrum one

wants with suitable choice of the parameter values. It makes no sense to at-

tempt to fit all these parameters as independent, since the spectrum shows

only few distinct bands. The number of distinct elements is much smaller:

there is carbon, nitrogen, oxygen, hydrogen, magnesium; overall 5 different

elements. For the sake of simplicity and also due to time constraints, we

tried to introduce system of parameters describing these elements; each

atom is ascribed properties based on which element is it; in other words,

the oscillators assigned to carbon atoms have the same resonance wave

number, damping constant, effective charge and mass.

Such procedure seems rather ad hoc and without physical justification.

Our main motivation behind this procedure is that it provides a simple way

to parametrize a system with many degrees of freedom. Other ways are

possible, for example, we could attempt to introduce parameters for distinct

kinds of chemical bonds occurring between the atoms. Admittedly, the

parametrization model is rather simplistic and unrealistic, but nevertheless

it is interesting to see what kind of spectrum it can lead to.

We attempted to assign elements resonance wave numbers based on the

positions of the peaks in the experimental spectra, damping constants based

on their broadening and effective charges based on the total area below the
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Chapter 8: Calculations for BChl

peak. We did not spend much time doing this, as the parametrization

model is of very limited interest. We show the resulting spectrum mainly

as the demonstration of the capabilities of the model and of the developed

program.

Key Element ν0 γ f
ELEMENT O 15000 1000 12E-8
ELEMENT C 16000 1000 3E-8
ELEMENT N 23000 5000 18E-8
ELEMENT MG 17000 1000 3E-8
ELEMENT H 29000 2000 3E-8

Table 8.1: Parameters of elements chosen for the calculations.

The parameter f is a factor which multiplies the actual negative charge

of the atom corresponding to its atomic number. The mass of the oscillator

is assigned as the total mass of all the electrons of the element.
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8.2 Spectra of the BChl molecule

The actual molecule of Bacteriochlorophyll c contains large number of

atoms (cca 130) which may make the calculations of spectra time-demanding.

One is therefore lead to think about which atoms are the most important

for the calculation of the spectrum, and which can perhaps be neglected.

Since the circular dichroism is thought to be a result of mirror asymme-

try of the nuclear skelet of the molecule, an since the most pronounced

asymmetry arises on atoms with chiral arrangement of substituents, it

seems that we can neglect many atoms that are not a part of such locally

chiral structure.34

In particular, we will neglect the unsaturated hydrocarbon chain and

also the hydrogens that are not substituents of any chiral center. We are

left with the C, N, O atoms forming the BChl head, the magnesium atom

and the hydrogens H3C, H2C, H3A, H2A. That is 48 atoms for monomer.

