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Lukáš Beran

Study of physical properties of Heusler
alloys

Institute of Physics of Charles University

Supervisor of the master thesis: RNDr. Martin Veis, Ph. D.

Study programme: Physics

Specialization: Optics and Opto-electronics

Prague 2015





Dedication.
First and foremost I would like to give thanks to my supervisor RNDr. Mar-

tin Veis, Ph.D. for all of his help and leadership, not only during the work on
my thesis, but for the support he has given me for my entire stay at Charles
University.

I would also like to take the time to thank all those who helped make this
work possible, namely P. Cejpek, who helped me with structure analysis and
X-ray measurements, O. Heczko who provided samples, VSM measurements and
invaluable advice, as well as, J. Hamrle who prepared samples and D. Legut for
ab initio calculations.

I also have to thank Aj and Max for their ever lasting friendship and sup-
port they have given me for many years. And last but not least I cannot thank
my family and girlfriend Lucie enough for their never-ending support and under-
standing.



I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In ........ date ............ signature of the author



Název práce: Studium fyzikálńıch vlastnost́ı Heuslerových slitin

Autor: Lukáš Beran
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Introduction

The aim of this thesis is devoted to systematic experimental studies of struc-
tural transformations in various Heusler alloys by combination of spectroscopic
ellipsometry and magneto-optical spectroscopy. Heusler alloys are exceptionally
tunable materials which structural, magnetic, electronic and optical properties
are strongly coupled. Their structure can be modified by change of the composi-
tion or temperature, which results in visible changes in their physical properties.
Since they are suitable candidates for applications in novel spintronic, thermo-
electrical or electronic devices, systematic studies of structural transformations in
various Heusler alloys are required to optimize their physical properties for certain
applications. Magneto-optical methods are widely used to sense magnetic prop-
erties of materials down to nanometer scale. Moreover, the spectral dependence
of magneto-optical effects can be used to get important information about elec-
tronic structure of the material in magnetic field. Combined with spectroscopic
ellipsometry, magneto-optical spectroscopy can provide spectral dependence of
permittivity tensor of studied material. The spectra of particular tensor ele-
ments carry are directly related to electronic transitions in matter. Systematic
magneto-optical studies of Heusler alloys undergoing structural transformations
can therefore provide missing information, which cannot be obtained by another
conventionally used characterization techniques.

This thesis is divided into seven chapters with corresponding sections. In
the first chapter a brief introduction into the physics of Heusler alloys is given.
Different physical properties and their changes with structure of these alloys are
described.

The second chapter is devoted to the description of the light interaction with
matter. Optical properties of matter are described within the framework of per-
mittivity tensor and different phenomenological models describing its spectral de-
pendence and originating from different microscopic mechanisms are introduced.
At the end of this chapter a polarization of light is briefly explained and magneto-
optical quantities are defined.

Mathematical apparatus, which is necessary for the description of light polar-
ization changes after the propagation through optical systems or interaction with
samples, is established in the third chapter. Fourth and fifth chapter are describ-
ing the theory of light propagation in optically anisotropic magnetic multilayers.
This theory is necessary for theoretical calculations, which are confronted with
experimental results. Experimental apparatuses of magneto-optical spectroscopy
and spectroscopic ellipsometry, which were used to get experimental data pre-
sented in this thesis, are described in detail in chapter six.

Chapter seven presents all obtained results of this thesis. The results were
obtained on three different Heusler alloys, namely Co-Fe-Si, Ni-Mn-Ga, and Rh-
Mn-Co-Sn. Each of these alloys undergoes a structural transformation induced
by different mechanism. Experimental data are confronted with theoretical calcu-
lations and the result is discussed in context of electronic structure and magnetic
properties of studied material. A picture of changes in electronic structure due
to the transformation is suggested.

Finally, the results of this thesis are concluded in Conclusions.
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1. Heusler alloys

The First Heusler alloy was discovered in 1903 by German chemist Friedrich
Heusler. It was an alloy consisting of Cu, Mn and Al. This alloy was ferromagnetic
despite that none of its components are magnetic[1]. It was discovered later, that
not only this alloy, but also a whole collection of similar alloys have the same
behaviour. Nowadays, there are over a thousand known Heusler alloys. These
materials with 1:1:1 or 2:1:1 stoichiometry are formed from various combinations
of elements. Elements forming Heulser alloys are shown in Fig. 1.1.

Li Be

Mg

Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge

Y Zr Nb Mo Ru Rh Pd Ag Cd In Sn Sb

Ir Pt Pb Bi

Al Si

La Ce Pr Nd YbSm TmGd Tb Dy Ho Er Lu

AuWHf

B

As

X2YZ

Figure 1.1: Elements forming Heusler alloys.

The origin of ferromagnetic behaviour was unexplained for a relatively long
time. In 1929 X-ray measurements revealed that the elements of Cu2MnAl are
ordered in an fcc super lattice. In the mean time many other alloys with room
temperature ferromagnetic behaviour were reported. Deeper structure investiga-
tions revealed that Heusler alloys are formed from two ordered binary B2 com-
pounds XY and XZ. Both compounds may have CsCl crystal structure (for an
instance CoMn and CoAl yield Co2MnAl). That reveals possibility of forming a
new Heusler alloy if B2 structure exists. It was also discovered, that one of four
sublattices can be unoccupied. These alloys are so-called Half- or Semi-Heuslers.
Afterwards studies revealed, that most of the Heusler alloys behave ferromag-
netic in stoichiometric composition. Crystal structure, composition and heat
treatment are the most significant aspects, that determine magnetic properties of
the alloy. Another very interesting effect that was observed is magnetoelasticity
of Ni2MnGa. In summary Heusler alloys have both experimental and theoretical
interest due to their well defined structure and ability to design their physical
properties just by using proper elements and stoichiometry.

Very simple picture of Heusler alloy properties can be predicted by number
of their valence electrons[2]. For example, superconductivity was observed in al-
loys with 27 valence electrons, which were also non-magnetic. Heusler alloys do
not have to be only metals, but also over 250 semiconducting compounds were
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reported[3]. A band gap ranging from 0 eV to 4 eV can be obtained simply by
changing their chemical composition. There is also possibility to obtain both p
and n types for same element composition. Moreover, novel physical phenome-
na like topological edge states, superconductivity, half-metallic ferromagnetism,
etc. were observed in this class of compounds[4, 5]. Most importantly, various
combinations of these phenomena were also observed.

1.1 Structure

Heusler compounds are defined as ternary intermetallic compounds. At stoi-
chiometric composition, Full-Heuslers (X2YZ) and Half-Heuslers (XYZ) crystal-
lize in L21 and C1b structure respectively. The unit cell contains four independent
fcc sublattices with positions (0,0,0) and (1

2
, 1
2
, 1
2
) for X, (1

4
, 1
4
, 1
4
) for Y and (3

4
, 3
4
, 3
4
)

for Z atoms, where second of X sublattices is vacant in Half-Heuslers (Fig. 1.2).
The X and Y atoms have a distinct cationic character, whereas Z can be seen as
the anionic counterpart. The nomenclature in literature varies a lot and thus all
three possible permutations can be found. However the most common is ordering
by electronegativity.

Figure 1.2: Structures of Heusler alloys.

We can imagine Half-Heusler structure as a ZnS-sublattice in which the oc-
tahedral sites are occupied. This description is favourable because of covalent
bonding interaction between two of the contained elements, which plays major
role in the electronic properties of the material. Some elements tend to form
NaCl-type sublattice instead.

There are also reports of third type of Heusler structure[6]. This type is called
Inverse-Heusler and occurs when atomic number of Y element is higher than the
one of X from the same period. It can be formed occasionally when transition
metals from different periods are involved. In all cases, the element X is more
electropositive than Y. As with Full-Heuslers, XZ elements form a rock salt lattice
to achieve an octahedral coordination for X. The remaining X and Y atoms fill
the tetrahedral holes with fourfold symmetry. There are still four fcc sublattices,
however the X atoms do not form a simple cubic lattice as before. More precise
description of atomic positions can be found at [7, 8, 9]. Basic schemes of Heusler
structures are shown in Fig. 1.2. The prototype of this structure is CuHg2Ti.
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This structure is also often observed at Mn2-based compounds and at quaternary
Heusler alloys (XY)X’Z.

1.2 Structural disorder

From description above, it is obvious that atomic arrangement is vital for
properties of Heusler alloys. Therefore various lattice defects greatly influence
physical attributes of final compound. On the other hand this phenomena can
be also used to achieve various properties. High purity of alloys is also very
important to obtain required properties. Only slight concentration of impurities
can dramatically change electronic structure, which changes the behaviour of the
alloy itself.

Figure 1.3: Types of disorder in Half-Heusler alloys.

Overview of possible Half-Heusler disorder types are shown in Fig. 1.3 and
their detailed description can be found in [10]. We are mostly concerned about
types of disorder, when atoms of different elements swap their positions between
each other, because these effects cause change in electronic structure of the alloy.
Amount of disorder has the highest influence on the size of the band gap. It was
observed that band gap is closing with increasing amount of atomic disorder, and
eventually closes completely. The easiest method to obtain amount of disorders
in alloy is X-ray diffraction (XRD) and anomalous X-ray diffraction (AXRD).
Some kinds of disorder can be observed as various reflections in powder XRD
pattern.

In case of Full-Heuslers, disorder mostly affects magnetic and transport prop-
erties caused by change of spin stiffness[11]. Types of disorder for Full-Heusler
alloys are depicted in Fig. 1.4.

Therefore it is vital to examine these disorders to be able to characterize exact
properties of compound.
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Figure 1.4: Types of disorder in Full-Heusler alloys.

1.3 Magnetic properties

Very interesting magnetic properties were observed in Heusler alloys. Even
magnetic phenomena like localized magnetism, antiferromagnetism, helimagnetism,
Pauli paramagnetism or heavy-fermionic behaviour were observed. Since a lot of
magnetic Heusler alloys contain non-magnetic elements, great interest was paid
to study the origin of their magnetism.

1.3.1 Ferromagnets

Most of Heusler alloys exhibit ferromagnetic behaviour. Particularly, in the
case of Mn at Y positions alloys, there is usually magnetic moment of 4 µB

observed. Despite their metallic character, these compounds have localized mag-
netic properties and therefore they are ideal for studies, how atomic disorder and
electron densities affect magnetic properties. As was already mentioned above,
the first reported magnetic Heusler alloy Cu2MnAl contained non-magnetic el-
ements. Other ferromagnetic alloys were for example MnNiSb and Co2MnSn.
Half-Heuslers contains only one magnetic lattice, which means that only eight
atoms may carry magnetic moment. Situation in Full-Heuslers is much more
complicated since X atoms sit in tetrahedral formation, which allows their mag-
netic interaction and formation of the second delocalized magnetic lattice.

The origin of ferromagnetism in Heusler alloys was unknown for a very long
time. It was finally explained after the discovery of their electronic structure. In
alloys containing Mn as Y element, it was observed that the magnetic moment is
localized around Mn atoms. That comes from the fact, that the large exchange
splitting of the Mn d states implies, that Mn atom’s d states support only one
spin direction. In the ferromagnetic state the spin-up d electrons of the Mn atom
hybridize with those of the X atoms forming a common d band, but spin-down d
electrons are almost completely excluded from the Mn sites. This phenomenon
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can be well observed in calculated density of states (DOS) of Co2MnAl shown in
Fig. 1.5. It was proposed by Kübler et al.[12] that in Full-Heusler alloys, X atoms
primary determine the lattice constant, while Z atoms mediate the interaction
between the Mn d state. However, experiments demonstrated that both X and
Z atoms play similar role in establishing the magnetic properties.

Figure 1.5: Calculated DOS of Co2MnAl alloy[13].

1.4 Half-metallic ferromagnetism

A route of Half-metallic ferromagnetism (HMF) began with studies of MnPt-
Sn in 80s of the last century due to fast development in the area of fast non-
volatile mass storage memory devices in the field of magneto-optics. This com-
pound showed magneto-optical Kerr rotation of 1.27◦ with Curie temperature
above room temperature. This result motivated the investigation of the electron-
ic structures of isoelectronic Heusler compounds MnNiSb, MnPdSb and MnPtSb,
which led to the prediction of MnNiSb as the first material being a half-metallic
ferromagnet. These results were first published by Groot and coworkers [14, 18]
and confirmed by many other authors [19, 20, 21].

Positron-annihilation experiments and inverse photoemission confirmed 100%
spin polarization for bulk MnNiSb. Unfortunately surface properties are usually
different from bulk due to impurities and manganese segregations in combination
with high affinity to oxygen. These observations undergo the importance of the
crystal structure with respect to its properties. This is most significant in case
of thin films, because there is usually strain induced by the lattice mismatch.
This can also cause a large disagreement of experimental data with theoretical
calculations.

The explanation of the half-metallic ferromagnetism was introduced on the
basis of the band structure calculations of NiMnSb and PtMnSb Half-Heusler
compounds by Groot et al.[14]. In these alloys, band structure for each spin
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is qualitatively different. Major spin band is metallic, whereas the Fermi level
falls into the gap of the minor spin band (Fig 1.6). Co2MnZ, (Z=Si, Ge) were
reported by Ishida et al. to have such behaviour[15]. Since then, a number of
further systems were predicted to be half-metallic. Some of them are binary
magnetic oxides (CrO2), colossal megnetoresistance materials (LSMO) and zinc-
blende compounds MnAs and CrAs.

non-magnetic

metal
ferromagnet half-metallic

ferromagnet

E
F

Figure 1.6: Scheme of DOSs of materials with different magnetic properties.

