Netgraph — a Tool for Searching
in the Prague Dependency Treebank 2.0

Jir1 Mirovsky

Doctoral Thesis

Institute of Formal and Applied Linguistics
Faculty of Mathematis and Physics

Charles University in Prague

Prague 2008

Author Mgr. Jifi Mirovsky

Institute of Formal and Applied Linguistics
Faculty of Mathematics and Physics
Charles University in Prague

Malostranské nam. 25, 118 00 Prague 1
Czech Republic

Supervisor Prof. RNDr. Jan Haji¢, Dr.

Institute of Formal and Applied Linguistics
Faculty of Mathematics and Physics
Charles University in Prague

Malostranské nam. 25, 118 00 Prague 1
Czech Republic

Opponents ~ RNDr. Roman Ondruska, Ph.D.
SUN Microsystems
V Parku 8, 148 00 Prague 4
Czech Republic

Ing. Alexandr Rosen, Ph.D.

Institute of Theoretical and Computational Linguistics
Faculty of Philosophy and Arts

Charles University in Prague

Celetnd 13, 110 00 Prague 1

Czech Republic

Copyright © 2008 Jiri Mirovsky

Declaration

Declaration

I hereby declare that this thesis is my own work and where it draws on the work of others it
is properly cited in the text. [am also giving my consent to lend the work to anybody
interested.

Abstract/Abstrakt

Abstract/Abstrakt

Three sides existed whose connection is solved in this thesis. First, it was the Prague
Dependency Treebank 2.0, one of the most advanced treebanks in the linguistic world.
Second, there existed a very limited but extremely intuitive search tool — Netgraph 1.0.
Third, there were users longing for such a simple and intuitive tool that would be powerful
enough to search in the Prague Dependency Treebank.

In the thesis, we study the annotation of the Prague Dependency Treebank 2.0, especially on
the tectogrammatical layer, which is by far the most complex layer of the treebank, and
assemble a list of requirements on a query language that would allow searching for and
studying all linguistic phenomena annotated in the treebank. We propose an extension to the
query language of the existing search tool Netgraph 1.0 and show that the extended query
language satisfies the list of requirements. We also show how all principal linguistic
phenomena annotated in the treebank can be searched for with the query language.

The proposed query language has also been implemented — we present the search tool as well
and talk about the data format for the tool. An attached CD-ROM contains the installation of
the tool.

In Czech:

Tato préace se zabyva spojenim ti existujicich stran. Na stran¢ jedné byl Prazsky zavislostni
korpus 2.0, jeden z nejvyspélejSich korpust lingvistického svéta. Na strané druhé existoval
omezeny, ale velmi intuitivni vyhledavaci nastroj Netgraph 1.0. A na strané tieti byli
uzivatelé touzici po takovém jednoduchém nastroji, ktery by vSak byl dostatecné silny pro
vyhledavani v Prazském zavislostnim korpusu.

V této praci zkoumame anotaci Prazského zavislostniho korpusu 2.0, obzvlasté

seznam pozadavki na dotazovaci jazyk, ktery by umoznil vyhledavani a studium vSech
lingvistickych jevl v korpusu anotovanych. Navrhujeme rozsifeni dotazovaciho jazyka
existujiciho vyhledavaciho nastroje Netgraphu 1.0 a ukazujeme, Ze tento rozsifeny
dotazovaci jazyk vyhovuje formulovanému seznamu pozadavkii. Ukazujeme rovnéz, jak
pomoci tohoto dotazovaciho jazyka mohou byt vyhledany vSechny podstatné lingvistické
jevy anotované v korpusu.

Navrzeny dotazovaci jazyk byl rovnéz implementovan — zmifiujeme se tedy i o
vyhledavacim nastroji a hovotime o datech pro tento nastroj. Nastroj je mozno nainstalovat z
pfilozeného CD-ROMu.

Acknowledgment

Acknowledgment

First of all, my thanks belong to Jan Haji¢, my supervisor, for his help with the selection of
the topic of my thesis, for his experienced guidance and for his openness to my own
suggestions and wishes about the direction of the research.

My great gratitude goes to Jarmila Panevova for her help with searching for interesting
queries and for her admirable willingness to learn to use the tool and understand new
features of the language.

I very much thank Petr Pajas for his help with the transformation of the data from PML
format to FS format and for his kind readiness to answer my frequent requests for changes
very quickly.

I would also like to thank Marie Mikulova for explaining details of annotation on the
tectogrammatical layer to me, in which she is a great expert.

I am also grateful to Roman Ondruska for creating a good basis of the tool and for bringing
up the first idea of the core of the query language in his Master Thesis.

And I thank Kiril Ribarov, my colleague, who finally persuaded me to start my PhD studies
after a few years of my simple employment at the department.

I very much thank to all users who have been using Netgraph for the inspiration from their
feedback. Jifi Havelka helped me with non-projective constructions, Lucie Mladova turned
my attention towards rhematizers, and there were many many others.

I also want to thank my colleagues at the Institute of Formal and Applied Linguistics for
creating a very friendly atmosphere, and Eva Hajicova, its former director, for establishing
such a pleasant team of researchers.

And I cannot but express my greatest gratitude to the nearest people of mine, my Mum and
Dad, and Dana, my girlfriend, for their constant support and for their patience with the most
undeserving person.

The research and work presented in the thesis were supported by the Ministry of Education,
project Center for Computational Linguistics (No. LNO0A063), the Grant Agency of the
Academy of Sciences of the Czech Republic, project IS-REST (No. 1ET101120413), and the
Institute of Formal and Applied Linguistics at Charles University in Prague.

