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Abstrakt 

Mitochondriální proteom savců je tvořen ~1500 různými proteiny, z nichž není stále 

přibližně jedna čtvrtina plně charakterizována. 

Jedním z těchto proteinů je TMEM70 podílející se na biogenezi eukaryotické F1Fo-ATP 

syntázy. Mutace v TMEM70 způsobují izolovaný nedostatek ATP syntázy, což často vede 

u pacientů k letálním neonatálním mitochondriálním encefalokardiomyopatiím. Abychom 

porozuměli molekulárnímu mechanismu působení TMEM70, vytvořili jsme konstitutivní 

Tmem70 knockout myší model, který byl embryonálně letální s narušenou biogenesí ATP 

syntázy. Následně vytvořený myší indukovatelný Tmem70 knockout model byl letální 

v 8. týdnu po indukci. Především vykazoval funkční poruchu jater, což je v kontrastu 

k převážně kardiologickému fenotypu u lidí v počátku onemocnění. Analýza jaterních 

mitochondrií odhalila tvorbu labilních subkomplexů ATP syntázy postrádajících 

podjednotku c. V případě deficitu TMEM70 tedy nebyl inkorporován c-oligomer do ATP 

syntázy, což vedlo ke kritickému poškození produkce energie mitochondriemi, analogickému 

k dysfunkci TMEM70 u lidí. V modelech s deficitem TMEM70 dosáhl nedostatek ATP syntázy 

limitu pro jeho patologický projev, který jsme stanovili na 30 %. Pozorovali jsme také 

kompenzační zvýšení obsahu většiny komplexů OXPHOS, ale neočekávaně také ANT a PiC, 

komponent ATP syntasomu, které by měly být asociovány s ATP syntázou. 

Studovali jsme také podjednotku ATP syntázy DAPIT (kódovanou Usmg5 genem). 

Vytvořili jsme potkany s deficiencí DAPIT, kteří byli plně životaschopní, ale měli nižší 

tělesnou hmotnost, výrazně snížené množství tukové tkáně a hypertrofii pravé komory srdeční. 

Pozorovali jsme normální množství ATP syntázy, nicméně byla přítomna převážně 

v monomerní formě, což ukazuje na úlohu DAPIT při tvorbě dimerů ATP syntázy. Funkce ATP 

syntázy byla snížena o ~10 % v játrech i v srdci. Její vyšší citlivost k inhibitoru oligomycinu 

než k aurovertinu naznačuje, že DAPIT blokuje vazebné místo oligomycinu na Fo části. 

Závěrem můžeme shrnout, že jsme vytvořili unikátní modely deficitu mitochondriálních 

proteinů a charakterizovali funkci proteinů TMEM70 a DAPIT. 

 

Klíčová slova: mitochondriální proteom, mitochondriální patologie, F1Fo-ATP syntáza, 

TMEM70, DAPIT, Usmg5, knockout modely 
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Abstract  

It has been estimated that the mammalian mitochondrial proteome consists of ~1500 

distinct proteins and approximately one quarter of them is still not fully characterized. 

One of these proteins is TMEM70, protein involved in the biogenesis of the eukaryotic 

F1Fo-ATP synthase. TMEM70 mutations cause isolated deficiency of ATP synthase often 

resulting in a fatal neonatal mitochondrial encephalocardiomyopathies in patients. 

To understand the molecular mechanism of TMEM70 action, we generated constitutive 

Tmem70 knockout mice, which led to embryonic lethal phenotype with disturbed ATP synthase 

biogenesis. Subsequently generated inducible Tmem70 mouse knockout was lethal by the week 

8 post induction. It exhibited primarily impaired liver function, which contrasts with 

the predominantly cardiologic phenotype at disease onset in humans. Liver mitochondria 

revealed formation of labile ATP synthase subcomplexes lacking subunit c. Thus, in case of 

TMEM70 deficiency c-oligomer was not incorporated into ATP synthase, which led to critical 

impairment of mitochondrial energy provision, analogous to TMEM70 dysfunction in humans. 

In TMEM70 deficient models, the ATP synthase deficiency reached the ‘threshold’ for its 

pathologic presentation, which we quantified at 30 %. We observed compensatory increases 

in the content of most OXPHOS complexes but unexpectedly also of ANT and PiC, 

components of ATP synthasome, which should associate with ATP synthase. 

We also studied ATP synthase subunit DAPIT (coded by Usmg5 gene). We generated 

DAPIT deficient rats, which were fully viable but had lower body weight, pronounced decrease 

of fat tissue and right ventricular hypertrophy. We observed normal levels of assembled ATP 

synthase, however, it was predominantly present in the monomeric form, pointing at the role of 

DAPIT in formation of ATP synthase dimers. ATP synthase function was reduced by ~10 % 

in both liver and heart. Its higher sensitivity to inhibitor oligomycin than to aurovertin indicated 

that DAPIT shields oligomycin binding site at Fo moiety. 

In conclusion, we generated unique models of mitochondrial proteins deficiency 

and characterised TMEM70 and DAPIT function. 

 

Key words: mitochondrial proteome, mitochondrial pathology, F1Fo-ATP synthase, TMEM70, 

DAPIT, Usmg5, knockout models. 
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1 INTRODUCTION 

Incomplete knowledge of biochemical processes in mitochondria forms a barrier 

between the mitochondrial disease and its possible treatment. Recently, a lot of effort has 

focused on the mitochondrial research to shed more light on the mitochondrial function. Many 

mitochondrial proteins have unknown function and generating animal knockout models 

is a proven way to clarify it. I have set out to contribute to the research of mitochondrial proteins 

by analysing rodent models of deficiency of TMEM70 and DAPIT - new proteins related 

to ATP synthase. In addition, I focussed on more general prerequisites for the pathological 

presentation of ATP synthase deficiencies. Here I summarise the overview of literature relevant 

for this research. 

 

1.1 Mitochondria 

Mitochondria are eukaryotic organelles playing critical role in cellular energy 

metabolism, small molecule metabolism, ion homeostasis, immune signalling and cell death. 

According to the current hypothesis, mitochondria originated from once free-living cells 

(Sagan, 1967). As the cell with the most related genome was identified α-proteobacterium 

Rickettsia prowazekii, which likely entered host cell via symbiosis during eukaryotic evolution 

⁓1.5-2 billion years ago (Andersson et al., 1998). Pioneering electron microscopy studies in the 

1950’s revealed that mitochondria are composed by two membranes (Palade, 1953) - outer and 

inner mitochondrial membrane (OMM, IMM) separated by intermembrane space (IMS). IMM 

surrounds intramitochondrial space termed matrix (Figure 1). Although mitochondria are often 

depicted as singular oval-shaped structures, they usually undergo fusion and fission processes 

that give rise to the very dynamic mitochondrial reticulum (Bereiter-Hahn, 1990). 

The OMM is partially permeable to ions and metabolites and contains three isoforms 

of protein pores termed porins also known as the voltage-dependent anion channels (VDAC) 

(Szabo and Zoratti, 2014). 

The IMM surface is enlarged by invaginations called cristae and together with matrix 

is the main place of metabolic processes in mitochondria. The membrane composition differs 

from that of OMM. IMM is enriched with phospholipid cardiolipin and contains almost 

no sterols (Horvath and Daum, 2013). Roughly 80 % of membrane is composed of proteins 

(Guidotti, 1972). Many of these proteins are involved in transport of metabolites and ions 

between cytosol and matrix (Szabo and Zoratti, 2014) and in the process of oxidative 
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phosphorylation (OXPHOS) (Nicholls and Ferguson, 2013). OXPHOS system itself is essential 

in cellular energy provision as it produces ⁓90 % of cellular adenosine triphosphate (ATP). 

The matrix is a compartment where tricarboxylic acid (TCA) cycle, β oxidation of free 

fatty acids and pathways of amino acid oxidation take place (Nelson and Cox, 2017) and it also 

hosts pathways of haem metabolism (Barupala et al., 2016). 

The IMS coordinates processes between matrix and cell cytoplasm. It includes 

signalling pathways, exchange of proteins, lipids, or metal ions. Important protein of IMS 

is cytochrome c, which is mobile component of OXPHOS and mediator of apoptosis (Herrmann 

and Riemer, 2010). 

 

 

Figure 1. Structure of mitochondria. Mitochondria are composed of the outer and inner 

membranes, which are separated by the intermembrane space. The inner mitochondrial 

membrane surface is enlarged by cristae connected with intermembrane space by cristae 

junctions. Inside of mitochondria is a space termed ‘matrix’. Adopted and modified from 

(Lodish et al., 2007). 

 

Mitochondria have their own genome (mtDNA) that encodes transfer RNAs (tRNAs), 

ribosomal RNAs (rRNAs) and (in case of mammals) only 13 mitochondrial proteins. The most 

of the α-proteobacterium genome was transferred to the cell nucleus during evolution. The one 

of the possible explanations, why mitochondria retained the genome for a few proteins, is their 

hydrophobicity that might embarrass their import across mitochondrial membranes (Falkenberg 
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et al., 2007). Most of the mitochondrial proteins are encoded by nuclear genome (nDNA), 

synthesised in cytosol and transported into the mitochondria by protein translocase systems, 

which are primarily translocase of OMM – TOM complex and translocases of inner membrane 

– TIM complexes (Wasilewski et al., 2017). 

 

1.2 The mammalian mitochondrial genome and proteome 

1.2.1 Mitochondrial genome and its expression 

In vast majority of species, mtDNA is maternally inherited. Mammalian mtDNA 

is double stranded, circular and in humans it consists of 16569 bp. In mammals it encodes 

13 proteins involved in OXPHOS. It encodes also 2 rRNAs and 22 tRNAs that play roles 

in intra-mitochondrial proteosynthesis (Anderson et al., 1981, Andrews et al., 1999). 

Human somatic cell contains 1000-5000 copies of mtDNA associated with many 

proteins forming particles termed ‘nucleoids’. The main protein packaging mtDNA into 

nucleoids is transcription factor A (TFAM) protein (Kukat and Larsson, 2013, Kukat et al., 

2015). In addition, Twinkle helicase involved in replication (Spelbrink et al., 2001) and many 

other proteins associate with nucleoids (Hensen et al., 2014). Moreover, NDUFS6, C7ORF55, 

and FASTKD1 were validated as novel mitochondrial nucleoid proteins using 

peroxidase-catalysed proximity biotinylation, APEX (Han et al., 2017). Nucleoids are thus 

places of initial processing of mtRNA and ribosome assembly (Bogenhagen et al., 2014). Other 

particles containing RNAs and RNA-binding proteins are RNA granules in close proximity 

to mitochondrial nucleoids. These are centres for posttranscriptional RNA processing 

and ribosome biogenesis (Antonicka and Shoubridge, 2015). 

Each molecule of mtDNA is composed of heavy (H) and light (L) strand. Most of genes 

are encoded on the H-strand of mtDNA, eight tRNAs and one polypeptide are encoded by the 

L-strand. Mitochondrial genome is highly compact and lacks introns. The mtDNA molecules 

have a small non-coding region controlling mtDNA expression that contains the origin 

of leading H-strand replication and main promoters for transcription. It forms a triplex structure 

known as a displacement loop (D-loop). L-strand also contains a single promoter region 

for transcriptional initiation (Falkenberg et al., 2007) (Figure 2).  

The human mtDNA is replicated by DNA polymerase γ (POLG) with help of additional 

components of mtDNA replication machinery, which are topoisomerase, Twinkle mtDNA 

helicase, mitochondrial RNA polymerase, RNaseH1, mitochondrial single-stranded 

DNA-binding protein and mitochondrial DNA ligase III. The replication mechanism of mtDNA 
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is still not fully understood. mtDNA is replicated most likely according to the strand-

displacement model (Young and Copeland, 2016). 

 

 

Figure 2. Structure of the human mitochondrial genome. Human molecular genome 

is circular, double stranded DNA molecule. It is composed of heavy (H) and light (L) strand. 

H-strand includes a 1.1-kb non-coding region called displacement loop (D-loop) on heavy 

strand containing origin for transcription (OH) and replication (HSP) of mtDNA. The L-strand 

also contains origin for its replication (OL) and transcription (LSP). mtDNA encodes 2 rRNA, 

22 tRNAs, and 11 mRNAs for 13 proteins of respiratory complexes. Single letters (Q, L) indicate 

tRNA gene. Adopted and modified from (Gorman et al., 2016). 

 

Moreover, mtDNA RNA polymerase (POLRMT), which has promoter binding 

specificity and catalytic polymerase activity, is responsible for mtDNA transcription (Gaspari 

et al., 2004). TFAM (Shi et al., 2012), mitochondrial transcription factors B1 and B2 

(Falkenberg et al., 2002) and mitochondrial transcription elongation factor (TEFM) (Minczuk 

et al., 2011) are also required for efficient transcription. Transcription produces polycistronic 

precursor RNAs, which are processed to individual mRNAs, rRNAs and tRNAs 

by a protein-only RNase P complex (Holzmann et al., 2008) and ELAC2 (Brzezniak et al., 

2011) associated with nucleoids (Bogenhagen et al., 2014). Produced RNAs (except ND6 

mt-mRNA) undergo post-transcriptional modifications. The only known modification 

16 569 bp 



16 

 

of mt-mRNAs is the addition of a poly(A) tail catalysed by mitochondrial poly(A) polymerase 

(mtPAP) (Tomecki et al., 2004). 

 The 13 mitochondrial genes encode seven complex I subunits (ND1-ND6, ND4L), 

cytochrome b, three complex IV subunits (COXI-III) and two subunits of the Fo part of ATP 

synthase (ATP a and A6L) (Falkenberg et al., 2007). They are translated on mitochondrial 

ribosomes (mitoribosomes) composed of a 39S large (mt-LSU) and 28S small (mt-SSU) 

subunits, which are complexes of mitoribosomal proteins (MRPs) encoded in nucleus 

and a catalytic 12S mt-rRNA and 16S mt-rRNA. The initiating codons recognised 

by the mitoribosome are AUG, AUA and AUU, to which f-Met-tRNAMet is recruited. 

Termination codons are UAA and UAG (Mai et al., 2017).  

The remaining respiratory chain subunits and all other proteins required in mitochondria 

(for example proteins of Krebs cycle, protein import, fatty and amino acid oxidation, apoptosis, 

biosynthesis of ketone bodies, pyrimidines, haem and urea) are encoded in a cell nucleus and 

translated in cytoplasm. Transcription of respiratory genes is regulated by nuclear regulatory 

factors NRF-1, NRF-2 and ERRα and their co-activators PGC-1a, PGC-1b, and PRC 

(Scarpulla, 2006). Synthesised protein precursors are imported into mitochondria by specialised 

transporters that recognize signal of mitochondrial targeting sequence, which specifies 

distribution of protein precursors to OMM, IMM, IMS or matrix. Major protein import 

pathways to mitochondria are through the channel of TOM protein complex and through TIM23 

to matrix or TIM22 translocase to IMM (Wasilewski et al., 2017). To avoid accumulation 

of unfolded proteins in mitochondria, the crosstalk between mitochondria and nucleus 

is important. It is triggered by the mitochondrial unfolded protein response (UPRmt), which 

regulates transcription of mitochondrial proteins but its signalling mechanism in mammals 

remains still unclear (Wasilewski et al., 2017). 

Expression of mitochondrial proteins is regulated in dependency on tissue energy 

demands. It is controlled not only by previously mentioned factors but also by mtDNA copy 

number, which is supposedly controlled by nuclear encoded Twinkle helicase (Tyynismaa et 

al., 2004, Milenkovic et al., 2013). 
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1.2.2 Mitochondrial protein databases 

 Knowledge of the mitochondrial proteome is essential for studying mitochondrial 

functions and diseases. It has been estimated that the mammalian mitochondrial proteome 

consists of ~1500 distinct proteins (Calvo and Mootha, 2010). There have been several efforts 

to establish such an inventory as a universal tool for mitochondrial biology researchers. 

However, not a single method can identify all mitochondrial proteins, therefore solid 

inventories depend on integrative approaches. The most common strategies are searching 

for mitochondrial targeting sequences, mass spectrometry (MS)-based proteomics, microscopy, 

and analysis of sequence homology. One of the prominent inventories MitoCarta database was 

compiled in 2008. It includes 1013 human genes and 1098 mouse genes and was assembled 

as inventory using multiple experimental and computational approaches (Pagliarini et al., 

2008). Mitochondria were isolated and purified from 14 mouse tissues to identify enriched 

mitochondrial proteins by in-depth mass spectrometry. In addition to the MS, GFP epitope 

tagging followed by microscopy, literature curation and several in silico sequence analyses 

were integrated using Bayesian algorithms. In 2015, MitoCarta inventory was updated 

to MitoCarta 2.0 containing 1158 human genes and 1158 mouse genes encoding 

for mitochondrial proteins (Calvo et al., 2016) and then updated yet again to MitoCarta+ 

(1166 human mitochondrial proteins) (Floyd et al., 2016). 

Similar database to MitoCarta is Integrated Mitochondrial Protein Index (IMPI) 

developed using machine learning to predict mitochondrial protein localisation in human, 

mouse, rat and cow. IMPI version Q3 2017 contains 1550 human genes encoding proteins 

localised in mitochondria - 1130 known to be mitochondrial and 420 predicted to be 

mitochondrial using the evidence in MitoMiner (Smith and Robinson, 2016). MitoMiner 

(http://mitominer.mrc-mbu.cam.ac.uk) is an integrated web resource of mitochondrial 

localisation evidence and phenotype data for mammals, zebrafish and yeasts. It comprises 

number of sources including both MitoCarta and IMPI reference sets, the Human Protein Atlas 

(Uhlen et al., 2015), mitochondrial targeting sequence prediction tools (iPSORT, MitoProt, 

TargetP, MitoFates) and many others.  

The Gene Ontology (GO) database is a relational database comprised of the Gene 

Ontology ontologies (Cellular Component, Biological Process, Molecular Function) as well as 

the annotations of genes and gene products to terms in those ontologies. Major model organism 

databases and other bioinformatics resource centres contribute to the project that is maintained 

and annotated by the Gene Ontology Consortium and is available at geneontology.org (Gene 
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Ontology, 2008). Gene Ontology term Mitochondrion (Cellular Component, GO:0005739) 

1647 human mitochondrial genes are found in this database. 

The overlap of mitochondrial entries in IMPI, MitoCarta2.0 and Gene Ontology 

Database is shown in Figure 3. 

 

 

Figure 3. Overlap of mitochondrial protein databases. Integrated Mitochondrial Protein Index 

(IMPI) is collection of 1550 genes encoding proteins with strong evidence for cellular 

localisation within the mammalian mitochondrion (human, mouse, rat and cow). MitoCarta2.0 

is an inventory of 1158 human and mouse genes encoding proteins with strong support 

of mitochondrial localisation. 1647 human mitochondrial genes were found in Gene Ontology 

(GO) database. Adopted and modified from www.mrc-mbu.cam.ac.uk/impi (THE 

MITOCHONDRIAL PROTEOME (IMPI). 
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1.3 Oxidative phosphorylation system 

OXPHOS and TCA cycle are key metabolic pathways in mitochondria. OXPHOS 

is composed of five protein complexes I-V designated as CI, CII, CIII, CIV, CV (ATP 

synthase), then two mobile electron carriers [(coenzyme Q (CoQ) and cytochrome c]. OXPHOS 

complexes are localised in the IMM and formed by proteins coded by 13 mitochondrial genes 

and at least 77 nuclear genes (Calvo and Mootha, 2010). 