Formally, the complete spin polarization of charge carriers in a HMF ma-
terials is only reached in the limiting case of zero temperature and vanishing
spin-orbit interaction. Heusler alloys usually contain 3d elements which do not
show spin-orbit coupling[16]. Presence of spin-orbit coupling allows transitions
between up and down spins, which breaks half-metallicity. Therefore they are
great candidates to exhibit half-metallic ferromagnetism.

1.4.1 Origin of the half-metallic gap

The origin of this phenomenon is strictly connected to symmetry of the system.
In case of Half-Heusler alloys, it comes from vacant site at the position (1

2
1
2
1
2
)

that reduces its cubic L21 structure to C1b tetrahedral crystal structure. Thus
the gap originates from the strong hybridization between d states of the higher
valent and the lower valent transition metal atoms. If we look at example alloy
with Mn at Y position, Z atoms are six nearest neighbours of every Mn atom.
An interaction between Mn p orbitals of Z atoms results in the splitting of Mn-3d
states into a lower lying triplet of t2g states and a higher laying doublet of eg
states. In the majority band the Mn 3d states are shifted to lower energies and
form a common 3d band with X 3d states, while in the minority band the Mn 3d
states are shifted to higher energies and are unoccupied. The results in the gap
splitting at Fermi energy separating occupied d bonding states from unoccupied
d antibonding states(see Fig. 1.7).

1.4.2 Full-Heusler HMF

Shortly after the discovery of MnNiSb, another group of compounds showing
HMF was found. First representatives were predicted from ab initio calculations
by Kübler et al.[19]. Density of states of ferromagnetic Co2MnSn and Co2MnAl
nearly vanishes for one spin orientation at the Fermi energy resulting in high
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Mn
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E
F
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Figure 1.7: The formation of molecular orbitals between d states of Ni and Mn.

spin polarization. Afterwards, many Co2-based Heusler compounds with HMF
behaviour were found. First compound that was successfully applied in spin-
tronics was Co2Cr0.6Fe0.4Al (CCFA)[17]. The idea behind this material was the
combination of a large band gap in the minority DOS with large DOS (van Hove
singularity) in the majority states. The appearance of van Hove singularity at or
close to the Fermi energy is an important requirement for a stable half-metallic
ferromagnet insensitive to the disorder. Band structure calculations revealed,
that to obtain the Fermi energy right in the middle of minority band, there has
to be 27.8 or 28.5 valence electrons. That gives us half-metallic ferromagnetism
stable against temperature fluctuations. Such non-integer value can be achieved
by quaternary alloys of the type Co2Y1−xY’xZ or Co2YZ1−xZ’x.

After rather disappointing results in the era of giant magnetoresistance (GMR)
multilayers, CCFA brought great interest to study of Heusler alloys. CCFA was
also successfully applied in tunnelling magnetoresistance (TMR) devices. Further
attempts to grow thin layers of CCFA were rather unsuccessful. Films showed
decrease of magnetic moment and high presence of disorder. Especially in Cr-Al-
containing compounds is their sensitivity against oxygen what triggers disorder
and phase separation effects.

In the search for higher magnetic moment, it was discovered that Co2CrAl
is a half-metallic ferromagnet with magnetic moment of 3 µB. However, the
substitution of chrome to iron results in a loss of HMF for higher concentrations
of chrome. Such behaviour was explained by the shift of Van Hove singularity
relative to the Fermi energy.

Although the family of X2YZ Heusler compounds is very large, there are
only few compounds exhibiting half-metallic ferromagnetism, that are not based
on cobalt as X element. Therefore Co and Mn based compounds are mostly
investigated, especially due to their high Curie temperatures.

Heusler compound with the highest magnetic moment found so far is Co2FeSi
with magnetic moment of 6 µB. Therefore this compound was further inves-
tigated. There were attempts to enhance its properties by including Mn. All
Co2Mn1−xFexSi exhibit half-metallic ferromagnetic behaviour. Many theoretical
calculations were done on this series to further explain the origin of HMF [22, 23].

11



1.5 Other magnetic behaviours

Antiferromagnetic ordering exists in some of Heusler alloys, particularly in
the ones, where 3d magnetic moment is carried only by Y atoms (mostly Mn).
Antiferromagnetic behaviour was more frequently observed at Full-Heuslers than
at Half-Heuslers. It is particularly due to larger distances between Mn atoms,
which allow X and Z elements to shield their interactions.

Ferrimagnetic behaviour is very rare in Heusler alloys. For example, it was
observed in CoMnSb[24].

1.6 Magneto-optical effects in Heusler compounds

A very important aspect of Heusler compounds is their magento-optical (MO)
behaviour. That means various changes in the polarization state of light upon
the interaction with material possessing a net magnetic moment, mainly rotation
of linear polarization (Faraday, Kerr rotation) and the complementary differ-
ential absorption of left and right circularly polarized light (molecular circular
dichroism - MCD). There are also several studies of MO effects quadratic in
magnetization[14, 25].

Huge magneto-optical effect was observed on MnPtSb and MnNiSb alloys,
where measured MO Kerr Rotation achieved the value of -1.27 ◦ at RT and 5◦ at
80K. Therefore it was called ”giant”.

However its explanation was not that easy. There were several models pro-
posed, mostly including change of half-metallic character due to spin-orbital in-
teraction or semi-relativistic effects. As before, the final explanation came from
electronic structures of these alloys. Antonov et al. found and explained anoma-
lies in Kerr spectra of MnNiSb and MnPtSb that appeared as energy shifts caused
by spin-orbital interaction[26, 27]. Among others, some Full-Heusler alloys were
also reported to have huge magneto-optical effect. For example Co2FeAl and
Co2FeGa.

Another interesting study of magneto-optical properties of Heusler alloys were
done by Kumar et al.[28]. They observed change of Kerr spectra caused by
impurities and dislocations in their compounds.

1.7 Martensitic transformation

It was observed, that some of Heusler alloys undergo martensitic transfor-
mation from high-symmetry austensite cubic phase to low-symmetry martensite
orthogonal phase. In magnetic alloys, there was also magnetoelastic effect ob-
served in the martensite state. This effect is also called magnetic shape memory
effect (MSM). This especially occurs when Mn is present as Y element. In these
alloys, external magnetic field induce strain, which may eventually result in a
swapping of direction of magnetization easy axis. That causes up to 12% reversal
deformation of crystal. In despite of intensive research, it is not quite explained,
what mechanism is behind this transformation. The transformation is often ac-
companied by gradual softening of acoustic phonon branch. This softening is
most likely related to nesting of Fermi surface. On the other hand, some observa-
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tions lead to conclusion that transformation is related to band Jahn-Teller effect
and the martensitic transformation is stabilized by ferromagnetic interaction. For
details about martensitic transformation see [29].

1.8 Heusler alloys spintronic applications

It is not that long ago when applications of novel spintonic concepts in con-
sumer electronics was unthinkable. However after the discovery of GMR effect in
magnetic multilayers by Fert and Grünberg, no one doubted that this situation
is going to change. Nowadays, spintronic devices are part of the daily life.

1.8.1 Magnetoresistive devices

First spintronic magnetoresistive devices were based on GMR effect. GMR
effect was observed on spin valve (two magnetic layers sandwich with very thin
non-magnetic metallic spacer). In the case of parallel magnetization alignment of
both magnetic layers, the resistance of the device is low, whereas a high resistance
state is present, if the alignment is antiparallel. One of the most common GMR
structure is Fe-Cr-Fe system[30]. In magnetoresistive reading head, magnetiza-
tion of the first layer is pinned by anti-ferromagnetic neighbouring layer and the
second ferromagnetic layer is used to read the magnetization direction from near-
by domain. That allowed reading data from magnetic media with much smaller
domains than before. This led to dramatic increase of data storage density. Later,
GMR structures were overcome by tunnelling magnetoresistance devices. These
devices use dielectric spacer instead of metallic one. Therefore electrons have
to tunnel between the layers and the structure becomes more sensitive to much
smaller magnetic fields. A scheme of such structure is displayed in Fig. 1.8. Es-
pecially Co2-based Heusler alloys were used in development in this area[31]. An
efficiency of TMR device is described by TMR ratio of a junction defined as

∆R

RTMR

=
2P1P2

1 + P1P2

, (1.1)

where P1 and P2 are polarizations of the first and the second electrodes respec-
tively. Spin polarization is defined via

P =
N↑ −N↓

N↑ +N↓

, (1.2)

where N↓ and N↑ are densities of the majority and the minority electrons at the
Fermi energy level. The highest TMR 1800% ratio measured by Fert et al.[32]
corresponds to an electrode spin polarisation of at least 95%, but unfortunate-
ly only at 4K. These values were measured on tunnel junction with manganite
electrode. That is why prediction of half-ferromagnetic MnNiSb stimulated great
research interest, aiming at the utilization of Heusler compounds in magnetic
tunnel junctions (MTJs). Despite almost 100% spin polarization on bulk sam-
ple, layered structure showed only values about 60% at 1.6 K. First integrated
epitaxial MnNiSb thin film in MTJ yielded a low TRM effect of 9% at RT and
18% at 4.2 K, which corresponds to only 25% spin polarization. These low values
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were explained by presence of atomic disorder. Therefore more advanced growth
methods such as molecular beam epitaxy (MBE) has to be used to obtain high
quality films. Discovery of CCFA led to huge improvements of TMR ratios. For
example TMR ratio of nearly 600% was observed in Co2MnSi with an AlOx tun-
nel barrier at low temperature[33]. However this compound still exhibited strong
temperature dependence. Breakthrough at this problematic came with discovery
of Co2FeSi, the half-metallic Heusler compound with the highest magnetic mo-
ment and Curie temperature of 1100 K. These properties were even enhanced by
doping with Al or Mn. Many other alloys were studied and research in this area
is still going on. Lately, huge improvement was also obtained by using of MgO
tunnelling barriers instead of AlOx ones[34, 35].

“0” state “1” state

Figure 1.8: Scheme of TMR structure.

In addition to TMR device, current-perpendicular-to-plane (cpp) GMR de-
vices with Heusler electrodes recently emerged in the field of spintronics[36].
These devices have huge advantage in being insensitive to electronic state at
the interfaces, where half-metallicity is often damaged. Another advantage is in
spacer, which can be made from similar Heusler alloy, that causes considerably
smaller disorder in grown films. It has been already demonstrated that ccp-GMR
devices are compatible with ultra-high density storage media[37]. However, they
are still not superior to TMR heads. From an applications point of view, a stable
cpp-GMR effect ≥ 30% at room temperature is perfectly suitable to manufacture
high performance devices.

1.8.2 Spin torque devices

Phenomena employed in GMR and TMR devices can also be used in opposite
way. That means, by spin-polarized electric current, we can change the magnetic
state of nanostructure. This so-called spin-transfer torque (STT) in one of the
most promising phenomena today to satisfy an increasing demand for faster,
smaller and non-volatile electronics.

This effect is possible due to the exchange interaction between the spin of
the incoming conduction electrons and the spin of the electrons responsible for
the local magnetization. A scheme of such device is shown in Fig. 1.9. First
ferromagnetic layer with pinned magnetization is used to spin-polarize the current
through the device. These spins may be repolarized into a new direction when
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they encounter another ferromagnetic layer. In the current repolarization the
local magnetic moment experiences a torque associated with the change in angular
momentum that occurs due to the rotation of the electron spins. This STT
can pump enough energy into nanomagnet to accomplish complete switch of
magnetization.

From an applications point of view, thermal stability is crucial. Due to the
decreasing of size of the device, superparamagnetic limit [38] is usually overcome
by use of materials with the easy magnetization axis pointing perpendicular to
the film surface (PMA). Low saturation magnetization as well as high spin polar-
ization is also crucial for outcome of the device. One of the most studied materials
in this area is Mn3−xGa. This material shows one of the highest PMA with spin
polarization about 88% and Curie temperature higher than 770 K[39].

nanomagnet
�xed magnet

Figure 1.9: Scheme of STT device.

1.8.3 Spin injection

Another demand of spintronics is use of spin polarized current in different
materials, which are unable polarize spins by themselves. That would allow many
technological applications such as manipulation of classical information carried
by spin, initialization, readout of a spin quibits and coherent manipulation of
spin in the proposed spin field effect transistor. Such applications need injection
of spin current especially into degenerate semiconductors like GaAs.

It had been already demonstrated, that it is possible to grow GaAs on Heusler
alloys (Co2MnGe)[40] with only small elongation of the lattice constant compared
to the bulk value. The problem is with the interface between the semiconduc-
tor and ferromagnetic metal, because strong reduction of magnetic moment may
occur there. Great improvement in this area was, once again achieved after
the discovery of CCFA. Thin films of CCFA were grown on GaAs by MBE[41].
Studies of this interface showed that initial monolayers grow in A2-type struc-
ture, which causes loss of half-metallicity, because it allows formation of CrAl/As
bondings[42].

One of the best values achieved so far were on Co-Mn-Ga alloy on InGaAs,
which showed spin polarization in semiconductor about 13% at 5 K[43]. An inject-
ed spin polarization of 27% at 2 K was reported on the system Co2MnGe/GaAs[44],
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contrast to the value of 40% reached with a Fe injector.

