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NI  neural induction 

NMJ   neuromuscular junction  

NPC  neural stem/progenitor cells 

NSC  neural stem cells 

NT-3  neurotrophin-3 

OEG  olfactory ensheathing cells 

OMgp  oligodendrocyte myelin glycoprotein 

pAMSC  predifferentiated adipose-derived mesenchymal stromal cells 

PBS   phosphate-buffered saline 



4 

 

PD   Parkinson’s disease 
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PNS   peripheral nervous system 
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S.E.M.  standard error of the mean 

SC   spinal cord 
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1. INTRODUCTION 

 

1.1. Spinal cord anatomy  

The spinal cord is the part of the CNS that transmits sensory information to the 

brain and regulates motor and autonomic functions. It has a cylindrical 

appearance and is approximately 1 cm in diameter, 42- 45 centimeters-long. 

Topographically, it leaves the skull through the foramen magnum and extends 

down the vertebral canal to the upper margin of the second lumber vertebra. The 

spinal cord is divided in the craniocaudal direction into the pars cervicalis, pars 

thoracica, pars lumbaris and pars sacralis with two enlargements at the cervical 

and lumbar regions, called the intumescentia cervicalis and lumbaris. The 

terminal part of the SC starts to narrow down into a wedge-shape and is denoted 

as the conus medullaris with its caudal extension called the filum terminale, 

which is surrounded by a bundle of nerves from the lumbar and sacral levels 

called the cauda equina. Generally, the SC contains 31 pairs of spinal nerves 

with the corresponding 31 segments (8 cervical, 12 thoracic, 5 lumbar, 5 sacral 

and 1 coccygeal). The spinal cord is located in the spinal canal surrounded with 

three layers of coverings: the dura mater, the arachnoid membrane and 

innermost, the pia mater. Between the inner surface of the bone and the dura 

mater there is a space filled mainly with fatty tissue and venous plexuses called 

the epidural space, which has an important clinical application in the use of 

epidural anesthesia. Another important anatomical structure is the subarachnoid 

space, i.e. the space between the arachnoid membrane and the pia mater, filled 

with the cerebrospinal fluid (CSF). This bulge is routinely accessed for sampling 

the CSF via a lumbar puncture and could be used for the intrathecal application 

of different agents.  
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Figure 1. Spinal cord tracts (Häggström, 2010) 

 

 In cross-section the SC shows a central butterfly-shaped gray matter 

surrounded by peripherally located white matter and a central canal in the 

centre. The gray matter mainly consists of glial cells and neuronal bodies giving 

rise to three main types of connections – ascending, descending and local 

(interneurones) (Figure 1) – while the white matter is built from myelinated and 

unmyelinated ascending and descending axons and glia. Ascending tracts: 

posterior funiculi (responsible for kinesthesia and discriminative touch); 

posterior spinocerebellar tracts (responsible for proprioception); spinothalamic 

tracts (responsible for pain and thermal sensation).  Below the sixth thoracic 

segment, ascending tracts form the fasciculus gracilis, whereas above that level 

they form the fasciculus cuneatus. Descending tracts: lateral and anterior 

corticospinal tracts (mediate voluntary and precise movements in the skeletal 

muscles); extrapyramidal tracts - rubrospinal (mediation of voluntary 

movement), lateral vestibulospinal (regulates extensor muscle tonus aimed at 

maintaining an upright position). Medial vestibulospinal tract (controls head 

position), reticulospinal tracts (modulates voluntary muscle movements, tone, 

reflex activity and breathing capacity). The autonomic nervous system originates 

in the hypothalamus and sends its sympathetic and parasympathetic descending 
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tracts mainly through the lateral funiculi to the preganglionic sympathetic and 

parasympathetic neurons in the brain stem and T1-L2 and S2-S4, respectively.  

The spinal cord is supplied with blood from the vertebral arteries that 

give rise to one anterior and two posterior branches from each. The anterior 

branches fuse to form the anterior spinal artery that supplies the anterior two-

thirds of every spinal cord segment. The posterior spinal arteries supply the 

posterior one-third of the SC. Additionally, the vasocoronal arteries arising 

from anterior and posterior spinal arteries provide blood circulation to the 

peripheral part of the lateral funiculi and play a role in the anastomosis between 

the anterior and posterior spinal arteries. The radicular arteries arise from the 

intercostals vessels and form a bifurcation with the anterior and posterior spinal 

arteries, thus forming the circumferential arterial supply to the SC. Veins that 

drain blood from the SC to the anterior and posterior epidural plexus have a 

similar pattern as that of the spinal arteries (Brodal, 2010, Holtz A., 2010).  

 

1.2. General features of spinal cord injury and amyotrophic lateral sclerosis 

Diseases of the central nervous system still remain among the most challenging  

pathologies known to mankind. This is because neurological disorders are 

typically devastating to the affected patients and their families, the individuals 

are often robbed of the qualities that are strongly associated with being human, 

and because the vast majority of neurological and neurodegenerative disorders 

lack effective therapies (La Spada and Ranum). Today, there are several known 

risk factors leading to an increase in the number of these maladies, among them 

the urbanisation and aging of the population in developed countries, living in or 

exposure to a toxic environment, genetic polymorphisms, bad habits and an 

inapropriate diet, traumatism and a variety of stresses and risk factors in our 

daily life. Due to these and many other reasons, it has been shown that an 

increasing number of people are affected every year by  neurological diseases 
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such as stroke, brain and spinal cord traumatic injury (SCI), neurodegenerative 

diseases and CNS tumors. Some of these disorders  are strictly inherited, such as 

Huntington’s disease, while others are predominantly sporadic although with a 

minority of hereditary cases, such as amyotrophic lateral sclerosis (ALS), 

Alzheimer’s disease and Parkinson’s disease, which occur frequently in human 

populations (Carlesi et al.). In some cases neurodegenerative diseases arise in a 

particular  geographic region and are associated with  cultural and enviromental 

factors, e.g. Guam-type ALS/parkinsonism dementia complex (ALS/PDC),  

which is caused by the presence of β-methylaminoalanine in an indigenous plant 

commonly used as  food by the Chamorros in Guam (Ince and Codd, 2005).  

Neurodegeneration is a term used for diseases characterized by complex, 

progressive, multifaceted processes leading to the loss of structure and/or the 

function of brain and spinal cord neurons, including death. All of these occur 

due to the impairment of adaptive processes (cell division, neurotrophic factor 

signaling, anti-apoptotic mechanisms, antioxidant enzymes, ion homeostasis and 

many others) that take place in the nervous tissue under normal conditions. 

Many neurodegenerative diseases occur as a result of degenerative processes in 

selected areas of the CNS with specific symptoms and affects different levels of 

the neuronal circuitry, accompanied by the atrophy of central and peripheral 

nervous system structures. As research has progressed, many similarities have 

appeared which relate these diseases to one another on a sub-cellular level. For 

example, excitotoxicity, neuroinflamation and oxidative stress are common 

processes that play a crucial role in both SCI and neurodegenerative diseases. 

This work aims to focus closely on recent progress made in the understanding of 

neuroplasticity and treatment of SCI and ALS and, thus making it possible to 

use lessons from both pathologies in order to develop successful approaches to 

treatment or at least to stabilizing the processes responsible for disease 

progression. 
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1.3. SPINAL CORD INJURY (SCI) 

 

1.3.1. Epidemiology of SCI 

Currently in the European Union there are at least 330 000 people living with 

spinal cord injury and about 11 000 new cases every year (Onose et al., 2009). 

According to the National Spinal Cord Injury Statistical Center (NSCISC), the 

number of people in the United States who were alive in 2010 and have SCI has 

been estimated to be approximately 265,000 persons, with a range of 232,000 to 

316,000 persons, with approximately 12 000 new cases annually. It is estimated 

that the annual incidence of spinal cord injury in the population, excluding those 

who died at the scene of an accident, is approximately 40 cases per million 

(NSCISC, 2010). The above statistics suggest that this is a serious problem that 

affects countries worldwide with almost the same frequency of new cases 

annually. Even though the level of medical care has increased in the last decades 

and life expectancy for people exposed to traumas and various types of 

neurodegenerative diseases has significantly grown, there has still been very 

limited progress in improving the neurological symptoms and defects of the 

affected patients as there are still large gaps in our understanding of the 

processes that take place after injury or the onset of degeneration. Due to these 

gaps in understanding, it remains unclear what kind of treatment approach 

should be employed and when treatment should be implemented.  

 

1.3.2. Pathophysiology of Spinal Cord Injury 

Human SCIs are very heterogeneous. Generally, traumatic injury to the spinal 

cord is defined by two broad components: a primary component (also called 

primary SCI), attributable to the mechanical impact and shear forces themselves, 

and a secondary component (secondary SCI)  that consists of a series of 

systemic and local neurochemical changes that occur in the nervous tissue after 
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the initial traumatic shock (Klussmann and Martin-Villalba, 2005). According to 

the time after injury and the changes that occur during that period, SCI can also 

be divided into three phases: acute, intermediate and chronic. It is hard to 

delineate one phase from another, as there are many common traits, but 

nonetheless each stage has its own features and processes that dominate.  

 

Acute phase: About 27% of human SCIs are characterized by the direct 

impact of penetrating objects (rapid flexion/rotation, distortion, laceration or 

foreign body stabbing). The remaining 73% of clinical cases are caused by 

temporary compression of the cord due to bone fragments, intervertebral disks 

etc. Any mechanical deformation of the spinal cord leads to the rupture of 

neuronal cell membranes with the release of the intracellular contents, 

hemorrhage, vasospasm, localized edema, breakdown of the blood-brain barrier 

etc. As a result, a cascade of vascular, biochemical and cellular processes leads 

to necrosis and apoptosis, causing the massive death of neuronal, glial and 

endothelial cells and a shift of metabolism towards anaerobic glycolysis (Katoh 

et al., 1996, Emery et al., 1998). Meanwhile, there is also an activation of 

macroglial cells and ongoing demyelination involving oligodendroglial cells 

(Beattie et al., 2000, Farooqui et al., 2004). Morphologically and clinically, the 

extent of post-traumatic damage usually correlates with the degree of force and 

pressure applied on the spinal cord, the time elapsed after the initial damage, and 

the kinetic energy that was absorbed by the nervous tissue. It is also interesting 

to note that most of the time, damage to the spinal cord is limited to a single or 

not even a whole segment, and only rarely does complete damage (transection) 

to the spinal cord occur. The transection of axons in the adult mammalian CNS 

also induces the degeneration of the axons separated from the cell bodies 

(Wallerian degeneration); meanwhile the proximal endings that remain 

connected to their perikarya form terminal retraction bulbs. After the initial 
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phase of SCI, axonal dieback occurs up to  several millimeters more proximal 

from the site of the lesion (Seif et al., 2007). 

Intermediate phase: The intermediate phase begins minutes after the 

initial injury and persists for weeks after SCI. This phase is characterized by 

secondary damage to the nervous tissue caused by vascular defects with related 

hypoxia, the release of glutamate from intracellular stores that causes 

excitotoxicity (Katayama et al., 1990) via an increased influx of Ca
2+ 

into the 

neurons along with a depletion of ATP regeneration (uncoupled mitochondrial 

electron transport), the production of free radicals with subsequent lipid 

peroxidation, local inflammation (Taoka et al., 1997, Carlson et al., 1998) and 

changes in ionic homeostasis (Figure 2). All of these processes trigger a chain of 

events that are accompanied by an inflammatory reaction leading to secondary 

necrotic cell death (mainly of oligodenrocytes) at the core of the injury site and 

apoptotic cell death in the surrounding areas (Crowe et al., 1997, Popovich et al., 

1997), reaching its highest levels at about 1 week after injury (Farooqui et al., 

2004). The demyelination (Waxman, 1989, Bunge et al., 1993) and degeneration 

of the fiber tracts also leads to neuronal death in areas remote from the primary 

lesion site, such as the motor cortex in the brain (Lee et al., 2004). At this stage 

a number of oligodendrocytes and astrocytes die in the core of the injury (Crowe 

et al., 1997), meanwhile there is an activation of astrocytes at the edge of the 

primary injury site. These astrocytes display increased metabolism (the number 

of mitochondria and endoplasmic reticula inside cells is increased), and they 

start to form long neurites, aiming to prevent the spread of an aggressive 

environment further in both directions (Nathaniel and Nathaniel, 1977, 

Eddleston and Mucke, 1993). These cells are also called gemistocytes, and the 

peak of tissue infiltration by these cells is reached two to three weeks after 

injury. Importantly, this infiltration of activated astrocytes subsequently acts to 

block regeneration after SCI due to the formation of a barrier to axonal 

sprouting across the lesion (Fawcett, 2006). Another important factor that blocks 
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the regeneration of the injured axons at this stage is the activation of 

oligodendrocytes, which results in the formation of myelin membranes and the 

synthesis of oligodenrocyte-myelin glycoprotein (OMG) and myelin-associated 

glycoprotein (MAG), both of which have neurite growth inhibitory activity 

(Schwab and Caroni, 1988, Domeniconi et al., 2002, Oertle et al., 2003) (see 

below). 

 

Figure 2. Neurotoxic events that follow injury to the spinal cord and molecular targets for 

intervention (Klussmann, S. and A. Martin-Villalba, 2005) 

 

 Chronic phase: The chronic phase starts days after injury and can last 

for years. The main feature of this phase is ongoing demyelination (Bunge et al., 

1993, Schwab and Bartholdi, 1996, Totoiu and Keirstead, 2005), local 

inflammation and apoptosis (Fleming et al., 2006), a decrease in the number of 

activated macrophages, and the formation of a glial scar and pseudocysts (also 
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called syringomyelia) (Windle and Chambers, 1950, Fawcett and Asher, 1999, 

Nielsen et al., 1999, Perrouin-Verbe et al., 1999). This phase of SCI presents a 

major challenge to doctors and scientists and attracts the greatest research 

interest, as most SCI patients remain in this phase, to a greater or lesser extent, 

for the rest of their lives. Targeting the main components of the glial scar in the 

chronic phase could provide effective therapy for patients in the future (Figure 

3). 

 

1.3.3. Clinical Symptoms of SCI 

The clinical symptoms of SCI vary with the site of damage, because of 

the way the spinal nerves are distributed in an orderly arrangement down the 

length of the SC. Neural systems that can be permanently disrupted below the 

level of injury involve not only the obvious control of limb muscles, but also 

various types of sensation and the normal function of the internal organs. 

Anatomically, the spinal cord comprises ascending (gracile and cuneate 

fascicules, dorsal and ventral spinocerebellar, lateral and ventral spinothalamic 

tracts) and descending (lateral corticospinal, hypothalamosoinal, rubrospinal, 

vestibulospinal and ventral coricospinal tracts) pathways that transfer sensory 

and motor signals, respectively. 

Depending on which anatomical structures are affected, patients after SCI 

will have corresponding functional deficits. The common symptoms include 

complete/incomplete loss of motor (para-/tetra paresis, muscle hyperreflexia, 

hypertonicity, Babinski sign and clonus), sensory (hypo-/anesthesia, paresthesia, 

dyseshtesia, hyperpathie and allodynia) and autonomous functions (urinary 

retention due to detrusor/sphincter dyssynergia/areflexia, deficits in the 

cardiovascular system, breathing, sweating, bowel control, impairment of body 

temperature regulation, persistent loss of the bulbocavernosus reflex, ileus, 

sexual dysfunction etc.). These deficits lead to a succession of secondary 
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problems, such as pressure sores, chronic neurologic pain or paresthesias, 

urinary tract infections, spontaneous hyperactivity of motoneurons resulted in 

stiffness and uncontrolled, spastic muscle spasms. In order to systematize and 

grade the severity of neurological loss and symptoms, clinicians have long used 

different scales. The most widely used system for the evaluation of functional 

recovery was devised at Stokes Manville before World War II and popularized 

by Frankel in the 1970s (UAB-SCIMS, 2011). The scale is based on motor and 

sensory deficits and consists of five grades (table 1). 

 

 

Figure 3. Scar components and potential therapeutic interventions (Rolls et al., 2009) 

 

Nowadays, a newer impairment scale has been offered by the American Spinal 

Injury Association (ASIA) to classify SCIs. It is based on the Frankel scale, but 

differs in several important respects (table 1 and 2a, b). First, instead of no 

function below the injury level, ASIA A is defined as a person with no motor or 

sensory function preserved in the sacral segments S4-S5. ASIA B is essentially 

identical to Frankel B but adds the requirement of preserved sacral S4-S5 
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function. It should be noted that ASIA A and B classification depends entirely 

on a single observation, i.e. the preservation of motor and sensory function of 

S4-5. The ASIA scale also adds quantitative criteria for C and D, whereas the 

original Frankel scale has a subjective element in evaluation, but ignores arm 

and hand function in patients with cervical spinal cord injury. To get around this 

problem, ASIA stipulated that a patient would be an ASIA C if more than half of 

the muscles evaluated had a grade of less than 3/5. If not, the person was 

assigned to ASIA D. ASIA E is of interest because it implies that somebody can 

have a spinal cord injury without having any neurological deficits, at least none 

detectable on a neurological examination of this type. These changes in the 

ASIA scale have significantly improved the reliability and consistency of the 

classification. 

 

Table 1. Frankel Grade Function 

1.3.4. Current Therapy 

Therapeutic approaches for SCI fall into three separate time frames. The first 

could be described as acute neuroprotection after an SCI. This is directed at 

interrupting the cascade of secondary injury processes, thus limiting tissue 

damage. The chief architect of the treatable secondary damage concept was A.R. 

Allen, with his innovative studies of spinal injuries in dogs (Allen, 1911).  

 

A Complete paralysis 

B Sensory function only below the injury level 

C Incomplete motor function below injury level 

D Fair to good motor function below injury level 

E Normal function 
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Table 2a. American Spinal Injury Association (ASIA) impairment scale 

 

Over the intervening ninety years, speculation and experiments on the nature of 

the secondary pathology have been dominated by a succession of 

preoccupations: compromised blood flow, edema, catecholamine, oxidative 

damage, excitotoxicity, inflammation, nitric oxide and apoptosis (Blight, 2002). 

All of these have led to a series of controlled clinical trials. Several 

pharmacological groups have organized phase I-III human clinical trials to test 

their drugs of interest: steroids (methylprednisolon, Tirilazard), gangliosides 

(GM-1, Sygen®), opiate receptor antagonists (naloxone), noncompetitive 

NMDA antagonists (dizocilpine, gacyclidine), the potassium channel blocker 4-

aminopyridine (fampridine, Acorda Therapeutics), autologous cellular therapy 

(stimulated homologous macrophages, Proneuron) etc. (Jones et al., Faden et al., 

1981, Bracken et al., 1990, Geisler et al., 1991, Hao et al., 1992, Rapalino et al., 

1998, Knoller et al., 2005). Of these, methylprednisolon (MP) has been the only 

drug that resulted in significant improvement of motor and sensory functions not 

just in animal studies, but also in patients after SCI in the NASCIS-3 human 

trial. The effect is observed when a bolus injection of 30mg/kg body weight of  

A Complete: no motor or sensory function is preserved in the sacral 

segments S4-S5. 

B Incomplete: sensory but not motor function is preserved below the 

neurological level and includes the sacral segments S4-S5. 

C Incomplete: motor function is preserved below injury level, and 

more than half of the key muscles below the neurological level 

have a muscle grade less than 3 

D Incomplete: fair to good motor function below injury level, half of 

the key muscles below the neurological level have a muscle grade 

more than 3 

E Normal: motor and sensory functions are normal 
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Table 2b. ASIA protocol 



 

 

methylprednisolone initiated within 3-8 hours after the injury with (the 

therapeutic window), followed by an infusion of 0.9% NaCl over 45 minutes, 

followed by 5.4mg/kg/h of MP maintained for 48 hours (Bracken et al., 1990, 

Bracken et al., 1997, 2003, Vaquero et al., 2006).  Interestingly, until now there 

is ongoing discussion about the mechanism of action of MP and also about the 

effectiveness of steroids after SCI, especially considering the possible side 

effects of steroids (sepsis, pneumonia and other infections) and the fact that 

many animal studies have failed to show a neuroprotective effect in the early 

phase of SCI (Bracken et al., 1990, Bartholdi and Schwab, 1995, Hurlbert, 2000, 

Vaquero et al., 2006). Nevertheless, MP remains the only drug that has been 

proven to have an effect if administered to patients with SCI. Generally, after a 

trauma that could possibly involve SCI, the common approach seeks to arrest or 

even reverse sensor and motor dysfunctions via the prevention of all active and 

passive movement of the spine, support of the cervical and lumbar lordoses, and 

limitation of head movement with a collar. All patients should be transferred to a 

specialized hospital able to handle trauma victims.  Currently, the only standard 

possibility to treat patients with SCI is  surgical intervention, high doses of MP 

and symptomatic therapy (control or management of urinary and cutaneous 

infections, pain, spasticity, bladder and bowel management, sexual and 

reproductive function) followed by rehabilitation. The second therapeutic phase 

deals with the consequences of SCI. Rehabilitative efforts aim to stabilize the 

current status and to train reflexes and residual circuits to achieve optimal living 

conditions for the patient who has a given deficit. In the future, a third treatment 

approach will be directed towards the enhancement of axonal regeneration 

(2003). 

1.3.5. Experimental Models of SCI 

In order to study the mechanisms underlying the processes that take place after 

injury as well as the effect of different therapeutic strategies, a proper and 



22 

 

reproducible experimental model should be used. In view of both ethical and 

economic issues, most research is performed using rodents, in particular rats and 

mice, which have a quite similar anatomy and course of spinal cord regeneration 

as that of humans. Moreover, their high resistance to infections makes them 

perfect candidates for experimental work. Currently, several traumatic models 

are used to study SCI. Hulsebosch suggested classifying damage to the SC into 

four types, according to morphological changes (Hulsebosch, 2002, Holtz A., 

2010):  

1. Cord maceration (extradural clip compression) 

2. Laceration injury (hemisection, transection) 

3. Contusion/compression injury (extradural/balloon compression lesion, 

weight drop technique etc.) 

4. Solid cord injury (aortic occlusion) 

Complete and dorsal hemisection, when the ipsilateral spinal tracts are 

surgically severed, are used either alone or in combined studies related to 

anatomical analysis of SC tracts, axonal regeneration, sprouting and transport by 

means of antero-/retrograde tracers, as well as to test the biocompatibility of 

synthetic materials etc. (Hejcl et al., Teng et al., 2002, Massey et al., 2006). 

Clinically, a hemisection of the SC is manifested as Brown-Séquard syndrome, 

in which ipsilateral hemiplegia and contralateral pain and temperature sensation 

deficits are found. In rodents this intervention causes relatively moderate 

functional deficits with no need for extra care in the postoperative period.  

The more severe model of a stab SCI is surgical transections of the spinal 

cord with a complete and permanent lose of function below the level of the 

injury. This results in complete paraplegia or tetraplegia depending on the level 

of injury. Animals after a transaction of the SC require special care for 2-3 

weeks post-injury in order to restore normal bladder function and to prevent 

urinary infections, autophagia etc. This model is useful in testing biomaterials 

(that could be grafted immediately in case of hemi-transections), evaluating the 



23 

 

regenerative effects of different therapeutic agents (e.g., stem cells, CSPG or 

NOGO), and behavioral testing of motor and sensory recovery.   

There are also experimental models that mimic the symptoms of 

ischemic SCI. Ischemic SCI represents a serious complication associated with 

the transient cross-clamping of the descending thoracic or thoracoabdominal 

aorta. The symptoms are related to a selective loss of small inhibitory 

interneurons but with the continuing presence of ventral α-MN and supraspinal 

input. Depending on the duration of the ischemic interval, ischemic SCI might 

result in paraparesis or fully developed spastic plegia with or without a rigidity 

component (Taira and Marsala, 1996, Cizkova et al., 2007). This model presents 

a stable and powerful tool that is used to study the mechanisms underlying 

neural death, as well as to evaluate the efficacy of anatomical and functional 

regeneration of the spinal cord. 