 

 

Figure 4. Oxidative phosphorylation system (OXPHOS). The key components of the OXPHOS 

are four complexes of respiratory chain (CI–CV) and ATP synthase (CV). Other source 

of electrons is mitochondrial glycerol-3 phosphate dehydrogenase (mGPDH) that oxidizes 

glycerol-3-phosphate (G3P) to dihydroxyacetone phosphate (DAP). Essential for ATP 

production by ATP synthase are also ADP/ATP translocase (ANT) and inorganic phosphate 

carrier (PiC). Proton gradient is also used by uncoupling proteins (UCP), e.g. UCP1 present 

in mitochondria of brown adipose tissue. IMS – intermembrane space, IMM – inner 

mitochondrial membrane. 

 

1.3.1 Respiratory chain 

Mitochondrial respiratory chain (RC) is composed of complexes CI-CIV (Table 1) 

which transport electrons from reduced coenzymes NADH and FADH2 to molecular oxygen 

reducing it to H2O. RC has also other sources of electrons such as glycerol-3 phosphate 

dehydrogenase, especially in brown adipose tissue, electron-transferring flavoprotein 

dehydrogenase (ETF:Q) and dihydroorotate dehydrogenase (Nicholls and Ferguson, 2013). 

Electrons entering OXPHOS originate from metabolised sugars and lipids through a series 

of reactions such as glycolysis, β-oxidation and TCA cycle. 
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Table 1. Mammalian complexes I-IV of respiratory chain and their properties including 

catalytic function, total number of subunits, subunits encoded by mtDNA, molecular weight 

of whole complex, prosthetic groups and number of known factors necessary for complex 

assembly. 

 CI CII CIII CIV 

 NADH 

dehydrogenase 

Succinate 

dehydrogenase 

Cytochrome bc1 

complex 

Cytochrome c 

oxidase 

Catalytic 

function 

NADH:ubiquinone 

oxidoreductase 

 

EC 1.6.5.3 

succinate:ubiquinone 

oxidoreductase 

 

EC 1.3.5.1 

ubiquinol: 

ferricytochrome c 

oxidoreductase 

EC 1.10.2.2 

ferrocytochrome c: 

oxygen 

oxidoreductase 

EC 1.9.3.1 

Number of 

subunits 

(mtDNA 

encoded) 

45 (7) 4 (0) 11 (1) 13 (3) 

Molecular 

weight 

(kDa) 

~1000 ~130 ~240 ~20  

Prosthetic 

groups 

FMN, 

8 [Fe-S] clusters 

FAD, 3 [Fe–S] 

clusters, haem b 

haem b and c1, 

2 [Fe–S]  

Haem a and a3, 

CuA, CuB 

Assembly 

factors 
13 4 6 >20 

References 

(Sanchez-

Caballero et al., 

2016, Wirth et al., 

2016) 

(Bezawork-Geleta et 

al., 2017) 

(Schagger et al., 

1986, Iwata et al., 

1998, Fernandez-

Vizarra and 

Zeviani, 2015) 

(Tsukihara et al., 

1996, Kadenbach 

and Huttemann, 

2015) 

 

 These electrons are transported through complexes of RC containing prosthetic groups 

serving as electron carriers (Figure 4). According to chemiosmotic theory, transport of electrons 

through CI, CIII, and CIV is coupled with transmembrane proton pumping from matrix across 

IMM into IMS contributing to proton gradient (∆pH) required for ATP generation by F1Fo-ATP 

synthase (also complex V, CV) (Mitchell, 1961). Proton gradient as well as other concentration 

gradients across IMM are utilised by many membrane transporters. They transport ions, 

metabolites and other molecules across the IMM. For example, ADP/ATP translocase (ANT) 

and inorganic phosphate carrier (PiC) transport substrates for ATP synthesis into mitochondrial 
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matrix. Some transporters can be specialised as for example, uncoupling proteins (UCP – 

Figure 4) (Nelson and Cox, 2017). 

Complexes of RC require ancillary factors, which have a function in assembly, 

stabilisation of subunits or complex intermediates, insertion of prosthetic groups, or other, yet 

unidentified, functions. Mutations in these factors may cause severe diseases (Fernandez-

Vizarra and Zeviani, 2015, Kadenbach and Huttemann, 2015, Sanchez-Caballero et al., 2016, 

Bezawork-Geleta et al., 2017). 

Furthermore, respiratory complexes form higher structures termed ‘supercomplexes’. 

In mammalian mitochondria, supercomplexes were observed in stoichiometry 

of CI/CIII2/CIV1-4, CI/CIII2, and CIII2/CIV1-2. Their function remains unclear but it is generally 

assumed that they facilitate substrate channelling (Milenkovic et al., 2017). 

 

1.3.2 ATP synthase 

 Mitochondrial ATP synthase (F1Fo-ATP synthase Complex V, CV, EC 3.6.3.14) 

is IMM multiprotein complex of the molecular weight of ⁓650 kDa. It is the main producer 

of ATP in cells in the process of oxidative phosphorylation. 

1.3.2.1 Structure of ATP synthase 

 Mammalian ATP synthase is composed of 18 different subunits (α3, β3, γ, δ, ε, a, b, c8, 

d, e, f, g, F6, A6L, OSCP, IF1, MLQ a DAPIT), some of them present in multiple copies 

per holoenzyme. Enzymatic complex can be subdivided into several functional domains: 

globular catalytic F1 part, proton translocating membrane Fo part of ATP synthase (named 

according to sensitivity to oligomycin) and two connecting central and peripheral stalks 

(Figure 5) (Ackerman and Tzagoloff, 2005, Wittig and Schagger, 2008, Walker, 2013). Crystal 

structure of bovine mitochondrial F1-ATPase was firstly determined at 2.8 Å resolution in 1994 

(Abrahams et al., 1994). F1 part is oriented to the matrix and is composed of α3β3 hexamer and 

central stalk subunits γ, δ and ε. Central stalk is connected to the membrane Fo part formed by 

c-subunit oligomer (c-ring) and a, e, f, g, A6L and b. Subunit b together with subunit d, F6 

and OSCP forms peripheral stalk. Two of the Fo subunits, a and A6L are encoded by mtDNA 

(Anderson et al., 1981, Fearnley and Walker, 1986), while the other subunits are encoded 

by nDNA. IF1 subunit is a small regulatory subunit connected with F1 part at low pH 

and prevents switching the ATP synthase to its hydrolytic mode. Interestingly, its premature 

form binds only to monomeric ATP synthase while mature IF1 only to dimeric or multimeric 

ATP synthase (Wittig et al., 2010). Finally, new accessory subunits of ATP synthase identified 
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in the membrane-embedded Fo domain are DAPIT and MLQ (6.8 kDa proteolipid) but their 

exact placement and function in the complex are not yet known (Chen et al., 2007, Meyer et 

al., 2007). 

 

 

Figure 5. Structure of ATP synthase. Mammalian ATP synthase is divided into catalytic F1 

and membrane Fo and two stalks together composed by 18 different subunits. F1 moiety 

is composed of α3β3 hexamer, central stalk of γ, δ and ε subunits, Fo part contains a, e, f, g, A6L 

and b, which is shared with peripheral stalk. Peripheral stalk includes also d, F6 and OSCP. 

Moreover, DAPIT and MLQ are associated with ATP synthase (Hejzlarova et al., 2014). 

 

ATP synthase can also form higher structure entities, namely dimers, oligomers 

and specific interactions with other proteins (Seelert and Dencher, 2011). Subunits DAPIT and 

MLQ, probably play a role in ATP synthase dimerization (Wittig and Schagger, 2008). These 

two subunits are extra in mammals (Chen et al., 2007). On the other hand, mammals lack 

subunits i/j, k, l, which are present in ATP synthase of Saccharomyces cerevisiae and i/j, k, e 

together with subunit a form the dimerization surface in yeast (Guo et al., 2017). Dimerization 

in mammals can be also regulated by coupling factor B (Belogrudov, 2002, 2010). It was also 

shown in yeasts (Davies et al., 2012, Hahn et al., 2016) and mammals (Strauss et al., 2008) that 

ATP synthase dimer formation is essential for mitochondrial cristae modulation. Moreover, 

dimerization can also optimise ATP synthase performance (Strauss et al., 2008). Two 

monomers interact via Fo part of ATP synthase involving subunits a, e, g, b and A6L (Wittig 

and Schagger, 2008, Wittig et al., 2010). One of the higher structures, in which is ATP synthase 

involved, is ATP synthasome. It is proposed that this supramolecular structure is composed 

of ATP synthase, ADP/ATP translocase (ANT) and inorganic phosphate carrier (PiC). As ATP 

synthase needs adenosine diphosphate (ADP) and inorganic phosphate for ATP production, 
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it may function as catalytic unit. It was originally reported in rat liver (Ko et al., 2003, Chen et 

al., 2004) but also later in bovine heart (Murray et al., 2004, Wittig and Schagger, 2008, Seelert 

and Dencher, 2011). Still, a little is known about its relative abundance in comparison with free 

forms of its components, its stoichiometry or regulation of ATP synthasome biogenesis. 

Both ANT and PiC do have several tissue specific isoforms. PiC has two isoforms: 

PiC-A isoform (a heart-type isoform) is highly abundant in heart and skeletal muscle whilst 

PiC-B isoform (a liver-type isoform) is expressed ubiquitously (Fiermonte et al., 1998). Human 

isoforms are encoded by just one gene (SLC25A3) and generated by alternative splicing 

of exon IIIA or exon IIIB which differs in 13 amino acids (Dolce et al., 1994). 

 Four isoforms of ANT have been identified in human genome (Dahout-Gonzalez et al., 

2006). ANT1 (SLC25A4, heart-type isoform) is specific to heart and skeletal muscle, ANT2 

(SLC25A5, liver-type isoform) is expressed ubiquitously and ANT3 (SLC25A6) is expressed 

in highly proliferative cells and tissues (Stepien et al., 1992). The fourth isoform, ANT4 

(SLC25A31, testes-specific isoform), is predominantly detected in human liver, testis and brain 

(Dolce et al., 2005). Only three isoforms encoding ADP/ATP carriers have been identified 

in rodents (ANT1, ANT2, ANT4), the fourth isoform ANT3 is present only as pseudogene 

(Dahout-Gonzalez et al., 2006). 

 It has also been reported in rat liver that ATP synthasome is a part of the larger complex, 

which also includes succinate dehydrogenase and mitochondrial ATP-binding cassette protein 

1. (Ardehali et al., 2004). Moreover, it was proposed that ATP synthasome, mitochondrial 

creatine kinase, VDAC and tubulin form mitochondrial interactosome (Timohhina et al., 2009). 

 

1.3.2.2 Assembly of ATP synthase 

 Biogenesis of ATP synthase is a complex process not fully understood so far (Figure 6). 

Current knowledge of ATP synthase assembly is mainly based on the yeast model 

of Saccharomyces cerevisiae (Ackerman and Tzagoloff, 2005, Rak et al., 2009, Rak et al., 2011, 

Ruhle and Leister, 2015). Biogenesis proceeds via several modules. It starts with 

the independently assembled soluble F1 module (α3, β3, γ, δ and ε). The second assembly 

module is the c-ring representing the first intermediate in Fo assembly. Assembled F1 module 

binds via the stalk subunits to the c-oligomer, independently of other Fo subunits, to form 

a larger ATP synthase intermediate. Then subunits of peripheral stalk (b, d, F6 and OSCP) and 

other membrane subunits of Fo (e, f, g, DAPIT, MLQ) are added (Hejzlarova et al., 2014). 
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Using mtDNA depleted mammalian cell, it was shown that the two last added subunits are a and 

A6L (Wittig et al., 2010). 

ATP synthase biogenesis is assisted by numerous auxiliary factors. Most of them are 

yeast specific (Ackerman and Tzagoloff, 2005, Hejzlarova et al., 2014, Ruhle and Leister, 2015) 

and have several different functions. In Fo biogenesis, Aep1p, Aep2p and Atp25p are needed 

for efficient expression of subunit c, which is in yeasts encoded by mtDNA, and c-ring 

formation. Additionally, Atp22p promotes synthesis of subunit a and Oxa1p stabilises subunit a 

association with c-ring. Other factors playing role in Fo assembly are Atp23p, Mia40 

and ATP10p. F1 biogenesis requires Atp11p, Atp12p, Fmc1p and Hsp90 chaperones. Finally, 

central stalk biogenesis and F1Fo assembly are assisted by Ina17 and Ina22 factors (Ruhle and 

Leister, 2015). Most of these factors are not present in mammalian cells, because their functions 

are not needed. Thus, only three factors are conserved between yeast and humans - ATPAF1 

(Atp11p), ATPAF2 (Atp12p) important in the α3β3 hexamer formation of F1 part of ATP 

synthase (Wang et al., 2001) and partial homolog of Atp23p (Osman et al., 2007, Zeng et al., 

2007). Moreover, new assembly factor TMEM70 specific for mammals has been described 

in humans (Cizkova et al., 2008). 

 

Figure 6. Scheme of ATP synthase assembly. Mitochondrial ATP synthase assembly starts 

with the formation of α3β3 hexamer to which subunits γ, δ and ε of the central stalk are added. 

Assembled F1 module binds via the stalk subunits to the c-oligomer and it is followed 

by addition of other Fo subunits (e, f, g, DAPIT, MLQ) and peripheral stalk (b, d, F6 and OSCP) 

forming cV*. Two last added subunits forming complete cV are a and A6L which are encoded 

by mtDNA. Assembly factors Atp11 and Atp12 are involved in α3β3 hexamer formation. The role 

of TMEM70 assembly factor is proposed in early steps of ATP synthase biogenesis. Adopted 

from (Hejzlarova et al., 2014). 
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1.3.2.3 Function of ATP synthase 

ATP synthase operates as a molecular motor which utilises proton gradient across 

the inner mitochondrial membrane. The term proton motive force (pmf, ∆p) was first used 

by Peter Mitchel who proposed that ∆p drives the ATP synthase to produce ATP from ADP 

and Pi (Mitchell, 1961). The protons pass IMM and drive c-oligomer rotation which 

is transmitted by the central stalk to the catalytic F1 part which changes conformation of α3β3 

hexamer in cycles (Walker, 2013). Subsequently the ADP, Pi and ATP binding-change 

mechanism on ATP synthase results in ATP production (Boyer, 1975). During one c-oligomer 

rotation, γ subunit turns 360° taking each β subunit through three states (βTP, βDP and βE). These 

three states have different affinity for nucleotides. βE-site is closed (empty) when binding ADP 

and phosphate, ATP is formed at βDP-site and is released from βTP-site as it opens and converts 

back to βE-site (Abrahams et al., 1994). In the end of one cycle three molecules of ATP are 

produced per three β subunits. Effectivity of the enzyme is dictated by the number of protons, 

translocated from IMS to matrix, required for a full rotation of γ subunit. This is in turn defined 

by a number of c subunits forming the ring in any respective species. Most effective in this 

regard is the mammalian enzyme, in which c-oligomer is composed of 8 c subunits (Walker, 

2013). For uncovering the mechanisms behind the synthesis of ATP, Paul D. Boyer and John 

E. Walker were awarded the Nobel prize in chemistry. 

The detailed mechanism, how protons pass through the IMM, has been extensively 

studied. It has been proposed that protons from intermembrane space pass across membrane 

between subunits a and c (Walker, 2013). It was predicted that it occurs through two half 

channels, one opened into IMS and the second into matrix (Vik and Antonio, 1994, Junge et 

al., 1997), which were recently observed by cryo-electron microscopy on yeast (Guo et al., 

2017), bovine (Zhou et al., 2015) and alga Polytomella (Allegretti et al., 2015, Klusch et al., 

2017) F-ATP synthase. The yeast and bovine a subunit consists of five transmembrane α helixes 

and one amphipathic α helix along the plane of membrane surface. Two of α helixes are tilted 

and tightly in contact with the c-ring (Zhou et al., 2015, Guo et al., 2017) (Figure 7). This model 

is similar to that in alga Polytomella (Allegretti et al., 2015, Klusch et al., 2017). Also, subunit b 

seems to form the IMS half channel together with subunit a. According all these observations, 

the model of proton translocation was proposed (Figure 7). The proton entering half-channel 

from IMS neutralizes glutamate residue of the c subunit, which can enter hydrophobic 

environment of the membrane and c-ring rotate because of Brownian motion (Vik and Antonio, 

1994, Junge et al., 1997). In the matrix half-channel, the proton is bound by conserved arginine 

of subunit a and then is lost into the matrix. It was also suggested that protonated glutamate 
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enters hydrophobic environment of lipid bilayer in locked conformation that is changed into 

open conformation in hydrophilic environment (Pogoryelov et al., 2010). 

In anoxic conditions, ATP synthase can reverse its function and hydrolyse ATP. 

Produced energy drives c-ring in counter clockwise direction and pumps protons to the outward 

site of IMM leading to formation of ΔΨm (Walker, 2013). 

 

Figure 7. Model of proton translocation through mammalian F-type ATP synthase. 

Membrane intrinsic helix hairpins of subunit a (green), subunit b (red) and c8-oligomer (pink) 

in bovine F1Fo ATP synthase. Protons (yellow) reach the aqueous half-channel 

in intermembrane space of mitochondria formed by subunits a and b. When the c-subunit with 

proton approaches the hydrophilic half-channel on the matrix side, the proton can escape into 

the matrix. Scale bar, 25 Å. Adopted from (Zhou et al., 2015). 

 

1.3.3 Mitochondrial diseases and therapy 

Mitochondrial diseases are biochemically characterised by the defect of oxidative 

phosphorylation. It can lead to the serious dysfunctions of tissues with high energy demands 

such as heart, muscle and brain. In addition, liver, pancreas, kidney and bone marrow can 

be affected as well. Mutations causing diseases of mitochondrial respiratory chain have been 

described in number of structural genes including all mtDNA genes (Dimauro and Davidzon, 

2005, Calvo and Mootha, 2010, Gorman et al., 2016, Frazier et al., 2017). When OXPHOS 

is defective, mitochondrial energy provision is insufficient. The estimated prevalence 

of mitochondrial diseases varies between countries and studies but recent estimate based 

on large cohort gives it as approximately 20 cases per 100000 individuals (Gorman et al., 2015, 

Gorman et al., 2016). Mitochondrial diseases have usually very severe impact. At present, 

however, patients depend only on symptomatic treatments to alleviate complications. 

The development of new targeted therapies is still in the beginning. Nevertheless, a few 
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promising approaches already exist, for example gene therapy in LHONs, heteroplasmy shifting 

or liver transplants (Gorman et al., 2016, Viscomi, 2016). In the case of mtDNA encoded 

diseases, novel reproductive technologies called mitochondrial replacement therapy may 

represent effective treatments. Here, during in vitro fertilisation enucleated egg with 

mitochondria is donated to a women who has a high risk of mutated heteroplasmic mtDNA 

transmission to a child (Craven et al., 2017). 

First mutations in mtDNA that cause maternally inherited diseases were reported 

in 1988 (Holt et al. 1988). Hundreds of mtDNA mutations are listed in MITOMAP inventory, 

(Ruiz-Pesini et al., 2007)]. The majority of mtDNA mutations are heteroplasmic which means 

a mixture of wildtype and mutated mtDNA inside of the cell. Typically, >50 % of mutated 

mtDNA are required to result in cellular defect (Gorman et al., 2016). 

The first identified mutation in nDNA gene causing defect in OXPHOS was in SDHA 

encoding CII subunit (Bourgeron et al., 1995). The number of mutations in nuclear genes 

causing mitochondrial diseases is still increasing. Affected genes are not only these coding 

proteins of OXPHOS but can also be proteins with other functions, e.g. in mtDNA maintenance 

and expression, transport of molecules across membranes, metabolic pathways, mitochondrial 

fusion and fission, membrane dynamics or function as structural proteins (Vafai and Mootha, 

2012, Gorman et al., 2016, Frazier et al., 2017). 

As of November 23 2017, 289 mitochondrial disease genes have been identified 

(35 mtDNA encoded genes and 254 nuclear encoded disease genes), which account only for 

~60 % of patients with suspected mitochondrial diseases (Frazier et al., 2017). 