Brief Contents

Brief Contents

DEClaArAtION....cccueeiniiiiiiiiectenseecnenstecsaessnecsseesssesssessssesssesssseessesssassssassssessssssassssssassssssasseass 2
ADSEract/ ADSEIaKL.....cocoueeiieiivnriissisniicssssnniecsssnsscssssssssssssssssess 3
ACKNOWICAGIMENT....cuueeiriiiniiieiiniisiinsnensneesstecsnisssesseesssesssnssssesssassssesssssssassssassssessssssssanesss 4
Brief COMteNtS.....ccoivvrriciissnniicsissnnnesssssnicsssasss 5
COMLENTS..cuueeiruiiineisnessrecsannssaesssncsssecssnsssansssasssssessassssssssassssesssssssassssassssesssssssassssasssssssssssasssssns 7
1 INtrOAUCTION....cueeiiiiiirnricnsisnnrecsssnsiesssssssessssssssesss 12
1.1 The Exact Setting/Presné zadani.............cceeivieieiienienieieieiesie et 12
1.2 The MOtIVATION.ccuieiieiecieciiesieeteete et e st et eaeeteesaessaesseeseeseesaeessesssesseenseenseenseenns 12
1.3 Outline Of the TRESIS.....ccuevuieuieieieieeiieieietee ettt st e e ens 12
1.4 The Prague Dependency Treebank 2.0..........cceevvieierieniiiniieiicieeieeeeseeie e 14
2 The Problem ANALYSiS.....ccceeceersecssenssnecsnnsssensecsssessessssesssassssesssnssssssssassssesssssssssssssassssan 16
2.1 Related WOTK.....ccueoiieiieeeeceeeee ettt st e e s bae e e s 16
2.2 Netgraph 1.0 — The Starting Point............ccoecieieviiniininieieieeeeeeeeee e 20
2.3 Linguistic Phenomena in PDT 2.0........c.cooviiiiiieiieiecieeeseeeee e 21
2.4 LinguiStic REQUITEMENLS.cc.eeiiiiriieiieiieieieeteetc ettt ettt ettt e sae e eneeesaraens 30
3 The QUuery LANGUAZE.......cceeeerrrnricssssarresssssnsesss 31
3.1 TRE BASICS..cuieuiiiieiiiieiieietete ettt ettt ettt ettt ettt ettt beebeese et a e nteenbeennes 31
3.2 Alternative Values and NOAES..........ccueeveriiriieriieiieieeieseeitee e e 32
3.3 WILA Cards.....cveevieeieiieieiieieeee ettt ettt ettt ettt esae e e e nnaeenbeeseeenseenees 32
3.4 Regular EXPIESSIONS......cccueiieiieiieiieieeieseesteesieeteetestaesaeesteeseesseessesssesseesseesessasssenns 33
3.5 Dependencies Between NOAES..........cceeieieieniiniiiieieieieeieeeetee et 33
3.6 ATTthmeEtiC EXPIESSIONS.eciiieieriieiieieeieeie st esteeteeteesteeaesteesaeesseeseesaessnesseesseesnseeenns 34
3.7 Other Relations........ccoouiiiiiieieieieie ettt ettt st et e e e saaeessee e 35
3.8 MeEta- AtIIDULES. ...cuvieeiieieeieciieete ettt ettt te et e et esteesteeaeesseesbeeseesseeessseeensaeenns 35
3.9 REIETENCES. ...ttt ettt ettt e ae et et e beese e st enaeenseeeneeenne 46
3.10 MUlti-Tree QUETIES. ...cuviietieeetieeiieeiee ettt et ettt e et e eteeeaeeeaaeeeaaeeeseeeseeeaseeeaseeenns 48
3,11 Hidden NOGES......c.eeieiiiieiieiieieieeeetet ettt ettt st be b ene s eneeenes 49
4 The DAta....uueeeiciiseeriniisnricssssnnnicssssssncss 51
4.1 ThE FOTMAL.......ccuiiieieiieiieieeieteete ettt ettt e e ettt e b st et et e beeseesaenseessseensees 51
4.2 Corpus-Specific Features in the Header...........ccooveiiieiieciiniecieeeeeeeee e, 52
4.3 How Data Can Help.......cccoiieieiiieieieeeeeeeee et e 53
4.4 REICTEICES. ... eecuieriieiieieeieete st et et ete et e et esteesbeeteesbeesaesseesseesseesseensesssesseaseesnsseesnseeas 53
4.5 Aribute mM/I@MIMA.......cceeiiiiiiieiieieieieeeee ettt ettt ettt et sbeebe e esesnbeeseeenseas 54
4.6 Hidden NOAES........ceceeeiieiieieeie ettt ettt ettt e e e s e e sseesseebeessasssessaensaennneas 55
5 Using the QUery LanguUAage.........cccceveeessericssrncssssncsssrcssssrcssssrcssssssssssssssssssssssssssssssssassns 57
5.1 General REQUITEIMENTS..........oiieriieiiieiieeieeieeteseeeeie et e eeeseesreeseeeaeeaeesaessaesseensaenseenns 57
5.2 Using the Query Language for Searching in PDT 2.0.......cccccooeviiinininiiniinienienene 59
6 Notes on the QUery LanGUage........cccuvereerivsnricssssnrecsssssssecsssssssessssssssssssssssssssssssssssssssssss 76
6.1 Netgraph Query Language vs. FS Query Language...........ccceceevveviieiienieeniienieeneene 76
6.2 TTEES OMNIY...uiieiiieiiieiecieeeeee ettt et aeeaesaaesseesseenseenseeensaeeas 76
0.3 ReAUNAANCY......coiiiiiieiieieeiee ettt st e e s enee 76
6.4 Result Trees and Result OCCUITENCES........cceevvievieeiieiecieseesie et e e e eavee e 78
6.5 Comparison to Other Treebank Query SyStems.........ccoeeeeeieriiniinieiierieneeeeeeeeiee e 79