Key Element x y z nu_0 gamma q m

OSC MG 0.007 0.030 -0.027 17000 1000 -3.60E-007 1.09E-029

OSC CHA -2.433 -2.399 0.050 16000 1000 -1.80E-007 5.47E-030

OSC CHB -2.320 2.450 0.004 16000 1000 -1.80E-007 5.47E-030

OSC CHC 2.443 2.420 0.108 16000 1000 -1.80E-007 5.47E-030

OSC CHD 2.283 -2.449 0.019 16000 1000 -1.80E-007 5.47E-030

OSC NA -2.045 0.000 0.000 23000 5000 -1.26E-006 6.38E-030

OSC C1A -2.906 -1.087 0.043 16000 1000 -1.80E-007 5.47E-030

OSC C2A -4.350 -0.627 0.037 16000 1000 -1.80E-007 5.47E-030

OSC C3A -4.263 0.864 -0.049 16000 1000 -1.80E-007 5.47E-030

OSC C4A -2.792 1.153 -0.037 16000 1000 -1.80E-007 5.47E-030

OSC CMA -4.786 1.375 -1.379 16000 1000 -1.80E-007 5.47E-030

OSC CAA -5.082 -1.025 1.357 16000 1000 -1.80E-007 5.47E-030

OSC CBA -4.450 -0.861 2.769 16000 1000 -1.80E-007 5.47E-030

OSC CGA -4.658 0.444 3.551 16000 1000 -1.80E-007 5.47E-030

OSC O1A -4.458 1.525 2.997 15000 1000 -9.60E-007 7.29E-030

OSC O2A -4.893 0.402 4.768 15000 1000 -9.60E-007 7.29E-030

OSC NB 0.059 2.084 0.037 23000 5000 -1.26E-006 6.38E-030

OSC C1B -1.017 2.903 0.054 16000 1000 -1.80E-007 5.47E-030

OSC C2B -0.665 4.228 0.169 16000 1000 -1.80E-007 5.47E-030

OSC C3B 0.749 4.256 0.219 16000 1000 -1.80E-007 5.47E-030

OSC C4B 1.138 2.915 0.120 16000 1000 -1.80E-007 5.47E-030

OSC CMB -1.721 5.331 0.261 16000 1000 -1.80E-007 5.47E-030

OSC CAB 1.601 5.363 0.495 16000 1000 -1.80E-007 5.47E-030

OSC OBB 2.533 5.280 1.295 15000 1000 -9.60E-007 7.29E-030

OSC CBB 1.195 6.743 -0.025 16000 1000 -1.80E-007 5.47E-030

OSC NC 2.045 0.000 0.000 23000 5000 -1.26E-006 6.38E-030

OSC C1C 2.869 1.097 0.045 16000 1000 -1.80E-007 5.47E-030

OSC C2C 4.321 0.667 0.103 16000 1000 -1.80E-007 5.47E-030

OSC C3C 4.257 -0.848 0.116 16000 1000 -1.80E-007 5.47E-030

OSC C4C 2.786 -1.156 0.029 16000 1000 -1.80E-007 5.47E-030

OSC CMC 5.015 1.163 -1.167 16000 1000 -1.80E-007 5.47E-030

OSC CAC 4.750 -1.422 1.428 16000 1000 -1.80E-007 5.47E-030

34Of course, this is only an approximation based on the idea that the interactions between
closest neighbours are the most important, while those over larger distances can be neglected.
Whether this is valid or not does not seem to easily answered in general, but we will assume it
is, since we want to simplify the system to lower number of subsystems.
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OSC CBC 4.094 -0.895 2.728 16000 1000 -1.80E-007 5.47E-030

OSC ND -0.054 -2.000 0.037 23000 5000 -1.26E-006 6.38E-030

OSC C1D 0.963 -2.859 0.012 16000 1000 -1.80E-007 5.47E-030

OSC C2D 0.496 -4.158 -0.029 16000 1000 -1.80E-007 5.47E-030

OSC C3D -0.885 -4.162 -0.016 16000 1000 -1.80E-007 5.47E-030

OSC C4D -1.125 -2.795 0.027 16000 1000 -1.80E-007 5.47E-030

OSC CMD 1.338 -5.421 -0.133 16000 1000 -1.80E-007 5.47E-030

OSC CAD -2.134 -4.708 -0.035 16000 1000 -1.80E-007 5.47E-030

OSC OBD -2.355 -5.895 -0.178 15000 1000 -9.60E-007 7.29E-030

OSC CBD -3.211 -3.680 0.015 16000 1000 -1.80E-007 5.47E-030

OSC C21 -3.376 3.554 0.096 16000 1000 -1.80E-007 5.47E-030

OSC C1 -6.138 1.023 5.163 16000 1000 -1.80E-007 5.47E-030

OSC H3C 4.800 -1.219 -0.597 29000 2000 -3.00E-008 9.11E-031

OSC H3A -4.774 1.276 0.665 29000 2000 -3.00E-008 9.11E-031

OSC H2C 4.806 1.015 0.868 29000 2000 -3.00E-008 9.11E-031

OSC H2A -4.847 -1.031 -0.690 29000 2000 -3.00E-008 9.11E-031

Table 8.2: Data for the essential part of the BChl molecule used to calculate the
absorption spectra.