Contusive and compressive models of SCI have several advantages when 

compared to laceration/maceration techniques. They have very similar 

characteristics and time course to a majority of clinical cases, especially those in 

which the nervous tissue has been damaged by fragments of vertebras or 

intervertebral discs. The oldest contusive model of SCI is the “weight drop 

model”, introduced by Allen. His kinetic model reflects the initial damage to the 

SC that takes place in humans (Allen, 1911). The same approach to SCI, but 

utilizing a more sophisticated tool, has been developed by researchers at New 

York and Ohio State Universities (Bresnahan et al., 1987, Gruner, 1992).  

Another model of SCI is a mechanical compression of the nervous tissue. A 

balloon-induced compression lesion deserves special attention because of its 

clinical relevance (Tarlov et al., 1953, Vanicky et al., 2001, Urdzikova et al., 

2006). Another advantage of such a lesion is that there is no need to perform a 

laminectomy or to perforate the dura mater, resulting in glial scar formation 

only at the site of the balloon-induced compression itself. Two weeks after 
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injury, the centre of the lesion is dominated by necrosis, bleeding and tissue 

edema. Subsequently, pseudocysts form and the nervous tissue atrophies. 

1.3.6. Regenerative Strategies 

The adult mammalian spinal cord contains powerful inhibitory substances that 

prevent axonal growth and are vital under normal conditions. However, these 

same factors create a major obstacle for functional recovery after SCI. 

Regeneration of the SC is limited due to weak neuronal plasticity, an umbrella 

term referring to a variety of compensatory processes (spontaneous regeneration 

of affected axons, dendrites remodeling, changes in neuronal and synaptic 

strength etc.) that are taking place inside the spinal cord after the trauma in order 

to restore lost structures and function. (Carulli et al., Zorner and Schwab). In 

1911 Santiago Ramón y Cajal showed for the first time that adult CNS neurons 

are able to regrow if they are provided with the permissive environment of a 

conditioned sciatic nerve (Ramón y Cajal, 1928). He showed that the inability of 

adult neurons to regenerate is due not just to the intrinsic differences between 

PNS and CNS neurons, but also to the damaged environment (Horner and Gage, 

2000). Another breakthrough study in the field of neural regeneration was 

published in 1981 by David and Aguayo, who suggested that axonal 

regeneration might be achieved only by targeting both intrinsic cellular and CNS 

environmental factors (David and Aguayo, 1981). Since that time a vast increase 

has been achieved in our understanding of the cellular and molecular 

compounds that restrict/inhibit regenerative pathways, and this knowledge has 

become the basic platform for scientists in their efforts to regenerate the CNS.  

Regeneration in the adult CNS requires a multi-step process. On one 

hand, regenerative strategies after SCI are focused either on the protection of the 

injured neurons and glial cells (by directly influencing the cells or the 

environment) or even on the partial replacement of lost cells (by the 

transplantation of embryonic stem cells, bone marrow mesenchymal stromal 
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cells, neural precursor cells, induced pluripotent cells, olfactory ensheathing 

cells etc.). On the other hand, following SCI or TBI, regenerating axons must 

overcome a number of structural or functional challenges that restrict and inhibit 

neurite outgrowth and the ability to re-establish functional neural connections, 

among them: the formation of a glial scar at the injury site, the synthesis of 

inhibitory proteoglycans (chondroitin sulphate proteoglycans), netrin-1, 

semaphorin 4D and ephrinB3, inflammation, alterations in the excitatory-

inhibitory balance within local circuits, the instability of synaptic connections, 

the remyelination of spared nerve fibers, the replacement of lost cells and the 

activation of myelin-associated glycoproteins (MAG), oligodendrocytemyelin 

glycoprotein (OMgp), Nogo-A etc. (Dusart and Schwab, 1994, Rhodes and 

Fawcett, 2004, Schwab, 2004, Silver and Miller, 2004, Hofstetter et al., 2005, 

Fawcett, 2006, Bavelier et al., 2010). Several of these proteins are up-regulated 

by cells that form the glial scar, and the remainder are expressed by 

oligodendrocytes, which form the insulating myelin membrane (Carulli et al., 

2005, Nash et al., 2009). Once contact is made, the axon needs to be re-

myelinated and functional synapses need to form on the targeted neurons 

(Figure 4). Thus, targeting these components of the host tissue could have a 

significant regenerative effect.  

1.3.6.1. The perineuronal net (PNN) is a layer of condensed pericellular matrix 

that aggregates and wraps around the soma and proximal dendrites of some 

neurons in the CNS (Kwok et al.). The condensed extracellular matrix of the 

PNN (Figure 5) is formed mostly around parvalbumin-positive neurons and is 

built around a hyaluronan backbone, to which several types of CSPG through 

cartilage link protein (Crtl1) are bound, and with tenascin-R binding to the 

CSPG core proteins: neurocan, aggrecan, phosphacan, brevican and neurocan 

(Carulli et al., Kwok et al., Dityatev et al., 2007, Kwok et al., 2008). Through 

specific interactions during the late period of development, known as the critical 
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period, when neuronal connections are formed in the mammalian CNS, these 

extracellular matrix molecules form large and stable aggregates (Carulli et al.).  

 

Figure 4. Axonal sprouting through the lesion after SCI (Adopted from Schwab M.E., 

2004) 

When the matrix is already organized it appears as a coat on the neuronal 

surface and controls the formation of synapses and connections that are 

important for plasticity. In particular, chondroitin sulphate proteoglycans 

(CSPG) have been shown to play an important role in axonal guidance during 

development and regeneration (Kwok et al., Bruckner et al., 2000, Kwok et al., 

2008). On the other hand, in vitro and in vivo experiments have shown that after 

an injury to the spinal cord, CSPG and particularly chondroitin sulphate chains 

are up-regulated in activated astrocytes, leading to the restriction of anatomical 

as well as synaptic plasticity and axonal outgrowth into the site of injury (Lin et 

al., Smith-Thomas et al., 1994, Smith-Thomas et al., 1995, Chung et al., 2000). 

One easy and convenient way of manipulating the ECM in both the glial 

scar and PNN in the CNS is by the application of chondroitinase ABC 

(chaseABC). ChaseABC is a bacterial enzyme isolated from Proteus vulgaris, 

which digests the chondroitin sulfate chain into its basic disaccharide units, 

hence removing the glycosaminoglycan chains from the core proteins (Kwok et 
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al., Yamagata et al., 1968). It has been shown that if CSPG are digested after a 

trauma to soluble disaccharides with chaseABC, then the axons are able to 

regenerate and sprout through the glial scar more readily, suggesting that 

enzymatic digestion of CSPG can reactivate plasticity in the adult CNS (Carulli 

et al., Davies et al., 1997, Lemons et al., 1999, Pizzorusso et al., 2002, Galtrey et 

al., 2007). 

 

Figure 5. The schematic structure of an extracellular neuronal PNN (adopted from Kwok 

JC, J Neurochem. 2010) 

Interestingly, chaseABC mono/combined therapy is effective not only in 

the early post-injury period, but also in the chronic stage after SCI. It has been 

shown that chaseABC therapy initiated 1 month after injury of the rubrospinal 

tract not only promoted the sustained rescue of neuronal atrophy, but also 

partially reduced the already established atrophy of the rubrospinal neuronal cell 

bodies (Carter et al.). Moreover, the sustained infusion of chaseABC into the 

chronically injured spinal cord followed by the application of NPCs promoted 

the integration and extensive migration of the cells within the host SC (Karimi-

Abdolrezaee et al.). There is also evidence that the application of chaseABC 
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after SCI might also enhance remyelination (Siebert et al., 2011). However, 

there are several disadvantages to the use of chaseABC, one of which is that it 

loses its enzymatic activity rapidly at 37 °C, necessitating the use of repeated 

injections or local infusions for a period of days to weeks (Bradbury and Carter). 

Recently, it has been reported that this problem can be overcome by the creation 

of thermostabilized chaseABC, which showed significant differences in CSPG 

digestion, axonal growth and functional recovery following the sustained local 

release of thermostabilized chaseABC delivered by a hydrogel-microtube 

scaffold system versus a single injection of chaseABC (Lee et al.). Furthermore, 

no adverse effects have been noted after the intrathecal or intraspinal application 

of chaseABC in either rodents or in larger mammals such as cats, rabbits and 

pigs, thus making it a potential candidate for clinical trials in human (Bradbury 

and Carter, Olmarker et al., 1991, Olmarker et al., 1996, Tester and Howland, 

2008). 

1.3.6.2. Matrix metalloproteinases (MPP) are a family of endopeptidases, 

enzymes that are capable of breaking down the axon growth-restricting 

components in the CNS including CSPG, tenascin-C, brevican, versican and 

NOGO-66 (Belien et al., 1999, Walmsley et al., 2004, Yong, 2005, Pizzi and 

Crowe, 2007). In the developing CNS, MPPs create a fluid extracellular 

environment that could also play an important role in the regeneration of injured 

mammalian tissue. After a neurotrauma, MMPs are either secreted from cells 

(influx of different leukocyte subsets, microglia, neural and endothelial cells) or 

anchored to the plasma membrane. Various MPPs are expressed differently 

during CNS pathologies. Concerning spinal cord injury, Duchossoy and 

colleagues have shown that a hemisectioned rat spinal cord upregulates MMP-2 

and MPP-9 production at the site of injury (Duchossoy et al., 2001). Functional 

recovery in the chronically injured spinal cord was evaluated in MPP-2 and 

MPP-9 knockout mice by Hsu, who found that MPP-2 deficient mice displayed 

a more severe glial scar, fewer serotonergic fibers caudal to the injury and 
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significantly reduced motor recovery when compared to wild-type animals; 

meanwhile, MPP-9 deficient mice exhibited significant locomotor recovery and 

the attenuation of neutrophil infiltration compared to wild-type animals 

(Duchossoy et al., 2001, Hsu et al., 2006, Hsu et al., 2008). Currently, the scant 

but suggestive data for MPPs (especially MPP-2, 9 and 12) may point to a 

promising therapeutic target during spinal cord regeneration. In vivo studies 

have shown that early and short term application (for only 3 days after the spinal 

cord injury) of the MPP inhibitor GM6001 improved neurological function in 

rodents (Noble et al., 2002).  

1.3.6.3. Myelin-associated glycoproteins and Nogo are among the inhibitory 

molecules that have attracted great interest in recent years in the context of the 

restricted neuroplasticity and axonal regeneration observed after injury of the 

fiber tracts in the adult CNS. Only Nogo-A and its receptor (NgR1) have been 

shown to be strongly expressed in the nervous system and to play a crucial role 

in neurite growth and branching during CNS development, in growth-restricting 

function during maturation and in wiring stabilization in the adult CNS 

(Schwab, Oertle et al., 2003). It is expressed by differentiated oligodendrocytes 

and by developing neurons. The function of the other two isoforms with regard 

to neuroplasticity is unknown (Zorner and Schwab). Under pathological 

conditions such as a spinal cord lesion or a section of the corticospinal tracts in 

adult rats and primates, inhibition of Nogo-A with a Nogo-A-specific antibody 

leads to enhanced axonal regrowth and compensatory sprouting, accompanied 

by increased motor recovery (Bregman et al., 1995, Liebscher et al., 2005, 

Freund et al., 2006, Freund et al., 2007). Encouraged by the beneficial effects 

observed in in vitro and in vivo studies, a Phase I clinical trial was initiated in 

patients with acute spinal cord injuries utilizing a human Nogo-A antibody 

(ATI-355; Novartis) (ClinicalTrials.gov: NCT00406016). In this trial more than 

50 subjects with SCI have been treated, showing excellent tolerance with no side 

effects ascribed to the anti-Nogo-A antibody. A phase II trail to test the efficacy 
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of anti-Nogo-A antibody in the treatment of severe paraplegic and tetraplegic 

patients is underway (Schwab, Zorner and Schwab). Interestingly, patients with 

amyotrophic lateral sclerosis have been shown to have increased Nogo-A 

expression in their muscles in the early stages of the disease, and this expression 

has been proposed to serve as a possible diagnostic marker for the disease (Jokic 

et al., 2005). 

1.3.6.4. Stem cells are pluripotent cells with unlimited self-renewal capacities. 

They are able to differentiate into diverse specialized cell types, including 

neuronal and glial cell lineages (Nistor et al., 2005, Lee et al., 2007). Stem cells 

are classified by their source and the tissue they are typically generated from. 

Based on when they appear during the lifetime of the organism, they include: 1) 

human embryonic stem cells (hESC), which have been shown to possess 

pluripotent abilities  as they give rise to all tissues in an organism; 2) somatic 

(adult-derived) stem cells, multipotent and found in different tissues in the fully 

developed organism and in umbilical cord blood as well; and 3) induced 

pluripotent stem (iPS) cells, recently discovered and capable of regaining there 

pluripotent properties after the artificial introduction of transcriptional factors 

into the somatic cell (Takahashi and Yamanaka, 2006). Considering the ability 

of stem cells to provide an enormous source of cells and to differentiate into 

glial and neuronal cells, they are excellent candidates to replace lost cells after 

SCI and to promote regeneration in neurodegenerative diseases; in addition, they 

are capable of long-term survival following transplantation. Currently, different 

kinds of stem cells have been used to promote regeneration after experimental 

SCI, including bone marrow mesenchymal stromal cells (BMSC), olfactory 

ensheathing cells (OEG), predifferentiated adipose-derived mesenchymal 

stromal cells, neural stem/progenitor cells, embryonic stem cells etc (Amemori 

et al., Arboleda et al., McDonald et al., 1999, Ogawa et al., 2002, Urdzikova et 

al., 2006, Parr et al., 2008). However, ethical considerations, a high risk of 

tumorigenesis and restricted access limit the clinical utility of fetal and 
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embryonic stem cells. However, Geron Corporation (Menlo Park, CA 94025 

USA) has recently initiated a phase I clinical trial evaluating the use of hESC-

derived oligodenrocyte progenitor cells (GRNOPC1) in patients with SCI 

(http://clinicaltrials.gov, #NCT01217008).  Considering the above concerns, as 

well as the quite regular usage of bone marrow to treat hematological diseases, 

BMSC seem to be an ideal candidate for the cellular therapy of SCI and 

neurodegenerative diseases of the CNS. 

1.3.6.5. Mesenchymal stromal cells (MSC) can be isolated by a relatively 

simple procedure. Currently, the properties of bone marrow-derived MSC 

(AMSC) are among the best characterized and these cells among the most 

widely used in clinical practice. However, MSC can also be isolated from 

alternative organs, the most promising of which are adipose-derived MSC 

isolated from fat tissue. After harvesting a patient’s MSC are easily expanded 

and cultured. Extensive growth in culture makes it possible to obtain the 

required number of cells for transplantation and also to graft autologous cells, 

thus eliminating the risk of graft-versus-host disease (GVHD) and avoiding the 

use of cytostatics. Despite the tissue of origin, all MSC can differentiate in vitro 

into chondrocytes, osteocytes, muscle cells, adipocytes, or even neurons and glia 

(Prockop, 1997, Mezey et al., 2000, Krause, 2002). It has also now been 

demonstrated that the plasticity (ability of the cell to change its default fate) and 

tissue regenerative potential of BMSC may far exceed their use in hematopoietic 

diseases. The administration of MSC can induce the secretion of several growth 

factors by host cells (paracrine function), such as brain-derived neurotrophic 

factor (BDNF), vascular endothelial growth factor (VEGF), neural growth factor 

(NGF), glia cell-line derived neurotrophic factor (GDNF) and IGF-1, that play a 

crucial role in neuroregeneration (Gu et al., Uccelli et al., Li et al., 2002, Zhang 

et al., 2004, Vercelli et al., 2008). Indeed, some scientists believe that AMSC are 

more suitable cells for allogenic transplants and tissue engineering as they retain 

a stem cell phenotype and mesenchymal pluripotency through higher passages 

http://clinicaltrials.gov/
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(over 25 passages) and they are easier to work with (Zhu et al., 2008). 

Transplanted BMSC have also been shown to migrate to the lesion site 

following induction by local signals. In addition, they are immunopotent, do not 

stimulate alloreactivity and escape lysis by cytotoxic T-cells and natural killer 

(NK)-cells (Le Blanc, 2003, Aggarwal and Pittenger, 2005, Urdzikova et al., 

2006). In vivo experiments (performed in the Institute of Experimental Medicine 

in Prague and also by other groups) using different SCI models and different 

routes of BMSC administration, including in combination with biomaterials, 

revealed significant functional recovery (increased motor activity and sensation) 

of the paralyzed limbs, reduced cavity formation in the spinal cord and better 

axonal regrowth through the glial scar (Gu et al., Hejcl et al., Zeng et al., Ohta et 

al., 2004, Urdzikova et al., 2006, Sykova and Jendelova, 2007, Parr et al., 2008). 

The unique immunologic and survival properties of MSC, and increasing 

knowledge from in vivo studies, will facilitate the transfer of preclinical findings 

from bench to bedside. 

1.3.6.6. Biomaterials that is, materials that are used and adapted for a medical 

application and thus intended to interact with a biological system - have become 

increasingly important in the development of drug delivery systems and tissue 

engineering approaches and can play key roles in overcoming the inherently 

insufficient protection, repair and regeneration of the nervous tissue (Orive et 

al., 2009). Many researchers are focusing their efforts on creating physical 

pathways for regenerating axons, especially after SCI. These include the 

creation of a mechanical scaffold from natural or newly synthesized materials 

that will provide a growth platform for host cells and guide the axons through 

the glial scar and posttraumatic pseudocysts to form new connections. Polymers 

and natural materials of many types and different combinations can be used for 

this purpose as well as to create drug vehicles capable of providing sustained 

delivery of potentially neuroprotective agents into an affected area such as 
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proteins, enzymes, antibodies, genes and oligonucleotides etc. Despite the lack 

of an “ideal material” to be used as a scaffold in order to promote the desired 

reparative processes after mammalian SCI, all candidates should possess several 

characteristics, as follows (Liu and Cao, 2007, Tabesh et al., 2009): 

1) Biocompatibility (that is, neither cytotoxic nor systemically toxic). 

2) Immunologically inactive. 

3) Controlled biodegradability or bio-resorbability. 

4) Possessing inter-connecting stable pores of appropriate size to 

promote integration, diffusion and vascularisation. 

5) Mechanically similar to the extracellular environment, thus making the 

scaffold suitable for implantation into the intended site and permitting its 

fabrication in a variety of shapes and sizes. 

6) Should not induce any adverse response including additional 

mechanical damage to the nervous tissue. 

7) Should lessen glial scar formation while facilitating cell adhesion and 

axonal sprouting. 

Up to now, several types of natural polymers have been successfully 

used in different experimental models of SCI. Collagen and fibronectin, as 

major protein components of the extracellular matrix, have been considered to 

be ideal scaffold materials by many scientists for nervous system repair. In vitro 

studies utilizing dorsal root ganglia (DRG) explants have  shown glial cell 

migration and axonal growth on collagen/poly-epsilon-caprolactone nanofibers 

(Schnell et al., 2007). Injectable forms of fibrin and fibronectin have been 

shown to promote axonal growth and integration after acute injury to the spinal 

cord (King et al.). Suzuki has shown that grafting a frozen alginate after spinal 

cord transection in rats led to/resulted in the sprouting of myelinated and 

nonmyelinated fibers into the hydrogel with the formation of synapses between 
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the neurons located on both sides of the cavity (Suzuki et al., 1999, Kataoka et 

al., 2001, Suzuki et al., 2002). 

Achievements of modern chemistry have made it possible to use 

synthetic biomaterials in regenerative medicine. Synthetic biomaterials, if 

compared with natural polymers, have been shown to possess several 

advantages when they are used as a scaffold component to treat SCI:  

 Synthetic materials offer better control of their physical and    

mechanical properties, porosity and biodegradability of  

 The possibility of combining different types and shapes of synthetic 

materials make them more suitable for use in nervous tissue regeneration  

 Synthetic materials can be produced in large amounts  

 It is easier to combine synthetic materials with other therapeutic 

strategies such as neurotrophins, stem cells, drugs, enzymes etc (Hejcl et al., 

Holan et al.). 

The implantation of a porous poly(2-hydroxyethyl methacrylate-co-

methyl methacrylate) (PHEMA) hydrogel and tubes made of it into the 

transected spinal cord showed a significant improvement of locomotor function, 

good biocompatibility, neurofilament growth into the gel and decreased 

cytochrome oxidase C activity four weeks after the injury (Kubinova et al., 

Bakshi et al., 2004, Reynolds et al., 2008). Other synthetic hydrogels with 

biodegradable properties made of poly (lactic co-glycolic acid) (PLGA), 

poly(varepsilon-caprolactone fumarate) (PCLF), oligo(polyethylene glycol) 

fumarate (OPF) or positively charged OPF (OPF
+
) were compared as  scaffolds 

seeded with Schwann cells 1 month after a transection injury.  Significantly 

greater axonal ingrowths was found into hydrogels made of PCLF and OPF
+ 

compared to that seen with PLGA hydrogels. OPF
+
 polymers showed more 

centrally distributed axonal regeneration within the hydrogel channels, while 

other polymers (PLGA, PCLF and OPF) tended to show more evenly dispersed 

axons within the channels (Chen et al.). Nondegradable hydrogels, such as 
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PHPMA or PHEMA, have been reported to be well-tolerated and to provide 

therapeutic benefit in several preclinical studies on chronic SCI, and these 

materials are presently also undergoing evaluation in pre-clinical trials (Hejcl et 

al., Woerly et al., 2001a, Woerly et al., 2001b). An overview of recent advances 

in the application of synthetic materials, alone or in combination with stem 

cells/growth factors, to treat SCI is presented in Table 3 (Kubinova and Sykova, 

2012). 

1.3.6.7. Erythropoietin (EPO) and its analogues in the treatment of SCI. The 

cytokine erythropoietin (EPO) is a glycoprotein mediating cytoprotection in a 

variety of tissues, including the spinal cord, through the activation of multiple 

signaling pathways. Studies with recombinant human erythropoietin in animal 

models of traumatic spinal cord and ischemic injuries showed that, if 

administered immediately after injury, it inhibits lipid peroxidation and neuronal 

apoptosis, reduces inflammation, protects neurons against glutamate toxicity and 

restores  vascular integrity (Morishita et al., 1997, Kontogeorgakos et al., 2009, 

Matis and Birbilis, 2009, Onose et al., 2009). It has been reported that the 

administration of EPO immediately after SCI facilitates the early recovery of 

function, as well as a remarkable reduction of lesion size along with improved 

locomotor recovery (Gorio et al., 2002, Vitellaro-Zuccarello et al., 2008). 

However, the risk of polycythemia, hyperviscosity syndrome and hypertension 

caused by the chronic administration of high doses of EPO in order to stimulate 

neuroprotection limits its usage. Carbamylated erythropoietin (CEPO) is a newly 

developed, distinct isoform that does not bind to the classical erythropoietin 

receptor, has no hematopoietic properties and has been shown to possess 

neuroprotective effects in animal models of SCI (Leist et al., 2004, Coleman et 

al., 2006, Mennini et al., 2006, Lapchak, 2008). A phase III clinical trial 

assessing the safety and efficacy of erythropoietin versus methylprednisolone in 

acute SCI has been initiated and is currently ongoing (http://clinicaltrials.gov, 

identifier # NCT00561067). 

http://clinicaltrials.gov/
http://clinicaltrials.gov/ct2/show/NCT00561067
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Table 3. Stem cell-seeded scaffolds for SCI treatment (adopted from (Kubinova and Sykova, 2012) 

Cell type Scaffold 
Degradab

ility 

Additional 

compounds 

Lesion 

type/behavio

ural study 

Type of 

transplantation/ 

analysis 

Described effect Citation 

SCs 
PAN/PVC 

guidance channels 
No - Transection/x 

Immediate/4 

weeks 

Improved axonal myelination and regeneration 

of propriospinal and sensory axons. 

(Xu et al., 1995b, 

Xu et al., 1997) 

SCs 
PAN/PVC 

guidance channels 
No 

BDNF, NT-

3 

 

Transection/x 
Immediate/6 

weeks 

Improved regeneration of long descending 

axons. 
(Xu et al., 1995a) 

SCs 
PAN/PVC 

guidance channels 
No 

Methylpred

nisolone 
Transection/x 

Immediate/6 

weeks 

Improved axonal myelination and axonal 

extension of long distant neurons. 