Brief Contents

0.6 UNIVETSALIEYeviiieiieiieieiestiet ettt sttt ettt ettt sbesbeeteesee st enaeenseenseeenne 88
6.7 Feedback From USETS.......cc.ceiiiiiiriiiieieiee ittt st 89
T THE TOOL..uuuceeieieniiinenneectensnecsaenseesssecsnesssnsssesssessssssssessssssssesssssssasssssssssesssssasssssaseses 92
7.1 Properties 0f the TOOL.........c.coiiiiriiieiieieeeeeceee ettt sae e 92
7.2 Changes Since VErsion 1.0.........cccoeieiiiiinininieieieseeceteeee ettt 94
8 T 2 11T SRR 95
8 Real WOrldu...uuuiuiiiiiiiiniicniniiinienniecsnensnensnecssnecsnssssessseesssesssessssesssesssssssssssssssssassssasse 96
8.1 THE QUETIES....c.uvieeieetie ettt ettt ettt e et e e et eeete e e teeeaaeeaseeeaseeeaaeeesseeeeennaeaaaas 97
O CONCIUSION...cueeerrinuenseiistensrecsnensnessseesnssssnsssansssessssssssnsssassssesssssssassssssssessssssessssssassnss 106
9.1 What Has Been DOne..........ccoueiiiiiiiiiiiiiiiiceeeee et 106
0.2 FULUIE WOTK ...ttt st et 106
10 ReEfCIEINCES..ccccueeeiinieisneeisninisneeisnnessseesssneesssenessssesssssssssssssssssssssssessssssssssssssssssasssssssns 111
11 Appendixes 115
11.1 Appendix A: Publications about Netgraph...........ccccceevieciieiiiniienieieeeeceeeeeeen 116
11.2 Appendix B: FS File Format Description...........cceeeeeeierienienieeieieieneseeeeeenieeeen 118
11.3 Appendix C: FS Query Format Description............ceceevievieecieseenieneenieeie e 122
11.4 Appendix D: List of Attributes in PDT 2.0........ccoecveiieiiniiniiieieiecceeeeieene e 124
11.5 Appendix E: Other Usages of Netgraph..........ccccvevuieiiieiiinieniesieececeeeee e 134
11.6 Appendix F: Installation and Usage of Netgraph — A Quick How-To.................... 138

Contents

Contents
DEClaArAtION....cccueeiniiiiiiiiectenseecnenstecsaessnecsseesssesssessssesssesssseessesssassssassssessssssassssssassssssasseass 2
ADSEIACH/ ADSIFAKL...cccneeeiiniiiiniiiiteiisneensnteissnecssnecsssnecssssecssseessssssssssssssssesssssssssssssssssssssasses 3
ACKNOWICAGIMENT....cuueeiriiiniiieiiniisiinsnensneesstecsnisssesseesssesssnssssesssassssesssssssassssassssessssssssanesss 4
Brief CONtEnts......ccceiiiineiiisniisseneninncisnecnseecssnecsssneesssnecssssesssssessssssssssssssssessssesssssssssssssssses 5
COMLENTS..cuueeiruiiineisnessrecsannssaesssncsssecssnsssansssasssssessassssssssassssesssssssassssassssesssssssassssasssssssssssasssssns 7
1 INErOAUCTION. .cceeeieicteeeinteessteeeisntecssseecssstecsssnessstessssesssssesssseessssesssssnsssssnsssssssssssssssssssnns 12
1.1 The Exact Setting/Presné zadani.............cceeivieieiienienieieieiesie et 12
1.2 The MOtIVALION.oiuitiiiieieieeteei ettt sttt s b et e st e b sbesbe et eeeens 12
1.3 Outline 0f the TRESIS.cveuiriirieieieieriee et 12
1.4 The Prague Dependency Treebank 2.0..........cceevvieierieniiiniieiicieeieeeeseeie e 14
1.4.1 The Morphological LAYer.................c..ccceveieiiaiaieeeeeeeeeee e 14
1.4.2 The ANGIVECAL LAYEFcccooeeeeiieciiaiieeeeeeeeeieee e 14
1.4.3 The Tectogrammatical LAYEr...................c.cccocuevueveeneaiaiaieieeeee e 14
2 The Problem ANaLySiS......cccocvvriccssssernccssssnricssssansessssssscsss 16
2.1 RelAted WOTK......oovimiiiiiiiiiieiei ettt sttt st 16
2.1.1 More or Less TheoretiCal PAPEFS...............c.cccevveeeeieeceeiiieiiesieeieeecieeieseeenneeens 16
2.1.2 EXiStInG S€ATCH TOOIS...........cocoooeeiiiiieieeeeeee e 17
MANALEE/BONILO.eueieieeie ettt ettt ettt ettt e et e et e et e saeeenteenee et e e e nneee e 17
1< o J P UUURRRN 17
TIGIEPZ. .ttt ettt ettt e ettt e et e e s et e e e b bt e e sttt e e e eaeeeeeaann 17
TAGETSEATCH. ...ttt ettt et e et e e bte et e e e e snbeeeeeeans 18
(0 To10 113y o R 18
1 4 2 OSSPSR 19
VIQTORY A ettt ettt st e e st e e bt e e bt e e sbeee e enbeeeas 19
T OSSPSR 20
2.2 Netgraph 1.0 — The Starting POint...........cccoeieieiinieninieieieieeeceeeeeee e 20
2.3 Linguistic Phenomena in PDT 2.0........cccooiiiiiiiiieieeeeeeeee e 21
2.3.1 The TectogrammartiCAl LAYEr...................cccccueveieemieiieseeieeie e 22
Basic PrINCIPIES.....cccciiiiieiiie ettt e e et e st e e e e tb e e e eerraaaaaaaaeeas 22
RV (55 1 Lo PP 22
Coordination and APPOSITION.......ccuierveeriereriieeieeritieeieeerteeeseeeseaeessseessseessseesseesseessseenns 23
[diomSs (PRraseImeEs) €LC......ccutiruiieiiieeieeeiieeteeeite et te et e ettt ettt e sete e st e e e enaaaeeeeesnntneeaeeenns 23
COMPIEX PrediCateS......cccviiiiieiiiiieiie ettt ettt et e st e ereesteeeteeetbeestaeessseesseessseesssseeeennes 24
Predicative Complement (Dual Dependency)........c.ccccvveeereeeriieeriierieerreenreesreesreeevee e 24
(0] (55 o3 (<) 1 1oL TSP 25
TopiC-FOCUS ATtiCUIAtION.eeiitiiiiiieiie ettt et ettt e 25
2.3.2 ACCESSING LOWEE LAYOTS.......c..oeeeeeeieeieeeeee et 27
2.3.3 The Analytical Layer (and LOWer LAYETS)...........c.ccceeeveieieaiaieiiiaiesieeiens 28
MOTPROIOZICAL TAES. ... veeeviieiieeiieeie et erre e st esreesbeesstee e taeessaeessseesssssseaessssssseeeesnnes 29
YN 4 1153 10 1S) 0| AP 29
N0 (s B0 1<) RSP PUPUPPP 29
2.4 LinguiStiC REQUITEMENLS.cceeruieiieieeieeiierieeieeie ettt ettt e te e eaesreeeseseeesnnee s 30
2.4.1 Complex Evaluation of @ NOdE................c.cccccoeeiioininioiiiininiiiiiineeeieeeeee e 30
2.4.2 Dependencies Between Nodes (Vertical Relations).................ccccuevveceeeceveenennn. 30