8.3 Monomer of BChl c

The following figures give spectra of simplified monomer molecules (ess

as from ”essential”) calculated with electrostatic dipole forces only (000)

and with all contributions discussed above (111), compared to suitably

normalized experimental spectra.
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Figure 8.5: Absorption spectra of a simplified Bchl c molecule.
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Figure 8.6: Absorption spectra of a simplified Bchl c molecule.
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We can see once again that in order to obtain non-zero circular dichro-

ism, description in terms of electrostatic dipole forces is not sufficient. The

calculated spectra only remotely resemble the measured ones, as we chose

the parameters only by an estimate and did not perform any systematic

fitting.

8.4 Parallel dimer of BChl c

In the parallel dimer, the second molecule is put below the first and trans-

lated by a vector from the projection of the atom OBB on the XY plane

to projection of the atom MG on the XY plane, so that the atom OBB of

the 2nd molecule ends up below the MG atom of the first molecule. The

distance of the rings is assumed to be the average distance 3.8 Å.

Figure 8.7: Parallel dimer of the BChl c molecules.

8.5 Anti-parallel dimer of BChl c

In the anti-parallel dimer, the second molecule is put below the first, rotated

in the plane of the ring around the MG atom by 180◦ and translated by a

vector from the projection of the atom MG on the plane XY to projection

of the OBB atom on the plane XY (both atoms belonging to the first

molecule), so that the MG atom of the 2nd molecule ends up below the
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Figure 8.8: Absorption spectra of the parallel dimer of simplified Bchl c molecules.

OBB atom of the 1st molecule and the OBB atom of the second molecule

ends up under the MG atom of the 1st molecule. The distance of the rings

is assumed to be the average distance 3.8 Å .

Figure 8.9: Anti-parallel dimer of the BChl c molecules.

Finally we give a plot comparing the spectra of parallel and anti-parallel
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Chapter 8: Calculations for BChl

dimers.
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Figure 8.10: Absorption spectra of the anti-parallel dimer of simplified Bchl c
molecules.

We can see that the aggregation into dimer increases the intensity of

absorption by a factor of 2. Oddly enough, the circular dichroism which

we would expect to change with aggregation a lot does not do so.

We can see that the spectra of parallel and anti-parallel dimers differ

much less in calculation than in the measurements. The reason behind

this is most probably too weak interaction between the molecules due to

their low charges. Adjusting their values we could most probably make the

changes more pronounced, but we will not attempt this here.

From the above plots we can derive these conclusions: that the model

of circular dichroism responds to changes in the structure of the aggre-

gate and that the non-electrostatic forces seem to be important for circular

dichroism. Due to the preliminary character of the description of bonding

of electrons and the simplistic way the model is parametrized, systematic

fitting of the model to the experimental spectra does not seem very useful

at this point. The obvious question is, how to develop and parameterize

the model in a more compelling way? One possible way we see is to de-
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Figure 8.11: Absorption spectra of parallel and anti-parallel dimer and monomer
of the simplified Bchl c molecules.

fine electronic oscillators for various kinds of chemical bonds (for example,

for each pair of atoms one different oscillator) instead of nuclei and thus

make some connection to the models based on the Schrödinger equation

that have electrons moving more freely in between the nuclei. The most

realistic approach compatible with relativistic interactions seems to be the

calculation of the stochastic motion of the electrons around the nuclei in a

way similar to that used by Cole and Zou in 2005 for the hydrogen atom,

but such calculations are computationally very demanding and for large

molecules such as bacteriochlorophyll are at present out of our reach.
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Chapter 9

Conclusion

At the time of assignment, this work had two main goals.

