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Název česky: Vliv elicitinů na změny proteomu tabáku 

 

Abstrakt česky: 

Kryptogein je proteinový elicitor sekretovaný oomycetou Phytophthora cryptogea. V 

rostlinách tabáku je schopen indukovat rezistenci vůči P. parasitica. Na základě dříve 

provedeného počítačového modelování byly připraveny mutantní formy kryptogeinu s 

alterovanou schopností vázat steroly, fosfolipidy či obojí, přičemž schopnost vazby sterolů a 

transferu fosfolipidů jsme ověřili i experimentálně. Úroveň indukce syntézy reaktivních 

forem kyslíku (ROS) v suspenzi tabákových buněk a proteomických změn v mezibuněčné 

tekutině listů tabáku vyvolaných těmito mutantními elicitiny nebyla úměrná jejich 

schopnostem vázat či transportovat steroly a fosfolipidy. Změny v intercelulárním proteomu 

však odpovídaly úrovním transkripce obranných genů a rezistence vůči P. parasitica, 

přičemž nebyly predikovány významné změny ve struktuře připravených mutantních 

proteinů. Naše výsledky nejsou ve shodě s dřívějšími předpoklady a naznačují, že sterol-

vazebné schopnosti kryptogeinu a jeho mutantů a s nimi asociované změny konformace -

smyčky nemusí být zásadními faktory řídícími produkci ROS či indukci rezistence. Výsledky 

nicméně podporují význam -smyčky při interakci elicitinu s vysoce afinitním vazebným 

místem na cytoplasmatické membráně buněk tabáku. 

 

Klíčová slova: 

elicitor, elicitin, kryptogein, PR proteiny, fytoalexin kapsidiol, hypersensitivní odpověď, 

místně specifická mutagenese, 2-D electroforesa, Pichia pastoris 
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Title in English: Elicitins impact on the proteome of tobacco 

 

Abstract in English: 

Cryptogein is a proteinaceous elicitor secreted by an oomycete Phytophthora cryptogea that 

can induce resistance to P. parasitica in tobacco plants. On the basis of previous computer 

modeling, a series of cryptogein mutants was prepared with altered abilities to bind sterols, 

phospholipids or both. The sterol binding and phospholipid transfer activities corresponded 

to expectations based on the structural data reported previously. Induction of synthesis of 

reactive oxygen species (ROS) in tobacco cells suspension and proteomic analysis of 

intercellular fluid changes in tobacco leaves triggered by these mutant elicitins were not 

proportional to their ability to bind or transfer sterols and phospholipids. However, changes 

in the intercellular proteome corresponded to transcription levels of defense genes and 

resistance to P. parasitica and structure-prediction of mutants did not reveal any significant 

changes in protein structure. These results suggest, contrary to previous proposals, that the 

sterol-binding ability of cryptogein and its mutants, and the associated conformational 

change in the -loop, might not be principal factors in either ROS production or resistance 

induction. Nevertheless results support importance of -loop for interaction of the elicitin 

with the high affinity binding site on the plasma membrane of tobacco cells. 

 

Key words: 

elicitor, elicitin, cryptogein, PR proteins, phytoalexin capsidiol, hypersensitive response, site 

directed mutagenesis, 2-D electrophoresis, Pichia pastoris 
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 Introduction 

Among the causal agents of infectious plant diseases, phytopathogenic fungi and oomycetes play 

the dominant role (1). Approximately 10 percent of all fungi and oomycetes have acquired the 

ability to colonize plants or to cause disease (2). Infection of crop plants has repeatedly resulted 

in catastrophic harvest failures that have caused major economic and social problems in the 

affected countries (1). The potential for serious crop epidemics still persists today, as evidenced 

by recent outbreaks of diseases caused by rust, mildew, or Phytophthora species. In addition to 

causing food shortages, fungal infection of plants can directly affect the health of humans and 

livestock through poisoning by toxins. As use of fungicides causes environmental problems, new 

approaches have to be found.  

Over the past two decades, a number of different approaches have been considered by plant 

pathologists towards enhancing plant disease resistance (3). Among these, the use of non-

specific resistance elicitors, as part of an integrated disease control strategy, offers exciting 

opportunities although it is clear that unequivocal answers to key questions including the 

stability and persistence of induced host response, the efficiency of such molecules under 

commercial conditions, and their suitability in an integrated crop protection system need to be 

answered before elicitors can be considered as powerful crop protectants. 

Furthermore, genetic engineering has led to the development of crop plants with enhanced 

resistance to fungal pathogens (1). However, genetic engineering for disease resistance is still in 

its infancy. Thus, intensified research uncovering the molecular basis of both fungal 

pathogenicity and plant disease resistance is required to better protect plants against microbial 

invasion.  Because manipulation of signal-transduction pathways is believed to be one of the 

ways to engineer crop plants with enhanced disease resistance, research in this area has gained 

enormous momentum in recent years. Better understanding of defense signaling will provide 

new tools for engineering fungal disease resistance in plants. 
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 Theoretical part 

1. Perception of pathogen signals in plants 

Molecular communications between plant and pathogen start almost immediately after the 

pathogen makes contact with the plant surface (4). On perception of the plant signals, pathogen 

prepares to invade the host tissues by using its various toxic mechanisms. On the other hand, 

plants perceive the pathogen signals and prepare to defend themselves by rigidification of cell 

wall, producing several antimicrobial compounds to ward off the pathogens. According to the 

virulence of plant pathogens, two types of plant-pathogen interactions can be observed: 

compatible and incompatible.
 
In compatible interactions the virulent pathogen can spread

 
in the 

susceptible plant (5). On the other hand, in
 
incompatible interactions the plant is resistant and can 

successfully
 
prevent the pathogen spreading. The successful defense is based

 
on the early 

recognition of avirulent strains of plant pathogens
 
and the fast activation of defense. 

1.1 Elicitors 

The term elicitor was first used to describe the molecules that are capable of eliciting the 

production of phytoalexins (4). Today, it is commonly used for compounds eliciting any type of 

plant defense.  

Elicitors can be divided into two groups (4): 

1) exogenous (microbial) elicitors – substances of pathogen origin: 

a. general elicitors, able to trigger defense responses in both host and non-host plants, 

b. race-specific elicitors, inducing defense responses leading to disease resistance only in 

specific host cultivars, 

2) endogenous (host plant) elicitors – compounds that are released from plants due to 

pathogen’s action. 

Elicitors have different chemical structure and can belong to oligosaccharides, proteins, peptides, 

glycoproteins, or lipids (4). According to the so-called gene-for-gene hypothesis, a race specific 

elicitor encoded by or produced by the action of an avirulence (avr) gene present in a particular 

race of pathogen elicits resistance only in a host plant variety carrying the corresponding 

resistance (R) gene. 
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Figure 1: Gene-for-gene model. For resistance (incompatibility) to occur, complementary pairs of dominant genes, 

one in the host and one in the pathogen, are required. An alteration or loss of the plant resistance gene (R changing 

to r) or of the pathogen avirulence gene (Avr changing to avr) leads to disease (compatibility). (6) 

1.2 Elicitins 

The term elicitins describes a family of structurally related proteins secreted by several 

Phytophthora and Pythium spp. (4). All elicitins share a conserved elicitin domain of 98 amino 

acids that are interconnected by three disulfide bridges (7). 

On the basis of their primary structure, elicitins can be grouped into five classes (4): 

a. class I-A (α-elicitins) – 10 kDa proteins containing only the elicitin domain and having an 

acidic pI, 

b. class I-B (β-elicitins) – 10 kDa proteins containing only the elicitin domain as well, but 

having a basic pI, 

c. class II – highly acidic elicitins with a short (5-6 amino acids), hydrophilic C-terminal tail, 

d. class III – elicitins with a long (65-101 amino acids) C-terminal domain rich in serine, 

threonine, alanine, and proline residues, suggesting potential O-glycosylation, 

e. Py class – elicitins from Pythium spp., structurally related to the class I elicitins. 

The class I-A and the class I-B elicitins are holo-proteins lacking side chain modification (4). 

The β-elicitins generally induce a greater necrotic effect than the α-elicitins due to the presence 

of polar amino acids at necrotic sites located on the protein surface (7). Elicitins did not exhibit 
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any protease, β-glucanase, or phospholipase activity, and no other enzymatic activity has been 

reported so far (8). 

2. Transduction of pathogen signals in plants 

The signal transduction networks linking receptor-mediated perception of pathogens and defense 

reactions employ second messengers that are conserved among most eukaryotes (1). Second 

messengers of mammalian innate immunity, such as Ca
2+

, ROS (reactive oxygen species), NO 

and mitogen-activated protein kinase (MAPK) cascades, are also involved in defense signaling in 

plants. Furthermore, phospholipid-signaling system, anion channels, cytoplasmic acidification, 

salicylic acid (SA)-signaling system, jasmonate-signaling pathway, ethylene (ET)-dependent 

signaling pathway, and abscisic acid (ABA) signaling play an important role in transduction of 

pathogen signals in plants. 

2.1 Calcium ion as second messenger 

Ca
2+

 acts as an intracelullar second messenger, coupling extracellular stimuli to intracellular and 

whole-plant responses (9). Elicitor treatment induces rapid Ca
2+

 influx into cytoplasm of plant 

cells (10). Massive influx of Ca
2+

 in tobacco-cultured cells was observed within 15-30 min after 

treatment with an elicitin cryptogein. Elicitation of defense response was more effective in the 

presence of Ca
2+

 in plants (4).  

Ca
2+

 concentration increases in plant cells by two ways: influx of Ca
2+

 across the plasma 

membrane and release of Ca
2+

 from internal stores (4). Ca
2+

 permeation through the plant plasma 

membrane may occur due to the activation of Ca
2+

-permeable channels either at hyperpolarized 

or at depolarized membrane potentials. It was suggested that the activation of the channel by 

fungal elicitors is modulated by a heterotrimeric G-protein-dependent phosphorylation of the 

channel protein.  

Pathogen signals may trigger an oscillation in the cytosolic free Ca
2+

 concentration which is then 

perceived by various intracellular sensors or binding proteins to regulate a series of signaling 

cascades (4). Ca
2+

 sensors can be classified into sensor responders and sensor relay (11). On 

binding with Ca
2+

, sensor responders, e.g. Ca
2+

-dependent protein kinases (CDPKs), change their 

conformation and modulate their own activity or function through intramolecular interactions. 

Sensor relay, like calmodulin (CaM), communicates the changed conformation to interacting 

partners such as protein kinases, resulting in a change in their activity. 
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2.2 Phosphorylation of proteins in signal transduction 

Posttranslational protein phosphorylation is a general mechanism in the transduction of signals 

originating from pathogens (4). Changes in the level of phosphorylation of plant cellular proteins 

have been observed upon elicitor treatments of a variety of cell cultures. Activation of protein 

kinases and inhibition of protein phosphatases may result in increased phosphorylation of 

proteins that trigger the induction of host plant defense responses.  

The phosphorylation of membrane proteins is dependent on Ca
2+

 in many cases. Ca
2+

-dependent 

protein kinase (CDPK), Ca
2+

-/CaM-dependent protein kinase, protein kinase C, and Ca
2+

-

modulated phosphatases play an important role in protein phosphorylation (10). The targets of 

plant CDPKs remain to be identified but may be related to animal protein kinase C, which is 

involved in activation of the NADPH oxidase of mammalian neutrophils (1). Besides CDPK, 

other protein kinases may also be involved in elicitor-induced protein phosphorylation. For 

example, activation of a 40 kDa protein kinase was dependent on NO3
-
 efflux induced by the 

elicitor treatment (12).  

MAPKs have been shown to be also involved in plant defense reactions (4). MAPK cascades 

form an important component in the signaling machinery that transduces extracellular signals 

into a wide range of intracellular responses, and are believed to represent a central point of cross-

talk in stress signaling in plants. Activation of MAPKs by elicitors from different plant 

pathogens in various plant species has been reported. The MAPK cascade involves three 

functionally linked protein kinases, such as a MAP kinase kinase kinase (MAPKKK), a MAP 

kinase kinase (MAPKK), and a MAP kinase (MAPK). In response to extracellular signals, an 

MAPKKK activates an MAPKK via phosphorylation of serine (S) and serine/threonine residues 

within the SXXXS/T motif, where X denotes any amino acid. An MAPKK, which is a dual-

specificity protein kinase, then activates an MAPK by phosphorylating specific effector proteins, 

which leads to activation of cellular responses. MAPK activation is located downstream of the 

elicitor-stimulated Ca
2+

 influx and appears not to be necessary for the oxidative burst (1). Several 

types of MAPKs have been recognized (4). Rapid activation of SA-induced protein kinase 

(SIPK) and transient activation of wounding-induced protein kinase (WIPK) by cryptogein 

elicitor in tobacco have been reported (13), as well as a MAPK mediating ET-signaling (4). 

Remarkably, some MAPK cascades were found to be negative regulators of plant defense (1). 

Arabidopsis mutants carrying a transposon insertion in the AtMPK4 gene had an extreme dwarf 

phenotype and exhibited elevated SA levels, constitutive PR (pathogenesis related) gene 

expression, and increased resistance against virulent pathogens. 
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2.3 Phospholipid signaling 

Several phospholipids commonly found in plant membranes play important roles in signal 

transduction (4). Phosphatidylcholine (PC) and phosphatidylinositol (PI) are the major groups of 

membrane lipids. The inositol headgroup can be reversibly phosphorylated at various positions 

by the combined action of various kinases and phosphatases, producing different 

phosphoinositides, such as phosphatidylinositol, phosphatidylinositol-4-phosphate (PIP), and 

phosphatidylinositol-(4,5)-bisphosphate (PIP2). Activities of PI kinase and PIP kinase were 

elevated in vitro by a fungal elicitor treatment. Also, several membrane-associated 

phospholipases are involved in releasing various other phospholipids, such as phospholipase A1 

(PLA1), PLA2, PLC and PLD. 