(Chen et al., 

1996) 

SCs 
PAN/PVC 

guidance channels 
No - 

Hemisection/

x 

Immediate/2, 4 

weeks 

Axonal regeneration and their re-entry into 

distal host tissue. 

(Xu et al., 1999, 

Hsu and Xu, 

2005) 

SCs 
PAN/PVC 

guidance channel 
No 

BDNF, NT-

3 

(intraspinal 

infusion) 

Hemisection/

x 

Immediate/4 

weeks 

Axons crossed the lesion and penetrated into 

the distal host spinal cord 

(Bamber et al., 

2001) 

SCs 
PAN/PVC 

guidance channel 
No GDNF 

Hemisection/

x 

Immediate/4 

weeks 

Synergistic effect of combined therapy on 

axonal regeneration and myelination. 

(Iannotti et al., 

2003) 

SCs 
PAN/PVC 

guidance channel 
No ChaseABC 

Hemisection/

x 

Immediate/4 

weeks 

Improved axonal growth across the graft-host 

interface. 

(Chau et al., 

2004) 

SCs 

poly-(beta-

hydroxybutyrate) 

tubular conduit 

Yes - 
Hemisection/

x 

Immediate/4 

weeks 
Axonal regeneration of long spinal tracks. 

(Novikova et al., 

2008) 

SCs 

PLGA 

multichannel 

scaffold 

Yes - Transection/x 
Immediate/1 or 2 

months 
Facilitation of axonal regeneration. 

(Moore et al., 

2006, Chen et al., 

2009a) 

SCs 

PLGA 

multichannel 

scaffold 

Yes - Transection/x 
Immediate /1,2 

and 3 months 

Scaffolds with 450um diameter channels 

promoted greater axonal regeneration than 660 

um diameter channels. 

(Krych et al., 

2009) 

SCs 
PLGA, PCLF, OPF 

& OPF+ 
Yes - Transection/- 

Immediate /4 

weeks 

Comparison of the regenerative capacity of 

polymer scaffolds with different stiffness. 

(Chen et al., 

2011) 
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multichannel 

scaffold 

SCs PLA tube Yes - Transection/x 
Immediate /1, 2 

and 4 months 

Collapse of the tube reversed the regenerative 

effect. 

(Oudega et al., 

2001) 

SCs and 

SCs 

producin

g BDNF 

and NT-3 

Freeze-dried PLA 

macroporous 

tubular scaffold 

Yes - Transection/- 
Immediate /1, 2 

and 6 weeks 

Limited axonal ingrowth into the scaffold. Low 

cell survival. No significant differences in BBB 

score between cell groups.  

(Hurtado et al., 

2006) 

 

SCs or 

NSCs 

PLGA multi-

channel scaffold 
Yes - Transection/- 

Immediate/4 

weeks 

Greater axonal regeneration in the SC-treated 

group. 

No significant differences in BBB score. 

(Olson et al., 

2009) 

SCs and 

NSC 
PLGA Yes - 

Hemisection/

+ 

Immediate/1, 2, 3 

and 6 months 

Co-transplantation promoted functional 

recovery. 

(Chen et al., 

2010) 

SCs or 

NPC 

SA peptide 

nanofiber 
Yes - 

Hemisection/

x 

Immediate/6 

weeks 

Survival of transplanted cells. Greater axonal 

regeneration in the SC-treated group. 

(Guo et al., 

2007) 

Periphera

l nerve 

graft 

Chitosan guidance 

channels 
Yes - 

Chronic clip 

SCI/- 

Immediate/14 

weeks 

Axonal regeneration and myelination. No 

functional improvement. 

(Nomura et al., 

2008a) 

MSC 

PHPMA-RGD 

macroporous 

hydrogel 

No - 

Chronic 

compression 

lesion/+ 

Delayed/6 

months 

Prevention of tissue atrophy, axonal 

regeneration and significant functional 

improvement with combined treatment. 

(Hejcl et al., 

2010) 

MSC PHEMA hydrogel No - 
Hemisection/

x 

Immediate/6 

weeks 

Axonal ingrowth into the scaffold. In vivo MRI 

visualization of superparamagnetic iron-oxide 

nanoparticles-labelled MSC. 

(Sykova and 

Jendelova, 2005) 

MSC 
Serotonin modified 

PHEMA 
No - 

Hemisection/

x 

Immediate/4 

weeks 

Transplanted cells survived and migrated out of 

the scaffold into the spinal cord tissue. 

(Kozubenko et 

al., 2010) 

MSC 
PLGA/small 

intestine mucosa 
Yes BDNF Transection/+ 

Immediate/4 and 

8 weeks 

Axonal regeneration and significant functional 

improvement with combined treatment. 

(Kang et al., 

2011) 

MSC 
Gelatine sponge in 

PLGA tube 
Yes - Transection/x 

Immediate/1 and 

8 weeks 

Reduced inflammation, promoted angiogenesis 

and reduced cavity formation 
(Zeng et al.) 
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MSC Fibrin gel Yes - 
Hemisection/

+ 

Immediate/4 

weeks 
Significant functionnal improvement.  

(Itosaka et al., 

2009) 

MSC PLGA Yes - Transection/x 
Immediate/10 

weeks 
Development of complete transection model. (Min et al., 2011) 

NSC 

/NSC 

overexpr

essing 

NT-3 

PCL Yes ChaseABC 
Hemisection/

+ 

Immediate/9 

weeks 

Enhanced axonal regeneration and significant 

functional improvement with combined 

treatment. 

(Hwang et al.) 

NSC 

PLGA with 

complex guidance 

architecture 

Yes - 
Hemisection/

+ 

Immediate/2 and 

4, 12 months 

Enhanced axonal regeneration and significant 

long term functional improvement. 

(Teng et al., 

2002) 

NSC 

PLGA with 

complex guidance 

architecture 

Yes 
Peroxynitrit

e scavengers 

Hemisection/

x 

Immediate/24 

hours 

Anti-apoptotic effect of free radical scavengers 

on grafted NSCs. 

 

(Yu et al., 2009) 

NSC 
Chitosan guidance 

channels 
Yes - Transection/- 

Immediate/14 

weeks 

Survival of transplanted cells and axonal 

regeneration. No functional improvement. 

(Nomura et al., 

2008b) 

mESC-

NP 
Fibrin gel Yes 

NT-3, 

PDGF 

Hemisection/

x 
Delayed/2 weeks 

Enhanced survival and neural differentiation of 

neural progenitor cells with combined 

treatment. 

(Johnson et al., 

2010) 

hESC-

NP 
Collagen Yes - 

Hemisection/

+ 
Delayed/5 weeks 

Neural and glial in vivo differentiation, 

functional improvement. 

(Hatami et al., 

2009) 

Astrocyt

es 
Collagen gel Yes - 

Hemisection/

+ 

Immediate/4 

weeks 

Increased axonal ingrowth. Mild functional 

improvement. 

(Joosten et al., 

2004) 

Abbreviations: “x”- behavioral studies were not performed;”+”- functional improvements; “-” no functional improvements; SC-

Schwann cells.  
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1.4. AMYOTROPHIC LATERAL SCLEROSIS (ALS) 

 

1.4.1. Epidemiology of ALS 

Amyotrophic lateral sclerosis (also called Charcot, motor neuron (MND) or Lou 

Gehrig's disease) is a devastating, progressive neurodegenerative disease that 

affects motoneurones (MN) in the brain and the spinal cord. ALS was described for 

the first time in 1848 by Aran, who reported 11 cases of the malady, including a 

43-year-old man who presented with focal wasting and paresis of the upper 

extremities, weakness and cramps and died within 2 years (Aran, 1848). Aran 

suggested that the disease had been inherited from the man’s parents, but in the 

year 1873 Jean-Marie Charcot reported that ALS was never inherited and that was 

the main reason for delineating ALS from muscular atrophy (Charcot, 1881).  The 

view that ALS is rarely connected with family history persisted for almost one 

hundred years before the discovery of a number of genes associated with both 

familial (FALS) and sporadic ALS (SALS). Currently, it is regarded that around 

10-23 percent of all cases of ALS have a family history, whereas the rest are 

sporadic (Andersen and Al-Chalabi, Bento-Abreu et al., van Es et al.). Nowadays, 

mutations in at least  15 genes have been found to cause FALS, with the most 

common being mutations in the superoxide dismutase 1(SOD1) gene, followed by 

FUS, TARDBP, Senataxin, Angiogenin, Ubiquilin 2, Alsin, SIGMAR1 etc. (Table 4) 

(Chen et al., Elden et al., Orlacchio et al., Rosen et al., 1993, Hadano et al., 2001, 

Hand et al., 2002, Sapp et al., 2003, Chen et al., 2004, Nishimura et al., 2004, 

Gitcho et al., 2008, Kabashi et al., 2008, Sreedharan et al., 2008, Chow et al., 2009, 

van Es et al., 2009, Vance et al., 2009). FALS is usually inherited in an autosomal 

dominant way, but recessive and even X-linked forms also exist (Valdmanis et al., 

2009). Despite their different genetic background, SALS and FALS are clinically 
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indistinguishable. Most commonly, the disease strikes people between the ages of 

40 and 70, and its incidence declines thereafter. This feature in is contrast to other 

neurodegenerative maladies, such as Parkinson’s and Alzheimer’s diseases, and 

suggests that ALS is not a disease of aging, but rather a disease for which age is 

one of a number of risk factors. Its incidence of about 1-2 per 100 000 individuals 

is fairly uniform, except for a few high incidence foci, such as the Kii peninsula of 

Honshu island and Guam (Kuzuhara and Kokubo, 2005, Steele, 2005).  

Table 4. ALS-associated genes, adopted from Andersen (Andersen and Al-Chalabi) 
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ALS is not a rare disease, and its lifetime risk of development approaches 

1/400-1/700 with a somewhat more frequent occurrence in men than in women 

(male to female ratio is ≈ 1.5) (Bento-Abreu et al., Johnston et al., 2006).    

1.4.2. Pathophysiology of ALS 

As mentioned earlier, most ALS cases start sporadically. Only recently clues have 

been discovered that help to identify the molecular and cellular mechanisms of 

ALS. The discovery of mutations in a number of genes related to FALS and the 

creation of transgenic (Tg) animal models targeting those genes have improved our 

understanding of the molecular pathways underlying ALS. In 1993, Rosen showed 

for the first time that mutations in the SOD1 gene located on chromosome 21q are 

the most common cause of FALS; the corresponding protein catalyzes the 

conversion of superoxide free radicals to hydrogen peroxide, which can be further 

detoxified to water and oxygen by catalase (Bento-Abreu et al., Rosen et al., 1993). 

A deficit of the SOD1 enzyme leads to changes in redox-sensitive signaling and to 

the oxidative damage of lipids, proteins and DNA, also called oxidative stress 

(Rao and Weiss, 2004). Various cell types, especially   astrocytes and microglia, 

are implicated in MN dysfunction and death (Figure 6) via the development of 

glutamate-caused excitotoxicity, protein misfolding and aggregation (foldopathy), 

altered axonal transport (dying-back-neuropathy or axonopathy), RNA-

processing defect (TARDBP and FUS genes), mitochondrial impairment (inner 

mitochondrial membrane defect, vacuolated cristae), endoplasmic reticulum (ER) 

stress etc. (Duffy et al., Ferraiuolo et al., Dion et al., 2009).  

A generally accepted mechanism contributing to the development of ALS is 

oxidative damage of excitatory amino acid transporter 2 (EAAT2) located on 

astrocytes, which enables glutamate transport out of the synaptic cleft, thus 

maintaining a non-toxic concentration of glutamate (Barber and Shaw). Once 
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EAAT2 does not function properly, a dramatic increase of glutamate inside the 

synaptic cleft occurs, leading to overstimulation of the calcium-permeable a-amino-

3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) type of glutamate 

receptor, which causes calcium influx and the excitotoxicity of MNs (Van den 

Bosch, 2006, Van Den Bosch et al., 2006). 

Considering that spinal MN do not express calcium-binding proteins such as 

parvalbumin and calbindin, an increase of intracellular calcium causes an overload 

and depolarization of mitochondria, followed by the generation of oxygen species, 

leading to the inhibition of glutamate uptake in the neighboring astrocytes, thus 

establishing a vicious circle (Bento-Abreu et al., Carriedo et al., 2000, Rao et al., 

2003). Even more, it has been shown that cultures of astrocytes expressing mSOD1 

kill spinal primary and embryonic mouse stem cell-derived motor neurons, 

triggered by soluble toxic factors through a BAX-dependent mechanism, but do not 

cause the death of spinal GABAergic or dorsal root ganglion neurons (Nagai et al., 

2007). Motoneuronal cell death in ALS also involves the activation of caspases and 

apoptosis (BCL-2 and BAX genes), and damage to mitochondrial function is likely 

to contribute to this process (Sathasivam et al., 2005). Degeneration of the skeletal 

muscles’ and motoneurons’ mitochondria also leads to the accumulation of large, 

membrane-bound vacuoles (Wong et al., 1995, Wiedemann et al., 1998, Petrozzi et 

al., 2007). However, the various mechanisms of mitochondrial involvement are not 

mutually exclusive and may interact and cooperate. Impaired mitochondrial 

function pertains not only to defects in energy production, but also to mitochondrial 

dynamics, communication with other organelles, the activation of the mitochondrial 

apoptotic pathway, and turnover (see below). 

Transgenic animals for human SOD1 develop selective MN degeneration due to a 

toxic gain of function (Gurney et al., 1994, Boillee et al., 2006b). The generally 
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accepted hypothesis on the pathobiology of mutant SOD1 (mSOD1) relates to its 

propensity to aggregate, resulting from the failure of complex chaperone systems to 

fold proteins normally during their synthesis (Shaw and Valentine, 2007). Under 

normal conditions these misfolded proteins shift from the ER to the cytosol, where 

they are degraded by the proteasome system. Mutant SOD1 protein has been shown 

to aggregate in the mitochondrial membranes and ER and inhibit derlin-1, the 

protein that transports proteins destined to be degraded from the ER to the cytosol, 

thus inducing ER stress and the vulnerability of MNs. Mutant SOD1 forms 

insoluble aggregates that could directly damage the mitochondrion through 

swelling, with the expansion and increased permeability of the outer membrane and 

intermembrane space, leading to the release of cytochrome C (CytC) and caspase 

activation; inhibition of the translocator outer membrane (TOM) complex, 

preventing mitochondrial protein import; and aberrant interactions with 

mitochondrial proteins such as BCL2. Aggregates of mutant SOD1 and BCL2 are 

found specifically in the spinal cord, which might relate to the motor neuronal 

specificity of mSOD1 phenotypes (Figure7). Mutation of the vesicle-associated 

membrane protein B gene (VAPB), also known as synaptobrevin-associated protein 

B, is implicated in ER to Golgi transport, as well as in axonal transport that causes 

the development of classic ALS symptoms.  (Bento-Abreu et al., Pasinelli and 

Brown, 2006, Nishitoh et al., 2008, Kanekura et al., 2009). Israelson has recently 

established a direct link between misfolded mSOD1 and mitochondrial 

dysfunction: he showed that mSOD1 binds directly to the voltage-dependant anion 

channel (VDAC-1) at the outer mitochondrial membrane, leading to diminished 

survival and accelerating paralysis in SOD1
G37R

 mice (Israelson et al., 2010).  
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Figure 6. Molecular mechanisms of motor neuron injury in ALS, adopted from  (Ferraiuolo et 

al.) 

MN are among the most asymmetric cells in nature, extending axons in humans 

that can be more than a meter in length. This structure demands active axonal 

transport between the soma and an axon, forming a neuromuscular junction 

(NMJ) in order to support normal cellular function. Motoneuronal organelles such 

as lysosomes, peroxisomes, and mitochondria are not positioned statically within 

cells but are transported on cytoskeletal elements, that is, microtubules and actin 

cables in association with intermediate filaments. Short-range movement on actin 

cables requires myosin motors, whereas long-range movement on microtubules 

requires two other types of motors: dynein/dynactin for retrograde transport and 

kinesins for anterograde transport (LaMonte et al., 2002). When an inappropriate 
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accumulation of light heterodymers of neurofilaments (NF-L) occurs, it perturbs 

axonal transport that subsequently leads to the vulnerability of MNs, especially 

those possessing large caliber myelinated axons (5µm) (Kawamura et al., 1981, 

Frey et al., 2000, Fischer et al., 2004, Boillee et al., 2006a).  

The exact mechanism is not yet fully understood, but there is evidence of 

mSOD-induced damage to mitochondria and reduced ATP supply to molecular 

motors (De Vos et al., 2008). Interestingly, the connection to the muscle at the 

NMJ is lost long before MN degeneration or death and even before the initiation of 

symptoms due to a deficiency of motor neurotrophic factors, thus supporting the 

hypothesis that ALS is a dying-back-axonopathy (Fischer et al., 2004). The above 

observations reveal a remarkable potential connection between the sporadic and 

familial forms of the disease.  

 

Figure 7. The mitochondrion as a target of mutant SOD1 (Pasinelli and Brown, 2006) 

Cytoplasm

Mutant SOD1

Spinal cord Liver

Cytochrome C release

ATP depletion

Toxic interaction

With BCL2

Toxicity

CytC

Cell 

death

Activation of 

apoptotic 

pathway

Inhibition of

protein import

BCL2

Altered

mitochondrial

permeability

Inner 

membrane
Outer 

membrane

BCL2
WT

SOD1

Mutanat

SOD1

Aggregates of 

Mutanat SOD1

Toxic mitochondrial 

SOD1/BCL2 aggregates



46 

 

Another emerging theme has to do with the RNA processing encountered in 

FALS due to mutations in the TARDBP, FUS/TLS and optineurin (OPTN) genes 

(Maruyama et al., 2010). TARDBP is a gene encoding a TAR DNA-binding protein 

43 (TDP-43), which only recently has been associated with ALS. Under normal 

conditions TDP-43 is more abundantly present in the nucleus than in the cytoplasm 

and is implicated in multiple aspects of RNA processing, including transcriptional 

regulation, alternative splicing and microRNA (miRNA) processing. An 

impairment of mitochondrial trafficking and maldistribution, with an excess in the 

cell bodies of MN and a paucity in distal motor axon terminals, have been shown in 

humans and in transgenic mice expressing human TARDBP (Schon and 

Przedborski, Shan et al., De Vos et al., 2007, Sasaki and Iwata, 2007).  In about 4 

percent of FALS pedigrees, 1.5 percent of SALS patients as well as in cases of 

frontotemporal lobar degeneration (FTLD), it has been shown that TDP-43 is the 

major protein constituent of skein-like ubiquitinated inclusions in the cytoplasm of 

neuronal and glial cells, while it is attenuated or absent in the nucleus (Neumann et 

al., 2006, Sreedharan et al., 2008). It seems that the cytoplasmic redistribution of 

TDP-43 plays an important role and is an early pathogenic event in both familial 

and sporadic ALS (Ferraiuolo et al., Giordana et al.).  

A further missense mutation in the gene encoding FUS/TLS (fused in 

sarcoma/translocated in liposarcoma) has been reported recently, providing more 

evidence for the central role of proteins involved in RNA processing (Vance et al., 

2009). The FUS/TLS gene is located in a region on chromosome 16 previously 

associated with ALS6 (Ruddy et al., 2003). Similarly as TDP-43, FUS/TLS is 

involved in transcriptional regulation, the maintenance of genomic stability,  

synaptic plasticity, pre-mRNA splicing as well as in the export of fully processed 

mRNA to the cytoplasm and thus shuttles between the nucleus and the cytoplasm 
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(Bento-Abreu et al., Zinszner et al., 1997, Fujii et al., 2005). Mutations in FUS 

have been identified in 4-5 percent of ALS6 families and in some SALS cases 

(Kwiatkowski et al., 2009, Corrado et al., 2010, Deng et al., 2010, Ticozzi et al., 

2011). Despite their similar functions inside the cell, the absence of TDP-43 

inclusions in mutant FUS-ALS cases implies that the FUS disease pathway is 

independent of TDP-43 aggregation (Vance et al., 2009). 

1.4.3. Diagnosis of ALS 

The clinical features of ALS consist of progressive neurological deteriorations that 

reflect the impairment and subsequent loss of muscle functions, resulting from the 

death of motor neurons in the corticospinal tract, brain stem or the ventral horns of 

the spinal cord. The disease type and course is often classified by the site of onset 

and often reveals a combination of upper and lower MN features. The majority of 

cases (65%) present with limb symptoms (weakness, variable wasting of affected 

muscles, stiffness, fasciculations), 30% display bulbar dysfunction (in the form of 

dysarthria, dysphonia, dysphagia, fasciculating tongue) and the remaining 5% of 

patients have respiratory-onset disease (difficulties in breathing, coughing) 

(Hardiman et al.).  

To date, we do not have a definitive test or examination for the diagnosis of 

ALS. Clinical diagnosis is based mostly on the symptoms presented, and 

additionally on  negative laboratory tests and imaging studies that exclude other 

MNDs [primary lateral sclerosis, progressive spinal muscular atrophy and 

progressive bulbar palsy], hereditary (spinobulbar muscular atrophy, HD, 

hereditary spastic paraparesis etc.), metabolic (hyperthyroidism, heavy metal 

intoxication etc.), immuno-inflammatory (multiple sclerosis, myasthenia gravis, 

polymyositis, paraneoplastic disorders etc.) and neurodegenerative pathologies 
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(PD, progressive supranuclear palsy etc.) and structural disorders (tumors, 

syringomyelia etc.).  

The loss of lower MNs can be identified by means of electromyography, 

where fasciculations, fibrillation potentials and positive sharp waves are recorded 

(Hardiman et al., Eisen, 2001).  During the early stages it is hard to make a final 

diagnosis due to the high number of symptomatic uncertainties, thus the majority of 

patients are diagnosed with ALS only after 9-15 months from the initial signs. In 

order to speed up and standardize the diagnosis of ALS, El Escorial diagnostic 

criteria were proposed by the World Federation of Neurology (Brooks, 1994). 

Subsequently, these criteria were revised in light of laboratory testing, 

electrophysiological and neuropathological examinations for research and clinical 

trials with the House-Awaji-Shima diagnostic algorithm, see Figure 8 (Schrooten et 

al., Miller et al., 1999, de Carvalho et al., 2008). 

 

Figure 8. Criteria for the diagnosis of ALS (Hardiman et al.) 
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However, the most widely used diagnostic scale that is currently used by doctors is 

The Revised ALS Functional Rating Scale (ALSFS-R, Figure 9). This scale 

evaluates a patient’s bulbar and limb symptoms, as well as mobility and respiratory 

function, on a scale from 0 to 48 points, where 0 and 48 correspond to total 

disability and normal function, respectively. A decline in the ALSFRS-R score is a 

predictor of reduced survival (Cedarbaum et al., 1999, Traynor et al., 2004). 

Figure 9. The ALS Functional Rating Scale-Revised (ALSFRS-R) (Cedarbaum et al., 1999) 

1. Speech 

4 Normal speech processes 

3 Detectable speech disturbance 

2 Intelligible with repeating 

1 Speech combined with nonvocal 

communication 

0 Loss of useful speech 

 

2. Salivation 

4 Normal 

3 Slight but definite excess of saliva in 

mouth; may have nighttime drooling 

2 Moderately excessive saliva; may have 

minimal drooling 

1 Marked excess of saliva with some drooling 

0 Marked drooling; requires constant tissue or 

handkerchief 

 

3. Swallowing 

4 Normal eating habits 

3 Early eating problems—occasional choking 

2 Dietary consistency changes 

1 Needs supplemental tube feeding 

0 NPO (exclusively parenteral or enteral 

feeding) 

 

4. Handwriting 

4 Normal 

3 Slow or sloppy; all words legible 

2 Not all words are legible 

1 Able to grip pen but unable to write 

0 Unable to grip pen 

 

5a. Cutting food and handling utensils 

(patients without gastrostomy)? 