1.8.4 Shape-memory materials

Ni2MnGa is nowadays one of the most intensively investigated material owing
to its shape memory behaviour. It has application potential in devices, in which
strain states are controlled by the application of external magnetic field and vice
versa. This material exhibits various structural transformations in wide temper-
ature range, which highly depend on actual stoichiometry of alloy. From appli-
cations point of view, the most interesting one is the martensitic transformation.
This is, as was mentioned above, structural transformation from high-symmetry
austenite cubic phase to low-symmetry martensite phase. The martensite phase
is mostly monoclinic, but due to small deviation it is usually referred as pseudo-
tetragonal. The cubic unit cell is contracted along one direction (mostly c-axis)
and extended along two other directions. Since this transformation is diffusion-
less, large stresses have to be stored and accommodated in the martensite mi-
crostructure. As consequence, the minimization of the strain energy leads to the
formation of number of crystallographic domains, known as variants. In pure
tetragonal case there are three variants that differ by direction of c-axis. A con-
tact of two variants is called twin plane (see Fig. 1.10). In ferromagnetic shape
memory alloys, such as Ni2MnGa, a magnetic field can move these twin planes.
Variants, in which the easy-axis of magnetization is aligned in parallel to the ex-
ternal field, grow preferentially at expense of variants with different orientation,
resulting in macroscopic strains of up to 15%[45].

Presence of strong magnetoelastic coupling on the mesoscopic length-scale is
essential to obtain good twin boundary motion in moderate magnetic fields (about
1 T). This is fulfilled in Ni-Mn-Ga shape memory alloys, in which the magne-
tocrystalline anisotropy energy and the magnetization are sufficiently high in the
martensite phase. On microscopic length-scale strong magnetic coupling leads
to large strains. Related alloys such as Ni-Mn-Sn and Ni-Mn-In showed lower
saturation magnetization in austenite phase than in martensite phase. Therefore
a magnetic field applied to the martensite phase can shift the transition to suffi-
ciently low temperatures and stabilize the austenite phase, giving rise to a field
induced reverse martensitic transformation (FIRMT)[46].

Another interesting feature is the tunability of both Curie temperatures (TC)
and temperature of martensitic transformation (TM) by alloying in the Ni-Mn-
Ga based system. It is possible to almost independently move temperature of
martensitic transformation and Curie temperature. By that, we can obtain com-
pound that perfectly fit our application’s need. One can look at few examples
with Ni2+xMn1−xGa. In small region around x = 0.2, TM and TC are really
close to each other. That brings possibilities to induce additional properties like
giant magnetocaloric effect, magnetostriction, and magnetoresistance, which are
important for magnetic refrigeration or magnetostrictive transducers [47, 48]. If
x increases over 0.3, TM moves over TC . That allows construction of high tem-
perature shape memory alloys.

A ternary phase diagram of the Ni-Mn-Ga system was mapped to obtain
proper relations between TC and TM [49]. That brought the finding, that lower
percentage of Ga in alloy gives higher transformation temperatures. For example
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Ni43Mn48Ga10 has transformation well above room temperature at about 400 K.
Properties described above were obtained on monocrystals only. Such crystals

also showed their full shape recovery about 108 mechanical cycles[50]. However
polycrystalline samples lose all abilities connected with twin boundary movement
due to boundaries of grains.

Additionally, few compositions show inverse magnetocaloric effect, which leads
to cooling of the sample. However this effect was so far reported only in small mag-
netic fields and in higher fields samples exhibit standard magnetocaloric effect[48].

M
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Figure 1.10: Scheme of twinning.

1.8.5 Other physical phenomena

We could continue with the list of interesting physical properties of various
Heuler alloys for another fifty pages or even more. An interested reader can find
more in proper literature [51]. We will end this chapter with just a short note
that there are various, mostly ternary, compounds investigated for their super-
conducting or thermoelectric properties. Great discoveries were also achieved in
the field of topological insulators, nanostructures and photovoltaics. Graphical
overview of studied physical phenomena is shown in Fig. 1.11.

1.9 Outlook

We have shown there are many structural transformations occurring in Heusler
alloys. These transformations are mostly connected with dramatic change of
their physical properties. Therefore it is vital to study these transformations and
understand the underlying physics. For the same reason it is really important to
characterize amount of disorder in studied alloys. Magneto-optics is great tool
for study of such transformations, because it is very sensitive to magnetism and
a lot of information about electronic structure can be derived from its spectrally
dependent measurements. Even more detailed pictures of the electronic structure
can be obtained when it is combined with spectroscopic ellipsometry.
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Figure 1.11: Overview of the different properties of Heusler compounds.
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2. Description of light and

matter

2.1 Tensor of permittivity

To introduce easy description of interaction of light with matter we start from
Maxwell’s equations.

∇ · ~D = ρ, (2.1)

∇ · ~B = 0, (2.2)

∇× ~E = −∂
~B

∂t
, (2.3)

∇× ~H =
∂ ~D

∂t
+ ~J, (2.4)

where ~D = ε0 ~E + ~P and ~H =
~B
µ0

− ~M . One can see that whole interaction with

matter is hidden in the vector of magnetization ~M and polarization ~P . However
this description is still quite complicated. Since we work with low intensities, we
can consider only a linear response of material. Therefore we can write

~D = ε0 ~E + χ̂ ~E = ε̂ ~E, (2.5)

~H =
~B

µ̂
, (2.6)

where we introduced tensors of permittivity ε̂ and permeability µ̂. In magneto-
optics we have to consider presence of magnetic field in our system. Its presence
breaks symmetry of the system, therefore we must treat this system as anisotropic.
In such situation we cannot separate permittivity into Cartesian components,
but we have to deal with it in its full tensor form. To see sufficiency of this
description in our cause, we can look at wave equation and write down its form
for homogeneous linear medium without charge or current densities (derivation
in [52])

(

∆− µ̂ε̂
∂

∂t

)

~E = 0. (2.7)

Here, one can see that the only parameter present in the equation is the term µ̂ε̂.
Since we work in area of optical frequencies we can assume that µ̂ = µ0. In that
case permittivity tensor fully describes the interaction of light with matter.

We mentioned above that we already consider linear homogeneous medium, so
permittivity tensor is not function of time and space. Time invariation reduces
number of independent components to six. Permittivity tensor in the matrix
notation with use of this symmetry has the form

ε̂ =





ε11 ε12 ε13
−ε12 ε22 ε23
−ε13 −ε23 ε33



 . (2.8)
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transverse polar longitudinal




ε1 0 0
0 ε1 ε4
0 ε4 ε1









ε1 ε2 0
ε2 ε1 0
0 0 ε1









ε1 0 ε3
0 ε1 0
ε3 0 ε1





Table 2.1: Simplified form of the permittivity tensor for different magneto-optical
configurations.

Since we consider only effects linear in magnetization, we can use approximation
that all diagonal elements are the same. In that case we rewrite the permittivity
tensor in form

ε̂ =





ε1 ε2 ε3
ε2 ε1 ε4
ε3 ε4 ε1



 . (2.9)

That leaves us with just four independent components. If there is no magnetic
field present, permittivity tensor reduces itself just to scalar variable. In our
situation, we can write it as product of ε1 and unit matrix. This parameter
is usually obtained from ellipsometry. Off-diagonal elements are proportional
to magnetization in the sample. In proper choice of coordinate system, each
element depends only on one component of magnetization vector. We can use this
property to obtain just one element during the measurement. Magneto-optical
configurations where magnetic field vector is pointing along Cartesian axes are
usually called polar, longitudinal and transverse. Their schemes are shown in
Fig. 2.1. In these configurations permittivity tensor reduces to forms listed in
table (2.1).

Polar LongitudinalTransverse

Figure 2.1: Schemes of magneto-optical configurations.

2.2 Phenomenological models

Spectral dependence of optical properties of matter raises from different micro-
scopic mechanism which involve electronic transition, interactions with phonons,
excitons, etc. In the first approximation one can use macroscopic phenomenolog-
ical models.

2.2.1 Lorentz model

In Lorentz model, we start with basic classical concept of an atom, that con-
tains a nucleus and one electron. Atomic nucleus is way heavier than electron,

20



therefore we can position the centre of our coordinate system into centre of it and
neglect its movement. Interaction between these two bodies can be described by
spring-like force. This assumption can be done when electron is at or near minima
of potential. In that case only constant and linear term in the Taylor expansion
of driving force in the equation of motion are relevant. The damping term comes
from internal collisions in the solid and radiation emitted by electron. Light in
this system is introduced via vector of its electric intensity. We will work with
plane wave described by

~E(ω, t) = ℜ{ ~E0e
iωt}. (2.10)

Electric field forces to displacing an electron in the atom and therefore induces a
dipole momentum. This gives rise the macroscopic polarization, which is defined
as

~P = −Nq~y, (2.11)

where q is unit charge, N number of protons in atomic nucleus and ~y is displace-
ment of electron form equilibrium. At last we define plasma frequency that will
simplify further notations

ω2
p =

Nq2

mε0
. (2.12)

All this substituted into the equation of motion yields

d2P

dt2
+ γ

dP

dt
+ ω2

0P = ε0ω
2
pE, (2.13)

where γ is parameter describing dumping of electron’s motion. We can search
solution of this equation in the form

P (ω, t) = ℜ{P (ω)eiωt}. (2.14)

Inserting of this solution into equation (2.13) yields

P (ω) =
ε0ω

2
p

(ω2
0 − ω2) + iγω

E0. (2.15)

If we compare this with material relation for macroscopic polarization

~P = ε0

(

ε1
ε0

− 1

)

~E0, (2.16)

we obtain the dependence of permittivity on the frequency of the electric field in
form

ε1
ε0

= εr = 1 +
ω2
p

(ω2
0 − ω2)

+ iωγ. (2.17)

As can bee seen from Eq. (2.17), ε1 is a complex number. Therefore it is conve-
nient to separate it into its real and imaginary parts via

εr = ℜ{εr} − iℑ{εr}. (2.18)
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Frequency dependences of these terms can be written as

ℜ{εr(ω)} − 1 =
ω2
p(ω

2
0 − ω2)

(ω2
0 − ω2)2 + ω2γ2

, (2.19)

ℑ{εr(ω)} =
ω2
pγω

(ω2
0 − ω2)2 + ω2γ2

. (2.20)

One can see that frequency dependence of ℑ{εr} has Lorentzian shape. Both
dependencies are displayed in Fig. 2.2.

ω0 ωp

ℜ{εr}
ℑ{εr}

Figure 2.2: Spectral dependence of permittivity given by the Lorentz model.

2.2.2 Drude model

So far we considered electrons bounded to atomic nuclei. However in metals
there are free electrons, whose interaction cannot be explained by the Lorentz
model. For these, we need to use Drude model. The only change is in the spring-
like force, which is in this case equal to zero. That means there is no bonding
between nucleus and electron and electron can freely move through crystal. Nev-
ertheless, there is still a damping term, mostly due to the collisions within the
electron cloud and with nuclei.

Solution of alternated equation (2.13) gives

εr = 1−
ω2
p

ω2 − iωγ
. (2.21)

Spectral dependences of optical properties given by this model are displayed in
Fig. 2.3.
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Figure 2.3: Spectral dependence of permittivity given by Drude model.

2.3 Polarization of light

A solution of the wave equation (2.7) can be written in form of plane wave

~E = ~E0e
i(ωt−~k·~r), (2.22)

where ω is angular frequency and ~k is wave vector. Wave vector is defined as

~k = ~sn
2π

λ
, (2.23)

where ~s is a unit vector in the direction of propagation of light, λ is a wavelength
and n is a refractive index. We could do the same for magnetic field, but since
they are bound together, owing to the Maxwell’s equations, by

~B =
1

c
(~s× ~E), (2.24)

we can work only with electric field.
To simplify notation, we usually do not write the real part operator. Another

option is to add complex conjugated term. One can see that the propagation of
light can be fully described by its oscillating part and polarization. From now on,
we will work with plane wave propagating along z axis. Therefore z component of
the vector of electric field equals to zero. Therefore we can describe polarization
by two component vector

~E =

(

E0xe
iφx

E0ye
iφy

)

=

(

E0x

E0ye
i∆φ

)

, (2.25)

where φx and φy are phases of x and y components of the vector of electric field
respectively and ∆φ is a phase shift defined as ∆φ = φy − φx. In second step
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we moved the beginning of time which allowed us to add same phase to both
components. Thanks to that we achieved form with only amplitudes of the field
components and their phase shift. Now we can split this equation in two

Ex = E0x, (2.26)

Ey = E0ye
iφy . (2.27)

Now we will skip few steps that contain subtracting, squaring and adding of these
two equations[52] and move to product of these operations

(

Ex

E0x

)

+

(

Ey

E0y

)

− 2
ExEy

E0xE0y

cos∆φ = sin2 ∆φ. (2.28)

This equation is also equation of ellipse. What is shows is that at any instant of
time the locus of points described by the propagation of Ex and Ey will trace out
ellipse. If we look at propagation through system, the end point of the electric
field vector follows spiral trajectory, as it is shown in Fig. 2.4.

Figure 2.4: Trajectory of the electric field moving through space.