PLA1 and PLA2 catalyze the hydrolysis of a diacylglycerolphospholipid, producing a free fatty 

acid and a lysophospholipid. The fatty acids released by PLA2 are likely to act as second 

messengers in the transmission of systemin-triggered signaling, but may also activate 

octadecanoid-signaling pathway (4). An increase of PLA2 activity has been correlated with the 

perception of elicitors in several plant-pathogen systems and with the production of ROS.  

PLC hydrolyzes PIP and PIP2 and produces diacylglycerol (DAG) and inositol-1,4,5-

trisphosphate (IP3) stimulating Ca
2+

 efflux (4). An increase of IP3 in elicitor-treated pea has been 

reported. DAG activates protein kinase C and protein phosphorylation and stimulates synthesis 

of IP3, which leads to further release of Ca
2+

 from internal stores. DAG is rapidly phosphorylated 

to phosphatidic acid (PA) by DAG kinase. PA triggers production of superoxide anion and can 

be further metabolized by PA phosphorylase to form DAG. DAG and PA greatly enhance the 

elicitor-induced phytoalexin accumulation. 

PLD, which is often the most abundant phospholipase in plants, hydrolyzes PC, producing PA 

and choline (4). Fungal elicitors increase PLD activity. Cellular activity of PLD is regulated by 

several messengers such as Ca
2+

 and polyphosphoinositides, GTP-binding proteins, H2O2, pH 

changes, and membrane perturbation. 

Another phospholipid detected in plants is sphingomyelin (ceramid phosphorylcholine). 

Sphingomyelinase is an important phospholipid-degrading enzyme and it generates ceramide and 

sphingosine (14). Ceramide activates MAPKs and triggers hypersensitive cell death and defense 

reactions in tomato. Sphingosine stimulates the production of IP3. Sphingosine-1-phosphate has a 

second messenger activity and it is involved in the inositol-independent release of Ca
2+

 from 

intracellular stores and in anion efflux stimulation. It also acts as a ligand for certain GTP-

binding protein coupled receptors. 
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Figure 2: Pathway of biosynthesis of phospholipids (4). PC = phosphatidylcholine, PI = phosphatidylinositol, PIP = 

phosphatidylinositol-4-phosphate, PIP2 = phosphatidylinositol-(4,5)-bisphosphate, DAG = diacylglycerol, IP3 = 

inositol-1,4,5-trisphosphate, PA = phosphatidic acid, JA = jasmonate. 

2.4 Anion channels, extracellular alkalinization, and cytoplasmic acidification in signal 

transduction 

The elicitors-activated plasma membrane anion channels are one of the essential components of 

early signal transduction processes in plants (4). Anion channels may mediate Cl
-
 and NO3

-
 

efflux. Cl
-
 efflux is one of the earliest events in elicitor-treated tobacco cells. Activation of NO3

-
 

efflux depends on protein phosphorylation (12). Phosphatases negatively control the anion 

channel cascade, whereas protein kinases act as positive regulators in the chain of events leading 

to anion channel activity. Ca
2+

 influx was found to be required for the initiation and maintenance 

of the anion channel in the cryptogein-treated cells. The link between Ca
2+

 influx and anion 

efflux may involve a complex network of signals, including nucleotides, 

phosphorylation/dephosphorylation events, cytoplasmic free Ca
2+

, voltage, and cytoplasmic pH. 

The anion channels blockers, such as niflumic acid, glibenclamide, and ethacrynic acid, reduced 

and delayed the hypersensitive cell death and the induction of several defense-related genes in 

tobacco plants. Oxidative burst and induction of a 40 kDa protein kinase are the downstream 

events of the anion channel-signaling system. Alkalinization of the extracellular medium may 
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occur if an efflux of anions resulting from channel activation provided substrate for a H
+
/anion 

symporter at the plasma membrane. 

Cytoplasmic acidification by biotic or abiotic stress is considered a plant-specific trigger for the 

synthesis of phytoalexins and other secondary metabolites (15). The simultaneous increase of 

external pH originates from an influx of protons into the challenged cells (4). It is due to the 

inhibition of the plasma membrane H
+
-ATPase via reversible phosphorylation. Reversible 

changes of the phosphorylation state of the proton pump have been found to occur after exposure 

of tomato cells to a fungal pathogen. 

2.5 Reactive oxygen species in signal transduction 

The oxidative burst, which is a rapid and transient production of ROS, including O2
-
, H2O2, 

hydroxyl radical (
.
OH), and singlet oxygen (

1
O2), is the fastest active defense response induced 

by pathogens in the resistant interactions (4). The accumulation of ROS has been recognized as 

an early event of the plant defense responses. 

The first reaction during the pathogen-induced oxidative burst is the one-electron reduction of 

molecular oxygen to form O2
- 
(16): 

2O2 + NADPH → 2O2
-
 + NADP

+
 + H

+
. 

O2
-
 bears an unpaired electron and is routinely generated, in low concentrations, by the electron 

transport system (4). O2
-
 is also produced by the action of a number of enzymes, which 

participate in oxidation-reduction processes, such as NADPH oxidase, NADPH peroxidase, 

lipoxygenase, and xanthine oxidase. 

H2O2 may be produced from O2
-
, which undergoes spontaneous dismutation, or through the 

action of superoxide dismutase (16):  

2O2
-
 + 2H

+
 → H2O2 + O2. 

Plants may produce H2O2 via an NADPH oxidase system, peroxidases, xanthine oxidase, oxalate 

oxidase, urate oxidase, and glycollate oxidase (4). SA inhibits catalase, which can remove H2O2, 

and thus SA may increase the accumulation of H2O2 in plant cells. 

O2
-
 reacts with H2O2 to produce hydroxyl radical (17):  

O2
-
 + H2O2 + H

+ 
→ H2O + O2 + 

.
OH. 

O2
-
 can also act as a reducing agent for transition metals such as Fe

3+
 and Cu

2+
 (18). These 

metals may be reduced even if they are complexed with proteins or low molecular weight 

chelators, which can lead to the H2O2-dependent formation of hydroxyl radicals in the Fenton 

reaction: 
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O2
-
 + Fe

3+
 (Cu

2+
) → Fe

2+
 (Cu

+
) + O2, 

Fe
2+

 (Cu
+
) + H2O2 → Fe

3+
 (Cu

2+
) + OH

-
 + 

.
OH. 

O2
-
 and H2O2 can react in the Haber-Weiss reaction to generate 

.
OH (19):  

O2
-
 + H2O2 → 

.
OH + OH

-
 + O2. 

1
O2 is an excited state of molecular oxygen that can be generated in a number of ways including 

the spontaneous dismutation of two O2
- 
radicals (19). 

The oxidative burst reaction begins with the recognition of the elicitor molecule by a 

corresponding receptor molecule (20). Components of the signaling pathway downstream of the 

receptor may include heterotrimeric GTP-binding proteins (4). ROS generation appears to 

depend on increased intracellular Ca
2+

 level. ROS signal transduction further activates Ca
2+

 

channels and induce cytosolic Ca
2+

 increases in plant cells. Ion fluxes cause transient 

alkalinization of the extracellular matrix in the apoplast, leading to the activation of pH-

dependent cell wall peroxidase, forming H2O2 (20). NO
3-

 efflux seems to be essential to induce 

NADPH oxidase (12). Also protein phosphorylation may trigger the ROS signaling (4). Cyclic 

AMP-signaling system may also be an upstream event in the ROS signaling by leading to the 

activation of NADPH oxidase (20).  

ROS induce SA, jasmonate, and various defense responses, including strengthening of plant cell 

walls by a peroxidase-catalyzed cross-linking of cell wall structural proteins and triggering the 

transcription of defense-related genes. (4). O2
-
 triggered defense gene activation and phytoalexin 

synthesis in parsley and during the barley-powdery mildew interaction ROS induced the 

hypersensitive reaction. 

2.6 Nitric oxide in signal transduction 

NO is a gaseous free radical that diffuses readily through biomembranes (4). It is involved both 

in the animal and the plant defense signaling. NO production was observed in tobacco cells 

within 5 min after treatment with an elicitor cryptogein and maximum increase was observed 

within 30 min (21). 

A mammalian enzyme NO synthase (NOS) converts L-arginine into L-citrulline in a NADPH-

dependent reaction, releasing NO (22). Similar NO synthesis by a NOS-type enzyme also occurs 

in plants. This pathogen-inducible enzyme activity has been identified as a variant of the P 

protein of glycine decarboxylase complex and named variant P (4).  Despite the lack of sequence 

homology with the animal NOS, the variant P exhibits a high level of NOS-like activity and 
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displays biochemical features similar to those of its animal counterparts. Remarkably, the 

cryptogein-elicited burst of NO in tobacco cells was reduced by NOS inhibitors (21). 

Plants also synthetize NO from nitrite, either enzymatically by nitrate reductase that catalyzes 

the NAD(P)H-dependent reduction of nitrite to NO, or in a nonenzymatic manner (4). Nitrite-

dependent NO production has been observed in soybean and sunflower.  

NO synthesis is tightly regulated by a signaling cascade involving Ca
2+

 influx and 

phosphorylation events (21). NO acts through a cGMP-dependent pathway, where it 

posttranslationally activates guanylate cyclase, which leads to a transient increase in cGMP that 

activates ADP-ribosyl cyclase through a cGMP-dependent protein kinase (23). This results in 

elevated levels of cyclic ADP ribose (cAPDR), which was shown to activate expression of 

several defense genes. NO has been shown to convert the cytosolic aconitase into an mRNA-

binding protein known as iron regulatory protein-1 (IRP-1) in mammals (23). IRP-1 regulates 

free iron concentrations and through this mechanism NO stimulates increased levels of 

intracellular free iron. In the presence of ROS, free iron promotes oxidative damage via the 

Fenton reaction and contributes to induction of the hypersensitive reaction in plants (4). NO 

increases SA levels in elicitor-treated cells. SA is critical for cADPR-mediated activation of PR1 

expression, but not for the cADPR-mediated activation of PAL expression (23). Thus, NO 

appears to regulate expression of various defense genes through either SA-dependent or  

-independent pathway. NO was shown to activate SIPK in tobacco most probably via a SA-

dependent pathway (4). Remarkably, NO inhibited the H2O2-scavenging enzymes catalase and 

ascorbate peroxidase activities in tobacco, which suggests NO may participate in redox signaling 

and plays a role in regulating H2O2 levels. Last but not least, NO appears to be also involved in 

the pathway leading to the accumulation of transcripts encoding the ET-forming enzyme and cell 

death (21). 

2.7 Salicylic acid-signaling system 

SA is a signal molecule that acts both locally in intracellular and systemically in intercellular 

signal transduction (24). It accumulates in plants inoculated with pathogens (4). The increased 

levels of SA resulted in induction of various defense-related genes. The NPR1 (nonexpressor of 

PR1) protein is stimulated by SA to translocate to the nucleus where it interacts with TGA 

transcription factors, leading to the expression of various defense-related genes. SA was shown 

to regulate the expression of several PR genes encoding antimicrobial proteins. SA accumulation 

was suggested to be required for the hypersensitive reaction to occur and to contribute to disease 



Theoretical part 

19 

 

resistance (25). SA may play a key role in transferring intracellular signal transmitted by Ca
2+

 

(4). 

Plants synthesize SA by the action of phenylalanine ammonia lyase (PAL) and the biosynthesis 

of SA is stimulated by high H2O2 levels and by phosphorylation modulating GTP-binding 

proteins (4). SA suppresses the H2O2-degrading activity of catalase and ascorbate peroxidase. SA 

has been shown to inhibit catalase by serving as a one-electron donating substrate (26). In this 

process, SA is converted into a free radical, which could then initiate lipid peroxidation. Lipid 

peroxides are potent signaling molecules and induce e.g. PR1 genes (4, 26). Remarkably, two 

SA-binding proteins (SABPs) have been identified: a catalase, termed just SABP, and a lipase, 

termed SABP2 and generating a lipid-derived signal (4).  

2.8 Jasmonate-signaling pathway 

Jasmonates (JAs) are a major group of signaling compounds in inducing host defense (27). They 

are derived from peroxidized linolenic acid and are members of a large class of oxygenated 

lipids called oxylipins (4). JA induces a number of proteins, most of which are of unknown 

function, but some may have antimicrobial activity (28). The activated defense genes include e.g. 

genes encoding PAL, plant defensin, proteinase inhibitors, several secondary metabolites, basic 

chitinase and PR4 (4). JA and MeJA induce resistance against various pathogens. It was 

suggested that JA and MeJA may be involved in intercellular signaling. The components of JA-

signaling pathway include phosphorylation and Ca
2+

 influx. 

2.9 Ethylene-dependent signaling pathway 

The increased production of ET is one of the earliest events in pathogen-infected plants (4). The 

role of ET in plant-pathogen interaction is complex (29). Depending on the type of pathogen and 

plant species, ET may induce susceptibility or disease resistance. Through its signaling system, 

consisting of a histidine kinase and a response regulator protein, ET induces several PR and 

other defense-related genes (4). 

2.10 Abscisic acid signaling  

During fungal infection, ABA accumulates in the infected tissues (4). ABA may be a key factor 

in systemic induction of proteinase inhibitor genes. ABA functions as a negative regulator of 



Theoretical part 

20 

 

SA-dependent defense responses and confers susceptibility to diseases. Through the action of 

JIN1, a transcriptional activator and a positive regulator of ABA signaling in Arabidopsis, ABA 

also inhibited ET- and JA-signaling pathways (30). 

