
Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Matěj Outlý

Mode Change in Real-time
Component Systems

Department of Distributed and Dependable Systems

Supervisor: RNDr. Tomáš Bureš, PhD.

Study program: Computer Science, Software Architectures

2011

I would like to thank Tomáš Pop for thorough supervision and numerous suggestions
and Tomáš Bureš for inspiration and useful discussions.

I declare that I have elaborated the master thesis on my own and listed all quoted
references. I agree with making the thesis publicly available.

Prague, August 5th, 2011 Matěj Outlý

2

Název práce: Změna mód̊u v real-timových komponentových systémech
Autor: Matěj Outlý
Katedra (ústav): Katedra spolehlivých a distribuovaných systémů
Vedoućı práce: RNDr. Tomáš Bureš, PhD.

Abstrakt: Ćılem práce je zmapovat možnosti dynamické rekonfigurace v real-
timových komponentových systémech, předevš́ım pak formálně popsat podporu
operačńıch mód̊u. Práce obsahuje návrh mechanismu, který zajǐsťuje rekonfiguraci
na základě ř́ıd́ıćıch proměnných a jejich vzájemných vztah̊u. Mechanismus je navržen
tak, aby bylo možné snadno namodelovat operačńı módy a pravidla pro rekonfigu-
raci při zachováńı znovupoužitelnosti komponentového návrhu. Práce dále ukazuje
zp̊usob realizace tohoto mechanismu tak, aby byl použitelný ve světě vestavěných
real-time systémů.
Kĺıčová slova: rekonfigurace, operačńı módy, real-time systémy, komponenty

Title: Mode Change in Real-time Component Systems
Author: Matěj Outlý
Department: Department of Distributed and Dependable Systems
Supervisor: RNDr. Tomáš Bureš, PhD.

Abstract: The goal of the thesis is to examine possibilities of dynamic reconfigura-
tion in real-time component systems, especially to formally describe support of op-
erating modes. The thesis introduces a reconfiguration mechanism based on proper-
ties and relations between them. The mechanism is designed to facilitate a straight
forward modeling of operating modes and reconfiguration rules and preserves re-
usability of assembled components. The thesis also presents a realization of the mech-
anism suitable for the domain of embedded real-time systems.
Keywords: reconfiguration, operating modes, real-time systems, components

3

Contents

1 Introduction 8
1.1 Real-time Applications . 8
1.2 Application Variability . 8
1.3 Goal and Structure . 9

2 Real-time Application 10
2.1 Tasks and Scheduling . 10
2.2 Runtime Reconfiguration . 12
2.3 Dynamic Storage Allocation . 13

3 Hierarchical Component System 14
3.1 Meta-model . 14
3.2 Structural Requirements . 16
3.3 Architecture Description Language 16
3.4 Application Life-cycle . 16
3.5 Real-time Extension . 17

4 Analysis 18
4.1 Modes in Component System . 18
4.2 Mode Change Mechanism . 19
4.3 Manual Mechanism . 20
4.4 Property Based Mechanism . 21

4.4.1 Basic Design . 22
4.4.2 Meta-model Extension . 23
4.4.3 Network Reaction . 23
4.4.4 Resemblance with SAT . 25
4.4.5 Network Analysis . 27
4.4.6 Property State Machine . 28
4.4.7 Runtime Architecture . 30
4.4.8 Goals Revisited . 30

5 Mode Change Mechanism 31
5.1 Component Mode . 31
5.2 Properties and Property Functions 33

5.2.1 Component and Application Properties 33

4

5.2.2 Property Network . 34
5.2.3 Component Mode Condition 35
5.2.4 Network Functionality . 35
5.2.5 Network Input . 37

5.3 Property Function Language . 38
5.3.1 Syntax . 38
5.3.2 Semantics . 38

6 Oracle Construction 40
6.1 Property State Machine . 40
6.2 PSM Algorithm . 43

6.2.1 Basic Idea . 44
6.2.2 PSM State . 44
6.2.3 PSM Transition . 45
6.2.4 PSM State Combination . 46
6.2.5 Preprocessing . 48
6.2.6 First Phase . 48
6.2.7 Second Phase . 49
6.2.8 Finiteness . 50
6.2.9 Correctness . 51
6.2.10 Complexity . 54

6.3 Hierarchical Mode Automaton . 55
6.4 HMA Algorithm . 58

6.4.1 Algorithm . 58
6.4.2 Finiteness, Correctness and Complexity 58
6.4.3 Enable and Attribute Lists Association 59

7 Runtime 60
7.1 Structural Requirements . 60
7.2 Architecture . 61
7.3 Component Interface . 62
7.4 Event Queue . 63
7.5 Oracle Based Reactor . 63
7.6 Mode Change Protocol . 64
7.7 Enabling and Disabling Application Parts 64

8 Implementation in SOFA HI 66
8.1 SOFA HI Specific Characteristics . 66
8.2 Repository Meta-model Extension . 67
8.3 ADL Extension . 68
8.4 Deploy Phase and Runtime . 70

9 Case Study 71
9.1 Specification . 71
9.2 Component Model . 72

5

9.3 Model Analysis . 73
9.3.1 High-level Mode Set . 73
9.3.2 Low-level Mode Set . 73
9.3.3 Evaluation . 73

9.4 Benefits . 74

10 Related Work 76
10.1 MyCCM-HI . 76
10.2 BlueArX . 77
10.3 Koala . 77
10.4 ROBOCOP . 77

11 Conclusion and Future Work 78

A Content of the Enclosed DVD-ROM 79

Bibliography 80

6

List of Figures

3.1 Example of a single composite component with two subcomponents . 15

4.1 Mode change mechanism basics . 21
4.2 Event spreading through a property network 22
4.3 Network where assigning a current value to the property p1 causes

modification of the dependent property p3 24
4.4 Network whose reaction always oscillate 24
4.5 Network where oscillation depends on a property value 25
4.6 Network where the second SAT transformation founds two results . . 26
4.7 Simple property state machine . 28
4.8 Situation during PSM-1 algorithm execution 29

5.1 Example of a single composite component with two modes 32
5.2 Example of component properties and functions defined on a compos-

ite component with two subcomponents 34
5.3 Example of a property network corresponding to Figure 5.2 35
5.4 Example of affected and reactive properties and the function order . 37
5.5 Syntax of the property function language 39

6.1 Example of k-supporting functions and transitive k-supporting 41
6.2 Well defined stable property state machine 43
6.3 Hierarchical mode automaton . 56

7.1 Architecture of the mode change mechanism at runtime 61

8.1 Extension of repository meta-model 67

9.1 Example world . 71
9.2 Part of the robot’s property state machine 74
9.3 Robot’s component model . 75

7

Chapter 1

Introduction

1.1 Real-time Applications

Embedded devices are used in different branches of business or science, from space-
craft engineering, avionic and automotive industry to home automatization. An im-
portant sort of the devices is control systems. A control system is a single-purpose
real-time system deployed at limited hardware. Its behavior must be predictable
and the execution must meet all applied time-related constraints, thus the device
must respond to an event in a limited time. Another constraint can be e.g. limited
memory, thus the system must have a predictable memory footprint.

Recently complexity in the domain of real-time systems has been growing [4].
This is reflected in the application’s development. The more complex the application
the more difficult the development and the more skilled programmer has to develop
it. Therefore, new techniques to enable easier, faster and less expensive development
are researched. The problem can be solved by introducing a concept providing some
boundaries and making possible to re-use some parts of the application.

A promising solution for the problem of growing complexity lies in component-
based development. This approach uses a common library to store different appli-
cation parts – components. Components are created with respect to re-usability
and compatibility with each other. When a particular application is developed, only
a new logic is created and encapsulated in new components. The rest of the appli-
cation is assembled from the existing components loaded from the common library.
This development technique is appropriate for real-time applications as well. How-
ever, real-time constraints and constraints related to limited hardware must be kept
in mind. The methodology must be adjusted accordingly.

1.2 Application Variability

With the application complexity growing there comes an effort to create it more
variable. There are different kinds of variability. It is possible to study variability
at design time. An application can be designed with respect to easier later modifi-
cations. Methods enhancing application’s flexibility, e.g. design patterns, are intro-

8

duced. Variability can be observed at compile time as well. Application’s behavior
can be modified through a compiler configuration, e.g. by preprocessor macros.

The thesis refers to variability of real-time component systems at runtime, mostly
an ability to dynamically reconfigure the application according to the situation it
lies in. A control system interacts with the real world that can be heterogeneous.
The device has to be flexible enough to properly react on accidental changes in the en-
vironment. Hence the runtime reconfiguration is a natural request to control systems.

General forms of runtime reconfiguration are not suitable for real-time embedded
devices because they are limited in terms of computational time and memory. It
must be assured that the resources are not overdrawn in any reachable configuration
the application lies in. One possible solution lies in restricted forms of reconfigura-
tion. Only a limited set of configurations is described in advance. The application
is built for the selected configurations and it is assured that the resources are suffi-
cient for every single configuration (so called an operating mode).

1.3 Goal and Structure

The goal of the thesis is to design and formally describe a support for operating
modes in a real-time component-based application with respect to preserving basic
characteristics – re-usability of components and operating modes and schedulability
of the application and each of its configurations. The thesis presents methodology
to construct data structures enabling predictable and effective mode change handling
at runtime. Last but not least a prototype of the proposed extension is implemented
as a proof of the concept.

The thesis is structured as follows. Chapter 2 and Chapter 3 provide theoretical
background about real-time systems and component-based development which is nec-
essary for understanding the topic. Chapter 4 analyses possible methods to complete
the goals and creates a summary of new ideas introduced in the thesis. Chapters 5,
6 and 7 complement the analysis with formal definitions and detailed description.
The concept implementation is described in Chapter 8. Chapter 9 gives an eval-
uation of the concept using a case study application. Work related to the topic
is summarized in Chapter 10 and the thesis is concluded by Chapter 11.

9

Chapter 2

Real-time Application

Based on [3], [2] and [5], this chapter briefly introduces a concept of real-time systems.
Basic terms are described in the first part. The second part of the chapter summarizes
basic facts about reconfiguration and mode change protocols. The third part briefly
outlines a question of dynamic memory allocation.

Real-time system is a system where not only a correct result but also the time
when it is delivered is important. The definition does not mean that the result should
be returned quickly but more likely on time. This time constraint is often denoted
as a deadline.

The thesis aims at hard real-time systems, i.e. systems where returning a re-
sult after deadline causes application’s breakdown and catastrophic consequences
on the controlled environment.

2.1 Tasks and Scheduling

A real-time system can integrate several different activities – tasks. The activities
together represent behavior of the system. Each task is characterized by the following
parameters.

• Arrival time (a) is the time when a task becomes ready for execution.

• Computation time (C) is the duration how long a task is executed.

• Absolute deadline (d) is the time before which a task should be completed. Ab-
solute deadline can be replaced by relative deadline (D) which is the difference
between absolute deadline and arrival time.

• Start time (s) is the time from which a task is being executed.

• Finish time (f) is the time when a task is completed.

• Response time (R) is the difference between finish time and arrival time.

More parameters are defined in [3]. However, since they are not relevant to the thesis,
their description is omitted.

10

A task can be either periodic or aperiodic. A periodic task consists of an infi-
nite sequence of identical activities, called instances, activated regularly after a time
period (T). An aperiodic task consists of an infinite sequence of instances as well,
but they are not activated on a regular basis. Just systems with periodic tasks
are considered in the thesis. The described architecture, denoted as a Time Trig-
gered Architecture (TTA), is considered to be suitable for hard real-time systems
development.

The main objective of real-time systems is the way how to schedule task’s in-
stances in order to meet all task’s deadlines (f ≤ d), to find a feasible schedule.
A system implements a scheduling algorithm for this purpose. A scheduling algo-
rithm often works with priorities. A task’s priority (P) is estimated on the basis
of the period or the deadline. The priority affects which waiting task is executed
as first. During system’s development it is possible to use a schedulability analysis
which detects if the chosen scheduling algorithm is able to properly schedule the set
of tasks.

Scheduling algorithms can be classified by different criteria.

• Preemptive or non-preemptive algorithm – An algorithm is preemptive if it in-
terrupts an instance’s execution, otherwise it is non-preemptive.

• Static or dynamic parameters – An algorithm handles dynamic parameters if
they can vary over time. Parameters are static if they are fixed all the time
the system is running.

• On-line or off-line algorithm – An algorithm is on-line if it is applied at run-
time every time the system needs to switch tasks. It is off-line if a schedule
is precomputed in advance and stored in a table.

Frequently used scheduling algorithms are Rate Monotonic (RM) and its mod-
ifications and Earliest Deadline First (EDF). RM is a static on-line algorithm ap-
plicable for periodic tasks. EDF is a dynamic on-line algorithm for periodic tasks
scheduling.

There is a set of parameters which completely characterizes a periodical task
in the system. It is a computation time, a relative deadline and a period. The three
parameters are constant for all instances. A relative deadline, a period, a computa-
tion time estimated by a worst case execution time analysis (WCET) and a priority
computed by a scheduling algorithm are called real-time attributes. The real-time
attributes are used for task’s configuration in the system.

A software part of a real-time system usually consists of a real-time operating
system (RTOS) and a real-time application. The real-time operating system handles
low-level issues like scheduling and memory management and offers specific real-
time services like support for periodic tasks. There exists several real-time operating
systems, e.g. FreeRTOS [19] or some real-time modification of GNU/Linux [20].
The real-time application, on the other hand, implements the system’s specific issues
and creates its business logic.

11

2.2 Runtime Reconfiguration

General forms of runtime reconfiguration are not suitable as described in Chap-
ter 1. Operating modes has been outlined as a possible solution. An operating mode
is a configuration described in advance which corresponds to specific behavior of
the system. In principle, it defines which tasks are running and which values of real-
time attributes are applied to each running task. This section provides details about
operating modes and transitions between them. A piece of knowledge contained
in the entire section origin from [2] where exhaustive description of the topic can
be found.

In a multi-moded application the previous definition of a task is not sufficient
and must be extended. Real-time attributes may vary between different operating
modes. Thus a periodic task is described by tuples of a computation time, a period,
a deadline and a priority, one for each operating mode in the system. A task may or
may not be active in a particular operating mode.

A mode change request (MCR) is an event which causes a transition from an old
operating mode to a new one. It can occur in the steady state when a particular
mode is active, but not when a transition is in progress. The application should
ensure that this request is fulfilled or introduce a mechanism which handles it.

Tasks involved in a mode change can be divided to old-mode and new-mode tasks.
Old-mode task can be:

• Aborted at MCR if the abortion does not break a data consistency.

• Completed during the mode change.

New-mode task can be:

• Wholly new if it is not active in the old mode.

• With changed real-time attributes if it is active in the old mode, but with dif-
ferent values of real-time attributes.

• Unchanged at all if it is active in both old and new modes with the same values
of real-time attributes.

The application can be overloaded during a mode change. Some old-mode tasks
have to be completed and new-mode tasks have to be activated in the same time
interval. In order to prevent overdrawing of available resources, the first activation
of new-mode tasks have to be delayed. The delay relative to the MCR is called
an offset. An offset of a task is defined for each possible mode change.

Since offset may delay the activation of a new-mode task, there is a requirement
to assure its promptness. Each task defines a mode change deadline which bounds
task’s response time during mode change for this purpose. A mode change deadline
is the maximum time allowed for the first activation of the task in the new mode
to be completed, with respect to MCR.

The main objective is to find appropriate offsets for each task in the system
with respect to mode change deadlines. An algorithm which finds it is called a mode

12

change protocol. Existing protocols can be classified according to different charac-
teristics.

• Protocols with periodicity or without periodicity – In a protocol with periodicity
unchanged tasks are executed independently from the mode change. In a pro-
tocol without periodicity the activation of unchanged tasks may be delayed.

• Synchronous or asynchronous protocols – In a synchronous protocol new-mode
tasks are released after old-mode tasks are completed. In an asynchronous
protocol a combination of both new-mode and old-mode tasks is allowed during
the mode change.

Maximum-period offset protocol is one of the most trivial mode change protocols.
This synchronous protocol delays all new-mode tasks for the time equal to the max-
imum period of both old-mode and new-mode tasks. Unchanged tasks are not af-
fected, thus the protocol is with periodicity. It is very simple to implement but
suffers with poor promptness. Better promptness can be assured by incorporating
one of the asynchronous protocols. However, implementation of an asynchronous
protocol is not so simple and a special analysis to validate that the resources are not
overdrawn during transition goes with it.