Contents

2.4.3 HOVFIZONLAL REIALIONS. ... 30
2.4.4 OURET FOAIUTES. ..ottt be e s 30

3 The QUEry LangUAaZe.......cccceeevvureccsrrcsssncssnnicsssnncssssssssssssssssssssssossssssssssssssssssssssssssssssssssss 31
3.1 THE BASICS. ...ttt ettt sttt ettt b et be e et 31
3.2 Alternative Values and NOAES........ccceereririeiiirinieieicreee e 32
3. 2.1 AlternatiVe VAIUES.............cccooocviiieeiieiieiieieeeeeeeee et 32
3.2.2 Alternative INOGES...............c.coooiiiiiieiiiiei e 32
3.3 WL Cards. ..ottt st et et 32
3.4 Regular EXPreSSIONS.cvueriiriieieieienieetietieiesteste ettt etestestesseeseesesesaeeseeneensensasseeseenns 33
3.5 Dependencies Between NOAES........ccoevueeiieiieiiniesieseeie ettt saee e 33
3.6 ArithmetiC EXPIESSIONS.cuecuiruieieieieitietieieieie ettt ettt e et ssesbe s eneenaenseenseennns 34
3.7 Other Relations.......cc.coieiiiiiiieeee ettt ettt e 35
3.8 MEta- AUITDULES. ...c.veuvenieiiiiieteitee ettt ettt b ettt st 35
I B B 7 7 7K 172U PUR 35
3.8.2 OPHIONAL. ... 37
3e8.3 HSOMS .ot e e 40
384 HHSOMS ..ot enae s 40
3085 AP ...t 41
3.8.60 HACSCONAANLS............coeeieeeeeeeeeeee e 41
3.8.7 HHDBFOIRCES. ...t 42
388 HIBDFOIREES. ...ttt 42
3.8.9 FOCCUITEHICES. ...ttt et e nnae e e 42
3.8 10 FUAMC........oeeeeee e et s 45
3.8 11 SEIICHICE. ...ttt 45
3.9 RETETENCES.ueiteeeieeei ettt et 46
3.10 MUlti-Tree QUETIES. ...cvvieiieetieetie ettt ettt et et e et e et e et e e e aeeeteeeeteeeeaeeeseeeaseeessaeaneas 48
311 Hidden NOAES......c.ovuiriiieiiiiirieieieieesete ettt 49
4 The Data .51
4.1 ThE FOIMAL.....ccuiiiiiiiiieieiee ettt sttt st e 51
4.2 Corpus-Specific Features in the Header..........ccccooveiieiiiiiinieiececeeee e, 52
4.3 How Data Can Help.......c.ccoviiieieieieicieeeeeee et e 53
4.4 RETEIEIICES.cueeneiiieieiee ettt ettt b ettt st et e b e et eeneeas 53
4.5 Atribute M/ICMMA.........coviviiiiiriiieiei ettt st 54
4.6 HIdden NOAES......c..oouiiuiiiiiieieee ettt sttt sb e 55
5 Using the QUery LanguUAage.........cccceveeeervnrecssnncsssrcssasncssssicssssssssssossssssssssssssssssssssssssssssssns 57
5.1 General REQUITEIMENTS.........covieriieiieieeieeiese ettt eie et eeeeseeseeeaesaeesaeeseessaesseessaenseenns 57
5.1.1 Complex Evaluation of @ NOde.................c.ccccoveiciiiiiieiiiiiieieieeeeeeeeiei 57
5.1.2 Dependencies Between Nodes (Vertical Relations)................ccccoeveevcvevveerennnan. 57
5.1.3 HorizoNtAl REIALIONS............ccocoeeeeeiieiieiieieeee et 58
514 OtREE FOAIUIES. ...ttt be e esnee e 58
5.2 Using the Query Language for Searching in PDT 2.0.......c.cccooevivinininiininneniennn 59
5.2.1 The TectogrammatiCAl LAYEFccoocueveesreceeieeieiiesiesieeeeieeeeieesniveeens 59
Basic PrINCIPLES.ooiiiiiiii ittt 59
VALTICY ..ttt ettt e b e bbbt et b e st e e 59
Coordination and APPOSITION........c.uierueeririerireerreerrteeereesrreeeseeesreeessseessreessseessseessseessseenns 60
Idioms (PRraseImeEs) €LC......ccuuieriiiiriierieeiiierieeeteesreeereeetteetaeeseaeesebeeeeessnraeesssssnsaeeeennes 61
ComMPLEX PrediCates. ... coouvieiiieiiieeiie ettt ettt ettt e ettt et e bt e e eateesaeeeaeeeans 61

Contents

Predicative Complement (Dual Dependency)..........cocceevuiriiriieniiiiniiiiienieeieeiceceeeene 62

(0] (55 o3 (<) 1 1oL UUUPORRRN 63
TOPIC-FOCUS ATtICUIATION.eeiiiiiiiieiieeiiecte ettt e sttt e e reeeateeestaeetaeeeneeseneesereenes 64

5.2.2 ACCESSING LOWEF LAYEFS.......c..ooeeeieiieiieeeeeet e 71
5.2.3 The ANQIVECAL LAYET-..............ccooeeeeiesiiaiieiieeee et eee e 73
MOTPROIOZICAL TAES. ... veeeviiiiieeiieeite et erre e st e e sreesbeeebee e teeessaeessseesssssseaeesssssseeeesnnes 73

F N4 1153 1115 1L PO O SO ST P RSP PP UPPPRPTPPP 73
N0 (s B0 1<) RSP PUPR PP 74

6 Notes on the Query Language...........coceicevueicisenicssnncsssnncsssnssssssssssssssssssssssssssssssssssssssassns 76
6.1 Netgraph Query Language vs. FS Query Language...........coccceeevenienenieneencnicnnnn. 76
0.2 TTEES OMNLY...uiiviiiiiiiiiieiieieeeee ettt ettt e seesaesae b e beeseeseensaensneenns 76
6.3 ReUNAANCY......coiiiiiiiieieee ettt sttt 76
6.3.1 Two Types of RedUndancy.................ccccoocvecveciecieceiieieieieeeeeeeieie e 77
6.4 Result Trees and Result OCCUITENCES........ccuevueeieriiriiiieiieieieie et 78
6.5 Comparison to Other Treebank QUeEry SYStemS........cceeeeeeierieriirieieienieeeeeereree e 79
0.5.1 A BiGSCA TADIE...............ccooovveeeeiieieiieeeeeeeee ettt 79
6.5.2 COMPATISON L0 TGIEP.......c.ooeeeeeeeeeee et 81
6.5.3 Comparison t0 TGFep2.............cccoovimiiieiiniiiiiieieieeeee et 82
6.5.4 CompariSOn t0 TiQerSEAVCH...............ccocveviaieieieeeeieeeeeeee e 84
INOAE DIESCIIPLION.veiieiiiieeiiiieeeiiee et e ettt e e et e e et e e e eebeeeestbeeeetbaeeessaseeesnsseesansseesensens 84