2.11 Interplay of signaling pathways 

Plant responses to different environmental stresses are achieved through integrating shared 

signaling networks and mediated by the synergistic or antagonistic interactions with the 

phytohormones SA, JA, ET, and ABA (31). Cross-communication between defense signaling 

pathways provides the plant with an elaborate regulatory potential that leads to the activation of 

the most suitable defense against the invader encountered (32). How particular stresses are 

decoded and translated to provide the output specificity remains largely unknown (31). 

In Arabidopsis, responses to different pathogens have been shown to include a synergistic effect 

of JA and ET for induction of defense-related genes (4). ET-responsive factors play important 

roles in regulating JA-responsive gene expression, possibly via interaction with the GCC-box. 

ET and JA pathways may converge in the transcriptional activation of ERF1, which encodes a 

transcription factor regulating the expression of pathogen response genes that prevent disease 

progression. It has been shown that both ET and JA pathways are required simultaneously to 

activate ERF1. Probably, ERF1 is a key element in the integration of ET and JA signals for the 

regulation of defense response genes. 

Plant resistance to biotrophic pathogens is classically thought to be mediated through SA 

signaling (31). By contrast resistance to necrotrophic pathogens is controlled by JA and ET 

signaling pathways and genetically, SA and JA/ET defense pathways interact antagonistically. 

SA produced during pathogen infection plays an important role in the suppression of both JA 

biosysnthesis and JA-responsive gene expression (32). The SA-mediated inhibition of JA 

formation might be the result of a coordinated suppression of JA-responsive genes encoding 

enzymes of the octadecanoid pathway, including LOX2. NPR1 has been demonstrated to be an 

important transducer of the SA signal in the SA-mediated activation of PR gene expression and 

broad-spectrum resistance. NPR1 was found to interact with members of the TGA subclass of 

the bZIP transcription factor family. TGA factors specifically bind to TGACG motifs. 

Interestingly, all JA-responsive genes tested to day contain one or more TGACG motifs in their 

promoters. Therefore, it was hypothesized that NPR1-TGA interactions might play a role in the 

SA-mediated suppression of JA-responsive genes. According to the proposed model, NPR1 is 

translocated to the nucleus upon activation by SA, where it facilitates the activation of SA-
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responsive PR genes, and in the cytosol, the remaining SA-activated NPR1 pool is involved in 

the suppression of JA-responsive gene expression, either by facilitating the delivery of negative 

regulators of JA-responsive genes to the nucleus or by inhibiting positive regulators of JA-

responsive gene expression. 

Interplay between ET and SA-dependent pathways has been reported in some instances (4). ET 

may potentiate SA-mediated PR1 gene expression, which might be negatively regulated by 

EDR1 protein. 

A complex interplay between ABA- and JA-dependent pathways has been reported (4). 

Exogenous ABA suppressed both basal and JA-activated transcription of defense genes. ABA 

may also suppress ET-signaling system in plants. It has been demonstrated that the ET-

insensitive Arabidopsis mutants show increased sensitivity to ABA, suggesting that ET signaling 

antagonizes ABA-responsive gene expression. It also has been shown that ABA suppresses SA 

accumulation in plants during interactions with pathogens (31). 

3. Inducible plant defense responses 

The plant defense responses induced after successful recognition of the invading pathogen can be 

assigned to three major categories, according to their distinct temporal and spatial expression 

patterns (33):  

1. Immediate, early defense responses – initiated in the directly invaded plant cell and the 

neighboring cells, frequently leading to the hypersensitive response (HR). 

2. Subsequent local activation of genes in vicinity of infection, including de novo synthesis 

of proteins involved in the formation of antimicrobial phytoalexins, structural proteins 

incorporated into the cell wall, and various protective proteins. 

3. Delayed systemic activation of genes encoding PR proteins, which are directly or 

indirectly inhibitory toward pathogens, resulting in the establishment of immunity to 

secondary infections termed systemic acquired resistance (SAR). 

3.1 The hypersensitive response 

The term hypersensitive response was introduced by Stakman as early as 1915 to describe the 

rapid and localized cell death associated with cereal resistance to the rust fungus Puccinia 

graminis (33). Subsequently, the HR was recognized as a general defense reaction in numerous 

plant-pathogen interactions. It is associated with plant disease resistance and occurs nearly 
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ubiquitously in incompatible plant-pathogen interactions. HR is a kind of programmed cell death 

(PCD) and is associated with many morphological and biochemical changes, such as change in 

the appearance of the plant cell nucleus, the cessation of cytoplasmic streaming, the appearance 

of particles exhibiting Brownian motion within the vacuole, protoplast collapse, degradation of 

host DNA into oligonucleosomal fragments, terminal deoxynucleotidyltransferase-mediated 

UTP end labeling-positive cells, caspase-like activities, cytochrome c release or cleavage of poly 

(ADP-ribose) polymerase (4, 33). In general, plant cells dying during the HR show several but 

not all hallmarks characteristic of animal PCD (33). The possible pathway in induction of 

hypersensitive cell death is presented in Figure 3.  

 

Figure 3: Suggested pathways in induction of hypersensitive cell death (4). ROS = reactive oxygen species, AOX = 

alternative oxidase, Bax = BCL2-associated X protein, ET = ethylene, SA = salicylate, JA = jasmonate. 
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expression in cells neighboring HR cell death have been reported in many cases. The cell death 

is known to activate SA accumulation, which is involved in SAR development.  

Cell death may also be induced in susceptible interactions (4). This cell death is called 

susceptibility-related cell death or normosensitive cell death and may be involved in conferring 

susceptibility to necrotrophic pathogens. Susceptibility-related cell death may provide nutrients 

for necrotrophic pathogens and shows characteristics of apoptosis, similar to that observed in 

resistance-related cell death. 

3.2 Secondary metabolites in plant defense 

Most of the plant secondary metabolites show antifungal action (4). There are two types of 

antifungal secondary metabolites: phytoalexins, that are inducible and synthesized de novo in 

response to infection, and phytoanticipins, that are constitutive and preformed infectional 

inhibitors. Both of them have been shown to be involved in disease resistance, although they 

have been detected in both resistant and susceptible interactions (37). Some compounds may be 

phytoalexins in one plant species and phytoanticipins in others.  

Transcriptional activation of enzymes involved in biosynthesis of phytoalexins has been 

observed within a few minutes after the recognition of pathogen invasion (4). Induction of 

phytoalexin synthesis is delayed in susceptible interactions when compared with that in resistant 

interactions. The synthesized phytoalexins may be secreted from the cells (38). Phytoalexins 

have been reported to be highly fungitoxic, inhibitory to fungal spore germination and hyphal 

growth (4). They may also suppress toxin production by the pathogens. 

Phytoalexins constitute a chemically heterogenous group of substances, such as 

phenylpropanoids, terpenoids, indole compounds, alkaloids, nitrogen-containing compounds, 

and fatty acid derivative compounds (4). Phytoanticipins are low-molecular weight and belong to 

several chemical classes including phenolic acids, di- and trihydroxy phenolics, flavanones, 

flavonoids, isoflavones, isoflavonoids, isoflavans, isoflavanones, glucosides of isoflavonoids, 

pterocarpans, furanocoumarins, anthocynidins, chromene, bibenzyl, xanthone, benzoxazinone, 

terpenoid saponins, steroid saponins, steroidal glycoalkaloid saponin, dienes, glucosinolates, and 

cyanogenic glucosides. 
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3.3 Pathogenesis-related proteins 

Pathogenesis-related proteins (PRs) are defined as proteins encoded by a host plant’s genome 

that are induced specifically in pathological situations (4). PRs are also induced upon 

environmental stresses, by chemical elicitors, and at different developmental stages of the plant 

(39). The proteins expressed constitutively in healthy plants and others expressed during specific 

developmental stages, such as flowering, have been referred to as PR-like proteins (40). 

Interestingly, some proteins induced by pathogens in one type of plant organ have been found to 

be constitutive components in other organs (4). Furthermore, some PRs induced in some 

varieties occur constitutively in other varieties. Even in the same plant, PRs appearing in lower 

old leaves without any stress were detected only after pathogen induction in young leaves near 

the top of the tobacco plant.  

Some PRs have been shown to have antifungal activity and may be involved in reinforcement of 

host plat cell wall and induction of disease resistance (4). Many transgenic plants overexpressing 

PRs showed enhanced disease resistance. However, there are also reports that some of these 

transgenic plants overexpressing PRs did not show any enhanced disease resistance. Some of the 

PRs accumulate more in susceptible interactions and several PRs do not have any toxic action 

against pathogens. These observations suggest that not all, but some specific PRs may be 

involved in conferring disease resistance. 

The accumulation of PRs after pathogen invasion occurs both locally and systemically and in 

both susceptible and resistant interactions (41). SA, JA, and ET may activate transcription of 

different sets of PRs and it is well established that different signal transduction systems are 

involved in induction of PRs (4). In tobacco plants, SA induces the expression of at least nine 

different PR genes and interestingly, all of them were also induced by tobacco mosaic virus (42). 

With mutants with impaired ET or JA pathways enhancement of resistance was observed (39). 

Apart from the effects of the signal molecules acting individually, there exists the possibility of 

synergism or antagonism among signal molecules on expression of PRs. For example, 

accumulation of PR-5 mRNA was dramatically higher in tobacco leaf tissues when ET and SA 

were applied in combination compared to plants with either one alone. Exogenous application of 

various chemicals could also induce the accumulation of PRs.  

Structure of the PRs varies widely (4). PRs have been classified into 17 groups based on their 

structure and not based on their functions. The classification of PRs is summarized in the 

following table. 
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Table I: Classification of PR proteins (4, 39). 

Family Biochemical properties / function MW range [kDa] 

PR-1 Plant cell wall thickening 15-17 

PR-2 β-1,3-glucanase 30-41 

PR-3 Chitinase 35-46 

PR-4 Chitinase 13-14 

PR-5 Alteration of fungal membrane permeability 16-26 

PR-6 Proteinase inhibitor 8-22 

PR-7 Endoproteinase 69 

PR-8 Chitinase 30-35 

PR-9 Peroxidase 50-70 

PR-10 Ribonuclease 18-19 

PR-11 Chitinase 40 

PR-12 Alteration of ion transport in fungal membrane (defensins) 5 

PR-13 Thionin 5-7 

PR-14 Lipid transfer proteins 9 

PR-15 Germin-like oxalate oxidase 22-25 

PR-16 Germin-like proteins without oxalate oxidase activity 100 (hexamer) 

PR-17 Peptidase 27 

 

Many of the PRs have signal peptide sequences at their N-termini, suggesting that these proteins 

are made on ribosomes attached to the endoplasmic reticulum, and it is very likely that the PRs 

are deposited in the lumen of the endoplasmic reticulum, where they are then transported to other 

locations, including secretory vesicles (39). Acidic PRs have been identified in the apoplastic 

fluid of plant cells, whereas basic PRs are rather found to accumulate in the vacuoles. Sequence 

analyses of cDNA clones of the encoded basic PRs have indicated the presence of additional 

sequences at the C-termini, which have been shown necessary and sufficient for targeting to the 

vacuoles. In some cases, the vacuolar targeting signal may be found at the mature N-terminus 

(43). Interestingly, many basic (intracellular) forms of PRs have been shown to have strong 

antifungal activity in vitro, in contrast to their acidic (extracellular) forms (39). Remarkably, the 

fungal pathogens initially develop in the intercellular space and subsequently grow extracellulary 

in the necrotrophic phase. Thus, basic (intracellular) forms of PRs practically have little effect on 

the fungal hyphae, despite having strong antifungal activity in vitro. 

The defensive role of β-1,3-glucanases (PR-2 family) and chitinases (PR-3, -4, -8, -11 families) 

against fungal pathogens consists in either direct degradation of pathogen cell walls or in 

promotion of the release of cell wall-degradation products, which can further elicit a wide range 

of defense reactions. Proteinase inhibitors (PR-6 family) inactivate some pathogen proteinases 

and thus may reduce the ability of the pathogen to digest host proteins (39). Some thaumatin-like 

proteins (TLPs, PR-5 family) also have β-1,3-glucanase activity (44), while other TLPs work via 
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a mechanism involving mitogen-activated protein kinases, leading to changes in the fungal cell 

wall (45). Peroxidases (PR-9 family) are key enzymes in the cell wall building process, and it 

has been suggested that extracellular or wall-bound peroxidases could enhance plant resistance 

(46). Even though many peroxidases are expressed constitutively in plants, some isozymes 

appear to be inducible upon pathogen infection. Germin-like proteins (PR-15 and -16 families) 

may generate hydrogen peroxide, which is involved in cell wall cross-linking (47, 48). A role for 

NtPRp27 (PR-17 family) in plant defense has been proposed in previous studies, because the 

finding that the level of NtPRp27 transcripts increased on tobacco mosaic virus infection and 

mechanical wounding, as well as after drought and ABA treatments, provided a profile that 

satisfies the definition of a PR protein (49). Cyclophilins catalyze cis-trans isomerization of 

imide bonds in peptides and proteins and may be implicated in protein folding and in long-range 

interaction between cells (50). Cyclophilin-like antifungal proteins have been isolated from 

black-eyed pea (51), mungbean (52), and chickpea (53). 

4. Cryptogein 

Cryptogein is a very efficient elicitin from Phytophthora cryptogea (8). It is synthesized as a pre-

protein with a signal peptide removed co-translationally before the secretion, accumulating in its 

mature form in the mycelium (4).  

The three-dimensional structure of cryptogein was determined by crystallography and NMR (54, 

55). It is composed of five α-helices and one β-sheet arranged in a unique protein fold. A 

hydrophobic cavity is located in the protein core and connected with the protein surface by a 

tunnel. 