2.3 Dynamic Storage Allocation

Dynamic memory allocation suffers with time unpredictability during both allocation
and deallocation operations and with a problem of unknown memory size allocated
at runtime. Another problem is memory fragmentation which can cause unreliable
services, especially when the application runs for a long period of time.

The problems can be solved by introducing a special allocator bounded to fulfill
requirements to real-time systems. Algorithm used by such an allocator is called
a dynamic storage allocation (DSA) algorithm. Bounded and fast response time
and bounded and low memory fragmentation are the common requirements. Ex-
ample of such an algorithm can be Half-fit or TLSF algorithm. More information
about the topic can be found in [5]. However, in order to use DSA allocator it has
to be implemented in the used RTOS. It is a feature which cannot be relied on.

13

Chapter 3

Hierarchical Component System

This chapter introduces a component-based development, not in a comprehensive
form useful for praxis but only in a form sufficient for the thesis. Exhaustive intro-
duction to the topic can be found in [6]. A hierarchical component system is consid-
ered.

A hierarchical component system is a development framework which allows to cre-
ate independent components or other application parts and store them in a common
library. The components are composed together creating a business logic of de-
veloped application. They can be nested to each other at different levels creating
a hierarchy. When the design is finished, the application is deployed and prepared
to be launched.

An example of a hierarchical component system is SOFA 2 Component system [12]
or Fractal Component Model [13]. There exist many different component systems.
Each component system can significantly differ from one another. A general idea
of a component system is described and assumed in the thesis with the following
characteristics.

• Existence of a meta-model defining hierarchical system of components.

• Using an architecture description language for application model description.

• A component life-cycle composed of design, deploy and execution phase.

• Existence of active components with real-time attribute values defined.

• Existence of schedulability analysis.

It is not assured that the idea is coherent with all existing component systems but
for the most of them it is applicable in the presented or in a rather modified form.

3.1 Meta-model

In modern component systems, an application is specified as an instance of a meta-
model. Meta-model is a model which defines particular building blocks and sup-
porting structures of a developed application. It describes how a component looks

14

like, how an interface is created for a component, how components can be connected
or composition rules which must be kept. In praxis, a meta-model is designed us-
ing a modeling language, e.g. UML [17] or EMF [18]. The ideas presented in the thesis
assume the meta-model described as follows.

The main building block of a developed application is a component. At the first
sight a component is a black box which exposes a collection of interfaces. An interface
is an entity that creates an apposing point allowing the component to communicate
with its surrounding.

A component is either primitive or composite. A composite component contains
other components as subcomponents and defines connections between their interfaces.
The component’s business logic is created by the composition and by the component
source code, if it is defined. On the other hand a primitive component does not
contain any other elements and its business logic is encapsulated in the component
source code. Figure 3.1 shows an example of a composite component with two sub-
components and connections between their interfaces.

Figure 3.1: Example of a single composite component with two subcomponents

Interfaces are of two kinds. Require interfaces require a service from another com-
ponent. Provide interfaces provide a service to another component. An interface can
be connected to compatible interface of other component so data can be transfered
from one interface to another. The first compatibility aspect is an interface data
type. The data type of the connected interfaces has to be the same. The second
aspect is the interface kind. Require interfaces are compatible with provide inter-
faces of sibling components. Provide interfaces of parent components are compati-
ble with provide interfaces of subcomponents. Require interfaces of subcomponents
are compatible with require interfaces of the parent component.

A configuration of a component is realized using configuration parameters. A set

15

of parameters is defined during the component design. However, values of the param-
eters can be set later before the component is launched. The parameter values can
be used by the source code or by another entity that understands the parameter’s
semantics to adjust the component’s behavior.

A set of methods, called a component API, is available to the component source
code. It enables the source code to work with the component’s interfaces and con-
figuration parameters.

An application is represented by one top-level component which encloses all other
components and their connections. A component is contained in the application if
it is a direct or indirect subcomponent of the top-level component.

3.2 Structural Requirements

Well defined application has to hold the following structural requirements.

(1) An arbitrary require interface of an arbitrary component has to be connected
to exactly one compatible provide interface of a sibling component or to exactly
one compatible require interface of a parent component.

(2) An arbitrary provide interface of a composite component has to be connected
to exactly one provide interface of a subcomponent.

There is a corollary directly implied from the structural requirements. The re-
quirements ensure that a thread of execution which is currently in an arbitrary
component can call an arbitrary require interface of the component and this inter-
face is connected to a provide interface of another component where the execution
can continue.

3.3 Architecture Description Language

An architecture description language (ADL) is used for the component-based ap-
plication development, i.e. creating a meta-model instance. It is a language which
enables to design, configure and validate an application and acts like a middleman
between the user and the component system.

3.4 Application Life-cycle

The development of an application can be divided into three basic phases – design
phase, deploy phase and execution phase.

In a design phase, already created components are loaded from the common li-
brary and new components are created. An architecture description language is used
for creating an application structure and implementation language is used for com-
ponent’s source code writing.

16

When the application design is complete, a deploy phase begins. In this phase,
a designed application is analyzed, component instances are created and a control
part of application’s source code is generated. Some component systems incorporate
flat component model for deployed components instead of the hierarchical one. Ad-
vantage of this approach is an easier application structure at runtime in exchange
for a more complex deployment process.

In the last phase the deployed application is launched and debugged. The time
when the application code is executed is called runtime. The application can
be stand-alone or it can run with an assistance of the component system or a virtual
machine.

3.5 Real-time Extension

A specification of a hierarchical component system has to be extended in order to be
suitable for the real-time application’s development. This section presents a few
concepts used in such an extension.

The application have to keep the paradigm of TTA that has been chosen in Chap-
ter 2 as a suitable model for real-time application’s development. Every instance
of a periodic task is one time trigger. All instances of one particular task accomplish
one particular activity, thus the task require one entry point to the application where
the activity is implemented. For the sake of simplicity, a component defines at most
one entry point. A component which defines an entry point is called active.

Values of real-time attributes have to be defined for each active component in or-
der to configure its real-time behavior at runtime. The attribute values are not a part
of the application’s structure, but more likely a part of the configuration. Thus some
of the configuration parameters can be reserved for the real-time attributes. As it
is used by a schedulability analysis it has to be defined before the application is de-
ployed.

A deploy phase can incorporate a schedulability analysis. It verifies if it is possible
to schedule the designed application on the target resources. First, the analysis
computes worst case execution times of active component tasks. Then it uses this
information together with values of real-time attributes, information about target
resources and intended scheduling algorithm to compute a result. Based on the result
the application is either deployed or an error is reported.

Since the application is distributed with RTOS, there is a natural request
for a configurable choice which operating system is used. Introducing a common
application interface that covers differences between operating systems can be a part
of the implementation. The interface can offer specific low-level services related
to the operating system as well. It is called a system API.

17

Chapter 4

Analysis

This chapter analyzes possible methods to design and implement concept of mode
change in real-time component systems as introduced in Chapter 1. The selected
method is discussed in Chapters 5, 6 and 7 in a more formal way.

4.1 Modes in Component System

Reconfiguration of a monolithic real-time application is described in Chapter 2.
The important conclusion of the chapter is that the application defines a restricted
set of well known configurations – operating modes. This section discusses exact
meaning of operating modes in the context of the component-based development.

One of the most important advantages of the component-based development
is strict encapsulation. When a component is being developed, the scope of the whole
application does not have to be considered. It can be aimed at the particular com-
ponent only, thought at one level of abstraction and thus the component design
is clean and simple. It is desirable to preserve the component encapsulation even if
the operating modes are included.

For this reason, each component can define its own set of component modes.
For different components, sets of component modes are independent and a rela-
tion between them is not established until components are composed into a specific
application. Therefore, a set of component modes can be encapsulated together
with a component. A transition between two modes in a set of component modes
is invoked on the basis of a mode change event.

Each component mode defines a configuration and represents behavior of the com-
ponent only, without any dependence on the rest of the application. A set of com-
ponent modes is meaningful for two kinds of components – composite components
and active components.

Composite Component Internal structure of a composite component is created
by subcomponents and connections between them. A mode change of a composite
component is in fact a modification of this structure. It can be viewed as a process
when new subcomponents and connections are enabled and the old ones are disabled.

18

A subcomponent or a connection can be classified according to its behavior during
mode change.

• Old-mode subcomponent/connection – It is enabled in the old mode but disabled
in the new one.

• New-mode subcomponent/connection – It is disabled in the old mode but en-
abled in the new one.

• Unchanged enabled subcomponent/connection – It is enabled in both old and
new modes.

• Unchanged disabled subcomponent/connection – It is disabled in both old and
new modes.

Active Component A mode change of an active component can adjust values
of real-time attributes of its task. The component can be classified according to it.

• Changed real-time attributes – Real-time attributes of the component’s task
are adjusted in the new mode.

• Unchanged real-time attributes – Real-time attributes of the component’s task
are the same in both old and new mode.

4.2 Mode Change Mechanism

A mode change process can be realized by a mode change mechanism. It is a set
of rules where and under what circumstances a mode change event arises. Part
of the mechanism is a specification of data structures and algorithms implementing
the mechanism rules. There are several requirements to the mechanism. An overview
and origin of each requirement follows.

Component Independence and Re-usability (R1) One of the main charac-
teristics of a component system must be preserved when a mode change mechanism
is applied. Components need to be independent and re-usable in order to be stored
in the common library and re-used for another application’s development. This
requirement is crucial.

Not Polluting the Existing Concept (R2) This requirement refers to a com-
ponent’s source code and interface. If a component’s source code were polluted with
a mode management code, it would cover useful business logic and the source code
would be significantly more complicated. A similar situation can be observed for
for component’s interfaces which could not be polluted with auxiliary mode-change
specific services. This requirement is considered optional.

19

Predictable Overhead at Runtime (R3) The main requirement to real-time
applications has to be preserved for the implementation of a mode change mechanism
at runtime. The mechanism’s overhead needs to be predictable from both time and
memory points of view. This requirement is crucial.

There are several basic propositions for a mode change mechanism ensued directly
from the requirements. The propositions are shown in Figure 4.1 and listed and
described as follows.

Local Definition of a Mechanism (P1) This proposition refers to the place
where a decision about the active mode is made. A component has to decide about
itself locally in order to meet the first requirement. If some other entity made this
decision for the component, it would be dependent on the entity and it could not
be easily stored in the common library and re-used later.

Communication on Components (P2) There are aspects affecting which com-
ponent mode is active. The aspects can be divided by the source of origin. They can
come from a component itself (the mode depends on a component’s actual state).
But the aspects can also come from a subcomponent (the mode depends on a state
of component’s assemblies). The last source of origin is the component’s outer sur-
rounding.

Assuming the previous proposition that a component’s mode change mechanism
is defined locally, there has to be a way how to gain this data from both inner and
outer surroundings. Therefore, a communication between a parent component and
subcomponents has to be allowed in an assembled application.

Mode Condition (P3) Assuming the previous propositions, a component’s mode
change mechanism is about to decide which mode is active based on the data gained
from the inner and outer surroundings and the component itself. The data are eval-
uated by a mode condition. The mode condition then returns a component mode
that needs to be set as active.

An example of straight forward but inconvenient mode change mechanism is
introduced in the next section. Learning from its drawbacks, a proposition of a
mechanism which fulfills all requirements and follows all propositions is described
later.

4.3 Manual Mechanism

The simplest way to manage triggering mode change events is to delegate responsi-
bility to the user, to let him manually trigger a mode change event from a source
code of a component, e.g. through a component API.

This approach has several drawbacks. There is a natural requirement to be able
to emit a mode change of a component from its source code. But what about com-

20

Figure 4.1: Mode change mechanism basics

ponents which do not contain any source code? Such a component can be managed
either from a subcomponent or from a parent component. The first case means that
the subcomponent cannot be independent from its parent component. The second
case means that the parent component has to know details about the contained
subcomponent, especially which modes it defines and what the modes mean. Both
situations break the mechanism requirement (R1).

The mode change specific communication described in the proposition (P2)
is hard to be satisfied. The communication is supposed to be implemented manu-
ally by introducing new auxiliary component interfaces and connecting components
through them. It breaks the requirement (R2) and brings a lot of worthless work.

The similar drawback is caused by the mode condition described in the propo-
sition (P3). This mechanism places the condition to a component’s source code.
It also breaks the requirement (R2).

Last but not least, responsibility for the runtime overhead is delegated to the user
as well. The user has to be aware of this issue. If he is not, the requirement (R3)
can be easily broken.

4.4 Property Based Mechanism

To fix the drawbacks of the manual approach, a mechanism can be automatized and
integrated to the component system. It means that the definition of a component
is extended by a possibility to describe the mode change mechanism rules, not defined
in the component’s source code. The component system implements algorithms
which realize the mechanism rules. The only responsibility of the component is
to exhibit relevant data into the mechanism. This section proposes such an automatic
mechanism.

21

4.4.1 Basic Design

A set of common properties for each component can be defined. The properties
are memory fragments reserved for a component to expose a component’s internal
state. Properties have two main responsibilities.

• To distribute the mode change relevant information across the application.

• To be input for the component’s mode condition.

Properties from different components are connected and values are transferred be-
tween them. The connections can be made across the whole application. The mode
change relevant information is carried by properties as property values and dis-
tributed across the application through the connections. Thus properties act like
a medium for an application-wide mode change handling in order to fulfill the first
responsibility.

Assume that a component uses a relevant data to decide which mode is active.
The data is transferred to the component through properties and their connections
as described. Then it is stored as a property value in the component. The compo-
nent’s mode change mechanism uses the values as input for a mode change condition.
Thus the second responsibility is ensured.

Moreover, the component mode itself can be one of the component properties.
An advantage of this design is the following. The component mode itself can be used
as input for the condition or even for computing a value of other property. There can
be a situation when the new mode depends on the current one. This design makes
this situation possible to describe.

Figure 4.2: Event spreading through a property network

22

The connections can be made using property functions. A property function
is an arbitrary function defined from an input set of properties to a single output
property. It can be a function of one or more variables. If a combination of input
values is not in a domain of a function then the function takes no effect and a value
of output property is not changed.

Properties with functions create a network. When a value of some property
is assigned from the outside, the network reacts as property functions describe.
The event spreads through the network until it is stabilized. The network stabi-
lization is not always assured, it depends on the designed network structure. When
the network is stabilized a possible component reconfigurations are made according
to values on the properties. The network reaction and the issue of its stabilization
is described in detail in Section 4.4.3. An example of an event spreading through
a network is shown in Figure 4.2.

4.4.2 Meta-model Extension

Implementing modes and a mode change mechanism brings some new elements which
must be included to the meta-model. In any case a component must define a set
of modes. Besides this, a mode change mechanism specific elements must be added.
The new elements are mode properties and property functions.

A property function can be observed at two different levels. At an abstract
level it is a template of function’s behavior. It is the description how input values
are rewritten to an output one. But there’s nothing said about actual properties
which the function is applied on. A second level is an instantiation to actual prop-
erties in the network. At this level, it is possible to describe a relation between
properties and specify which function is applied. It is possible that one property
function is applied in many different places in the network.

This dividing is optional but very useful. Therefore the meta-model contains
two parts – a definition of property function templates and a possibility to instanti-
ate them for different properties.

The application structure is specified using the architecture description language.
But there is a need to specify function’s behavior. It is not advisable to pollute ADL
with it. Moreover, it is a task at a lower level of abstraction. A new language,
fully independent on ADL, can be introduced. Let us call this language a property
function language (PFL).

4.4.3 Network Reaction

The property based mechanism is suitable from the user point of view. It en-
ables the user to effectively model independent component modes without polluting
source code or component interface. The rest of the analysis revises the mechanism
from the implementation point of view. This section analyses the network reaction.

Assume a property network. Each property has assigned a value from its domain,
i.e. properties are in a property state. The network reaction begins with assigning
a new value to a property, called an initial property, creating a new property state.