The first one was to develop a theory of absorption that would enable

us to predict absorption spectra and circular dichroism spectra for given

geometries of atoms in a molecule and aggregate and for given spectral

properties of one molecule. In particular, it was our intention to arrive

at a model which would be able to account for the optical activity due to

chirality of the molecule itself and also due to chirality introduced by the

aggregation of the molecules.

The second goal was to apply such model to bacteriochlorophyll molecules

and attempt to infer which one of the proposed models of aggregates lead to

predicted spectra that are most similar to those experimentally measured.

The model we developed uses for the description of interactions within

the aggregate relativistic expression for electric field that contains contri-

butions due to non-zero velocity and acceleration of the charged particles

and due to finite speed of propagation of EM signals. These effects are

negligible for the calculations of ordinary absorption spectrum, but they

seem to be important for satisfactory calculation of CD spectrum for the-

oretical reasons. The few calculations we performed seem to suggest that

the acceleration fields play much greater role in circular dichroism than one

would expect from their magnitude.

We applied our model to simple geometries of interacting oscillators and

verified its physical behaviour. However, modelling of complicated BChl

molecules stumbled on the imperfections of the model, the main of which

is too simplistic description of the bonding of the electrons and the lack

of compelling parametrization procedure for the electronic properties of
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the model. As a result, we cannot provide any insight on which model of

the proposed models of bacteriochlorophyll dimer corresponds best to the

measured absorption spectra of aggregated bacteriochlorophyll molecules.

Perhaps some other work will try to develop the theory of circular dichroism

further and accomplish this goal. May this work provide a good starting

point and inspiration for similar endeavours.
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Appendix

Here we give remarks that did not fit well in the main text.

10.1 Point-like electron

In our work we assumed that the electron is a point-like particle, i.e. a parti-

cle with negligible or zero spatial extension. Unfortunately, some scientists

seriously doubt that the electron can be regarded as point-like particle,

so it seems good here to discuss this question. We do not know of any

compelling argument falsifying the applicability of point-like model of the

electron. Perhaps one of the most pronounced arguments goes as follows:

the ψ function describing the electron in hydrogen atom has substantial spa-

tial extension of orders of Ångströms and (almost) never localizes at one

point of space. Ergo the electron is not a point and has no definite spatial

extension.

This kind of argument seems to be based on the idea that the ψ function

is the electron, or that the description of its state in terms of the ψ function

requires us to reject description by means of a time-dependent radius vector.

Let us look how the ψ function is used in the theory of atoms and molecules

to see whether this idea is reasonable.

Let us consider a system of N particles. We can describe it with help of

the Schrödinger equation for one ψ. This object ψ is by definition complex-

valued, and is a function of spatial coordinates of all N particles and time,

similarly to the Hamilton principal function S(q1, q2, ..., t). For example,

the function describing the pair of electrons in the helium atom may be

written as
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10.1. Point-like electron

ψ(r1, r2, t), (10.1)

where r1, r2 are 3+3 real Cartesian coordinates. But coordinates of what?

One triple of coordinates refers to a point. Since we have as many triples

of coordinates as there are particles, it is clear that the configuration space

on which the ψ function is defined refers to possible mutual configuration

of N particles and Cartesian system of coordinates in physical space.

According to the Born interpretation, the meaning of the ψ function is

that it gives probability that the system of particles is in certain configu-

ration. More accurately,

∆P =

∫
I
|ψ(r1, r2)|2 d3r1d

3r2 (10.2)

is the probability that at time t, the system of the particles has the config-

uration belonging to the subset I of the configuration space. We see that

the function ψ describes probabilistically the whole system of N electrons,

not one electron.

Mathematically, the extension of support of ψ is as little evidence for

extended nature of the electron as the extension of probability distribu-

tion function ρ(r) in 3D space is evidence for the extended nature of the

Brownian particle.

If the particle had some extension, it would be composed of parts, and

these parts would require introduction of new coordinates (as in atom: it

is composed of parts and hence its ψ function contains their coordinates).