Cryptogein and elicitins generally are structurally similar to lipid-transfer proteins of plant cells 

(56). They behave like sterol carrier proteins (57) and are able to pick up sterols from plasma 

membranes (58). The original proposal that elicitins may facilitate transfer of sterols was 

corroborated by the crystal structures of cryptogein in complex with dehydroergosterol (DHE) 

and cholesterol (7). The biological role of elicitins has been suggested to be the storage and 

transport of sterols used by Phytophthora spp. (8).  

Specific binding of cryptogein to a high-affinity binding site on the tobacco plasma membrane, a 

putative cryptogein receptor composed of a calcium channel and a glycoprotein, has been 

reported (59). This plasma membrane component is a heterodimeric N-glycoprotein with 

subunits of 162 and 50 kDa. 
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Application of cryptogein to tobacco cells triggered depolarization of the plasma membrane, 

protein phosphorylation, cytosol acidification and alkalinization of the extracellular medium, 

concomitant potassium and chloride efflux, fast and large influx of calcium, transient production 

of ROS as a consequence of plasma membrane NADPH oxidase activity induction, cell wall 

modifications, pentose phosphate pathway, MAPK activation, disruption of the microtubular 

cytoskeleton, NO production, production of ethylene, and induction of defense-related genes (4, 

7, 8). These early events could be prevented by the treatment of cells with calcium channel 

inhibitors, phospholipase C inhibitors or by the inhibition of protein kinases by staurosporin, 

indicating that phosphorylation reactions occurred upstream from these effects (60). On the basis 

of studies using the inhibitors, it was suggested that cryptogein-induced signal pathway leading 

to the oxidative burst and ΔpH changes includes phospholipase C together with protein kinase C 

(61). The late events include synthesis of phytoalexins such as capsidiol together with expression 

of defense related genes covering PR proteins. As well, the cell necroses could be observed as a 

consequence of hypersensitive response (62).  

 

 

Figure 4: Cryptogein in induction of various signal transduction systems in tobacco (4). 
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The expression of PR proteins and the induction of local acquired resistance were observed after 

the treatment of leaves with cryptogein (8). Distribution on the stem of decapitated plants is 

followed by rapid translocation of cryptogein and the plant becomes resistant to further 

inoculation by pathogens. Other cultivated Solanaceous genera (petunia, pepper, and tomato) did 

not develop any leaf necrosis and protection in response to cryptogein.  

The link between elicitor and sterol-loading properties is still not clear, but there are several 

works trying to explain it using site-directed mutagenesis. The cryptogein residues Tyr47 and 

Tyr87 were suggested to be involved in sterol binding (63). With the use of site-directed 

mutagenesis of these residues, the mutated cryptogeins were strongly altered in their sterol-

binding efficiency, specific binding to high-affinity sites, and activities on tobacco cells. The 

formation of a sterol-elicitin complex is probably a prerequisite step before elicitins fasten to 

specific binding sites. 

Another work deals with multiple mutations of the residues L15, L19, M35, L36, M59, and I63 

directed mainly into the hydrophobic cavity (8). The far-UV-CD spectra of all mutants were 

similar to the spectrum of the wild type so that the mutations did not perturb markedly their 

structure. In that study, all recombinant cryptogeins were tested for their ability to bind DHE and 

cis-parinaric acid. Both lipids only slightly fluoresce in water due to self-quenching of the 

fluorescent molecules in lipid micelles. After the lipids bind into the elicitin’s central cavity, 

their fluorescence markedly increases (64). Also the effects of site-directed mutagenesis on the 

synthesis of ROS and changes of extracellular pH in suspension tobacco cells induced by 

cryptogeins were measured in this work (8).  

The results that are summarized in Table II showed that the ability to induce the synthesis of 

ROS and pH changes is linked to the ability to bind sterols and not fatty acids (8). The computer 

modeling showed that DHE binding initiates conformation changes of the ω loop and 

consequently overall protein structures. Fatty acids did not stimulate such changes. They could 

accommodate the shape of the cavity because of their flexibility (7). The ω loop is very flexible 

and highly conserved. Its conservative structure suggests an important function (8). Proteins 

L15W/L36F and M35W/M59W did not bind sterols, but remained efficient to induce the early 

events. Both proteins contain bulky residues in the ω loop (W35, F36). Such a big residue 

directed inside the structure must be compensated by conformation changes in the ω loop that are 

very similar to those induced by the binding of sterols. The results suggest that the conformation 

of the ω loop induced either by sterol binding or by the presence of bulky residues could be 

necessary for the ability to trigger the early events caused by cryptogeins. 
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Figure 5: Superposition of the free wild type, dehydroergosterol-bound wild type, and mutant structures of 

cryptogein. (A) Binding of dehydroergosterol to the cavity of cryptogein wild type induces a conformational change 

in the ω loop (arrow). (B) Superposition of the structures of wild type and the M35W/M59W mutant (arrow) of 

cryptogein. Changes induced by the mutation are similar to those induced by sterol binding. Proteins are represented 

as ribbons; α-helices in blue, β-strands in red, and loops in yellow (8). 

 

All the mentioned mutated cryptogeins were able to stimulate necroses of suspension tobacco 

cells and to express the defense proteins, independently on their abilities to bind sterols or to 

stimulate the synthesis of ROS and pH changes (8). The ability to express PR proteins and to 

induce cell necroses depends probably rather on overall structure of the elicitins and charge 

distribution. These results further suggest that elicitins could activate two signal pathways that 

may not be necessarily connected. 

 

Table II: Dissociation constants of complexes of dehydroergosterol (DHE) and cis-parinaric acid (CPA) with 

mutated cryptogeins and biological effects of mutants (8). 

 

mutation 
Kd (μM) 

ROS synthesis pH change 
DHE CPA 

wild type 0.50 ± 0.02 0.19 ± 0.01 +++ +++ 

M35F/M59W 0.21 ± 0.01 0.132 ± 0.007 ++ +++ 

M35F/M59W/I63F 0.68 ± 0.05 0.09 ± 0.01 +++ +++ 

M35W/M59W no binding 0.08 ± 0.01 + ++ 

L19R no binding 0.12 ± 0.02 no effect no effect 

L15W/L36F no binding no binding + ++ 

 

Elicitins are also known to bind fatty acids to the internal cavity, making them functionally 

similar to the family of plant lipid transfer proteins, although this affinity is significantly lower 

(58, 63). Interestingly, plant lipid transfer proteins can associate with the same receptor in 
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tobacco as elicitins and they can bind fatty acids and phospholipids but not sterols (56). Fatty 

acids bound to the cavity interact mainly with the residues making up the groove: Y33, P42, 

Y47, L41, V75, L80, L82, and Y87 (7). Unlike sterols, free fatty acids are not present in 

noticeable amounts in membranes, but can be liberated by the action of phospholipase A1 and 

A2. The relationship between the complexation of elicitin with sterol and fatty acid is currently 

unknown and the design of protein mutants selectively binding either molecule can stimulate 

future research.  

Geranylgeranyol and farnesol are widespread in plant and animal cells in a form of prenylated 

proteins (7). These covalently attached lipids are recognized as being critically important for 

cellular signaling processes. It was shown that geranylgeranyol and farnesol bind to the elicitins 

as efficiently as the most strongly binding fatty acids. The importance of these interactions with 

elicitins or plant lipid transfer proteins for the cell signaling should be tested. 

Substitution of the residues M59, I63, or V84 by a large hydrophobic amino acid, e.g. 

phenylalanine or tryptophan, should reduce binding of sterol to the cavity of cryptogein (7). 

These mutations should not have an effect on the binding of fatty acids, farnesol and 

geranylgeranyol, filling a free space next to the molecules bound in the groove. Substitution in 

the position I63 is the most suited for this purpose, because it is located right to the groove of 

protein. The I63 residue is absolutely conserved among all currently known elicitins (8). 

Substitution of the amino acid residues L41 and L80 for larger hydrophobic amino acids should 

distinctively decrease binding of fatty acids, farnesol, and geranylgeranyol in the groove of the 

cavity, while preserving the binding of sterol (7).  

5. In vitro site directed mutagenesis 

In vitro site directed mutagenesis is an invaluable technique for characterizing complex 

relationships between protein structure and function and for carrying out vector modification 

(65). The basic procedure utilizes a DNA vector with an insert of interest and two synthetic 

oligonucleotide primers, both containing desired mutation. The oligonucleotide primers, each 

complementary to opposite strands of the vector, are extended during temperature cycling by a 

special DNA polymerase, without primer displacement. Extension of the oligonucleotide primers 

generates a mutated plasmid containing staggered nicks. Following temperature cycling, the 

product is treated with DpnI endonuclease, which digests methylated and hemimethylated DNA 

corresponding to parental DNA template. 
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6. Heterologous protein expression in Pichia pastoris 

Yeasts were the first eukaryotic cells engineered to express heterologous proteins because they 

share with E. coli many of the characteristics that make the latter such a useful host for 

recombinant DNA technology (66). They grow rapidly, can be transformed as intact cells, and 

form discrete colonies. In addition, they can carry out post-translational modifications of 

expressed proteins that E. coli is unable to provide. Furthermore, they secrete a small number of 

proteins into the growth medium, which can be exploited to simplify the purification of 

heterologous proteins. Finally, unlike E. coli, yeasts do not produce pyrogens or endotoxins. 

Pichia pastoris is a methylotrophic yeast, disposing of a specific biochemical pathway that 

allows it to utilize methanol as a sole carbon source (66). The promoters of the genes that encode 

the enzymes for this pathway are extremely strong and exquisitely sensitive to the presence or 

absence of methanol, making them ideal for the regulation of heterologous gene expression. 

Pichia pastoris have a number of advantages over ethanol-producing yeasts. It grows to much 

higher densities in fermenters due to the absence of toxic levels of ethanol, uses integrative 

vectors, which removes the need for selective media, offers greater mitotic stability of 

recombinant strains, and has a more authentic type of glycosylation pattern for heterologous 

products. Selection of transformants for heterologous gene expression commonly relies on 

complementation of an auxotrophic his4 marker in the host cells. The gene of interest is spliced 

between the promoter and terminator sequences of the AOX1 gene in E. coli vector, which also 

carries the His4
+
 and further downstream of this the 3´ end of the AOX1 gene. A linear fragment 

bounded by AOX1 sequences is then transformed into a His4
-
 host. This DNA construct can then 

undergo homologous recombination targeting the gene of interest into the chromosomal locus of 

the AOX1 gene. Another possibility to select positive transformants can be based on zeocin 

resistance or ade2 auxotrophic marker. The cells can grow either on methanol, in which case the 

heterologous protein is continuously expressed, or on glucose, in which case the heterologous 

gene is repressed until induced by methanol. The Saccharomyces cerevisiae α-factor prepro 

sequence is the most widely used secretion signal sequence. It is usually genetically egineered 

onto the DNA sequence for the heterologous protein of choice, thereby ensuring that it is 

targeted for export into the culture medium after being synthesized. 

  



Theoretical part 

32 

 

7. Two-dimensional electrophoresis 

Two-dimensional (2-D) electrophoresis is a powerful and widely used method for the analysis of 

complex protein mixtures extracted from biological samples (67). This technique sorts proteins 

according to two independent properties in two discrete steps: the first-dimension step, 

isoelectric focusing (IEF), and the second-dimension step, SDS-polyacrylamide gel 

electrophoresis (SDS-PAGE). 

7.1 First dimension separation: IEF 

Proteins are first separated on the basis of their pI, the pH at which a protein carries no net 

charge and will not migrate in an electrical field and is determined by the number and types of 

charged groups in a protein (68). The technique is called isoelectric focusing (IEF). For 2-D 

electrophoresis, IEF is best performed in an immobilized pH gradient (IPG).  

When a protein is placed in a medium with a pH gradient and subjected to an electric field, it 

will initially move toward the electrode with the opposite charge (68). During migration through 

the pH gradient, the protein will either pick up or lose protons. As it migrates, its net charge and 

mobility will decrease and the protein will slow down. Eventually, the protein will arrive at the 

point in the pH gradient equal to its pI. There, being uncharged, it will stop migrating. If this 

protein should happen to diffuse to a region of lower pH, it will become protonated and be 

forced back toward the cathode by the electric field. On the other hand, if it diffuses into a region 

of pH greater than its pI, the protein will become negatively charged and will be driven toward 

the anode. In this way, proteins condense, or are focused, into sharp bands in the pH gradient at 

their individual characteristic pI values. pH gradients for IPG strips are created with sets of 

acrylamido buffers, which are derivatives of acrylamide containing both reactive double bonds 

and buffering groups. The general structure is CH2=CH–CO–NH–R, where R contains either a 

carboxyl [–COOH] or a tertiary amino group (e.g. –N(CH3)2). These acrylamide derivatives are 

covalently incorporated into polyacrylamide gels at the time of casting and can form almost any 

conceivable pH gradient. 

Commercial IPG strips are dehydrated and must be rehydrated to their original gel thickness  

(0.5 mm) before use (68). As the strips hydrate, proteins in the sample are absorbed and 

distributed over the entire length of the strip. After the strips rehydrated, they are moved to the 

IEF focusing tray. A wet wick is placed on each electrode to collect salts and other contaminants 
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in the sample. The strips are covered with mineral oil before starting the focusing run to prevent 

evaporation and carbon dioxide absorption during focusing. 

7.2 Second dimension separation: SDS-PAGE 

Second-dimension separation is by protein mass, or MW, using SDS-PAGE (68). The pores of 

the second-dimension gel sieve proteins according to size because dodecyl sulfate coats all 

proteins essentially in proportion to their mass. The net effect is that proteins migrate as 

ellipsoids with a uniform negative charge-to-mass ratio, with mobility related logarithmically to 

mass. 