23

Even if the new value is not different to the old one, the network reacts because it
can cause modifications of property values dependent on the initial one. Example
of such a situation can be found in Figure 4.3. Once the new value is assigned,
an event is spread transitively following all property functions which takes the initial
property on input. Such functions have an output property. The function is invoked
with the property state on input to compute a new value of the output property.
Assigning the computed values to the output properties creates a new property state
and the whole process can iterate until the network is stabilized. When the network
is stabilized the property state it lies in is called stable.

Figure 4.3: Network where assigning a current value to the property p1 causes mod-
ification of the dependent property p3

There are no restrictions in the network, e.g. it can contain cycles. Cycles can
cause oscillation in the network reaction and thus are the major problem which
must be handled. Oscillation arises when a property value is alternated in a cycle
and never stabilized. An example of such oscillation is shown in Figure 4.4.

Figure 4.4: Network whose reaction always oscillate

Oscillation depends on the network structure and on a property state. There are
cases when the network oscillates during reaction with one particular property state
on input and with a different one it does not, as shown in Figure 4.5.

The mode change mechanism cannot work properly with a network which oscil-
lates in an accessible case. When the user designs an astable network, development
tools should alarm him and an application cannot be compiled.

There may be possibility to introduce restriction rules for a network design which
makes impossible to design an astable network. The rules can restrict either a struc-
ture or a property function semantics. One of the reasonable restrictions of the struc-
ture is to forbid cycles. The only practicable restriction of the property function
semantics is to allow a value propagation (p2 = p1) only. But both the rules are re-
strictive for a praxis and, as shown in the rest of the thesis, are not necessary. They
degrade the mechanism too much that it would not be operational with them.

24

Figure 4.5: Network where oscillation depends on a property value

Let us introduce an algorithm, called a react algorithm, which represents the net-
work reaction. The algorithm has to return the same result as the network reaction
(described before) would. Besides the correct representation, it must finish in finite
time and answer if the reaction oscillates or not. It is quite unpleasant situation
because it makes the algorithm impossible to work with time complexity polynomial
to the number of properties.

The first version of the react algorithm can be following. A network is fully rep-
resented in memory and a reaction is simulated on it using standard BFS algorithm.
A property state encapsulated with a current token stands between two algorithm
steps. A token is a set of properties which have been modified in the previous step
and which are considered to be used as input properties in the next step. The prop-
erty states with tokens have to be stored, e.g. in a hash table, in order to avoid
their repeated visiting. If a property state with a token is visited for the second
time, it means that the network oscillates. If a simulation does not change property
values anymore, it means that a stable state is found. For this reason, the algo-
rithm has time and space complexity, in the worst case, exponential to the number
of properties.

4.4.4 Resemblance with SAT

Let us try to construct the react algorithm by transformation to an instance
of the SAT problem. It seems that the problems are analogous and the transfor-
mation is possible. This section presents transformation possibilities and shows that
the transformation is not as straight forward as it seems.

The first SAT version of the react algorithm incorporates a transformation that
creates a variable for each property in the network and models relations between
variables resembling to property functions. The SAT instance have to construct
a set of affected properties which contains all properties modified by the network
reaction. Each property function with input properties pi1 and pi2 and an output
property po is modeled by the following facts

pi1 ∈ Af =⇒ (po = f(pi1 , pi2) ∧ po ∈ Af)
pi2 ∈ Af =⇒ (po = f(pi1 , pi2) ∧ po ∈ Af)

25

With a fixed value of the initial property and the initial property included in Af ,
a solver finds evaluation of all affected properties which holds all property functions.

The first SAT version has a major drawback. If the network contains cycles it
can return incorrect results as defined in the previous section. It is caused by a tem-
poral character of property functions. It means that they do not necessarily hold
in a stabilized network, but they must hold in some step that precedes the network
stabilization. However, the SAT instance enables only a situation when all property
functions hold on the affected properties at the same time.

The second SAT version of the react algorithm tries to correct the first version’s
problem. Each property is also represented by a single variable and property func-
tions are represented by relations between the variables. Besides this, a solver gets
additional information about order in which the reaction spreads through the net-
work. A solver decides which property functions hold and which do not on the ba-
sis of this information. The order can defined as in 5.16. Assume that a num-
ber order(p) defines the order of a property p. A solver is unable to compute the set
of affected properties by itself, thus it has to be provided on input, e.g. modeled
by the relation p ∈ Af ⇔ order(p) = 0. Then assume that a property po is output
of functions f1(pi1) and f2(pi2). The facts modeling the functions of property po

are following.

order(pi1) > 0 ∧ order(pi1) ≥ order(pi2) =⇒ po = f1(pi1)
order(pi2) > 0 ∧ order(pi2) ≥ order(pi1) =⇒ po = f2(pi2)

A solver finds evaluation of all affected properties as follows. Each property is com-
puted by the function which is the last in the input order. Functions computing
the property before the last function do not necessarily hold.

A drawback of the second SAT version is that a solver can find more that one
evaluations satisfying the definition of stable state. This effect is shown in Figure 4.6.
But only one of them is the stable state resulting from the computed network re-
action. The second phase of the algorithm have to be a decision about the right
result. It can be done by simulating the network reaction and waiting for a property
state that is among the solver’s results. This drawback is caused by the fact that
the SAT instance does not model the whole process of the network reaction but only
its result.

Figure 4.6: Network where the second SAT transformation founds two results

The last presented SAT version of the react algorithm incorporates a history
of the network reaction. For this feature, each property has to be represented by as

26

many variables as is the number of unique steps in the reaction. Besides prop-
erty values, also tokens (described in the previous section) have to be represented
in each reaction’s step. Property functions are modeled only between contiguous
steps. A solver finds the entire history of the reaction. It is possible to conclude
the correct algorithm result from the found reaction’s history. However, the last SAT
version is in fact the same as the first version of the algorithm presented in the pre-
vious section.

4.4.5 Network Analysis

Realization of the mode property mechanism can follow two ways according
to the time when the network reactions are computed.

• A reaction is computed at runtime when some event occurs.

• An oracle is generated at compile time. All possible reactions must be precom-
puted in advance. Runtime just follows the oracle when an event occurs.

The first option seems to be more straight forward but suffers with the following
issue. A real-time application must be predictable, so the time, respectively WCET,
of every possible reaction must be known in advance. Hence there is a need to analyze
the network at deploy time and compute WCET of every reaction which can arise
at runtime. The computed times are used by the application schedulability analysis.
Once the application is verified, it can safely compute the network reaction at runtime
when an event occurs. After each reaction a reconfiguration can be made according
to the current property state.

The advantage of the runtime computation is that the only extra memory re-
quired at runtime is a representation of properties and functions. The disadvantage
is significant overhead of the mode change mechanism at runtime. There is even
a case where the application is correctly defined but cannot be compiled because
of the overhead caused by long network reaction.

The second option uses similar network analysis at deploy time, but the purpose
is different. An oracle instead of computed reaction times is a result of the analysis.
The oracle is a structure which enables simulation of the network reaction at runtime
in a constant time. When an event occurs the oracle is queried to return a property
state after the network stabilization. Property values are adjusted according to it
and a reconfiguration can be pressed.

Advantage of the oracle approach is that the time needed for the network reaction
at runtime is always constant and highly predictable, so the mechanism overhead
is much smaller than the overhead in the first approach. A problem could arise
with runtime memory limits. The oracle must store all accessible stable property
states. The number of the states can be, in the worst case, exponential with respect
to the number of properties. However, the number of the states in the oracle is
in an average case much smaller, as shown on a case study in Section 9.3.3.

A limiting constraint on the mechanism goes with the network analysis. Working
with property domains is part of the analysis. In order to finish the analysis in finite

27

time, the domains have to be finite. Therefore, properties are restricted to support
only boolean data type and user-defined enumerations.

4.4.6 Property State Machine

The mentioned oracle can be naturally constructed as a finite-state automaton com-
posed of stable property states. A transition between states represents a network
reaction on a specific event. Assume that the automaton is in a particular property
state and an event occurs. It finds a transition characterized by the event direct-
ing from the current property state. The target property state is the one which
would be active if the network reacted on the event. The target state becomes
current and the oracle returns it on output. Let us call this structure a property
state machine (PSM). An example of a simple property state machine is presented
in Figure 4.7.

Figure 4.7: Simple property state machine

The simplest way how to find a property state machine is through the use
of the following algorithm, which is called a PSM-1 algorithm. The algorithm uses
BFS (or DFS) to explore all accessible stable property states forming the output
property state machine. First of all, an arbitrary (initial) stable property state have
to be found. The algorithm starts from it. When the initial property state is found,
the exploration starts. All possible transitions from the initial property state are dis-
covered by computing the network reaction (using the react algorithm for different
events). Targets of the transitions – stable property states – are added to the out-
put property state machine and the exploration continues with them until there are
no unexplored property states. Figure 4.8 show a situation after the second iteration.

The PSM-1 algorithm has unacceptable time complexity. In a nutshell it is

stable states · # events · Treact

where Treact is time complexity of the react algorithm. Unfortunately the react

28

Figure 4.8: Situation during PSM-1 algorithm execution

algorithm time complexity is, in the worst case, exponential. However, let us try
to reduce number of calling this subroutine.

It can be observed that the PSM-1 algorithm calls the react algorithm many times
for the similar input. The react algorithm takes an event and a current property
state on input. However, the algorithm does not need to know the whole property
state but only a limited set of values in dependence on the input event. The react
algorithm uses a set of property functions and just some of their input properties
have to be necessarily known. A function’s input property has to be known only if
it has not been modified to the time the function is being simulated. It means that
a set of necessary properties for the react algorithm and an event, let us call them
reactive properties, is quite limited. The number of reactive properties depends
on the network structure – on the number of used functions and their arity – but it
is always smaller than total number of properties in the application.

Modification of the PSM-1 algorithm executes the react subroutine on the small-
est necessary inputs, thus it reduces the number of calling this subroutine. It gener-
ates transition templates which can be extended to specific transitions later. The ex-
tension is done in a second phase when the initial templates are matched together
until complete property states and transitions formed into a property state machine
are found. The modification is called a PSM-2 algorithm. Worst case time complexity
of the PSM-2 algorithm is still exponential but there is an optimization in reducing
the number of called react subroutines. It is

events · # stable states on reactive properties (in dependence on event) · Treact

+

Tsecond phase

where Tsecond phase is time complexity of the second phase which is polynomial
to the number of initial transition templates (as shown in Section 6.2.10).

29

4.4.7 Runtime Architecture

This section proposes an architecture of the mechanism at runtime, i.e. software parts
that are automatically generated in deploy phase and integrated to the deployed
application in order to implement the mode change mechanism.

The architecture is logically composed of three parts. The first part gathers
values of all properties that can be directly set by the source code of components.
The components have to be connected with the first architecture part in order to re-
alize the value’s transfer.

The second part integrates a simulation of network reactions. It can be either
the computation at runtime using a model of the network or the computation us-
ing an oracle, both approaches described in Section 4.4.5. The approaches can
be switched with respect to an application configuration or the result of an anal-
ysis determining which one is more convenient for the situation.

The third part implements a mode change protocol and handles enabling and dis-
abling components and connections at the right time, e.g. by calling the system API.
Different mode change protocols can be integrated.

It is convenient to design the second part as an extra task. A component modify-
ing a property creates an event which is dispatched by the second architecture part
and the simulation is done in the context of it. The reason is an easier WCET anal-
ysis of the mechanism overhead. The overhead for the component’s task is constant.
The hard work is delegated to the extra task where it can be analyzed without any
dependence on common component’s tasks.

4.4.8 Goals Revisited

The property based mechanism fulfills all requirements laid out in Section 4.2.
The requirement (R1) – components has to remain independent and re-usable –
and the requirement (R2) – the existing concept cannot be polluted – are both satis-
fied with the use of properties and property functions described in Sections 4.4.1 and
4.4.3. The requirement (R3)– overhead at runtime must be predictable – is satisfied
with the methodology of network analysis described in Section 4.4.5 and with the pre-
ferred approach which uses oracle construction described in Section 4.4.6.

30

Chapter 5

Mode Change Mechanism

This chapter extends some relevant ideas introduced in Chapter 4. The design con-
cepts of the property based mode change mechanism, i.e. properties, property func-
tions and the property function language, are described in a formal way.

5.1 Component Mode

As described in Section 4.1, a component defines a set of component modes in de-
pendence on its functionality and mentioned behavior. One mode of a composite
component defines which subcomponents and connections are enabled and which
are disabled, an example is shown in Figure 5.1. One mode of an active component
defines values of real-time attributes of the component’s task.

Definition 5.1. Assume a component A. If the component A is

• composite and not active, then a component mode MA is a tuple (Se, Ce)

• primitive and active, then a component mode MA is a tuple (R)

• composite and active, then a component mode MA is a tuple (Se, Ce, R)

where

• Se is a set of subcomponents contained in A which are enabled in the mode MA.
Other subcomponents are disabled. This set is called a subcomponent enable
list. A subcomponent enable list of a component mode M is denoted M(Se).

• Ce is a set of connections contained in A which are enabled in the mode MA.
Other connections are disabled. This set is called a connection enable list.
A connection enable list of a component mode M is denoted M(Ce).

• R = (D,T,C, P) is a definition of real-time attributes of the component’s
task. This set is called a component attribute list. A component attribute list
of a component mode M is denoted M(R).

31

Figure 5.1: Example of a single composite component with two modes

Definition 5.2. Assume a component A. A set of all component modes defined
in the context of component A is called a component mode set and it is denotedMA.

The decision which mode is active and which is inactive is based on a mode
condition – a function taking (yet unspecified) variables on input and computing
a mode on output. The output value corresponds to the active component mode.
The mode change mechanism specifies which suitable entities stand for the input
variables. It is described in the next section.

Definition 5.3. Assume a component A with a component mode setMA. The mode
condition ΓA on variables c1, . . . , cn is a function

ΓA : D(c1)× · · · × D(cn) 7→ MA

The original structural requirements defined in Section 3.2 are no longer valid.
They are replaced by new requirements considering component modes.

Definition 5.4. An application A is well defined if and only if it holds the following
(meta-model) structural requirements for an arbitrary but fixed active (not active)
composite component A contained in the application A and an arbitrary but fixed
component mode M = (Se, Ce, R) (M = (Se, Ce)) defined on the component A.

(1) An arbitrary require interface of an arbitrary enabled subcomponent (in Se)
has to be connected to exactly one compatible provide interface of an enabled
subcomponent (in Se) or to exactly one compatible require interface of the com-
ponent A.

(2) An arbitrary provide interface of the component A has to be connected to exactly
one provide interface of an enabled subcomponent (in Se).

32

(3) An arbitrary enabled connection (in Ce) has to connect only interfaces defined
on enabled subcomponents (in Se) or on the component A.

The corollary implied from the structural requirements is similar to the corollary
described in Section 3.2 but it is extended to consider component modes. It means
that the theorem is valid in an arbitrary application’s configuration and a thread
of execution cannot reach any disabled component.

The structural requirement (3) is not necessary. It is included in order to dis-
able all connections which cannot be used, thus to preserve lucidity of the designed
component model.

5.2 Properties and Property Functions

The property based mode change mechanism introduced in Chapter 4 has two main
intentions – to provide an application-wide communication for mode change handling
and to model a mode condition for each component which needs it. It is realized
using properties and property functions.

5.2.1 Component and Application Properties

A set of common properties for each component is defined. The properties are
variables with finite domains defined in the context of the component.

Definition 5.5. Assume a component A. A set of variables pA
1 , . . . , p

A
m defined

in the context of component A is called a component property set. Let us denote
it PA. Each variable is called a component property.

Definition 5.6. Let p be a component property. A finite set of values D(p) is
the domain of the property p.

It is also possible to define “domain” of an arbitrary set of properties as Cartesian
product of involved property domains. This construction is helpful for the following
definitions in order to keep them simple.

Definition 5.7. Let P = {p1, . . . , pn} be a set of arbitrary component properties.
Then

D(P) = D(p1)× · · · × D(pn)

An application is just a bunch of components composed on different levels. Each
component defines component properties. It is useful to work with all properties
defined in the application together. This application-wide union of component prop-
erties is simply called a property set, an example is shown in Figure 5.2.