Therefore any polarization of light can be well described by an ellispe. The
ellipse is parametrized by four parameters. Since we can free the time origin ,
we need only three parameters. The use of amplitudes and phase difference is
not the most convenient one so we better use main semi-axis, azimuth ψ and
ellipticity χ. Their definition is showed in Fig. 2.5. Intervals of parameters are

a ∈ [0,∞] , (2.29)

ψ ∈
[

−π
2
,
π

2

]

, (2.30)

φ ∈
[

−π
2
,
π

2

]

, (2.31)

and values of these parameters can be calculated via

tan(2ψ) = 2
E0xE0y cos∆φ

E2
0x + E2

0y

, (2.32)

tan(φ) = ± b

a
. (2.33)
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The ellipticity can acquire also negative values, because it contains informa-
tion about circularity of light. We choose notation, where negative values repre-
sent left-handed direction of rotation. A zero value represents linearly polarized
light.

ψ

φ

a

E
y

E
x

b

Figure 2.5: Definition of angles describing polarization of light.

Next significant situation is when ∆φ is equal to±π
2
and Ex = Ey. In this case,

the light is circularly polarized. The vector of electric field is making precession
movement, while his end creates a circle in space. Depending on the sign of phase
shift, we can have left-handed circularly polarized light (LHCP) or right-handed
polarized light (RHCP). Any other option is generally called elliptic polarized
light.
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3. Mathematical apparatus

3.1 Jones formalism

For future description of optical and magneto-optical experiments, we have
to introduce formalism that is used for description of light polarization and its
changes during the propagation through optical systems. There are many for-
malisms available, but for our case, Jones formalism is sufficient and easy to
use.

3.1.1 Jones vector

At the beginning, we have to define a Jones vector, that characterizes polariza-
tion we will be working with. We choose z direction as a direction of propagation.
We start with vector of electric field

~E =

(

Ex

Ey

)

, (3.1)

where Ex and Ey are components of the electric field vector along Cartesian axes.
If we consider the plane weve solution of the wave equation, we can rewrite this
vector in the form

~E =

(

Ex0(z)e
i(ωt−kz+φx)

Ey0(z)e
i(ωt−kz+φy)

)

= ei(ωt−kz)

(

Ex0e
iφx

Ey0e
iφy

)

. (3.2)

In the next step, we omit the oscillating factor, because it is same for both
components. Since it has no influence on the polarization state that we are
interested in, we will no further use it. It is also usual to normalize this vector.
In the last step we will introduce a phase difference, which is defined as before as
∆φ = φy − φx and in the meaning of previous treatments, we write Jones vector
in the final form

J =

(

Ex0

Ey0e
i∆φ

)

, (3.3)

which represents Jones vector in base of linearly polarized light in directions of
coordinate axes. With this choice of base, it is easy to see, that linearly polarized
light with plane of polarization parallel to x axis is described by Jones vector

J =

(

1
0

)

. (3.4)

Our second choice of base could be RHCP and LHCP light. We will not
show the proof, that these states are orthogonal. In this base Jones vector of our
linearly polarized light looks like

J =
1√
2

(

1
±1

)

, (3.5)

depending on the order of chosen base vectors. Any two orthogonal polarization
states can be used as a base. Transformation between these bases is bound by
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standard operation of linear algebra, that are well described in [54]. We introduce
only basic relation

J ′ = AJ, (3.6)

where A is transfer matrix between bases. The most favourable base is usually
the one made of eigenmodes of studied system, because matrix describing relation
between the beginning and end states is diagonal.

3.1.2 Jones matrix

Now we need to describe the interaction of light with system. From linear
algebra we know, that relation between two n-dimensional vectors is described
by n× n matrix. In our case it is just 2× 2 matrix which in general form can be
written as

M =

(

A B
C D

)

, (3.7)

where A, B, C and D are complex numbers. As with vectors, final form of matrix
describing some optical element is bound to base, we are working in. We can
obtain Jones matrix in new base via

M
′ = AMA

−1, (3.8)

where A is transformation matrix between bases.
Now we can derive new Jones vector of light that propagates through the

system described by Jones matrix M by using

Jf = MJi, (3.9)

where Ji is initial and Jf final state.
List of the most important Jones matrices is listed in table (3.1). All of them

are in bases of linearly and circularly polarized light.
Every element can also be easily rotated by rotating of its coordinate system.

Transformation matrix for rotation by angle α is

R(α) =

(

cosα sinα
− sinα cosα

)

, (3.10)

and it works same way as transformation between bases mentioned above.

3.1.3 Propagation through optical element

Now with full formalism, we can look how to describe propagation of light
through system that contains more of than just one optical element. We have
shown, that propagation through system is described by equation (3.9). Now, we
will work with the system that contains of n sub-systems with different optical
properties, each of them described by his own Jones matrix Mi. We can simply
use equation (3.9), but matrix M needs to describe whole system. Such matrix
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linear base circular base

polarizer at angle α

(

cos2 α sinα cosα
sinα cosα sin2 α

)

1
2

(

1 e2iα

e−2iα 1

)

δ − phaseplate at x axis

(

ei
δ
2 o

0 e−i δ
2

)

1
2

(

cos δ
2

i sin δ
2

i sin δ
2

cos δ
2

)

Polarization rotator by θ

(

cos θ − sin θ
sin θ cos θ

)

1
2

(

eiθ 0
0 e−iθ

)

Table 3.1: Jones matrices of optical elements.

can be derived by multiplication of matrices of each sub-system in right order.
That can be written as

M = Mn . . .M1. (3.11)

It is important to notice that the first matrix is in the right side of the equation.
To clarify our results we will show an example of two rotators, first rotating by
angle α, second by angle β. One would expect the resulting rotation by angle
α + β but let’s have a look what we get from Jones formalism.

As described above, the matrix of whole system is derived by multiplication
of matrices of two rotators

M =

(

cosα sinα
− sinα cosα

)(

cos β sin β
− sin β cos β

)

= (3.12)

=

(

cosα cos β − sinα sin β cosα sin β + sinα cos β
− sinα cos β − cosα sin β − sinα sin β + cosα cos β

)

= (3.13)

=

(

cosα + β sinα + β
− sinα + β cosα + β

)

. (3.14)

In last step, formulas for cos(α+ β) and sin(α+ β) were used. This result is the
rotation by α + β indeed.

It is vital to always work with matrices in the same base. Otherwise, we would
obtain false results. When we use transformation between bases, it does not
matter, if we transform each used matrix or transform their final multiplication.

3.1.4 Interaction with sample

In general term, we do not know how sample interacts with light. Therefore
we begin with general form of Jones matrix

SR =

(

rss rsp
rps rpp

)

, (3.15)

ST =

(

tss tsp
tps tpp

)

. (3.16)

These matrices describe the most general anisotropic material. You can see that
we listed matrices for both reflection and transmission. We will need them both
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later. We choose coordinate system with p direction perpendicular and s par-
allel to the plane of incidence. The choice of letters for each component is also
not random, because they do correspond to Fresnel coefficients of reflection and
transmission[52].

For medium in magnetic field it must be fulfilled

R(−α)SRR(α) = SR, (3.17)

R(−α)STR(α) = ST , (3.18)

(3.19)

where R(α) is matrix of rotation by arbitrary angle α along the magnetization
vector. This relation corresponds to rotation invariance and provide important
relations between the two diagonal and the two off-diagonal elements of the re-
flection and transmission matrices. For example for the polar configuration at
normal incidence we can further derive relations

rps = rsp, (3.20)

tps = −tsp, (3.21)

rpp = −rss, (3.22)

tpp = tss, (3.23)

and also conditions containing vector of magnetization looks like

rsp(− ~M) = −rsp( ~M), (3.24)

rss(− ~M) = rss( ~M), (3.25)

tsp(− ~M) = −tsp( ~M), (3.26)

tss(− ~M) = tss( ~M). (3.27)

Magneto-optical quantities can be derived from these coefficients. We start
with definition of magneto-optical angles[55]

−rps
rss

= ΘKs ≈ θKs − iǫKs, (3.28)

tps
tss

= ΘFs ≈ θFs − iǫFs, (3.29)

rsp
rpp

= ΘKp ≈ θKp − iǫKp, (3.30)

−rpp
rpp

= ΘFp ≈ θFp − iǫFp. (3.31)

The relations listed above can be used only for small angles which will be fulfilled
for samples we are going to study. In further text, parameter θ is called magneto-
optical rotation and ǫ magneto-optical ellipticity.

In the case of normal incidence, symmetry induces ΘKs = ΘKp = ΘK . Same
applies for transmission (Faraday) magneto-optical angles.

Now we can simplify form Jones matrix describing the sample. Since it is com-
mon to normalize Jones vecotrs, we can divide all elements by diagonal element
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θ
K

B

Figure 3.1: Schematic picture of polar Kerr rotation.

from matrix (3.15) and (3.16). After insertion of definitions of magneto-optical
angles we obtain

SR =

(

1 −ΘK

−ΘK −1

)

, (3.32)

ST =

(

1 −ΘK

ΘF 1

)

. (3.33)

From this form we can see that magneto-optical angles describe interaction
between s and p waves. This interaction can generally cause two effects. First
changes azimuth of polarization. For linearly polarized light it means rotation
of plane of polarization (Fig. 3.1). Second causes the change of ellipticity. For
linearly polarized light it means that it becomes elliptically polarized. These
effects are well separated in our description in real and imaginary part of magneto-
optical angles.
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4. Light propagation in

anisotropic media

In this section, we will describe, how the propagation of light changes if the
symmetry of the system is broken. The simplest situation, which we can look at,
is the introduction of homogeneous magnetic field, which will induce the optical
anisotropy in the system.

Once again, we start with Maxwell’s equations for homogeneous system with-
out charges and currents

∇× ~H − ∂ ~D

∂t
= 0, (4.1)

∇ · ~D = 0, (4.2)

∇× ~E +
∂ ~B

∂t
= 0, (4.3)

∇ · ~B = 0. (4.4)

Since we are working with wavelengths at optical frequencies, we can assume that
µ̂ = µ0. Then we will need permittivity tensor that was introduced in previous
chapter

ε̂ =





ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33



 . (4.5)

Presence of external magnetic field induces optical anisotropy in our system.
We can look at how solution of wave equation looks like in this situation. First,
we can insert solution (2.22) into equation (2.7) to obtain

~k × ~k × ~E + ω2ε̂µ0
~E = 0. (4.6)

Then we need to define new quantity called reduced wave vector

~̄N =
c

ω
~k = N̄1î+ N̄2ĵ + N̄3k̂. (4.7)

For the description of propagation of light, we need to solve equation (4.6). First
we will rewrite it to its Cartesian components. With help of Levi-civit antisym-
metric tensor we can write[55]

ǫijkkjǫklmklEm +
ω2

c2
εijEj = 0. (4.8)

After the substitution of identity

ǫijkǫklm = δijδjm − δimδjl, (4.9)

where δ is Kronecker delta, we get

kikjEj − kjkjEi +
ω2

c2
εijEj = 0. (4.10)
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Now we introduce reduced wave vector (4.7) to get

N̄iN̄jEj − N̄jN̄jEi + εijEj = 0. (4.11)

We did not place any conditions on the definition of reduced weve vector. That
allows us to choose Cartesian system, where N̄1 = 0. With this choice, we can
rewrite equation (4.11) in matrix form





ε11 − N̄2
2 − N̄2

3 ε12 ε13
ε21 ε22 − N̄2

3 ε23 + N̄2N̄3

ε31 ε32 + N̄2N̄3) ε33 − N̄2
2









E1

E2

E3



 = 0. (4.12)

If we want to get specific solutions of this equation, we need to specify one
component of wave vector. In our situation, we know the value N̄2. In order to
obtain non-trivial solution of (4.12), the determinant of matrix has to be zero.
This condition gives us characteristic equation, which is boundary condition for
existence of N̄3

N̄4
3 ε33 + N̄3

3 [N̄2(ε23 + ε32)] (4.13)

−N̄2
3 [ε22(ε33 − N̄2

2 ) + ε33(ε11 + N̄2
2 )− ε13ε31 − ε23ε32] (4.14)

−N̄3[(ε11 − N̄2
2 )(ε23 + ε32 − ε21ε31 − ε21ε13]N̄2 (4.15)

+ε22[(ε11 − N̄2
2 )(ε33 − N̄2

2 )− ε13ε31] (4.16)

−ε12ε21(ε33 − N̄2
2 )− ε23ε32(ε11 − N̄2

2 ) + ε12ε31ε23 + ε21ε13ε32 = 0. (4.17)

Since it is equation of the fourth order, four roots of this equation give us four
solutions[56] of equation (4.12)

~ej =





−ε12(ε33 − N̄2
2 ) + ε13(ε32 + N̄2N̄3j)

(ε33 − N̄2
2 )(ε11 − N̄2

2 − N̄2
3j)− ε13ε31

−(ε11 − N̄2
2 = N̄2

3j)(ε32 + N̄2N̄3j) + ε31ε12



 . (4.18)

Equation (4.18) describes eigenmodes of the system. These modes do not change
during propagation and form a base that we can use to describe any electric field
of the wave in the form of linear combination of these eigenmodes

~E =
4
∑

j=1

E0j~eje
i(ωt−ω

c
N̄j ·~r). (4.19)

The simplest solutions of this equation can be obtained for isotropic material
in magnetic field that is parallel or orthogonal to the direction of propagation
of light (x3 axis). The solution of general direction of magnetic field is far more
complex and we will not discuss it here.