To solubilize focused proteins and to allow SDS binding in preparation for the second 

dimension, it is necessary to equilibrate focused IPG strips in SDS-containing buffers (68). After 

equilibration strips are embeded onto the SDS-PAGE second-dimension gel and overlayed with 

warm molten agarose prepared in SDS-PAGE running buffer, with a small amount of 

bromophenol blue in order to track the ion front during the run. 

7.3 Proteins detection, image acquisition and analysis, and proteins identification 

It is most common to make proteins in gels visible by staining them with dyes or metals (68). 

Each type of protein stain has its own characteristics and limitations with regard to the sensitivity 

of detection and the types of proteins that stain best. Before 2-D gels can by analyzed with an 

image evaluation software system, they must be digitized. The most commonly used devices are 

camera systems, densitometers, phosphor imagers, and fluorescence scanners. After image 

analysis, most current protein identification depends on mass spectrometry of proteins excised 

from gels. 
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 Goal of the thesis 

The thesis should broaden the current knowledge in the field of plant-pathogen interaction. 

Cryptogein, an elicitin from an oomycete Phytophthora cryptogea, and a plant Nicotiana 

tabacum will be used as a model. I will focus particularly on the relationship between elicitin-

lipid interaction and plant defense reaction course.  

With the use of in vitro site directed mutagenesis, cryptogein mutants with an altered ability to 

bind sterols and/or fatty acids will be prepared. Mutations types will be chosen according to 

conclusions of a study of Dobeš et al. (2004) (7). For recombinant proteins production, an 

expression system of a yeast Pichia pastoris will be used. Subsequently, tobacco leaves will be 

treated with cryptogein mutants and the differences in plant defense reaction course will be 

observed mostly from a proteomic approach. After apoplastic fluid isolation, where the majority 

of defense-related proteins are expected, 2-D electrophoresis of tobacco apoplastic proteins with 

subsequent MS identification of spots selected on the basis of PDQuest (Bio-Rad) analysis will 

be performed. Supplementary experiments, such as observing HR extent, tobacco secondary 

compounds analyses, analysis of defense genes transcription level, and fluorescence 

measurements of interaction between cryptogein mutants and lipids will also be realized.  

The obtained results could mean important facts for both basic and applied research, for example 

in searching for alternative crop plants protection against phytopatogenic fungi and oomycetes. 
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 Materials and methods 

1. Materials 

pPIC-X24 plasmid, which is pPIC9 (Invitrogen) into which X24 gene that encodes cryptogein 

was cloned, was available from previous studies (63). Wild type cryptogein was prepared in our 

laboratory previously (8). Cryptogein mutants L41F, V84F, and L41F/V84F were prepared as 

described below. 

 

 

Figure 6: pPIC9 vector map (65). 

 

Tobacco seeds (Nicotiana tabacum L. cv. Xanthi) were sown into peat soil and plants were 

grown in controlled conditions (22 °C, 16 h light, 6.000 lux, 80% hygrometry). The experiments 

were done with 8 weeks old plants. 

Sterols and phospholipids, except nitrobenzoxadiazole-labelled phosphatidylcholine (NBD-PC) 

were purchased from Sigma and were dissolved in ethanol and chloroform, respectively. NBD-

PC was purchased from Invitrogen and was dissolved in chloroform. Proteins were dissolved in 

water and stored at -20 °C. 
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2. Site-directed mutagenesis 

Specific mutagenesis of PIC-X24 gene encoding cryptogein was performed with the use of the 

PCR-derived technique developed with the QuikChange II XL site-directed mutagenesis kit 

(Stratagene). Oligonucleotides designed to introduce the chosen mutations into the target codon 

are stated in Table III.  

 

Table III: Sequences of the oligonucleotides used for mutagenesis of cryptogein. 

Mutation Primers (5´ → 3´) 

L41F 
F*: ACG GCC AAG GCC TTC CCC ACC ACG GCG 

R*: CGC CGT GGT GGG GAA GGC CTT GGC CGT 

V84F 
F*: CGG CCT GGT ACT CAA CTT CTA CTC GTA CGC GAA CG 

R*: CGT TCG CGT ACG AGT AGA AGT TGA GTA CCA GGC CG 
 

* F is the forward primer and R is the reverse primer, respectively.  

 

PCR amplifications were carried out with 10 ng of PIC-X24 plasmid vector, 125 ng of each 

forward and reverse primer, 100 μM deoxyribonucleotide triphosphate mixture, and 2.5 U of Pfu 

DNA polymerase in a final volume of 50 μl. The cycling parameters are outlined in Table IV. 

 
Table IV: Cycling parameters for the QuikChange II XL method. 

Segment Cycles Temperature Time 

1 1 95 °C 1 min 

2 18 

95 °C 50 s 

60 °C 50 s 

68 °C 8 min 

3 1 68 °C 7 min 

 

The amplification mixture was subjected to DpnI digestion (10 U, 37 °C, 1 h), where methylated 

and hemimethylated DNA corresponding to parental DNA template were digested. Subsequent 

molecules resistant to DpnI digestion, corresponding to efficiently mutated DNA, were further 

cloned in Escherichia coli XL 10-Gold ultracompetent cells (Stratagene) by a heat shock method 

according to the manufacturer’s recommendations. 100 μl of each transformation reaction was 

plated on LB-ampicilin agar plates and incubated at 37 °C for more than 16 h. Transformants 

were selected for their ability to grow in the presence of ampicillin (100 mg.l
-1

), inoculated in  

50 ml of LB liquid medium containing ampicillin (100 mg.l
-1

), and incubated at 37 °C overnight.  

The culture was then centrifuged (6.000 x g, 15 min) and from the bacterial pellet plasmid DNA 

was isolated using the Plasmid Midi Kit (Qiagen), which is based on a modified alkaline lysis 

procedure, followed by binding of plasmid DNA to anion-exchange resin under appropriate low-
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salt and pH conditions. RNA, proteins, dyes, and low-molecular weight impurities are removed 

by a medium-salt wash. Plasmid DNA is eluted in a high-salt buffer and then concentrated and 

desalted by isopropanol precipitation. 

Correct orientation of the sequence was evaluated by DNA sequencing with primers FPIC9 and 

RPIC9 (for sequences see Table V) using BigDye Terminator v3.1 Cycle Sequencing Kit 

(Applied Biosystems), on 3100 Genetic Analyzer (Applied Biosystems). Positive clones were 

used to transform Pichia pastoris cells. 

 

Table V: FPIC9 and RPIC9 primers sequences. 

Primer Sequence (5´ → 3´) 

FPIC9 TAC TAT TGC CAG CAT TGC TGC 

RPIC9 GCA AAT GGC ATT CTG ACA TCC 

3. Transformation of Pichia pastoris and expression screen 

The yeast P. pastoris strain GS115 was obtained from Invitrogen. Its propagation, as well as 

competent cell preparation and selection procedures, was according to the manufacturer’s 

recommendations. pPIC-X24 and its mutants isolated as described above were linearized at the 

unique SacI site in the vector and cloned into competent GS115 cells by a heat shock method 

according to the manufacturer’s manual. Transformants were selected for their ability to grow on 

histidine-deficient MD agar plates. Eight selected transformants were inoculated in 5 ml of YPD 

liquid medium and incubated at 30 °C overnight. The culture was then plated on YPD agar plates 

and incubated at 30 °C for 2 days. Thereafter the culture was resuspended in 1 ml of expression 

medium (for composition see Table VI) and inoculated in 100 ml of expression medium into 

which 500 μl of biotin-methanol solution (1 mg of biotin in 1 ml of methanol) was added, and 

incubated at 30 °C for 4 days with the daily addition of 500 μl of methanol.  

The efficiency of protein expression was then analyzed by SDS-PAGE and subsequent silver 

staining. The highest expressers were used for a large scale recombinant proteins production in a 

fermentor (for details see Master Thesis of Bc. Michal Obořil, FSc, MU). 
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Table VI: Expression medium final composition. 

component content* component content* 

Phosphate buffer, pH 6 0.2 M Biotin 1 x 10
-4

 % (w/v) 

(NH4)2SO4 1 % (w/v) Riboflavin 5 x 10
-5

 % (w/v) 

KH2PO4 0.2 % (w/v) Boric acid 2 x 10
-6

 % (w/v) 

MgSO4.7H2O 0.205 % (w/v) CuSO4.5H2O 2 x 10
-7

 % (w/v) 

NaCl 0.02 % (w/v) KI 1 x 10
-5

 % (w/v) 

Calcium pantothenate 1 x 10
-4

 % (w/v) MnSO4.H2O 3 x 10
-7

 % (w/v) 

Folic acid 1 x 10
-6

 % (w/v) Na2MoO4.2 H2O 2 x 10
-5

 % (w/v) 

Inositol 5 x 10
-4

 % (w/v) ZnSO4.7H2O 2 x 10
-6

 % (w/v) 

Nicotinic acid 1 x 10
-4

 % (w/v) CoCl2.6 H2O 1 x 10
-4

 % (w/v) 

p-aminobenzoic acid 5 x 10
-5

 % (w/v) CaCl2.2H2O 0.026 % (w/v) 

Pyridoxine HCl 1 x 10
-4

 % (w/v) FeSO4.7H2O 0.06 % (w/v) 

Thiamine HCl 1 x 10
-4

 % (w/v) 
 

* All components were dissolved in Milli-Q water. Biotin and riboflavin were pre-solubilized in 0.1 M NaOH. 

 

4. Purification of recombinant proteins 

The culture medium was centrifuged at 10.000 x g for 10 min at 4 °C. The supernatant was 

concentrated using Ultrafiltration Cell Model 202 (Amicon) and regenerated cellulose 

ultrafiltration membranes with cut-off 3000 Da (Millipore) to the volume of approximately  

15 ml. The concentrate was extensively dialyzed against H2O (Milli-Q) for 48 h at 4 °C, adjusted 

to 5 mM sodium acetate buffer, pH 5.0. For protein separation, ÄKTA FPLC system (Amersham 

Pharmacia Biotech) was used. The sample was loaded onto a Tricorn 5/5 column (GE 

Healthcare) containing Source 15S ion exchange media (GE Healthcare) and equilibrated with  

5 mM sodium acetate buffer, pH 5.0. The proteins were eluted with linear gradient of 5 mM 

sodium acetate buffer, pH 5.0, containing 1 M NaCl. The identity of expressed proteins was 

verified by MALDI-MS (Department of Functional Genomics and Proteomics, FSc, MU). 

5. Tobacco apoplastic fluid isolation 

Upper, middle, and lower leaves, each from a different tobacco plant (totally from 5 plants), 

were cut off and immerse in to the 250 nM cryptogeins solution. After 48 h the leaves were 

rinsed in water to remove any debris from the surfaces or cytoplasmic contaminants from the cut 

edges and vacuum infiltrated for 5 min at room temperature with an isolation buffer containing 

25 mM Tris.Cl pH 7.8, 10 mM CaCl2, 5 mM 2-mercaptoethanol, and 1 mM PMSF. The plant 

material was then blotted and rolled into the barrel of a 20 ml plastic syringe, which was 
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subsequently placed, hub down, in a 50 ml centrifuge tube and centrifuged at 800 x g for 10 min 

at 4 °C. The tobacco apoplastic fluid isolates collected at the bottom of the tubes were stored at  

-20 °C. 

6. Proteomic analysis 

The tobacco apoplastic fluid isolates were concentrated using ultrafiltration devices (Vivaspin 6 

Concentrator, GE Healthcare) with a 3 kDa cut-off by centrifugation at 8.000 x g at 4 °C, then 

rediluted in a sample buffer containing 8 M urea, 2% (w/v) CHAPS, 65 mM DTT, and 2% (v/v) 

IPG buffer (carrier ampholyte mixture, Bio-Rad) and reconcentrated using the same procedure. 

Finally the samples were diluted 10-fold with the sample buffer. The total protein concentration 

was determined with an RC DC Protein Assay Kit (Bio-Rad) using a calibration curve for BSA. 

For isoelectric focusing, Immobiline DryStrip pH 3-11 NL, 7 cm (GE Healthcare) IPG strips 

were used. Passive sample application during rehydration was performed. In each case, 80 μg of 

total protein in the sample buffer was loaded in triplicate. The rehydration time was 18 h. The 

IEF was performed using a PROTEAN IEF Cell (Bio-Rad). Focusing conditions are shown in 

Table VII. Before the SDS-PAGE procedure, the focused IPG strips were equilibrated, first in a 

DTT equilibration buffer [2% (w/v) DTT, 6 M urea, 2% (w/v) SDS, 0.05 M Tris.Cl pH 8.8, 20% 

(w/v) glycerol] for 15 min, then in an iodoacetamide equilibration buffer [2.5% (w/v) 

iodoacetamide, 6 M urea, 2% (w/v) SDS, 0.05 M Tris.Cl pH 8.8, 20% (w/v) glycerol] for 

15 min. After equilibration, the IPG strips were embedded onto 12% acrylamide 1 mm SDS-

PAGE second-dimension gels. SDS-PAGE was performed using a Mini-PROTEAN 3 Dodeca 

cell (Bio-Rad) at the constant current of 15 mA per gel. The gels were then washed in the gel-fixing 

solution [10% (v/v) methanol, 7% (v/v) acetic acid] for 30 min and stained overnight with SYPRO Ruby 

protein gel stain (Bio-Rad). The gels were then rinsed in the fixing solution for 60 min and subsequently 

washed in water before imaging with a Pharos FX Plus Molecular Imager (Bio-Rad). The gels 

were further analysed using PDQuest software (Bio-Rad) and selected spots were identified by 

MS analysis (Department of Functional Genomics and Proteomics, FSc, MU). 

 

Table VII: IEF conditions. 