Definition 5.8. Assume an application A. Let A1, A2, . . . , Ak be all components
contained in the application A. For each i = 1, . . . , k the component Ai defines
a component property set PAi

= {pAi
1 , . . . , p

Ai
mi
}. A set of variables

PA = {pA1
1 , . . . , pA1

m1
, pA2

1 , . . . , pA2
m2
, . . . , pAk

1 , . . . , pAk
mk
}

33

Figure 5.2: Example of component properties and functions defined on a composite
component with two subcomponents

is called an (application) property set of the application A. Each variable in a prop-
erty set is called an (application) property.

5.2.2 Property Network

A communication across the application for the purpose of mode change handling
is realized through the use of property functions composed into a property network.
A property function is an ordinary function taking values of input properties and
computing a value of an output property. It works in the context of the network which
reacts when an event occurs. The events are more closely described in Section 5.2.5.
An example of a property network can be seen in Figure 5.3.

Definition 5.9. Let A be an application with a property set PA = {p1, . . . , pn}.
Let F be a set of functions

F ⊆ {f : D(I) 7→ D(p) | ∀I ⊆ PA,∀p ∈ PA}

A pair NA = (PA, F) is called a property network of the application A and func-
tions in F are called property functions. A set of property functions in the property
network NA is denoted NA(F).

Definition 5.10. Assume an application A with a property set PA. Let I ⊆ PA

be a set of properties, p ∈ PA be a property and f : D(I) 7→ D(p) be a property
function. Then

• I is called an input property set of the property function f and it is denoted i(f).

• p is called an output property of the property function f and it is denoted o(f).

34

Figure 5.3: Example of a property network corresponding to Figure 5.2

Definition 5.11. Let A be an application with a property set PA and a property
network NA. Let pk and pl be properties in PA. The property pl is dependent
on the property pk if and only if there exists an oriented path (created by property
functions) in the network NA from pk to pl.

5.2.3 Component Mode Condition

The mode change mechanism models a component mode like one of the compo-
nent properties. This construction has an advantage that the component mode can
be used as input for computing a value of some other property or even the component
mode itself.

This construction also specifies which entities stand for the component mode
condition and its variables (5.3). The condition is an arbitrary property function
with this special property on output. Input properties of all such functions stand for
the condition variables.

Definition 5.12. Assume a composite component A with a component property
set PA and a component mode setMA = {MA

1 , . . . ,M
A
m}. The component property

set PA is well defined if and only if PA contains a property pmode with the do-
main D(pmode) = {MA

1 , . . . ,M
A
m}. The property pmode is corresponding to each of

the modes MA
1 , . . . ,M

A
m.

Theorem 5.13. Assume an application A with a property network NA. Assume
a composite component A contained in A with a well defined component property
set PA and a component mode set MA. An arbitrary property function f ∈ NA(F) :
o(f) = pmode is the mode condition of the component A.

5.2.4 Network Functionality

The react algorithm (introduced in Section 4.4.3) is a routine which represents a re-
action of the property network on an event. The event assigns a value to a property,

35

called an initial property. The algorithm also defines two sets of properties in depen-
dence on the initial property. Reactive properties are such properties whose values
have to be necessarily known in order to properly represent the network reaction.
Affected properties are such properties which have been modified during the network
reaction. Example of the two sets of properties is presented in Figure 5.4 (a).

Definition 5.14. Assume an application A with a property set PA = {p1, . . . , pn}
and a property network NA. Let us define an algorithm react which modifies
an evaluation of properties in PA. The algorithm takes two arguments – an ar-
bitrary property pi ∈ PA, called an initial property, and an arbitrary initial property
value α ∈ D(pi).

procedure react(pi,α)
create queue Q
pi := α (1)
foreach f from NA: pi in i(f)

enqueue f into Q
while Q is not empty

dequeue f from Q
let po be o(f)
let {pi1 , . . . , pik | 1 ≤ k ≤ n} be i(f) (2)
po := f(pi1 , . . . , pik) (3)
foreach g from NA: po in i(g)

enqueue g into Q

Definition 5.15. Assume an application A with a property set PA = {p1, . . . , pn}
and a property network NA. Let pi be an arbitrary but fixed property in PA and α
a value in its domain. Let us simulate execution of react(pi, α) (5.14) and construct
two sets of properties – affected properties AfA(pi) and reactive properties ReA(pi)
– according to the following rules which are applied on the denoted lines of pseudo-
code.

(1) Add pi to AfA(pi).

(2) Add all properties from i(f) which are not currently in AfA(pi) to ReA(pi).

(3) Add po to AfA(pi).

Considering a particular network reaction, each property can be evaluated with
a number, called order, that describes in which step of the react algorithm (5.14)
is the property modified for the last time. The larger order of the property means
its later modification by the react algorithm. An example of an order evaluation
is shown in Figure 5.4 (b).

Properties on a cycle or properties dependent on them are modified repeatedly
(because of infinite nature of the react algorithm) and thus their order is evalu-
ated to ∞. For other properties, order corresponds to the longest possible path
from the initial property.

36

Figure 5.4: Example of affected and reactive properties and the function order

Definition 5.16. Assume an application A with a property set PA = {p1, . . . , pn}
and a property network NA. Let pi ∈ PA be an arbitrary but fixed property, AfA(pi)
a set of affected properties and pj ∈ PA an arbitrary property. Let us define a func-
tion order(i, pj) by the following rule.

order(i, pj) =


0 . . . pj /∈ AfA(pi)
∞ . . . pj ∈ AfA(pi) ∧

pj in cycle or dependent on cycle
(max path pi to pj) + 1 . . . else

5.2.5 Network Input

The way how to pass a particular value to the property network has not been dis-
cussed yet. It is natural that the application should be able to set a value of a prop-
erty defined on a component which contains a source code. This option can be part
of component API. But if a component has no source code there is no way how
to directly set a value of a property defined on it. It gives a division to direct and
indirect properties.

Definition 5.17. Assume a component A with a component property set PA. Each
component property in PA is

• direct if and only if the component A contains a source code. Values of these
properties can be set directly from the component source code through the com-
ponent API.

• indirect if and only if the component A does not contain any source code.
Values of these properties cannot be set directly but only by a property function
during the network reaction.

37

Assigning an arbitrary value to a direct property is an event which can arise
in the mode change mechanism. There are no other events possible in the mechanism.
Therefore, direct properties and its domains define all possible events.

Definition 5.18. Assume an application A with a property set PA. Let PDi
A ⊆ PA

be a set of all direct properties. Then a set

EA = {(pi, α) | ∀pi ∈ PDi
A : ∀α ∈ D(pi)}

is called an event set of the application A.

5.3 Property Function Language

A language for property function behavior description is introduced in Chapter 4.
It is a domain specific language newly created for the purpose of the thesis and
introduced to meta-model.

Because of the mentioned usage and property domains limited to boolean data
types and user-defined enumerations, the language can be simple. In a nutshell
the language is a set of statements producing an output value on the basis of satisfied
boolean expression. A boolean expression works with input variables, constants,
simple relational operators and standard boolean operators.

5.3.1 Syntax

Syntax of the property function language is presented in Figure 5.5. The figure uses
Extended Backus–Naur Form (EBNF) defined by ISO [16]. The syntax description
contains a complete language grammar except for the last two lines where nota-
tion is shortened in order to save space. The first part describes statements and
expressions. The second part specifies lexical elements like variables and constants.

5.3.2 Semantics

Semantics of one property function is simple. The set of statements (stmt) is in-
spected in sequence and boolean expressions (expr) are evaluated according to input
values. When a boolean expression is evaluated to true, the statement takes effect
and the value of expression written on the right side is returned from the function.
Then the execution ends. It means that the result is the value of the right side
of the first matched statement.

Boolean expressions can use only input variables declared in the function header
(head). Evaluation of boolean expression is the same as in the “ordinary” program-
ming languages like Java or C++. First, relational operators (relexpr) are resolved.
Values are compared and the relational operator is evaluated to true or false. A re-
lational operator is the only place where variables with non-boolean data type can
be used. When relational operators are resolved, boolean operators are applied ac-
cording to the expression structure and a value of boolean expression is computed.

38

func = head, ‘{’, { stmt }, ‘}’ ;

head = id, ‘(’, { param }, ‘)’ ;

param = id

stmt = expr, ‘=>’, expr ‘;’ ;

expr = expr, ‘||’, andexpr | andexpr ;

andexpr = andexpr, ‘&&’ notexpr | notexpr ;

notexpr = ‘!’, parexpr | parexpr ;

parexpr = ‘(’, expr, ‘)’ | relexpr ;

relexpr = atom, rel, atom | atom ;

atom = const | param ;

rel = ‘=’ | ‘!=’ ;

id = letter, { letter | digit | ‘ ’ } ;

const = boolconst | strconst ;

boolconst = ‘false’ | ‘true’ ;

strconst = ‘"’, { letter | digit | ‘ ’ }, ‘"’ ;

letter = ‘a’ | ... | ‘z’ | ‘A’ | ... | ‘Z’ ;

digit = ‘0’ | ‘1’ | ... | ‘9’ ;

Figure 5.5: Syntax of the property function language

The language does not have a strong typing. This approach is more suitable
for the mentioned usage as a simple language for creating function templates. Data
types of parameters are resolved when the property function is applied on particular
properties.

39

Chapter 6

Oracle Construction

As described in Section 4.4.5, the rare concept of the property based mode change
mechanism is not suitable for a low-level real-time application because of the pre-
dictability problem. It must be supplemented with an analysis which guarantees
fulfilling of real-time requirements. One of the possible solutions is to introduce
an oracle. It is a structure generated in deploy phase which helps at runtime to re-
duce overhead of the mode change mechanism. The network reaction that uses
the oracle has the same inputs and the same outputs as the network reaction de-
fined in Section 4.4.3 but time to compute the reaction is constant thus predictable.
The first part of this chapter describes a construction of such an oracle.

Output of the oracle is an evaluation of properties – a property state. Each such
state can be associated with an actual configuration of the application, i.e. which
components and connections are enabled and which values of real-time attributes
are applied. The second part of this chapter introduces a mathematical structure
describing the configurations and constructs an algorithm which finds a configuration
associated to a particular property state.

6.1 Property State Machine

The oracle is designed as a property state machine, i.e a finite-state automaton
representing all possible network reactions and suggesting stable property states.
It operates with property states. One property state is an evaluation of each property
in the application.

Definition 6.1. Assume an application with a property set P = {p1, . . . , pn}.
A property state A is a vector of values α1, . . . , αn corresponding to the properties
p1, . . . , pn.

αi ∈ D(pi), ∀i = 1, . . . , n

There are specific property states contained in the property state machine. They
exist at the end of a network reaction when the network is stabilized. Their values
are not spontaneously changed on the basis of some property function. Therefore,
they are called stable property states.

40

A stable property state can be recognized by the following analysis. For each
property, there had to be a network reaction that set the analyzed property to its
current value. It can be denoted as transitive supporting – the analyzed property
is transitively supported by the initial property of the reaction. Moreover, there
is a path from the initial property to the analyzed property on which all proper-
ties are also transitively supported by the same initial property. Particular steps
of the path are realized by supporting functions. A supporting function represents
a function which modified the analyzed property for the last time.

Definition 6.2. Assume an application with a property set P = {p1, . . . , pn}, a prop-
erty network N = (P , F), an arbitrary but fixed direct property pk ∈ P and an arbi-
trary property pi ∈ P . Let Fi ⊆ F be a set of property functions with the property pi

as output.
Fi = {f ∈ F | o(f) = pi}

Let Pi be a set of input properties of all functions in Fi.

Pi = {p ∈ P | ∃f ∈ Fi : p ∈ i(f)}

Finally, let Sk
i ⊆ Fi be a set of functions for which there exists an input property p

with the maximal positive order(k, p) among all properties in Pi.

Sk
i = {f ∈ Fi | ∃p ∈ Pi : p ∈ i(f) ∧ order(k, p) > 0 ∧ max

Pi

(order(k, p))}

Then Sk
i is a set of k-supporting functions of the property pi. An example of such

a set of functions is shown in Figure 6.1 (a).

Figure 6.1: Example of k-supporting functions and transitive k-supporting

Definition 6.3. Assume an application with a property set P = {p1, . . . , pn},
a property state A = (α1, . . . , αn) defined on P , an arbitrary but fixed direct prop-
erty pk ∈ P and an arbitrary property pi ∈ P . Let Sk

i be a set of k-supporting

41

functions of the property pi. A property value αi is k-supported if and only if all
k-supporting functions of the property pi compute the value αi.

∀f ∈ Sk
i (f : D(pj1 , . . . pjm) 7→ D(pi)) : f(αj1 , . . . , αjm) = αi

Definition 6.4. Assume an application with a property set P = {p1, . . . , pn},
a property state A = (α1, . . . , αn) defined on P , an arbitrary but fixed direct prop-
erty pk ∈ P and an arbitrary property pi ∈ P . A property value αi is transitively
k-supported if and only if

• pi = pk, or

• αi is k-supported and for each k-supporting function f of the property pi there
exists pj ∈ i(f), pj 6= pi that its corresponding value αj ∈ A is also transitively
k-supported. An example of such a situation is shown in Figure 6.1 (b).

Definition 6.5. Assume an application with a property set P and a property state A
defined on P . Let PDi ⊆ P be a set of all direct properties. The property state A
is stable if and only if

∀α ∈ A : (∃pk ∈ PDi : α is transitively k-supported)

A process of the network reaction is in a property state machine represented
by a transition from one stable property state to another. Each transition is labeled
by a transition characteristic which represents the event that invoked the reaction.

Definition 6.6. Assume an application with a property set P = {p1, . . . , pn}, a prop-
erty network N and a stable property state A. Let pi be a direct property in P and
γ be an arbitrary property value in D(pi). Let us apply the algorithm react(pi, γ)
on the property state A creating a new property state B.

A pair of property states (A,B) is called a stable transition. A pair (pi, γ) is called
a stable transition characteristic.

Theorem 6.7. Let (A,B) be a stable transition. Then B is a stable property state.

Proof. Assume A = (α1, . . . , αn) and B = (β1, . . . , βn) defined on property set P =
{p1, . . . , pn}. Let us remind that the react algorithm affects all properties which
are dependent on the initial property pi. B is created by a modification of A during
the reaction. For each value βj ∈ B there are two possibilities.

• The property pj is not affected during the reaction. But also no property which
is pj dependent on can be affected during the reaction (otherwise pj would
be affected). It means that βj is transitively k-supported in B with the same
k as the corresponding value αj in A.

• The property pj is affected during the reaction. The react algorithm affects
properties in a way that βj is transitively i-supported in B where i is the index
of the initial property.

42

Finally, the desirable property state machine is a state machine constructed only
from stable property states and stable transitions (assured in 6.8). A transition
is invoked by an event which is input of the state machine. The second condition
(described in 6.9) requires that each contained property state has outbound tran-
sitions defined for all possible events. Reason for this is very simple. The state
machine must be in an arbitrary property state able to continue no matter which
input comes. An example of a well defined stable property state machine is presented
in Figure 6.2.

Figure 6.2: Well defined stable property state machine

Definition 6.8. A stable property state machine is an oriented graph (S, T) where
nodes (S) correspond to stable property states and edges (T) correspond to stable
transitions.

Definition 6.9. Assume an application with an event set E (5.18) and a stable
property state machine PSM = (S, T). PSM is well defined if and only if S 6= ∅
and for each property state A ∈ S

∀e ∈ E : (∃(A,B) ∈ T : characteristic(e, (A,B)))

6.2 PSM Algorithm

Two algorithms for oracle construction has been described in Section 4.4.6. This
section presents the algorithm PSM-2 in more detail.

Input of the algorithm is a set of properties formed into a property network. Out-
put of the algorithm is well defined stable property state machine build on the prop-
erty set according to the previous definitions.

43

6.2.1 Basic Idea

The algorithm works with “incomplete” property states. This incompleteness
is based on temporary property values λ representing that the real value is not
known yet. Incomplete property states are combined with each other and λ values
are gradually eliminated and replaced with the real values. However, the incomplete
property states keep an invariant through the entire algorithm execution. The in-
variant guarantees that the completed property states are formed into a well defined
stable property state machine.

6.2.2 PSM State

A property state possibly containing a λ value is called a PSM state. If a PSM state
contains a λ value it is called open. It is closed when the PSM state is completed
and all λ values are eliminated. In the completed form it is equivalent to a property
state.

Definition 6.10. Let symbol λ denote special value that is not a member of the do-
main of any property. This symbol represents that the real value is not known.