To the group of most severe metabolic disorders belong inborn defects of ATP synthase. 

They are manifested by encephalocardiomyopathies and predominantly affect the paediatric 

population (Houstek et al., 2006). Isolated ATP synthase defects can be caused by mutations 

in mtDNA (Holt et al., 1990) or nDNA (Houstek et al., 1999). 

 

1.3.3.1 ATP synthase defects of mtDNA origin 

Two subunits of ATP synthase are encoded by mtDNA. Mutations in mtDNA gene MT-

ATP6 for subunit a manifest mainly as NARP syndrome (neuropathy, ataxia and retinis 

pigmentosa) or maternally inherited Leigh syndrome (MILS) (Baracca et al., 2007). On the 

other hand, less common mutations in the gene MT-ATP8 for A6L subunit manifested with 

hypertrophic cardiomyopathy (Jonckheere et al., 2008). In these cases, the function of Fo proton 
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channel, ATP synthase stability or protein-protein interactions can be affected. Nowadays, 

mtDNA mutations are routinely scanned and diagnosed.  

 

1.3.3.2 ATP synthase defects of nDNA origin 

 The first case of ATPase deficiency with no mutation in mtDNA genes and possible 

nuclear origin was found in 1992. The child suffered with persistent 3-methylglutaconic 

aciduria (3-MGA), severe neonatal lactic acidosis (LA) and hypertrophic cardiomyopathy. 

The ATPase activity was very low and respiratory rate was low and tightly coupled in muscle 

mitochondria. Also mitochondria with ultrastructural abnormalities were observed (Holme et 

al., 1992).  

Later in 1999, mitochondrial disorder of nuclear origin (OMIM 604273) caused 

by isolated ATP synthase deficiency was described in a patient with the fatal neonatal 

cardiomyopathy (Houstek et al., 1999). This child suffered with severe LA, cardiomegaly, and 

hepatomegaly and died 2 days after birth. The ATP synthase amount decreased to the 30 % 

of enzyme content in controls. The similar type of defect was found in other patients (Mayr et 

al., 2004, Sperl et al., 2006, Hejzlarova et al., 2014, Magner et al., 2015). Isolated deficiency 

of ATP synthase is autosomal hereditary mitochondrial disease which affects children and has 

fatal consequences (Houstek et al., 2006). Lower amount of ATP synthase causes insufficient 

ATP production and increased production of reactive oxygen species (ROS). It leads to damage 

of tissues with high energy demands such as heart, skeletal muscle and brain (Houstek et al., 

2004, Mracek et al., 2006). Most of patients suffer from neonatal lactate acidosis, 3-methyl 

glutaconic aciduria, hypertrophic cardiomyopathy and central nervous system disorder (Sperl 

et al., 2006, Magner et al., 2015). Although each symptom is treated by supportive treatment, 

there is a need of causal therapy approach, which is still not available. 

 

1.3.3.2.1 Nuclear genes mutations causing ATP synthase deficiency 

Mutations in ATP5A1 (Jonckheere et al., 2013) and ATP5E (Mayr et al., 2010) coding, 

respectively, subunits α and ε of F1 moiety of ATP synthase were identified in patients with 

isolated ATP synthase deficiency. As was previously shown in ε subunit knockdown 

in HEK293 cells, mitochondrial content of assembled ATP synthase is decreased and this leads 

to the accumulation of c subunit (Havlickova et al., 2010). In addition, mutations of genes 

linked to ATP synthase biogenesis - ATP12 (De Meirleir et al., 2004) and TMEM70 (Cizkova 

et al., 2008) were also identified. Mutations in TMEM70 are more common in comparison with 
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rare in ATP5A1, ATP5E or ATP12 (see Table 2). All these mutations share a similar biochemical 

phenotype with distinct decrease of fully assembled and functional ATP synthase, yet differ 

in molecular mechanism, incidence and pathogenic effect on patients. 

All these mutations commonly cause the inability of ATP synthase to utilise membrane 

potential (ΔΨm) for ATP production. Subsequently it leads to stimulation of mitochondrial ROS 

production (Baracca et al., 2007, Cizkova et al., 2008). Therefore, energy deprivation together 

with oxidative stress represents key factors in the pathogenesis of isolated defects of ATP 

synthase (Mracek et al., 2006). 

 

1.3.3.3 Link between genotype and phenotype in ATP synthase disorders 

The phenotypic presentation of mitochondrial diseases is highly variable 

in mitochondrial genetic defects and pathology can manifest only when a threshold level 

is exceeded. Rossignol et al. demonstrated that ATP synthase can be inhibited by oligomycin 

up to critical value without affecting the rate of mitochondrial respiration or ATP synthesis until 

threshold level is exceeded as shown in rats (Rossignol et al., 2000, Rossignol et al., 2003). 

In this regard, it is interesting that in patients with pathological manifestation, levels of ATP 

synthase ranging between 30 and 10 % of controls can be observed (Houstek et al., 2006). This 

suggests existence of spare capacity for ATP synthase. In control cells/tissues, it remains 

unclear, where lies the true threshold of ATP synthase defects required to trigger pathology. 
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1.3.4 New proteins involved in biogenesis and structure of ATP synthase 

1.3.4.1 TMEM70 protein 

In 2006, TMEM70 was identified by integrative genomics as a potential gene coding 

for mitochondrial protein of unknown function and its GFP tagged form was localised 

in mitochondria (Calvo et al., 2006). TMEM70 gene is located on chromosome 8 and encodes 

260 amino acids precursor, which has together with mitochondrial N-terminal importing 

sequence molecular weight of 29 kDa. Processed TMEM70 is transmembrane protein of inner 

mitochondrial membrane, which has 179 amino acids and molecular weight of 21 kDa 

(Hejzlarova et al., 2011). It contains conserved DUF1301 domain and two potentially 

transmembrane regions (Hejzlarova et al., 2011). Both 21 amino acid long N-terminal and 

98 amino acid long C-terminal sequences are exposed into mitochondrial matrix (Jonckheere 

et al., 2011, Kratochvilova et al., 2014) (Figure 8). TMEM70 is present in considerably lower 

quantities than structural subunits, similarly to other ancillary factors (Hejzlarova et al., 2011). 

Its homologs were found in eukaryotes but not in yeasts and fungi (Cizkova et al., 2008, 

Houstek et al., 2009). 

 

 

Figure 8. Structure and orientation of TMEM70 protein. TMEM70 protein is localised 

in the inner mitochondrial membrane (IMM). C and N-terminal sequences are both oriented 

into the matrix. IMS - intermembrane space. 

 

Several dozens of cases with TMEM70 mutation were identified (Hejzlarova et al., 

2014). These patients have isolated ATP synthase deficiency and are homozygous or compound 

heterozygotes (different mutations at each allele) of particular mutation.  

The most common TMEM70 mutation in patients is c317-2A>G in the second intron 

removing splicing side prior to the third exon. Very labile transcript is produced from this 
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mutant allele. ATP synthase from these patients is not fully assembled and F1 subcomplex 

is accumulated but still the small amount of assembled and functional ATP synthase is present. 

Complementation of patient fibroblast cell lines restored biogenesis and function o ATP 

synthase (Cizkova et al., 2008). Up to now about 50 patients with this mutation were found (see 

Table 2). Patients often die during first few years and most often in the first months of life but 

10-year survival rate is still 63 % (Magner et al., 2015). Critical for the patients is survival 

of the postnatal period, and many of the metabolic defects and cardiac disorder can improve 

thereafter (Honzik et al., 2010). 

While the c317-2A>G mutation is relatively often associated with the Roma population 

(Wortmann et al., 2009, Honzik et al., 2010, Torraco et al., 2012, Stojanovic and Doronjski, 

2013, Braczynski et al., 2015, Magner et al., 2015, Sarajlija et al., 2017), less common 

pathogenic mutations of this gene were found in other ethnical groups. For example, in Arab 

Muslims and Turkish families (see Table 2). 

Recently new TMEM70 mutation c.440T>C (p.I147T) has been identified in Asian 

population. Patient caring single mutant allele of this gene was without pathological effects. 

Other family members carrying this mutation in combination with mutations in other genes 

exhibited defective heart function. On the other hand, c.440T>C mutation did not have higher 

effect in cases of multiple mutations (Wang et al., 2016). 
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Table 2: Nuclear DNA mutations associated with isolated deficiency of ATP synthase. 

Adapted and updated from (Hejzlarova et al., 2014). 

Gene Mutation Clinical phenotype References 

ATP5A1 c.985C>T missense 

(p.R329C) 

(c.–49+418C>T 

substitution) 

Severe neonatal 

encephalopathy 

(Jonckheere et al., 

2013) 

ATP5E c.35A>G missense 

(p.Y12C) 

Neonatal respiratory 

distress, LA, 3-MGA, 

severe peripheral 

neuropathy, exercise 

intolerance 

(Mayr et al., 2010) 

ATPAF2  c.280T>A missense 

(p.W94R) 

3-MGA, LA, neonatal 

encephalopathy, 

dysmorphism 

(De Meirleir et al., 

2004) 

TMEM70 c.317–2A>G splicing IUGR, LA, HA, EOH, 

FD, HCMP, 3-MGA, 

cataract, 

encephalopathy, FTT, 

PMR, PAH 

(Cizkova et al., 2008, 

Wortmann et al., 2009, 

Honzik et al., 2010, 

Tort et al., 2011, 

Torraco et al., 2012, 

Stojanovic and 

Doronjski, 2013, 

Catteruccia et al., 

2014, Braczynski et 

al., 2015, Diodato et 

al., 2015, Magner et 

al., 2015, Sarajlija et 

al., 2017) 

 c.317–

2A>G/c.118_119insGT 

frameshift (p.S40CfsX11) 

LA, 3-MGA, HA, 

HCMP, FD, PMR,  

(Cizkova et al., 2008, 

Honzik et al., 2010, 

Cameron et al., 2011, 

Magner et al., 2015) 

 c.317–2A>G/c.494G>A 

missense (p.G165D) 

LA, 3-MGA, HA, 

HCMP, Reye-like 

syndrome, exercise 

intolerance 

(Scaglia et al., 2002, 

Shchelochkov et al., 

2010) 

 c.336T>A nonsense 

(p.Y112X) 

IUGR, LA, HA, HCMP, 

FD, PMR  

(Spiegel et al., 2011, 

Magner et al., 2015)  

 c.316+1G>T splicing IUGR, Encephalopathy, 

HCMP, EOH, LA, FD 

(Spiegel et al., 2011, 

Magner et al., 2015) 

 c.238C>T nonsense 

(p.R80X) 

IUGR, EOH, LA, 3-

MGA, HA, HCMP, 

multiorgan failure, 

dysmorphism,  

(Spiegel et al., 2011, 

Diodato et al., 2015, 

Magner et al., 2015) 
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 c.578_579delCA 

frameshift (p.N198X) 

IUGR, EOH, LA, 3-

MGA, FD, cataract, 

Encephalopathy, HCMP, 

PMR 

(Spiegel et al., 2011, 

Magner et al., 2015) 

 c.211–450_317–568del 

(2290bp deletion) 

frameshift 

IUGR, HCMP, LA, 3-

MGA, PMR 

(Tort et al., 2011) 

 g.2436–3789 in-frame 

deletion (1353bp) 

IUGR, LA, HA, HCMP, 

PMR, ptosis 

(Jonckheere et al., 

2011) 

 c.317–2A>G/c.628A>C 

missense (p.T210P) 

HCMP, LA, 3-MGA, 

HA, PAH, WPW  

(Torraco et al., 2012, 

Catteruccia et al., 

2014, Magner et al., 

2015) 

 c.535C>T missense 

(p.Y179H) 

IUGR, LA, EOH, FD, 

HCMP, bilateral 

cataract, PMR, HA 

(Atay et al., 2013, 

Magner et al., 2015) 

 c.317–

2A>G/c.349_352del 

frameshift (p.I117A, 

p.224X?) 

IUGR, LA, PMR, 

HCMP, EOH, 

dysmorphism, HA 

(Diodato et al., 2015) 

 c.317–2A>G/c.783A>G 

frameshift 

(p.X261Wext17) 

IUGR, LA, PMR, 

HCMP, dysmorphism 

(Diodato et al., 2015) 

 c.701A>C missense 

(p.H234P) 

IUGR, LA, 3-MGA, 

PMR, HCMP, HA, 

EOH, dysmorphism, 

leukoencephalopathy, 

PAH 

(Catteruccia et al., 

2014, Diodato et al., 

2015) 

 c.317–2A>G/c.251delC Hypoglycemic seizures, 

epilepsy 

(Magner et al., 2015) 

 c.317–2A>G/c.470T>A n.a. (Magner et al., 2015) 

 c.359delC n.a. (Magner et al., 2015) 

 c.440T>C (p.I147T) no pathological effects (Wang et al., 2016) 

n.a., not available; 3-MGA, 3-methylglutaconic aciduria; EOH, Early-Onset Hypotonia; FD, 

facial dysmorphism; FTT, Failure To Thrive; HA, hyperammonemia; HCMP, Hypertrophic 

Cardiomyopathy; IUGR, Intrauterine growth retardation; LA, Lactic Acidosis; PAH, 

pulmonary arterial hypertension; PMR, Psychomotor Retardation; WPW, Wolf-Parkinson-

White pre-excitation syndrome. 

 

Interestingly, ATP synthase deficiency caused by TMEM70 mutation is associated with 

higher levels of complexes III and IV of respiratory chain, which seems to be compensatory 

response by the cell (Havlickova Karbanova et al., 2012).  
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As was already mentioned, ATP synthase is important in the formation of mitochondrial 

cristae. It was also published that mitochondria with mutation in TMEM70 are swollen 

and irregularly shaped with loss or aggregated cristae and fragmented mitochondrial network 

(Jonckheere et al., 2011, Braczynski et al., 2015, Diodato et al., 2015, Sladkova et al., 2015). 

The morphology of these mitochondria is restored by complementation of the TMEM70 defect 

in fibroblasts (Jonckheere et al., 2011). 

It was recently shown, that Tmem70 gene is hypermethylated and its mRNA 

downregulated in the liver of rats treated with hepatocarcinogen thiocetamid for 28 days. 

It indicates that aberrant epigenetic regulation of this gene leads to the shift of metabolism from 

oxidative phosphorylation to glycolysis. It may mean that TMEM70 is involved in tumour 

development (Mizukami, Watanabe, et al., 2017, Mizukami, Yafune, et al., 2017). It is 

in agreement with already reported ATP synthase downregulation in many types of carcinomas 

(Isidoro et al., 2004). 

Despite the fact that TMEM70 protein is essential for ATP synthase biogenesis, 

its detailed molecular function remains to be determined. It was indicated that TMEM70 

is involved in early stages of ATP synthase assembly (Houstek et al., 1999) and takes part in F1 

stabilisation and assistance in further steps of assembly (Torraco et al., 2012). 

 

1.3.4.2 DAPIT protein 

Protein DAPIT (diabetes-associated protein in insulin-sensitive tissues) is 58 amino 

acids long with one putative transmembrane helix (Paivarinne and Kainulainen, 2001) 

and calculated molecular mass of 6.4 kDa (Carroll et al., 2006). DAPIT is highly conserved 

in vertebrates and insects. The chromosomal location of its gene Usmg5 (Up-regulated during 

skeletal muscle growth 5) is 1q54 in rat, 19D1 in mouse and 10q24 in human (Kontro et al., 

2015).  

DAPIT was shown to be associated with the mammalian mitochondrial ATP synthase 

(Chen et al., 2007, Meyer et al., 2007, Lee et al., 2015) and it was also suggested that DAPIT 

might be associated with lysosomal V-ATPase (Kontro et al., 2012). Moreover, it was observed 

in the DAPIT knock-down HeLa cells that DAPIT regulates ATP synthase population 

in mitochondria. Although ATP synthase activity was smaller, levels of α and β subunit mRNAs 

were not changed due to suppressed DAPIT protein expression in HeLa cells (Ohsakaya et al., 

2011). 
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Interestingly, DAPIT was also shown to play an important role in the cell metabolism. 

Its transcript (mRNA) was firstly identified in a rat type 1 diabetes model induced 

by streptozotocin (STZ), in which DAPIT level is downregulated in insulin-sensitive skeletal 

and heart muscle (Paivarinne and Kainulainen, 2001). In contrary, it has also been published 

that STZ induction of diabetes up-regulates DAPIT protein levels in rat heart muscle, skeletal 

muscles and epidydimal adipose tissue and strikingly down-regulates in liver and musculus 

plantaris. However, levels were not changed in STZ induced diabetic mouse calf skeletal 

muscle complex (Kontro et al., 2012). It has also been found that its over-expression 

in HEK293T cells modulates glucose metabolism through higher glucose utilisation leading 

to increased lactate production (Kontro et al., 2015). Furthermore, hyperglycaemia 

up-regulated the DAPIT protein in the Schwann cells of neonatal rats (Zhang et al., 2010). 

Hence, DAPIT may be a novel glucose sensitive protein that affects mitochondrial function 

in diabetic tissues. 

Moreover, over-expressed DAPIT in HEK293T cells was also found to be associated 

with an epithelial to mesenchymal (EMT)-like transition by changing E-cadherin to N-cadherin 

and upregulating a few key junction/adhesion proteins. Cell migration was slowed down 

and cell growth by G1 arrest, cell detachment was enhanced. In addition, mitochondrial ΔΨm 

and superoxide levels were increased. It also led to the translocation of hypoxia inducible factor 

1α (HIF1α) and β-catenin transcription factors to nucleus (Kontro et al., 2015). 

Furthermore, DAPIT was also increased in the brain synaptosomes of a mouse model 

of Parkinson’s disease (McFarland et al., 2008), and results of Gene Expression Omnibus 

(GEO) screening suggested up-regulation of USMG5 in various cancers, in high weight gainers 

adipose tissue and in cardiac deficiencies (Barrett et al., 2013, Kontro et al., 2015). 

 Based on histologic analyses, DAPIT of human/rat origin is highly expressed in tissues 

with high energetic demands (heart, skeletal muscle, brain) and epithelial cells that actively 

transport nutrients and ions (Kontro et al., 2012). 
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2 AIMS OF THE STUDY 
 

The aim of this study was to characterise the function of new components of mammalian 

mitochondrial proteome. Specifically, I focused on two proteins related to ATP synthase – 

TMEM70 and DAPIT. TMEM70 is necessary for ATP synthase assembly, and its deficiency 

causes severe diseases but its detailed function remains unclear. The second protein I focused 

on, DAPIT, is known to associate with ATP synthase but its role in the protein complex is not 

yet clear. It has been suggested that DAPIT might play a role in ATP synthase dimer formation. 

I also followed other higher order structures formed by ATP synthase and namely I studied 

ATP synthasome formation in physiological and pathological models of ATP synthase content 

variation. Finally, I was interested in the limiting content of ATP synthase to be present in cells 

to avoid pathological presentation and tried to determine the threshold for its content. 

 

The specific aims of the thesis were: 

 

1) To characterise the function of TMEM70, the new assembly factor of the mitochondrial 

ATP synthase, using animal knockout model: 

a) Generate and characterise the constitutive Tmem70 knockout mouse model. 

b) Prepare inducible Tmem70 knockout mouse model to characterise consequences 

of TMEM70 absence in adult animals. 

 

2) To characterise the function of DAPIT in ATP synthase complex using rat knockout model. 

 

3) To examine the effect of ATP synthase defects (including TMEM70 deficiency) on ATP 

synthasome components in patient cells and in mice. 