INOAE REIATIONS. ...ttt ettt ettt e et e bt e e bt e enab e e e e eeneee 85
INCZALION. ..ottt eeiieeiieeeie e et e stteette ettt ettt e tbeeseseesssaessseeessaessseessseessseesssaesnseessseeanssseeesannnns 86
Graph DESCIIPHON.vieeieeiiieeieeeiteeieeeiteette et e estte e teesteeessseessseessseesnseesnsseeeessnnssneeasanns 86
VATTADIES. ...ttt et et e e e ettt e e e e 87
Graph PrediCates.cccvuiiiiiiecie ittt e st e st et eeteeeteeestaeestbeetbeessstnbaeeessssnsseeeennns 87

6.5.5 Why Is It So Complex in Netgraph?..............ccccooouveeoieiecieieeiiaiaieienie e, 88
6.6 UNIVETSALITYcviiiieiicieeiesieeeie ettt et e et s esteeste e seesseesseesaesssenseensseesnnseenns 88
6.7 Feedback From USETS......c..ccuviririiiiirinieieieienesee ettt 89
T THE TOOL...uuuuiineeiiiniiiineiinnticnneecsneecsseecsnecssssesssssnessssesssssessssnsssssssssssasssssasssssanssssssssasaes 92
7.1 Properties of the TOOL........cccueiiiiiiiieieeeee et 92
7.2 Changes SINCe VETrSION 1.0......cc.eciiiieriieiieiieie sttt eee et see et sae e esae e e seseeenes 94
7.2.1 Main Extensions to the Query Language...................cccccoeceeeeeeeeneeeaveaiieneeennns 94
7.2.2 Main Extensions t0 the TOOL.................c.ccccoviiiiiiiiiiiieieiesteeee e 94
7.3 BUES ettt sttt ettt et e ht e bt e bt et e et e enteentenatee s 95
8 ReAl WOKIdu..ocouueiiineiiiniieiniiiineecsnnenssnnecssnescssseessseesssseessssssssssssssssscssssssssssssssssssssssssssssns 96
8.1 TIE QUETICS.ccueevietieieeie ettt ettt et et e et e et e te e te e b e et e etaesseesseebeesseesbeessesaseeessseeenns 97
8.1 1 ONE-NOAE QUETIES..........ccooecvesieeiieeieeiieeieeie ettt ste e esaeesnaaeessee e 97
8.1.2 Structured Queries without Meta-AHriDULES..................c.ccevevieieieeeiieeieeien 98
8.1.3 Queries With Meta-AtFTDULES.c.ccceeceeeceeeiesiesieecieee et eiee e 99
ATANISTEIVE. .ttt ettt b bbbt bbbt h e bt e bt e sbt e sbe e bt e st e s ean 99

0] 01503 s 1 ORI 100
E22]0) 1 OO O PSSO PU PR PPPRPPPN 100

(4 153 011 o PR SPRUSTPPR 101
HAESCENAANTS. ...eieiie ettt ettt e e e e et bt e e e e s ebbeeeeeen 101
_HIbrothers, HrDrOthers........ooviiiiiiiii e 101
FHOCCUITEIICES .. vveeeeueteeeeiteeeeatteeeantteeessaaeeessseeessseeesanseeesansseessnssaesansseessnssaeessnseeessnsssnns 102

DUBIMIC. ...eeuteeenite ettt ettt e et e et e ettt et e e bt e e bt e e sbt e e s et e s ettt sttt et e bt e e bt e eat et sabe e et et sbee e s s eeee 102

E23 111011 OO URRTPR 103

Contents

CSEIIERIICE. ..ceeiniiiiee ittt ettt e e s n e e e na e e e e e s aa 103

8.1.4 Queries With RefErenCes...........c..ccuuviaveeviiiiieiieiieeieeieeie st eveeeaae v s 103
8.1.5 Queries with Hidden NOAEs..................cc.cccccovoeiimcieiiiiiiiiiieeeeeeeeeeee e 104

O CONCIUSION. . .ccceneeiiineiesneecineesinntessneessssecssssnesssnnesssssesssnessssnessssasssssnssssssssssssssssssssssnassns 106
9.1 What Has BEen DONeE.........ccceeviiiiiiiiiniiieinieeteee ettt 106
0.2 FUIUIE WOTK. ..ottt et 106
9.2.1 The QUery LANGUAZE.ccccooceeeeeeiaeieiieiieeeie et 106
STMPLTICALION. ...ttt ettt et ettt e st e e st e sbeesabeeebeeeteeesenbaeeeas 107
FUrther EXTENSIONS.couiiiieiieieeie ettt ettt et ettt e e eneeeneeas 108
Corpus-Wide Comparing and StatiStICS........eevuvrerveerviercrierreenreeeieesseeeessreesseesseesnseees 109