4 Normal 

3 Somewhat slow and clumsy, but no help 

needed 

2 Can cut most foods, although clumsy and 

slow; some help needed 

1 Food must be cut by someone, but can still 

feed slowly 

0 Needs to be fed 

 

5b. Cutting food and handling utensils 

(alternate scale for patients with 

gastrostomy)? 

4 Normal 

3 Clumsy but able to perform all 

manipulations independently 

2 Some help needed with closures and 

fasteners 

1 Provides minimal assistance to caregiver 

0 Unable to perform any aspect of task 

 

6. Dressing and hygiene 

4 Normal function 

3 Independent and complete self-care with 

effort or decreased efficiency 

2 Intermittent assistance or substitute methods 

1 Needs attendant for self-care 

0 Total dependence 

 

7. Turning in bed and adjusting bed clothes 

4 Normal 

3 Somewhat slow and clumsy, but no help 

needed 

2 Can turn alone or adjust sheets, but with 

great difficulty 

1 Can initiate, but not turn or adjust sheets 

alone 
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0 Helpless 

 

8. Walking 

4 Normal 

3 Early ambulation difficulties 

2 Walks with assistance 

1 Nonambulatory functional movement 

0 No purposeful leg movement 

 

9. Climbing stairs 

4 Normal 

3 Slow 

2 Mild unsteadiness or fatigue 

1 Needs assistance 

0 Cannot do 

 

10. Dyspnea (new) 

4 None 

3 Occurs when walking 

2 Occurs with one or more of the following: 

eating, bathing, dressing (ADL) 

1 Occurs at rest, difficulty breathing when 

either sitting or lying 

0 Significant difficulty, considering using 

mechanical respiratory support 

 

11. Orthopnea (new) 

4 None 

3 Some difficulty sleeping at night due to 

shortness of breath, does not routinely use 

more than two pillows 

2 Needs extra pillows in order to sleep (>2) 

1 Can only sleep sitting up 

0 Unable to sleep 

 

12. Respiratory insufficiency (new) 

4 None 

3 Intermittent use of BiPAP 

2 Continuous use of BiPAP during the night 

1 Continuous use of BiPAP during the night 

& day 

0 Invasive mechanical ventilation by 

intubation or tracheostomy 

 

Abbreviations: ADL, activities of daily living; BiPAP, bi-level positive airway pressure; NPO, nil 

per os. 

 

The clinical heterogeneity of ALS, its familial pattern and similarities with 

other diseases involving motor units demand the discovery of diagnostic and 

prognostic biomarkers that could have value for patient survival and would help 

clinicians to aid in decision-making and care-planning. Up to now several 

electrophysiological and neuroimaging indicators of manifested ALS have been 

developed, but only candidate biomarkers have been suggested to have a 

potential role in the diagnosis and prognosis of ALS, with further testing needed. 

Possible candidate biomarkers could be found in the tissues (skeletal muscles) or 

biological fluids (CSF, serum, plasma etc.) of the patients. Some studies have 

shown raised levels of multiple and individual inflammatory cytokines (MCP-1, IL-
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6) and chemokines (IL-8) in the CSF of ALS patients, with a high specificity (91%) 

and sensitivity (88%) (Ono et al., 2001, Kuhle et al., 2009, Mitchell et al., 2009, 

Bowser et al., 2011). Other works have reported significantly elevated levels of 

proteins such as glial-derived proteins [monocyte differentiation antigen (CD14) 

and astrocytic S100β] and phosphorylated neurofilament heavy chain (pNfH) in the 

CSF of patient, and suggested that these proteins could have potential diagnostic 

value. An increased ratio of CD14 to S100β was recommended as a prognostic 

indicator with 75% sensitivity and 91% specificity (Brettschneider et al., 2006, 

Sussmuth et al., 2010).  

Increases in the concentrations of insulin-like growth factors in serum, along 

with  a concomitant decrease of their binding protein concentrations, were found in 

patients who had longer survival times (Hosback et al., 2007). The augmented 

expression of NOGO-A and -B, along with decreased NOGO-C, peptides that 

traditionally are associated with restricted regeneration after SCI, was found in the 

lumbar level of spinal cords of (G86R) SOD1 mice as well as in post-mortem and 

biopsy samples from patients (Dupuis et al., 2002). Subsequently, increased levels 

of NOGO-A and NOGO-B in muscle biopsies from ALS patients were correlated 

with the severity of clinical disability and with the degree of muscle fiber atrophy 

(Jokic et al., 2005).  

Advances in neuroimaging techniques in the last decades, such as diffusion 

tensor imaging (DTI), proton magnetic resonance spectroscopy, resting functional 

MRI and magnetization transfer imaging (MTI), have been shown to have great 

potential to diagnose ALS in a noninvasive manner (Senda et al., Unrath et al., 

2007, Lule et al., 2009, Turner et al., 2009). The important features revealed by 

MRI that are consistent with a diagnosis of ALS are hyperintensity along the CST, 

hypointensity in the motor cortex and atrophy of the precentral gyrus. DTI has 

revealed a decreased number of CST fibers and a restriction of water diffusion 
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across highly coherent fiber pathways compared to normal subjects. (Wang and 

Melhem, 2005). The combination of DT tractography of the CST and whole-brain 

voxel-based analysis has demonstrated the involvement of the white matter in 

motoneuron disease and might be used in evaluating the involvement of motor and 

extra-motor white matter in the early symptomatic stages, differential diagnosis and 

monitoring the spread of ALS over time (van der Graaff et al., 2011). Even though 

brain and spinal cord MRI remains the gold standard for the differential diagnosis 

of ALS from other diseases with a similar course, the search for biomarkers is now 

underway. So far, the most promising techniques in a multimodal strategy are 

multiprotein profiling in the CSF, DTI and motor unit number estimation (Turner et 

al., 2009). 

1.4.4. Current Treatment and Management of ALS 

As already mentioned, the presymptomatic or at least the early discovery diagnosis 

of ALS could offer wider possibilities for prevention and for the treatment of this 

devastating disease. Screening patients with FALS for mutations in the SOD1, 

TARDBP, FUS and a few other genes might offer some benefit. Unfortunately, 

until now we do not know how to prevent, cure or even block the development of 

ALS, and over 60% of all patients die within 3 years of presentation, and of the 

remaining, up to 10% survive for more than 8 years; death usually results from 

pulmonary infections (Kiernan et al.). As an outcome of a number of clinical trials, 

Riluzole (100mg/day), which reduces the presynaptic release of glutamate, remains 

the only effective drug that slows disease progression and extends the average 

survival of patients by 3-6 months (Bensimon et al., 1994, Lacomblez et al., 1996). 

Otherwise, all patients receive palliative or symptomatic therapy. If the patient 

manifests with the early symptoms of respiratory dysfunction or respiratory failure, 

he or she should be assessed by pulmonary insufficiency tests, overnight pulse 

oximetry and measurement of early morning blood gases. Noninvasive positive 



53 

 

pressure ventilation (NIPPV) should be considered at the early stage as it improves 

the patient’s quality of life (Hardiman, Mustfa et al., 2006). Symptomatic and 

supportive treatment may include the prescription of anticholinergic drugs (such as 

trihexyphenidyl, amitriptyline or atropine) or the use of a portable suction machine 

if drooling is troublesome. Spasticity may be helped by baclofen or diazepam. 

Dysphagia could be managed by modifying food and fluid consistencies, postural 

advice and, in extreme cases of bulbar involvement, gastrostomy or 

cricopharyngomyotomy as well; however, all of the above therapies just improve 

the patient’s quality of life, but not his or her survival. The main goal of treatment 

in the terminal stages should be to keep patients as comfortable as possible 

(McGeer and McGeer, 2005). 

1.4.5. Animal models of ALS 

The discovery of genes related to familial cases of ALS led to the generation of 

transgenic (Tg) animal models by the insertion of multiple copies of known human 

ALS-causing genes into the genome of the animals. The most widely used model of 

FALS has been created by Gurney by the insertion of multiple copies of the human 

mutant SOD1 (G93A) gene into the rodents’ genome (Gurney et al., 1994). At a 

certain age, transgenic animals develop selective MN degeneration that presents 

with a progressive hind limb weakness, leading to paralysis and death, thus 

replicating in an almost perfect way the disease process in patients. In addition to 

the original mutant SOD1 (G93A) gene, other mutations (G37R, G85 R, D90A, 

G86R) were created that result in a similar disease progression (Van Den Bosch, 

2011). These models have helped scientists to understand the mechanisms 

underlying motoneuronal death and the mechanisms by which neuroprotective 

agents act.  

The discovery of the FUS/TLS protein raised the possibility of creating a 

new rodent model to study the mechanism of action of this gene in ALS6 (table 4). 
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Interestingly, most FUS/TLS knockout mice died immediately after birth and thus 

rarely survived to the time of weaning. In an outbred strain, FUS/TLS knockout 

mice survived but showed male sterility and reduced fertility in females (Hicks et 

al., 2000, Kuroda et al., 2000). As a result, no FUS/TLS transgenic rodent models 

are currently available.  

  Another gene involved into the development of ALS10 (table 4), TARDBP, 

has been used to create transgenic mice. The mice were created by overexpressing 

mutant (A315T) TDP-43 under the control of the mouse prion promoter 

(Wegorzewska et al., 2009). These mice developed gait abnormalities with body 

weight loss starting from 3 months of age. However, this model did not have MNs 

containing TDP-43-positive ubiquinated aggregates inside the cells, and the authors 

were not able to create wild-type TDP-43-overexpressing mice. As a consequence, 

the question remained whether these findings were the result of the TDP-43 

mutation or of the overexpression of TDP-43 (Van Den Bosch, 2011). The creation 

of a transgenic model by overexpressing a human wild-type TDP-43 driven by the 

Thy-1 promotor provided an answer to this question (Stallings et al., 2010, Wils et 

al., 2010). These mice showed that the overexpression of wild-type TDP-43 results 

in the toxicity of MNs, with the formation of nuclear and cytoplasmic aggregates of 

ubiquitinated and phosphorylated TDP-43 inside the cells. Other transgenic rodent 

models of atypical, rare or candidate FALS genes have also been generated to study 

this devastating disease (table 5).  

1.4.6. Neuroprotective strategies 

Despite huge progress in understanding the mechanisms and pathobiology of ALS, 

current clinical management is still extremely limited. Considering that the disease 

affects MN at different levels of the CNS, a neuroprotective strategy should aim to 

restore affected tissue homeostasis throughout the entire nervous system.  

Numerous attempts have focused on antiglutamatergic, antioxidant, anti-apoptotic, 
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anti-inflammatory and neurotrophic molecules, as well as on gene-therapy and stem 

cell application. These and other molecules are able to reach the MN after systemic 

(intravenous, intraarterial) or local (intrathecal, intraspinal) application as it has 

been shown that the BBB is compromised in ALS (Garbuzova-Davis et al., 2007).  

Disease Gene product Animal Genetic modification Reference 

ALS2 Alsin Mouse KO (exon 3) 

KO (stop codon in exon 3) 

KO (exon 3 and 4) 

KO (exon 4) 

(Cai et al., 

2005) 

(Hadano et 

al., 2006) 

(Devon et al., 

2006) 

(Yamanaka et 

al., 2006) 

ALS8 VAPB Mouse PrP; VAPB P56S (Tudor et al., 

2010) 

ALS Dynactin Mouse Knock-in G59S p150
Glued

 

Thy-1; G59 p150
Glued

 

(Lai et al., 

2007) 

(Laird et al., 

2008) 

CMT2E/

1F 

Neurofilament-L Mouse NF-L L394P (Lee et al., 

1994) 

Table 5. Overview of transgenic mouse models with atypical, rare and candidate FALS genes 

1.4.6.1. Antiglutamatergic therapy has currently shown the best results in clinical 

trials. As mentioned earlier, Riluzole is the only anti-ALS medicine approved for 

the treatment of patients. Recently, the kynurenine pathway (KP) has emerged as a 

potential contributing factor (Chen et al., 2009b). The KP is a major route for the 

metabolism of tryptophan, generating neuroactive intermediates in the process. 

These catabolites include the excitotoxic N-methyl-D-aspartate (NMDA) receptor 

agonist quinolinic acid (QUIN) and the neuroprotective NMDA receptor antagonist 

kynurenic acid (KYNA). These catabolites appear to play a key role in the 
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communication between the nervous and immune systems and also in modulating 

cell proliferation and tissue function. At the present time, some of the KP 

inhibitors, for example Teriflunomide (Sanofi-Aventis) and Laquinimod (Teva 

Neuroscience), have entered clinical trials (Chen et al., 2009b). Another anti-

excitatory drug, Memantine, a non-competitive excitotoxic N-methyl-D-aspartate 

(NMDA)-receptor antagonist, has been shown to delay the development of hind 

limb paralysis and prolong the survival of SOD1(G93A) mice (Wang and Zhang, 

2005).  

1.4.6.2. Antioxidant therapy aimed at ameliorating oxidative stress could provide 

a possible healing effect in ALS patients. However, clinical trials examining the 

application of vitamin E, acetylcysteine, methylcobalamine, glutathione or 

coenzyme Q10 (CoQ10) indicate that these drugs are ineffective in ALS patients 

(Levy et al., 2006, Kaufmann et al., 2009). A novel peptide antioxidant (SS-31) that 

targets the inner mitochondrial membrane, thus improving mitochondrial dynamics, 

has been shown to result in a significant extension of lifespan, improved motor 

performance, decreased MN loss and reduced immunostaining for oxidative stress 

markers in G93A mice (Petri et al., 2006).  

1.4.6.3. Immunotherapeutic strategies to combat ALS also could be an attractive 

therapeutic approach. Active vaccination with misfolded mSOD1 in the G37R 

SOD1 mouse model of FALS has been tried, resulting in the reduced loss of spinal 

cord neurons and a modest but statistically significant increase in life expectancy 

(Urushitani et al., 2007, Brody and Holtzman, 2008). However, much work remains 

to be done before clinical trials could be started.  

1.4.6.4. The discovery of neurotrophic factors (NTF) and their anti-apoptotic 

effect as well as their ability to increase the survival of MNs during development 

led to the idea that they might ameliorate neurodegenerative disorders (Appel, 
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1981, Gould and Oppenheim, 2011). The combined evidence from both mouse and 

human studies suggests that the impaired production of vascular endothelial growth 

factor (VEGF) by MN, rather than a lack of functional receptors, is associated with 

ALS. Specifically, the exogenous delivery of VEGF has been shown to cause a 

direct neuroprotective effect via the expression of VEGF-receptors in MNs (Van 

Den Bosch et al., 2004). At the present time, there is encouraging evidence that the 

intrathecal, intracerebroventricular or intramuscular delivery of VEGF, as well as 

of insulin-like growth factor-1 (IGF-1), leads to an improvement in disease 

progression and overall survival in rat models of ALS (Kaspar et al., 2003, Azzouz 

et al., 2004, Nagano et al., 2005, Storkebaum et al., 2005, Wang et al., 2007). 

However, clinical trials utilizing the subcutaneous delivery of IGF-1 failed to show 

a beneficial effect, mainly because of the reduced bio-availability of IGF-1 when 

injected systemically (Sorenson et al., 2008, Howe et al., 2009). Subsequently, this 

problem appears to have been solved by the combined usage of IGF with IGF-

binding protein 3 (IGFBP), also called IPLEX, which significantly increases the 

serum half-life of IGF-1; furthermore, approval was granted by the FDA for an 

early-phase clinical trial in human patients. There is still a great deal of debate 

surrounding the effectiveness of IPLEX in treating ALS (Williams et al., 2008, 

Bedlack et al., 2009, Gould and Oppenheim, 2011). However, there is an ongoing 

clinical trial in Sweden examining the delivery of VEGF protein into the CSF of 

ALS patients and the results will be forthcoming (http://clinicaltrials.gov, identifier 

# NCT01384162 and NCT008005501). 

 An interesting observation is that MNs exhibit trophic heterogeneity, that is 

they respond to a distinct type/s of NTFs during their development (Kanning et al., 

2010). For instance, glial cell line-derived neurotrophic factor (GDNF) knockout 

mice showed a dramatic and restricted loss of small myelinated axons (γ-MNs) in 

their lumbar ventral roots, whereas large myelinated axons (α-MNs) were 

http://clinicaltrials.gov/
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completely unaffected (Gould et al., 2008). Hence, a monotherapeutic strategy 

might bring some improvements in motor activity or even extend survival, but this 

demands distinct NTFs that will target specific types of MN. This concern might be 

resolved by using cocktails of NTFs delivered in such a way so that they would be 

able to pass through the BBB in an efficient and controlled way or, alternatively, by 

using stem cells, which are well known to have paracrine properties, thus enabling 

the protection of different motoneuronal types.  

1.4.6.5. Cell-based therapies, could provide either restoration or preserving of 

upper and lower MNs, and new neurons must be integration into existing neural 

circuits (Lindvall and Kokaia, 2006). Alternatively, grafted cells might serve as a 

vehicle for the delivery of NTFs that is also a very promising strategy to treat ALS. 

However, ALS is a malady that affects MNs throughout the CNS, and the 

replacement, even theoretically, of all impaired MNs is hard to accomplish. 

Moreover, successful MN replacement would necessitate the formation of long 

tracts of axonal outgrowth and the formation of NMJ by the grafted cells. So far, 

only a few studies after acute injury of the peripheral nerves of wild type animals 

(but not FALS animal models)  have demonstrated newly formed functional 

connections between the grafted embryonic stem (ES) cells and the host muscles 

after transplantation (Deshpande et al., 2006, Yohn et al., 2008, Gowing and 

Svendsen, 2011). Thus, the generation and grafting of support cells aimed at 

protecting the remaining host MNs might be more realistic and effective. The 

discovery of stem cells and the characterization of their properties (vis chapter 

1.3.6.4 and 1.3.6.5) raised the question of their use as a therapeutic agent during 

neurodegeneration bringing new hope for ALS patients.  

  Past in vitro and in vivo studies have generated MNs from animals and 

human ESC that maintain typical motoneuronal phenotype and showed functional 

incorporation after intraspinal transplantation into rodents with MN deficiencies 
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(Wichterle et al., 2002, Papadeas and Maragakis, 2009).  Various cell types, such as 

human neural stem/progenitor cells (hNSC) and glial restricted precursors (GRP), 

have been shown to ameliorate ALS, reduce MN degeneration, extend survival and 

even structurally integrate into the segmental motor circuitry of mutant SOD1 rats, 

via the formation of functional synapses with the host neurons (Xu et al., 2006, 

Lepore et al., 2008, Xu et al., 2009). Based on the above results, the Food and Drug 

Administration approved a phase I clinical trial testing the feasibility and safety of 

the direct intraspinal transplantation of NSI-566RSC, produced by neural stem 

cells, into ALS patients; this trial is currently ongoing (http://clinicaltrials.gov, 

identifier # NCT01348451) (Gowing and Svendsen, 2011, Lunn et al., 2011).  

 

 

 

 

 

 

 

 

 

 

 

http://clinicaltrials.gov/
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2. AIMS AND HYPOTHESES OF THE WORK 

The major aim of this work was to study the potential regenerative/neuroprotective 

effect of mesenchymal stromal cells in vivo, in animals after spinal cord injury and 

in the SOD1 (G93A) rat model of amyotrophic lateral sclerosis. Additionally, 

experiments were performed with the aim of identifying the molecular trigger 

responsible for initiating the maturation of perineuronal nets, a process that results 

in the downregulation of plasticity in the adult CNS.  

The major goals are summarized below: 

1. To optimize protocols and evaluate the safety of stem cells delivery into a 

recipient organism. 

2. To examine the effect of in vitro predifferentiation on the in vivo survival 

and fate of the transplanted predifferentiated and naive adipose derived 

mesenchymal stromal cells in the balloon-induced compression model of 

spinal cord injury.  

3. To elucidate the role of perineuronal nets components in the control of 

plasticity in the adult CNS.  

4. To investigate plasticity in the somatosensory system after a cervical dorsal 

hemisection in animals lacking the link protein Ctrl1 (Hapln1).  

5. To evaluate the effect of combined intraspinal and intravenous application of 

rat bone marrow mesenchymal stromal cells on the course and prognosis of 

ALS. 

6. To explore the survival, biocompatibility and fate of grafted rat bone marrow 

mesenchymal stromal cells in a rat model of ALS.  

7. To study the effect of the intrathecal delivery of human bone marrow stromal 

cells on the motor function and overall survival of rats after the appearance 

of the first symptoms of ALS.  
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3. MATERIALS AND METHODS 

 

3.1. EXPERIMENTAL SPINAL CORD INJURY 

3.1.1. Laboratory animals 

3.1.1.1. Adult male Wistar rats weighting 280-310g were used in the experiments 

involving spinal cord injury (balloon compression lesion). 

3.1.1.2. We used age-matched adult male (2-4-month-old) link protein 1 knockout 

mice or CD1 mice (Charles River Laboratories) to study role of cartilage link 

protein Crtl1 (Hapln1) in neural plasticity. All animals were housed under standard 

laboratory conditions: a 12:12 h dark:light cycle, room temperature of 23ºC, 2 rats 

in one cage, with food and water supply ad libitum. 

3.1.2. Anesthesia 

Prior to any manipulation that could cause any pain to the animal, we used different 

types of general anesthesia. All animals received initial anesthesia. Rats were 

placed into a plastic box with an approximate diameter of 16.5 cm and a height of 

13 cm and closed by a cover in order to maintain the gas concentration. Then a 

mask connected to an Isoflurane Vapor 19.3 apparatus (Drägerverk AG Lübeck, 

Germany) was introduced into the box, and isoflurane (Forane, Abbot Laboratories, 

Ltd., Queenborough, Great Britain) at a concentration of 5% vapor inhalation in air 

was administered at a flow of 300ml/min for 5-7 minutes. Those rats that were used 

in the balloon compression lesion model were further anesthetized with 3% vapor 

inhalation of isoflurane, applied by means of a custom-made nose mask. Those 

animals that were used for hemisection/transaction with subsequent hydrogel 

implantation were, after the initial anesthesia, injected intraperitoneally with 

pentobarbital (Sigma-Aldrich, Inc.) at a concentration of 10mg/ml and a dose of 

6ml/kg. The animals were then left for 15 minutes in order to achieve a sufficient 
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level of anesthesia. Prior to the surgery and 7 days after SCI, the animals received 

an intramuscular bolus injection of antibiotics (ampicillin (Biotika) 0.3ml or 

gentamicin (Sandoz) 0.05ml).  In order to control salivation and other vagal 

functions, we injected 0.2 ml of atropine (Hoechst-Biotika) subcutaneously. At the 

thoracic level the skin was depilated. In order to overcome a small analgesic effect 

of pentobarbital, a local anesthetic, mesocain, was additionally used (0.3ml 

subcutaneously and intramuscularly). All surgeries were performed using a surgical 

microscope (Zeiss) at 15-25x magnification under aseptic conditions. 

3.1.3. Balloon-induced compression lesion 

As a model of acute spinal cord injury, we used a protocol of a balloon 

compression lesion that was described by the Department of Neurobiology, 

University of Kosice and developed in our laboratory (Vanicky et al., 2001, 

Urdzikova et al., 2006). Adult male Wistar rats weighing 280– 300 g were 

anesthetized by isofluorane vapor inhalation (3%). After a 3 cm cut of the skin at 

the Th10-11 level, the vertebral column was exposed after the bilateral retraction of 

the muscles. Access to the epidural space was achieved by a partial laminectomy of 

the 10
th

-11
th

 thoracic vertebrae. When the hole was large enough, a 2F Fogarthy 

catheter (Baxter Healthcare Corporation, Irvine, CA) filled with distilled water and 

connected to a 50ul Hamilton syringe was introduced into the epidural space and 

moved cranially 1 cm up; thus, a balloon was placed at the Th 8 level of the spinal 

cord (Figure 10). Subsequently, the balloon was rapidly inflated with 15 µl of water 

by means of a micromanipulator controlling the Hamilton syringe and was left for 5 

minutes inside the vertebra column canal. Subsequently, the water was withdrawn 

from the balloon and the catheter removed from the epidural space. During the 

surgical procedure hemostasis was controlled and the animals’ body temperature 

was checked and maintained at 37°C with a heating pad. The muscles and skin 

were sutured in layers with single knots. The animals were injected subcutaneously 
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with 2ml of saline solution to maintain water balance in the post-operative period. 