Step No. Function Max. voltage Voltage slope Time 

1 Desalting 100 V Rapid Corresponding 100 Vh 

2 Voltage increase 250 V Linear Corresponding 250 Vh 

3 Voltage increase 1000 V Linear Corresponding 1000 Vh 

4 Main focusing step 4000 V Rapid Corresponding 45000 Vh 

5 Final sustainment 500 V Rapid 15 h 
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7. Mass spectrometric analyses 

MS analyses were performed at the Department of Functional Genomics and Proteomics, FSc, 

MU. Protein spots selected for analysis were excised from 2-DE gels with an EXQuest Spot 

Cutter (Bio-Rad). After destaining, the proteins in the gel pieces were incubated with trypsin 

(sequencing grade, Promega) at 37°C for 2 h. The corresponding proteolytic digests were 

analysed with MALDI-MS/MS and LC-MS/MS. 

MALDI-MS and MS/MS analyses were performed on an Ultraflex III mass spectrometer 

(Bruker Daltonik, Bremen, Germany) using a CHCA matrix in combination with an AnchorChip 

target. LC-MS/MS analysis was performed online using an EASY-nLC system (Proxeon) 

coupled with an HCTultra PTM Discovery System ion trap mass spectrometer equipped with a 

nanospray (Bruker Daltonik). LC separation was accomplished on a reverse-phase column with a 

water/acetonitrile gradient. The MASCOT 2.2 (MatrixScience, London, UK) search engine was 

used for processing the MS and MS/MS data. Database searches were done against the NCBI 

protein database and EMBL EST plant database. 

8. Transcription levels of defense genes 

The expression of genes in leaf tissues was analysed by real-time quantitative PCR (RT-qPCR), 

using the fluorescent intercalating dye SYBR-Green, in a Light Cycler 480 (Roche). Total RNA 

was isolated from 100 mg of leaf tissue using TRI reagent (Ambion) and purified using the 

TURBO DNA-free kit (Ambion). Reverse transcriptase reactions were performed with the 

ImProm-II Reverse Transcription System (Promega), with 0.4 μg of total RNA in a volume of 

20 μl, according to the manufacturer’s instructions. cDNA was amplified by qPCR using gene-

specific primers (see Table VIII) and GoTaq qPCR Master Mix (Promega) according to the 

manufacturer’s instructions.  PCR amplification was carried out as follows: 45 cycles of DNA 

denaturation at 95 °C for 20 s, annealing and extension at 60 °C for 40 s, with three replicates for 

each analysed sample. The transcript level of each gene was normalized to that of elongation 

factor 1α (EF-1α to facilitate the quantification of gene expression relative to an endogenous 

control by the ∆∆CT method. 
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Table VIII: RT-Q-PCR primers sequences. 

 

Gene Primer sequence (5´ → 3´) 

GeLiP 
F*: GTC CAA GAT TTC TGC GTC GC 

R*: TTT CCA GCT GCA CTA AGC CC 

GLN2 
F*: TCT GTG TAT GCT GCC CTC GAG 

R*: CCA GGC TTT CTT GGG CTA CC 

NtPRp27 
F*: ATT GTA CCA CGA GAG CAC CCA 

R*: GGT TTC ACC CAG TGG CTA GGT 

PR2Q 
F*: TCC AGC AGA TGT TGT GTC GCT 

R*: GGC TTG GCT AGC AGC AAC ATT 

PR3Q 
F*: TCT GGA TCA CCA ATG GCA TT 

R*: AGA AGC CAT TGG CAG GAC AT 

PR5 
F*: CCG AGG TAA TTG TGA GAC TGG AG 

R*: CCT GAT TGG GTT GAT TAA GTG CA 

TuReP 
F*: TCA CCT GCG AAC CCT AAC GA 

R*: CAC GCC CTG GAT TTC CTT CT 

EF-1α 
F*: TGT GAT GTT TTT GTT CGG TCT TTA A 

R*: TCA AAA GAA AAT GCA GAC AGA CTC A 

 
* F is the forward primer and R is the reverse primer, respectively. 

9. Chlorogenic acid analysis 

Chlorogenic acid, an intracellular marker of plant cells, was analyzed in both apoplastic fluid 

isolates and leave extracts to estimate the extent of intracellular contamination in apoplastic fluid 

isolates. Apoplastic fluid isolates were prepared as described above, when weight of leaves used 

for the isolation was about 32.0 g. Leaves extracts were prepared from 150 mg of plant tissue, 

which was added to 1 ml of 33% (v/v) acetone in water and disintegrated in a grinding mortar 

with sea sand. The content of the mortar was then pipeted in a microtube and extraction was 

carried out with ultrasound treatment (100 W, 15 min). After centrifugation (10 min, 13.000 x g), 

the supernatant was transferred into a sample vial for HPLC analysis. 

For HPLC analysis a Hewlett Packard HP 1100 series instrument with a binary pump, a vacuum 

degasser, an autosampler, a thermostated column compartment, and a diode array detector was 

used. The column used was a reversed-phase Supelcosil LC-18-DB (Supelco). The solvents were 

(A) 0.25% (v/v) H3PO4 in water and (B) acetonitrile. The elution system was as follows:  

0-5 min, 0-5% of B; 5-15 min, 5-15% of B; 15-20 min, 15-20% of B; 20-21 min, 20-60% of B. 

The flow rate was 1 ml.min
-1

, the injection volume was 50 μl, and the column oven was set to  

24 °C. The signal was monitored at 254 and 320 nm. For quantification purposes a calibration 

curve was made. 
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10. Capsidiol analysis 

Phytoalexin capsidiol content was analysed by HPLC two days after treatment with 250 nM 

elicitins, results of three independent analyses of each sample were averaged. The leave extracts 

that were prepared from 150 mg of plant tissue, which was added to 1 ml of 40% (v/v) aqueous 

MeOH, containing 0.5% (v/v) acetic acid, and disintegrated in a grinding mortar with sea sand. 

The content of the mortar was then pipeted in a microtube and extraction was carried out with 

ultrasound treatment (100 W, 15 min). After centrifugation (10 min, 13.000 x g), the supernatant 

was transferred into a sample vial for HPLC analysis. 

For HPLC analysis a Hewlett Packard HP 1100 series instrument was used. The column used 

was a reversed-phase Supelcosil LC-8-DB (Supelco). The solvents were (A) MeOH and (B) 

H2O. The elution system was as follows: 0-16 min, 30-20% of B; 16-20 min, 0% of B. The flow 

rate was 1 ml.min
-1

, the injection volume was 40 μl, and the column oven was set to 24 °C. The 

signal was monitored at 210 and 254 nm. For quantification purposes, a calibration curve was 

made. 

11. Fluorescence spectrometry 

Fluorescence spectrometry was performed on a Perkin Elmer Luminiscence Spectrometer LS 

50B in a stirred cuvette. The sterol and phospholipid binding of proteins was measured according 

to previously described methods (64, 69) by the titration of proteins with DHE and NBD-PC in 

10 mM MES (pH 7.0). Dissociation constants, Kd, of the lipid-protein complexes were 

determined by linear plots of 1/Cb vs 1/Cf using the equation 1/Cb = (Kd/A)(1/Cf) + 1/A, where 

Cb, Cf, and A are the concentrations of bound lipid and free lipid, and the maximal binding 

capacity, respectively. The concentration of the bound lipid, Cb, was calculated as described 

previously (8). The excitation and emission wavelengths were 325 nm and 370 nm for DHE and 

460 nm and 534 nm for NBD-PC. The values were read after equilibration. 

12. Sterol exchange assay 

Sterol exchange assay was performed by Bc. Michal Obořil. Elicitin-induced sterol exchanges 

were measured using stigmasterol or cholesterol micelles (3 M) added to 2 ml measuring buffer 

(10 mM MES pH 7.0), containing DHE micelles (0.63 M) (58). DHE fluorescence was then 
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recorded in both the absence (to determine spontaneous transfer rates) and presence of the 

elicitins.  

13. Phospholipid exchange assay 

Phospholipid exchange assay was also performed by Bc. Michal Obořil. Unilamellar vesicles 

were prepared as follows: donor vesicles contained NBD-labelled phosphatidylcholine (PC), 

phosphatidylserine (PS), and cholesterol; acceptor vesicles contained PC, PS, and cholesterol. 

Phospholipids and sterols were dissolved in chloroform and for each assay 0.32 mg NBD-PC or 

PC, 0.08 mg PS and 0.16 mg cholesterol were mixed, the chloroform was evaporated under 

nitrogen and traces of solvent were vacuum evaporated for 1 h. Then, 2 ml of measuring buffer 

(10 mM MES pH 7.0) was added, the mixture was vortexed under nitrogen and sonicated for 

three 5 min periods at 40 °C. Measurements of elicitin-induced PC exchanges were performed 

using NBD-PC/PS donor vesicles (1.5 μM NBD-PC) added to 2 ml measuring buffer (10 mM 

MES pH 7.0), containing PC/PS acceptor vesicles (3 μM PC). Fluorescence of NBD-PC was 

then recorded in the absence (spontaneous transfer) or the presence of elicitins. 

14. Synthesis of reactive oxygen species 

The synthesis of reactive oxygen species (ROS) induced by cryptogein in tobacco cell cultures 

was measured by Mgr. Nikola Ptáčková using a luminometric method in an elicitation buffer. The 

concentrations of H2O2 were monitored every 10 min in 250 μl aliquots (70). 

15. Resistance analysis 

The resistance analysis experiments were also performed by Mgr. Nikola Ptáčková. Systemic 

acquired resistance (SAR) was induced by elicitin application (71): plants were decapitated and 

their stems treated with 20 µl of water or a 5 µM aqueous solution of cryptogein.  Inoculations 

with Phytophthora parasitica were performed by infiltrating leaf parenchyma tissue with a 50 µl 

suspension containing 100 zoospores (72). In each experiment, at least four consecutive leaves 

received two infiltrations of zoospore suspension each. Susceptibility and resistance were 

evaluated by measuring the areas over which disease symptoms were observed, at various 

numbers of days after inoculation, for each leaf. The development of disease symptoms is strictly 

correlated with the development of the oomycete (73). 
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All experiments were performed at least three times with three replicates of plants. Results are 

presented as mean ± standard deviation. A paired t-test was used to analyse differences between 

two groups. 
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 Results 

Here I would like to highlight that the results presented in chapters Sterol and phospholipid 

transfer, Resistance to Phytophthora parasitica, and Induction of early events by mutated 

cryptogeins in tobacco cells suspension do not come from my personal work, but they were 

acquired by my coworkers, whose names are indicated in particular chapters. These results are 

shown in this thesis to further support conclusions in the Discussion section. All the other results 

come entirely from my own work.  

1. Recombinant proteins production 

Dobeš and co-workers used computer modelling and quantitative structure-activity relationship 

analysis to design cryptogein variants with altered binding of lipid compounds (7). Construction 

and biochemical characterization of these mutants should provide insight into the role of lipid 

binding over the course of a defense reaction. We have prepared three recombinant cryptogeins 

carrying the following mutations: Leu41Phe (L41F), Val84Phe (V84F), and both Leu41Phe and 

Val84Phe (L41F/V84F). The mutated residues targeted a hydrophobic cavity of the elicitins. The 

proteins were produced using the eukaryotic P. pastoris expression system, to ensure that they 

retained their native folded structures. To promote the correct cleavage of -secretion factor by 

P. pastoris proteases, a glycine residue was added to the N-terminus of the proteins. Using 

MALDI-MS analysis, the molecular weights (MW) of the generated proteins were found to be 

10 386 Da for cryptogein, 10 418 Da for the L41F mutant, 10 433 Da for the V84F mutant, and 

10 467 Da for the L41F/V84F double mutant. The measured molecular weights of the mutants 

relative to that of cryptogein are the same as the theoretical ones. The absolute molecular 

weights of all four proteins differ by 6 Da from the theoretical ones, which corresponds to three 

disulphide bridges. MS spectra are shown in Figure 7. 
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L41F 

 

V84F 

 

L41F/V84F 

 

Figure 7: MS spectra of produced cryptogein mutants. 
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2. Sterol-binding activities and affinities  

Elicitins have a hydrophobic core that can accommodate sterols or phospholipids. The sterol-

binding activity of the wild type (wt) cryptogein and the L41F, V84F, and L41F/V84F mutants 

was determined using the fluorescent sterol dehydroergosterol (DHE). To exclude possible 

effects of non-specific binding, aprotinin was included as a negative control in all binding 

experiments since it has very similar properties to cryptogein (MW= 6.5 kDa, pI=10.1). Addition 

of aprotinin did not affect the DHE fluorescence in the assays.  

Dissociation constants of the lipid-protein complexes were determined by linear plots of 1/Cb vs 

1/Cf (see Figure 9) using the equation 1/Cb = (Kd/A)(1/Cf) + 1/A, where Cb, Cf, and A are 

concentrations of bound lipid, free lipid, and maximal binding capacity, respectively. For all 

measured proteins the number of binding sites was found to be approximately one per molecule. 

The determined values of Kd are shown in Table IX, and are consistent with the predicted effects 

of the individual mutations. The calculated Kd for the DHE-wt cryptogein complex corresponds 

to those estimated in previous studies (8, 64). The fluorescence binding curves are shown in 

Figure 8. 

 

 

 

Figure 8: Fluorescence titration curves of mutated cryptogeins with DHE. 1 μM proteins were titrated in elicitation 

buffer with 0.5-2 μM DHE and the resulting fluorescence was read. 
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Figure 7: Linear plots of 1/Cb vs 1/Cf . Cb and Cf are concentrations of bound lipid and free lipid, respectively. 