 

4) To examine the threshold limit of ATP synthase defects in human cell lines. 
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3 MATERIALS AND METHODS 

3.1. Animal and cell models 

3.1.1 Ethics Statement 

Animal care and experiments were approved by the Animal Care Committees of the 

Institute of Physiology and Institute of Molecular Genetics of the Czech Academy of Sciences 

(study ID#174/2010) in compliance with national and institutional guidelines (ID#12135/2010-

17210). All human samples were obtained on the basis of written informed consent and handled 

in accordance with the Code of Ethics of the World Medical Association. 

3.1.2 Generation of Tmem70-deficient mice  

A few different types of Tmem70 knockout were generated and analysed within this 

dissertation thesis (Figure 9). All TMEM70 deficient mice were prepared in collaboration with 

the Transgenic Unit of the Institute of Molecular Genetics, CAS. 

TMEM70 deficient constitutive mice were generated using JM8.A4 embryonic stem 

(ES) cells harbouring knockout first allele (Tmem70tm1a(KOMP)Wtsi) obtained from the KOMP 

repository (trans-NIH Knock-Out Mouse Project, ID: CSD29597, www.komp.org (The 

Knockout Mouse Project). Using laser-assisted technique ES cells were injected into 8-cell 

stage embryos of strain C57BL/6J-Tyrc-2J to generate chimeric mice. Tmem70tm1a+/- mice were 

crossed with Cre recombinase expressing strain Gt(ROSA)26Sortm1(ACTB-cre,-EGFP)Ics/Ics (Birling 

et al., 2012) to convert tm1a allele into tm1b allele (Figure 9). Both tm1a and tm1b mice 

exhibited identical phenotype - lethality at 9.5 days post coitum (E9.5) and thus Tmem70tm1a 

(further denoted as cTmem70-/-) mice were used to analyse the lethal impact of Tmem70 

deletion and the ATP synthase biogenesis. 

To obtain viable adult Tmem70-/- mice, the tamoxifen (TAM) inducible conditional 

knockout was generated - B6.Tmem70tm1d(KOMP)Wtsi (further denoted as iTmem70-/-). This strain 

was produced by crossing of Tmem70tm1c(KOMP)Wtsi (produced by crossing 

of Tmem70tm1a(KOMP)Wtsi with Gt(Rosa)26Sor(CAG-Flpo,-EYFP) with mice harbouring 

inducible whole-body Cre recombinase. Then, Tmem70 gene was cut out by Cre recombinase, 

which is activated by gavage administered TAM (Sigma T5648; 5 consecutive days, 

5 mg/day/mouse - dissolved in EtOH and mixed 1:1 with sunflower oil). Control mice were 

administered EtOH mixed 1:1 with sunflower oil only. Mice were provided food and water ad 

libitum and housed under 12 h light–dark cycles. 
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Figure 9. Schematic of the ‘knockout-first’ conditional allele. The ‘knockout-first’ allele 

(tm1a) contains an IRES:lacZ trapping cassette and a floxed promoter-driven neo cassette 

inserted into the intron of a gene, disrupting gene function. Flp (flippase) converts 

the ‘knockout-first’ allele to a conditional allele (tm1c), restoring gene activity. Cre deletes 

the promoter-driven selection cassette and floxed exon of the tm1a allele to generate 

a lacZ-tagged allele (tm1b) or deletes the floxed exon of the tm1c allele to generate a frameshift 

mutation (tm1d), triggering nonsense mediated decay of the deleted transcript (Skarnes et al., 

2011). 

 

3.1.3 Generation of DAPIT-deficient rats 

The DAPIT deficient rats were prepared at the Department of Genetics of Model 

Diseases of the Institute of Physiology, CAS. 

The Usmg5 knockout rats (DAPIT deficient) were prepared by microinjections 

of fertilised ova from SHR/Ola by ZFN mRNA (Sigma) at concentration 5 ng/microliter. 

Rats were provided food and water ad libitum and housed under 12 h light–dark cycles. 

3.1.4 Cell culture and generation of knockdown clones 

Cells were cultivated under standard conditions (37 °C, 5 % CO2 atmosphere) in the 

high-glucose DMEM medium (Life Technologies, 31966-021) supplemented with 10 % foetal 

bovine serum (Life Technologies, 10270-106), 2 mM HEPES, and antibiotics (100 U/mL 

penicillin, 100 μg/mL streptomycin, Life Technologies, 15140-122). 

To produce knockdown clones, HEK293 cells were transfected with plasmids carrying 

pre-designed shRNAs (MISSION shRNA Plasmid DNA, Sigma-Aldrich) complementary with 

transcripts ATP5C1, ATP5D and ATP5E coding for the ATP synthase subunits γ, δ and ε, 

respectively. As a transfection reagent, Metafectene Pro (Biontex) was used according 
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to the manufacturer’s instructions in the ratio 2:1 to μg of plasmid DNA. Individual clones were 

isolated and kept under antibiotic selection (puromycin 1 μg/mL). 

Primary fibroblast cultures derived from skin biopsies of 3 healthy individuals, 

7 patients with an isolated ATP synthase defect due to the homozygous nucleotide substitution 

317-2A>G in the gene TMEM70 (Cizkova et al., 2008), a patient with c.35A>G missense 

mutation in the gene ATP5E coding for the subunit F1-ε (Mayr et al., 2010), and a patient 

harbouring m.9205delTA frameshift mutation in the mitochondrial gene MT-ATP6 coding for 

the subunit Fo-a (Jesina et al., 2004, Hejzlarova et al., 2015) were cultivated under standard 

conditions (Mayr et al., 2010). 

3.1.5 Collection of mouse embryos 

Mouse embryos were harvested at stage 9.5 dpc from timed pregnant females. 

The morning of the vaginal plug was considered as embryonic day 0.5 (E0.5). Embryos were 

dissected out of the membranes under a dissection microscope and further processed as outlined 

below. 

 

3.2 Molecular methods 

3.2.1 Genotyping 

Genotyping was performed on DNA from yolk sac, mouse tail lysates and tissues. Yolk 

sacs and mouse tails were incubated overnight at 56 °C in 30 µL (yolk sac) or 400 µL (tail) 

PCR buffer with non-ionic detergents (10 mM Tris-HCl, 50 mM KCl, 2.5 mM MgCl2, 

0.1 mg/ml Gelatin, 0.45 % (v/v) IGEPAL CA-630 (Sigma, I7771), and 0.45 % (v/v) Tween 20) 

containing Proteinase K (100 µg/ml). DNA from tissues was isolated using Invisorb Spin Tissue 

Mini Kit (Stratec). 

Lysates and isolated DNA were diluted to 10 ng of DNA/µL of PCR grade water. PCR 

was run with DreamTaq polymerase (0.6 U) and buffer (Thermo Scientific), 1.5 mM dNTPs 

(Sigma) and following primer (Generi Biotech) combinations: 

 forward (5'→3') reverse (5'→3') wildtype forward (5'→3') 

tm1a TATATCCCCTCCCCCGTTAG CACTGCAACTCGGCCTTTA  

tm1b ACGGTTTCCATATGGGGATT CACTGCAACTCGGCCTTTA GCATGCACCACCACTGTGTAG 

tm1d GGAGGTCATCATTGACTGTCTTC CACTGCAACTCGGCCTTTA  
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Moreover, tm1a PCR products were cleaved by Sac1 (BioLabs) restriction enzyme for 

3 h at 37 °C. Tm1a, tm1b and tm1d PCR products were resolved by 1 % agarose gel 

electrophoresis. 

3.2.2 RT-PCR 

To perform quantitative RT-PCR, whole embryo RNA was isolated using RNase 

mini-kit (Qiagen) and the total RNA from tissues was isolated by the Trizol reagent (Life 

Technologies). cDNA was synthesised from 40-100 ng of RNA by reverse transcription 

(SCRIPT cDNA Synthesis Kit, Jena Biosciences). The following predesigned primer/probe sets 

(TaqMan Gene Expression Assays, Life Technologies) were used: Tmem70 

(Mm00466179_m1), Atp5a1 (Mm00431960_m1), and B2m (Mm00437762_m1). qPCR 

amplifications were carried out on ViiA 7 instrument (Life Technologies) with the following 

cycling protocol: 95 °C for 15 min, and 40 cycles at 95 °C 20 s and 60 °C for 1 min. All reactions 

were done in duplicate and 1 µL of diluted (1:1) cDNA was used in each 10 µL reaction using 

HOT FIREPol probe qPCR Mix (Solis Biodyne). ΔCt was calculated for all genes. Standard 

curves for all genes were created by serially diluting wildtype embryo cDNA. The Ct of all 

genes was related to Ct of housekeeper reference B2m. 

 

3.3 Biochemical methods 

3.3.1 Electrophoresis and Western blot analysis  

Frozen embryos stored at -86 °C were pulverised in liquid nitrogen and homogenised 

with PBS with protease inhibitor cocktail (PIC, 1:500, Sigma P8340) in a glass-glass 

micro-homogeniser (1 ml, Fisher Scientific, FB56673). 

Tmem70+/+ and Tmem70+/- mice (5 weeks and 14 weeks old mice males) and iTmem70-/- 

mice males were anesthetised by CO2 and sacrificed by cervical dislocation. Heart homogenates 

(5 %, w/v) or liver homogenates (10 %, w/v) were prepared at 4 °C in STE medium [0.25 M 

(heart) or 0.32 M (liver) sucrose, 10 mM Tris-HCl, 2 mM EDTA, pH 7.4] with protease 

inhibitor cocktail (PIC 1:500, Sigma P8340) using glass-teflon homogeniser (4 strokes 

at 650 rpm) and filtered through coarse nylon screen (100 µm mesh). Protein concentration was 

determined by Bicinchoninic Acid Kit for Protein Determination (Sigma), and homogenates 

were stored at -80 °C. 
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DAPIT rats (6-month-old rats) were killed in CO2 narcosis. Tissue homogenates were 

prepared and mitochondria from tissues (heart, liver,) were isolated by differential 

centrifugation as before (Mracek et al., 2009, Pecinova et al., 2011). 

Fibroblast mitochondria were isolated by hypotonic shock cell disruption (Mayr et al., 

2010). 

The protein concentration was estimated by Bradford’s method (Bradford, 1976) 

(Bio-Rad) or by Bicinchoninic Acid Kit for Protein Determination (Sigma). 

Prepared samples were separated under denatured or native conditions 

by electrophoreses. Individual electrophoretic buffers are summarised in Table 3. 

For SDS-PAGE embryos, tissue homogenates, mitochondria and HEK cells were 

denatured for 15 min at 56 °C in a sample lysis buffer containing 50 mM Tris-HCl pH 7.0, 4 % 

(w/v) SDS, 10 % (v/v) glycerol and 0.1 M DTT (1,4-Dithiothreitol). Mitochondria and 

fibroblast samples were also denatured for 15 min at 65 °C in a sample lysis buffer containing 

50 mM Tris-HCl pH 7.0, 4 % (w/v) SDS, 10 % (v/v) glycerol, and 2 % (v/v) 2-mercaptoethanol. 

Afterwards, proteins were separated on 10 % (homogenates, mitochondria) or 12 % (cells) 

polyacrylamide minigels (Bio-Rad MiniProtean III) using the Tricine buffer system (Schägger 

2006). 

Under native conditions tissue homogenates and cells were centrifuged 10 min 

at 20000 g. Pellets were diluted in solubilisation buffer A containing 50 mM NaCl, 2 mM 

6-aminohexanoic acid, 50 mM imidazole, 1 mM EDTA, pH 7, and solubilised for 20 min 

at 0 °C using detergent (2 g n-dodecyl-β-D-maltoside/g protein or 2 g digitonin/g protein) 

and centrifuged for 20 min at 30000 g to remove cell debris. The supernatants were mixed with 

glycerol (5–10 %) and Coomassie Brilliant Blue G-250 dissolved in 5 mM 6-aminohexanoic 

acid so that the final ratio of this dye and detergent in the sample was 1:8. BN-PAGE was run 

on 4-13 % (animal samples) or 4-8 % (cell samples) gradient mini gels using the imidazole 

buffer system (Wittig et al., 2006, Pecinova et al., 2011). 

 In case of high resolution clear native PAGE (hrCN-PAGE) supernatants were mixed 

with glycerol (5–10 %) and 1 µl of 0.1 % Ponceau S/50 % glycerol for each approximately 

50 µl of sample. Detergents were also added into cathode buffer (see Table 3) (Wittig and 

Schagger, 2009). 
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Table 3. Buffers for SDS-PAGE, BN-PAGE, hrCN-PAGE (final concentrations) 

Cathode buffers SDS BN hrCN 

Tris (mM) 100 - - 

Tricine (mM) 100 50 50 

SDS (%) 0.1 - - 

Imidazole (mM) - 7.5 7.5 

n-dodecyl-β-D-maltoside (%) - - 0.02 

Sodium deoxycholate (%) - - 0.05 

Coomassie dye (%) - 0.02 and 0.002 - 

pH* ~8.25 ~7.0 ~7.0 

  Cathode buffer for hrCN should be prepared immediately before   

  electrophoresis. 

  *Adjust pH by Tricine or imidazole if difference is higher than 1 pH 

unit (at 25 °C). 

  Mix for several hours. 

 

Anode buffers SDS BN hrCN 

Tris (mM) 100 - - 

Imidazole (mM) - 25 5 

pH ~8.9 ~7.0 ~7.0 

  pH is adjusted before the addition of SDS. 

 

Gel buffers (3x GB) SDS BN hrCN 

Tris (M) 3 - - 

SDS (%) 0.3 - - 

Imidazole (mM) - 75 75 

6-aminocapronic acid (M) - 1.5 1.5 

pH ~8.45 ~7.0 ~7.0 

  AB - Acrylamide/bisacrylamide mix (48 % acrylamide, 1.5 % bisacrylamide) 

 

Electrophoreses were followed by Western blot as described previously (Hejzlarova et 

al., 2011, Kratochvilova et al., 2014). Gels were blotted onto PVDF membrane (Immobilon-FL, 

Merck Millipore) by semi-dry electrotransfer (1 h at 0.8 mA/cm2). Immediately after blotting, 

blue native blots were destained with methanol to decrease background fluorescence. 

All Western blots were blocked in 5 % non-fat milk dissolved in TBS (Tris-buffered saline 

containing 150 mM NaCl, 10 mM Tris-HCl, pH 7.5) for 1 h prior to incubations with primary 

(2 h at room temperature/overnight at 4 °C) (see Table 4) and infrared fluorescent secondary 

antibodies (45–60 min at room temperature Alexa Fluor 680, Life Technologies; IRDye 800, 

Rockland Immunochemicals, Li-Cor). 
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Table 4. List of used primary antibodies. 

Target MW 

(kDa) 

Host/clonality Antibody source/catalog no. 

F1-α  55 mo/P Clone 20D6 - Godinot  (Jesina et al., 2004) 

F1-β 24 mo/M Abcam ab117991 

F1-γ 33 rb/P GeneTex GTX114275 

F1-δ 10 rb/P GeneTex GTX101503 

Fo-a  25 rb/P Godinot (Dubot et al., 2004)  

Fo-b 24 mo/M Abcam ab117991 

Fo-c 9 rb/P (Jesina et al., 2004) 

Fo-g 11 rb/P GeneTex GTX111014 

IF1 12/15 mo/M Abcam ab110279 

SDHA  70 mo/M Abcam ab14715 

Core 1  49 mo/M Abcam ab 110252 

Cox4  18 mo/M Abcam ab14744 

ANT 30 rb/P (Kolarov et al., 1978) 

PiC 35 mo/P Sigma-Aldrich SAB1400208 

MS603 - mo/M Abcam ab110412 

DAPIT 10 rb/P Proteintech Group 17716-1-AP 

CPO-1 actin 44 mo/M Calbiochem 

SOD1 16 rb/P Ab-Frontier LF-PA0013 

SOD2 22 mo/M Ab-Frontier LF-MA0030 

mo/P - mouse polyclonal; rb/P - rabbit polyclonal; mo/M - mouse monoclonal 

 

 For membrane washing between individual incubations with antibodies, TBS 

supplemented with 0.1 % Tween-20 was used. Fluorescence was detected using Odyssey 

infrared imaging system (LI-COR Biosciences) and the signal was quantified using Aida 3.21 

Image Analyzer software (Raytest). 

3.3.2 ATPase in-gel activity assay 

 Enzyme in-gel activity staining was performed after separation of the respiratory 

complexes using BN-PAGE or hrCN-PAGE. The in-gel activity assay of the ATPase hydrolytic 

activity was performed as described (Wittig et al., 2007). Gels were pre-incubated 

in Tris/Glycine buffer containing 35 mM Tris, 270 mM glycine, pH 8.3 – 8.4. Than gels were 
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incubated in the assay mixture containing 14 mM MgSO4, 0.2 % Pb(NO3)2 and 8 mM ATP 

in Tris/Glycine buffer until white precipitate was observed. 

3.3.3 Respiratory measurements 

The Seahorse XFe24 Analyzer (Seahorse Bioscience) was used to measure oxygen 

consumption and extracellular acidification in embryo homogenates and intact cells. 

Fresh mouse embryos were homogenised in Assay medium (70 mM sucrose, 220 mM 

mannitol, 10 mM KH2PO4, 5 mM MgCl2, 2 mM HEPES, 1 mM EGTA, 0.2 % BSA; pH 7.2) 

containing substrates for Complex I (10 mM pyruvate, 2 mM malate, 10 mM glutamate), 5 µM 

cytochrome c, 2 mM ADP, and PIC (1:500, Sigma). Hand homogenisation was performed 

in a glass-glass micro-homogeniser (13 complete strokes, 1 ml, Fisher Scientific, FB56673). 

Homogenates were transferred to XF-V7 24-well plates (Seahorse Bioscience) and spun down 

for 20 minutes at 2000 g, 4 °C to attach the homogenate to the plastic surface. Before 

measurement, the total volume in each well was adjusted to 500 µL with Assay medium plus 

substrates (same as for homogenisation). The oxygen consumption rate (OCR) was determined 

at 37 °C with Complex I substrates + ADP and then after subsequent additions of 10 mM 

succinate, 2 µM oligomycin, 4 µM FCCP, and 0.4 µM antimycin A. The data are presented as 

the OCR in picomoles O2 per minute. The respiratory control ratio (RCR) was calculated from 

the respiration values after adding succinate (State 3) and oligomycin (State 4) – State3/State4. 

 The intact cells were seeded on poly-L-lysine (Sigma, P8920) coated plates on a day 

before the measurement (30000–40000 cells per well). The measurements were carried out 

in the XF base medium supplemented with 10 mM glucose, 1 mM pyruvate, 2 mM L-glutamine, 

and 0.2 % bovine serum albumin. Final concentrations of inhibitors were as follows: 1 μM 

oligomycin, 2 μM FCCP, 1 μM rotenone, 0.5 μM antimycine A, and 100 mM 2-deoxyglucose. 

Both oxygen consumption and extracellular acidification were normalised to the total DNA 

content that was estimated by the Quant-iT PicoGreen assay according to the manufacturer’s 

instructions (ThermoFischer) after cells had been treated with a lysis buffer (20 mM Tris-HCl, 

10 mM EDTA pH 7.4, 1 % (w/v) SDS, 50 μg/ml proteinase K) at 37 °C for 1 h. 

 The OROBOROS Oxygraph-2k (Oroboros Instruments) was used to determine oxygen 

consumption of freshly prepared tissue homogenates in an assay medium containing 80 mM 

KCl, 3 mM MgCl2, 5 mM KH2PO4, 1 mM EDTA, 10 mM Tris-HCl (pH 7.3) at 37 °C (mice) 

or 30 °C (rats). 
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Final concentrations of substrates and inhibitors were as follows: 10 mM glutamate, 

10 mM pyruvate 2.5 mM malate, 10 mM succinate, 1.5 mM ADP, 0.2 µM oligomycin (titrated), 

1.5 µM FCCP. 

The oxygen consumption was expressed in pmol oxygen/s/mg protein. 