9.2.2 SPOEM.......ooeeiieeiee et 109
9.2.3 FUrther IMPrOVEMENLS...............c.cccoecueieeeiesieeiieee et saae e 110

10 ReEfEIEINCES...cccueeiiiieriiinricrsnricsssrissssresssressssiessssnesssssessssscssssssssssssssssssssssessssssssssssssssssssns 111
11 Appendixes 115
11.1 Appendix A: Publications about Netgraph..........cccceeceevierieninenienienieneeeeeeeee e 116
11.2 Appendix B: FS File Format DesCription..........cccccuereeriierieerienienieneeneesieeeeeneneeens 118
11.2.1 Notes 01 MEtASYRIAX............ccccuevuiriiiiiiiiiiniteteteeeeeese ettt 118
11.2.2 The FS File SIPUCTUFE..........ccoooeeiiiiiiiieeieieeeee et 118
11.2.3 Identifiers, Attribute Names and Values...................ccccocovevenviiiiiineeneannn. 118
11.2.4 Node AHributes DefiRition.................ccoecveeueeceeeieeiienieesieesie e esae s 119
PrOPITIES. ..ttt ettt ettt et e et e et e e bt e ebt e e e e e bbbt e e e e eanbbteeeeean 119
L1.2.5 A THO. ...ttt ettt 120
LT1.2.6 A NOG ..ot 120
11.3 Appendix C: FS Query Format Description...........cceeeeveevieeivenienieneenieee e 122
11.3.1 The FS QUEFY SIFUCIUTC..........c.ccooveiiiiiiiiiiieiieeeeet et 122
L1.3.2 A NOGE........ccoooeeeeeeeeeeeeee ettt e e naaennees 122
11.3.3 AUFTDULE VAIUES.............ooceeeeeeeeeeee e 123
11.4 Appendix D: List of Attributes in PDT 2.0......cc.oovierieiieieieeeeeeeeeee e 124
11.4.1 The WOrd LAYET..........ccoooeiiaieiieeeeeeeee et 124
w/token (w/token at hidden NOdes)..........ccuviiiiiiiiiiiiiiiiee e 124
w/no_space_after (w/no_space_after at hidden nodes)...........ccccveevveercriencieinieeecve e, 124

L7 T RO PSRTS 124
11.4.2 The Morphological Layer..................cccccioiioiioiiieieiiiieieee e 124
m/form (m/form at hidden NOdES)........c.cevcvirriiiiiiiiii ettt 124
M/TOTM. CRANGE.....cueiiiiieeeiiecee ettt sttt e et e ettt e stte e e s ettaeeeeesnnnneeeeeenns 124

1117 T« SRS P SRS 124
m/lemma (m/lemma at hidden NOdes)...........covviiriiiriieeiiieeiee et 124
1007£S] (O3 o PRSPPI 125
m/tag (m/tag at hidden NOdES)........c.eeeiuiiiiiiiiiiecie et e 125
11.4.3 The AnQIVEICAl LAYTc..ocveeeeeieeiiesieeeeeeee e 126
afun (a/afun at hidden NOdEs)...........cociiiieiiiiiiiiie e 126
eparents (a/eparents at hidden NOdes).........coeceieiiiiiiiiniiii e 127
eparents_diff (a/eparents _diff at hidden nodes)..........ccceevveeviienii i 127

id (a/id at hidden NOAES)........eeevuiieriiieiteciieriee et e e sereesbee e e serraeeeeesnnrees 127
is_member (a/is_member at hidden N0des)..........cccevvueieiiiiiiiiiiiiiiiee e 127

IS PATENENESIS TOOL....utiiieiiiieeeiiieeeiteeeeritteeeetteeestbeeestbeeeeaseeessssaeeessssaeessssaeessssaaaaaaaeens 127

ord (a/ord at hidden NOAES)..........ccecviiiiiiiiiiieiee e e 127

IS o SO OO OOV U PO UPPPOPPRRNt 127

10

Contents

- (a/parent at hidden NOAES).......c.eeruieriiiriiiieie ettt ettt e e e e e e 127

- (a/ref_type at hidden NOAES)........c.eeriieriiiieiiieie et 128
11.4.4 The TectogrammarticQl LAYEFcccocceecueeeesieneeiieieereeeieeesieeesveeenns 128
Y1 (TS o RSOOSR URPPUPRN 128
1o70) 1010 15 o U SUURUPRPPPRRRN 128
COTET GIAMLIT....oiiiiiiiiiii et e st e e s rta e e eaeestbeessbeesssaesnnns 128
LoTe) (o] o1 £ 1 O PSPPSR 128
COTET EOXETT .ottt ettt ettt et e et e st e ebee e e e eanees 128

14 L1570 103 SRR 129

G LN (<) 0L S USSP 129
EPATENLS diff....oi ittt et e e e et eebeeetaeennns 129
FUNCEOT .ttt ettt e st e st e et e ettt e ate e sat e e s nbbeeeeeeanees 129
Grammatemes (AttribUtes ramy/™).......ccceevviieiiieiiiieirie e et rre e ereestr e e e e e eaenres 130

T« PSP SPRURPPPPRRN 131

ST K oI (0T APPSR UPUPRPRIN 131

IS @ENETALEM. ... veeieiieiiieeiieeiie ettt et e eteesbeeesteeetbeetreesebeessseassseeessaeassseassseessseessseessseennns 131

T 111510101 U URRRPUPUPRN 131

IS NAME OF POISOML . .uiiuiiiiiiieetie ettt ettt ettt ettt e st e et e s bt e e bt e ebteesbeeesateesaeeesnbeesnseesnseeensene 131

IS PATEINERNESIS. ¢ .eteiiieetie ettt ettt ettt et e e bt e ettt e bt e s it e e sateeeabee e snbeeeeeeeaneee 131

IS SEALC...ueerureeeteeetteetteestteestteestteesesteesseeassaeessseessseessseessseesssaeassaeasseeesseessseensseesnsaeenreeernns 131

L0 10 174 1< TSP ROUPUPRN 131

Lo L (01 74T< A T« FO TSP 132

10 L 1017417 o1 PRSP 132
SEIEEIICE.eeueeeutee ettt ettt ettt e et e st e ettt sttt ettt ettt e sbt e e s at e e s et e e sttt et e be e e be e e bt e e eaaee s s eeee 132
151117 1.0 o 1 O USSR 132
SUDTUNCTOT ..ttt sttt sttt e bt e bt esat e e s s 132