The animals were assisted with manual urination twice a day until the reflex 

returned. 

 

 

 

 

 

Figure 10. Balloon-induced compression lesion (Vanicky et al., 2001) 

3.1.4. Cell isolation and preparation 

3.1.4.1. Adipose-derived mesenchymal stromal cells (AMSC) 

Adipose tissue from the inguinal pads was dissected, mechanically minced, and 

treated with 0.2% (w/v) collagenase type I (Worthington Biochemicals, Lakewood, 

NJ) for 1 h at 37ºC. The isolated cellular fraction was resuspended in proliferation 

medium consisting of DMEM/F12 + Glutamax (Gibco) supplemented with 10% 

FBS and 0.2% antibiotics (Primocin) and plated in culture flasks. Cells were 

harvested once they reached 90% confluence and replated up to the second passage. 

Cells from the second passage were then either induced to form spheres or were 

used as undifferentiated cells for transplantation into a spinal cord lesion. To assess 

the multipotency of AMSC, the cells were differentiated into adipogenic, 

osteogenic, and chondrogenic phenotypes. 

3.1.4.2. Predifferentiation and neural induction of AMSC 

After reaching 80% confluence, cultured AMSC (passage 2) were plated in 10 cm
2
 

Petri dishes and induced to form spheres by replacing the proliferation medium 
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with sphere induction medium consisting of DMEM/F12+ Glutamax (3:1 ratio, v/v) 

with B27 supplement (Gibco, Grand Island, NY), 20 ng/ml EGF (R&D Systems 

Inc., Minneapolis, MN), 40 ng/ml bFGF (R&D Systems Inc.), and 1% Primocin. 

Four days later, the formed spheres were collected in a 15 ml Falcon tube. They 

were dissociated by accutase, plated on laminin (Sigma-Aldrich)-coated dishes, 

placed in differentiation medium consisting of Neurobasal media (Gibco) with B27 

supplement (Gibco, Grand Island, NY), 10 ng/ml NGF (R&D Systems Inc., 

Minneapolis, MN), 20 ng/ml bFGF (R&D Systems Inc.), and 1% Primocin and 

kept in culture for 6 days. Growth factors were added every second day. 

3.1.5. Intraspinal cell implantation  

Cell transplantation was carried out 7 days after SCI according to a previously 

published procedure (Amemori et al.). Cell viability was assessed by the Trypan 

Blue method. Cells for intraspinal implantation were suspended at a concentration 

of 5x10
4
 cells per 1 μl of PBS. All rats were anesthetized by isofluorane (3%) vapor 

inhalation in air. Each animal received intraspinal grafts into the rostral, central and 

caudal part of the lesion site. The cells were injected at a depth of 1 mm from the 

dorsal surface, 1mm laterally from the midline. The injections were made at a rate 

of 1μl/min using a Nano-Injector (Stoelting Co.) by means of a glass pipette. The 

pipette was kept inside the tissue for one minute, thus preventing the transplanted 

cells from leaking out of the host tissue.  

3.1.6. Post-operative care of the animals 

In order to achieve the best possible rehabilitation after the spinal cord injury and 

cell implantation, as well as to minimize any social stress, all animals were housed 

in individual cages, two rats per cage. Food and water were provided ad libitum. To 

avoid one of the most common complications after a spinal cord injury, caused by 

detrusor-sphincter dyssynergie (urinary retention), all animals were assisted with 

manual urination twice a day until the reflex returned, while ampicillin and 



65 

 

gentamicin were administered by intramuscular injection twice a day for 3 days. 

All rats were immunosuppressed by intraperitoneal injection of cyclosporine 

(Sandimmun, Novartis Pharama AG, Basel, Switzerland), 10 mg/kg 24 hours 

before transplantation and daily until the end of the experiment. 

3.1.7. Transmission electron microscopy 

For electron microscopy, immunolabeled tissue sections were rinsed in 0.1 M PB 

and then post-fixed for 1 h in 2% osmium tetroxide in 0.1 M PB. They were 

subsequently dehydrated through a graded series of ethanols followed by propylene 

oxide, propylene oxide:epon (50:50), and 100% epon (Agar Scientific Ltd., 

Stansted, UK), before embedding in fresh Epon between sheets of Aclar plastic 

(Agar Scientific Ltd., Stansted, UK) (Leranth C, 1989). Epon polymerization was 

carried out by incubation at 60ºC over 48 h. Following polymerization, regions of 

interest were cut from the flat embedded tissue and mounted on the tips of Epon 

blocks. Ultrathin sections of these regions were cut with a diamond knife (Diatome; 

TAAB, Gillingham, UK) at a thickness of approximately 70 nm and examined by a 

transmission electron microscope (Morgagni, Philips, Eindhoven, The 

Netherlands). For the detection of GFP
+ 

cells in TEM images, sections were 

incubated in a 1:300 dilution of polyclonal rabbit anti-GFP (Sigma-Aldrich, UK) 

for 72 h at 4ºC in 0.1% BSA/ 0.1 M TBS/0.25% TRITON X-100. The specificity of 

the antibody has been previously demonstrated using immunohistochemistry and 

western blotting (Halliday et al., 1996),(Rodriguez et al., 2008). Subsequently, the 

primary antibody was detected using an immunoperoxidase procedure (Chan et al., 

1990). For  immunoperoxidase labeling, sections were washed in 0.1 M TBS and 

placed in a 1:400 dilution of biotinylated goat anti-rabbit IgG (Jackson 

Immunoresearch, Stratech Scientific Ltd., Soham, UK) for 4 h, followed by two 

washes in 0.1 M TBS and incubation in a 1:200 dilution of biotin–avidin complex 

(Vector Laboratories Ltd., Peterborough, UK) for 30 min, followed by washes in 
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0.1 M TBS. All antisera dilutions were prepared in 0.1 M TBS/0.1% BSA, and the 

incubations were carried out at room temperature. The peroxidase reaction product 

was visualized (on TEM images, visible as a black color) by incubation in a 

solution containing 0.022% 3,30-diaminobenzidine (Sigma-Aldrich, Gillingham, 

UK) and 0.003% peroxide in 0.1 M TBS for 3 min, followed by washes in 0.1 M 

TBS and finally in 0.1 M PB. To check for non-specific background labeling or 

cross-reactivity between antibodies derived from different host species, a series of 

control experiments were performed. Omission of the primary and/or secondary 

antibodies from the incubation solutions resulted in a total absence of target 

labeling. 

3.1.8. RT-PCR Analysis 

At each stage of differentiation, mRNA was isolated from lysed cells using TRI 

reagent (Sigma-Aldrich) according to the manufacturer’s directions. The expression 

of target and reference genes was determined by one-step real time RT-PCR using 

a 7500 Real Time-PCR System (Applied Biosystems) and a QuantiTect® One-step 

qRT-PCR kit (Qiagen). The 20 µl reaction volume contained 5 µl of extracted 

RNA. The following thermal profile was used: a single cycle of reverse 

transcription for 30 min at 50ºC, 15 min at 95ºC for reverse transcriptase 

inactivation and DNA polymerase activation, followed by 45 amplification cycles 

of 15 s at 94ºC, and 1 min at 60ºC each (combined annealing-extension step). 

Samples were run in triplicate. The Gene Expression Assay Mix (Applied 

Biosystems) employed for the study is shown in Table 6. As a housekeeping gene 

to normalize the data, we used beta actin (ACTB). The results were analyzed using 

the integrated 7500 System SDS Software version 1.3.1. The relative quantities of 

mRNA were therefore calculated using a DDCt method with efficiency correction. 
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Gene symbol Gene name  Assay no. 

ACTB  ß-actin  4352931E 

NGFR 

  

Nerve growth factor receptor (TNFR superfamily,  

member 16)  

Rn 00561634_m1 

TUBB3 Tubulin, beta 3  Rn 01431594_m1 

MAP2 Microtubule-associated protein 2  Rn 00565046_m1 

NTRK3  Neurotrophic tyrosine kinase receptor type 3 Rn 00570389_m1 

NCAM Neural cell adhesion molecule 1 Rn 00580526_m1 

GFAP  Glial fibrillary acidic protein  Rn 00566603_m1 

INSR Insulin receptor  Rn 01637243_m1 

NES  Nestin  Rn 00564394_m1 

NTRK1   Neurotrophic tyrosine kinase receptor type 1 Rn 00572130_m1 

CSPG4 (NG2) Chondroitin sulfate proteoglycan 4  Rn 00578849_m1 

TGFBR1   Transforming growth factor beta receptor 1 Rn 00562811_m1 

Table 6. List of assays used for PCR 

 

 

 

 

3.2. EXPERIMENTAL MODEL OF AMYOTROPHIC LATERAL 

SCLEROSIS 

3.2.1. Animal model of ALS 

As an animal model of familial amyotrophic lateral sclerosis, we used hemizygous 

transgenic male rats (NTac: SD-Tg SOD1 (G93A) L26H) that overexpress human 

SOD1, carrying the Gly 93-Ala mutation. Rats used in the experiments with rat 

bmMSC were obtained from Taconic (Hudson, NY, USA). The same strain of rats 

as used in the other ALS experiments were bred in our animal facility from 

breeding couples kindly provided by Dr. Ludo Van Den Bosch  (Dept. of 

Neurobiology, Vesalius Research Center, K.U. Leuven and VIB Leuven, Belgium). 

All animals were housed under standard laboratory conditions: a 12:12 h dark:light 

cycle, room temperature of 23ºC, 2 rats in one cage, with food and water supply ad 

libitum.  

http://d360prx.biomed.cas.cz:2259/pubmed?term=%22Van%20Den%20Bosch%20L%22%5BAuthor%5D
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3.2.2. Criteria used to determine the beginning and the end stage of ALS in 

SOD1 (G93A) rats. 

The time of transplantation for individual rats was established when two out of 

three tested parameters started to decline: the BBB score dropped from 21 to 17 – 

16, grip strength decreased by more than 100 g compared with the individual 

baseline established for each animal prior to disease onset, or the animal started to 

lose body weight. In general, the first symptoms were observed using the grip 

strength test and the BBB locomotor test. The end stage of the disease was 

determined in as ethical a way as possible, to minimize the animals’ suffering, and 

was diagnosed when the animals met at least two out of the following three criteria 

in any combination: the animals were unable to right themselves when placed on 

their side for 30s and/or had a decline in motor activity of 75% (BBB score from 21 

to 5), a decline in grip strength of 75% (this generally corresponded to a grip 

strength decrease from 2050 g to 500 g) or a decline in body weight of 35% (on 

average, from 366 g to 237 g).  

3.2.3. Isolation and preparation of bone marrow MSC 

3.2.3.1. Isolation and preparation of BMSC from rats 

GFP
+
 MSC were obtained from transgenic Sprague Dawley rats (SD-Tg 

(CAG0EGFP) CZ-004Osb). The bone marrow was taken from the femurs and 

tibias of 16-day-old male animals that were euthanatized using CO2. After cutting 

the epiphysis, the bone marrow was washed from the bones using a 2ml syringe 

with a 21 gauge needle, filled with Dullbecco’s modified Eagle’s medium with 

high glucose (DMEM), Glutamax 15μl/ml, 10% Fetal Calf Serum (FCS) and 

Primocin 2μl/ml (complete medium). The bone marrow was gently dissociated and 

then plated on petri dishes. The media was changed after 24h. When cells reached 

75%–90% confluence, they were detached by trypsin/EDTA treatment and 

transferred into 75 cm
2
 cell culture flasks. MSC from passage 4 were used for 
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implantation. Prior to implantation, the cultures were checked for the cells’ ability 

to differentiate into adipogenic, osteogenic and chondrogenic phenotypes (Figure 

10) 

 

 
Figure 10. Mesenchymal properties of the transplanted cells were confirmed by their ability to 

differentiate towards adipogenic (A), osteogenic (B) and chondrogenic (C) phenotypes. In 

addition, MSC attached to the bottom of a plastic culture dish and expressed vimentin (D) 

3.2.3.2. Isolation of human bone marrow MSC 

Human bone marrow MSC (hBMSC) that were used in our experiments were 

provided by BioInova, s. r. o., a subsidiary of the Institute of Experimental 

Medicine. The cells were prepared according to a protocol that was described 

earlier by our group (Turnovcova et al., 2009). Briefly, after consent was obtained 

bone marrow samples were obtained by aspiration of approximately 30-50ml from 

the iliac crest of healthy patients. The mononuclear fraction containing hMSC was 

collected using Ficoll density-gradient centrifugation and then was transferred into 

a sterile tube. (Ficoll-Paque Plus; GE Healthcare Bio-Sciences AB, Uppsalla, 

Sweden). The cell suspension was then seeded on 10-cm Petri dishes at different 

seeding densities. The hMSC were isolated according to their selective adherence 

to the plastic surface and then expanded in α-minimal essential medium (α-MEM, 

Gibco-Invitrogen, Carlsbad, CA, USA) with 2.5% FBS containing 100U/ml 

penicillin and 100µg/ml streptomycin. Cell isolation was done in the same media as 

expansion. Non-adherent cells were washed out after 3 days, and subsequent cell 

culture changes were performed twice per week. Cultures were grown in a gassed 

A

200µm

B

200µm

C

200µm

D
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incubator at 37ºC and 5% CO2. MSC from passage 3 were used for experiments; 

their multipotent properties were checked in the same manner as with rBMSC. 

3.2.4. Implantation of cells 

3.2.4.1. Combined intraspinal and intravenous application  

Cell transplantation was carried out after the disease onset according to an earlier 

described procedure. Cell viability was assessed by the Trypan Blue method. Cells 

for intraspinal implantation were suspended at a concentration of 5x10
4
 cells per 1 

μl of PBS. All rats were anesthetized by isofluorane (3%) vapor inhalation in air. 

Each animal received two intraspinal grafts at the Th10 level on the left and one on 

the right side (diagonally) with a distance between the injection sites of 3 mm. The 

cells were injected at a depth of 1 mm from the dorsal surface, 1mm laterally from 

the midline. The intravenous grafting of cells was performed through the femoral 

vein (v. femoralis). After the skin was cut in the inner thigh region, the femoral 

vein was carefully isolated and exposed from the femoral artery and saphenous 

nerve, and then the rat received an intravenous injection of 2x10
6
 MSC in 0.5ml of 

PBS using an Omnican 50 insulin syringe (B Braun, Melsungen AG OPM, 

Germany). After controlling hemostasis, the wound was closed in anatomical 

layers. 

3.2.4.2. Intrathecal application 

Following the onset of anesthesia, the rat was placed into a stereotaxic apparatus. 

The incision was made after shaving and cleaning the skin above the base of the 

skull. The muscles were retracted so that the dura overlaying the cistern magna was 

exposed (Figure 11). To incise the dura a 25 gauge needle was used. The return of 

the CSF signaled intrathecal access. To maintain visibility, the area was sparingly 

blotted, taking care not to remove the CSF. Intrathecal cannulation via the cistern 

magna followed by the application of hMSC/vehicle was performed by means of a 
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fine catheter (ALZET, cat. No 0007741). In order to minimize possible nerve 

damage, a catheter connected to a 50µl Hamilton syringe (Hamilton Bonaduz AG, 

Bonaduz, Switzerland) via a gauge and filled with a cell suspension/vehicle was 

gently inserted into the aperture and positioned at the C8-Th1 level of the spinal 

cord. Subsequently, the cell suspension/vehicle (total volume 50µl) was injected 

into the subarachnoid space at a speed of 25 μl/minute using a Nano-Injector 

(Stoelting Co.). 

 3. 2.4.3. Postoperative care 

To avoid the possibility of graft versus host disease, animals grafted with human 

bmMSC were immunosuppressed by a combination of drugs as described earlier; 

Sandimmun (Novartis Pharama AG, Basel, Switzerland) 10 mg/kg 

intraperitoneally, Immuran (GlaxoSmithKline, USA) 4 mg/kg intraperitoneally and 

Solu-Medrol (Pfizer, Puurs, Belgium) 2 mg/kg intramuscularly (Kozubenko et al.) 

were administered each day. Those animals that received a graft of rat BMSC were 

immunosuppressed with a daily injection of Sandimmun, 10 mg/kg 

intraperitoneally. 

 

 

Figure 11. Schematic representation of the Cisterna Magna 
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3.2.5. Behavioral testing of motor functions. 

3.2.5.1. BBB test 

Currently, there are several methods that are used to evaluate an animal’s motor 

activity after SCI. In our experiments we used one of the most popular scales, first 

developed by Basso, Beattie and Bresnahan (Basso et al., 1995). The animal’s 

locomotion is evaluated using a 21 point scale: rats with a full range of movement 

receive a score of 21, while those with no observable hind limb movement receive 

a score of 0 (table 7). Using the BBB scale, the animal’s recovery can be divided 

into 3 phases: early phase (0-7), middle phase (8-13) and late phase (14-21). The 

examiner assesses trunk stability, forelimb-hind limb co-ordination during gait and 

limb advancement, paw placement etc. in an open field using the BBB scale. We 

also used the grip strength test in combination with the BBB test to evaluate motor 

activity in SOD1 (G93A) rats in order to determine the onset and end-stage of ALS, 

as well as to evaluate the disease course. In order to avoid possible mistakes caused 

by the stress of the testing procedure itself, all rats were tested at the same time of 

the day and on the same day of the week (unless more frequent testing was 

required) by the same person. 

3.2.5.2. Thirty seconds test 

In order to determine the end stage of ALS in as ethical a way as possible, we used 

the “30 seconds” test in addition to the BBB test, grip strength test and body weight 

measurements. The animals were placed on their side and the time spent to right 

themselves was measured. Once rats were unable to right themselves within 30 

seconds, it was regarded as the end stage of the disease, and the animals were 

sacrificed. 
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3.2.5.3. Grip strength test 

The grip strength test allows for the study of neuromuscular function in rats by 

determining the maximum force generated by an animal. In this context, changes in 

grip strength are interpreted as evidence of motor neurotoxicity and dysfunction, as 

observed during ALS. In general, the grip strength meter (Grip Strength Meter 

BSGT2S, Harvard Apparatus, Holliston, MA, USA) was positioned horizontally, 

and a rat was held by its tail and lowered towards the grid (Figure 12).  

Table 7: BBB test scale (Basso et al., 1995) 

Score Characteristics 

0 No observable hind limb (HL) movement 

1 Slight movement of one or two joints, usually the hip and/or knee 

2 
Extensive movement of one joint or extensive movement of one joint and slight  

movement of one other joint 

3 Extensive movement of two joints 

4 Slight movement of all three joints of the HL 

5 Slight movement of two joints and extensive movement of the third 

6 Extensive movement of  joints and slight movement of the third 

7 Extensive movement of all three joints of the HL 

8 
Sweeping with no weight support or plantar placement of the paw with no weight 

support 

9 

Plantar placement of the paw with weight support in stance only (i.e. when 

stationary) or occasional, frequent, or consistent weight-supported dorsal  stepping 

and no plantar stepping 

10 Occasional weight-supported plantar steps; no FL-HL coordination 

11 Frequent to consistent weight-supported plantar steps and FL-HL coordination 

12 
Frequent to consistent weight-supported plantar steps and occasional 

FL-HL coordination 

13 
Frequent to consistent weight-supported plantar steps and frequent 

FL-HL coordination 

14 

Consistent weight-supported plantar steps, consistent FL-HL coordination, and 

predominant paw position during locomotion is rotated (internally or externally) 

when it makes initial contact with the surface as well as just before it is lifted off at 

the end of stance; or frequent plantar stepping, consistent FL-HL coordination, and 

occasional dorsal stepping 

15 
Consistent weight-supported plantar stepping, consistent FL-HL coordination, and 

no toe clearance  or occasional toe clearance during forward limb advancement;  
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predominant paw position is parallel to the body at initial contact 

16 

Consistent plantar stepping and  consistent FL-HL coordination during gait and toe 

clearance occurs frequently during forward limb advancement;  predominant paw 

position is parallel to the body at initial contact and rotated at lift off 

17 

Consistent plantar stepping and  consistent FL-HL coordination during gait and toe 

clearance occurs frequently during forward limb advancement;  predominant paw 

position is parallel at initial contact and lift off 

18 

Consistent plantar stepping and  consistent FL-HL coordination during gait and toe 

clearance occurs consistently during forward limb advancement;  predominant paw 

position is parallel at  initial contact and rotated at lift off 

19 

Consistent plantar stepping and  consistent FL-HL coordination during gait and toe 

clearance occurs consistently during forward limb advancement;  predominant paw 

position is parallel at initial contact and rotated at lift off, and tail is down part or all 

of the time 

20 

Consistent plantar stepping and  consistent coordinated gait, consistent toe 

clearance,  predominant paw position is parallel at  initial contact and  lift off, and 

trunk instability; tail consistently up 

21 

Consistent plantar stepping and coordinated gait, consistent toe clearance,  

predominant paw position is parallel throughout stance, and consistent trunk 

stability; tail consistently up 

The animal was allowed to grasp the metal grid and then was pulled backwards in 

the horizontal plane. The force applied to the grid or to the bar just before the 

animal lost its grip was recorded as the peak tension, measured in grams. We used 

this test to diagnose the onset and end-stage of ALS, as well as to study the disease 

course in SOD1 (G93A) transgenic animals. Rats were considered for the 

transplantation of MSC when their grip strength decreased by more than 100 grams 

compared to the individual baseline established for each animal prior to disease 

onset. The end-stage was established when a rat‘s grip strength declined by 75% 

(this generally corresponded to a grip strength decrease from 2050 grams to 500 

grams). 

3.2.6. Transcardial perfusion of the animals 

After the intraperitonial injection of a high dose of xylazine (Rometar 2%, 6 mg/kg, 

Spofa) and ketamine (Narketan 10%, 50 mg/kg, Vetoquinol), a thoracothomy was 

made on the left and right sides, the diaphragm was transected and the heart was 
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exposed. The right auricle of the right atrium was cut, and a cannula was 

introduced via the heart apex into the left ventricle. In order to wash out the blood 

from the cardiovascular system, heparinized PBS and cold 4% paraformaldehyde 

(PFA) in 0.1 M phosphate buffer (PB), pH 7.4 were infused transcardially by 

means of a peristaltic pump for 5-10 minutes. The tissue of interest was removed 

and additionally fixed in 4% PFA for 24 hours at +4ºC before further histological 

processing.   

 

Figure 12. Grip strength meter 

3.2.7. Immunohistochemical analyses  

Spinal cords were cut into three parts: one for cutting sections in the longitudinal 

plane (2.5 cm long with the injection site in the center) and two for transverse 

sections (1 cm long cranially and caudally from the edges of the longitudinal 

sections). Longitudinal sections were used to check the distribution, properties and 

migration of the transplanted cells in the spinal cord. Transversal sections of the 

spinal cord were used for the quantitative evaluation of MN numbers, calculating 

the surface area and circumference of MN somas, analyzing plasticity in the 

cuneate nucleus, as well as the terminal deoxynucleotidyltransferase (TdT)-

mediated dUTPbiotin nick-end labeling (TUNEL) assay. Spinal cords were 

dissected and post-fixed in 4% paraformaldehyde solution at 4°C overnight, then 

placed into a gradient of sucrose ranging from 10-30% sucrose in 0.2 M PB and 



76 

 

allowed to sink for cryoprotection. The immunohistochemical staining procedure 

was as follows: tissue sections attached to PLL-coated cover slips were incubated 

in 3% goat or donkey serum with 3% bovine serum albumin (BSA) in Tris buffer 

solution (TBS) with 0.2% Triton-X100 (Sigma-Aldrich) at 4ºC for two hours, 

followed by overnight incubation with the primary antibody and subsequent 

incubation with the appropriate species/subclass-specific secondary antibody for 

two hours. All primary and secondary antibodies used in experiments, their 

dilutions and manufacturers are listed in Table 8.  To visualise the cell nuclei, 

some sections after washing with PBS were stained with 4 ′ 6-diamidino-2- 

phenylindole dichlorhydrate (DAPI) and mounted with Aqua-Poly/Mount 

(Polysciences, Warrington, PA, USA). The sections were evaluated using a Zeiss 

LSM 5 DUO (Zeiss, Oberkochen, Germany) confocal microscope equipped with an 

Ar/HeNe laser. 