3.3.4 ROS production 

ROS production was estimated as CM-H2DCFDA (chloromethyl derivative 

of 2’,7’-dichlorodihydrofluorescein diacetate, Life Technologies) fluorescence in a saline 

buffer (135 mM NaCl, 5 mM KCl, 0.4 mM KH2PO4, 1 mM MgSO4, 1 mM CaCl2, 20 mM 

HEPES, pH 7.4) supplemented with 10 mM glucose and 1 μM CM-H2DCFDA and with 

or without inhibitors (1 μM oligomycin, 1 μM FCCP). Cells were seeded in poly-L-lysine 

coated 24-well plates a day prior to the measurement. Immediately after the cultivation medium 

was exchanged for the assay medium, the background fluorescence was recorded using a plate 

reader (Infinite M200, Tecan) with excitation set to 495 nm and emission 525 nm. After 

incubation at 37 °C for 2 h, an increase in the fluorescence was recorded with the same 

instrumental gain. 

3.3.5 Enzyme activity measurement 

Enzyme activities were determined spectrophotometrically at 37 °C in tissue 

homogenates. 

Oligomycin-sensitive ATP synthase hydrolytic activity was measured 

in ATP-regenerating system according to Baracca et al. (Baracca et al., 1989). 10 µl of sample 

was mixed in cuvette with 490 µl of 5 mM Tris-HCl and sonicated (10 s at 20 % amplitude 

sonication). 500 µl of 2x concentrated measuring mixture [75 mM Tris-HCl, 10 mM MgCl2, 

20 mM KCl, 0.2 mM NADH, 0.4 mM 2-phosphoenolpyruvate, 0.5 mM ATP, 0.2 % BSA, 

1 mM FCCP, 2 µM antimycin A, 1 μM rotenone, 8 U/ml lactate dehydrogenase + 8 U/ml 

pyruvate kinase (Sigma P0294)] was added. 1.5 min after starting the measurement 3 µM 

oligomycin was added. Oligomycin sensitive enzyme activity was calculated as difference 

of -/+ oligomycin and expressed as nmol/min/mg protein using molar absorption coefficient 

340 = 6.22 mM-1.cm-1 (NADH). 

Citrate synthase was measured as described in (Srere P. A. 1969). 10 µl of sample was 

mixed in cuvette with detergent (3 µg n-dodecyl-β-D-maltoside/1 µg of protein) for 1 min. Than 

H2O, 0.1 mM DTNB and 0.1 mM acetyl-CoA were added. After 30 s of reaction, 0.5 mM 

oxaloacetate was added to reach final volume 1 ml. Enzyme activity was calculated 
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as difference of -/+ acetyl-CoA and was expressed as nmol/min/mg protein using molar 

absorption coefficient 412 = 13.6 mM-1.cm-1 (DTNB). 

3.3.6 Adenine nucleotide analysis 

To determine the level of adenine nucleotides, flash-frozen embryos stored in liquid 

nitrogen were homogenised and deproteinated by 6 % (v/v) perchloric acid in a glass-glass 

micro-homogeniser. Cells were snap frozen with liquid nitrogen in cultivation plates quickly 

after medium removal and harvested on ice into 6 % (v/v) perchloric acid. After centrifugation 

at 10000 g for 10 min (4 °C) collected supernatant was neutralised to pH 7 by 0.4 M 

triethanolamine + 1.8 M KOH. Neutralised samples were centrifuged at 10000 g for 2 min 

(4 °C) to remove precipitated salts. The content of ATP and ADP was determined by HPLC 

(high-performance liquid chromatography) as described in (Flachs et al., 2002). 

3.3.7 Blood analysis 

Blood was collected under isoflurane (2 %) anaesthesia from vena cava inferior. 

Complete blood count was analysed by automatic haematological analyser XN-1000 (Sysmex). 

Blood was also centrifuged for 5 min at 3000 g, 4 °C. Obtained plasma was analysed 

by biochemistry analyser Architect ci16200 (Abbott Diagnostics). Plasma enzymes AST and 

ALT contents were measured using Activated AST Reagent Kit (8L91, Abbott Diagnostics) 

and Activated ALT Reagent Kit (8L92, Abbott Diagnostics). Ammonia content was measured 

by MULTIGENT Ammonia Ultra Kit (6K89-30, Abbott Diagnostics). Analyses were 

performed at the Laboratory Methods Division, Institute of Experimental Medicine (IKEM), 

Prague. 

3.3.8 Determination of caspase activities 

The activities of caspases 3, 8 and 9 were assessed in tissue homogenate after addition 

of specific substrates Ac-DEVD-AMC, Ac-LETD-AFC and Ac-LEHD-AMC, respectively 

(Enzo Life Sciences, NY, USA). The activities were measured in a fluorescent mode using 

a TECAN Infinite M200 spectrofluorometer (Tecan Group AG, Switzerland). The excitation 

and emission wavelengths were 350 and 460 nm for caspase 3 and caspase 9, and 400 and 505 

nm for caspase 8. Results were normalised to protein concentration (BCA) and expressed as 

percent of control (100 %). Measurement was performed at the Department of Physiology, 

Faculty of Medicine, Charles University, Hradec Králové. 
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3.3.9 Determination of glutathione level 

Level of GSH was measured according to a slightly modified method of Rousar et al. 

(Rousar et al. 2012). Liver homogenates were added to ice-cold metaphosphoric acid (5 %, w/v) 

in the ratio of volumes 1:2, were shaken, and after incubation (10 min) were centrifuged 

20000 g for 10 min (4 °C). The supernatant was stored at -80 °C until analysis. The GSH 

standards (0-1000 µM) were diluted in metaphosphoric acid (5 %, w/v) according to the 

procedure for sample preparation. The sample/standard (50 µl) was added to 1000 µl 

of 100 mM sodium phosphate buffer with 4 mM EDTA (pH 8). Next, 60 µl of the mixture was 

added to 900 µl of sodium phosphate buffer, and then 60 µl of 0.1 % o-Phthalaldehyde (w/v) 

in methanol was added. After 15 min sample incubation at room temperature in darkness, 75 µl 

of 1 M HCl was added and the fluorescence was detected (λex = 340 nm; λem = 420 nm). 

Measurement was performed on an Aminco Bowman AB2 luminescence spectrofluorometer 

(Thermo, USA). Measurement was performed at the Department of Physiology, Faculty 

of Medicine, Charles University, Hradec Králové. 

3.3.10 Triglycerides level determination 

Triglycerides level was determined in liver tissue. 50 mg of liver tissue was incubated 

for 2 hours with 150 µl of 3M KOH in 65 % ethanol at 70 °C. Mixture was centrifuged 

600 g/5 min and obtained supernatant was diluted 10 times by distilled water. 

Level of triglycerides was determined by Triglycerides kit (Erba Lachema, BLT00059). 

Sample absorbance was measured spectrophotometrically at 500 nm. 

 

3.4 Microscopic methods 

3.4.1 Whole mount confocal microscopy 

The embryos were isolated in ice-cold PBS, fixed overnight in 4 % paraformaldehyde 

at 4 °C, then rinsed and stored in PBS at 4 °C. Prior to further processing, photographs of the 

embryos were taken on an Olympus SZX dissecting microscope. For whole mount 

immunohistochemistry (Miller C. E. et al. 2005) the embryos were permeabilised and blocked 

in normal goat serum with 0.1 % Triton-X100 in TBS for 2 h, followed by 24 h incubation with 

the primary antibodies (alpha smooth muscle actin, clone 1A4, Sigma, 1:1000, and the rat 

anti-mouse CD31 clone MEC13.3 from BD Pharmingen, 1:500). After 3x2 h rinsing with PBS, 

the samples were incubated for 24 h with the appropriate goat secondary antibodies (Jackson 

Immuno) coupled with Alexa488 (anti-rat) and rhodamine red (anti-mouse). Hoechst 33342 
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nuclear stain was added to the secondary antibody solution. After thorough rinsing, the embryos 

were rapidly dehydrated in ethanol, cleared in xylene, and mounted into cavity slides (Fisher 

Scientific) in DEPEX permanent mounting media (Electron Microscopy Sciences) 

and coverslipped. After drying, the slides were examined on an upright Olympus FluoView 

confocal microscope using 4x-20x objective lenses. The images were assembled into plates and 

labeled using Adobe Photoshop. Digital image processing included background subtraction, 

level adjustment for each channel, and Unsharp Mask filtering. Measurement was performed 

at the Department of Cardiovascular Morphogenesis, Instituteof Physiology, CAS. 

3.4.2 Transmission Electron Microscopy 

Mouse embryos (E8.5, E9.5) were removed from mice, washed immediately 

in Sorensen's phosphate buffer (SB; 0.1 M phosphate, pH 7.2-7.4) at 37 °C and fixed with 2.5 % 

glutaraldehyde in SB during 1-2 h at 4 °C (Soplop N. H. et al. 2009). Then, fixed embryos were 

embedded into melted agarose at 37 °C, and agarose was allowed to harden on ice. Agarose-

embedded embryos were post-fixed with 1 % OsO4 in SB, dehydrated in ethanol series, 

and embedded in Epon-Durkupan. Ultrathin sections (70-90 nm) were cut with Ultramicrotome 

Leica EM UC6, mounted on copper grids, contrasted with a saturated aqueous solution of uranyl 

acetate, and examined in FEI Morgagni 268 transmission electron microscope operated 

at 80 kV and in FEI TECNAI G2 20 LaB6 electron microscope operated at 200 kV (Tan A. S. 

et al. 2015). The images were captured using Mega View III CCD camera (Olympus Soft 

Imaging Solutions). Quantitative data are presented as mean ± standard deviation. Analysis was 

performed at the Department of the Cell Nucleus, Institute of Molecular genetics CAS. 
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3.5 Physiological methods 

3.5.1 Body weight and food intake monitoring 

Body weight and food intake of iTmem70-/- and iTmem70+/+ mice were monitored once 

a day at the same time for eight weeks post knockout induction. 

3.5.2 Echocardiography 

Transthoracic echocardiographic measurement of geometrical and functional 

parameters of the left heart ventricle (LV) was done using GE Vivid 7 Dimension (GE Vingmed 

Ultrasound, Horten, Norway) with 12 MHz high resolution matrix probe M12-L. Animals were 

anesthetised by inhalation of 2% isoflurane (Forane, Abbott), placed on a heated table and their 

temperature (rectal thermometer RET-4, Physitemp Instruments) was maintained within 36.5 

and 37.5 °C. For echocardiographic evaluation, the following diastolic and systolic dimensions 

were measured: cavity diameter (LVDd, LVDs), anterior wall thickness (AWTd, AWTs), 

posterior wall thickness (PWTd, PWTs) and heart rate (HR). The main functional parameter, 

fractional shortening (FS%) was derived from these dimensions by the following formula: 

FS% = 100  (LVDd – LVDs) / LVDd. All dimensions were measured in parasternal long and 

short axes view using two-dimensional and M-mode images. Repeated measurements in every 

view and mode were then averaged. Echocardiography was measured at the Department 

of Experimental Cardiology, Institute of physiology, CAS. 

 

3.6. Statistics 

Statistical analysis was performed by Student’s t-Test (Excel function TTEST, two 

tailed distributions, two sample equal variance). Quantitative data are presented as mean ± 

standard deviation (SD), alternatively standard error of the mean (SEM). All results are the 

average of multiple samples (n). 
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4 RESULTS 
 

Structure of the results section follows the formulated aims. The first chapter deals with 

the deleterious effect of constitutive and conditional Tmem70 mouse knockouts. It summarises 

published results on constitutive knockout and continues with unpublished data on the inducible 

one. The second chapter discussing a rat model of DAPIT protein deficiency is solely based 

on unpublished data. The third chapter shows how ATP synthase defects influence components 

of its supramolecular structure ATP synthasome in patient’s fibroblasts and mice. It describes 

results on a published paper and extends them with results on Tmem70 mouse knockout model. 

Finally, the last chapter explores the threshold content of ATP synthase required 

for pathological presentation in mitochondrial function and oxidative stress. This chapter 

is based on manuscript prepared for submission. 

 

4.1 Effect of Tmem70 knockout in mice (aim 1) 

4.1.1 Whole body Tmem70 mouse knockout (publication A) 

4.1.1.1 Embryonic lethality  

Generation of constitutive Tmem70 deficient mice (Tmem70tm1a(KOMP)Wtsi and 

Tmem70tm1b(KOMP)Wtsi) led to viable heterozygous Tmem70+/flox mice (further denoted 

as cTmem70+/-) and embryonic lethal Tmem70flox/flox embryos (further denoted as cTmem70-/-) 

about 9.5 days post coitum (E9.5). The expression of Tmem70 at the RNA level was ⁓60 % 

in cTmem70+/- of that in Tmem70+/+, while Tmem70 mRNA was undetectable in cTmem70-/- 

embryos (Figure 10 A). To study the lethality in utero the embryos from Tmem70+/flox 

inter-crosses were dissected at E8.9-E9.5 and genotyped (Figure 10 B). Total 481 embryos were 

analysed - cTmem70-/- n=100, cTmem70+/- n=260, Tmem70+/+ n=121 (ratio: 0.8:2:0.9). 

All cTmem70-/- embryos exhibited severe growth retardation phenotype (Figure 10 C). 

The genotyping of born animals (n = 212) followed the expected Mendelian ratio - Tmem70+/+ 

n=71, cTmem70+/- n=141. 
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4.1.1.2 Developmental retardation of cTmem70-/- embryos 

Due to the resorption of cTmem70-/- embryos past the day E9.5, we analysed embryo’s 

morphology at this day and compared cTmem70-/- embryos to their littermates. cTmem70+/- 

embryos were unaffected (Figure 10 C). The average size of the cTmem70-/- was less than half 

of the controls, their body curvature was often still in a lordotic-like curvature, they had an open 

anterior neuropore (Figure 10 C, inset) and their somite number was <15 compared with the 

25-somite stage of their littermates, all consistent with a 1-day developmental delay (i.e. E8.5). 

Also heart was retarded but without any other morphological discrepancies (Figure 11 A). 

Whole mount staining showed that the colonisation of cardiac cushions by mesenchymal cells 

was also reduced, similarly to the situation in E8.5 with only a few cells entering the cardiac 

jelly. Intravascular presence of erythrocytes indicated that functional circulation was already 

established. The heart was contracting at the time of isolation, and extent intensity of smooth 

muscle α-actin staining (marker of early myocardium) was normal (Figure 11 A). 

 To see if there is increase of apoptosis in cTmem70-/- and cTmem70+/-, we carried out 

the whole mount staining for the active form of caspase 3. It showed only a few scattered cells 

in all genotypes, which indicated that widespread apoptosis is not a part of the mutant phenotype 

(not shown). Semithin sections (in addition to serial confocal sections) clearly demonstrated 

that the myocardium was on average composed from two cell layers (range 1-3). 

The connections between the cells appeared normal. 
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Figure 10. Tmem70 knockout mouse. (A) RT-PCR quantification of Tmem70 mRNA (related 

to β2 microglobulin - B2m mRNA), n=2. (B) Genotyping of E9.5 embryos: +/+ allele is 1125 

bp and -/- allele is 777 bp. (C) Optical microscopy of Tmem70+/+ (+/+), cTmem70+/- (+/-), 

and retarded cTmem70-/- (-/-) E9.5 embryos. OT – heart outer tract, V – ventricle, A – atrium, 

arrow points to open neuroporus anterior, scale bar 1 mm. 
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4.1.1.3 Disrupted mitochondrial ultrastructure in cTmem70-/- embryos 

 It has been published that patients with Tmem70 deficiency have disrupted 

mitochondrial cristae (Jonckheere et al., 2011, Braczynski et al., 2015, Diodato et al., 2015, 

Sladkova et al., 2015). To observe mitochondrial cristae morphology in E9.5 embryos we used 

transmission electron microscopy. We detected pronounced changes in mitochondrial 

morphology in the heart as a result of cTmem70-/- knockout (Figure 11 B). Wildtype embryos 

contained 1.3 ± 0.1 mitochondria per µm2 (n = 45 cells), with 83.4±3.4 % of mitochondria 

exhibiting normal ultrastructure. On the contrary, in cTmem70-/- mouse embryos the average 

density of mitochondria did not differ from controls (1.4 ± 0.3 mitochondria per µm2) 

but 80.5±1.3 % of mitochondria displayed atypical shapes and fewer cristae with altered 

morphology (n = 45 cells). In particular, the classical arrangement of trabecular cristae was 

often replaced by concentric or irregular cristae structures. 

 

Figure 11. Impaired morphology of cTmem70-/- embryos. (continues at the next page) 

A        B 
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Continues from the previous page. (A) Whole mount immunohistochemistry; confocal 

microscopy of retarded heart of cTmem70-/- (-/-) embryo in comparison with Tmem70+/+ (+/+) 

and cTmem70+/- (+/-) E9.5 embryos: OT – outer tract, LV – left ventricle, LA – left atrium, NA 

– neuroporus anterior; SMA (alpha smooth muscle actin), red – myocardium; CD31, green – 

endocardium; Hoechst 33342, blue – nuclei; arrows point to emerging ventricular 

trabeculation, scale bar 100 µm. (B) Electron microscopy of disturbed cristae morphology 

of cTmem70-/- (-/-) compared to Tmem70+/+ (+/+) heart mitochondria of E9.5 embryos. M – 

mitochondria, MF – myofibrils, LM – lysed mitochondria, N – nucleus, scale bar 1 µm. 

 

4.1.1.4 ATP synthase deficiency in cTmem70-/- embryos 

Patients with Tmem70 deficiency exhibit a pronounced decrease of assembled ATP 

synthase (Cizkova et al., 2008). To confirm this defect in our model we analysed ATP synthase 

assembly and other OXPHOS complexes by native electrophoresis. Although the expression 

of subunit F1-α (Atp5A1) in embryos did not differ between genotypes (data not shown), 

BN-PAGE followed by Western blot immunodetection (antibody against F1-α subunit) showed 

that ATP synthase is strongly affected in cTmem70-/- embryos. Fully assembled ATP synthase 

(FoF1) was decreased to 20 % and F1 subcomplex was 3.5-4-fold accumulated (Figure 12 A, B). 

cTmem70+/- embryos did not differ from Tmem70+/+ embryos containing normal amounts 

of ATP synthase and low amount of F1 subcomplex, related to CII (Figure 12 B). This resulted 

in 20-fold increase in F1/FoF1 ratio in cTmem70-/- embryos (Figure 12 C). A comparable 

decrease was observed with antibodies against Fo-a and Fo-c subunits, which were not present 

in the F1 subcomplex. Any intermediates or Fo subunits containing aggregates were not present 

(Figure 12 A). In-gel ATPase hydrolytic activity confirmed impaired ATP synthase assembly 

and showed retained ATPase hydrolysing activity of F1 subcomplex (Figure 12 A). 

Following probing with antibodies against representative subunits of RC - succinate 

dehydrogenase A subunit (SDHA - CII), Core1 subunit (CIII), Cox4 subunit (CIV) showed 

nearly normal content of RC complexes in cTmem70-/- in comparison to cTmem70+/- 

or Tmem70+/+ embryos (Figure 12 A). 
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Figure 12. ATP synthase deficiency in cTmem70-/- embryos. (A) BN-PAGE separation of ATP 

synthase and respiratory chain complexes using n-dodecyl-β-D-maltoside -solubilised proteins 

(2 g/g protein) of Tmem70+/+ (+/+), cTmem70-/- (-/-) and cTmem70+/- (+/-) Tmem70 knockout 

E9.5 embryos, Western blot detection with antibodies to ATP synthase (subunits F1-α, Fo-c, 

Fo-a), Complex II (CII, SDHA subunit), Complex III (CIII, Core 1 subunit), Complex IV (CIV, 

Cox4 subunit). (B) Quantification of ATP synthase content with respect to CII (F1Fo – complex 

of ~ 6- kDa, F1 – subassembly of ATP synthase catalytic part of ~ 370 kDa). (C) Relative content 

of F1 and FoF1, n = 2–3. Data are mean±SD, * p≤0.05, ** p≤0.01, *** p≤0.001. 