(A 5300V o T OSSR PPRURUSUPRIN 132

L U UPURUPPUPRRN 132

A1 I 221 10 TS o U PRROPRPRIN 132
BEAC. ettt 133
11.5 Appendix E: Other Usages of Netgraph..........cccecvevievireniieiienieniieeceieieneee e 134
11.5.1 Morphological “Trees” of the Czech Academic Corpus 1.0........................... 134
11.5.2 Latin IT Treebank..................c..ccoocveeiecuieiiiiiiieeeeeeee e 134
L1.5.3 AFADIC TFEES.......c..oeeieiieeeeee e 135
11.5.4 Chinese Treebanmk..................ccccueeeiiieiieiieiieieeeeeeeee e 136
L1.5.5 VAILEX........c.oeiiiieiieeeee e e 137
11.6 Appendix F: Installation and Usage of Netgraph — A Quick How-To.................... 138
L11.6.1 INSEQIIATION. ...t 138
Java 2 INStAllAtION.eoueeitiieiieiie et ettt ettt et 138
Netgraph Client/Server Installation..............coooiiiiiiiiiiiiiiieeee e 138
11.6.2 Connection to the Public Netgraph Server for PDT 2.0...............ccccoeveveeunenn. 139
11.6.3 Connection to the Local Netgraph Server for PDT 2.0 Sample Data............. 139
11.6.4 Selection of Files for Searching................cccoccueveeoesiieiieiieieeiee e 140
11.6.5 Creation of @ Simple QUEFY.............cccccoereeiicininiiiiiiieeeseteeeeeee e 141

11

1 Introduction

1 Introduction

1.1 The Exact Setting/Piesné zadani

The thesis will propose a query system for searching in the Prague Dependency

Treebank 2.0. The query system will be powerful enough to satisfy linguistic needs, which
may lead to highly complex searching algorithms, yet the work will be focused on a
simplicity of usage and high intuitiveness, no programming skills will be required from
users. The system will be based on an existing simple searching tool for the Prague
Dependency Treebank 1.0 — Netgraph — and will be its extension. The implementation of the
proposed query system in Netgraph will be a part of the work.

In Czech (the original exact setting):

V dizertacni praci pijde o navrh dotazovaciho systému, pomoci kterého bude mozno
vyhledavat v Prazském zavislostnim korpusu 2.0. Dotazovaci systém bude dostatecné silny
pro splnéni lingvistickych pozadavkd, které mohou vést na vyhledavaci algoritmy vysokého
stupné¢ slozitosti, ale hlavni diiraz bude kladen na jeho uZivatelskou jednoduchost a vysokou
intuitivnost a od uzivatelll nebudou vyZzadovéany programatorské znalosti. Systém bude
vychazet z existujiciho jednoduchého vyhledavace v Prazském zavislostnim korpusu 1.0 -
Netgraphu - a bude jeho rozsitenim. Soucasti prace tedy bude implementace navrzeného
dotazovaciho systému v programu Netgraph.

1.2 The Motivation

Linguistically annotated treebanks play an essential part in modern computational linguistics.
The more complex the treebanks become, the more sophisticated tools are required for using
them, namely for searching in the data. A search tool helps extract useful information from
the treebank, in order to study the language, the annotation system or even to search for
errors in the annotation. The Prague Dependency Treebank 2.0 (Haji¢ et al. 2006) is one of
the most advanced manually annotated treebanks.

Our aim is to propose and implement a query system for this treebank that would not require
programming skills from its users. A system that could be used by linguists without a
knowledge of any programming language. A system that would fit the Prague Dependency
Treebank 2.0 — it means to be powerful enough to search for all linguistic phenomena
annotated in the data.

1.3 Outline of the Thesis

In the rest of this introductory chapter, we present very shortly the Prague Dependency
Treebank 2.0, only for those who are not at all familiar with the treebank.

In Chapter “2 - The Problem Analysis®, we first mention some related work and present
several existing search tools for treebanks, including Netgraph 1.0 — a basis for our own
work. Afterwards, in Section “2.3 - Linguistic Phenomena in PDT 2.0%, we study annotation

12

1 Introduction

manuals for the Prague Dependency Treebank 2.0 and present linguistic phenomena that
require our attention in creating a query language. We focus mainly on the tectogrammatical
layer — the most complex layer of the treebank. In the subsequent section (“2.4 - Linguistic
Requirements*‘), we summarize a list of requirements on a query language for the Prague
Dependency Treebank 2.0.

In Chapter “3 - The Query Language®, we propose a query language that meets all
requirements gathered in the previous chapter. It is an extension to the existing query
language of Netgraph 1.0.

Chapter “4 - The Data“ is dedicated to the description of the data used in Netgraph. The
chapter not only describes the format of the data, but also shows that the query language is
not independent of the data — it has some requirements on the data and the data can also help
with some pre-computed information. Hidden nodes are presented in Section 4.6 as a way of
accessing lower layers of annotation with non-1:1 relation among nodes of the layers.

In Chapter “5 - Using the Query Language®, we show that Netgraph Query Language,
described in Chapter 3, fulfils the requirements stated in Chapter 2. We show that it meets
the general requirements on a query language for the Prague Dependency Treebank 2.0,
listed in Section 2.4, and how it can be used for searching for all linguistic phenomena from
the treebank, gathered from the annotation manuals.

Chapter “6 - Notes on the Query Language® discusses some features of the query language.
A comparison to several other query languages is also offered here (Section 6.5). Section 6.7
gives an example of how feedback from users influenced the development of the query

language.
Chapter “7 - The Tool* introduces Netgraph — the tool that implements the query language.

Chapter “8 - Real World* shows to what extent the features of the query language are put to
use by the users and what the users really do search for, by studying log files of the Netgraph
server. Representative examples of real queries set by users are presented.

We conclude in Chapter “9 - Conclusion® by summarizing what has been done and
proposing some future work on the query language and the tool.

Much additional information can be found in Appendixes. “Appendix A: Publications about
Netgraph* enlists publications about Netgraph written or co-written by the author of this
theses. “Appendix B: FS File Format Description® describes formally the data format used in
Netgraph. “Appendix C: FS Query Format Description* describes formally the syntax of the
query language implemented in Netgraph. “Appendix D: List of Attributes in PDT 2.0* gives
a list of all attributes of the Prague Dependency Treebank 2.0 used in Netgraph. “Appendix
E: Other Usages of Netgraph® shows usages of Netgraph for some other treebanks.
“Appendix F: Installation and Usage of Netgraph — A Quick How-To* describes shortly how
to install and use the Netgraph client from the CD-ROM.

“Appendix G: CD ROM* can be found on the enclosed CD-ROM. It contains the tool, many
documentation files, publications and presentations about Netgraph, and much more.

13

1 Introduction

1.4 The Prague Dependency Treebank 2.0

We very briefly describe the Prague Dependency Treebank 2.0, its properties and major
attributes of the annotation. We focus on features that are important for basic understanding
of the annotation of the treebank.

