The aim of this work is the experimental study of recombination of molecular ions with electrons at low temperatures ($< 300\,\mathrm{K}$). The work gives an overview of the diagnostic methods, modelling of chemical kinetics, and experimental apparatuses Cryo-FALP II and SA-CRDS used in the undertaken measurements. Two processes were studied in the course of this work: state-selective binary dissociative recombination of H_3^+ ions in para- H_3^+ and ortho- H_3^+ states, and H_2 -assisted ternary recombination of H_3^+ . The main result of the state-selective dissociative recombination study is that the rate of recombination in the para- H_3^+ state is at least three times higher than in the ortho- H_3^+ state at 60 K. The study of H_2 -assisted recombination gave a better understanding of ternary processes of H_3^+ ions and removed further discrepancies between results of afterglow experiments.