The appropriate ψ function would then be a function of these internal

coordinates as well. We do not know whether the electron has such parts.

Scattering experiments attempting to probe such internal parameters of the

electron did not reveal any evidence of them; according to quantum field

theory, recent experiments pose limit on the effective radius of the electron

R < 10−18 m.35,36 For the purposes of chemical physics where typical scale

of interest is 10−10 m and larger, the point-like model of electron seems

quite adequate.

35H. Dehmelt, A Single Atomic Particle Forever Floating at Rest in Free Space: New Value
for Electron Radius, Physica Scripta, Vol. T22, 102-110, 1988.

36G. Gabrielse, D. Hanneke, T. Kinoshita, M. Nio, and B. Odom, New Determination of the
Fine Structure Constant from the Electron g Value and QED , Phys. Rev. Lett. 97, 030802
(2006)
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Chapter 10: Appendix

10.2 On the electric polarization P and magnetization M

In the quasi-stationary theory of dielectric materials, it is common to use

the electric polarization P

The quantity P here is an average electric moment of neutral molecules

per unit volume.

The macroscopic current density in dielectric is often written as

j = ∂tP. (10.3)

For most common dielectric materials this is a good approximation.37

Similarly, in quasi-stationary theory of magnetic materials, it is cus-

tomary to use the magnetization M and express the macroscopic current

density as

j = ∇×M. (10.4)

The quantity M is an average magnetic moment of neutral molecules

per unit volume. Such description does not allow current divergent current

density, but for common insulating magnetic materials this is again quite

well-working approximation.

The expression of the electric current via densities of electric and mag-

netic moment is a rather practical procedure of limited validity: detailed

microscopic derivations show that the current density contains also contri-

butions that are not expressible as functions of P and M. Some of these

contributions may be expressed as functions of the electric quadrupole mo-

ment density and other higher moments of microscopic charge and cur-

rent density. The contribution due to electric quadrupole moment of the

molecules and similar higher moments are often neglected on the grounds

that they are small enough, but in the case of circular dichroism, we should

not neglect them without careful evaluation of their effect.

In our approach, instead of introducing new moments of higher order,

we use directly the current density j and its conjugate polarization potential

P such that

j = ∂tP. (10.5)

37P is defined via average electric moment, which is only an approximate description of state
of large collection of charged particles.
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This P is not polarization in the above sense, but simply an auxiliary

quantity whose time derivative is current density j. Provided that the

average value of j is zero (we do no expect static current in dielectric),

description in terms of the quantity P should be sufficient. The advantage

of this approach is that no higher moment densities are necessary.

10.3 System of units

In a memoir of larger extent, it seems helpful to explain the habits and

views adopted by the author, especially if they might differ from those

expectable from the general interested reader.

The main difference to adopted practice in theoretical spectroscopy is

that we use slightly customized system of units. We use the MKS system

of units due to its simplicity and also because it is familiar to all scientists

across disciplines. The great advantages of this system are that the basic

units - kilogram, meter, second - are close to length and mass of common

bodies and to duration of daily events, and that all other units are defined

in terms of these three basic units in the simplest possible way, so that

various conversion factors known from the older systems are avoided.

We will work mainly in the framework of the electromagnetic theory and

thus we will need to use also units for the basic electromagnetic quantities

such as electric charge and electric strength.

In the SI system, the fourth quantity to be taken as basic was chosen to

be electric current and its unit was chosen Ampère. This choice was most

probably based on practical grounds - electric current is easily measured

and maintained quantity. It also lead to an immensely large unit of electric

charge called the Coulomb - it corresponds approximately to charge of

6.24 ·1018 electrons. Unfortunately, as a result the Coulomb does not share

the above advantage of the MKS units.

On the other hand, according to accepted ideas of electromagnetic the-

ory, any accumulated electric charge and electric charge in molecules con-

sists of a whole number of certain indivisible units, called particles. These

particles have electric charge of small quantity called elementary charge.