Definition 6.11. Assume an application with a property set P = {p1, . . . , pn}.
A PSM state A is a vector of values α1, . . . , αn.

αi ∈ D(pi) ∪ {λ}, ∀i = 1, . . . , n

Definition 6.12. Assume a PSM state A = (α1, . . . , αn). The PSM state A is open
if and only if ∃i : αi = λ. Otherwise the PSM state A is closed.

Theorem 6.13. A closed PSM state is equivalent to a property state.

Proof. Assume a closed PSM state APSM = (α1, . . . , αn),∀i : αi 6= λ. It has the same
structure as a property state APS = (α1, . . . , αn) which is the demanded property
state.

It is possible to define stability of a PSM state in a similar way as stability
of property state. λ values are the only problem which must be handled. The main
idea is following. If a function has a λ value on input, the input is incomplete and
the function can possibly support its output value when it is supplemented with right
values. A decision if the function supports its output value is made when all λ values
on input are eliminated and replaced with real values.

Definition 6.14. Assume an application with a property set P = {p1, . . . , pn},
a PSM state A = (α1, . . . , αn) defined on P , an arbitrary but fixed direct prop-
erty pk ∈ P and an arbitrary property pi ∈ P . Let Sk

i be a set of k-supporting
functions of the property pi. A property value αi is k-supported if and only if each
k-supporting function of the property pi has either λ value on input or computes
the value αi.

∀f ∈ Sk
i (f : D(pj1 , . . . pjm) 7→ D(pi)) : (λ ∈ {αj1 , . . . , αjm} ∨ f(αj1 , . . . , αjm) = αi)

44

Definition 6.15. Assume an application with a property set P = {p1, . . . , pn},
a PSM state A = (α1, . . . , αn) defined on P , an arbitrary but fixed direct prop-
erty pk ∈ P and an arbitrary property pi ∈ P . A property value αi is transitively
k-supported if and only if

• pi = pk, or

• αi is k-supported and for each k-supporting function f of the property pi there
exists pj ∈ i(f), pj 6= pi that its corresponding value αj ∈ A is also transitively
k-supported.

Definition 6.16. Assume an application with a property set P and a PSM state A
defined on P . Let PDi ⊆ P be a set of all direct properties. The PSM state A
is stable if and only if

∀α ∈ A : (∃pk ∈ PDi : α is transitively k-supported)

Theorem 6.17. A closed stable PSM state is equivalent to a stable property state.

Proof. A closed PSM state APSM is according to 6.13 equivalent to a property
state APS. The PSM state APSM is stable and does not contain any λ value. It
means that the same supporting functions are satisfied in APS and the property
state APS matches the definition 6.5.

6.2.3 PSM Transition

PSM states create stable transitions similar to transitions defined on property states.
They are called stable PSM transitions.

Definition 6.18. Assume an application with a property set P = {p1, . . . , pn},
a property network N and a stable PSM state A. Let pi be a direct property in P
and γ be an arbitrary property value in D(pi). Assume that λ /∈ Re(pi). Let us
apply the algorithm react(pi,γ) on the PSM state A creating a new PSM state B.

A pair of PSM states (A,B) is called a stable PSM transition. The first state
is called a source state, the second is called a target state. A pair (pi, γ) is called
a stable PSM transition characteristic.

Theorem 6.19. Let (A,B) be a stable PSM transition. Then B is stable PSM state.

Proof. The proof is similar to 6.7.

Theorem 6.20. Let (A,B) be a stable PSM transition and A a closed PSM state.
Then the PSM state B is closed.

Proof. B is created by a modification of A during the reaction. The react algorithm
does not generate any new λ values. No λ value is in A, hence no λ value is in B.

Theorem 6.21. Let (A,B) be a stable PSM transition and A and B closed stable
PSM states. Then it is equivalent to a stable transition.

45

Proof. According to 6.17 A and B are equivalent to stable property states and the
definition of the stable PSM transition (A,B) matches the definition 6.6.

A term very important for the algorithm is an initial stable PSM transition. It is
a stable PSM transition which can be generated directly from a property network.
This transition describes just one network reaction and nothing more. All values
not involved in a reaction are evaluated to λ. Generating the initial transitions is
the first phase of the algorithm. The initial transitions are passed to the second phase
as input and the algorithm creates an output state machine on the basis of them.

Definition 6.22. Assume an application with a property set P = {p1, . . . , pn} and
a stable PSM transition (A,B) with characteristic (pi, βi) where A = (α1, . . . , αn)
and B = (β1, . . . , βn) defined on P . (A,B) is called an initial stable PSM transition
if and only if

∀j : pj ∈ (Re(pi) ∪ {pi}) ⇐⇒ αj 6= λ

6.2.4 PSM State Combination

One of the algorithm steps is combination of two compatible stable PSM states to-
gether in order to eliminate some λ values and create a new more complete stable
PSM state. Combination lies in substitution of λ values in one state with values
from the other state. Values in the same positions in compatible states must be ei-
ther equal or one of them must be λ. Moreover, a product of a combination must
be a stable PSM state again.

Definition 6.23. Assume two values α and β.

• The values are compatible (denoted as α ∼ β) if and only if α = β ∨ α =
λ ∨ β = λ.

• The values are left compatible (denoted as α � β) if and only if α = β ∨ β = λ.

Definition 6.24. Let us define a binary operation ~ on two compatible values α
and β.

α~ β =

{
α . . . β = λ ∨ α = β
β . . . α = λ

Definition 6.25. Assume two vectors A = (α1, . . . , αn) and B = (β1, . . . , βn).

• The vectors are compatible (denoted as A ∼ B) if and only if

∀i : αi ∼ βi

• The vectors are left compatible (denoted as A � B) if and only if

∀i : αi � βi

46

Definition 6.26. Let us define a binary operation ~ on two compatible vectors
A = (α1, . . . , αn) and B = (β1, . . . , βn).

A~B =

 α1 ~ β1

. . .
αn ~ βn


Definition 6.27. Assume two stable PSM states A = (α1, . . . , αn) and B =
(β1, . . . , βn).

• The stable PSM states are compatible (denoted as A ∼ B) if and only if A ∼ B
(from the vector point of view) and A ~ B is a vector equivalent to a stable
PSM state.

• The stable PSM states are left compatible (denoted as A � B) if and only if
A � B (from the vector point of view) and A ~ B is a vector equivalent
to a stable PSM state.

Definition 6.28. Let us define a binary operation ~ on two compatible stable PSM
states A = (α1, . . . , αn) and B = (β1, . . . , βn).

A~B =

 α1 ~ β1

. . .
αn ~ βn


Aside stable PSM states, even a stable PSM transition can be combined

with a stable PSM state. The combination is directed by the source state of the tran-
sition that has to be compatible with the second operand. A new stable PSM tran-
sition is a result of the operation and represents the idea “Combine the source state
of the original transition with the second operand and then apply the react algorithm
with the same input as the original transition”.

Definition 6.29. Assume a stable PSM transition (A,B) and a stable PSM state C
where A = (α1, . . . , αn), B = (β1, . . . , βn) and C = (γ1, . . . , γn). Let A and C
be the compatible stable PSM states. Let us define a binary operation ~ as

C ~ (A,B) = (A~ C,B′)

where B′ = (β′1, . . . , β
′
n) and

∀β′i ∈ B′ : β′i =

{
γi βi = λ
βi βi 6= λ

A combination of a stable PSM state and a stable PSM transition preserves
stability. This is very important characteristic for the algorithm to be correct. This
idea is proved in the following theorem.

Theorem 6.30. Assume a stable PSM transition (A,B) and a stable PSM state C.
Let A and C be the compatible stable PSM states. Then C ~ (A,B) = (A ~ C,B′)
is a stable PSM transition.

47

Proof. Assume a property set P = {p1, . . . , pn} and PSM states A = (α1, . . . , αn),
B = (β1, . . . , βn) and C = (γ1, . . . , γn). Let us apply the react algorithm on the PSM
state A ~ C with the same characteristic as the PSM transition (A,B) has. If
the algorithm modifies the PSM state A ~ C to the PSM state B′ then the result
is a stable PSM transition according to the definition 6.18.

Let (pi, βi) be the transition characteristic. The react algorithm works for
the same characteristics and the same values on reactive properties equally – it af-
fects the same set of properties and assigns the same (non-λ) values. Let us denote
the following sets of indices.

K := {k | pk ∈ Af(pi)}, J := {j | pj /∈ Af(pi)}

For an arbitrary index k ∈ K, it holds that

βk 6= λ ∧ β′k = βk

For an arbitrary index j ∈ J , there are two situations.

• βj 6= λ =⇒ (βj = αj = αj ~ γj = β′j)

• βj = λ =⇒ (αj = λ) =⇒ (γj = αj ~ γj = β′j)

6.2.5 Preprocessing

A reaction can never reach a connected component of the property network which
is composed only from indirect properties. Therefore, each such a component has
to be erased from the network. The algorithm would never create closed PSM state
if such a component existed in the network.

6.2.6 First Phase

The first phase of the algorithm creates all possible initial stable PSM transitions
from the input (preprocessed) property network. It is done according to the defini-
tions 6.18 and 6.22 by the following algorithm. Output of the fist phase is stored
in a graph G0 = (N0,L0) whose exact meaning is described in the next section.

N0 := ∅
L0 := ∅
G0 := (N0,L0)
foreach (pi, γ) ∈ E

foreach A: stable state on Re(pi) ∪ {pi}
apply react(pi, γ) on A creating B
N0 := N0 ∪ {A,B}
L0 := L0 ∪ {(A,B)}

48

6.2.7 Second Phase

The algorithm works in iterations. Input of an iteration is a graph (stable PSM
states and transitions) which is called a generation. It is denoted Gi = (Ni,Li) where
the index i represents the sequence number of the iteration. Output of an iteration
is a new graph of stable PSM states and transitions build upon the input generation.
The new generation passes to the next iteration as input. Input of the first iteration
is a set of initial stable PSM transitions generated by the first phase together with all
contained stable PSM states formed into the initial generation G0. i-th iteration
contains the following steps.

• Define the next generation.

Ni+1 := ∅
Li+1 := ∅
Gi+1 := (Ni+1,Li+1)

• Pass all closed stable PSM states which are not compatible with any other
stable PSM state and its stable PSM transitions to the new generation.

foreach A ∈ Ni : closed(A) ∧ (@C ∈ Ni : A ∼ C)
Ni+1 := Ni+1 ∪ {A}
foreach (A,B) ∈ Li

Ni+1 := Ni+1 ∪ {B}
Li+1 := Li+1 ∪ {(A,B)}

• Choose all compatible pairs of stable PSM states and add their combination
to the next generation.

foreach A ∈ Ni, B ∈ Ni : A ∼ B
Ni+1 := Ni+1 ∪ {A~B}

• For the stable PSM statesA andB from the previous step choose all stable PSM
transitions with A or B as the source stable PSM state and add a combination
with the other stable PSM state to the next generation.

foreach C ∈ Ni : (A,C) ∈ Li

(D,E) := B ~ (A,C)
Ni+1 := Ni+1 ∪ {D,E}
Li+1 := Li+1 ∪ {(D,E)}

foreach C ∈ Ni : (B,C) ∈ Li

(D,E) := A~ (B,C)
Ni+1 := Ni+1 ∪ {D,E}
Li+1 := Li+1 ∪ {(D,E)}

The algorithm ends when there is no compatible pair of stable PSM states left
in the generation Gi. This last generation is output of the algorithm.

49

6.2.8 Finiteness

Lemma 6.31. There exists a generation with each stable PSM state closed.

Proof. Let us focus on the number of non-λ values in a stable PSM state and denote
the number as ν(A) where A is the analyzed stable PSM state. The situation when
a stable PSM state is created in a new generation can be of two kinds.

• The stable PSM state D is created as a combination of compatible stable PSM
states A and B. A situation (A � B ∨ B � A) ∧ (ν(A) = ν(B)) is not
possible because it means that A = B and states in a generation are unique.

– If A � B then ν(D) = ν(A) > ν(B).

– If B � A then ν(D) = ν(B) > ν(A).

– Else ν(D) ∈ [max{ν(A), ν(B)}+ 1; ν(A) + ν(B)− 1]

• The stable PSM state D is created as target of the combination of a stable
PSM state A and a stable PSM transition (C,B). A situation ∀i : (βi = λ ⇔
αi = λ) ∧ (ν(C) = ν(B)) is not possible because it means that A = C and
states in a generation are unique.

– If ∀i : (βi 6= λ⇒ αi 6= λ) then ν(D) = ν(A) > ν(C).

– If ∀i : (αi 6= λ⇒ βi 6= λ) then ν(D) = ν(B) > ν(C).

– Else ν(D) ∈ [max{ν(A), ν(B)}+ 1; ν(A) + ν(B)− 1].

Let us denote a minimal ν in the i-th iteration as νmin
i = min{ν(A) | A ∈ Ni}.

From the analysis above, it can be deduced that

νmin
i < νmin

i+1

In the worst case scenario, when νmin
0 = 1, the minimal ν in the (n−1)-th generation

(n is the number of properties) is

νmin
n−1 = n

But it means that each stable PSM state in this generation is closed.

Corollary 6.32. The algorithm is finite.

Proof. According to 6.31 there exists a generation with all stable PSM states closed.
There is not any compatible pair of stable PSM states in this generation.

50

6.2.9 Correctness

The goal of this section is to prove that output of the algorithm is well defined stable
property state machine. The last generation is the output. First, it is shown that
the last generation is equivalent to a stable property state machine. Than it is proved
that the state machine is well defined.

Lemma 6.33. The last generation contains only stable PSM states and stable PSM
transitions.

Proof. The initial generation contains only stable PSM states and initial stable PSM
transitions. Combinations of stable PSM states and stable PSM transitions produce
stable PSM states and stable PSM transitions again. By the principle of induction
there are only stable PSM states and stable PSM transitions in the last generation.

Lemma 6.34. Each stable PSM state in the last generation is closed.

Proof. It ensues directly from the algorithm finiteness (6.32).

Corollary 6.35. The last generation is equivalent to a stable property state machine.

Proof. The previous lemmata and theorems 6.33, 6.34, 6.17 and 6.21 directly imply
that the definition 6.8 is met.

It remains to prove that each stable PSM state in the last generation has all
outbound transitions defined. For this issue, the stable PSM state definition has
to be extended. The purpose of the extension is auxiliary.

Definition 6.36. An extended PSM state
−→
A is a tuple

−→
A = (A, o(A))

where A is a stable PSM state and o(A) is a vector of values o(α) from the domain
{λ, 1} with the same cardinality as A. The vector o(A) is called an output vector
of the extended PSM state. An extended PSM state can be denoted as follows.

−→
A =




α1

. . .
αi

. . .

 ,


o(α1) = λ

. . .
o(αi) = 1

. . .


 =


α1

. . .
αi .
. . .


Operations and relations defined on stable PSM states are basically the same

on extended PSM states.

•
−→
A ∼

−→
B ⇐⇒ A ∼ B ∧ o(a) ∼ o(B)

•
−→
A �

−→
B ⇐⇒ A � B ∧ o(a) � o(B)

•
−→
A ~

−→
B = (A~B, o(a)~ o(B))

51

•
−→
C ~(

−→
A,
−→
B) = (

−→
C ~
−→
A, (B′, o(B))) where B′ is a stable PSM state constructed

in 6.29.

Theorem 6.37. Arbitrary output vectors of the same cardinality are always com-
patible.

Proof. The domain of variables contained in the vectors is {λ, 1} and these values
can be combined with each other without limitation.

Definition 6.38. Assume a property set P = {p1, . . . pn}, a set of all direct
properties PDi ⊆ P and a generation Gk = (Nk,Lk). An arbitrary stable PSM
state A = (α1, . . . , αn) defined on P contained in the generation Gk can be extended

to a PSM state
−→
A by the following rule.

∀i = 1, . . . , n

o(αi) =


1 pi ∈ PDi ∧
∀γ ∈ D(pi) : ∃(A,B) ∈ Lk : characteristic((pi, γ), (A,B))

λ else

What does it mean? In fact, output of each direct property is marked
with the symbol . if and only if all possible outbound transitions with the prop-
erty acting like the transition characteristic are defined in the generation. 0 .