3. Sterol and phospholipid transfer 

From a physiological point of view an important feature of elicitins is their ability to interact 

with the plasma membrane and transfer sterols and phospholipids. In the present study, we used 

sterol micelles and DHE to evaluate the ability of the elicitins to transfer sterols between 

membranes (performed by Bc. Michal Obořil). The addition of the wt cryptogein stimulated a 

rapid increase in fluorescence; with a plateau after about 5 min owing to dilution of DHE in the 

stigmasterol micelles. The initial rates of fluorescence for the wt cryptogein and the mutants are 

given in Table IX. As expected, cryptogeins containing the V84F mutation showed a 

significantly reduced ability to transfer DHE between the membranes compared to the wt 

cryptogein. In the L41F mutant there was only a minor decrease in DHE transfer rate.  

The transfer of phospholipids between the membranes was evaluated using a method based on 

the exchange of the fluorescently labelled phospholipid NBD-PC from unilamellar donor 

vesicles to PC acceptor vesicles as described above. Individual rates of fluorescence after 

addition of the elicitins are given in Table IX. Surprisingly, the V84F mutant and the double 

mutant showed higher rates of PC transfer than cryptogein. On the other hand, and consistent 

with expectations, the L41F mutant showed a lower rate of PC transfer.  
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To exclude the possibility that the observed transport was due to non-specific transport by the 

elicitins, aprotinin was used as a control. It did not elicit transport of sterols or phospholipids 

between the membranes (Table IX).  

 
Table IX: DHE binding and lipid transfer activities of studied proteins.  

Protein Kd  [μM] DHE transfer NBD-PC transfer 

Wild type 0.56 ± 0.04 2.51 ± 0.06 0.51 ± 0.05 

L41F 0.85 ± 0.05 1.88 ± 0.08 0.32 ± 0.01 

V84F No binding 0.45 ± 0.02 0.74 ± 0.08 

L41F/V84F No binding 0.38 ± 0.01 0.76 ± 0.04 

Aprotinin No binding 0.19 ± 0.01 0.15 ± 0.01 

 

Dissociation constants, Kd, of analysed proteins for DHE binding and initial rates of sterol (DHE) and phospholipid 

(PC) transfer measured by changes in DHE and NBD-PC fluorescence. 

4. Induction of early events by mutated cryptogeins in tobacco cells suspension 

We measured the effects of the mutations on the elicitation of the synthesis of reactive oxygen 

species (ROS) in tobacco cells in suspension (performed by Mgr. Nikola Ptáčková). Suspension 

cultures enable the exact parallel evaluation of the early events over time. The tobacco cell 

suspensions were elicited with 50 nM cryptogein solutions. The levels of hydrogen peroxide 

over time are shown in Figure 10B. The double mutant L41F/V84F stimulated almost no 

synthesis of ROS. On the other hand, although the V84F mutant was unable to bind DHE (Table 

IX), it was almost as efficient as the wt cryptogein in stimulating ROS synthesis. The production 

of ROS stimulated by the L41F mutant, which showed a lower ability to transfer PC, was about 

half that of the wt cryptogein, with the maximum shifted to 10 min.  

5. Accumulation of capsidiol 

Capsidiol production is triggered either by pathogen attack or by biotic and abiotic elicitors; it 

acts as an anti-microbial compound against pathogens. From tobacco leaves, extracts for a 

reverse-phase HPLC based capsidiol analysis were prepared as described above. The results of 

the analysis are shown in Figure 10C. The L41F mutant and L41F/V84F double mutant (DM) 

showed a very low ability to trigger capsidiol synthesis, which correlates well with reductions in 

their ROS accumulation and necrotic effects.  
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Figure 10: Extent of hypersensitive response (HR), ROS production and capsidiol content after application of 

individual elicitins. (A) Leaves with the most extensive HR 3 days after treatment with 250 nM elicitins. (B) ROS 

synthesis in tobacco cells in suspension stimulated by elicitins – wild type cryptogein (diamonds), V84F (filled 

triangles), L41F (squares), L41F/V84F (circles) and control (X). Cells were equilibrated for 3 h in an elicitation 

buffer, and elicitins were added to the suspension at time zero. The concentrations of H2O2 were monitored every 

10 min in 250 μl aliquots by a luminol method. (C) Capsidiol content analysed by HPLC analysis 2 days after 

treatment with 250 nM elicitins, results for three independent analyses of each sample were averaged. Cry = wild 

type cryptogein, DM = L41F/V84F double mutant, C = control (leaves treated with water). 
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Figure 8: HPLC chromatogram from capsidiol analysis. The red arrow signs the capsidiol peak. Samples - extract 

from leaves treated with wild-type cryptogein is shown by an unbroken line, extract from leaves treated with water 

is shown by a dashed line. 

 

 

 

Figure 9: HPLC chromatogram from capsidiol analysis. The red arrow signs the capsidiol peak. Samples - extract 

from leaves treated with wild-type cryptogein is shown by an unbroken line, extract from leaves treated with 

L41F/V84F cryptogein mutant is shown by a dashed line. 
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6. Proteomic analysis 

To study the effect of the four cryptogeins on the expression of proteins involved in defense 

response, an analysis of intercellular fluid (IF) was conducted. The main reason for analysis of IF 

was that the majority of secreted pathogenesis-related proteins are expressed into intercellular 

space. Tobacco leaves were treated by soaking the petioles in 250 nM aqueous solutions of the 

cryptogeins for 48 hours. Leaves treated with water were used as a control. Varying levels of 

hypersensitive response, up to one third of the leaf area, were observed for the different proteins 

(Figure 10A). The L41F mutant and the L41F/V84F double mutant (DM) induced almost no 

necrotic symptoms and the V84F mutant induced a lower extent of hypersensitive response than 

the wt cryptogein.  

The proteomic experiment was designed so that a good compromise between plant and other 

material consumption and separation quality could be obtained. To minimize protein losses 

during sample preparation for IEF, the precipitation step was omitted. For a triplicative 2-D 

separation of one sample, isolates from 15 leaves were used, namely upper, middle and lower 

leaves from each of five plants. Moreover, chlorogenic acid, an intracellular marker of plant 

cells, was analysed in both apoplastic fluid isolates and leaf extracts to estimate the extent of 

intracellular contamination in apoplastic fluid isolates. Samples with standard addition were used 

to identify the chlorogenic acid peak position. The peak absorption spectrum is shown in Figure 

14 and corresponds to the UV absorption spectrogram of chlorogenic acid published previously 

(74). An example of a related chromatogram is shown in Figure 13. The calculated 

contaminations are shown in Table X and it is obvious that no sample was significantly 

contaminated with intracellular content.  

After the isolation step, 2-D electrophoresis of tobacco extracellular proteins with subsequent 

MS identification (MALDI-MS and LC-MSMS) of spots selected on the basis of PDQuest 

analysis was performed (Figure 15). We focused on qualitative changes; spots were selected 

according to their unique occurrence in particular samples. Owing to the low overall 

concentration of the proteins isolated from the intercellular fluid, gel-staining using a highly 

sensitive fluorescent stain, SYPRO Ruby (Bio-Rad), was used.  

After treatment of tobacco leaves with the cryptogeins, a massive induction of protein expression 

into tobacco intercellular space occurred (for spot counts from the PDQuest analysis see Table 

X). The highest induction was observed for the V84F mutant whilst the lowest was found for the 

double mutant. The highest correspondence in counted spots was found for the wt cryptogein and 

the V84F mutant and, as expected, the lowest was found for the control and the wt cryptogein 
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(Table X). Subsequent MS identification of selected spots proved that the majority of the 

identified proteins play a role in plant-pathogen interactions and are naturally located 

extracellularly. The results of MS analysis are shown in Table XI; for mascot score and coverage 

see Table XII. Surprisingly, the results do not show a strong correlation between the ability of an 

elicitin to bind or transfer sterols or phospholipids and the level of expression of extracellular 

proteins with defense response roles. Similarly, although the L41F mutation does not 

significantly alter the sterol and phospholipid transfer rates, it has a strong influence on the 

expression of defense proteins. The role of the identified proteins in plant-pathogen interaction 

and the dependence of their expression on elicitin design are considered further in the discussion 

section.  

 

Table X: Spot counts from the proteomic analysis of individual proteins and intracellular contamination. 

Elicitin Intracel. 

cont. 

Spot count Count of common spots  

  Total Unique Cryptogein V84F  L41F L41F/V84F 

Cryptogein 6.4 % 144 26 - 94 44 27 

V84F 7.4 % 171 36 94 - 56 23 

L41F 2.3 % 137 38 44 56 - 29 

L41F/V84F 5.6 % 71 16 27 23 29 - 

Control 5.7 % 23 2 9 8 14 21 
 

The gels were analysed using PDQuest software (Bio-Rad). Contamination of apoplastic fluid (Intracel. cont.) with 

intracellular content was calculated on the base of chlorogenic acid content in both apoplastic fluid and leaf extracts. 

 

 

Figure 13: HPLC chromatogram from chlorogenic acid analysis. The red arrow signs the chlorogenic acid peak. A 

sample with an internal standard of chlorogenic acid is shown by the dashed line. The unbroken line shows the same 

sample without the internal standard of chlorogenic acid. 
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Figure 14: UV absorption spectrum of chlorogenic acid. 

 

 

Figure 15: 2D gel electrophoresis proteome maps of intercellular fluid determined 48 hours after application of 

cryptogein and its mutants. Identified proteins with qualitative changes between individual samples are indicated. 

For the first dimension of separation, 80 μg of protein was applied to each IPG strip (7 cm, pH 3–10 NL). For 

separation in the second dimension, 12% SDS–PAGE was carried out. Proteins were visualized by SYPRO Ruby 

staining. Isoelectric points (pI) and molecular weights (MW, kDa) are marked. WT = wild type cryptogein, DM = 

L41F/V84F double mutant. 
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Table XI: Identified proteins. 

 

Differentially expressed proteins identified by MALDI-TOF-MS and/or LC-MS/MS analysis of tryptic peptides 

followed by searches against the NCBI database (non redundant, all entries) and EST-Plants protein database in 

each protein, showing their individual spot numbers and presence (+). The corresponding NCBI accession numbers, 

the theoretical molecular mass (MM) and pI values are also indicated. The scores and percentages of protein 

coverage (% Cov) for both MALDI-MS and LC-MS/MS are listed in Table XII. 

Protein NCBI 

accession 

No. 

Spot No. MM 

[kDa] 

pI Cry L41F L41F/

V84F 

V84F 

β-1,3-glucanases 

Glucan endo-1,3-β-glucosidase 19859 4 37.8 5.2 +   + 

Glucan endo-1,3-β-glucosidase 19869 13, 14, 15 40.4 7.1 +   + 

Chitinases 

CBP20 632736 8, 12, 17 21.9 8.4 + + + + 

PR-4A 19962 8 16.2 7.6 +  + + 

PR-4B 100352 19, 21 15.2 6.1 + + + + 

Endochitinase A 116314 14, 15 35.1 8.4 +   + 

Endochitinase B 116321 16 34.7 8.3 +   + 

Acidic chitinase PR-P 19771 22, 24 27.5 4.9 + +  + 

Acidic chitinase PR-Q 19773 3, 18 27.6 5.1 + +  + 

NtChitIV chitinase 121663827 23, 5 29.9 4.9 +   + 

Chi-5 (Chitinase/lysozyme) 467689 12 42.0 9.1 +   + 

Proteinase inhibitors 

Proteinase inhibitor I-A 547732 9 11.9 7.8 +   + 

Proteinase inhibitor I-B 547733 9 11.9 7.8 +   + 

Peroxidases 

Lignin-forming anionic peroxidase 129837 1, 2, 20, 21 34.7 4.7 + + + + 

Peroxidase 63002585 15 35.6 8.4 +   + 

Peptidyl-prolyl isomerases 

Cyclophilin-like protein 152206078 11 22.0 7.8 +   + 

Peptidyl-prolyl isomerase, putative 

[Ricinus communis] 

255547634 10, 11 27.5 9.6 +   + 

Other  

Germin-like protein 222051768 6 21.4 5.8 +  + + 

NtPRp27 5360263 25 27.4 9.3 +   + 

Thaumatin-like protein E22 131015 22 24.7 5.4 + +  + 

Tumor-related protein 1762933 7 23.4 8.5 +   + 
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7. Accumulation of defense gene transcripts 

To investigate the relationship between the proteomic data and gene expression, the transcript 

level for selected proteins was evaluated with RT-qPCR assays. Based on the proteomic analysis 

the following genes were selected for transcript quantification: PR2Q, PR3Q, PR5, GLN2, 

TuReP, NtPRp27, and GeLiP. Transcript levels of all of these determined genes were related to 

those induced in the water sample used as a control. The results are summarized in Table XIII; 

correlations with the proteomic data can be seen. For the double mutant, we observe no or only a 

minimal increase in transcript levels, whereas for the V84F mutant, the increases in transcript 

levels are similar to or higher than those observed for the wt cryptogein. 

 

Table XIII: Accumulation of defense-related genes. 

Gene A.N. 
Cryptogein V84F L41F L41F/V84F 

logR SD logR SD logR SD logR SD 

PR2Q 

-1,3-glucanase X54456 1.04 0.12 1.32 0.12 0.80 0.09 0.03 0.12 

GLN2 

-1,3-glucanase X53600 1.08 0.13 1.12 0.13 0.64 0.14 -0.10 0.12 

PR3Q 

Chitinase X51425 1.02 0.15 1.00 0.11 0.57 0.12 -0.07 0.10 

PR5 

Thaumatin-like protein X12739 1.23 0.19 1.76 0.11 1.04 0.07 0.35 0.10 

TuReP 

Tumor-related protein FG644925 2.35 0.13 1.83 0.04 0.68 0.15 0.28 0.07 

NtPRp27 
FG633857 1.02 0.15 1.29 0.12 0.67 0.07 0.51 0.06 

GeLiP 

Germin-like protein AB449366 0.64 0.13 0.82 0.05 n.d. n.d. 0.46 0.11 

 

Effect of the the wild type cryptogein and the mutants L41F, L41F/V84F, and V84F on accumulation of transcripts 

for PR and other defense related proteins. Gene expression relative to a control was calculated by the ∆∆C(t) 

method. The values given in the table are the logarithm of the relative increase (logR) and its standard deviation 

(SD). More than a two-fold increase in gene expression was taken as significant. A.N. = accession number of gene 

in NCBI database. 