We will denote it by symbol e. The electron has a negative charge −1

e, and the proton has positive charge of +1 e. One elementary charge is

equal to eC = 1.6022 · 10−19 Coulombs. In the part of theoretical physics

where we are dealing closely with electrons and other charged particles of
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likely small charge, it is much more reasonable to express electric charges

in multiples of this elementary charge. The basic system of units is then

m, kg, s, e.

For example, the mutual electrostatic force on any one of two bodies

with charges q1, q2 separated by distance r can be written, according to

the Coulomb law, in this way:

F =
K

4π

q1q2

r2
,

where the force F is in newtons, distance r is in meters, charges q1, q2 in

elementary charges and

K =
e2

C

ε0
≈ 2.900 · 10−27 N ·m2 · e−2

is a convenient constant expressing the strength of electromagnetic inter-

action in our units.

The good thing about the SI system is that it put the cumbersome factor

4π away from the Maxwell equations to their solutions; we will retain this

convention.

There is another difficulty with the use of SI system in theoretical

physics, namely that the Maxwell equations in terms of ε0, µ0 are quite

cumbersome for the purposes of microscopic theory; also in SI the quan-

tities E,B have different units which makes direct comparison of electric

and magnetic forces cumbersome.

The old Gauss system seems much better in this respect; the electric

and magnetic field have the same units and instead of cumbersome ε0, µ0,

there is only one factor c and it appears where expected. However, the

Gauss system contains the factor 4π in the Maxwell equations, which is

again cumbersome.

Instead of using pure SI or Gauss convention, we think it best to use

combined convention and write the general Maxwell equations for the macro-

scopic fields in the form

∇ · E = Kρ, (10.6)

∇ ·B = 0, (10.7)
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∇× E = −1

c

∂B

∂t
, (10.8)

∇×B =
Kj

c
+

1

c

∂E

∂t
. (10.9)

The factor c appears always where expected - next to the time coordinate

or in a fraction giving the velocity v/c - and the factor K always appears

as a factor multiplying the sources ρ, j. The factor 4π does not appear in

the Maxwell equations, but in denominators of their (retarded) solutions.

The latter are less often manipulated. They are usually obtained through

the Green function of the wave equation, which already quite naturally

contains the factor 1/(4π).

The Newton-Lorentz equations of motion of a charged particle in an

external field are written

dp

dt
= qEext + q

v

c
×Bext. (10.10)

Overall, this convention combines the advantages of the SI system and

the Gauss system; the basic equations are written transparently without

cumbersome factors of 4π and the electric and the magnetic field have the

same units, which gives more clarity to their use and helps to compare the

corresponding forces. Also for estimating the importance of various rela-

tivistic corrections, natural appearance of the ratios v/c in this convention

is very helpful.
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10.4 List of used symbols

Symbol Quantity Unit

q electric charge e
ρ electric charge density e ·m−3

j electric current density e ·m−2 · s−1

E electric field N · e−1

B magnetic field N · e−1

ϕ scalar potential J · e−1

A vector potential J · e−1

ω proper angular frequency of an oscillator s−1

Ω angular frequency of an external wave s−1

vf phase velocity of the macroscopic wave m · s−1

i, j index of a Cartesian component
a, b, c index of a particle

k, l,m, n index of an eigenfunction
ma mass of the a-th particle
qa electric charge of the a-th particle e
ra radius vector of the a-th electron m
va velocity vector of a-th electron m · s−1

γa gamma factor γa = 1√
1− v2a

c2

Ra radius vector of the a-th nucleus m
ν wave number - number of periods that fit into

unit length m−1

ρµ, jµ, ... microscopic charge and current density
varying on the atomic scale

δ(x− ra) delta distribution localized at point ra of
3D coordinate space

Ea electric field of the a-th particle
E−a,F−a electric field, force acting on the a-th particle

Sp M trace of the matrix M

Table 10.1: Used symbols, their meaning and units.
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