4.1 Propagation along the magnetization vector

We start with magnetization vector ~M parallel to x3 axis which is the direction
of propagation of light. With respect to axial symmetry, we get reduced form of
permittivity tensor

ε̂ =





ε1 −iε2 0
iε2 ε1 0
0 0 ε3



 . (4.20)
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With this simplification equation (4.12) gets to more workable form




ε1 − N̄2
2 − N̄2

3 −iε2 0
iε2 ε1 − N̄2

3 N̄2N̄3

0 N̄2N̄3 ε3 − N̄2
2









e1
e2
e3



 = 0, (4.21)

which leads to characteristic equation

N̄4
3 − N̄2

3 [(ε1 − N̄2
2 )ε3 + (ε3 − N̄2

2 )ε1] (4.22)

+[(ε1 − N̄2
2 )ε1 − ε22](ε3 − N̄2

2 ) = 0. (4.23)

Because of our choice of coordinate system we have N̄2 = 0, which reduces this
equation to even more simple form

N̄4
3 − 2ε1N̄

2
3 + ε21 − ε22 = 0. (4.24)

This is still equation of fourth order, but this time, the solutions are in form of
two pairs which differ only in sign. If we start from

N̄2
3 = ε1 ± ε2, (4.25)

we can introduce notation

N+ =
√
ε1 + ε2 (4.26)

N− =
√
ε1 − ε2. (4.27)

Now, if we look at eigenmodes of the system, we find out that their number is
reduced to just two

~e1 = ~e2 =

(

1
i

)

;~e3 = ~e4 =

(

1
−i

)

, (4.28)

which greatly corresponds to LHCP and RHCP light described in chapter above.
Since we usually use description of matter by complex refractive index N = n−ik,
we can rewrite out findings in the way

(n± − ik±)
2 = ε′1 − iε′′1 ± (ε′2 − iε′′2), (4.29)

where

ε1 = ε′1 − iε′′1, (4.30)

ε2 = ε′2 − iε′′2. (4.31)

We can solve equation (4.29) for square roots of real and imaginary parts of
complex refractive index

n2
± =

1

2

[

√

(ε′1 ± ε′2)
2 + (ε′′1 + ε′′2)

2 + (ε′1 ± ε′2)
]

, (4.32)

k2± =
1

2

[

√

(ε′1 ± ε′2)
2 + (ε′′1 + ε′′2)

2 − (ε′1 ± ε′2)
]

. (4.33)

Difference between N+ and N− is small. Thanks to it, we can use linear
approximation and use mean value N and deviation ∆N in form

N± ≈ N ±∆N. (4.34)
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This leads to equations

N2
+ +N2

− = 2ε1, (4.35)

N2
+ −N2

− = 2ε2. (4.36)

If we sum these equations and neglect terms with higher than second order, we
obtain

N2
+ −N2

− ≈ 4N∆N. (4.37)

Now we can use the fact that the mean value of refractive index N is really close
to value of isotropic state without external magnetic field and insert

√
ε1 ≈ N .

That allows us to derive the value of the deviation of refractive index

∆N ≈ iε12
2
√
ε11

, (4.38)

giving us relation between difference of refractive index for LHCP and RHCP
light and off-diagonal element of permittivity tensor.

4.2 Polar Kerr effect at normal light incidence

With respect to previous chapters, we can derive formula for polar Kerr effect
on the surface of a semi-infinite (bulk) magnetic at normal light incidence. We
consider an interface between vacuum and medium magnetized out of plane. We
already showed that eigenmodes of light propagating parallel to ~M are left and
right handed circularly polarized. Propagation of these modes is fully described
by complex refractive index N+ and N−.

We will use Fresnel equations for normal incidence of light, which can be
written for both modes in form

r± = −N± − 1

N± + 1
. (4.39)

If we look at the definition of magneto-optic Kerr quantities (3.31), we can directly
input equation above into this definition and obtain

θK − iǫK ≈ i
r+ − r−
r+ + r−

= i
N+ −N−

N+N− − 1
. (4.40)

Since the difference between refractive indexes r+ and r− is very small, we can
neglect second order terms in ∆N . Results of these operations are

N+ −N− ≈ 2∆N ≈ i
ε12
ε1/2

, (4.41)

N+N− ≈ ε1. (4.42)

That gives us relation for polar Kerr effect in bulk sample at normal incidence

θK − iǫK ≈ iε2√
ε1(ε1 − 1)

. (4.43)
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Now, if we rewrite ε1 and ε2 by their real and imaginary parts and use
√
ε1 ≈ n−

ik, we can separate real and imaginary parts of Kerr effect into two independent
equations

θK ≈ ε′′2C − ε′2D

C2 +D2
, (4.44)

ǫK ≈ −ε
′
2C + ε′′2D

C2 +D2
, (4.45)

where

C = n(n2 − 3k2 − 1), (4.46)

D = k(3n2 − k2 − 1). (4.47)

We can reverse these equations to

ε′′2 = −(CθK −DǫK), (4.48)

ε′2 = −(CǫK +DθK). (4.49)

These equations allow us to obtain approximate values of off-diagonal element of
permittivity tensor from the knowledge of experimentally measured Kerr effect
and optical constants of material, that can be obtained from spectroscopic ellip-
sometry. Such magneto-optical analysis is really powerful tool, which allows us
further simulation of more complex layered structures.
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5. 4×4 matrix formalism for

magnetic multilayers

In 1980 Yeh introduced matrix formalism for propagation of light in anisotrop-
ic non-absorbing layered media. This formalism was enhanced by Vǐsňovský in
1986 for absorbing media and magneto-optical effects[56]. In the multilayer sys-
tem, each layer is represented by two 4x4 matrices and their multiplication gives
us optical response of the multilayer for even very complex systems. This ap-
proach is also very useful for numerical modelling and engineering of new struc-
tures.

As mentioned before, we consider layered structure containing of m layers.
Each layer has its thickness ti and is characterized by its permittivity tensor ε̂(i).
wave vector of incident light is ~k0. We choose x3 axis to be perpendicular to layer
interfaces and x2 axis to be in plane of incidence. In previous chapter, we have
shown that each layer has four eigenmodes of propagation. Additionally, we have
to solve wave equation in two isotropic half-planes. To obtain optical response
of system, we have to find the components N̄3j of the reduced wave vector for
given value of N̄2 and the corresponding electric field vectors ~ej. We know from
Maxwell’s equations that tangential components of electric field are continuous
at the interface. With our choice of coordinate system with respect to Snell’s law,
N̄2 component of reduced wave vector is identical for every layer.

Our goal is to obtain reflection and transmission coefficients of our system for
both polarizations from which we can calculate magneto-optical angles and other
optical quantities. At first we have to calculate eigenmodes for each layer to be
able to describe propagation inside these layers. Then we have to apply boundary
conditions on this set of equations. That will introduce interaction of light with
interface between layers. This condition is mentioned continuity of tangential
component of electric and magnetic field components.

Previous chapter was dedicated to finding of eigenmodes for anisotropic mate-
rial. With respect to its results, we can describe the field in the n-th layer taking
into account that N̄1 = 0,

~E(n) =
4
∑

j=1

E
(n)
0j ~e

(n)
j e

{

iωt− i
ω

c
[N̄2y + N̄

(n)
3j (z − zn)]

}

, (5.1)

where E
(n)
0j is j -th component of corresponding eigenmode at zn coordinates of

the interface between n-th and (n+1)-th layer.
It was mentioned there will be need of use of tangential components of mag-

netic field at the interfaces. To obtain these vectors, we can use formula, which
results from Maxwell’s equations.

~B =
1

c
N̄ × ~E. (5.2)

That allows us to introduce eigenmodes of magnetic field in form

~b
(n)
j = (N̄2

~i2 + N̄
(n)
3j
~i3)× ~e

(n)
j , (5.3)
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and decompose magnetic field similarly to electric one like

c ~B(n) =
4
∑

j=1

E
(n)
0j
~b
(n)
j exp

{

iωt− i
ω

c
[N̄yy + N̄

(n)
zj (z − zn)]

}

. (5.4)

It is worth noticing, that both decompositions use same set of coefficients.
Now if we write continuity requirement of tangential components of electric and
magnetic field vectors at the interface between (n-1)-th and n-th layer, we obtain

4
∑

j=1

E0j(zn−1)~e
(n−1)
j ·~i1 =

4
∑

j=1

E
(n)
0j (zn)~e

(n)
j ·~i1exp

(

i
ω

c
N̄

(n)
zj tn

)

, (5.5)

4
∑

j=1

E0j(zn−1)~b
(n−1)
j ·~i2 =

4
∑

j=1

E
(n)
0j (zn)~b

(n)
j ·~i2exp

(

i
ω

c
N̄

(n)
zj tn

)

, (5.6)

4
∑

j=1

E0j(zn−1)~e
(n−1)
j ·~i2 =

4
∑

j=1

E
(n)
0j (zn)~e

(n)
j ·~i2exp

(

i
ω

c
N̄

(n)
zj tn

)

, (5.7)

4
∑

j=1

E0j(zn−1)~b
(n−1)
j ·~i1 =

4
∑

j=1

E
(n)
0j (zn)~b

(n)
j ·~i1exp

(

i
ω

c
N̄

(n)
zj tn

)

. (5.8)

You can see that whole set of these equations is linear. That means we can move
from this notation to more comfortable matrix formalism. These equations can
be written like

D
(n−1) ~E

(n−1)
0 (zn−1) = D

(n)
P
(n) ~E

(n)
0 (zn). (5.9)

One can see, that all we need are two matrices for each layer. First P matrix is
called propagation matrix and describes propagation of light wave inside layer.
It is diagonal matrix and looks like

P
(n)
ij = δijexp

(

i
ω

c
N̄

(n)
3j tn

)

. (5.10)

Second, dynamic matrix D, describes interaction at the interface and its rows can
be easily constructed by

D
(n)
1j = ~e

(n)
j · î1, (5.11)

D
(n)
2j = ~b

(n)
j · î2, (5.12)

D
(n)
3j = ~e

(n)
j · î2, (5.13)

D
(n)
4j = ~b

(n)
j · î1. (5.14)

We can insert into its definition general solution of the wave equation (4.18),
which yields dynamic matrix in its general form

D
(n)
1j = −ε12(ε11 − N̄2

2 ) + ε11(ε12 + N̄2N̄3j), (5.15)

D
(n)
2j = N̄

(n)
3j [−ε(n)12 (ε

(n)
33 − N̄2

2 ) + ε13(ε
(n)
32 + N̄2N̄

(n)
3j ] = N̄

(n)
3j D

(n)
1j , (5.16)

D
(n)
3j = (ε

(n)
33 − N̄2

2 )(ε
(n)
11 − N̄2

2 − N̄
(n)2)
3j − ε

(n)
13 ε

(n)
31 , (5.17)

D
(n)
4j = −(ε

(n)
11 − N̄2

2 − N̄
(n)2

3j )(N̄)
(n
2 )ε

(n)
12 + N̄

(n)
3j ε

(n)
33 )

+N̄
(n)
3j ε

(n)
13 ε

(n)
31 + N̄

(n)
2 ε

(n)
31 ε

(n)
12 . (5.18)
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Since it is possible to inverse dynamic matrix, we can rewrite equation (5.9) as
relation of electric field in n-th and (n-1)-th layer

~E
(n−1)
0 (zn−1) =

[

D
(n−1)

]−1
D

(n)
P
(n) ~E

(n)
0 (zn) = Tn−1,n

~E
(n)
0 (zn). (5.19)

Transfer matrix Tn−1,n is very useful way to shorten notation, especially for com-
plex systems. Relation (5.19) can be further chained to obtain field at the end
of the system just from conditions at the beginning of the system and matrix
multiplication of dynamic and propagation matrices of layers of system. In short,
it can be written like

~E
(0)
0 (z0) =

[

Πm+1
n=1 Tn−1,n

]

~E
(m+1)
0 (zm) = M ~E

(m+1)
0 (zm). (5.20)

At the end, we introduced matrix M that represent optical response of system.
Derivation of all optical quantities from this matrix will be shown in the following
chapter.

Sometimes it is useful to separate optical properties of layers. In notation
used above, in transfer matrix, there is mixture of matrices of n-th and (n-1)-th
layer. Therefore we introduce matrix

Ln = D
(n)

P
(n)
[

D
(n)
]−1

. (5.21)

Equation (5.19) can be now written as

~E
(0)
0 =

[

D
(0)
]−1

[Πm
n=1Ln]D

(m+1) ~E
(m+1)
0 (zm). (5.22)

This approach is extremely useful for computer modelling since each layer is
represented by its own matrix, which we can easily manipulate with.