 

Table 8. Primary and secondary antibodies used for immunohistochemistry 

 

Antibodies Supplier 
Species 

of origin 
Dilution 

NEURONAL 

a-NF160 Sigma-Aldrich, Gillingham, UK mouse 1:200 

a-MAP2 Chemicon; Temecula, CA,USA mouse 1:800 

a-Nestin Chemicon; Temecula, CA,USA mouse 1:2500 

a-NeuN Millipore, Billerica, MA, USA rabbit 1:200 

a-NCAM Chemicon; Temecula, CA,USA  rabbit 1:200 

a-bIII-tubulin Sigma-Aldrich St., Louis,MO, USA mouse 1:300 

a-p75/NGF Abcam  mouse 1:500 

GLIAL 

a-glial fibrillary acidic 

protein 
Sigma-Aldrich, Gillingham, UK mouse 1:200 
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a-NG2 Chemicon; Temecula, CA,USA rabbit 1:200 

a-O1  Chemicon; Temecula, CA,USA  mouse 1:200 

a-S100 Sigma-Aldrich St., Louis,MO, USA mouse 1:200 

a-CD31 Abcam  mouse 1:100 

a-GFAP conjugated with Cy3 Sigma-Aldrich, Gillingham, UK mouse 1:200 

PERINEURONAL NETS 

a-Crtl1 
R&D Systems (Minneapolis, MN, 

USA) 
goat 1:100 

a-parvalbumin Swant (Swant,Bellinzona,Switzerland) rabbit  1:2000 

a-aggrecan Chemicon (Temecula, CA, USA) rabbit 1:500 

a-brevican Dr C. Seidenbecher rabbit 1:4000 

a-versican Chemicon(Temecula, CA, USA) rabbit 1:500 

a-phosphacan DSHB (IowaCity,IA,USA) mouse  1:100 

a-cholera toxin B 
List Biological Laboratories; 

Campbell, CA 
goat 1:2000 

SECONDARY ANTIBODIES 

Alexa Fluor 488 or 594 

conjugated anti-mouse IgG 
Molecular Probes, Eugene, OR, USA goat 1:200 

Alexa Fluor 488 or 594 

conjugated anti-rabbit IgG 

Jackson Immunoresearch, Stratech 

Scientific Ltd., Soham, UK 
goat 1:400 

Alexa Fluor 488 or 594 

conjugated anti-goat IgG 
Molecular Probes, Eugene, OR, USA donkey 1:500 

Cy3 conjugated anti-mouse 

IgM 
Millipore, Billerica, MA, USA Goat 1:200 

3.2.8. TUNEL assay 

The TUNEL assay (ApopTag Kit; Oncor, Gaithersburg, MD, USA) was used to 

compare the intensity of TUNEL fluorescence in the MNs of MSC-treated and 

vehicle-injected animals with ALS at the terminal stage of the disease. For the 

quantification of TUNEL fluorescent intensity, images from an optical field of 
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315×315 μm were taken using a Zeiss LSM 5 DUO confocal microscope and a 40x 

objective. The outline of the soma was drawn in 10 neurons from each ventral horn 

(i.e. 20 cells/slice) in at least eight slices from the thoracic and lumbar parts of the 

spinal cord. Then the optical density (grey-scale levels of the corresponding pixels 

of the pre-processed image) along with the surface area and the circumference of 

the MN were determined by means of Axio Vision 4 software (Figure 13). The 

background optical density, calculated from a spinal cord section processed without 

the addition of a primary antibody, was subtracted. The values were calculated 

from the thoracic and lumbar levels as the mean of at least 160 cells from each 

animal. 

 

Figure 13. Quantification of TUNEL fluorescent intensity, circumference and surface area of 

spinal motoneurons  

3.2.9. Quantitative analyses of motoneuron numbers in the ventral horns of 

the spinal cord 

Four μm thick sections of the spinal cord were stained with the Luxor/Blue-Nissl 

method, then the number of motor neurons was determined (Figure 14). For the 

study of MN numbers, the optical density (greyscale levels of the corresponding 
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pixels of the pre-processed image) of the left and right ventral horns was recorded 

by means of a Zeiss Axio Observer microscope with a 20x objective and Axio 

Vision4 software (Carl Zeiss Vision GmbH, Germany). We counted the cells in a 

minimum of 10 slices from the thoracic and lumbar levels with an interval between 

slices of 100μm, in order to avoid double counting of the same neuron (i.e., 20 

slices/animal). The number of MNs was counted by means of an unbiased 

stereological method on serial sections in both ventral horns at the thoracic (1cm 

segment) and lumbar (1cm segment) levels of the spinal cord (Bjugn and 

Gundersen, 1993, Mouton, 2002). 

 

Figure 14. Crossection of the spinal cord at the lumbar level stained with Luxor/Blue-Nissl to 

visualize MN 

An optical dissector and the Cavalieri method, that is, a two-stage method, were 

used to evaluate the number of MN in the reference space by means of the formula: 

N = NV × Vref,  
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where NV is the numerical density and Vref is the theoretically unbiased estimate 

of the reference volume. Vref was determined using the Cavalieri formula 

(Mouton, 2002): 

Vref = ΣP×a(p)×T,  

where: Vref = total volume of the reference space (spinal cord); ΣP = sum of points 

(MN) hitting the reference space; a(p) = area per point (ventral horns’ area) (μm2) 

and T = distance between sections (μm). The numerical density (NV) was 

determined by the equation:  

NV = ΣQ- / (number of dissectors × volume of one dissector),  

where: ΣQ- = sum of objects (MN) counted; the number of dissectors is the number 

of  dissectors counted throughout the reference space, and the volume of one 

dissector (μm3) = a(frame) × section height.  

3.2.10. Plasticity in the cuneate nucleus 

Considering that the normal forepaw primary afferents in the rodent cuneate nuclei 

are distributed in a somatotopic arrangement (Figure 15 A), Massey suggested that 

this could be used as a suitable model to assess collateral sprouting in the cuneate 

nuclei after the transection of the dorsal columns between the C6 and C7 root entry 

zones, leading to the denervation of all primary afferent input from digits 4 and 5 

plus most of the input from digit 3 (Figure 15 B) (Massey et al., 2006). We used 

age-matched adult male (2-4 months old) link protein 1 knockout mice or CD1 

mice (Charles River Laboratories) and made a unilateral dorsal spinal hemisection 

on the right side between the dorsal roots of C6 and C7. One week after injury, in 

order to visualize the forepaw innervation of the cuneate nucleus, we used cholera 

toxin B subunit 
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Figure 15. Somatotopic arrangement of the rodent cuneate nuclei under normal conditions (A) 

and collateral sprouting by spared forepaw primary afferents within the cuneate nucleus 

partially denervated by a C6–C7 dorsal column transection (B) 

 

 (1%, List Biological Laboratories; Campbell, CA) as a retrograde tracer. We 

injected1–2 µl of cholera toxin B subunit subcutaneously into the palmer side of 

each digit and into the glaborous foot pad of the right forepaw. Two weeks post-

injury and one week post-tracing, the animals were killed. Twenty-micrometer 

thick cryostat sections were immunostained as described above. Primary antibodies 

were anti-cholera toxin B (1:2000, goat, List Biological Laboratories; Campbell, 

CA) and anti-glial fibrillary acidic protein (1:400, mouse, Sigma). Quantitation of 

the sprouting in the right cuneate nucleus was performed in each animal by 
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examining six sections (160 mm apart) throughout the length of the nucleus and 

measuring the area of cholera toxin B labelling. A perimeter was drawn around the 

cholera toxin B-traced afferents and measurements were taken in a square 

micrometer. The average areas of cholera toxin B tracing from each animal were 

combined to calculate group averages (either link protein 1 knockouts or CD1 

controls), which were analysed using one-way ANOVA.  

 

3.2.11. Statistical Analysis 

All data were assessed with Student’s t-test (Sigma-Plot 9.0); p<0.05 was 

considered significant and p<0.01 was considered very significant. Group 

diferences are presented as mean ± standard error of the mean (SEM), and the 

Kaplan-Meier method (Origin 7.3) was used to determine the difference in survival 

rate between the groups of MSC-treated and PBS-treated animals.  
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4. RESULTS 

 

I. Paper 1. Transplantation of predifferentiated adipose-derived stromal cells 

for the treatment of spinal cord injury 

Authors: Arboleda D, Forostyak S, Jendelova P, Marekova D, Amemori T, Pivonkova H, 

Masinova K, Sykova E. Cell Mol Neurobiol. 2011 Oct;31(7):1113-22. Epub 2011 Jun 1. 

4.1. Characteristics of predifferentiated adipose-derived stromal cells in vitro 

and after transplantation into the spinal cord of animals with SCI 

In the set of in vitro experiments, we observed that AMSC harvested in the 

induction medium started to form spherical clusters already within 24 hours after 

plating. Five days later, 90% of the cells cultured in monolayer started to form 

different sizes of spheres (Figure 16 A). Sphere formation is the first step in testing 

the AMSC’s neural differentiation capabilities and to induce differentiation toward 

neural precursors and more mature cellular stages. Immunocytological analysis 

revealed the strong expression of NCAM on the surface of the spheres. After the 

dissociated of the spheres cells expressed markers of early glial progenitor or 

Schwann cells such as NG2, S100, and p75 (Figure 16 B and C). Neural 

differentiation was promoted by replacing EGF with NGF and decreasing the 

concentration of bFGF in the medium.  Two days later, most of the cells were 

NCAM-positive (Figure 16 D), while some of them started to express GFAP 

marker. We also observed some cells positively stained for neuron -

tubulin, but these cells did not have a typical neuronal morphology (Figure 16 D).  

After transplanting AMSC and pAMSC into the rostral, central and caudal 

parts of the lesion site following a balloon-induced compression lesion of the spinal 

cord, both types of transplanted cells were detected by GFP fluorescence in the host 

spinal cord tissue 8 weeks post-transplantation. The two types of the grafted cells 

differed morphologically between the two groups. The AMSC within the injected 
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area appeared as large cell bodies floating in the tissue reminding the morphology 

observed during the in vitro experiments. After injection into the host SC 

transplanted cells did not attempt to establish close contact with the host cells 

(Figure 16 E). On the other hand, pAMSC implants were more robust than those of 

the AMSC and showed extensive migration from the injection. These cells seemed 

to configure hollow ducts along the neurofilaments, reminding the Schwann cells 

or OEG (Figure 16 F).  

 By visualizing host axons with NF160 staining we revealed that neurites 

were tightly wrapped by the implanted GFP
+
 pAMSC (Figure 16 G). Transplanted 

cells were negative for O1, an oligodendrocytic marker (Figure 16 H); however, 

they were positive for the marker of oligodendrocyte precursor cells NG2 (Figure 

16 I). By transmission electron microscopy we showed that pAMSC stimulated the 

inward migration of endogenous NG2 precursors to the lesion site, and were in a 

close contact with Schwann cells which migrated to the lesion from the spinal 

roots, and with myelinated as well as unmyelinated axons. (Figure 16 J and K). We 

did not observe any shift toward neuronal differentiation induced by the in vivo 

-tubulin, NCAM, 

Nestin, or MAP2). We also found some transplanted AMSC as well as pAMSC 

positive for the endothelial marker CD31 (Figure 16 L and M). 
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Figure 16. In vitro and in vivo characteristics of predifferentiated adipose-derived stromal 

cells. Spheres of pAMSC were all positive for NCAM (red)(A). Dissociated spheres plated on 

laminin-coated coverslips (B, C) and fixed after 6 days in neural medium (D). S100 (green) 

NG2 (red) (B); staining for Schwann cell (p75, red), GFP (green) (C); -

tubulin (green) (D). GFP
+
 AMSC (green) 8 weeks after transplantation into a SCI did not 

interact with host axons (staining for NF160; red) (E); inset is at higher magnification and 

shows the lack of interaction between an AMSC and the host tissue. In contrast, GFP
+
 pAMSC 

(green) formed hollow fibers and closely wrapped (white arrows) host axons (F, G; staining for 

NF160, red) as well as oligodendrocytes (H; staining for O1, red). Inset at higher 

magnification shows the close interaction of GFP
+
 cells with neurofilaments. Some pAMSC 
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were positive for NG2 (I, white arrows) and formed guiding strands along the residual host 

tissue, attracting host NG2-positive progenitors (red) to the lesion site. TEM image showing a 

GFP
+
 pAMSC (arrow) in close contact with a Schwann cell (S) and a myelinated axon (a) (J). 

GFP
+  

process from a pAMCS (arrow) in the vicinity of a Schwann cell (S) and an 

unmyelinated axon (a) (K). Both AMSC (L) as well as pAMSC (M) were positive (arrows) for 

the endothelial marker CD31 (red). Cell nuclei are stained in blue (DAPI). Scale bars A–E, I—

20 µm, F, G—50µm, j—1 µm, k—2.5 µm, H, L, M—25 µm. 

4.2. Quantitative RT-PCR and electrophysiological properties of 

predifferentiated adipose-derived stromal cells in spheres and dissociated 

from the spheres 

Data achieved from immunocytochemical analysis were confirmed by 

quantitative RT-PCR on spheres and on dissociated cells maintained in 

differentiation medium for 2 or 6 days. We observed the robust upregulation of p75 

(40-fold) and NG2 (2.5-fold) in the spheres, which slowly decreased during the 

process of neural differentiation. The highest expression of early neural progenitor 

markers Nestin and NCAM, were found at the beginning of neural induction (a 5.7-

fold increase for Nestin) or at the end (a 29-fold increase for NCAM), respectively 

(Figure 17 A). Other neural markers, such as G -tubulin, or MAP2, did 

not exceed a 0.5-fold increase in upregulation, (Figure 17 B). Regarding receptors, 

culturing period, while the expression of the NGF receptor TrkA was upregulated 

at the end of NI. The expression of the NT-3 receptor TrkC decreased with time 

spent in culture (Figure 17 C).  

The electrophysiological properties of pAMSC were measured from the cells 

8 days after NI.  By clamping the cell membrane and evoking membrane currents 

from a holding potential of -70 mV to values ranging from -160 to +20 mV for 50 

ms at 10 mV intervals three types of membrane currents were registered. We did 

not reveal any activating Na
+
 currents indicating cell differentiation into a neuronal 

lineage. 
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Figure 17. Quantitative RT-PCR analysis of spheres and dissociated cells from the spheres 

maintained in neural medium, 48 h and 6 days after neural induction (NI). The enhanced 

expression of glial markers and immature neural progenitor markers was found after exposure 

to differentiation medium. 

4.3. Behavioral testing of rats after SCI 

All the animals were tested prior the SCI and had normal motor function of their 

hind limbs that corresponded to 21 points according to the BBB scale. One week 

after SCI at the time of cell transplantation or vehicle injection, the animals were 

paraplegic with a BBB-score 1.41 ± 0.32. Over the course of 7 weeks, the control 

animals achieved BBB scores of 4.7 ± 0.34 (n= 12) with a slight improvement of 

their hind limb mobility but without any weight support. The cell-treated groups of 
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animals showed greater dynamism, vigilance, and frequent episodes of weight 

support as well as better muscle tone starting from 4 week after transplantation. 

The AMSC group achieved BBB scores of 7.0 ± 0.74 (n = 11) 7 weeks after 

transplantation; the pAMSC-treated group displayed motor improvement with BBB 

scores of 7.2 ± 0.46 (n = 12) at the same time point. The transplanted animals 

improved their gait and the ability to support their body weight. There were no 

significant differences in functional improvement between the AMSC- and 

pAMSC-treated animals (Figure 18). 

 

Figure 18. BBB open-field locomotor test. Hind limb gait was first assessed 1 week after SCI, 

i.e., before transplantation (Tx), and evaluated weekly thereafter for 7 weeks. Both the AMSC- 

(BBB = 7.0 ± 0.74; n = 11) and the pAMSC- (BBB = 7.2 ± 0.46; n = 12) treated groups 

displayed motor improvement compared with controls (BBB = 4.7 ± 0.34; n = 12). There was 

no significant difference between the transplanted groups 
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II. Paper 2. Animals lacking link protein have attenuated perineuronal nets and 

persistent plasticity 

Authors: Carulli D, Pizzorusso T, Kwok JC, Putignano E, Poli A, Forostyak S, Andrews MR, 

Deepa SS, Glant TT, Fawcett JW. Brain. 2010 Aug; 133 (Pt 8): 2331-47. Epub 2010 Jun 20 

4.4. Composition of PNN in the adult central nervous system  

The composition of PNN in the rat cerebellum and spinal cord has been 

characterized earlier (Dityatev et al., 2007, Bruckner et al., 2008). PNN in the mice 

visual cortex have the same structure and are found primarily around neurons that 

express parvalbumin (PV) and Kv3.1b, markers of the fast-spiking GABAergic 

interneurons implicated in ocular dominance control. Eighty percent of PV-positive 

neurons are surrounded by PNN that contain Crtl1, neurocan, aggrecan, 

phosphacan, brevican and neurocan (Figure 19 and Figure 20).  

 

Figure 19. Perineuronal nets, demonstrated in (a) with WFA also contain Crtl1 link protein 

(a’). The great majority of Crtl1-containing perineuronal nets are around parvalbumin positive 

neurons (b, b’).The proportion of parvalbumin-positive neurons with PNN is quantified in 

figure 20. Link protein mRNA visualized by in situ hybridization is seen in neurons which are 

immunopositive for Kv3.1b, a marker for inhibitory interneurons (c, c’). Bars =20um, 15um (c, 

c’) 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Carulli%20D%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Pizzorusso%20T%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Kwok%20JC%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Putignano%20E%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Poli%20A%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Forostyak%20S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Andrews%20MR%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Deepa%20SS%22%5BAuthor%5D
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Figure 20. The lack of link protein affects the distribution but not the overall quantity of 

several CSPG that are normally enriched in PNN. The pictures show layers 2/3 of visual 

cortex. In control (WT) animals, the PNN contain the same CSPG as in rats (a, c, e, and i). In 

Crtl1 knockout animals vestigial PNN are still seen, with attenuated aggrecan and phosphacan 

staining localized just around the cell soma (b, d). Neurocan staining is barely visible (f), and 

brevican and versican staining are absent (h, j). However there is diffuse staining for all the 

CSPG in knockouts. The western blots from cortical tissue (k, l, m, n, o) show that all the 

CSPG are present in the brains of Crtl1 knockouts in normal overall amounts, except for 

neurocan-N, which is 30% decreased in the Tris buffered saline (TBS) extract and is no longer 

seen in the stable matrix compartment that can only be extracted in 6M urea. The protein 

quantifications are taken from three independent western blots. Bars = 30 mm. WT= wild-type; 

KO= knockout. 
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4.5. Developmental expression of PNN components in the CNS 

It has been shown that many PNN components are already present in the immature 

CNS before the actual formation of PNN themselves (Carulli et al., 2007, Galtrey 

et al., 2008). As the structures form the molecule that triggers the construction of 

PNN should be upregulated. The formation of PNN begins in both rat and mice 

visual cortex at P14 (Figure 21 A-D). The visual cortex was examined during 

development using in situ hybridization and immunohistochemistry to discover 

which mRNAs and proteins are upregulated at this time (Figure 21 M). Of the 

mRNAs for PNN components expressed by PV positive cells, those for hyaluronan 

synthase (HAS), aggrecan, neurocan and tenascin-R were already present by P3, 

long before PNN formation. Brevican, phosphacan and versican, CSPG that are 

produced by glial cells, were also present from birth. At P7, before PNN formation, 

immunohistochemistry showed that all 12 of these molecules had a diffuse 

localization in the visual cortex ECM, similar to their distribution in the immature 

spinal cord and cerebellum (Geisler et al., 1991, Rhodes and Fawcett, 2004, Carulli 

et al., 2006, Galtrey et al., 2008). Only two PNN components were found whose 

mRNAs were upregulated at the time of PNN formation. These were the link 

proteins Crtl1 and Bral2, with Crtl1 showing a peak of expression at P14, 

coinciding with the onset on PNN formation, and Bral2 expressed from P21 

onwards (Figure 19 E-M). The pattern of Crtl1 expression was the same in mice 

(Carulli et al., 2010b). 
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Figure 21. Developmental changes in the expression of PNN components in layers 2/3 of the 

rat visual cortex. (A-D) show staining with wisteria floribunda agglutinin (WFA), which 

reveals most PNN. The first signs of PNN formation are seen at postnatal day 14. (E-H) show 

immunohistochemistry for link protein Crtl1, showing that it is first detectable from P14 and is 

present in PNN. (I-L) show in situ hybridization for Crtl1, showing a peak of neuronal 

expression as PNN are forming at P14. (M) shows quantification of mRNA levels of PNN 

components by in situ hybridization, measuring the optical density of selected areas of interest 

around cortical neurons. The bottom right graph shows Crtl1 mRNA levels in mice measured 

by quantitative PCR relative to actin, showing that the time course is the same as in rats. Bars 

=20um. 
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4.6. Effect of dark rearing on PNN components in visual cortex 

It was reported earlier that PNN formation in the visual cortex can be postponed by 

rearing animals in darkness, and than triggered by light exposure for less than one 

week (Pizzorusso et al., 2002). This model helped us to find an answer to the 

question “which PNN components are downregulated in rats as a result of dark 

rearing and upregulated when they are exposed to light”? The largest effect of dark 

rearing on mRNA levels was seen on Ctrl1, where the number of strongly labeled 

neurons was remarkably reduced (80-90% decrease) in dark reared animals, with 

the greatest change in cortical layers 2, 3 and 4 (Figure 22). On exposure to light, 

the number of neurons expressing high levels of Crtl1 mRNA reached normal 

levels after 2 days, at which time the formation of PNN, visualized with link 

protein or wisteria floribunda agglutinin (WFA) staining, was still incomplete 

(Figure 22 A-H), suggesting that upregulation of Crtl1 mRNA occurs at the onset 

of PNN formation. We saw similar but smaller changes in the mRNA levels of 

Bral2 and HAS2 in layers 2-3 and Has3 in layers 5 and 6, all of which showed a 

30- 40% decrease in the number of labeled neurons after dark rearing with a 

reversion of HAS2 and HAS3 to normal levels after 2-3 days of light exposure.  

 

4.7. Composition of perineuronal nets in the CNS of animals lacking Crtl1  

The above observations suggest the hypothesis that PNN formation is triggered by 

the upregulation of the link protein Crtl1 in PV positive interneurons. As in 

cartilage, the link protein might act by stabilizing the binding of the various CSPG 

to hyaluronan (Morgelin et al., 1994, Watanabe et al., 1998). Hyaluronan is present 

around neurons that have PNN because they all express hyaluronan synthase from 

an early stage (Geisler et al., 1991, Rhodes and Fawcett, 2004, Carulli et al., 2006, 

Galtrey et al., 2008). 
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Figure 22. The effects of dark rearing and subsequent light exposure on PNN and Crtl1 

expression in layers 2/3 of the rat visual cortex. Expression of Crtl1protein 1 in the normal 

adult cortex (a), but much reduced levels after dark rearing (b). 3 days of exposure to light 

leads to the beginnings of the appearance of Crtl1 in PNN (c). The proportion of neurons with 

PNN is quantified in (g) for layer 2/3 and layer 4. (d-e) shows 28 equivalent pictures of cortical 

layers 2/3 processed for in situ hybridization for Crtl1 mRNA. The mRNA is present in the 

normal cortex (d), downregulated after dark rearing (e) and upregulated again after light 

exposure (f). These observations are quantified in (h) for cortical layers 2/3 (above) and layer 4 

(below). Bars =50um. *=p<0.05 relative to control (g) and relative to dark reared (h). 
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The presence of the link protein could therefore allow the capture of CSPG into the 

hyaluronan pericellular coat around PV neurons. This idea was tested in rescue 

transgenic mice lacking Crtl1 in the adult CNS. Immunohistochemistry for the 

PNN markers and components and for hyaluronan binding protein revealed that 

PNN in the Crtl1 knockout animals were very attenuated (Figures 24). In the 

normal CNS PNN surround the neuronal soma and dendrites, but in knockout 

animals WFA and aggrecan staining around the dendrites was absent, although 

there was some attenuated staining around the somata. The main change was a 

large reduction in the area of the W. floribunda agglutinin positive profiles due to 

the absence of staining around dendrites, and in the intensity of WFA staining 

around PV positive neurons (Figure 24 G-H). The same picture was observed in the 

cuneate nucleus (Figure 24 I-J). In addition we examined the levels of Nogo 

receptor in normal and Crtl1 KO animals because these molecules also affect 

ocular dominance plasticity (McGee et al., 2005). We found no differences (Figure 

23).  