λ
λ

 −→
 1

λ
1


Let us define a simulation of the algorithm on extended PSM states with the re-

sults equivalent to the results of the original algorithm.

Definition 6.39. i-th algorithm iteration on extended PSM states is defined
by the following steps.

• Run the i-th iteration of the original algorithm with extended PSM states
on input. Use operations and relations defined in 6.36.

• Choose an arbitrary pair of extended PSM states
−→
A,
−→
B ∈ Ni+1 which fulfills

the condition A = B and combine them into one as follows.

(A, o(A)~ o(B))

Add the result to the (i + 1)-th generation with the input and output stable

PSM transitions inherited from the extended PSM states
−→
A and

−→
B . Finally,

remove the extended PSM states
−→
A and

−→
B from the (i+ 1)-th generation.

• Iterate the previous step until there is a pair of extended PSM states which
fulfills the condition of the previous step.

52

Lemma 6.40. Let us simulate one iteration of the algorithm on a generation com-
posed of extended PSM states according to 6.38. The new generation is composed
of extended PSM states which meet the definition 6.38 as well.

Proof. Assume a situation when two extended PSM states
−→
A and

−→
B are combined

creating an extended PSM state
−→
C in the new generation. Without loss of general-

ity assume that
−→
A has an output mark on the index i. It means, that all possible

outbound transitions are defined for the property pi (6.38). This output mark is in-

herited to
−→
C . But the algorithm combines B with all stable PSM transitions hav-

ing A as a source and thus passes the corresponding transitions having C as a source
to the new generation.

The presented extension is a convenient instrument to prove that the property
state machine is well defined. The idea is shown in the following lemma.

Lemma 6.41. Assume a property set P = {p1, . . . pn}, a set of all direct properties
PDi ⊆ P and the last generation Gk with stable PSM states extended according to 6.36

and 6.38. If an arbitrary extended PSM state
−→
A = (A, o(A)), A = (α1, . . . , αn)

in the generation Gk holds

∀i, pi ∈ PDi : o(αi) = 1

then the last generation Gk is well defined.

Proof. It is implied directly from the definitions 6.9 and 6.38.

Another auxiliary lemma makes possible to decompose a stable PSM state exist-
ing in the last generation to (initial) stable PSM states from the initial generation.

Lemma 6.42. Assume a closed stable PSM state A = (α1, . . . , αn) and an arbitrary
but fixed index i. There exists a stable PSM state B = (β1, . . . , βn) in the initial
generation G0 compatible with A which holds αi = βi 6= λ.

Proof. Assume a property set P = {p1, . . . pn} and the initial generation G0 =
(N0,L0).

• The property pi is direct. The initial generation G0 contains all possible initial
stable PSM transitions, thus there exists a set of initial stable PSM transitions
{(B1, C), . . . , (Bm, C)} with the same characteristics (pi, αi). All the transi-
tions have the same target but different sources. Each source holds the condi-
tion described in 6.22. All sources together represent all stable value permu-
tations of properties in Re(pi) ∪ {pi}. Because of stability of A there exists k
that Bk matches the theorem.

• The property pi is indirect. Because of stability of A the value αi is transitively
k-supported where k is the index of a direct property. For the value αk, there
exists an initial stable PSM transition (B,C) ∈ L0 with the characteristic
(pk, αk). The stable PSM state C matches the theorem.

53

Finally, let us prove that the last generation is well defined. Assume a closed
stable PSM state A from the last generation. Let us build a set of initial stable PSM
states I which are compatible with A by the following algorithm.

I := ∅
foreach i = 1, . . . , n

foreach B ∈ L0: found according to 6.42
I := I ∪ {B}

Assume I = {B1, B2, . . . , Bm}. The stable PSM states in I are pairwise compatible
(combination creates a stable PSM state more similar to A) and combined with each
other they create the stable PSM state A.

A = (B1 ~ (B2 ~ (B3 . . . (Bm−1 ~Bm) . . .)))

Let us extend the stable PSM states Bk ∈ I and the PSM state A according
to 6.38. The extended PSM states in I contains together all possible output marks.
If the formula “A inherits all output marks from the initial generation”

o(A) = (o(B1)~ (o(B2)~ (o(B3) . . . (o(Bm−1)~ o(Bm)) . . .))) (∗)

is valid than the last generation is according to 6.41 well defined and the algorithm
is correct.

Let us prove the (∗) formula validity. For contradiction, assume that ∃k : o(A) �
o(Bk). It means that ∃i : o(αi) = λ ∧ o(βk

i) = 1 in the extended PSM states
−→
A = (A, o(A)), A = (α1, . . . , αn) and

−→
Bk = (Bk, o(Bk)), Bk = (βk

1 , . . . , β
k
n).

Let us simulate one iteration of the algorithm on the extended initial generation
and aim at the set I. A new generation of extended PSM states is created. All
extended PSM states in the new generation which are created as a combination of two
extended PSM states from I are pairwise compatible again. The extended PSM state−→
Bk is compatible with an arbitrary other extended PSM state

−→
Bl ∈ I so there exists

a combination
−→
C =

−→
Bk~

−→
Bl,
−→
C = (C, o(C)), C = (γ1, . . . , γn) in the new generation.

This combination inherits the output mark from
−→
Bk, it means that o(γi) = 1.

By the principle of induction the algorithm can be simulated until the generation

which contains the extended PSM state
−→
A is reached. There exists an extended PSM

state
−→
C in this generation which inherits the output mark from Bk and it is not

−→
A .

But
−→
A ∼

−→
C . It is in contradiction with the presumption that the reached generation

is the last generation.
�

Corollary 6.43. The algorithm is correct.

6.2.10 Complexity

Theorem 6.44. Number of stable PSM states in the last generation is polynomial
to the number of stable PSM states in the initial generation.

54

Proof. Assume a generation Gi with m stable PSM states and its succeeding genera-
tion Gi+1. Let us evaluate an upper bound of stable PSM states count in the gener-
ation Gi+1. Assume two compatible stable PSM states A and B in the generation Gi

and combine them as the algorithm defines creating a stable PSM state A ~ B
in the generation Gi+1. A is the source of several transitions which can direct
to at most m unique targets. All the transitions are combined with B so their tar-
gets (“combined” with B according to 6.29) are included into the generation Gi+1.
The same idea can be applied symmetrically to transitions with B as the source. It
means that for a pair of compatible stable PSM states in the generation Gi, there
are at most

2 ·m+ 1

stable PSM states in the generation Gi+1. There are at most(
m
2

)
pairs of compatible stable PSM states in the generation Gi. Each stable PSM state
can be also passed to the generation Gi+1 if it is not compatible with any other stable
PSM state in the generation Gi. It means that an upper bound can be evaluated as

(2m+ 1) ·
(
m
2

)
+m = m3 − 1

2
m2 +

1

2
m ≤ m3 (m ∈ N)

Assume an application with n properties. This number is now a constant. Then
assume that the initial generation G0 contains M stable PSM states. According
to 6.31, the algorithm makes at most n − 1 main iterations. It means that number
of stable PSM states in the generation Gn−1 is at most

M (3n−1)

Corollary 6.45. Time and space complexity of the algorithm’s second phase is poly-
nomial with respect to size of the initial generation.

6.3 Hierarchical Mode Automaton

The property state machine constructed as described is able to react to events and
properly adjust the property values. However, the question which components and
connections are enabled and which values of real-time attributes are applied in a par-
ticular property state is not answered yet.

Assume a components composed into a hierarchy with component modes as de-
fined in Chapter 5. Let us focus just on component modes now. The modes create
a hierarchical automaton. It means that a mode can contain other modes formed into
a smaller automaton. A mode can contain even more than one nested automaton.

There is resemblance with hierarchical automata defined in UML [17]. Let us use
UML terminology in the following text and define a subset of the automata suitable
for the purpose of this chapter.

55

Definition 6.46. A HMA region is a triplet (M,M0, τ) where

• M is a nonempty set of HMA modes contained in the region. The HMA mode
is defined below.

• M0 ∈M is an initial HMA mode.

• τ :M× C 7→ M is a HMA transition function. C is a set of mode conditions
of all modes in M.

C = {ΓMi
| ∀Mi ∈M}

The transition function defines which target HMA mode is active after a mode
condition is met in an active HMA mode.

A HMA mode M is a pair (N,R) where

• N is a component mode.

• R is a set of HMA regions. This set is denoted M(R).

The HMA mode M is primitive if and only if M(R) is empty. Otherwise it is com-
posite. M is orthogonal if and only if M(R) has two or more elements.

Figure 6.3: Hierarchical mode automaton

A region can be understood as a representation of one composite component.
It also encapsulates one finite automaton defined at a single level of the hierarchy.
A HMA mode is an extension of a simple component mode. The extension adds
a possibility to enclose some other regions, thus creates the mode automata nest-
ing. Figure 6.3 shows an example of a component hierarchy with a corresponding
hierarchical mode automaton.

Basic child/parent relations between modes and regions can be observed on the hi-
erarchical structure of an automata.

56

Definition 6.47. Assume two sets of HMA regions

R1 = {R1,1, R1,2, . . . }, R2 = {R2,1, R2,2, . . . }

and a HMA mode M ∈ R1,i ∈ R1 for an arbitrary but fixed index i. Assume that
M = (N,R2) as well. For an arbitrary but fixed index j.

• the HMA region R1,i is called a parent region of the region R2,j.

• the HMA region R2,j is called a child region of the region R1,i.

• the HMA mode M is called a parent mode of the region R2,j.

• the HMA region R2,j is called a child region of the mode M .

Definition 6.48. A hierarchical mode automaton is one HMA region called a top-
level region.

Like every other automaton a hierarchical mode automaton defines a state
in which it can be at runtime. The state of the hierarchical mode automaton is not
just one active mode but a collection of modes which contains active modes for all
transitively enabled subcomponents. Each state of the hierarchical mode automaton
represents one configuration of the application. The state can be defined by the fol-
lowing recurrent definition.

Definition 6.49. Assume a hierarchical mode automaton H. A set of HMA modes
S = {M1,M2, . . . } is called a HMA state if and only if

• there exists just one mode in the state S from the top-level region.

∃! Mj ∈ S : Mj ∈ H(M)

• there exists just one mode in the state S from each region whose parent mode
is in the state S.

∀Mk ∈ S,Mk = (N,Rk) : (∀Ri ∈ Rk : (∃! Mj ∈ S : Mj ∈ Ri(M)))

It can be said that the mode Mj represents the region Ri (H) or that the region
is represented by the mode in the state S.

As described in Section 5.2.3, a link between component modes and properties
is established by a special mode property that exists in a well defined property set
of a multi-moded component. The HMA state corresponding to a property state can
be found using the special mode properties as described by the following definition.

Definition 6.50. Assume a property set P = {p1, . . . , pn}, a property state A =
(α1, . . . , αn) defined on P and a HMA state S = {M1, . . . ,Mm}. The HMA state S
is corresponding to the property state A if and only if

∀Mi ∈ S : αj = Mi

where αj is a value of a property pj in the property state A and pj is a property
corresponding to the mode Mi according to 5.12.

57

6.4 HMA Algorithm

An algorithm which finds a HMA state corresponding to a property state is proposed
in this section. The first part presents the algorithm itself, the second part proves
that the algorithm ends in finite time with correct result and shows its time and
space complexity.

6.4.1 Algorithm

Input of the algorithm is a property state A and a hierarchical mode automaton H.
Output of the algorithm is a HMA state S corresponding to the property state A.

The algorithm executes the following steps. First, initiate a set of HMA regionsR
and a set of HMA states S.

R := {H}
S := ∅
Then iterate the following steps until the set R is empty. The set S is output
of the algorithm.

Let Ri be an arbitrary but fixed region in R
R := Rr {Ri}
foreach Mj ∈ Ri

find corresponding property pk and its value αk ∈ A
if αk = Mj then

S := S ∪Mj

R := R∪Mj(R)

6.4.2 Finiteness, Correctness and Complexity

Theorem 6.51. Let a finite hierarchical mode automaton H and a property state A
be input of the algorithm. Then the algorithm is finite.

Proof. The modes contained inH form together a finite tree. The algorithm traverses
the tree and each node is inspected at most once.

Theorem 6.52. Let a finite hierarchical mode automaton H and a property state A
be input of the algorithm and let the algorithm end with the set S on output. Then S
is a HMA state corresponding to A.

Proof. As soon as some region R is inspected during the algorithm process, there
exists a mode M in the resulting set S which represents the region R.

Let us show that S is a HMA state. Because of the initial content of the set R
the top-level region is surely inspected and represented in the result. It fulfills the first
requirement to the definition 6.49. For each mode added into the result the algorithm
adds all its child regions toR for a future inspection. So these regions are represented
in the result as well. It fulfills the second requirement to the definition 6.49.

58

It remains to prove that the HMA state S is corresponding to the property
state A. A corresponding property of each mode M in S is evaluated with the val-
ues from A and the mode M is added to S if and only if the evaluation fulfills
the definition 6.50.

Theorem 6.53. Let a finite hierarchical mode automaton H and a property state A
be input of the algorithm. Time complexity of the algorithm is linear to the number
of elements transitively contained in H.

Proof. Each HMA region and HMA mode transitively contained in H is visited
by the algorithm as most once.

6.4.3 Enable and Attribute Lists Association

Each component mode defines a subcomponent and connection enable list and sub-
component attribute list, i.e. sets of components and connections which are enabled
and values of real-time attributes which are valid when the mode is active. A HMA
state represents a set of active component modes. It means that the set of compo-
nents enabled in the HMA state is simply an union of the subcomponent enable lists
or of all modes contained in the state. The same idea can be applied to connection
enable lists and component attribute lists.

Definition 6.54. Assume a HMA state S = (M1, . . . ,Mm).

• A set of components M1(Se) ∪ · · · ∪Mn(Se) is called a HMA state component
enable list.

• A set of components M1(C
e) ∪ · · · ∪Mn(Ce) is called a HMA state connection

enable list.

• A set of value definitions M1(R)∪· · ·∪Mn(R) is called a HMA state component
attribute list.

Finally, assume a well defined stable property state machine. For each stable
property state contained in the state machine, a corresponding HMA state can
be found and its component enable list, connection enable list and component at-
tribute list define a configuration of the application valid for the property state.

59

Chapter 7

Runtime

This chapter provides an image how the application looks like at runtime and
shows details about the mechanism runtime architecture introduced in Section 4.4.7.
As the oracle based approach for the network reaction representation is mainly dis-
cussed in the thesis, the architecture variant using the oracle is assumed in the
following description.

Application is at runtime composed of deployed components and connections,
i.e. with their instances. A configuration of the application corresponds to a HMA
state (6.49) or more precisely to its component enable list, connection enable list
and attribute list (6.54). Deployed components and connections are formed either
into a hierarchical component model again or to a flat component model as described
in Section 3.4. Ideas presented in this chapter can be applied to both hierarchical
and flat component models with minimal modifications.

7.1 Structural Requirements

In every moment of the runtime reconfiguration, runtime structural requirements
similar to the meta-model structural requirements (5.4) have to be satisfied.

(1) An arbitrary require interface of an arbitrary enabled component has to be con-
nected to exactly one compatible provide interface of another enabled component
(for both hierarchical and flat component models) or to exactly one require in-
terface of a parent component (for a hierarchical component model only).

(2) An arbitrary provide interface of an arbitrary enabled composite component has
to be connected to exactly one provide interface of an enabled subcomponent
(for a hierarchical component model only).

(3) An arbitrary enabled connection has to connect only interfaces defined on en-
abled components (for both hierarchical and flat component models).

Two observations about the process of enabling and disabling application parts
can be made as corollaries implied from the structural requirements.

60

First, in the time when a component is disabled, also all connections connected
to its provide interfaces are disabled, thus components requiring a service of the dis-
abled component are either rerouted to another components or disabled as well.

Second, in the time when a component is enabled, each of its require interfaces
is connected to a component providing the required service. This component is either
enabled before the requiring component or it is enabled with the requiring component
at the same time.

7.2 Architecture

As the runtime architecture is divided into the three parts – gathering the values,
the network reaction representation and the reconfiguration based on a mode change
protocol – there exist three components, each of them realizing one of the activities.
By encapsulating the activity to a single component, the flexibility of the architecture
is preserved. The component defines an imutable interface but its implementation
can be switched according to the situation, i.e. the type of the network reaction
representation and the mode change protocol can be easily replaced. The whole
architecture is shown in Figure 7.1.