5.1 Isotropic layer

Our sample usually consists not only from anisotropic layers, but also at least
one layer that is isotropic. Therefore we must also look at eigenmodes of such
material. In isotropic medium the situation is much more simple. Permittivity
tensor is diagonal and characterized just by one complex number ε

(n)
kk = ε

(n)
1 =

N (n)2 . If we look at eigenmodes we used before, we obtain zeros. Therefore we
have to look for another solutions for wave equation. Since N̄2 = const, we obtain
just two options of wave vector

~k1,2 =
ω

c

[

N̄2
~i2 ±Q(n)~i1

]

, (5.23)

where

Q(n) =

√

ε
(n)
1 − N̄2

2 =
√

N (n)2N̄2
2 . (5.24)

Since the medium is isotropic, eigenmodes can be chosen arbitrarily. We choose
base of linearly polarized light ~e

(n)
3j and ~b

(n)
3j , because it is more compatible with

equations used above. Their notations in Cartesian coordinates are written in
table (5.1). You can see that eigenmodes correspond to s and p polarized wave
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N̄
(n)
31 = Q(n) N̄

(n)
32 = −Q(n) N̄

(n)
33 = Q(n) N̄

(n)
34 = −Q(n)

e
(n)
1 =





1
0
0



 e
(n)
2 =





1
0
0



 e
(n)
3 =





0
Q(n)/N (n)

−N̄2/N
(n)



 e
(n)
4 =





0
Q(n)/N (n)

N̄2/N
(n)





b
(n)
1 =





0
Q(n)

−N̄2



 b
(n)
2 =





0
−Q(n)

−N̄2



 b
(n)
3 =





−N (n)

0
0



 b
(n)
4 =





N (n)

0
0





Table 5.1: Table of proper modes of anisotropic medium written in Cartesian
coordinates.

and odd modes represent propagation forward, while even ones propagation back-
wards. With the knowledge of proper modes we can construct dynamic matrix

D
(n) =









1 1 0 0
Q(n) −Q(n) 0 0
0 0 Q(n)/N (n) Q(n)/N f(n)

0 0 −N (n) N (n)









. (5.25)

Propagation matrix has the same form as in anisotropic media, which was de-
scribed by equation (5.10).

In our calculation there has not to be isotropic layer but we always have to
deal with two isotropic half-spaces corresponding to area in front and behind the
sample. While describing these parts, it is useful to introduce angle of incidence
φ(0) instead of component of reduced wave vector N̄2. There is simple relation
between them

N̄2 = N (0) sinφ(0). (5.26)

It is also worth to mention that in usual optical experiment we have same re-
fractive index in both half-spaces which induces Q(0) = Q(m+1). That ensures
normalization of modes allowing the derivation of transmission and reflection
coefficients directly from fields E

(0)
0j (z0) and E

(m+1)
0j (zm).

5.2 Reflection and Transmission coefficients

Now, we would like to derive reflection and transmission coefficients from
knowledge of M matrix of our system. In usual optical experiment, we illuminate
the sample only from one side. That means

E
(m+1)
02 = E

(m+1)
04 = 0. (5.27)

If we rewrite equation (5.20) with this substitution, we obtain











E
(0)
01 (z0)

E
(0)
02 (z0)

E
(0)
03 (z0)

E
(0)
04 (z0)











=









M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

















E
(m+1)
01 (z0)

0

E
(m+1)
03 (z0)

0









. (5.28)
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We can decompose it into the set of linear equations. Then we define coefficients
rij and tij is usual form using equations

r12 =

(

E
(0)
02 (z0)

E
(0)
01 (z0)

)

E
(0)
03 (z0)=0

=
M21M33 −M23M31

M11M33 −M13M31

, (5.29)

r14 =

(

E
(0)
04 (z0)

E
(0)
01 (z0)

)

E
(0)
03 (z0)=0

=
M41M33 −M43M31

M11M33 −M13M31

, (5.30)

r34 =

(

E
(0)
04 (z0)

E
(0)
03 (z0)

)

E
(0)
01 (z0)=0

=
M11M43 −M41M13

M11M33 −M13M31

, (5.31)

r32 =

(

E
(0)
02 (z0)

E
(0)
03 (z0)

)

E
(0)
01 (z0)=0

=
M11M23 −M21M13

M11M33 −M13M31

. (5.32)

These coefficients are also related to reflection coefficients used in Jones formalism
via[55]

(

rss rsp
rps rpp

)

=

(

r12 r32
−r14 −r34

)

. (5.33)

Similar process can be done for transmission coefficients

t11 =

(

E
(m+1)
01 (zm)

E
(0)
01 (z0)

)

E
(0)
03 (z0)=0

=
M33

M11M33 −M13M31

, (5.34)

t13 =

(

E
(m+1)
03 (zm)

E
(0)
01 (z0)

)

E
(0)
03 (z0)=0

=
−M31

M11M33 −M13M31

, (5.35)

t33 =

(

E
(m+1)
03 (zm)

E
(0)
03 (z0)

)

E
(0)
01 (z0)=0

=
M11

M11M33 −M13M31

, (5.36)

t31 =

(

E
(m+1)
01 (zm)

E
(0)
03 (z0)

)

E
(0)
01 (z0)=0

=
−M13

M11M33 −M13M31

, (5.37)

and relation with Jones formalism looks like
(

tss tsp
tps tpp

)

=

(

t11 t31
t13 t33

)

. (5.38)

Now, when we have connection to Jones formalism, we can compare results of
Yeh formalism with experimentally obtained data. We can also directly calculate
magneto-optical effects just from the knowledge of permittivity tensor of studied
structure.
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6. Experimental methods

6.1 Spectroscopic ellipsometry

Spectroscopic ellipsometry is an experimental technique measuring a change
in polarization as light reflects or transmits from a material structure. The mea-
sured response depends on optical properties and thickness of individual materi-
als. Thus, ellipsometry is primarily used to determine film thickness and optical
constants (ε̂). However, it is also applied to characterize composition, crystallini-
ty, roughness, doping concentration, and other material properties associated
with a change in optical response.

Measured change in polarization is characterized by two ellipsometric param-
eters Ψ and ∆, that are defined as

ρ =
rpp
rss

= tanΨei∆, (6.1)

where rpp and rss are reflection coefficients of s- and p-polarized incident wave
respectively. Thickness, optical constants, and other properties are derived from
these angles via advanced mathematical modelling using phenomenological de-
scription of interaction of light with matter, which will be more described below.

There are two main formalisms used to describe ellipsometric data. First, al-
ready explained in Chapter 3.1, is the Jones formalism. The other, more powerful,
Muller formalism adds depolarization of the sample as an additional parameter.
For description of light it uses Stokes vectros and will not be further described in
this thesis. One can seek proper literature, for example [53].

Figure 6.1: RC2 Woolam ellipsometer.

In our measurements we use Muller matrix ellipsometer Woollam RC2 with
dual rotating compensators (Fig. 6.1) and multichannel detection working in
photon energy range from 1.24 to 6.5 eV. To describe basic functionality of the
ellipsometric setup we will employ simplified model. It contains only rotating
polarizer with frequency ω, sample and analyzer (Scheme in Fig. 6.2). If we

45
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Sample

Detector

Light source

Colimator

θ

Figure 6.2: Scheme of basic ellipsometric setup.

multiply Jones matrices of these components we obtain
(

1 0
0 0

)(

rss 0
0 rpp

)(

sin(ωt)
cos(ωt)

)

=

(

rss sin(ωt)
0

)

. (6.2)

The Jones vector is related to the intensity via

I =
1

2
J+J. (6.3)

Therefore the intensity at the detector is related to

I =
|rss|2
2

sin2(ωt). (6.4)

One can see that the intensity is oscillating with frequency ω and amplitude
proportional |rss|2. Lock-in amplifier can separate this term from time dependent
intensity. Now we can turn the analyzer by 90 degrees to obtain |rpp|2. Their
ratio gives tanΨ. For measurement of ∆ one has to put phase plate between the
sample and the analyzer. Experimental setup for our measurements works with
crossed polarizers and two rotating compensators on both sides of the sample.
Such setup can obtain both ellipsometric parameters and complete Muller matrix
from one measurement.

Now we can look at the theoretical modelling of ellipsometric parameters. We
mentioned above pseudo-optical constants that are defined as

< ε >= sin2 θ

[

1 + tan2 θ

(

1− ρ

1 + ρ

)2
]

, (6.5)

where ρ was defined by Eq. (6.1) and θ in angle of incidence.
If we study just bulk sample without any layer on the surface, it actually cor-

responds to diagonal element of permittivity tensor. For the real sample, there
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is almost always at least thin oxide layer, that may change optical response of
studied material. Therefore we have to use more advanced theory of light prop-
agation through multilayered system. This is usually done by proper software,
which requires only description of studied structure. More we know about the
sample, better is the fitting, because there are many free parameters, which can
provide non-physical results. After the model structure is defined in the software,
it calculates its optical response giving the theoretical values Ψ and ∆. If the ini-
tial values are not known, an estimate is given for the purpose of the preliminary
calculation. The calculated values are compared with experimental data and the
least square minimization method is used. If there is a good agreement between
experimental and theoretical fit, and the results have physical meaning, we can
assume they are reasonably correct. Some of parameters can be obtained before
analysis from another measurements, for example roughness from atomic force
microscopy.

6.2 Magneto-optical spectroscopy

Magneto-optical spectroscopy is an effective, non-destructive method for prob-
ing magnetic properties of magnetic materials and nanostructures. The spectral
dependence of magneto-optical effects carries an important information about the
electronic structure in magnetic material. There are various geometries that al-
low probing magneto-optical effects. We can study transmission (Faraday effect)
or reflection (Kerr effects). We usually focus on effects linear in magnetization.
That can be described by magneto-optical angle Θ, which was already defined in
section 3.1.4. Considering polar Kerr effect, rotation as small as a few millidegrees
have to be resolved.

Polarizer

Analyzer

Sample

Phaseplate

Light source

Detector

Coil

B

Figure 6.3: Scheme of magneto-optical spectrometer with rotating analyzer.

Our measurement setup is based on a method with nearly crossed polarizators.
Basic scheme of this setup is shown in Fig. 6.3. Light of broad spectral range is
brought to the setup from the lamp via optical fibre. This light is collimated by
first lens. Since the light from the lamp is not polarized, there is a polarizer, that
gives us linearly polarized light. Angle between the plane of polarization and the
plane of incidence can be arbitrarily chosen by its rotation, but we generally use p-
polarization. After interaction with the sample, which is placed in magnetic field
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generated by electromagnet, light impacts the second polarizer. This polarizer is
rotated by an angle α from crossed position with the first polarizer. Finally, the
light is focused to the second fibre that brings it to CCD spectrometer, which
gives us spectrally dependent light intensity.

We can derive the dependence of the light intensity at the detector with respect
to the analyzer rotation using Jones formalism. We start with multiplication of
Jones matrices of all optical components, neglecting those having no influence
on polarization state of light and starting with the polarization state after the
transmission through the first polarizer

M =

(

sin2 α sinα cosα
sinα cosα cos2 α

)

(

ei
δ
2 0

0 e−i δ
2

)

(

1 −ΘK

−ΘK −1

)

. (6.6)

Multiplication of these matrices yields

M =

(

ei
δ
2 sin2 α−ΘKe

−i δ
2 cosα sinα −ΘKe

δ
2 sin2 α− e−i δ

2 cosα sinα

−ΘKe
−i δ

2 cos2 α + ei
δ
2 cosα sinα e−i δ

2 cos2 α−ΘKe
i δ
2 cosα sinα

)

.(6.7)

Now, if we set the incident light as s-polarized (Jones vector

(

1
0

)

) at first polar-

izer, we get Jones vector of detected light in the form

J =

(

ei
δ
2 sin2 α−ΘKe

−i δ
2 cosα sinα

−ΘKe
−i δ

2 cos2 α + ei
δ
2 cosα sinα

)

. (6.8)

As before, the intensity is obtained using equation (6.3). Insertion of (6.8) into
this relation yields

I ≈ (cos2 α + |ΘK |2 sin2 α + sin(2α)ℜ(ΘKe
iδ)). (6.9)

Now we can make few simple approximations. Kerr effect is usually very
small. Therefore we can neglect terms quadratic in ΘK . We can also use equation
(3.31). Finally, we will add constant term corresponding to dark current in CCD.
Resulting dependence of detected intensity on the angle of analyzer is

I ≈ cos2 α + (θK cos δ + ǫK sin δ) sin(2α) + C. (6.10)

With knowledge of this relation we can measure the intensity for several angles
and fit this dependence to measured data. Because fitting both rotation and
ellipticity into one set of data, would be complicated, we separate these mea-
surements. This is done by removing phase plate, which means that in such
measurement δ is equal to zero and we obtain pure magneto-optical rotation.
To extract magneto-optical ellipticity we combine experiments with and without
phase plate.

In our calculations we did not include any misalignment of polarizers. To
ensure it does not contribute to our data, we use the fact that linear magneto-
optical effects are odd in magnetization. Since misalignment does not have such
symmetry in magnetic field, simple subtraction of measurements of opposite field
directions terminates this effect. Of course we have to divide result of this process
by two to get actual value of Kerr effect.

Other Kerr geometries and even measurement of Faraday effect could be de-
rived by similar procedure. Results of that yield same formulas with just one
possible change in sign of term with magneto-optical effect.

48



Figure 6.4: Picture of magneto-optical spectrometer with rotating analyzer.

6.2.1 Technical details

A picture of magneto-optical spectrometer we use for experimental measure-
ments is shown in Fig. 6.4.

As a light source we use high power Xe lamp made by Hamamatsu Photonics
or DH-2000-BAL lamp from Ocean Optics, which combines halogen and deuteri-
um lamps. Both lamps give good intensity over whole measured spectral range
which is ranging from 1.2 to 5.5 eV. However despite its better intensity in UV
region, Xe lamp suffers for higher intensity fluctuations which results in higher
noise in Kerr signal.

We use α-BBO Roshon polarizers. These polarizers have high deviation angle,
which allows use of shorter optical path from the source to the detector. This
greatly improves the setup performance when we need to focus the beam into a
small area on the sample. All lenses in setup are fabricated from quartz.