 

Figure 23. Nogo receptor immunostaining from layer 2/3 of the Crtl1 KO and wild type mouse 

visual cortex. Nogo receptor is present, mainly in neuronal structures. There is no difference 

between the two types of mouse. 
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Figure 24. The appearance of PNN in the visual cortex and cuneate nucleus of wild-type and 

Crtl1 knockout mice. (A-D) show WFA staining of the visual cortex layer 3, comparing PNN at 

low and high power, and showing the absence of PNN around dendrites in Crtl1 KOs. A 

similar result is seen with aggrecan staining (E-F). The absence of PNN around parvalbumin-

positive neuronal dendrites in knockouts is not due to the absence of dendrites in knockout 

animals; (G-H) show parvalbumin stained neurons in normal and KO animals with normal 

dendritic morphology, but with less WFA-stained PNN in KO animals (h). (I, J) WFA staining 

of the cuneate nucleus in normal and KO animals. Bars = 70um (A, B), 15um (C-H), 50um (I, 

J).  

4.8. Plasticity in the cuneate nucleus in Crtl1 knockout animals 

To check whether the absence of PNN might promote the anatomical sprouting of 

the preserved ascending axons into denervated regions of the cuneate nucleus, as 

happens after ChABC treatment, we used the experimental model developed by 
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Massey et al. (Massey et al., 2006). One week after unilateral dorsal hemisection of 

the spinal cord of control and Crtl1 knockout mice (between levels C6 and C7), an 

injection of cholera toxin B subunit, which labels the ascending sensory axons by 

transganglionic transport, was made into the forepaw of the animals. In control 

animals, sensory axon innervation of the cuneate nucleus was restricted to the 

region normally innervated by the lateral digits with no apparent sprouting into the 

denervated regions. In Crtl1 knockout animals, we saw labeled axons innervating 

the regions previously innervated by the medial digits, indicating sprouting of the 

preserved axons (Figure 25 A–C). Quantification of this sprouting by drawing a 

perimeter around all the labeled axons showed a significantly larger area occupied 

by axons in the Crtl1 knockout animals (Figure 25 D).  

 

Figure 25. Cholera toxin B injections into the forepaw label sensory axons occupying the 

entire cross-section of the cuneate nucleus. Axons traced from the forepaw are shown in a KO 

animal, with the outer extent of the nucleus traced (A). The appearance is the same in WT 

mice. After a dorsal column hemisection lesion between C6 and C7, innervation of the cuneate 

nucleus from the forepaw is reduced to the area occupied by the two lateral digits. In Crtl1 KO 

(B; n=7), but not in control animals (C; n=12), these unlesioned connections sprout to re-

innervate the regions normally innervated by the medial two digits. (D) Quantification of this 

sprouting was performed by tracing around the outline of the stained terminals, then 

measuring the area of innervation (p<0.05 by T test). Bar = 100μm. 
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III. Paper 3. Mesenchymal stromal cells prolong lifespan in a rat model of 

amyotrophic lateral sclerosis 

Authors: Forostyak S, Jendelova P, Kapcalova M, Arboleda D, Sykova E. Cytotherapy. 

 2011 Oct;13(9):1036-46. Epub 2011 Jul 8 

4.9. Effect of the combined intraspinal and intravenous implantation of rat 

BMSC on the disease course and overall survival of SOD1 (G93A) rats 

To perform a clinically relevant experiment, we transplanted rat BMSC into 

symptomatic animals. The onset and progression of the disease were studied by 

monitoring motor activity, grip strength and body weight. When the rats achieved 

the highest test scores, then maintained a plateau of all the tested parameters 

followed by a gradual decline in performance, it was considered as the onset of the 

disease, and the animals were selected in a random fashion for cell implantation or 

vehicle injection accordingly. The end stage of the disease was determined as 

described earlier in the Methods.  

All rats started to exhibit the first symptoms at almost the same age. To 

clarify disease onset, the rats were observed for 3–4 days after the first signs of 

disease appeared. There was no significant difference between the two groups at 

the time of rBMSC (114.3±1.85 days) or vehicle (113.75±1.73 days) administration 

(Figure 26 A, E). Starting from the 20th week of age, the rats treated with cells 

started to show significantly better motor function in all four limbs, as assessed by 

the grip strength test, and motor activity, as tested by the BBB test, compared with 

the control rats. This trend remained until the end stage of the disease, reaching 

statistical significance at a number of time-points after rBMSC grafting (Figure 26 

A, B), suggesting that the transplanted cells slowed down the decline in motor 

performance. Rats treated with rBMSC lost body weight more slowly than the 

control animals, but the difference between the two groups was not statistically 

significant (Figure 26 C). The lifespan of the animals in the group treated with 
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BMSC was longer on average by 11 days, compared with the control group of 

animals (Figure 26 D, F; P≤0.05).  

Most of the rats from the treated group were diagnosed as having reached the 

end stage of ALS mostly due to weight lose and a decrease in grip strength, while 

their motor activity (BBB) still did not reach the critical level and only 22% could 

not right themselves within 30 seconds after being placed on their side. In contrast, 

rats from the control group were diagnosed as having reached the end stage once 

they demonstrated impaired motor activity and grip strength and reached the 

critical level of body weight loss, and most of the animals (87.5%) could not right 

themselves from their side within 30 seconds (table 9). Thus, the animals that 

received rBMSC displayed a less severe impairment of their motor system before 

they were sacrificed compared to the control animals.  

 

BMSC Group Control Group 

Rat BBB/30' GrStrT Weight Rat BBB/30' GrStrT Weight 

1 +/- - + 1 +/+ + - 

2 +/+ - + 2 +/+ + + 

3 +/- - + 3 +/+ + - 

4 -/- + + 4 +/- - + 

5 -/- + + 5 +/+ + + 

6 +/+ + + 6 +/+ - + 

7 +/- - + 7 +/+ + + 

8 -/- + + 8 +/+ + - 

9 +/- - + 
 

10 Not measured   

11 Not measured   
 

Table 9. Criteria used to determine the end stage of ALS in individual rats. The end stage of 

the disease was established according to the criteria shown in the table and described in the 

text. Once a rat reached two or more thresholds during behavioral testing, it was regarded as 

being at the end stage of the disease.  
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Figure 26. Characteristics of disease progression in groups of SOD1 (G93A) rats treated with 

rBMSC (filled circles) or sham-treated (empty circles). Motor activity (A) and grip strength (B) 

did not show any significant differences between the groups until week 19. From week 20 

onwards, the rats treated with BMSC showed significantly higher scores on the BBB (A) and 

grip strength (B) tests. MSC treatment did not significantly delay the loss of body weight but 

showed a tendency to slow it down (C). There were no differences between the mean time of 

BMSC (114±5.5 days) transplantation and PBS (113.75±5 days) injection in the two groups of 

animals (E). The lifespan of animals was significantly prolonged by MSC treatment by 11 days 

as group means (P≤0.05). Compared with an injection of PBS, BMSC transplantation 

significantly increased overall survival from 179±3.6 days to 190±3.3 days, respectively (D, F). 

BMSC-treated animals are shown as continuous lines (n=9), control animals as interrupted 

lines (n=8).  
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4.10. Effect of grafted rat BMSC on the survival and characteristics of host 

motoneurons. 

To confirm the behavioral improvement and extended lifespan, we performed MN 

counts. At the end stage of the disease, the average motor neuron counts were 

significantly higher at the thoracic and lumbar levels of the spinal cords of the 

BMSC-treated group compared to controls. The overall number of MN counted by 

a stereological method in serially sectioned spinal cords in both ventral horns at the 

thoracic level (Figure 28 G) in the BMSC-treated group was 5834±1391 per 1cm of 

spinal cord, while in the control group the number was 3773±689 (p≤0.01). At the 

lumbar level of the spinal cord (Figure 28 H) the BMSC-treated group had 

12004±1896 MN per 1cm of spinal cord, while in the sham-treated group there 

were 8763±2531 MN (p≤0.01). There were no significant differences in the 

measured surface area of the ventral horns at either the thoracic or the lumbar 

levels of the spinal cord.  

Several studies have reported a possible role for apoptosis in both the human 

disease and in rodent models of ALS (Kostic et al., 1997, Li et al., 2000). We 

therefore used the TUNEL assay to study the extent of DNA fragmentation in 

animals at the early stage and the end stage of the disease. TUNEL-positive cells 

revealed DNA fragmentation; however, when the first signs of the disease 

appeared, the TUNEL fluorescence was predominantly located in the cytoplasm of 

the motor neurons (due to effects on mitochondrial DNA) (Figure 28 A, B), 

whereas at the end stage of the disease the most intense fluorescence was in the 

nucleus (Figure 28 C, D). We measured the surface area (Figure 28 A, B) and 

circumference (Figure 28 C, D) of the MN somas (table 10). A significantly larger 

surface area of the somas of MN was found in rats that had been grafted with 

BMSC compared with vehicle-injected animals at different levels of the spinal cord 

(Figure 28 A, B). The average circumference of MN somas at the thoracic level 

(Figure 28 C) as well as at the lumbar level (Figure 28 D) of the spinal cord in the 
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cell-treated animals was significantly larger compared to animals injected with 

PBS. The intensity of TUNEL staining in the somas of MN at the thoracic (Figure 

28 E) level, where the cells were implanted, was significantly lower in cell-treated 

animals than in animals injected with PBS, whereas at the lumbar level of the 

spinal cord there were no significant differences in the intensity of fluorescence 

between the treated and control groups (Figure 28 F).  

For TUNEL analysis we used 9 and 8 rats at the late stage of the disease 

from the treated and vehicle-injected groups, respectively. We did not make a 

quantitative TUNEL analysis at the early stage of the disease as we had only 2 rats 

available for such analysis from the BMSC-treated group, which died or were 

sacrificed 11 days after the BMSC were grafted, and no animals from the sham-

treated group. These 2 rats were used for comparison and are presented in Figure 

29. The above results show that the implanted BMSC had a positive effect on the 

survival of MN and that such MN were of larger size than those in vehicle-injected 

rats. Our results could possibly be explained by the activation of BCL2 genes by 

the MSC or by the inhibition of caspases (especially 1 and 3), which have been 

shown to be active in spinal motor neurons in the ALS animal model, thus 

influencing disease progression, but more experiments should be done to confirm 

this speculation.  
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Figure 28. Quantitative analyses of the surface area, circumference, TUNEL staining intensity 

and number of motor neurons. To determine the surface area and the densitometric mean of 

fluorescence due to apoptosis, perimeters were drawn around the neuronal somas in the upper 

thoracic and lumbar levels of the spinal cord as shown in Figure 21 A. The mean surface area 

of neuronal cell bodies from the  MSC-treated group was significantly larger at the thoracic 

(A) and lumbar (B) levels relative to the sham treated group, p<0.05. The somas of motor 

neurons from the cell-treated group had a larger circumference at the thoracic (C, p≤0.01) and 

lumbar (D, p≤0.05) levels than those from rats after PBS injection. Despite the larger neuronal 

somas in the cell-treated group of animals, the intensity of TUNEL staining was significantly 

less at the thoracic (E, p≤0.05) level and showed a tendency towards a lower intensity at the 

lumbar (F, p>0.05) level of the spinal cord, compared to sham treated animals. MSC 

significantly increased the number of MN in the upper thoracic (G) and lumbar (H) levels of 

the spinal cord in the treated group of animals (P≤0.01 and P≤0.01, respectively) compared 

with controls. The numbers of MN were counted using an unbiased stereological method in 

serially sectioned spinal cords from both the left and right ventral horns. Error bars indicate 

SEM. MSC-treated animals are shown in grey columns (n=9), control animals in empty white 

columns (n=8). 
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Figure 29. DNA fragmentation revealed by the TUNEL assay in the ventral horns of SOD1 

rats at the early and end stages of ALS. TUNEL-positive cells reveal DNA fragmentation in the 

cytoplasm (most likely mitochondria DNA) of most α-motoneurons 2 weeks after the first 

symptoms of the disease appeared, 11 days after MSC transplantation (A, B), whereas the 

nuclear DNA remains TUNEL-negative. The number of MN in the ventral horns at the end 

stage of the disease in 9 rats, analyzed using a comparative method, was lower compared to 

rats 11 days after the onset of the ALS (n=2).  At the end stage of the disease (10-11 weeks 

after transplantation) the nuclear DNA of motoneurons begins to show signs of apoptosis (C, 

D). The dashed circumference around the cell bodies in part A shows the circumference of 

MNs that were used for measuring the circumference, MN surface area and TUNEL staining 

intensity. Scale bars 50µm (A, C), 20µm (B, D).    

 

  
rBMSC PBS p-value 

MN surface area, µm
2
 

Thoracic 422.6 ± 70.3  240.2 ± 21.1  0.045 

Lumbar  485.9 ± 63.5   317.1 ± 35.8  0.041 

  MN circumference, µm 

Thoracic 88.4 ± 6.2  67.5 ± 2.6   0.003 

Lumbar     95 ± 4.9      75 ± 5.4  0.014 

  Intensity of TUNEL staining, units 

Thoracic 40.6 ± 3.9  51.8 ± 5.1  0.049 

Lumbar  36.6 ± 3.3  41.8±1.8 0.087 

Table 10. Quantitative analyses of MN surface area, soma circumference and intensity of 

TUNEL staining. The values of MN surface area, soma circumference and the intensity of 

TUNEL staining are presented as group mean ± s.e.m. 



105 

 

4.11. The fate of rat BMSC after intraspinal transplantation into symptomatic 

SOD1-rats.  

 

MSC-treated rats received an intraspinal graft of GFP
+ 

BMSC at a concentration of 

5x10
4
 cells per 1 µl of PBS and an intravenous injection of BMSC at a 

concentration of 2x10
6 

per 0.5ml of PBS. We found that many GFP
+ 

BMSC 

survived in the spinal cords of animals immunosuppressed with cyclosporine until 

the end of the experiment (65 days after transplantation) and that the cells were 

able to migrate along the rostra-caudal axis in the white matter and on the surface 

of the spinal cord in the subarachnoid space (Figure 30 A, B, C, D and E). An 

attempt was made to determine the number of surviving GFP
+
 BMSC in the spinal 

cords at the end of the experiment. We found that the total number of cells that 

survived after intraspinal injection until the end stage of the disease was about 

60±15% of the initial number that was grafted intraspinally. However, it was very 

difficult to determine this number more precisely as the number of surviving GFP
+
 

BMSC at the site of transplantation was quite high, thus making it very difficult to 

identify (and count) individual cells in the tissue. Transplanted GFP
+
 BMSC 

integrated into the host spinal cord but did not express either the astrocytic marker 

(GFAP) or the neuronal markers NF-160, MAP2, β-III-tubulin or Nestin (Figure 30 

and 31). Unfortunately, we have no evidence for the fate of the GFP-negative 

BMSC that were implanted intravenously as they were not labeled by any marker. 

We observed stronger expression of the neurofilament marker NF160 in the cell-

treated animals compared to control rats, which could be explained by the paracrine 

properties of BMSC having neuroprotective and trophic effects on the host neurons 

(Figure 31 A-H).  
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Figure 30. Integration and migration of rat BMSC after intraspinal transplantation. A. Two 

months after the transplantation of GFP
+ 

BMSC into the spinal cord of SOD1(G93A)
 
rats, 

BMSC are located mostly in the white matter of the spinal cord and have migrated (arrows) in 

both the rostral and caudal directions up to 5 mm (scale bars 1000µm). Grafted cells are 

negative for the astrocytic marker GFAP. Higher magnification views of the migration of the 

cells within the spinal cord are presented in parts B, C, D and E (scale bars 200µm). The 

arrowhead shows the injection site. GFP
+ 

BMSC are in green, astrocytes (GFAP
+
) in red color. 
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Figure 31. Transplanted rat BMSC did not express neuronal markers in the recipient spinal 

cord. Neurofilament staining (NF 160) of SOD1 (G93A)
 
rat spinal cords at the terminal stage 

of the disease in a control animal (E-H) or in a treated animal 65 days after cell implantation 

(A-D). DAPI was used to stain the cell nuclei (blue). MSC are oriented in the same direction as 

the host axons (A, B, D). The BMSC-treated animal (A-D) shows the increased expression of 

NF-160 compared to the sham treated rat, demonstrating the neuroprotective influence of 

BMSC (E-H). BMSC do not express neuronal markers such as NF-160, MAP2, β- III-tubulin 

or Nestin (I-R). Scale bars 20µm.   
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4.12. Effect of the intrathecal implantation of human BMSC on the disease 

course and overall survival of symptomatic SOD1 (G93A) rats 

Mutant rats started to show the first symptoms of ALS at the age of approximately 

170-180 days and were considered for transplantation a few days later (Figure 32 

A). An intrathecal (via cistern magna) injection of 500 000 human BMSC 

suspended in 50µl of DMEM significantly extended the lifespan of the cell-treated 

animals (209.3 days) when compared to the vehicle-injected rats (195.7 days) 

(Figure 32 B, C). By testing grip strength (Figure 33 A) and locomotor functions 

(Figure 33 B), we established that the cell-treated animals showed significantly 

better motility and strength when compared to the rats injected with DMEM. The 

difference in motor activity started to appear shortly after the delivery of the cells, 

whereas there was no difference in the dynamics of the body weight loss between 

the two groups (Figure 33 C). 

 

Figure 32. Animal survival after an intrathecal injection of human BMSC into SOD1 (G93A) 

rats. Animals from both groups were treated with hBMSC (black columns) or vehicle-injected 

(white columns) at approximately the same period of their life (A). Overall  survival in the 

hBMSC-treated group was significantly longer (p=0.027) comparing with the sham-treated 

group, by 13.6 days (B). hBMSC-treated animals are shown in black color (n=11), control 

animals in red color (n=9). Error bars indicate SEM. (Unpublished data) 



109 

 

  

Figure 33. Characteristics of disease progression in groups of SOD1 (G93A) rats treated with 

hBMSC and DMEM. Shortly after the intrathecal application of hBMSC, the decrease in 

motor function was slowed down when compared to the sham-treated group of animals.  

Animals from the cell-treated group showed significantly higher scores on the grip strength 

(A) and BBB (B) tests. The application of hBMSC did not delay the body weight loss (C). 

Number of rats in all groups: SOD1-group grafted with hBMSC (n=11), vehicle-injected 

SOD1-group (n=9), non-SOD1control group injected with hBMSC (n=5) and non-SOD1 rats 

injected with DMEM (n=5). Significance evaluated at p≤0.05. (Unpublished data) 
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5.  DISCUSSION 

 

5.1. General approach to stem cell therapy in the treatment of neurological 

diseases.  

Diseases of the central nervous system usually have a devastating character, are 

impossible to treat, and have a very pessimistic prognosis. Maladies such as SCI 

and ALS develop their symptoms due to dysfunctions in the spinal cord, and the 

only drugs that are currently used and have been shown to have minor positive 

effects on the clinical status of patients are methylprednisolon and Riluzole, 

respectively. Unfortunately, the results of such treatment are still unsatisfactory.  

Recent advances in stem cell biology have shown that stem cells might provide an 

inexhaustible source of neurons and glia and have opened an avenue for therapeutic 

strategies  aimed at neuroprotection or cell replacement in disorders affecting the 

brain and spinal cord (Lindvall and Kokaia, 2006).  

It is expected that after the application of stem cells into the pathological 

environment resulting from SCI or neurodegenerative diseases, the cells will be 

able: i) to release neurotrophic factors that will promote and facilitate axonal 

sprouting; ii) to regenerate damaged nerve tissue through differentiation or 

transdifferentiation into mature neural cells (such as motoneurons and 

oligodendrocytes), thus promoting the remyelination of the surviving axons and the 

restoration of specific functions; and iii) to fill pseudocystic cavities, thus acting as 

a scaffold that will support axonal outgrowth between the rostral and caudal stumps 

and to stimulate the revascularization of the damaged nervous tissue  (Hejcl et al., 

Akiyama et al., 2002, Ohta et al., 2004, Nistor et al., 2005, Deshpande et al., 2006, 

Sykova et al., 2006b, Lee et al., 2007). The first experimental studies aimed at 

treating neurodegeneration or traumatic injury of the CNS used fetal or embryonic 

tissue in order to isolate various types of stem or progenitor cells, including ESC, 
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NSC, spinal precursor cells, glia-restricted precursor cells etc. (McDonald et al., 

1999, Hofstetter et al., 2002, Ogawa et al., 2002, Nistor et al., 2005, Xu et al., 2006, 

Lee et al., 2007). Some of these cells resulted in tumor formation during testing in 

various animal models, while others resulted in significant functional, behavioral 

and morphological improvement of the animals’ behavior and lead to clinical trials 

in human patients. For instance, Geron Corporation has recently announced the 

enrollment of patients with complete, subacute thoracic SCI into clinical trials 

involving the administration of human ESC-derived oligodendrocyte progenitor 

cells. This event prompted some concern among the scientific community 

regarding the lack of any evidence for the replication of the preclinical results in 

independent laboratories and also in regards to the choice of patients (subacute vs. 

chronic) and the clinical indication (SCI vs. neurodegenerative diseases) (Bretzner 

et al., 2011).  Another work published by Perrin et al. reported an antipathic effect 

after an intraspinal graft of either naïve human embryonic NPC or the same cells 

engineered to express Neurogenin 2; grafted with naïve NPC, rats displayed 

significantly worse gross motor recovery compared with sham-operated rats, 

whereas animals treated with Neurogenin 2-engineered NPC show faster recovery 

as early as 7-10 days after implantation   (Perrin et al., 2010).  On the other hand, it 

is also necessary to keep in mind that the transplantation of human embryonic stem 

cell-derived neural progenitors (at both early and later stages of differentiation) 

might cause hyperproliferation and the formation of teratomas (Seminatore et al., 

2010). We can conclude that the results achieved from the use of embryonic or fetal 

stem cells are at the cutting-edge of current research but still ambiguous for routine 

clinical application in patients. Current concerns are: a high risk of tumorigenesis, 

limited access to human material, as well as logistical, immunological and ethical 

issues (Widner et al., 1988, Vaquero and Zurita, 2011).  
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A solution to these issues might be provided by stem cells generated from 

the adult organism. This alternative to embryonic and fetal cells, if isolated from 

affected individuals, could be used either as an in vitro model of different diseases, 

helping us to understand the mechanisms underlying the pathological processes, or 

could be used as therapeutic agents after preliminary cultivation, thus avoiding the 

risk of GVHD if the donor and recipient are the same individual. Different cell 

types (e.g., MSC, AMSC, OEG, iPS etc.) possess multipotent properties and could 

be obtained autologously or generated from healthy living donors or post mortem 

tissue. The cutting-edge of modern cell biology is the generation of functional 

induced motoneurones from the patient’s own fibroblasts, which after 

transplantation could replace the dying MN of ALS patients (Son et al., 2011). 

Considering that neurodegenerative diseases most often develop in elderly patients, 

there are some concerns related to the “quality” of stem cells if generated from an 

aged organism and whether these cells might be used for cell replacement, 

neuroprotection and neuregeneration. Dimos et al. showed using the example of  

iPS cells generated from an 82-year-old woman with a familial form of ALS, that 

these cells possessed the same properties as do embryonic stem cells and that they 

could successfully differentiate into motoneurons (Dimos et al., 2008). However, in 

the case of iPS cells, which are generated using a cocktail of overexpressed 

transcriptional factors transferred to skin fibroblasts or other somatic cells by 

transfection of viral vector infection, it is necessary to note that the time is not yet 

ripe for their use in humans as the risk of genetic modification of both donor and 

host cells is too great (Wichterle and Przedborski, 2010).  