 

4.1.1.5 Altered mitochondrial energetic function in cTmem70-/- embryos 

As the ATP synthase was affected, we tested overall OXPHOS function. The analysis 

of mitochondrial OXPHOS function on fresh embryo homogenates was measured on Seahorse 

XFe analyzer by subsequent addition of different substrates. cTmem70-/- embryos displayed 

much lower rates of ADP-stimulated (State 3) oxidation of RC substrates (pyruvate, glutamate, 
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malate, and succinate) normalised to SDHA content. Oligomycin sensitive oxidation of these 

substrates (State3-State4) was decreased by 68-71% in Tmem70-/-
 embryos in comparison 

to cTmem70+/- and Tmem70+/+ embryos. This leads to the 2-fold decrease of respiratory control 

ratio (RCR) (State 3/State 4) in cTmem70-/- embryos (Figure 13 A). HPLC analysis of adenine 

nucleotides showed in Tmem70-/- embryos 2-fold decrease of ATP/ADP ratio (Figure 13 B). 

Immunodetection of antioxidants superoxide dismutases (SODs) revealed upregulation in the 

content of mitochondrial Mn-dependent SOD2 and in Tmem70-/- embryos. The same tendency 

was observed for Cu/Zn-dependent SOD1. 

 

 

Figure 13. Altered mitochondrial energetic function in Tmem70-/- embryos. (A) Seahorse 

oxygraphy of the whole embryo homogenates with respiratory substrates pyruvate + malate + 

succinate. ADP-stimulated, oligomycin-sensitive respiratory rates (normalized to CII content) 

and respiratory control ratio RCRADP. (B) ATP/ADP nucleotide content ratio in whole embryo 

extracts. (C) The level of superoxide dismutases in whole embryo extracts. SOD1 and SOD2 

content was detected by SDS-PAGE and Western blot and normalised to CII content. Data are 

mean±SD, n ≥ 6 in A, 5 in B, 6 in C, Tmem70+/+ (+/+), cTmem70-/- (-/-) and cTmem70+/- (+/-) 

E9.5 embryos were used. * p≤0.05, ** p≤0.01, *** p≤0.001. 

 

4.1.1.6 Affected postnatal heart phenotype of Tmem70 heterozygous mice 

Although cTmem70-/- embryos were lethal, cTmem70+/- mice were viable. We analysed 

them at the age of 5 and 14 weeks but no distinguishable differences were found in their growth 

parameters (body, heart weights) in comparison with Tmem70+/+ littermates. BN-PAGE 

showed normal content of assembled ATP synthase without accumulation of F1 intermediates, 

as well as normal content of respiratory chain complexes. Detailed characterisation 

of mitochondrial energetic function showed unchanged parameters of substrate oxidation (State 

3-ADP, State 3-FCCP, ATP production, sensitivity to oligomycin). Similarly, measurements 

A       B               C 
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of mitochondrial ΔΨm did not reveal any changes at state 3 or state 4. For more information see 

the supplements of (Vrbacky et al., 2016). 

Despite the lack of a biochemical phenotype, we observed mild systolic dysfunction 

of the cardiac left ventricle in cTmem70+/- mice. Decrease of fractional shortening was detected 

in cTmem70+/- mice compared to Tmem70+/+ mice in both age groups (Table 5). In addition, 

the systolic wall thickness, which is related to a decreased fractional shortening, was 

significantly decreased at 14 weeks. 

 

Table 5. Impaired heart function and growth parameters in cTmem70 +/- adult mice. 

  5 weeks 15 weeks 

A  Tmem70 +/+ cTmem70 +/- Tmem70 +/+ cTmem70 +/- 

AWTd (mm) 0.62 ± 0.03 0.63 ± 0.04 0.70 ± 0.07 0.63 ± 0.05 * 

LVDd (mm) 3.71 ±0.23 3.60 ± 0.17 4.30 ± 0.42 4.10 ± 0.36 

PWTd (mm) 0.62 ± 0.06 0.64 ± 0.05 0.69 ± 0.08 0.62 ± 0.04 * 

AWTs (mm) 1.02 ±0.08 0.98 ± 0.08 1.12 ± 0.09  0.94 ± 0.09 *** 

LVDs (mm) 2.24 ± 0.18 2.33 ± 0.13 2.78 ± 0.33 2.89 ± 0.4  

PWTs (mm) 1.06 ± 0.08 1.04 ± 0.11 1.13 ± 0.1 0.98 ± 0.1 ** 

FS (%) 39.41 ± 2.28 35.4 ± 2.56 ** 35.5 ± 2.68 29.9 ± 4.26 ** 

HR 504 ± 49.2 521 ± 57 472 ± 38  501 ± 146 

BW (g) 18.72 ± 1.61 18.85±0.87 28.56±2.17 28.42±1.75 

HW (mg) 91±6.75 91±4.81 130±18.1 124±9.6 

HW/BW (mg/g) 4.9±0.35 4.8±0.2 4.5±0.4 4.4±0.3 

AWTd - diastolic anterior wall thickness, LVDd – left ventricle diastolic dimension, PWTd 

-   diastolic posterior wall thickness, AWTs – systolic anterior wall thickness, LVDs – left 

ventricle systolic dimension, PWTs - systolic posterior wall thickness, FS – fractional 

shortening, HR - heart rate, BW - body weight and HW - heart weight parameters. Data are 

mean±SD values from 5-weeks-old mice (n=9) and 14-weeks-old mice (n=10-11); * p0.05, 

** p0.01, *** p0.001. 
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4.1.2 Inducible Tmem70 knockout mouse (unpublished data) 

4.1.2.1 Viability of iTmem70-/- mice 

As the constitutive knockout model of Tmem70 was embryonic lethal, we further 

generated inducible constitutive knockout mice B6.Tmem70tm1d(KOMP)Wtsi (ROSA-Cre ERT2 x 

ACTFLPe/TMEM70; iTmem70-/-) to be able to study the presentation of TMEM70 deficiency 

on adult animal model. Induction of Tmem70 knockout led to decrease of body weight (to 68 %) 

and food intake (to 84 %) and was lethal about 8 weeks after knockout induction (Figure 14 A). 

Heart weight (HW) and liver weight (LW) related to body weight did not differ between 

iTmem70-/- and Tmem70+/+ mice (Figure 14 B). 
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Figure 14. Weight and food 

intake changes in iTmem70-/- 

mice. (A) Body weight and food 

intake were decreasing after 

Tmem70 knockout induction. (B) 

Heart weight (HW) and liver 

weight (LW) related to body 

weight (BW) are not changed. 

Data are mean ±SD, n = 5-7. 
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4.1.2.2 Effectivity of Tmem70 excision 

We performed genotyping to analyse how effective was the excision of Tmem70 

in mouse tissues. We showed excision to be almost 100 % effective in most tissues but there 

was still some Tmem70+/+ present in heart and brain (Figure 15 A). The expression of Tmem70 

quantified by RT-PCR was decreased both in liver and in heart of induced knockout mice. 

However, there was still more remaining Tmem70 gene in heart (25±22 % relative to control 

animals) when compared to liver. Moreover, result demonstrates lower expression of Tmem70 

in liver tissue in comparison to heart (Figure 15 B), the tissue with higher energetic demands. 
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Figure 15. Effectivity of Tmem70 

excision. (A) PCR of Tmem70 

showing the effectivity of its 

excision in tissues of Tmem70-/- 

(not excised, 1237 bp) and 

Tmem70+/+ (excised, 579 bp) mice. 

(B) The expression of Tmem70 

transcript in liver and heart 

related to β2 microglobulin - B2m 

quantified by RT-PCR. RQ – 

relative quantity. Data are mean 

±SD, n = 5. **p≤0.01, 

***p≤0.001. 
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4.1.2.3 ATP synthase isolated deficiency iTmem70-/- mice 

 To see the effectivity of Tmem70 excision on ATP synthase biogenesis in different 

tissues (liver, heart, brain, muscle, kidney, spleen, lung, intestine, brown adipose tissue) 

and compare it with result on cTmem70-/- embryos we performed native electrophoreses. Tissue 

homogenates of Tmem70+/+ and iTmem70-/- mice solubilised by n-dodecyl-β-D-maltoside 

(2g/g of protein) were separated by BN-PAGE. Subsequent Western blotting and 

immunodetection of F1-α subunit showed that ATP synthase assembly is impaired with F1 

subcomplex accumulation in all tissues except heart. Interestingly, in brain we observed 

accumulation of F1 subcomplex in iTmem70-/- although, similarly to heart, there was still 

considerable quantity of non-excised Tmem70 gene. ATPase in-gel hydrolytic activity assay 

performed on liver and heart homogenates, representing two extreme states, showed the same 

pattern (Figure 16 A). 

Further analyses of mitochondria and ATP synthase assembly were done on heart and 

liver as two key organs with different amounts of ATP synthase. Heart represents organ with 

high energy demands but less impaired ATP synthase in iTmem70-/- mice. On the other hand, 

liver represent the centre of metabolism with less ATP synthase which is highly affected 

in iTmem70-/- mice. Thus, these tissues are suitable for deeper analysis of ATP synthase 

biogenesis. 

To analyse ATP synthase biogenesis in detail we performed electrophoresis of liver 

homogenate under milder conditions. Surprisingly, hrCN-PAGE showed on samples 

solubilised by digitonin (2 g/g of protein) two more subcomplexes of ATP synthase, which 

were not observed in any of our previous models (Cizkova et al., 2008, Vrbacky et al., 2016). 

All observed subcomplexes contain F1-α subunit but not Fo-c subunit (Figure 16 B). All three 

subcomplexes were also observed when using in-gel ATP synthase hydrolytic activity (Figure 

16 B). Moreover, ATPase hydrolytic activity measured spectrophotometrically was decreased 

in the liver of iTmem70-/- mice to 10 % of controls (Figure 16 C). 

Because of the inter-individual variability of Tmem70 excision efficiency in hearts 

of tested animals, we further decided to look at them individually and not at the cohort level. 

The content of accumulated F1 subcomplex in heart homogenates of iTmem70-/- mice differed 

among individual mice (Figure 17 A). The F1 accumulation correlated with the level of Tmem70 

deficiency and with protein levels of F1-γ and Fo-b subunits of ATP synthase (Figure 17 B; 

Table 6). 
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Figure 16. ATP synthase deficiency in iTmem70-/- mice. (A) Impaired ATP synthase assembly 

in Tmem70-/- (-/-) mouse tissues analysed by BN-PAGE (samples solubilised by n-dodecyl-β-D-

maltoside) and (B) in liver by hrCN-PAGE (samples solubilised by digitonin). ATP synthase 

was detected on western blots using antibody against F1-α and Fo-c subunits or in gels 

by ATPase in-gel activity. (C) ATPase hydrolytic activity measured by spectrophotometer 

in iTmem70-/- (-/-) and Tmem70+/+ (+/+) mice. Data are mean ±SD, n = 4-5. ***p≤0.001. 
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Figure 17. ATP synthase assembly and Tmem70 excision efficiency in heart. (A) BN-PAGE 

analysis of ATP synthase assembly and F1 accumulation in 4 iTmem70-/-(1, 2, 3, 4 – black dots) 

and 2 Tmem70+/+(5, 6 – black circles) mice. (B) Correlation of the content of PCR Tmem70 

gene product (DNA fragment) in individual mice and their protein levels of ATP synthase 

subunits F1-γ and Fo-b (related to actin) quantified by SDS-PAGE in heart mitochondria. 

 

Regarding the levels of other OXPHOS complexes, we analysed protein levels 

of representative subunits in liver mitochondria in control and iTmem70-/- mice. We found that 

subunits of CI (NDUFA9), CII (SDHA) and CIV (COX1 and COX4) were increased, while 

the content of CIII (Core 2) did not change. Subunits of CV (F1-α, F1-γ, Fo-b, Fo-c) were 

markedly decreased. When related to actin level, result is similar except subunit COX1 

of complex IV, whose increase in this case did not reach statistical significance (Table 6). 

Analogous analysis on heart samples did not show any differences in OXPHOS complexes 

content (not shown). 
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Table 6. Protein content of subunits of protein OXPHOX complexes in liver. 

 Protein content Per actin 

 % control ± SD % control ± SD 

CI (NDUFA9) 209±26*** 204±34*** 

CII (SDHA) 159±27** 154±23** 

CIII (Core 2) 108±8 105±9 

CIV (COX1) 134±16** 131±28 

CIV (COX4) 180±39** 175±33** 

CV (F1-α) 45±10*** 44±10*** 

CV (F1-γ) 24±11*** 23±11*** 

CV (Fo-b) 24±6*** 23±5*** 

CV (Fo-c) 17±4*** 19±6*** 

SDS-PAGE. Data are mean ±SD from 5 iTmem70-/- 

and 4 Tmem70+/+ mice. **p≤0.01, ***p≤0.001. 

 

4.1.2.4 Altered mitochondrial energetic function in iTmem70-/- mice 

To test the effect of ATP synthase defect on the mitochondrial function we analysed 

the respiration by Oxygraph O2k (Oroboros, Austria). Addition of cytochrome c led to 

systematically higher increase of oxygen consumption by liver mitochondria in homogenate 

of iTmem70-/- mice to 178 % of increase in Tmem70+/+ mice (Figure 18 A) indicating broken 

OMM. Maximal respiration with cytochrome c, pyruvate, malate, succinate and ADP did not 

differ between iTmem70-/- and Tmem70+/+ mice and inhibition of ATP synthase iTmem70-/- 

by oligomycin was very low (not shown), which may point to damaged, uncoupled 

mitochondria. Respiratory control ratio (RCR) (State 3/State 4) in Tmem70-/- embryos decreased 

to 35 % of controls (Figure 18 B). Respiration of heart mitochondria was not affected (not 

shown). 
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Figure 18. Altered mitochondrial energetic function in induced Tmem70 knockout mice. (A) 

Higher activation of oxygen consumption by cytochrome c in mitochondria of liver homogenate 

of iTmem70-/- mice (B) and decreased respiratory control ratio (RCR) in iTmem70-/- mice 

in comparison to Tmem70+/+measured by oxygraphy. Data are mean ±SD from 5 animals 

in each group. *p≤0.05, ***p≤0.001. 

 

4.1.2.4 Oxidative stress in iTmem70-/- mice 

It was previously suggested that ATP synthase dysfunction is connected with increase 

of ROS production (Mracek et al., 2006) and indeed, cTmem70-/- embryos had increased level 

of the matrix antioxidant superoxide dismutase 2 (SOD2) (see Figure 13). This was also 

confirmed in iTmem70-/- liver. Defect in oxidative phosphorylation in liver led to the increase 

of SOD2 (161±25 % of controls), which indicates production of ROS. Superoxide dismutase 1 

(SOD1) level were not changed (Figure 19 A). In addition, reduced antioxidant glutathione 

(GSH) supports the hypothesis of increased ROS production in liver of iTmem70-/-, because its 

levels were decreased to 64±10 % of Tmem70+/+ due to its oxidation (Figure 19 B). 
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Figure 19. Oxidative stress in induced iTmem70-/- mice. (A) Changes in antioxidants 

superoxide dismutases (SOD1 and SOD2) related to actin analysed by SDS-PAGE in mouse 

liver homogenates after knockout induction. (B) Change in reduced antioxidant glutathione 

(GSH) in iTmem70-/- liver homogenates. Measured by fluorescence assay. Data are mean ±SD 

from 5 animals in each group. *p≤0.05, **p≤0.01. 

 

4.1.2.5 Physiological parameters in liver of iTmem70-/- mice 

 Liver mitochondria damage led to mild defect, which was indicated by liver fragility 

but also by increased plasma levels of alanine aminotransferase (ALT) and aspartate 

aminotransferase (AST) (Table 7). Increase of these markers indicate damaged cytoplasmic 

membrane of hepatocytes. Increase of NH4
+ (hyperammonenmia) also indicates damage of liver 

due to urea cycle impairment. Moreover, haematological analysis revealed decrease in red and 

white blood cells. On the other hand, number of platelets was markedly increased (Table 7). 

That the liver damage is linked to increased apoptosis was shown by significantly higher 

activities of pro-apoptotic enzymes caspase-3 and caspase-8. Caspase-3 increased in iTmem70-/- 

liver to 225±104 % of controls and caspase-8 to 114±4.6 % (Figure 20). Caspase-9 was not 

changed (data not shown). 

A               B 
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Table 7. Blood and plasma analysis. 

 

 

 

 

 

 

 

  

   

ALT - alanine aminotransferase, AST - aspartate aminotransferase 

   Data are mean ±SD from 5 animals in each group. **p≤0.01, 

***p≤0.001. 

 

 

 

Figure 20. Increased apoptosis in induced iTmem70-/- mice. Activities of caspase-3 and 

caspase-8 in Tmem70+/+ and iTmem70-/- mouse liver homogenate. Measured by fluorescence 

assay. Data are mean ±SD from 5 animals in each group. *p≤0.05, **p≤0.01. 

  

Haematology 
  Tmem70+/+ iTmem70-/- 
Red blood cells (1012/l) 9.35±0.15 6.89±0.66 *** 
White blood cells (109/l) 5.87±0.77 0.96±0.39 *** 
Platelets (109/l) 965.25±108.97 1449.67±148.06 ** 
Haematocrit 0.45±0.01 0.34±0.03 *** 

Plasma biochemistry 

  Tmem70+/+ iTmem70-/- 

NH4
+
 (µmol/l) 36.43±13.06 106.83±43.28 ** 

ALT (U/l) 21.18±4.12 44.82±11.32 ** 
AST (U/l) 34.47±6.38 70±14.65 ** 
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4.2 Effect of DAPIT deficiency in rats (aim 2, unpublished data) 

4.2.1 Lower body weight and heart hypertrophy of DAPIT deficient rats 

 Protein DAPIT, which is a new subunit of ATP synthase coded by nDNA gene Usmg5, 

was the second mitochondrial protein I focused on in this thesis. Our goal was to evaluate its 

role and position in ATP synthase complex. To achieve this, we generated Usmg5-/- deficient 

rats by zinc finger nucleases technology. Usmg5-/- rats were fully viable, albeit of smaller body 

size (Figure 21 A). Their body weight was 20-30 % lower in comparison to controls (Usmg5+/+) 

(Figure 21 B). Moreover, Usmg5-/- rats had selective hypertrophy of right heart ventricle (RV) 

(127±21 % of controls) when related to body weight (Figure 21 C). On the other hand, they had 

decreased weight of epidydimal white adipose tissue (80±6 % of controls) and decrease 

of triglycerides in liver (86±6 %) (Figure 21 C). 

 

Figure 21. Body parameters of Usmg5-/- rats. (A) Body size of Usmg5-/- rats and their controls 

(5-week-old). (B) The body weight (BW), (C) heart right ventricle (RV) weight, epididymal 

white adipose tissue weight (epiWAT) related to BW and level of triglycerides in liver 

of 6 months old rats. Data are mean ±SD from 16-18 animals in each group. *p≤0.05, 

**p≤0.01, ***p≤0.001. 
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4.2.2 Affected heart function in DAPIT deficient rats 

With regard to heart RV hypertrophy we tested rat heart function by echocardiography. 

It showed generalised heart dysfunction in Usmg5-/- rats presented by lower fractional 

shortening of left heart ventricle which was 84±10 % of controls (Figure 22 A). We also 

observed a pronounced change in pulmonary blood flow (pulmonary artery maximal velocity) 

which was in Usmg5-/- rats 166±80 % of their controls and was suggestive of pulmonary arterial 

hypertension (PAH) (Figure 22 B). 