We use two different CCD spectrometers. First is Ocean optics Usb 2000+.
This CCD detector operates from 200 to 900 nm with the chip of 2048 pixels.
That gives us resolution about 0.35 nm. This device is more compact than the
second one, but due to worse control over CCD chip it cannot measure higher
intensities and makes measurements with Xe lamp impossible due to its spectral
peaks. Second device is Shamrock SR-303i. This newer spectrometer allows to
cool the chip down to -90◦C, which results in significant reduction of noise coming
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from dark current and way better signal-noise ratio. Since this spectrometer
is equipped with 3 different movable gratings, we can measure in the spectral
range from 190 nm to 1100nm with resolution better than 0.3 nm. Limitation
in UV region comes from the spectral performance of the light source. This
spectrometer, unlike the first one, allows control of the slit width and exposure
time, which allows handling the intensity deviation among light sources. This
spectrometer is also equipped with light guide that contains of sixteen separate
optical fibres, which gives better transmission than simple optical fibre used with
Ocean Optics spectrometer.
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7. Experimental results

In this chapter we will describe and discuss experimental and theoretical re-
sults obtained on three different Heusler alloys. Each of these alloys undergoes a
structural transformation induced by different mechanism.

Measurements of ellipsometric angles Ψ and ∆ were done in spectral range
from 1.24 to 6.5 eV. To ensure good fitting, five angles of incidence ranging
from 55 to 70 degrees by 5 degrees were measured. All samples were cleaned
prior measurements in isopropanol to remove dust and organical layers on top of
samples.

Magneto-optical measurements were done in polar configuration with nearly
normal angel of incidence. Measured spectral range was ranging from 1.2 to 5.4
eV. Samples were measured in magnetic field of 1.2 T.

All measurements except Ni-Mn-Ga were done at room temperature.

7.1 Co(2−x)Fe(1+x)Si

A set of five samples of Co(2−x) Fe(1+x)Si with x ranging from 0 to 1 was
studied. These alloys are members of bigger group called Co-based Heusler alloys.
These half-metallic alloys exhibit high Curie temperatures (up to 1100K) and the
highest magnetic moment among Heusler alloys.

Figure 7.1: Scheme of structure samples with Co-Fe-Si alloys.

A structure of the samples is shown in Fig. 7.1. All samples were grown by
co-sputtering system with typical base pressure of 10−9 mbar. Ar pressure of
2 × 10−3 mbar was kept during the sample deposition. The substrate is MgO
with orientation (001) (lattice parameter: 4.21 Å). A buffer layer consisting 5
nm Cr and 5 nm of MgO was deposited onto MgO substrate prior to Heusler
alloy layer to ensure ideal growth. To obtain smooth surface, the seed layers
were in situ annealed at 700◦C. 20 nm thick Co(2−x)Fe(1+x)Si layers were grown
by co-sputtering from elemental targets at room temperature. The layer stack
was insitu post-annealed at 500◦C to obtain good crystallinity. At the end of
the process, the samples were covered by 2 nm thick MgO films to protect the
Heusler layer from oxidation.
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x a[Å] σa[Å] c[Å] σc[Å]
0 5.642 0.004 5.650 0.003

0.25 5.655 0.005 5.654 0.002
0.50 5.665 0.008 5.654 0.002
0.75 5.642 0.003 5.660 0.003
1.00 5.667 0.009 5.658 0.002

Table 7.1: Lattice parameters of Co(2−x)Fe(1+x)Si alloys.

7.1.1 Structural properties

X-ray measurements on whole series of samples provided lattice parameters
of grown Heusler alloys that are summarized in table 7.1.

It is obvious that all alloys are cubic with only small extension. This is
in agreement with expected smooth transformation of alloy from Full-Heusler
(Co2FeSi) to Inverse-Heusler (CoFe2Si), which both have cubic symmetry. Since
there is only small difference in lattice constants, we can assume, that there is
only negligible difference in strain that has no effect on band structure.
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Co1.5Fe1.5Si

Co1.75Fe1.25Si
Co2FeSi

Figure 7.2: Optical properties of Co-Fe-Si alloys. The spectra of real part of
diagonal element of permittivity tensor.

7.1.2 Optical properties

Obtained optical properties of Co-Fe-Si alloys are shown in Figs. 7.2 and 7.3.
Optical properties and approximate thickness of buffer layers were acquired from
separate set of samples with these layers deposited separately. For modelling of
Heusler-alloy layer we started theoretical fitting of the experimental spectra of Ψ
and ∆ with point by point fitting which was afterwards parametrized by generic
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Figure 7.3: Optical properties of Co-Fe-Si alloys. The spectra of imaginary part
of diagonal element of permittivity tensor.

oscillators. Positions of oscillators were selected with respect to DOS of Co2FeSi
(see Fig. 7.4).

Figure 7.4: Calculated density of states of Co2FeSi by GGA+U[58].

In the model there are five optical transitions described by Lorentz oscilla-
tors and free electron contribution described by Drude term that define optical
properties of investigated samples. Resistivity in Drude term slightly increases
with higher concentration of iron, but stays at same level of magnitude. The
strongest transition is situated out of measured energies in infrared (IR) region
at around 0.7 eV. The energy of this transition is shifting towards smaller energy
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side with increasing concentration of iron as well as it is broadening. Energy of
this transition is comparable with energy of the gap in the minority spin states.
These observations are in agreement with ab initio calculations[58], which predict
narrowing of the gap and small shifting of the Fermi level. Another significant
change is in UV region between 5 and 6 eV. There are two transitions moving
towards deeper UV and becoming stronger with increase of iron content. The
last transition in measured spectral range is at about 1.5 eV and its amplitude
has the strongest dependence on iron concentration. Therefore we can assume it
corresponds to Co-Fe charge transition, which is in agreement with DOS calcu-
lations. The fifth transition is in deep UV far from measured energies. Therefore
its values suffer to hight fitting error and we will not note them here.

In literature[57], there is usually used GGA model for ab inito calcualtions.
However our observations have better agreement with models calculated by GGA+U[58].
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Figure 7.5: Polar Kerr rotation of Co-Fe-Si alloys.

7.1.3 Magneto-optical properties

Spectra of polar Kerr rotation and ellipticity are shown in Figs. 7.5 and 7.6.
As in the case of optical properties, there is obvious contribution of free carriers,
resulting in a smooth and almost monotonic spectral behavior. In addition there
are visible three energy transitions at 1.6, 2.7 and 4.1 eV. There would probably
be another transition in deep UV, but we are limited by spectral range of our
setup. Ellipticity data are in agreement with Kramers-Krönig (KK) relations[52],
which means that Kerr rotation has as inflex point where Kerr ellipticity has
maximum. Two alloys with the lowest concentration of cobalt have similar MO
properties whereas the other ones show significant difference, especially in UV
region of ellipticity.
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Figure 7.6: Polar Kerr ellipticity of Co-Fe-Si alloys.
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Figure 7.7: Calculated real part of off-diagonal component of permittivity tensor
of Co-Fe-Si alloys.

7.1.4 Off-diagonal elements

With use of Yeh formalism and knowledge of the sample structure acquired
from ellipsometry, we made point-by-point calculations of off-diagonal elements
of permittivity tensor. The results are shown in Figs. 7.7 and 7.8. These data
are in agreement with transitions observed in magneto-optical and ellipsometric
measurements. In VIS and UV regions, real parts of off-diagonal elements of
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Figure 7.8: Calculated imaginary part of off-diagonal component of permittivity
tensor of Co-Fe-Si alloys.

permittivity tensor are similar for all alloys. That means changes in magneto-
optical spectra in this spectral range are caused mostly by change of optical
properties. Changes in IR region are in agreement with our suggestion that the
gap in the minority states is narrowing and the Fermi level is slightly shifting.

Imaginary part is in agreement with KK relations and we can observe smooth
change with concentration of iron in area above 2 eV, which is in agreement with
change of conductivity of studied samples.

7.1.5 Full-Heulser to Inverse-Heusler transformation

Change of optical and mangeto-optical properties of this set of samples is
mostly due to continuous transformation from Full-Heusler in case of Co2FeSi
to Inverse-Heusler in case of CoFe2Si. Fig. 7.9 shows the dependence of polar
Kerr effect as a function of cobalt content. It is notable that MO Kerr effect is
increasing in area around 1.6 eV while it decreases around 2.7 and 4.1 eV. It was
already mentioned that decrease in IR region can be explained by the shift of the
Fermi level and narrowing of the gap in the minority spin states.

Change of magneto-optical Kerr effect in the rest of spectra can be addressed
to changes of concentration of free carriers.
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Figure 7.9: Dependence of polar Kerr rotation on Co content in Co-Fe-Si alloys.

7.2 NiMnGa

The second material, Ni-Mn-Ga, was studied because it undergoes tempera-
ture induced martensitic transformation. It was a Ni-Mn-Ga alloy bulk monocrys-
tal. This material exhibits large (up to 12%) and relatively fast straining in a
moderate magnetic field less than 1 T. The macroscopic deformation is due to
magnetically induced structural reorientation (MIR) of martensite. Propagation
of twin boundaries reorients the non-cubic lattice by about 90◦ that is driven by
stress or magnetic field. This results in macroscopic strain. This ability is highly
affected by mobility of twin boundaries as the magnetic energy is limited.

The single-crystal Ni50.1Mn28.4Ga21.5 was cut approximately along the (100)
planes of parent cubic austenite. The size of crystal was 0.9 x 2.4 x 20 mm3.
Surface was first mechanically polished and then electropolished to remove the
layer affected by mechanical polishing, resulting in high-quality surface. During
cooling, austenite phase transforms to martensite at 318 K. Backward transfor-
mation occurs at 330K. Ferromagnetic Curie temperature is about 373 K. At
ambient temperature the structure of the material is modulated 10M marten-
site. For optical and magneto-optical measurements the lattice can be considered
pseudo-tetragonal with c<a. The short c-axis is easy axis of magnetization.

7.2.1 X-ray diffraction

X-ray diffraction experiments have been done by the method of reciprocal
space mapping using the CuKα line. The configuration was following: 1/4 diver-
gence slit, soller slit 0.02 and the Bartels monochromator on the primary beam
and detector on secondary beam[59].

On this sample, nine reciprocal space maps were measured. One on them is
depicted in Fig. 7.10. One can see that there are more maxima present. It cor-
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Figure 7.10: Reciprocal space map of Ni-Mn-Ga in area around one of major
peaks.

responds to twinning structure of this sample. Lattice parameters of martensite
structure at room temperature were obtained

a = (5.971± 0.002)Å, (7.1)

b = (5.9467± 0.0007)Å, (7.2)

c = (5.586± 0.002)Å, (7.3)

α = β = 90◦, (7.4)

γ = (90.35± 0.01)◦. (7.5)

As noted above, it corresponds to monoclinic structure that can be seen as pseudo-
tetragonal. Austenite lattice parameters were

a = b = c = (5.963± 0.002)Å, (7.6)

α = β = γ = 90◦. (7.7)

7.2.2 Domain structure

Magnetic domain structure was studied by two different methods. Fig. 7.11
displays their simple imaging by magneto-optical indicator. Observed labyrinth
domain structure demonstrates high magnetic anisotropy with magnetization out
of plane, perpendicular to the surface and parallel to crystallographic orientation
of tetragonal short c-axis. This method gives only core features of the domain
structure, because magneto-optical indicator is affected by the stray field above
the sample in relatively large distance. Therefore magnetic force microscopy
(MFM) measurement was done in approximately same area of the sample (Fig.
7.11). This measurement revealed more details in the structure of magnetic do-
mains, however labyrinth-like structure remains.
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Figure 7.11: Domain structure of Ni-Mn-Ga measured by optical indicator and
MFM.

Figure 7.12: Magnetization loops of Ni-Mn-Ga measured by VSM and MO.

7.2.3 Magnetization loops

We have obtained magnetization loops by both, vibrating sample magnetome-
ter (VSM) and polar Kerr MO mesurements (Fig. 7.12). They both confirmed
that magnetization easy-axis is out of plane and the sample contains single vari-
ant with single magnetization, as the curves are measured along shortest sample
dimension. From smoothness of curves we can conclude that there are no mi-
crostructural changes and thus no reorientation takes place during measurement.
This also supports that our sample contains only single martensite variant with
easy axis along the magnetic field. MO measurements in polar geometry shows
same slope of magnetization. However we observed higher coercivity, which can
be explained by higher concentration of impurities at the surface, since MO is
more surface sensitive.

Temperature dependent VSM measurement of magnetization were also done
on the sample. These results are shown in Fig. 7.13. On this Fig. one can see
effect of martensitic transformation on magnetic properties. Significant step in
magnetic properties occurs when alloy transform from martensite to austenite
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and vice versa. One can also notice hysteresis of almost 20◦C.

Figure 7.13: Temperature dependencies of magnetic properties of Ni-Mn-Ga alloy.

7.2.4 Spectroscopic ellipsometry

We have measured ellipsometric parameters Ψ and ∆ at different tempera-
tures. From them we derived values of diagonal element of permittivity tensor
which are shown on figures 7.14 and 7.15. These measurements revealed two
peaks at energies 1.8 eV and 3.2 eV. Fig. 7.16 shows temperature dependence of
optical constants for energy 3.5 eV. Huge jump in this dependence is due to the
martensitic transformation.
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Figure 7.14: Real part of diagonal element of permittivity tensor of Ni-Mn-Ga
during heating up.
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Figure 7.15: Imaginary part of diagonal element of permittivity tensor of Ni-Mn-
Ga during heating up.
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Figure 7.16: Temperature dependence of diagonal element of permittivity tensor
of Ni-Mn-Ga at 3.5 eV.