Figure 7.1: Architecture of the mode change mechanism at runtime

The first part of the architecture is represented by the component Mode Property

Storage. The component acts like memory that stores current property values.
A connection to common components is realized through the interfaces set and

61

get. Compatible interfaces setModeProperty and getModeProperty are automat-
ically generated for each common component at deploy phase. A common com-
ponent is able to send a new value through the setModeProperty interface and
gain the current value through the getModeProperty interface. When a new value
is sent it is stored in memory and an event is triggered. The event enters the sec-
ond architecture part as input. A common component cannot set values of indirect
properties, hence the component Mode Property Storage can store and handle just
direct properties.

The second part is represented by the component Mode Property Reactor.
On the basis of an input event a network reaction is simulated and a stable property
state is found. Output of the process is an update of property values and a new
configuration of the application. Current property values are updated in the first
architecture part and the new configuration is transfered to the third architecture
part as input. As proposed in Chapter 4 this architecture part incorporates own
extra task. For this reason, an event queue is present in order to synchronize data
flow between the extra task and common component’s tasks.

The component Mode Reconfigurator represents the third architecture part.
When a new configuration is on input, it is compared to the current configuration
of the application and input for a mode change protocol is created based on this.
The mode change protocol finds and saves a schedule. This architecture part in-
corporates another extra task which just reads the schedule and enables or disables
application parts at the right time.

7.3 Component Interface

It is possible that the source code of a common component uses directly the inter-
faces setModeProperty and getModeProperty for the property handling . However,
this approach has several drawbacks. First of all, since the interfaces are generated
in deploy phase they do not exist in design phase. The next problem is the parame-
ter of the interface calling – the property identifier. The identifier has to be unique
among all application properties so it has to be an automatically generated number.
It means that the identifier is not human-readable. Finally, if the mechanism archi-
tecture at runtime were implemented differently the compatibility of old components
could be broken.

The drawbacks can be neglected or overridden but they are still retarding
for the user. A promising solution is an extension of the component API with new
methods regarding to the property handling. Implementation of the methods uses
the generated interfaces and is automatically generated with them in deploy phase.
It covers the automatically generated property identifiers and brings opportunity
to define extra functions.

The component API is extended by the following basic methods.

• setModeProperty(propertyLocalId, value) – Set a new value to a property.

• getModeProperty(propertyLocalId) – Get a value of a property.

62

The following extra methods are included as well.

• setChangedModeProperty(propertyLocalId, value) – Set a new value to
a property but only if the condition that a new value is different from the cur-
rent one is met. The difference to the method setModeProperty is that the call-
ing of the method with the current value does not trigger an event which could
cause a reconfiguration.

• resetModeProperty(propertyLocalId) – The current value of a property
is not changed, just an event is triggered.

7.4 Event Queue

As described in Section 2.3, a real-time application cannot rely on availability
of a suitable dynamic memory allocator. It is convenient to implement the event
queue using static memory allocation. It means that the maximum size of the queue
has to be set in advance. It can be done in this particular situation but one pre-
sumption has to be introduced.

Assume that each property can be modified by one instance of a task at most
once. It means that the number of events offered to the queue by the instance is equal
to the number of direct properties.

The following analysis is done for the RM scheduling algorithm. For a different
algorithm the results can be different. In the worst case scenario, the number of in-
stances of common component’s tasks scheduled between two instances of the reactor
task can be above bounded by the number∑

i∈Co

⌈
2·Tr

Ti

⌉
where Co is a set of indices of all common tasks, Ti is a period of a task with index i
and Tr is a period of the reactor task. With another presumption that the reactor task
has higher priority than an arbitrary common task, the upper bound can be estimated
to 2 |Co|. In this case, the maximum size of the queue is

2· |Co| ·
∣∣PDi

∣∣
where PDi is a set of all direct properties.

7.5 Oracle Based Reactor

The component Mode Property Reactor is based on the property state machine
which acts like an oracle for the network reaction representation. This structure
is stored in the component. Besides this, the component keeps an information about
current state of the machine.

Memory complexity of the property state machine can be reduced by omitting
values of indirect properties in each state of the property state machine. It can

63

be done because of the fact that the indirect properties are not stored in the first
architecture part and no other architecture part uses them. However the structure
of the property state machine – a number of states and transitions – has to remain
unchanged.

7.6 Mode Change Protocol

The Maximum-period offset protocol can be easily used as a mode change proto-
col. This protocol is simple to be implemented and supports periodicity. Assuming
that the meta-model structural requirements (5.4) are satisfied in the design phase,
the runtime structural requirements described are also satisfied because of the fact
that a reconfiguration is done at the same time (with a single offset). However,
a promptness of a reconfiguration is poor under this protocol.

In order to improve the promptness, more sophisticated protocols should be incor-
porated. But this is out of scope of the thesis. There is an opportunity for further
research. The designed architecture is at least flexible enough in order to make
the other protocol’s implementation easier.

7.7 Enabling and Disabling Application Parts

A real-time application cannot rely on availability of a dynamic memory allocator.
It is convenient to design the reconfiguration without the dynamic memory alloca-
tion. All components enabled in an arbitrary configuration exists in memory all
the time the application is executed. Disabling and enabling components is accom-
plished by the following methods.

• Implicitly. If the component is supposed to be disabled, there are no enabled
connections to it directing transitively from an arbitrary enabled active com-
ponent, thus a thread of execution cannot reach the disabled component. If
the component is supposed to be enabled, all components requiring its service
are connected to it. This method is valid because of the validity of the runtime
structural requirements.

• Explicitly. Active components are enabled by starting the component’s task
and disabled by stopping the component’s task.

Enabling and disabling application parts is realized using a schedule. It
is a structure which maps time points to atomic operations. The component Mode

Reconfigurator executes the atomic operations at the right time as described
in the schedule by calling system API. The atomic operations can be:

• startTask(componentTask, attributes) – Start an active component’s task
with the specified real-time attributes.

• stopTask(componentTask) – Stop an active component’s task.

64

• createConnection(sourceItf, targetItf) – Enable connection between
two interfaces.

• destroyConnection(sourceItf, targetItf) – Disable connection between
two interfaces.

65

Chapter 8

Implementation in SOFA HI

A proof-of-concept implementation is included in the thesis. It is based on SOFA 2
Component system or more precisely on its real-time profile SOFA HI (proposed
in [1]). This chapter describes specific properties of SOFA HI and a way how to im-
plement a support for operating modes in it.

8.1 SOFA HI Specific Characteristics

SOFA HI has several specific characteristics that differentiate it from a generic hi-
erarchical component system described in Chapter 3. Some of the following char-
acteristics cause that the implemented mode change concept has to be adjusted.
Other characteristics are just informative and they are described in order to make
the implementation intelligible.

A component’s structure is divided in two entities – a frame and an architec-
ture. A frame defines an outer interface of the component, i.e. a way how other
components communicate with the component. An architecture, on the other hand,
represents the component’s implementation. The component can even use more
than one frame but just one architecture. The component’s structure division brings
a question which new entities – component modes, mode properties and mode prop-
erty functions – are defined in the context of a frame and which ones in the context
of an architecture.

SOFA HI uses a flat component meta-model at runtime. An original hierar-
chical meta-model is in SOFA HI called a repository meta-model. An instance
of the repository meta-model is in deploy phase flattened and transformed into an in-
stance of an inter meta-model. A runtime architecture of the application is based
on this flat inter model. Hence the mode change mechanism have to work at runtime
with common components composed at one level only.

SOFA HI defines two types of components – active and passive. An active compo-
nent carries its own thread of execution, defines real-time attributes and implements
an infinite loop in order to create a periodical task. A passive component acts just
like a service for other components. Its code is executed in the context of an active
component.

66

Aside an application structure, a deployment plan is defined. A deployment plan
is a supporting configuration which describes how the application is deployed and
which values of component’s configuration parameters are applied. This is the place
where values of real-time attributes are defined.

8.2 Repository Meta-model Extension

A question where new entities are defined – either on a frame or on an architecture –
is presented in the previous section. This section answers the question and presents
an extension of the SOFA HI meta-model overall.

NamedEntity

name : EString

VersionedEntity

Frame

Architecture

isComposite() : EBoolean

Interface

SubcomponentInstance

InterfaceType

signature : EString

CodeBundle

Version

version : EString
prevVersion : EString

Connection

ConnectionEndpoint

ComponentInterfaceEndpoint

interfaceName : EString

SubcomponentInterfaceEndpoint

interfaceName : EString

Property

type : EString

ModeProperty

type : EString
condition : EBoolean

getValues() : EString

Mode

ModePropertyFunction

Function
(from model)

name : EString

evaluate(EEList) : EString

PropertySet

PropertyFunctionTemplate

unparsedFunction : EString

evaluate(EEList) : EString

PropertyValue

name : EString
value : EString

ModePropertyFunctionParam

ModePropertyFunctionComponentParam

modePropertyName : EString

ModePropertyFunctionSubcomponentParam

modePropertyName : EString

ModeEnabledSubcomponent ModeEnabledConnection

implements

0..*

requiredInterface
0..*

providedInterface
0..*

subcomponent

0..*

instancesArchitecture

0..1

instancesFrame
0..1

interfaceType

0..1

dependencies

0..*

codeBundle
0..1

codeBundle0..1

version

0..1 entity

0..1

endpoint0..*

connection0..*

subcomponent

0..1

property

0..*
property

0..*

condition 0..1

enabledSubcomponent 0..*
enabledConnection 0..*

input

0..*

output

0..1

modePropertyFunction

0..*

modeProperty

0..*

mode

0..*

propertySets
0..*

property

0..*

modeProperty
0..*

modePropertyFunction

0..*

implements 0..1

function 0..1

source

0..1

subcomponent

0..1

connection

0..1

subcomponent

0..1

Figure 8.1: Extension of repository meta-model

Since a component mode is in fact an internal configuration of a component,
it is defined on an architecture. This refers to the subcomponent and connection
enable lists. Values of real-time attributes are defined in the context of deployment
plan. Hence the deployment plan is the place where different values for different
component modes are specified.

Mode properties are responsible for a communication with component’s outer
surrounding. Therefore, it is necessary to define them in the context of a frame.
However, the second responsibility of mode properties refers to the mode condi-
tion. The second responsibility is in the mechanism modeled using a special mode

67

property corresponding to the component mode. The mode property cannot be de-
fined on a frame in order to preserve frame’s independence from the component
modes defined on the architecture. Since different mode properties have different
responsibilities, it is convenient to define them on both entities. As a result, a set
of component mode properties is an union of sets of both frame and architecture
mode properties. It is up to the user to decide which properties are general enough
to be defined on the frame and which are architecture-specific.

Mode property functions create relations between mode properties and thus have
to be defined alike. Functions working with frame mode properties only can be de-
fined in the context of the frame. Functions which works fully or partially with archi-
tecture mode properties have to be defined in the context of the architecture in order
to preserve a concept of an independent frame. As a result, a set of component mode
property functions is an union of the two sorts of functions.

Mode property function is implemented by a template of functional behavior
as described in Section 4.4.2. It is possible to re-use the templates for different
properties in the application or even for different applications. That is the reason
why templates are stored as first-class objects in the common library. It has been
discussed that templates are defined using the special PFL language. Similarly,
a (semantic) meta-model of templates is not part of the repository meta-model and
the repository meta-model just refers it through a definition of a mode property
function.

The entire extension of the meta-model is shown in Figure 8.1. All new entities
are highlighted.

8.3 ADL Extension

SOFA 2 ADL is used as an architecture description language of SOFA HI system.
This section describes all extensions of SOFA 2 ADL intended to model new entities
of meta-model.

An architecture is extended of component modes. Therefore an ADL element
architecture can contain multiple occurrences of a newly defined element mode.
A component mode has a name and defines a list of enabled subcomponents and
connections. To represent this fact, an element mode contains an attribute name and
multiple occurrences of subelements enabled-sub-comp representing an enabled sub-
component and enabled-connection representing an enabled connection. To make
the referencing of component’s connections in ADL possible, it is necessary to add
an optional attribute name to the element connection.

<architecture name=‘‘architecture-name’’ frame=‘‘frame-ref’’ ...>
<sub-comp name=‘‘subcomponent-name’’ frame=‘‘frame-ref’’ .../>
<connection name=``connection-name'' >

<endpoint sub-comp=‘‘subcomponent-name’’ itf=‘‘interface-name’’ />
</connection>
<mode name=``mode-name''>

<enabled-sub-comp sub-comp=``subcomponent-name'' />

68

<enabled-connection connection=``connection-name'' />
</mode>
...

</architecture>

The second part of a component mode definition is in a deployment plan, where differ-
ences of real-time attribute values are defined. An ADL element depl-subcomponent can
contain multiple occurrences of a newly defined element depl-mode. This element con-
tains an attribute name referencing a particular component mode. It also contains multiple
occurrences of element depl-prop-value. Values defined in the context of an element
depl-mode are applied in the referenced component mode.

...
<depl-subcomponent name=‘‘subcomponent-name’’ ...>

<depl-mode name=``mode-name''>
<depl-prop-value name=‘‘prop-name’’>value</depl-prop-value>

</depl-mode>
...

</depl-subcomponent>
...

Mode properties and mode property functions are defined on both a frame and ar-
chitecture. To model this relations, an ADL element frame (architecture) can contain
multiple occurrences of an element mode-prop and multiple occurrences of an element
mode-prop-function. Each element mode-prop represents a mode property and contains
an attribute name and an attribute type. Each element mode-prop-function represents
a mode property function and contains an attribute impl which bounds it with a function
template. This element can contain subelements representing function’s input and output
properties. It contains exactly one element output and multiple occurrences of element
input. Both elements can be in two variants. The first variant represents local property
reference. An element contains an attribute prop which refers to a mode property de-
fined in a local frame or architecture. The second variant represents an external reference.
An element contains an attribute sub-comp referring a particular subcomponent and an at-
tribute prop which links it with a mode property defined on the referenced subcomponent’s
frame.

<frame name=‘‘frame-name’’>
<mode-prop name=``mode-prop-name'' type=``mode-prop-type'' />
<mode-prop-function impl=``pft-ref''>

<input prop=``mode-prop-name'' />
<input sub-comp=``sub-comp-name'' prop=``mode-prop-name'' />
<output prop=``mode-prop-name'' />

</mode-prop-function>
...

</frame>

A template of function’s behavior is defined as a completely new object. In ADL it
is represented by an element property-function-template with an attribute name. This

69

element contains a description of the function written in PFL.

<property-function-template name=‘‘property-function-name’’>
<![CDATA[... PFL code ...]]>

</property-function-template>

8.4 Deploy Phase and Runtime

Once an application is designed, a deploy phase comes. All prerequisites are fulfilled
at this time to generate the runtime mechanism components Mode Property Storage,
Mode Property Reactor and Mode Reconfigurator as proposed in Chapter 7. The com-
ponents are inserted into the repository model as standard components. A property state
machine necessary for generating an oracle based reactor is found by the PSM-2 algorithm
examined in Chapter 6.

The process of compilation and linking do not need to be modified at all. Some mod-
ifications referring to the component and system API and implementation of low-level
enabling and disabling of application parts have to be done at runtime level according
to Chapter 7.

70

Chapter 9

Case Study

This chapter introduces an example application which is used for demonstration of the de-
signed concept. It is a non-trivial example with component composition to the depth
of three levels. There are two levels where component modes are defined and it gives op-
portunity to define properties connected by non-trivial property functions. On the other
hand it is not too difficult in order to preserve apprehensibility.

9.1 Specification

The example is based on the existence of LEGO MINDSTORMS set and its NXT con-
trol technology [15]. This technology allows to build independent robots which are able
to apperceive an environment and act in it using different sensors and actuators. Central
unit of the technology is an NXT brain. Furthermore, the example assumes a color sensor
which enables the robot to distinguish between colors, a touch sensor which detects when
it is being pressed and two servo motors which move with the robot in the environment.

Figure 9.1: Example world

In front of the robot there is a bumper which uses the touch sensor for collision de-
tection. The color sensor is directed downwards so the robot can “see” what color it
is standing on. The two servo motors are used as engines for a left and right creeper track.
It allows the robot to move and turn round.