 

Figure 22. Affected heart function in DAPIT knockout rats. Fractional shortening (FS) 

of heart left ventricle (A) and pulmonary artery maximal velocity (PA Vmax) (B) of Usmg5-/- 

and Usmg5+/+ rats measured by echocardiography. Data are mean ±SD from 8 animals in each 

group. *p≤0.05, ***p≤0.001. 
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4.2.3 ATP synthase defect in DAPIT deficient rats 

BN-PAGE showed normal levels of ATP synthase in heart of Usmg5-/- rats. ATP 

synthase holoenzyme in Usmg5-/- animals was slightly smaller and apparently more labile, 

as judged by minor accumulation of F1 subcomplex. Most interestingly, in Usmg5-/- animals we 

observed less dimers of ATP synthase (Figure 23 A). Subunit composition of ATP synthase 

monomers and dimers did not differ between Usmg5-/- and Usmg5+/+ rats except of missing 

DAPIT subunit in Usmg5-/- rats (Figure 23 B). Spectrophotometrically measured ATPase 

(hydrolysing) activity was reduced but significantly only in liver to 81±8 % of controls 

(Figure 23 C). 

 

Figure 23. ATP synthase defect in Usmg5-/- rats. (A) Heart ATPase of Usmg5-/- and Usmg5+/+ 

detected by in-gel ATPase hydrolytic activity on gels after BN-PAGE (samples solubilised by 

digitonin). VD - dimer of ATP synthase, VM - monomer of ATP synthase, F1 - subcomplex of ATP 

synthase. (B) Subunit composition of heart ATP synthase of Usmg5-/- and Usmg5+/+detected by 

SDS-PAGE. ATP synthase monomer (M) and dimer (D). (C) Spectrophotometrically measured 

ATPase hydrolytic activity in heart and liver homogenates. Data are mean ±SD from 8 animals 

in each group. *p≤0.05. 
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ADP phosphorylating activity (state 3 respiration) measured by Oxygraph O2k was 

reduced in heart to 89±7 % and in liver to 91±2 % of controls (Figure 24). This ADP 

phosphorylating activity was titrated with ATP synthase Fo part inhibitor oligomycin or F1 part 

inhibitor aurovertin. Interestingly, sensitivity to oligomycin was significantly higher in Usmg5-/- 

heart and liver in comparison to controls while aurovertin did not have any such effect and 

inhibited Usmg5-/- similarly to controls in both tissues (Figure 25). 

 

 

Figure 24. Altered energetic function in Usmg5-/- rats. Maximal respiration of mitochondria 

in heart and liver homogenates in state 3 with substrates pyruvate, malate, and succinate 

and with cytochrome c and ADP measured by oxygraphy. Data are mean ±SD from 8 animals 

in each group. ***p≤0.001. 
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Figure 25. ATP synthase inhibition in Usmg5-/- rats. Titration of maximal respiration 

of mitochondria in heart and liver homogenates in state 3 with substrates pyruvate, malate, 

and succinate and with cytochrome c and ADP with ATP synthase inhibitors oligomycin (Fo 

part inhibitor) or aurovertin (F1 part inhibitor). Measured by oxygraphy. Data are mean ±SD 

from 6 animals in each group. 
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4.3 Components of mitochondrial ATP synthasome in fibroblasts of patients 

with ATP synthase deficiency (aim 3, publication B) 

It was proposed that ATP synthase forms higher structures. We decided 

to systematically explore the existence of putative ATP synthasome, which should be composed 

of ATP synthase, ANT and PiC. To achieve this, we decided to study tissues with varying 

amount of ATP synthase and cells from patients with ATP synthase deficiencies. In rat tissues 

we showed that the expression of mitochondrial carriers ANT and PiC is transcriptionally 

controlled in accordance with the ATP synthase amount. We demonstrated interaction of both 

ANT and PiC with ATP synthase but such association was minuscule one. Only 3 % of ANT 

and 16 % of PiC were incorporated into ATP synthasome and the majority exists as separate 

entities (Nuskova et al., 2015). To find out whether altered ATP synthase content change 

the proportion of PiC and ANT in fibroblasts of patients, we compared patients with decreased 

content of fully assembled ATP synthase (mutations in TMEM70 and ATP5E - F1-ε subunit) 

and patients with normal amount of assembled ATP synthase without ability to synthesise ATP 

(mutation in MT-ATP6 - Fo-a subunit). The protein content of ANT and PiC was increased, 

respectively, to 150-240 % and 117-250 % of controls regardless of the different genetic origin 

or clinical and biochemical manifestation of ATP synthase defect (Figure 26 A). The relation 

of ANT and PiC to ATP synthase subunit F1-β showed that ATP synthase dysfunctions are 

associated with an up to 7-fold increase between the carriers and ATP synthase (Figure 26 B). 

Moreover, we confirmed these results in liver homogenates of iTmem70-/- mouse model. The 

level of ANT was increased when related to SDHA or content of ATP synthase (F1-β) 

(Figure 26 C, D; Table 8). 
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Figure 26. Components of mitochondrial ATP synthasome in fibroblasts of patients and mice 

with ATP synthase deficiency. (A) SDS-PAGE of the protein content of ATP synthase subunit 

F1-β, ANT and PiC in mitochondria from human fibroblasts of healthy controls, patients with 

mutated TMEM70 (mutTMEM70), ATPE (mutATP5E), and MT-ATP6 (mutATP6) analysed 

by western blots normalised to SDHA (complex II, CII) and (B) ANT and PiC normalised 

to F1-β. Data are mean ±SD from 3 controls and 7 patients of mutTMEM70, mutATPE and 

mutATP6 represent multiple cultures of one patient each. (C) Protein content of ANT and F1-β 

in Tmem70+/+ and iTmem70-/- mouse liver homogenates normalised to SDHA and (D) protein 

content of ANT normalised to the ATP synthase content represented by F1- β.  Data are mean 

±SD from 5 animals in each group. *p≤0.05, ***p≤0.001. 

 

Table 8. Protein content of ADP/ATP translocase (ANT) in iTmem70-/- mice. 

 Per SDHA Per actin Per F1-β 

ANT(% control ± SD) 158±60 226±91* 300±116** 

Data are mean ±SD from 5 iTmem70-/- and 5 Tmem70+/+ mice. *p≤0.05, **p≤0.01. 
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4.4 ATP synthase ‘threshold’ in ATP synthase deficiencies (aim 4, 

manuscript prepared for submission) 

In general, in many cases of nuclear ATP synthase defects (including Tmem70 

mutations), the observed residual amount of the enzyme is approximately 30 % or less 

of controls (Houstek et al., 1999, Mayr et al., 2004, Sperl et al., 2006, Mayr et al., 2010). 

Constitutive mouse knockout of Tmem70 and inducible Tmem70 knockout led also to similar 

ATP synthase content decrease (chapter 3.1). To elucidate if there are any thresholds of ATP 

synthase deficiency in dependence on mitochondrial function and oxidative stress we produced 

range of clones of ATP synthase stalk subunits γ, δ, ε to cover the whole range of residual ATP 

synthase content and analysed functional parameters. 

 

4.4.1 Knockdown of ATP synthase central stalk subunits - clone characterisation 

From selected clones were chosen 9 clones (C1-C9) with different knockdown 

efficiency to cover the range of ~20 to 100 % of residual ATP synthase. These clones had 

differently lowered protein content of fully assembled ATP synthase (Figure 27). Knockdown 

clones contained 15-90 % of assembled ATP synthase compared to control clones. ATP 

synthase content correlated with the in-gel ATPase hydrolytic activity ATPase hydrolytic 

activity (Figure 27). Taken together, among 9 screened clones, the lowest ATP synthase content 

was approximately 15 %. 

 

Figure 27. ATP synthase decrease in 

knockdown clones. ATP synthase 

content (BN-PAGE, n-dodecyl-β-D-

maltoside 2 g/g of protein) related to 

protein content (data are mean ±SEM 

from 5 repeated experiments) and in-gel 

ATPase hydrolytic activity after 

BN-PAGE in 9 clones of F1-γ, F1-δ and 

F1-ε of HEK293 cells. CC- control 

HEK293 cells. 
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4.4.2 Cellular energetics and ROS production in relation to residual ATP 

synthase activity 

 Cellular energetics was examined by Seahorse XFe24 Analyzer. A decrease 

in the oligomycin-sensitive portion of basal respiration of intact cells (47 vs. 61 % in controls) 

was accompanied by an increase in the glycolytic flux (up to 20 %). The subsequent correlation 

of the basal respiratory rate, glycolytic flux and residual ATPase hydrolytic activity (measured 

spectrophotometrically) showed that clones with less than 30 % of residual ATPase activity 

switched their metabolism to enhanced glycolysis (Figure 28 A). On the other hand, clones with 

more than 30 % of residual activity showed no change in the respiration or in their basal 

glycolytic rate. 

Due to ATP synthase deficiency, the knockdown clones exhibited reduced dissipation 

of ΔΨm under ADP stimulation by up to 20 mV compared to controls (not shown). As a result 

of membrane hyperpolarisation, knockdown clones produced ROS. Their production was 

elevated by 23 % of controls in the most affected clones in comparison to controls (Figure 28 

B). Basal ROS production also negatively correlated with residual ATPase hydrolytic activity. 

There was a threshold of 30 % residual ATP synthase for stimulation of ROS production 

(Figure 28 B). 

 

Figure 28. Cellular energetics and ROS production in relation to residual ATP synthase 

activity. (A) Correlation of basal respiratory rate and basal glycolytic flux of C1-C9 clone cells 

and correlation of these parameters together with residual ATPase hydrolytic activity measured 

by Seahorse oxygraphy. (B) Correlation of basal ROS production and residual ATPase 

hydrolytic activity in control cells and C1-C9 clones. Measured by fluorescence assay. Data 

are mean ±SEM from 3 experiments (the basal respiratory rate and residual hydrolytic 

activity), 4 experiments (basal glycolytic flux, ROS production). 

A         B 
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MY CONTRIBUTION TO THE RESULTS 

 

The presented data are result of team effort and also collaborations with other departments. 

Here I would like to highlight my personal experimental involvement: 

 

1. Mice treatment with tamoxifen and subsequent monitoring of their body weight and 

food intake. 

 

2. Animal tissue and blood collection, plasma isolation, embryos and tissue 

homogenisation and sample preparations. 

 

3. Functional analyses of mitochondria - respiratory measurement by Seahorse XFe24 

Analyzer and Oxygraph O2k including ATP synthase inhibition. 

 

4. Measurement of enzyme activities. 

 

5. SDS electrophoreses to detect protein levels of OXPHOS, ANT, PiC, and superoxide 

dismutases in combination with Western blot and immunodetection. 

 

6. Native electrophoreses to evaluate assembly of ATP synthase in combination with 

immunodetection on Western blots or ATPase in-gel activity. 

 

7. Triglycerides level determination. 

 

8. Genotyping - DNA isolation, PCR and agarose electrophoresis. 

 

9. RNA isolation, reverse transcription and RT-PCR. 

 

10. Cells cultivation. 
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5 DISCUSSION 
 

All known human and mouse/rat mitochondrial proteins (mitoproteome) are nowadays 

listed in web databases, which contain over 1400 mitochondrial proteins (Pagliarini et al., 2008, 

Smith and Robinson, 2009, Smith et al., 2012, Uhlen et al., 2015, Calvo et al., 2016). Only 

13 of these proteins are encoded in mtDNA and the rest of them encodes nDNA. Many of them 

have not yet been characterised. To elucidate their function and integration into mitochondrial 

processes is a goal of many scientists all over the world, because mitochondria have crucial 

function in energy production. Thus, mutations in genes coding mitochondrial proteins can 

cause serious diseases (Gorman et al., 2016) and possible therapy is still very limited. Cellular 

and animal models of these mutated genes have proven as a valuable tool for characterisation 

of their function (Iommarini et al., 2015, Torraco et al., 2015). For example, many animal 

models already improved our knowledge of OXPHOS enzymes and their assembly factors 

(Torraco et al., 2015). 

The first protein I focused on in this thesis is TMEM70. It was shown in 2008 that 

Tmem70 mutations cause isolated ATP synthase deficiency in patients, which leads to severe 

neonatal encephalocardiomyopathy (Cizkova et al., 2008). Many other following studies 

confirmed the importance of TMEM70 in ATP synthase biogenesis (Houstek et al., 2009, 

Hejzlarova et al., 2014). Using human cells, the protein characterisation clarified its molecular 

structure (Hejzlarova et al., 2011) and membrane topology (Jonckheere et al., 2011, 

Kratochvilova et al., 2014) but up to now, its detailed function is unknown. Since TMEM70 

is specific only for higher eukaryotes, yeasts, which are also commonly used to model 

mitochondrial dysfunctions, are of no use here (Cizkova et al., 2008, Houstek et al., 2009). 

Thus, the animal model of TMEM70 deficiency was chosen to elucidate its function as has been 

previously done for many other components of mitochondrial respiratory chain and their 

assembly factors (Iommarini et al., 2015, Torraco et al., 2015). Two different types 

of Tmem70-/- mouse knockout models were generated and analysed in our study. 

The first generated model was whole body constitutive knockout (cTmem70-/-), which 

exhibited developmental delay (Figure 10 C, 11 A) and embryonic lethality about E9.5, thus, 

demonstrated the importance of TMEM70 and assembled ATP synthase in early embryogenesis 

in mice. Similar embryonic lethality was observed in other knockout models of several 

structural components of respiratory chain enzymes (e.g. NDUFA5 subunit of complex I 

(Peralta et al., 2014), SDHD subunit of complex II (Piruat et al., 2004), RISP - Rieske iron 
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sulphur protein of complex III (Hughes and Hekimi, 2011)) or specific ancillary factors (e.g. 

Ndufs4 assembly factor of complex I (Ingraham et al., 2009), Cox15 factor of haem a 

biosynthesis (Viscomi et al., 2011) or Cox17 and Sco2 copper chaperones of complex IV 

(Takahashi et al., 2002, Yang et al., 2010). Moreover, many of genes included in the mtDNA 

replication, transcription and translation causing OXPHOS deficiencies were shown to be 

essential for mouse embryonal development (Iommarini et al., 2015). While these knockout 

models showed the requirement of functional respiratory chain complexes for embryogenesis, 

the phenotype of Surf1 knockout, the gene for another assembly factor of complex IV, was very 

mild (Dell'agnello et al., 2007) compared to mostly fatal dysfunction of SURF1 in humans 

(Shoubridge, 2001). It reflected possible tissue specificity and species specificity of the role 

of Surf1 in biogenesis of this complex. Interestingly, in humans TMEM70 mimic SURF1 

to some extent, as small amount of formed ATP synthase is present even in the absence of 

TMEM70. However, ATP synthase deficiency was found to be similarly pronounced (60-70 %) 

in different tissues or cells of patients lacking TMEM70 (Houstek et al., 1999, Sperl et al., 2006, 

Havlickova Karbanova et al., 2012) pointing to the same importance of TMEM70 function 

in various tissues and cells. Mouse Tmem70 knockout further indicated that the resulting ATP 

synthase deficiency may have higher severity in rodents. This was further supported 

by analogous embryonic lethality of Tmem70 knockout generated by ZFN nuclease in rats 

(Pravenec et al. unpublished). 

On the other hand, Tmem70+/- heterozygous mice develop normally, indicating that 

one Tmem70 allele is sufficient for viability. These mice had fully functional mitochondrial 

OXPHOS as well as the structure and function of ATP synthase did not show any difference 

from control Tmem70+/+ mice. Rather unexpectedly then, the heart function measured 

by echocardiography was decreased. It reflects high energy demands and vulnerability of heart 

that is also primarily affected organ in patients lacking TMEM70 as well as in many other types 

of mitochondrial disorders of OXPHOS system (Brunel-Guitton et al., 2015). This may have 

broader implications in the human TMEM70 pathology but detailed anamnesis for parents 

of affected children is usually missing and it is difficult to establish, whether heterozygous 

TMEM70 carriers may be more susceptible to heart dysfunction. For the patients, though, it is 

well established, that they suffer with early postnatal hypertrophic cardiomyopathy (HCMP) 

that was found in 76 % of patients (Honzik et al., 2010, Magner et al., 2015). Prenatally, mild 

thickening of the cardiac chambers, and also right sided clubfoot became first evident 

at sonography at weeks 28-30 of gestation (Spiegel et al., 2011). The mouse knockout model 

of Tmem70 is embryonic lethal at the stage, when heart becomes functional and essential for 
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further development. However, despite of the developmental delay, no apparent morphological 

changes were observed in hearts of cTmem70-/- embryos (Figure 11 A). 

The second generated model was whole body conditional Cre-inducible Tmem70 

knockout (iTmem70-/-) which was lethal at about 8 weeks post Tmem70 excision (Figure 14 A). 

Similarly, the conditional heart and skeletal muscle specific knockout mice of genes for proteins 

regulating mtDNA expression (TWINKLE, TFAM, POLRMT, LRPPRC, MTERF4) were 

lethal from <6 weeks (Polrmt knockout) to 21 weeks (Mterf4 knockout). These deficiencies 

resulted in severe OXPHOS dysfunction and surprisingly, the disruption of mtDNA in hearts 

had severe effect on the mitochondrial CoQ synthesis (Kuhl et al., 2017). 

Analysis of cTmem70-/- embryos by BN-PAGE showed that TMEM70 deficiency 

prevents effective biosynthesis of functional ATP synthase resulting in lower amount 

of completely assembled ATP synthase complex and accumulation of F1 subcomplex without 

any Fo subunits (Figure 12). Similar pattern was observed also in the most of iTmem70-/- mouse 

tissues except heart (Figure 16 A). Heart was likely protected by relatively high expression 

levels of Tmem70, which were partially sustained even from the low remaining amount 

of wildtype Tmem70 gene. Still, there was some accumulation of F1 subcomplex, which 

correlated with excision efficiency. High amount of assembled ATP synthase in heart could be 

also explained by the different turnover of TMEM70 protein or ATP synthase itself among 

tissues (Kim et al., 2012). Mitochondrial proteins were shown to have very long half-lives, 

which can be extended by nutritional interventions such as caloric restriction (Dai et al., 2014). 

Such half-life extension may act as protective mechanism in heart of iTmem70-/- animals. 

We also showed much higher expression of mouse Tmem70 in heart than in liver, which 

is in contrary to the results in humans who have higher Tmem70 expression in liver than in heart 

(www.biogps.org (BioGPS - your Gene Portal System)). It suggests higher insufficiency 

of Tmem70 in liver of iTmem70-/- animals and might explain why patients suffer predominately 

with cardiologic defect. 

Histologically, we observed focal necrosis in liver (not shown). Moreover, liver was 

fragile with higher levels of pro-apoptotic caspases (Figure 20). iTmem70-/- mice also exhibited 

hyperammonemia, the marker of liver failure in blood similarly to patients (summarized 

in Table 2) There were also higher levels of ALT and AST in blood, which confirmed liver 

damage (Table 7). Moreover, blood analysis revealed pronounced leukocytopenia. Thus, mice 

might be more vulnerable to infection. Because red blood cells are also decreased, iTmem70-/- 

mice have probably insufficient haematopoiesis. On the other hand, higher number of platelets 
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increases the risk of blood clotting [Table 7; (Hořejší et al., 2017); www.jax.org/strain/000664 

(The Jackson Laboratory)]. 