7.2.5 Magneto-optical properties

Room temperature polar Kerr rotation spectrum measured at nearly normal
incidence is displayed in Fig. 7.17. The spectrum exhibits features typical for
Mn-containing materials[26]. Low level of noise in whole spectral range indicates
good quality of the surface and high reflectivity. Most significant features of Kerr
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rotation spectrum are two bands with opposite signs located near 1.6 eV and 3.8
eV. We also observe smaller broadening in IR region than in UV. These results
are also consistent with previous reports on polycrystalline bulk samples.[61, 62]
Slight shift of band in UV region can be caused by Mn excess. This excess of
Mn atoms, which occupy non-stoichiometric positions can also explain observed
broadening of UV band.
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Figure 7.17: Polar Kerr rotation of Ni-Mn-Ga alloy at room temperature.

In cubic Ni2MnGa the Fermi energy lies in a valley of antibonding minority-
spin 3d states[59]. That is not energetically advantageous. Therefore system
undergoes a martensitic transformation to the tetragonal phase. This structure
is stabilized by forming of the gap in the minority-spin 3d states of Ni around
Fermi energy (band Jahn-teller effect). According to ab-initio calculations, the
gap-like formation in the t2g minority-spin density of states for the tetragonal
structure has the energy about 1.6 eV. The antibonding t2g states lies about 0.3
eV above the Fermi energy, while the bonding Ni t2g states along with Ni eg
states lie about 1.3 eV below the Fermi energy. This gives a gap of 1.6 eV, which
corresponds to the position of spectroscopic band in our data. That would point
to Ni 3d states to be responsible for magneto-optics in infra-red region.

On the other hand, Mn 3d states are localized at about 1.3 eV above the
Fermi energy, white Ni t2g states are broadly located within 1.3 to 3.5 eV below
the Fermi energy, respectively. That means magneto-optical effect in UV region
could be caused by Ni-Mn transitions. This molecular orbital picture is just an
rough approximation and a more sophisticated theoretical models are needed to
validate our assignments.

7.2.6 Martensitic transformation

Results of measurements of temperature dependence of polar Kerr effect are
shown in Fig. 7.18. There is clearly visible effect of martensitic transformation.
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Figure 7.18: Polar Kerr rotation evolution of Ni-Mn-Ga during heating up.

The most significant is the change of sign of magento-optical effect in area between
2 and 3 eV. This change is even more visible in Fig. 7.19 where one can see
temperature dependent polar Kerr rotation at various energies. The change in
the sign of the real part of dielectric function in Ni2MnGa was also observed in
this energy range [63].
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Figure 7.19: Temperature dependence of polar Kerr rotation at various energies.

In austenite phase, both Ni t2g and eg states are shifted to higher energies,
resulting in a valley of antibonding minority-spin 3d states at the Fermi energy.
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However, the energy gap between different Ni 3d states remains approximately the
same as well as the energy of localized Mn 3d states. This suggests that change of
the sign of polar Kerr rotation is most likely due to change of optical properties,
because the magneto-optical signal is dominated not only by the spectrum and
bulk content of the ferromagnetic component, but by the optical properties of
the alloy as well. At higher temperatures we can see decrease of amplitude that
is most likely due to approaching ferromagnetic Curie temperature.

7.3 Mn2RhxCo1−xSn

Ternary compounds Mn2RhxCo1−xSn are ferromagnets, whose magnetism ori-
gins from interaction of Mn with Y elements. Structural transformation in these
alloys occurs when concentration of Rh decreases bellow the value of 0.5. In that
situation cubic Full-Heusler transforms into tetragonal compound. Schemes of
these alloys can be seen in Fig. 7.20. This transformation points to presence
of strain, which is stronger in tetragonal alloys. Concentration of Rh has great
influence on other properties like ferromagnetic Curie temperature which can be
seen in Fig. 7.21.

Figure 7.20: Scheme of structural transformation occuring in Mn2RhxCo1−xSn.

Studied samples were prepared by arc-melting of stoichiometric volumes of
present elements. Afterwards, the samples were annealed in argon atmosphere
at 700 ◦C. After the preparation, the samples we sliced and polished for optical
measurements. Due to the strain in these compounds, we were not able to obtain
hight quality surface. Resulting amount of roughness caused high depolarization
in optical measurements, especially in the UV region. Therefore measurements
in this spectral range suffer for high measurement error and high level of noise.

7.3.1 XRD measurements

Powder diffraction was used to obtain crystallographic structure and lattice
parameters of these alloys. These measurements confirmed the transformation
from tetragonal to cubic structure with increase of Rh content.

Energy-dispersive X-ray spectroscopy (EDAX) measurements were done to
determine exact relative concentrations of the elements in studied samples. The
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Figure 7.21: Dependence of Curie temperature of Mn2RhxCo1−xSn on Rh content.

results are listed in table 7.2. There was also trace amount of Oxygen and Silicon
in all samples.

As it was mentioned, the origin of magnetism in these alloys is connected with
Mn atoms. That is good to keep in mind for further magneto-optical studies,
because there will be visible correlation between MO effect and amount of Mn in
the alloy.
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Figure 7.22: Real part of diagonal element of permittivity tensor of
Mn2RhxCo1−xSn alloys.
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Figure 7.23: Imaginary part of diagonal element of permittivity tensor of
Mn2RhxCo1−xSn alloys.

7.3.2 Optical properties

Obtained spectral dependences of optical properties are shown in Figs. 7.22
and 7.23. Model used for fitting of ellipsometric data was bulk structure with
thin Mn oxide on top. There seems to be no notable dependence in optical
properties connected just to stoichiometry of samples. That is probably due
to the large difference in strains, which has much more significant influence on
optical properties than Rh to Co ratio. There are three noticeable bands around
1.8, 4.2 and 7 eV in addition to contribution of free electrons. Transition in UV
region seems to be way stronger at tetragonal alloys.

Interesting fact is that for the tetragonal alloys the real part of permittivity
goes above zero in UV region. This property might have great use in area of
plasmonics, but could be also caused by high noise in this spectral range.

7.3.3 Magneto-optical properties

Measured magneto-optical spectra are shown in Figs. 7.24 and 7.25. We can
observe decrease of MO Kerr rotation with increase of Rh content. This influence
seems to saturate around the concentration of Rh at 0.7. Ellipticity does not
seem to follow this dependence, however there is still obvious correlation due to
similar change of monotony of rotation and ellipticity. The dependence of polar
Kerr effect on Rh content at 2.5 eV is shown in Fig. 7.26. This observation is
in agreement with higher Kerr effect in Co-based alloys connected with higher
spin-orbital interaction, but more effects seems to be in play. We can observe a
correlation between the amplitude of the Kerr effect and Mn content as well as
the decrease of the amplitude when reaching ferromagnetic Curie temperature.
A contribution to deformation of band structure connected to the lattice strain
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Figure 7.24: Polar Kerr rotation of Mn2RhxCo1−xSn alloys.
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Figure 7.25: Polar Kerr ellipticity of Mn2RhxCo1−xSn alloys.

cannot be neglected.

7.3.4 Off-diagonal elements of permittivity tensor

We used measured MO Kerr spectra and acquired optical constants to calcu-
late off-diagonal elements of the permittivity tensor. Results of this procedure
are shown in Figs. 7.27 and 7.28. Since these values are calculated from previous
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Figure 7.26: Dependence of Kerr Effects of Mn2RhxCo1−xSn on Rh content at
2.5 eV.

data, they have same character. Once again there is no obvious dependence on
stoichiometry.
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Figure 7.27: Calculated real part of off-diagonal element of permittivity tensor
of Mn2RhxCo1−xSn .
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x 3 4 5 7 8 9 10
Co 14.11 12.04 9.20 5.56 3.93 1.85 0.01
Mn 34.94 34.59 32.70 32.01 33.13 32.26 32.74
Rh 10.15 13.01 16.90 22.15 24.96 27.66 28.93
Sn 40.23 39.69 39.70 38.60 37.45 36.76 37.56

Table 7.2: Compositions of Co-Mn-Rh-Sn alloys obtained from EDAX.

7.3.5 Effect of structural transformation

We have observed features on spectra pointing to change of these properties
due to structural transformation. However due to many stronger effects in play,
we cannot come with any conclusion in this matter. Elimination of disturbing
effects would require samples with higher quality. That could be achieved by
additional post-deposition treatment of the samples.

69



70



Conclusion

The aim of this thesis was systematic study of physical properties of various
Heusler alloys. We focused especially on changes in their optical and magneto-
optical properties due to structural transformations in these alloys. At the be-
ginning we introduced general properties of Heusler alloys, described progress in
study of these materials and noted some of their applications.

In theoretical chapters we introduced various ways how to describe the inter-
action of light with matter and formalism used for the description of propagation
of light through various systems. These formalism were used later for theoretical
calculations of optical and magneto-optical response of studied samples, which
were confronted with experimental results to obtain important information about
changes in electronic structure of material, which undergoes the structural trans-
formation. At the end, we explained concepts of experimental methods used for
study of our samples.

In experimental part, we studied physical properties of three different types
of Heusler alloys.

First studied compounds were Co-Fe-Si alloys which draw our interest because
of their half-metallic character, large magnetic moment and hight Curie tem-
peratures way above room temperature. These compounds exhibited structural
transformation with change of Fe-Co ratio from Full-Heusler in case of Co2FeSi
to Inverse-Heusler in case of CoFe2Si. We managed to address changes in optical
properties to changes in DOSs. Optical properties of these alloys were determined
mostly by concentration of free carriers and by size of the bang gap in the minor-
ity spin states. Increase of conductivity and narrowing of the gap was observer
not only in optical measurements, but in the magneto-optical measurements as
well. At the end we compared our conclusions with ab initio calculations where
we found good agreement, especially with GGA+U model.

The second studied alloy was Ni-Mn-Ga. This alloy was interesting for its
martensitic transformation from high temperature cubic austenite to low tem-
perature tetragonal martensite. We started with probing of stuctural properties
of our monocrystallic sample, which confirmed presence of variants in marten-
sitic structure. Magnetic measurements confirmed magnetic anisotropy of the
compound and were in agreement with observed domain structure at the surface
of the sample. Temperature dependent measurements of optical and magneto-
optical properties exhibited significant step within of the transformation, which
was explained by changes of the band structure in the vicinity of the Fermi ener-
gy that occur during the transformation. Changes of magneto-optical Kerr effect
were addressed to changes of optical properties. Finally, approximative picture
of mechanism behind martensitic transformation was proposed.

The last studied sets of samples were Mn-Rh-Co-Sn. X-ray measurements con-
firmed structural transformation from cubic to tetragonal symmetry with change
of Rh content. However, no visible dependences in optical and magneto-optical
properties were observed. These results were explained by large amount of strain
that differs among alloys and had significant effect on optical and magneto-optical
properties of studied samples.
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[4] Chadov S, Qi X, Kübler J, Fecher GH, Felser C, Zhang SC
Tunable multifunctional topological insulators in teranry Heusler compounds
Nature Materials 9, 541-545 (2010)

[5] Klimczuk T, Wang CH, Gofryk K, Ronning F, Winterlik J, Fecher
GH, Griveau JC, Colineau E, Felser C, Thompson JD, Safarik DJ,
and Cava RJ
Superconductivity in the Heusler family of intemetallics
Phys Rev B 85, 174505

[6] Puselj M, Ban Z
The Crystal Structure of TiCuHg2
Croat Chem Acta, 41 (1969), pp. 79-83

[7] Villars P., Calvert LD.
Pearson’s handbook of crystallographic data for intermetallic phases.
American Society of Metals; 1991.

[8] Bradley AJ, Rodgers JW.
Crystal Structure of the Heusler Alloys.
Proc Roy Soc A, 144 (1934), pp. 340-359

[9] Butler WH, Mewes CKA, Liu C, Xu T.
arXiv:1103.3855v1.

[10] Bacon GE, Plant JS.
Chemical ordering in heusler alloys with the general formula A2BC or ABC
J Phys F Met Phys, 1 (1971), pp. 524-532

[11] Miura Y, Nagao K, Shirai M
Atomic disorder effects on half-metallicity of the full-Heusler alloys Co2(Cr

1−xFex)Al: A first-principles study. Phys Rev B 69, 144413 (2004)

[12] Wurmehl S, Kandpal HC, Fecher GH, Felser C
Valence electron rules for prediction of half-metalllic compensated-
ferrimagnetic behaviour of Heusler compounds with complete spin polariza-
tion
J Phys Condens Matter, 18 (2006), pp. 6171-6181

73
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[19] Kübler J,
First principle theory of metallic magnetism
Physica B, 127 (1984), pp. 257-263

[20] Youn SJ, Min BI.
Effects of the spin-orbit interaction in Heusler compounds: Electronic struc-
tures and Fermi surfaces of NiMnSb abd PtMnSb
Phys Rev B, 51 (1995), pp. 10436-10442

[21] Galanakis I, Ostanin S, Alouani M, Dreysse H, Wills JM.
Ab initio ground state and L2,3 x-ray magnetic circular dichroism of Mn-
based Heusler alloys
Phys Rev B, 61 (2000), pp. 4093-4102
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