In the current work we show that AMSC and BMSC have a 

neuroregenerative and neuroprotective effect after their administration into SCI and 

also in the treatment of ALS. Grafted cells incorporated into the recipients’ spinal 

cords and significantly improved the motor function of paraplegic rats and 
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positively changed the disease progression and general survival of rats with ALS. 

Furthermore, several reports have shown that the transplantation of MSC into acute 

SCI leads to the formation of bundles that bridge the lesion, reduce cavity 

formation and enhance axonal sprouting (Hofstetter et al., 2002, Wu et al., 2003). 

Therefore, growing interest in cell therapy approaches utilizing MSC has made 

these cells among the leading candidates for human application.  

 

5.2. Effect of mesenchymal stromal cells in the treatment of SCI. 

It is increasingly clear that MSC present a very attractive source of cells for 

reparative therapy (Rice and Scolding, 2008). The MSC population, isolated from 

either bone marrow or adipose tissue, has been shown in in vitro studies to express 

a large variety of neuronal genes, transcription factors with potential neural 

involvement suggesting a wide differentiation potential (Blondheim et al., 2006, 

Zhu et al., 2008). Our results obtained from in vitro experiments revealed that 

predifferentiated adipose-derived MSC express NCAM, NG2, S100 and p75 and 

the neural precursor markers NCAM and Nestin; however, these cells did not show 

the expected neuronal electrophysiological properties. The in vitro characteristics 

of BMSC were already published earlier. For example, our results are in agreement 

with those reported by Tropel et al., who showed the in vitro differentiation of 

MSC along the neuronal pathway toward a functional phenotype; however, these 

cells were not tested in vivo, thus it is hard to evaluate their regenerative 

possibilities (Tropel et al., 2006).  

We had this idea in mind when designing experiments to explore the use of 

AMSC and pAMSC as an alternative source of MSC that could be derived from 

human adipose tissue and could potentially be used for the treatment of patients 

with SCI.  To our knowledge, we were the first to report that the implantation of 

naïve and pAMSC into paraplegic rats after a balloon-induced compression lesion 
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promotes the recovery of motor function without causing any side effects. Another 

work recently published by Ra et al. also reported the lack of any tumorigenicity 

after the intravenous injection of human AMSC into immunodeficient mice; 

moreover, the intravenous injection of autologous AMSC into patients with SCI did 

not show any adverse effects connected with the procedure (Ra et al., 2011). These 

results are also in agreement with previous publications from our group, suggesting 

that AMSC could be used as an alternative to BMSC for the cellular therapy of 

patients with SCI (Amemori et al., Sykova et al., 2006a, Sykova et al., 2006b, 

Urdzikova et al., 2006). Indeed, some studies, after comparing the in vitro 

properties of AMSC and BMSC, have indicated that AMSC produce a significantly 

larger amount of cytokines and growth factors compared to BMSC, thus they could 

have a broader therapeutic range (Banas et al., 2008). 

The therapeutic effect of MSC transplantation could be explained by a 

number of their features. Among other, MSC have unique immunologic properties: 

they are not immunogenic, do not stimulate alloreactivity, escape lysis by cytotoxic 

T-cells and natural killer (NK)-cells, and can be transplanted across MHC barriers 

and between human leukocyte Ag (HLA)-mismatched individuals (Le Blanc, 

2003). It was also reported that the intravenous delivery of BMSC enhances 

remyelination throughout a focal demyelinated spinal cord lesion (Akiyama et al., 

2002). Intraspinal grafting of BMSC into the injured spinal cord was shown to 

promote axonal regrowth and to reduce the lesion volume (Gu et al., 2010). Our 

results also support the idea that adult MSC fulfill the requirements for a potential 

therapeutic agent for regenerative purposes: we have shown that the intraspinal or 

systemic (intravenous) administration of MSC isolated from either bone marrow 

(rat or human) or adipose tissue is a relatively simple and safe procedure and that 

the recipient animals tolerated the grafting procedure very well and did not show 

any side effects connected with the surgery itself or with any uncontrolled cell 
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proliferation in the postoperative period (Turnovcova et al., 2009, Arboleda et al., 

2011, Forostyak et al., 2011). It is also important to note that after acute SCI, there 

is a therapeutic time window within which the application of stem cells can 

ameliorate the consequences of secondary injury by preserving rather than 

replacing the host nervous tissue. Cellular therapy during the chronic phase of SCI 

aims to reconstruct the spinal cord via cellular replacement, glial scar modification, 

axonal guidance and the filling of formed syringomyelia, thus leading to functional 

regeneration (Hejcl et al., Zurita and Vaquero, 2004, Zurita et al., 2008).  

All of the above properties of MSC, along with long experience with the 

transplantation of BMSC in the treatment of haematological malignancies, lead to 

the first preclinical and clinical trials, initially to treat myocardial infarction and 

later to treat stroke, ALS, PD and other diseases of the CNS (Bang et al., 2005, 

Schachinger et al., 2006). These and other trials utilizing different methods of 

BMSC application showed that the grafting of such cells is a safe procedure that 

can bring benefits for patients (Sykova et al., 2006a, Urdzikova et al., 2006, 

Mazzini et al., 2011, Vaquero and Zurita, 2011).  

Experimental studies suggest that the therapeutic effect of grafted cells starts 

before the establishment of a tissue bridge suitable for the passage of axons, 

therefore the recovery of neurological functions at the early post-transplantation 

stage could be explained by the activation of different regenerative processes, 

mainly the release of neurotrophic factors (Zurita and Vaquero, 2004). Based on 

preclinical experiments in rats with SCI that showed significant improvement in 

behavioral scores (BBB test and plantar test)  after the intravenous implantation of 

BMSC labeled with iron oxide nanoparticles 7-21 days post-injury, followed by in 

vivo magnetic resonance imaging (MRI), a nonrandomized phase I/II clinical study 

was started in August 2003 in patients at the Motol faculty hospital in Prague 

(Jendelova et al., 2004, Sykova and Jendelova, 2005, 2006). In this study 
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autologous BMSC were grafted intraarterially via arteria vertebralis or 

intravenously into 20 patients with SCI at the cervical or thoracic level, and the 

effect of the treatment was evaluated by the ASIA protocol, the Frenkel score 

system and electrophysiological measurements of motor and somatosensory evoked 

potentials (MEPs and SEPs) 3, 6 and 12 months after cell administration (Sykova et 

al., 2006a).  The results of the trial showed that the transplantation of the cells is a 

safe procedure. The most significant regenerative effect was observed in a few 

patients who received cells during a therapeutic window of 3-4 weeks after SCI, 

whereas those transplanted during the chronic phase of SCI did not show 

significant improvement of locomotor or sensory function. These results also 

correlate well with those reported from clinical trials performed by Park et al. and 

Cristante et al., in which stem cells were used in the treatment of complete SCI 

followed by neurologic evaluation in 6 and 39 patients, respectively (Park et al., 

2005, Cristante et al., 2009). Autologous MSC transplantation also has been shown 

to have a positive effect and to be a safe procedure in patients with a severe 

cerebral infarct (Bang et al., 2005). Even though some small series of experiments 

involving patients showed an improvement of motor and sensory functions after the 

administration of BMSC, significant hurdles remain before these findings can be 

responsibly translated to novel therapies. In particular, we need to better understand 

the mechanisms of action and the behavior of stem cells in the pathological 

environment after transplantation; other clinical trials with larger and more 

homogenous groups of patients are needed, so as to enable better comparison with 

control treatments (Lindvall and Kokaia).  

 

5.3. Effect of mesenchymal stromal cells in the treatment of ALS. 

Studies examining the effect of stem cells on asymptomatic animal models of ALS 

have shown a positive effect on motor activity and survival after the intravenous 
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transplantation of human umbilical cord blood (hUCB) and mouse and rat neural 

stem cells, the intraspinal grafting of mouse BM cells and the intrathecal delivery 

of  hMSC (Kim et al., Mazzini et al., 2004, Garbuzova-Davis et al., 2008, Vercelli 

et al., 2008, Mitrecic et al., 2010). However, these studies cannot have any direct 

relevance for the treatment of human patients as there are no specific markers for 

diagnosing ALS in advance of the first symptoms (Turner et al., 2009). We have 

shown that, even after symptoms have appeared, the combined (intraspinal and 

intravenous) transplantation of rat  BMSC as well as the intrathecal transplantation 

of hMSC can result in a neuroprotective effect that increases motor activity and 

extends the lifespan of ALS rats. Our results confirm those of Boucherie et al., who 

used symptomatic ALS rats for the intrathecal delivery of hMSC, with a similar 

outcome (Boucherie et al., 2009). The very rare (< 1%) expression of neuron-like 

markers such as nestin and MAP2 in MSC has been reported after intraspinal 

transplantation into SOD1 mice, while others have reported massive differentiation 

into astrocytes (Vercelli et al., 2008, Boucherie et al., 2009). In our study we did 

not observe NF160-, MAP2-, βIII-tubulin- or nestin-positive cells among the 

transplanted GFP
+
 MSC. However, there was a higher expression of neurofilaments 

in the cell-treated animals compared with the rats injected with PBS. This suggests 

that the implanted cells did not transdifferentiate but were nonetheless able to 

protect the host environment. Even more, we have shown using the TUNEL assay 

that the engraftment of BMSC into symptomatic animals influenced the extent of 

apoptosis in MN and supported the survival of larger neurons. Our results could be 

explained by the activation of BCL2 genes by MSC or by the inhibition of caspases 

(especially 1 and 3), which have been shown to be active in spinal MN in the ALS 

animal model (Kostic et al., 1997, Li et al., 2000). 

We also have to consider the fact that the effect of MSC is dose- and 

passage- dependent. It has been established earlier by our group that BMSC of 
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early passages (up to the fifth) are the most suitable for inducing a neuroprotective 

effect on the post-traumatic spinal cord. The work by Choi et al. has shown that 

MSC from earlier passages are more suitable for stem cell therapy because of their 

stability, anti-inflammatory and neuroprotective effects (Choi et al., 2010). In our 

experiments involving the intraspinal and intravenous application of passage four 

rBMSC (10
5
 and 2x10 

6
 cells, respectively), we have shown that this combination is 

effective in providing a neuroprotective effect and prolonging the survival of 

symptomatic SOD1 (G93A) rats. We also performed experiments involving the 

intrathecal delivery of hBMSC. Using this approach, we have seen that injecting 

5x10
5
 hBMSC intrathecally is sufficient to cause a significant difference in the 

motor activity and survival of rats at the early stage of ALS when compared with a 

vehicle-injected group of animals. Our results are more relevant to the real clinical 

situation and are in accordance with previously published works describing the  

positive effect on asymptomatic SOD1 animals induced by the application of 10
6
 

cells, while 10
5
 cells failed to extend the lifespan or to increase the MN count in the 

same animal model (Kim et al., Habisch et al., 2007). Another published work 

employing the intrathecal delivery of hMSC into symptomatic ALS rats, co-

localized a decreased motoneuronal loss in the lumbar spinal cord, preserving 

motor function and extending the survival of SOD1(G93A) rats with decreased 

inflammation, the attenuated proliferation of microglial cells and the reduced 

expression of COX-2 and NOX-2 (Boucherie et al., 2009). 

To deliver a sufficient number of cells intraspinally into patients would 

require a rather invasive approach, including a laminectomy and opening of the 

meninges of patients who are already affected by a devastating disease. In the 

literature there are indications that the blood-brain barrier is affected in SOD1 

transgenic animals, thus allowing transplanted cells to pass through the barrier 

following intravenous administration and exerting a local neuroprotective influence 
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on the host cells (Garbuzova-Davis et al., 2007). Recently, it has been reported that 

7 days after the intravenous injection of neural stem cells into the tail vein, up to 

6% of the cells were found in the central nervous system of pre-symptomatic ALS 

rats, up to 13% in symptomatic ALS rats, while only up to 0.3% in wild-type rats 

(Mitrecic et al., 2010).  

The successful application of MSC in rodent models of FALS established a 

platform for clinical studies in human patients (Vercelli et al., 2008). The outcome 

after nearly 9 years of monitoring 19 ALS patients, enrolled in two phase I clinical 

trials, showed no clear clinical benefits in these patients. However, the collected 

data show support for the implantation of autologous bone marrow MSC into the 

dorsal spinal cord, as no structural changes (including tumor formation) or 

deterioration in psychosocial status were found, and all patients coped well with the 

procedure (Mazzini et al., 2003, Mazzini et al., 2010, Mazzini et al., 2011). 

Another clinical study used the transplantation of mononuclear CD133(+) 

autologous stem cells from the peripheral blood into the frontal motor cortex of  

ALS patients (Martinez et al., 2009). This method of cell application significantly 

prolonged the survival of the treated patients and the maintenance of their lifestyle 

compared with untreated control patients. Deda et al. reported the results of a one 

year follow-up after the implantation of bone marrow-derived hematopoietic 

progenitor stem cells into the anterior part of the spinal cord of thirteen patients 

with a bulbar form of SALS: nine patients became much better compared with their 

pre-operative status; one patient was stable without any decline or improvement in 

his status; and three patients died 1.5, 2 and 9 months, respectively, after stem cell 

therapy as a result of lung infection and myocardial infarction (Deda et al., 2009). 

Taking together the current state of research, we can conclude that the recruitment 

and selection of appropriate patients into larger trials will be needed to test the 

efficacy of MSC treatment.  
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5.4. PNN and plasticity in the adult CNS.  

5.4.1. Modulation of neuroplasticity with chondroitinase.  

The last decades have brought new evidence of the considerable capacity of the 

CNS for some degree of recovery following injury, which can be further enhanced 

by influencing plasticity through the digestion of PNN with chondroitinase ABC 

(Fawcett et al., 2007, Kwok et al., 2008, Bartus et al., 2011). Barritt et al. were the 

first to specifically demonstrate that a bacterial enzyme isolated from Proteus 

vulgaris called chaseABC can induce plasticity in both injured and intact spinal 

pathways within the spinal cord following injury (Barritt et al., 2006). Both acute 

and delayed treatment with chaseABC has been shown to promote the significant 

rescue of injured rubrospinal projection neurons, restoring cell area in the injured 

red nucleus up to 80% and 70%, respectively (Carter et al.). 

Chondroitinase ABC acts through the digestion of the condensed compartment of 

the ECM around neurons in the form of PNN.  The persistence of CSPG-containing 

PNN throughout life is thought to be crucial for the maintenance of the structural 

integrity of synaptic contacts (Bartus et al., 2011). However, under pathologic 

conditions such as SCI or TBI, the adult mammalian CNS is hindered from 

spontaneous recovery. As already mentioned, the condensed ECM of PNN contains 

several CSPG together with long chains of hyaluronan (HA), tenascin-C and 

tenascin-R with the addition of one or more link proteins (Crtl1/Hapln1 and 

Bral2/Hapln4) and larger amounts of tenascin-R; all of these molecules form a 

dense cartilage-like structure. Interestingly, despite our knowledge about the 

composition of PNN, until now it has been a mystery which molecule produced by 

PNN-enveloped neurons triggers their formation. 

We have shown for the first time that the production of link protein is the 

major event that triggers the formation of PNN in the extracellular matrix and 

eventually limits plasticity in adult CNS structures such as  the cuneate nucleus and 
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visual cortex (Carulli et al., 2010a). Anatomical plasticity was evaluated using an 

elegant model previously used by Massey, in which terminal sprouting into 

denervated territory has been shown to be enhanced by chaseABC treatment 

(Massey et al., 2006). They reported no growth of the preserved terminals into the 

denervated regions, but after treatment with chaseABC, the residual sensory inputs 

sprouted into the denervated regions. We found that Crtl1 KO animals responded to 

partial denervation of the cuneate nucleus similarly as did chaseABC-treated 

animals, with sprouting of the residual axons into denervated regions of the cuneate 

nucleus, but this did not occur in control animals. Our results suggest that in adult 

animals, the presence of PNN is the key factor in the extracellular matrix-related 

restriction of plasticity. Evidence for this also comes from an earlier publication by 

Apostolova et al., who reported that animals lacking tenascin-R,  have abnormal 

PNN and retain some plasticity in adulthood (Apostolova et al., 2006). Our results, 

together with previously published findings, provide direct evidence that PNN 

control plasticity in the CNS and suggest that digestion of these structures is how 

ChABC reactivates CNS plasticity.  

 

5.4.2. Modulation of plasticity and regeneration by a combination of 

chondroitinase and stem cells.  

Approximately 70–80 percent of spinal neurons are encapsulated by PNN, 

and these are particularly abundant around projection and large motoneurons 

(Murakami et al., 1995). For this reason, we can also hypothesize that the role of 

PNN is not limited to the restriction of plasticity, but that they could also be 

involved in the mechanisms underlying the development of CNS pathologies or 

serve as a possible biological marker to diagnose motoneuron diseases. In our 

experiments we observed attenuated PNN around the spinal MN of SOD1-rats at 

the terminal stage of ALS (data not shown). Collins and Bowser reported a 
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decreased level of tenascin-R protein in the CSF as well as a striking loss of normal 

tenascin-R immunoreactivity around the cell bodies and processes of MN and also 

the aberrant morphology of PNN in the spinal cord of ALS patients. These authors 

suggested that the changes in the extracellular matrix are implicated in the 

pathogenesis of ALS (Collins M. A., 2011). Considering these findings, we can 

speculate that the extensive migration of intraspinally grafted MSC, found in our 

experiments involving SOD1 rats, might be explained by the lower density of the 

ECM caused by attenuated PNN, as reported in studies combining chaseABC with 

stem cell implantation. 

The ability of chaseABC to promote plasticity and functional recovery after 

acute and chronic injury of the mammalian spinal cord is extremely encouraging in 

translational medicine (Tester and Howland, 2008, Garcia-Alias et al., 2009). 

However, considering the complex pathways and interactions within the spinal cord 

and in the CNS generally, a combination of chaseABC with other strategies might 

bring even better results. The combination of chaseABC with NPCs promoted the 

engraftment and migration of the transplanted cells and induced the outgrowth of a 

greater number of growth-associated protein-43-positive fibers at the lesion 

epicenter, compared with NPC transplantation alone (Ikegami et al., 2005). Similar 

effects were achieved after the intraspinal transplantation of olfactory mucosa 

progenitor cells in combination with chaseABC (Huang et al.). Karimi-Abdolrezaee 

used a combination of chaseABC, NPC and growth factors to enhance 

neuroanatomical plasticity in the chronically injured spinal cord; this strategy 

significantly improved neurobehavioral recovery and axonal integrity, promoted 

the plasticity of the corticospinal tract, enhanced the plasticity of descending 

serotonergic pathways, and was accompanied by the better integration, extensive 

migration and differentiation of NPC into oligodendrocytes within the recipient 

spinal cord (Karimi-Abdolrezaee et al., 2010). Interestingly, apart from the 



123 

 

improvement of motor and sensory functions, combined cell implantation and 

chaseABC delivery can be beneficial for bladder function after complete SCI 

(Fouad et al., 2009). A recent publication has shown that implanting an autologous 

peripheral nerve graft into the animals that underwent a C2-hemisection combined 

with  chaseABC treatment, led to an increase in the number of serotonergic fibers, 

promoted local sprouting, and enhanced graft entry and exit of axons, which in turn 

promoted the functional regeneration of respiratory pathways in the spinal cord 

(Alilain et al., 2011).  

Encouragingly, as outlined above, new strategies offer interesting 

perspectives for neuroanatomical and functional recovery in spinal cord 

pathologies. However, the truth is that before human clinical application can 

become routine, many significant challenges still remain, most notably in assessing 

the safety, routes and patterns of administration and biodistribution, as well as a 

better understanding of the molecular mechanisms underlying the beneficial effects 

of different therapeutic agents. Further studies in non-human primates will also be 

keenly anticipated in the future and might bring us closer to the treatment of human 

patients. 
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6. CONCLUSIONS 

The main findings of the thesis are summarized below: 

1. We have optimized protocols for cell delivery (intraspinal, intravenous and 

intrathecal) and have shown that the transplantation of MSC by any of the 

above protocols is a safe procedure.  

2. An in vitro analysis of pAMSC revealed the enhanced expression of 

neurotrophic factors and neural markers as well as better survival in the host 

tissue after implantation into SCI if compared with naïve AMSC. Both pAMSC 

and naïve AMSC interacted closely with the host tissue, wrapping host axons 

and oligodendrocytes, and rarely expressed NG2 or CD31, but not neuronal 

markers.  

3. We established that the organization of CSPG into perineuronal nets is 

triggered by the synthesis of Crtl1by neurons and therefore that this is a key 

event in diminishing plasticity in the adult CNS. 

4. Animals lacking the link protein Ctrl1 (Hapln1) responded to partial 

denervation of the cuneate nucleus similarly as did chaseABC-treated animals, 

with the sprouting of the residual axons into the denervated regions.  

5. The combined grafting of naïve rBMSC into symptomatic rats decelerates the 

loss of motor functions and increases the general survival of SOD1 (G93A) 

transgenic rats. Treated rats had a larger number of MNs, and these MN were of 

a larger size and less affected by apoptosis.  

6. Intraspinally grafted GFP
+
 rBMSC survived until the end stage of familial ALS, 

migrated in the white matter both rostrally and caudally from the injection site 

and did not differentiate into either neuronal or glial phenotypes. 

7. The intrathecal delivery of hBMSC into symptomatic rats significantly 

prolongs motor function and the overall survival of the animals when compared 

to a vehicle-injected group of animals.  
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7. SUMMARY 

Adipose-derived MSC could be used as an alternative for bone marrow MSC in the 

treatment of acute SCI. We used the intraspinal grafting of rat adipose-derived 

naïve and predifferentiated MSC to improve motor function after a balloon-induced 

compression lesion of the spinal cord. Grafted cells survived for seven weeks after 

transplantation, improved motor activity and integrated into the host tissue. They 

expressed the oligodenrocyte precursor marker NG2 and, occasionally, the 

astrocytic marker GFAP, but did not transdifferentiate into a neuronal phenotype.  

Bone marrow MSC may change the disease course and extend lifespan in a rat 

model of ALS. Combined intraspinal and intravenous transplantation of rat BMSC 

was performed in symptomatic rats overexpressing the SOD1 G93A gene. Cell-

treated animals lived longer compared with sham-treated rats and displayed 

significantly improved motor activity and grip strength. Rat BMSC survived until 

the end stage of the disease and were migrating along the white matter of the spinal 

cord. Grafted cells increased the number of host cells displaying positive staining 

for neurofilaments and significantly increased the number and also the size of the 

remaining spinal motoneurons 10-11 weeks after delivery, compared with vehicle-

injection. The defragmentation of DNA, a sign of apoptosis, was less pronounced 

after combined cell therapy.  

The effect of intrathecal (cistern magna) application of human BMSC on the motor 

function and survival of SOD1 G93A rats was evaluated after confirming the 

disease onset. The injection of hBMSC into the cerebrospinal fluid of symptomatic 

rats resulted in a slower decline of motor function and prolonged survival 

compared to vehicle-injected rats.  

Perineuronal networks are found in the extracellular matrix around neurons; the 

digestion of these structures with chaseABC reactivates CNS plasticity. The 
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molecule that triggers PNN formation was identified and also direct evidence that 

PNN control plasticity in the adult CNS was found: mice lacking Crtl1 sprouted 

residual axons into the partially denervated cuneate nucleus after dorsal 

hemisection, between levels C6 and C7, in a similar manner as did chaseABC-

treated animals.  

Mesenchymal stromal cells are multipotent cells that currently are one of the best 

candidates for the treatment of neurological disorders such as spinal cord injury and 

amyotrophic lateral sclerosis. The results described in the thesis show that the 

transplantation of MSC, isolated either from fat tissue or bone marrow, is a safe 

and effective procedure that enhances regeneration/neuroprotection after SCI and in 

ALS. A combination of MSC with chaseABC in the treatment of SCI could 

facilitate regeneration and thus could be an attractive approach for translational 

bench-to-bedside studies.  
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