Furthermore, more detailed hrCN-PAGE analysis of liver mitochondria from iTmem70-/- 

animals surprisingly revealed formation of large and labile vestigial ATP synthase 

subcomplexes, which lacks subunit c (Figure 16 B) and falls apart due to Coomassie blue in 

BN-PAGE analysis. Thus, we demonstrated the presence of different profile of ATP synthase 

subcomplexes than in other models of ATP synthase deficiency (Cizkova et al., 2008, Vrbacky 

et al., 2016). The absence of subunit c is in contrast with phenotypes of central stalk subunits ε 

(Havlickova et al., 2010, Mayr et al., 2010), γ, or δ (Pecina et al., submitted). In all these cases 

the insufficient formation of F1 was accompanied by accumulation of strongly hydrophobic 

subunits c. On the other hand, observed vestigial forms of ATP synthase correspond well with 

those described in knockout of all three isoforms of subunit c (He et al., 2017) and can indicate 

role for TMEM70 protein in the import, processing or assembly of ATP synthase subunit c. 

This is in line with our original hypothesis that TMEM70 is involved in early stage of ATP 

synthase biogenesis (Hejzlarova et al., 2014) and that it incorporates or stabilises subunit c 

in ATP synthase complex. However, immunoprecipitation and crosslinking did not show any 

direct interaction of F1 or c subunits with TMEM70 (Kratochvilova et al., 2014). In this process 

additional protein might be included that would facilitate the regulatory role of TMEM70, thus, 

further studies are needed to find other possibilities of the interactions with TMEM70. 

Moreover, ATP synthase has been shown to be essential in cristae formation (Strauss 

et al., 2008, Davies et al., 2012, Hahn et al., 2016). Ultrastructural mitochondrial degeneration 

was as well observed in patients with TMEM70 deficiency (Jonckheere et al., 2011, Braczynski 

et al., 2015). This was confirmed in cTmem70-/- embryos, in which the defect of ATP synthase 

caused cristae disruption (Figure 13).  

Analysis of the of other OXPHOS complexes in liver of iTmem70-/- mice 

by SDS-PAGE revealed that their levels are also changed. Levels of protein subunits 

of complex I, complex II and complex IV were increased and level of complex V was decreased 

as expected (Table 6). This result points to compensation of low ATP production in case 

of dysfunctional ATP synthase by RC. In contrary, in patient’s fibroblasts were significantly 

increased only levels of subunits of complex III and complex IV but similar increasing trend 

was observed in complex I (Havlickova Karbanova et al., 2012). These discrepancies could be 

explained by different cell type or tissue specificity. It is in contrast with results of Jonckheere 

et al. who demonstrated combined deficiency of complex V and I in patient cells with no effect 

on levels of complexes II, III, IV (Jonckheere et al., 2011). Moreover, TMEM70 was found 
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in assembly intermediates of complex I, suggesting that it may function also as complex I 

assembly factor (Guerrero-Castillo et al., 2017). On the other hand, we did not observe any 

changes in OXPHOS complexes I-IV in cTmem70-/- embryos (Figure 11), in which the 

compensatory effect was probably not yet manifested. 

As a consequence of ATP synthase deficiency, the energetic function of mitochondria 

of the cTmem70-/- embryos and iTmem70-/- mice was altered. H+ electrochemical gradient 

generated on membrane by respiratory chain was not fully utilised by ATP synthase. It was 

shown in cTmem70-/- embryos that RCR and coupled ADP-stimulated respiration were strongly 

decreased (Figure 13 A). Also, induced iTmem70-/- mice had lower RCR but it was caused by 

inefficient inhibition of ATP synthase by its inhibitors oligomycin and aurovertin. Moreover, 

the oxygen consumption was strongly increased after addition of cytochrome c, which indicated 

damaged OMM (Figure 18). The maximal uncoupled respiration of iTmem70-/- mouse 

mitochondria was comparable to controls supposedly due to already uncoupled mitochondria. 

Similarly, substantial decrease in maximal respiration was not observed in lymphocytes 

of patients with TMEM70 deficiency (Pecina et al., 2014). 

The stalled mitochondrial energy provision due to dysfunctional ATP synthase was 

followed by the decrease in ATP/ADP ratio in cTmem70-/- embryos showing that the overall 

energetic state is compromised (Figure 13 B). It is additionally caused by accumulated 

catalytically active F1 subcomplexes in that are not gated by Fo subunits and hydrolyse ATP. 

Free F1 subcomplexes could be inhibited by endogenous ATP synthase inhibitor IF1, however, 

its role in vivo is more complex at high values of ΔΨm (Lippe et al., 1988) and may also inhibit 

the synthetic activity of ATP synthase (Formentini et al., 2014), that would make worse 

the impact of ATP synthase deficiency.  

Early embryonic development is associated with marked changes in energy source 

depending on oxygen supply during different developmental stages. The concentration 

of oxygen in oviduct is lower than 40 % of atmospheric concentration (Leese, 1995) and it 

is much lower in uterus (3-5 %). It means that embryo is in hypoxic, nearly anoxic conditions 

during the preimplantation state and early implantation (Fischer and Bavister, 1993). During 

postimplantation period, the oxygen and nutrients are supplied to embryo by yolk sack. Then 

the trophectoderm invades endometrium of the uterus during early implantation 

and subsequently allantoic placenta supports embryonic development instead of yolk sac. 

Placenta begins to supply the high oxygen concentration to the embryo (New and Coppola, 

1970). The energy metabolism changes during these periods from oxidative phosphorylation 

in early preimplantation stage to increasing role of glycolysis during compaction 
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and blastulation (E3-4), and in the end returns back to oxidative metabolism when 

chorionallantoic circulation is established and heart begins to function. Use of oxygen as energy 

substrate is accompanied by formation of ROS and activation of antioxidant defence system 

to balance the harmful and the natural regulatory effects of the imposed oxidative stress (Ufer 

and Wang, 2011). Analysis of cTmem70-/- embryos at E9.5 showed upregulation 

of antioxidative enzymes SOD1 and SOD2, which indicates the higher level of ROS (Figure 

12). This observation shows that the deficiency of ATP synthase in mouse embryos leads into 

both - the energy deprivation and enhanced oxidative stress. It is reminiscent of postnatal 

biochemical manifestation of ATP synthase deficiency in human patient with TMEM70 

mutation (Mracek et al., 2006). These results were confirmed by the increased level of 

mitochondrial SOD2 and reduced antioxidant glutathione in the liver of iTmem70-/- mice caused 

by ROS increase (Figure 19). 

In patients from families affected by mutations in TMEM70 gene, frequent, but much 

less severe impairment of prenatal development was reported (Houstek 1999, Honzik 2010, 

Magner 2015, Sperl 2006). Out of 25 cases with identical homozygous c.317-2A>G TMEM70 

mutation preventing synthesis of TMEM70 protein, 68 % of patients were delivered 

prematurely and in 58 % patients was present intrauterine growth retardation (IUGR) (birth 

weight 2040±471 g, gestation age 36±2.6 weeks). Similarly, four of the six patients with other 

TMEM70 mutations were born prematurely (Spiegel et al., 2011). This is different to the rodent 

models (mouse and rat) of TMEM70 deficiency, which are both lethal during early embryonic 

development. A few miscarriages were reported in some of the affected families (Houstek et 

al., 1999, Torraco et al., 2012, Braczynski et al., 2015) but it is mostly impossible to establish 

the reasons for miscarriages in common healthy population. 

The second mitochondrial protein I focused on in this thesis was DAPIT, which was 

proven to be a new component of ATP synthase (Chen et al., 2007, Meyer et al., 2007, Lee et 

al., 2015). However, its detail function remains unclear. Therefore, we generated rat knockout 

model of DAPIT gene Usmg5-/- via ZFN technology to clarify DAPIT function. Knockout rats 

manifested lower body weight, decreased adiposity and triglyceride level in liver (Figure 21). 

Decreased adiposity can either stem from insufficient fatty acid storage or their preferential 

oxidation, which can be dissected in further experiments either by indirect calorimetry or by 

high fat diet regimen It was already published that DAPIT plays role in glucose metabolism 

(Paivarinne and Kainulainen, 2001, Kontro et al., 2015). 
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We also observed that Usmg5-/- rats had pronounced change in pulmonary blood flow 

(Figure 22 B) and defective heart function (Figure 22 A), manifested as hypertrophy of heart 

RV (Figure 21 C). It suggests pulmonary arterial hypertension (PAH; Figure 22 B). It was 

already shown, that PAH involves changes in pulmonary arteries leading to secondary RV 

failure (Paulin and Michelakis, 2014). Moreover, changes in mitochondrial dynamics (Chen et 

al., 2018) or mitochondrial calcium handling (Hong et al., 2017) can lead to pulmonary arteries 

smooth muscle proliferation and PAH. 

DAPIT and also MLQ were identified in dimeric and in the monomeric bovine ATP 

synthase (Meyer et al., 2007). Using native electrophoresis, we also showed that DAPIT protein 

occurs in dimers and monomers but less dimers were formed and F1 subcomplexes accumulated 

in heart of Usmg5-/- rats. The dimeric and monomeric forms of ATP synthase were smaller 

supposedly due to missing DAPIT protein (Figure 23 A). These results point at the role 

of DAPIT in dimer formation as was already predicted by Wittig and Schagger (Wittig and 

Schagger, 2008). The levels of other detected ATP synthase subunits were not changed 

(Figure 23 B) but the function of this complex was decreased (Figure 23 C, 24) similarly to the 

study of Ohsakaya et al. who showed unchanged expression of α and β subunits but decreased 

ATP synthase activity in HeLa cells with supressed USMG5-/- expression (Ohsakaya et al., 

2011). Moreover, the inhibition of ATP synthase respiratory state 3 by its inhibitors oligomycin 

and aurovertin differed in effectivity between Usmg5-/- and Usmg5+/+ rats. Interestingly, 

oligomycin was considerably more effective than aurovertin in both heart and liver of Usmg5-/- 

rats in comparison to controls (Figure 25). It might be explained by different binding specificity 

of these inhibitors on the ATP synthase. Oligomycin was shown to bind on Fo subcomplex and 

aurovertin on F1 subcomplex (Hong and Pedersen, 2008). Thus, the enhanced sensitivity 

of Usmg5-/- mitochondria for oligomycin may indicate that DAPIT shields oligomycin binding 

side which is more accessible in Usmg5-/- rats. This is compatible with crosslinking studies 

demonstrating close apposition of DAPIT and a subunit (Lee et al., 2015). 

We were also interested in the effect of ATP synthase defects on its previously 

suggested supramolecular structures. One of them is ATP synthasome, which is composed 

of ATP synthase and components necessary for ATP production - ADP/ATP translocase (ANT) 

and inorganic phosphate carrier (PiC) (Ko et al., 2003, Chen et al., 2004). While we confirmed 

the existence of such supercomplex, we also clearly showed that the majority of PiC and ANT 

do not interact with ATP synthase and exist in their free form. This may not be surprising, given 

the different kinetic properties of ATP synthase and the translocators, especially the ANT, 
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which demonstrates quite slow kinetics (Klingenberg, 2008). Our transcript and protein 

analyses of rat tissues revealed transcriptionally regulated PiC and ANT expression 

in concordance with ATP synthase biogenesis (Nuskova et al., 2015). Interestingly, their levels 

were increased in patient’s fibroblasts with defective ATP synthase (Figure 26), which was 

confirmed in the liver of iTmem70-/- mice (Figure 26, C, D; Table 8). This rather suggests 

compensatory type of response, similar to that seen for OXPHOS complexes (Table 6) and also 

(Havlickova Karbanova et al., 2012), driven by the low available ATP levels. It is also 

confirmation, that translocators and ATP synthase do not mutually depend on each other, and 

majority of their entities exist independently from ATP synthasome. 

Looking back at reported cases of nuclear encoded ATP synthase pathologies, 

we usually see ATP synthase levels decreased to 30 % or less of controls (Houstek et al., 1999, 

Mayr et al., 2004, Sperl et al., 2006, Mayr et al., 2010). Decrease to < 10 % of ATP synthase 

compared to healthy individuals, is barely compatible with survival (Houstek et al., 2006). 

Similarly analyzed cTmem70-/- embryos had only 20 % of remaining fully assembled ATP 

synthase activity (Figure 11). On the other hand, rats with DAPIT deficiency did not have such 

decrease of monomeric ATP synthase and they also had normal viability (Figure 24 A). 

To identify the ATP synthase deficiency threshold necessary for pathological presentation 

and to compare it with previously mentioned deficiencies, we generated 9 clones of F1-γ, F1-δ 

or F1-ε of HEK293 cells with different level of ATP synthase deficiency and in-gel hydrolytic 

activity (Figure 27). Previously, decreased levels of assembled ATP synthase and absence 

of any assembly intermediates, such as F1 subcomplex, were observed in knockdown cells 

of F1-ε subunit (Havlickova et al., 2010) and recently also in knockdown cells of subunits F1-γ 

and F1-δ (Pecina et al., submitted). This makes central stalk knockdowns especially suitable 

model to study ATP synthase threshold levels, as the pathologic presentation is not mired 

by factors such as F1 driven ATP hydrolysis. We showed that prepared clones with less than 

30 % of residual ATPase activity switched their metabolism to enhanced glycolysis (Figure 28 

A) and boosted the ROS production (Figure 28 B). This corresponds with other models of ATP 

synthase pathologies, where increased levels of oxidative stress could be seen. We have 

observed increased ROS in human patient with TMEM70 mutation (Mracek et al., 2006) and 

in animal models of TMEM70 deficiency (Figure 13 C, 19). Similarly, the deficient ATP 

production and enhanced ROS generation were caused by mtDNA mutations of ATP6 subunit 

in cells (Mattiazzi et al., 2004). All those observations are in line with observed increase in ROS 

production under high levels of ΔΨm (Korshunov et al., 1997). While direct increase in steady 



85 

 

state levels of ΔΨm was observed only in some patients (Mattiazzi et al., 2004), the decreased 

ability to utilise ΔΨm for ATP synthesis is clearly more general phenomenon (Mracek et al., 

2006, Cizkova et al., 2008, Havlickova et al., 2010) and may explain the observed boost in ROS 

production. Importantly, we have observed similar threshold at circa 30 % of residual ATP 

synthase for all pathological presentations, indicating that below this level, cells cannot 

maintain their normal physiological function and pathology manifests. 

Collectively, we have generated two unique novel animal models of Tmem70 gene 

ablation and one rat model of Usmg5 gene ablation. These deficiencies caused changes in ATP 

synthase biogenesis and function. Constitutive knockout of Tmem70 led to embryonic lethality 

and inducible knockout mice also died not long after Tmem70 deletion. We observed dramatic 

decrease of fully assembled ATP synthase and accumulation of its subcomplexes in both 

models of TMEM70 deficiency. We have also demonstrated, that ATP synthase deficiencies 

display clear threshold behaviour and decrease of the ATP synthase functional capacity below 

30 % is necessary for pathologic presentation. Moreover, accumulated subcomplexes of ATP 

synthase did not contain subunit c indicating stalled ATP synthase biogenesis at the level of F1 

formation. Overall, mitochondrial energy production was critically impaired analogously 

to Tmem70 dysfunction in human patients. We convincingly demonstrated in rodent models 

that TMEM70 ancillary factor is essential for maintenance of ATP synthase biosynthesis and 

thus the supplying energy for the developing mammalian organism and that TMEM70 

deficiency is not compatible with life of adult mice. Generated DAPIT deficient (Usmg5-/-) rats 

had also slightly defective ATP synthase. We confirmed the importance of DAPIT protein 

in the formation of ATP synthase dimers. Furthermore, DAPIT supposedly shields the 

oligomycin binding pocket at ATP synthase pointing its position in this multiprotein complex. 

Finally, we showed, that ATP synthasome, ATP synthase supramolecular structure, 

components ANT and PiC were increased in patients and mice despite of the ATP synthase 

defects. It is likely due to a post-transcriptional adaptive mechanism. 
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6 CONCLUSIONS 
 

From our studies on rodent knockout models, patient fibroblasts and knockdown cells, we can 

conclude that: 

 

1. TMEM70 is essential for mouse embryonic development. ATP synthase of constitutive 

E9.5 Tmem70-/- embryos is not fully assembled and F1 subcomplex is accumulated. This 

leads to insufficient energy provision, increased oxidative stress and disrupted cristae 

morphology. Tmem70+/- mice are viable but present with mild cardiological dysfunction. 

This can not be observed in embryos, which die before the heart morphology could be 

affected. 

 

2. Inducible Tmem70 mouse knockout model is lethal approximately 8 weeks post induction. 

Primarily impaired organ is liver, and symptoms thus resemble conditions during metabolic 

crises in patients. 

 

3. Thanks to the iTmem70-/- model system, we can observe formation of large and labile ATP 

synthase complexes, which lack subunit c. We have demonstrated, that TMEM70 is 

important for incorporation of c-oligomer into ATP synthase. 

 

4. DAPIT plays a role in formation of ATP synthase dimers. Levels of assembled monomeric 

ATP synthase are normal but its function is reduced by ⁓10 % in both liver and heart tissue. 

It seems that DAPIT shields oligomycin binding site at Fo moiety pointing at its position 

in  ATP synthase multiprotein complex. Usmg5-/- rats have lower body weight 

and pronounced decrease of fat tissue, indicating an important role of DAPIT in regulation 

of  metabolism. 

 

5. Content of ANT and PiC in human and mouse ATP synthase deficiencies is increased, likely 

due to a post-transcriptional adaptive mechanism, probably as a compensation of isufficient 

ATP production. 

 

6. The threshold limit for the presentation of ATP synthase related pathologies was shown 

to be ~30 %.  
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7 SUMMARY 
Characterisation of new mitochondrial proteins TMEM70 and DAPIT function using 

unique knockout rodent models showed that TMEM70 is important for incorporation of 

c-oligomer into ATP synthase. Thus, TMEM70 protein might play the role in the import, 

processing or assembly of ATP synthase subunit c. Resulting ATP synthase deficiency reaches 

the threshold for its pathologic presentation, which was quantified at 30 %. Analogous 

to TMEM70 dysfunction in humans, it leads to critical impairment of mitochondrial energy 

provision essential for mouse embryonic development and life of adult mice. Induced Tmem70 

knockout mice have impaired primarily liver function, which resembles symptoms present 

during metabolic crises in patients. ANT and PiC components of ATP synthasome do not 

mutually depend on ATP synthase and reveal compensatory increase in ATP synthase 

pathologies. 

DAPIT plays a role in the formation of ATP synthase dimers and likely shields 

oligomycin binding site at Fo moiety of ATP synthase. Furthermore, DAPIT seems to play 

an important role in metabolism regulation. 

In general, we illustrate the importance of animal knockout models as a useful tool for 

mitochondrial proteins characterisation. 

 

   SOUHRN 

Funkce nových mitochondriálních proteinů TMEM70 a DAPIT byla charakterizována 

pomocí unikátních hlodavčích modelů. Ukázalo se, že TMEM70 je důležitý pro přidání 

c-oligomeru do komplexu ATP syntázy. TMEM70 by tedy mohl hrát roli v importu, úpravě 

nebo asemblaci podjednotky c ATP syntázy. Výsledný nedostatek ATP syntázy dosahuje prahu 

projevu patologie, který jsme určili na 30 %. Podobně jako u pacientů dochází ke kritickému 

porušení tvorby energie, která je nezbytná pro embryonální vývoj myší a životaschopnost myší 

dospělých. U indukovaných Tmem70 knockout myší docházelo primárně k jaternímu 

poškození, což se podobá symptomům v průběhu metabolické krize u pacientů. Dále 

komponenty ATP syntasomu ANT a PiC vzájemně nezávisí na ATP syntáze a jsou naopak 

u patologií ATP syntázy kompenzačně zvýšeny. 

DAPIT je důležitý pro tvorbu dimerů ATP syntázy a pravděpodobně blokuje na Fo části 

ATP syntázy vazebné místo pro oligomycin. Také se zdá, že DAPIT hraje důležitou roli 

v regulaci metabolismu. 

Potvrdili jsme, že zvířecí knockout modely jsou vhodné pro charakterizaci 

mitochondriálních proteinů.  
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