71

The example application implements robot’s specific control logic. It is able to exist in
a world which is composed of areas with different colors and bordered with a wall. Each
color has a specific interpretation. There are black circles which represent towns, yellow
lines which represent roads and connect towns, and green rest of the world which can
be understood as grass. When the robot is dropped on grass it searches for a civilization,
i.e. a road or a town. Once it finds something, it searches the world. It follows roads and
discovers towns. When the world is completely discovered the robot stops and switches
to a standby mode.

9.2 Component Model

There can be observed three operating modes – a civilization search, a road movement and
a town discovering. Besides this, another operating modes take part in the application.
There can be a system initialization and a standby mode which is active once a world
searching is done. It is reasonable to model the two sets of modes on a different component
level, so it creates the following mode hierarchy.

• Initialization – The robot is booting up.

• World search – The robot discovers towns and roads and creates a world image
in memory.

– Civilization search – The first town or road is searched for.

– Road movement – A road is followed hoping there is a town at the end.

– Town discovering – A town is analyzed and roads directing from the town
are discovered.

• Standby – The robot is done with searching and stops.

The high-level mode set is controlled using two simple boolean flags. The first one
describes if an initialization is already done. The second one indicates if there is a complete
world image in memory. Initialization mode is the first active. Completed initialization
indicates a switch to the world search mode. When the world image in memory is considered
to be complete the robot switches to the standby mode.

A control of the low-level mode set – switching between civilization search, road move-
ment and town discovering – is not so simple. It uses an information which color is the robot
standing on, an indicator if an algorithm for town discovering is already done and the active
mode itself. If the robot searches for a civilization and finds a road it switches to the road
movement mode, if it finds a town it switches to the town discovering mode. If it is fol-
lowing a road and finds a town it switches to the town discovering mode as well. Finally
if it is discovering a town and this algorithm is done, it moves the robot on the next
road in schedule and indicates this fact to the mode change mechanism. On this event,
an application switches to the road movement mode.

The whole application and the described mode change logic is modeled using component
meta-model and its mode property extension in Figure 9.3 on the page 75.

72

9.3 Model Analysis

9.3.1 High-level Mode Set

Let us analyze the mode condition of the high-level mode set. It uses two boolean properties
as input. The input properties are filled with data from two subcomponents of the com-
ponent Brain. It is the component InitBrain which can indicate that the initialization
is done and the component WorldImage which tells if the world has been completely
searched and stored in memory. Assigning a value to the two indicators creates a set
of events which affect the mode of the component Brain. It means that the mode is based
on the state inside the component.

9.3.2 Low-level Mode Set

The most complex part of the model is inside the component WorldSearch. Its mode
change mechanism contains a property function with three input properties and one
of the properties is also its output property. It is the function computing a value of
the property mode2. Moreover, there is another property function which modifies a value
of the property townDiscDone based on a value of the property mode2. It creates a cycle
and brings interesting behavior to the network.

Assume that the component WorldSearch is in the mode TownDisc, the robot
is standing on the road or grass and the property townDiscDone is suddenly set to true.
This event invokes a network reaction which causes that the property mode2 is set
to RoadMov. The reaction spreads back to the property townDiscDone and it is re-
set to false. This invokes the function which computes the property mode2 again, but
now the input values does not cause any output value modification and the network is sta-
bilized. Thus the component is reconfigured to the mode RoadMov on this event.

Now assume the same situation but the ground the robot is standing on is a town. When
the property townDiscDone is set to true the network reacts and the property mode2 is set
to RoadMov. It causes that the property townDiscDone is reset to false and the property
mode2 is computed again. Based on the input values which are now groundType3 =
Town and mode2 = RoadMov the mechanism changes the value of the property mode2

to TownDisc and the network is stabilized. It is the same property state as before the event
occurred so the component is not reconfigured.

9.3.3 Evaluation

A property state machine generated from the network is partially shown in Figure 9.2.
Most of property states corresponding to the initialization and standby mode are omitted
because they do not bring any new insight. Total number of stable property states in PSM
is 24. It is quite satisfying result considering the fact that there are 139 968 property states
possible on 13 properties with the domains as specified.

An important aspect of the mechanism is its memory footprint. Each state, property
and property value can be represented in memory by an integer number. The most complex
part of the PSM representation is a transition function. It can be represented by a three-
dimensional array – the first dimension to determine a state, the second and the third
dimension to determine an event (a direct property and its value). Value of the array
is an integer number referring to a target state. It means that the transition function

73

Figure 9.2: Part of the robot’s property state machine

allocates:

#states · #direct properties · maximum domain · sizeof(int)

(24 · 4 · 3 · 4) Bytes = 1152 Bytes

Finally, let us compare time complexity of the PSM-1 algorithm and the PSM-2 algo-
rithm. Because of 9 possible events, time complexity of the PSM-1 algorithm is

24 · 9 · Treact = 216 · Treact

In the PSM-2 algorithm, number of reaction calls is smaller. It can be estimated as follows.
For the property color, let us call it an event property, there are 3 possible events –
assigning the values Green, Y ellow or Black. For this property, there is also the set
of reactive properties {townDiscDone,mode2} which define 6 possible stable states. It
means that there are 18 calls of the react algorithm for this event property. The same idea
can be applied to the event properties done1, done2 and done3 which define the following
sets of reactive properties: {groundType3, mode2}, {worldSearchDone} and {initDone}.
It gives 18, 4 and 4 calls of the react algorithm. Thus the time complexity is:

(18 + 18 + 4 + 4) · Treact + Tsecond phase = 44 · Treact + Tsecond phase

9.4 Benefits

The case study shows that the component mode extension of the meta-model is meaning-
ful. Component modes are encapsulated with their components and different mode sets
are completely independent. Re-usability of the entire concept is preserved.

74

Figure 9.3: Robot’s component model

The property based mode change mechanism works with several types of information,
e.g. a color or boolean flags indicating a completed task, which are effectively represented
by properties and distributed by property functions. The mode condition of the compo-
nent WorldSearch uses a possibility to compute a new active component mode on the basis
of the current one. A current component mode is also used for adjusting a value of the prop-
erty townDiscDone. All property functions – complex mode conditions, groundColor
to groundType transformation and simple value propagations – are easily modeled us-
ing PFL.

After all, the application employs many features supported by the property based mode
change mechanism which seems to be suitable for this kind of control systems.

75

Chapter 10

Related Work

This chapter provides a list of component-based frameworks aimed at real-time develop-
ment which are relevant for the thesis. In this particular case, it means a support for some
kind of runtime variability, mostly a support for dynamic reconfiguration. Exhaustive
summary of real-time component frameworks can be found in [7].

10.1 MyCCM-HI

MyCCM-HI [14] is a component framework based on OMG Lightweight CCM. It is fully
operational and ready to be used. The main idea of the framework lies in a transformation
of an application designed by component-based approach into lower-level AADL language.
A set of external tools like Cheddar and Ocarina can be used at the lower level to perform
schedulability and deadlock analysis.

Reconfiguration is in MyCCM-HI based on operational modes [8]. Each component
defines and implements a mode automaton that maintains an information about an active
mode. The mode change mechanism consist of boolean expressions which decide about
a mode transition, messages which can trigger a transition and actions which can be a result
of a transition.

This is very similar to the property based mechanism introduced in the thesis. There
is resemblance between boolean expressions defined in MyCCM-HI and mode conditions
introduced in the thesis. Moreover, messages and activities are similar to properties and
property functions defined in the property based mechanism as they manage distribution
of mode-change relevant information between the component and its surrounding and
adjust the inner state of the component.

The mode automaton of each MyCCM-HI component is transformed into a new con-
trol subcomponent that handles the parent component’s reconfiguration. The control com-
ponents are connected together with standard system’s connection mechanisms in order
to distribute messages.

This is the difference between MyCCM-HI and the property based mechanism.
The property based mechanism generates control components as well but they are global
for the entire application. It is possible because of the mechanism’s better coupling
with the system, especially because of the mechanism’s abstraction to properties. Hence
the mechanism can use an oracle based approach in reaction representation, while MyCCM-
HI is forced to use its full simulation.

76

10.2 BlueArX

BlueArX [9] is a component framework aimed at traditional automotive control systems.
It is developed by Bosh and fully operational.

Reconfiguration is based on operating modes. The framework focuses on design phase
of the development cycle. It supports advanced development tools which helps with dif-
ferent analyses in different modes and even semi-automatic heuristic-based prediction
of system’s decomposition into modes. A modes define either different scheduling strate-
gies, i.e components and processes are activated differently, or different control strategies,
i.e. system determines different component configurations, different control signal paths and
even different control path in source code. Development tools performing system analy-
sis, e.g. WCET analysis, work with respect to different modes. At runtime, components
are configured using configuration interfaces.

Understanding of modes in BlueArX and in the thesis is alike. Both define different
configurations and different scheduling parameters. However, there is no explicit mode
change mechanism at runtime in BlueArX. Reconfiguration at runtime has similarities
with manual approach with support of the configuration interfaces. Advanced develop-
ment tools analyze the whole reconfiguration mechanism in design phase and thus resolve
the predictability issue.

10.3 Koala

Koala [10] is a component model aimed at consumer electronics development, created
by Philips. The system attaches importance to optimization and managing diversity of tar-
get devices.

It supports partial dynamic reconfiguration at runtime. The reconfiguration is based
on switches or modules, as a more general form of switches. Switches are units of compo-
sition which can reroute a connection between components at runtime on the basis of its
dynamic configuration. The concept is very simple to realize and suitable for the targeted
domain of devices.

However, it is not convenient for the domain of hard real-time systems because
of the difficult analysis of real-time properties. There cannot be enabled and disabled
different activities in different configurations as well. This can be a feature important
for some control systems.

10.4 ROBOCOP

The Robust Component Model for Consumer Electronic Products (ROBOCOP) [11]
is a component-based architecture for middleware layer in consumer electronics. It has
been developed as an ITEA project. It consists of several frameworks. The core frame-
works are development and runtime frameworks. The first one manages the development
of components while the second one defines its execution environment. The core frame-
works are supported by the download framework and the resource management framework.

Partial runtime variability is implemented by the download framework. It is able
to download a component’s update from the repository to the device and dynamically
upgrade the component at runtime. However, it is not the true reconfiguration and com-
parison with the thesis is not possible.

77

Chapter 11

Conclusion and Future Work

The thesis has proposed an approach how to integrate a dynamic runtime reconfiguration
support to a real-time application created by means of component-based development.
The thesis has been focused on resolving high-level issues mostly. The basic meaning
of operating modes in the context of component-based development has been discussed
and a concept of a mode change mechanism has been introduced. One possible realiza-
tion of the concept has been proposed using a concept of mode properties and functions.
The property based mechanism has been analyzed in detail, implemented and a case study
has been introduced as a proof of the concept. Because of the limited scope of the thesis,
low-level aspects of the topic, i.e. a runtime architecture, has been described in less detail.
It creates opportunity for further investigation.

First of all, more sophisticated mode change protocols have to be examined in the con-
text of their possible application in the system, especially their ability to satisfy runtime
structural requirements. Developing a new protocol fulfilling the requirements is also an op-
tion. Possibility to switch the mode change protocols according to situation is an optional
feature.

A topic of mode change safety has not been discussed in the thesis. Safety mecha-
nism have to be introduced in order to preserve unauthorized components from working
with the system API methods which handle enabling and disabling application parts.

Another important topic of investigation is a non-oracle approach to a property network
analysis. This method is closely related to a schedulability analysis. The analysis should
incorporate a decision which approach is more suitable for a situation and a system should
be able to choose between the two approaches accordingly.

Last but not least, a question of dynamic reconfiguration of distributed systems is open.
Existence of a theoretical background that study deploying component-based real-time
applications into distributed environment is crucial for the topic.

78

Appendix A

Content of the Enclosed
DVD-ROM

The enclosed DVD-ROM is organised as follows:

• master thesis.pdf – The thesis in PDF format.

• readme.txt – Content and usage description.

• bin/ – Binary distributions of SOFA HI and Cushion.

• src/ – Source code of the implementation.

79

Bibliography

[1] Hosek P.: Supporting Real-time Features in a Hierarchical Component System, Master
Thesis, 2010

[2] Real J., Crespo A.: Mode Change Protocols for Real-Time Systems: A Survey and
a New Proposal, 2004

[3] Buttazzo G.C.: Hard Real-Time Computing Systems, ISBN 0-387-23137-4, 2005

[4] Borde E., Haik G., Watine V., Pautet L.: Really Hard Time developing Hard Real
Time, Workshop Control Architecture of Robots 2007

[5] Masmano M., Ripoll I., Crespo A.: Dynamic Storage Allocation for Real-Time Em-
bedded Eystems, 2003

[6] Crnkovic I., Larsson M.: Building Reliable Component-Based Software Systems,
ISBN 1-58053-327-2, 2002

[7] Hosek P., Pop T., Bures T., Hnetynka P., Malohlava M.: Comparison of Component
Frameworks for Real-Time Embedded Systems, 2010

[8] Borde E., Haik G., Pautet L.: Mode-based Reconfiguration of Critical Software Com-
ponent Architectures, 2009

[9] Kim J.E., Rogalla O., Kramer S., Hamann A.: Extracting, specifying and predicting
software system properties in component based real-time embedded software develop-
ment, 2009

[10] Ommering R., Linden F., Kramer J., Magee J.: The Koala Component Model for
Consumer Electronics Software, Computer 33, 78–85, 2000

[11] Maaskant H.: A Robust Component Model for Consumer Electronic Products, 2005

[12] Cerny O., Hosek P., Papez M., Remes V.: SOFA 2 Component System documentation:
User’s and programmer’s guide, http://sofa.ow2.org/docs/

[13] Bruneton E., Coupaye T., Stefani J.B.: The Fractal Component Model Specification,
http://fractal.ow2.org/specification/

[14] MyCCM High Integrity, http://sourceforge.net/apps/trac/myccm-hi/wiki/

[15] LEGO R© MINDSTORMS R©, http://mindstorms.lego.com/

[16] Extended BNF, ISO/IEC 14977, 1996

80

[17] OMG Unified Modeling LanguageTM, Version 2.3, http://www.uml.org/

[18] Eclipse Modeling Framework, http://www.eclipse.org/modeling/emf/

[19] FreeRTOS, http://www.freertos.org/

[20] GNU/Linux, http://www.linux.org/

81

	Introduction
	Real-time Applications
	Application Variability
	Goal and Structure

	Real-time Application
	Tasks and Scheduling
	Runtime Reconfiguration
	Dynamic Storage Allocation

	Hierarchical Component System
	Meta-model
	Structural Requirements
	Architecture Description Language
	Application Life-cycle
	Real-time Extension

	Analysis
	Modes in Component System
	Mode Change Mechanism
	Manual Mechanism
	Property Based Mechanism
	Basic Design
	Meta-model Extension
	Network Reaction
	Resemblance with SAT
	Network Analysis
	Property State Machine
	Runtime Architecture
	Goals Revisited

	Mode Change Mechanism
	Component Mode
	Properties and Property Functions
	Component and Application Properties
	Property Network
	Component Mode Condition
	Network Functionality
	Network Input

	Property Function Language
	Syntax
	Semantics

	Oracle Construction
	Property State Machine
	PSM Algorithm
	Basic Idea
	PSM State
	PSM Transition
	PSM State Combination
	Preprocessing
	First Phase
	Second Phase
	Finiteness
	Correctness
	Complexity

	Hierarchical Mode Automaton
	HMA Algorithm
	Algorithm
	Finiteness, Correctness and Complexity
	Enable and Attribute Lists Association

	Runtime
	Structural Requirements
	Architecture
	Component Interface
	Event Queue
	Oracle Based Reactor
	Mode Change Protocol
	Enabling and Disabling Application Parts

	Implementation in SOFA HI
	SOFA HI Specific Characteristics
	Repository Meta-model Extension
	ADL Extension
	Deploy Phase and Runtime

	Case Study
	Specification
	Component Model
	Model Analysis
	High-level Mode Set
	Low-level Mode Set
	Evaluation

	Benefits

	Related Work
	MyCCM-HI
	BlueArX
	Koala
	ROBOCOP

	Conclusion and Future Work
	Content of the Enclosed DVD-ROM
	Bibliography