8. Resistance to Phytophthora parasitica 

The results presented above, particularly from the proteomic analysis, suggest that introduction 

of the L41F mutation to cryptogein would reduce the level of resistance induced. To verify this, 

resistance of tobacco plants to the fungal pathogen Phytophthora parasitica was evaluated (by 
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Mgr. Nikola Ptáčková). As expected, there was no induction of resistance for plants treated with 

the L41F mutant or the L41F/V84F double mutant. The resistance induced by the V84F mutant 

was comparable to that of the wt cryptogein (Figure 16). 

 

 

Figure 16: Induction of resistance against Phytophthora parasitica in tobacco plants. Leaves from 8 week old 

tobacco plants treated with elicitins were inoculated with zoospores of P. parasitica. The invaded areas were 

measured 3 days after inoculation. Each bar represents the standard error of four replicates from three different 

experiments. A replicate corresponds to eight inoculated areas on four leaves from one plant. Student’s t-test with  

p = 0.01 was used to determine whether differences in area were statistically significant. Wt = wild type cryptogein, 

DM = L41F/V84F double mutant, Control = plants treated with water. 
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 Discussion 

To clarify the relationship between the lipid-loading properties of elicitins and the course of the 

defense reaction we constructed three new cryptogein mutants: Leu41Phe (L41F), Val84Phe 

(V84F), and a double mutant Leu41Phe/Val84Phe (L41F/V84F), for which no structural changes 

were expected (7). Substitution of the amino acid residue Leu41 with a larger hydrophobic 

amino acid should decrease the binding of phospholipids in the cavity of cryptogein, while 

preserving the binding of sterols. Similarly, substitution of the residue Val84 with a large 

hydrophobic amino acid should reduce the binding of sterols in the cavity without affecting the 

binding of phospholipids.  

Data from sterol (specifically, DHE) and phospholipid (specifically, PC) binding assays were in 

agreement with expectations based on the structural data of the DHE-cryptogein and PC-

cryptogein complexes reported previously (7). The V84F and V84F/L41F mutants exhibited no 

measurable binding of DHE. For the L41F mutant, there was observed only a slight decrease in 

binding affinity for DHE compared to the wt cryptogein. Furthermore, using a simple 

fluorimetric method with donor and acceptor micelles we found that all mutants were able to 

transport DHE. However, in mutants carrying the V84F substitution there was approximately a 

90% inhibition of the transfer rate compared only to a 27% inhibition for the L41F mutant. In the 

PC exchange experiments, approximately a 50% inhibition of transfer was observed for the L41F 

mutant, while for the mutants carrying the V84F substitution there was a higher rate of exchange 

than for the wt cryptogein. This unexpected finding can be explained by the fact that mutation of 

a small valine residue for a large phenylalanine residue could have resulted in a relaxing of the 

cavity groove, facilitating the binding of highly flexible phospholipids.  

To test the effect of the mutations on the induction of early events in defense response, we 

measured the synthesis of ROS in tobacco cells in suspension when treated with the cryptogeins. 

A previous study suggested two signaling pathways for elicitin-induced responses and the 

necessity of a conformational change in the -loop, induced by sterol binding, to induce the 

early events (8). Contrary to this hypothesis, the V84F mutant, with a substantially lowered 

ability to bind and transfer sterols, was as efficient as the wt cryptogein in stimulating ROS 

production; and the L41F mutant, with only a slightly lowered ability to bind and transfer sterols, 

was far less efficient in inducing the synthesis of ROS (Figure 10B). The L41F/V84F double 

mutant showed almost no ability to transfer and bind sterols, and led to almost no ROS synthesis. 
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Structure-prediction of the Leu41Phe and Leu41Phe/Val84Phe mutants revealed that the large 

phenylalanines are easily accommodated by the surrounding residues without any significant 

changes in the -loop (7). The highly conserved structure of the -loop suggests it has an 

important biological function. We speculate that the mutation of a small leucine residue for a 

large hydrophobic phenylalanine residue could alter the interaction of the protein with the high 

affinity binding site on the plasma membrane. Detailed characterization of elicitin interaction 

with this high affinity binding site is ongoing in our laboratory. 

We used proteomic analysis of intercellular fluid to study the overall changes induced by 

cryptogein and its mutants at the protein level. The proteomic experiment was designed so that a 

good compromise between plant and other material consumption and separation quality was 

found. For a triplicative 2-D separation of one sample, five tobacco plants and 375 μg of 

particular recombinant cryptogeins were used. To minimize protein losses during sample 

preparation for IEF, the precipitation step was omitted. The use of Mini-PROTEAN 3 Dodeca 

cell (Bio-Rad) also contributed to material saving while providing sufficient protein separation. 

Gel staining using a highly sensitive fluorescent stain SYPRO Ruby (Bio-Rad) was another 

factor minimizing material consumption.  

Intercellular fluid was chosen because during the defense reaction the majority of proteins tightly 

connected with the defense response are secreted into it. Proteins in intercellular fluid form a 

first barrier to pathogen attack; most of them are involved in suppression of the pathogen 

spreading. The extent of hypersensitive response in leaves after elicitin application via the 

petioles correlated quite well with the level of ROS synthesis in suspension cultures and the level 

of capsidiol accumulation (Figure 10). The lower level of hypersensitive response observed for 

the V84F mutant compared to the wt could be the result of different effective elicitin 

concentrations in the leaves, which can lead to increased differences in the defense response, as 

noted previously (8). Treatment of tobacco leaves with the wt cryptogein and the mutants led to 

substantial qualitative changes in the intercellular fluid proteome (Figure 15). These changes 

were more prominent for the wt cryptogein and the V84F mutant. The majority of identified 

proteins are naturally located extracellularly (Table XI), which together with chlorogenic acid 

analysis results, with maximal intracellular contamination of 7.4 % (Table X), shows a good 

quality of apoplastic fluid isolation. 

Two different β-1,3-glucanases (PR-2 family) were identified for the wt cryptogein and the 

V84F mutant but not for the other mutants (Table XI). This finding coincided with the mRNA 

expression analysis which showed that the L41F mutant induced increases in the transcript levels 

of PR2Q, but these increases were significantly lower than those induced by the wt cryptogein 
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and the V84F mutant (Table XIII). This observation is consistent with the finding that several 

types of β-1,3-glucanases with different substrate specificities and specific activities are 

constitutively present in plants and can be considerably enhanced by pathogen-infection or stress 

(75, 76). Glucanases identified in tobacco have been shown to suppress diseases caused by 

Phytophtora spp., Rhizoctonia solani and Cercospora nicotianae (77).  

We identified nine proteins with a chitin-binding domain or chitinase activity (Table XI). Since 

chitinases hydrolyze internal -1,4-glycosidic linkages of chitin, they are involved in the release 

of chitin oligosaccharide elicitors from fungal cell walls upon infection. The expression of two of 

these proteins, PR-4 family members PR-4B and CBP20, was induced by all four of the elicitins 

studied. Ponstein et al. (1994) concluded that the stress induction pattern of CBP20 matches the 

stress induction pattern of other class I PR-proteins and demonstrated that CBP20 exhibits 

antifungal activity toward Trichoderma viride and Fusarium solani by causing lysis of the germ 

tubes and/or growth inhibition (78). PR-4B belongs to the PR-4 protein subgroup II, based on the 

absence of a hevein domain, for which a ribonuclease activity has been recently proposed (79, 

80). PR-4A was identified for all but the L41F mutant. All the other identified chitinases belong 

to the PR-3 family. Endochitinase A and B were detected only for cryptogein and the V84F 

mutant. These belong to class Ib and inhibit the growth of many fungi in vitro by causing lysis of 

hyphal tips (81, 82). The acidic chitinases PR-Q and PR-P were detected for all the elicitins 

analysed except the L41F/V84F double mutant. These belong to class II and, even though 

chitinases of class II are very homologous to those of class I, antifungal activity has not been 

shown (82). However, the combination of class I and II chitinases and class I -1,3-glucanases 

synergistically inhibit fungal growth (77). Moreover, the level of PR3Q transcript accumulation 

correlates well with the proteomic data; the double mutant did not stimulate any increase in 

transcription of PR3Q. The remaining two chitinases were detected for cryptogein and the V84F 

mutant. These belong to class IV (NtChitIV) and class V (Chi-V). NtChitIV may have an 

important function in early general defense responses (83). Chi-V is homologous to bacterial 

exo-chitinases and synergistic antifungal activity with class I -1,3-glucanase has been shown 

(84).  

Lignin-forming anionic peroxidase was identified for all four elicitins (Table XI). This belongs 

to the PR-9 family, a specific set of peroxidases that may contribute to cell wall reinforcement by 

catalysing lignifications and thus enhance resistance against pathogens (76). Another identified 

peroxidase, of molecular weight 35.6 kDa and pI 8.4, was induced only in the wt cryptogein and 

V84F mutant samples. It shows a very high homology to a previously identified peroxidase due 
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to the gene tpoxN1, belonging to the class III of plant peroxidases induced by wounding. 

Tobacco peroxidase gene (tpoxN1) is induced locally after wounding and then systematically in 

tobacco plants when its expression is induced by spermine (85).   

In addition to the β-1,3-glucanases, proteinase inhibitors, peptidyl-prolyl isomerases, NtPRp27, 

and tumor-related protein were identified only in the wt cryptogein and V84F samples (Table 

XI). This correlated quite well with the transcript analysis (Table XIII). Proteinase inhibitors, 

which are induced after wounding and TMV infection, may target nematodes and herbivorous 

insects (86). Cyclophilins, also known as peptidyl-prolyl cis-trans isomerases, catalyze cis-trans 

isomerization of imide bonds in peptides and proteins and may be implicated in protein folding 

and in long-range interaction between cells. For some cyclophilin-like proteins, antifungal and 

antiviral activities have been found (87). NtPRp27 (PR-17 family) has been shown to accumulate 

after TMV infection and mechanical wounding, as well as after drought and ABA treatments 

(49). Tumor-related protein is similar in amino acid sequence to Kunitz-type trypsin inhibitors 

and this, together with its specific induction after elicitor treatment, indicates its possible role in 

plant-pathogen interaction.  

Germin-like protein was identified in the wt cryptogein, V84F and L41F/V84F samples and the 

results from the proteomic analysis (Table XI) correlate well with those from the transcript 

analysis (Table XIII). Germin-like proteins are targeted to the cell wall and apoplast and the 

mechanism by which they influence plant defense is likely to be related to their generation of 

reactive oxygen species (88, 89). The last identified protein, thaumatin-like protein E22, belongs 

to the PR-5 family, which has been associated with activity against oomycetes (76). This protein 

was not identified in the L41F or L41F/V84F samples, which agrees with the reduced expression 

of the corresponding gene (PR5, Table XIII). 

Proteomic analysis revealed that the V84F mutation, in contrast to the L41F mutation, did not 

limit the induction of plant defense-related proteins (Table XI). Even though the mutants 

carrying the L41F mutation induced increases in the levels of some transcripts, these increases 

were significantly lower than those induced by the wt cryptogein and the V84F mutant (Table 

XIII). Moreover, the key role of the identified proteins in resistance induction to Phytophtora 

parasitica has been shown. Whilst the wt cryptogein and the V84F mutant induced comparable 

resistance, the L41F mutant induced only very weak resistance and the double mutant did not 

induce any resistance (Figure 16). These findings all correlate well with the results of capsidiol 

analysis (acting as an anti-microbial compound) and the ROS experiments on the cell 

suspensions and further support the hypothesis formulated above that the Leu41 residue is 
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important in the interaction of cryptogein with the high affinity binding site on the plasma 

membrane.  

Our results suggest that sterol binding to the cavity and the associated conformational change in 

the -loop might not play a principal role in cryptogein’s biological activity in terms of either 

ROS production or resistance induction. This hypothesis is partially in opposition to the previous 

proposal that elicitins could activate two signal pathways (8). In that study it was proposed that 

first signal pathway was associated with early events, such as ROS production, and could be 

conditioned by a conformational change of the -loop induced by the sterol binding; and that a 

another pathway induced PR protein expression and hypersensitive response, and was dependent 

only on the overall structure of the elicitin and its charge distribution. The results presented here 

show that the observed conformational change of the -loop might not play so important a role. 

A more important role is probably played by small methionine and leucine residues in the -

loop. Substitution of these with large phenylalanine and tryptophan residues probably alters the 

interaction of the elicitin with the binding site on the plasma membrane. In the previous study 

only a limited spectrum of transcripts was analysed, by northern blot analysis, and resistance was 

not evaluated, so the overall effect of the mutations was unknown. All this speculation could be 

supported by the fact that the L41F mutant was unable to stimulate the synthesis of ROS but 

triggered accumulation of some transcripts.  

To conclude, these results generally agree with the hypothesis that the ability of elicitins to 

express PR proteins and to induce cell necroses and resistance is driven by the overall protein 

structure and charge distribution, with sterol binding playing only a minor role. However, only 

detailed characterization of cryptogein interaction with the high affinity binding site on the 

plasma membrane can fully explain the role of these factors in the biological activity of elicitins.  
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