A more detailed description of all attributes of the Prague Dependency Treebank 2.0 is
available in “Appendix D: List of Attributes in PDT 2.0%.

The Prague Dependency Treebank 2.0 (PDT 2.0, see Haji€ et al. 2006, Haji¢ 2004) is a
manually annotated corpus of Czech. It is a sequel to the Prague Dependency Treebank 1.0
(PDT 1.0, see Hajic et al. 2001a, Haji¢ et al. 2001b).

The texts in PDT 2.0 are annotated on three layers - the morphological layer, the analytical
layer and the tectogrammatical layer. The corpus size is almost 2 million tokens (115
thousand sentences), although “only” 0.8 million tokens (49 thousand sentences) are
annotated on all three layers. By “tokens” we mean word forms, including numbers and
punctuation marks.

1.4.1 The Morphological Layer

On the morphological layer (Hana et al. 2005), each token of every sentence is annotated
with a lemma (attribute m/ lemma), keeping the base form of the token, and a tag (attribute
m/tag), keeping its morphological information. Sentence boundaries are annotated here,
too. Attribute m/ form keeps the form of the token from the sentence, with some possible
corrections (like misprints in the source text).

1.4.2 The Analytical Layer

The analytical layer roughly corresponds to the surface syntax of the sentence; the annotation
is a single-rooted dependency tree with labelled nodes (Haji€ et al. 1997, Haji¢ 1998). The
nodes on the analytical layer (except for technical roots of the trees) correspond 1:1 to the
tokens of the sentences (more precisely about this in Section 2.3). The order of the nodes
from left to right corresponds exactly to the surface order of tokens in the sentence. Non-
projective constructions (that are quite frequent in Czech (Hajicova et al. 2004) and also in
some other languages (Havelka 2007)) are allowed. Analytical functions are kept at nodes
(attribute a/afun), but in fact they are names of the dependency relations between a
dependent (son) node and its governor (father) node.

1.4.3 The Tectogrammatical Layer

The tectogrammatical layer captures the linguistic meaning of the sentence in its context.
Again, the annotation is a rooted dependency tree with labelled nodes. The correspondence
of the nodes to the lower layers is more complex here. It is often not 1:1, it can be both 1:N
and N:1 (actually, even N:0, or M:N). It was shown in Mirovsky (2006) how Netgraph deals
with this issue. It is also discussed here in Section 4.6.

Many nodes found on the analytical layer disappear on the tectogrammatical layer (such as
functional words, e.g. prepositions, subordinating conjunctions, etc.). The information

14

1 Introduction

carried by these nodes is stored in attributes of the remaining (auto-semantic) nodes and can
be reconstructed. On the other hand, some nodes representing for example obligatory
positions of verb frames, deleted on the surface, and some other deletions, are regenerated on
this layer (for a full list of deletions, see Mikulova et al. 2006).

The tectogrammatical layer goes beyond the surface structure and corresponds to the
semantic structure of the sentence, replacing notions such as Subject and Object by functors
like Actor, Patient, Addressee etc. (see Hajicova 1998, for a full list of functors, see
Mikulova et al. 2006 and also “Appendix D: List of Attributes in PDT 2.0%).

Attribute functor describes the dependency between a dependent node and its governor
and is stored at the son-nodes. A tectogrammatical lemma (attribute t 1emma) is assigned to
every node. Grammatemes are rendered as a set of 16 attributes grouped by the “prefix”
gram (e.g. gram/verbmod for verbal modality).

The total of 39 attributes are assigned to every non-root node of the tectogrammatical tree,
although (based on the node type) only a certain subset of the attributes is necessarily filled
in.

Topic and focus (Hajicova et al. 1998) are marked (attribute t fa), together with so-called
deep word order reflected by the horizontal order of nodes in the annotation (attribute
deepord). It is in general different from the surface word order, and all the resulting trees
are projective by the definition of the deep word order.

Coreference relations between nodes of certain category types are captured (Kucova et al.
2003), distinguishing also the type of the relation (textual or grammatical). Each node has an
identifier (attribute id) that is unique throughout the whole corpus. Attributes

coref text.rf and coref gram.rf contain ids of the coreferential nodes of the
respective types.

15

2 The Problem Analysis

2 The Problem Analysis

In the first part of this chapter, in Section 2.1, we focus on the related work. We mention
some more or less theoretical papers about query languages for treebanks and also present
several existing search tools for treebanks.

In Section 2.2, we describe Netgraph 1.0 — an existing tool for searching in PDT 1.0. It was a
basis for further development in this thesis.

Afterwards, in Section 2.3, we focus on linguistic phenomena annotated in PDT 2.0 and
requirements on the query language, posed by the phenomena and linguistic research needs.

Finally, in Section 2.4, we formulate a concise list of linguistic requirements on the query
language for PDT 2.0.

2.1 Related Work

2.1.1 More or Less Theoretical Papers

In Lai, Bird 2004, the authors name seven linguistic queries they consider important
representatives for checking a sufficiency of a query language power. They study several
query tools and their query languages and compare them on the basis of their abilities to
express these seven queries. In Bird et al. 2005, the authors use a revised set of seven key
linguistic queries as a basis for forming a list of three expressive features important for
linguistic queries. The features are: immediate precedence, subtree scoping and edge
alignment. In Bird et al. 2006, another set of seven linguistic queries is used to show a
necessity to enhance XPath (a standard query language for XML, Clark, DeRose 1999) to
support linguistic queries.

Cassidy 2002 studies adequacy of XQuery (a search language based on XPath, Boag et al.
1999) for searching in hierarchically annotated data. Requirements on a query language for
annotation graphs used in speech recognition is also presented in Bird et al. 2000. A
description of linguistic phenomena annotated in the Tiger Treebank, along with an
introduction to a search tool TigerSearch, developed especially for this treebank, is given in
Brants et al. 2002, nevertheless without a systematic study of the required features.

Laura Kallmeyer (Kallmeyer 2000) studies requirements on a query language based on two
examples of complex linguistic phenomena taken from the NEGRA corpus and the Penn
Treebank, respectively.

To handle alignment information, Merz and Volk 2005 study requirements on a search tool
for parallel treebanks.

All the work mentioned above can be used as an ample source of inspiration, though it
cannot be applied directly to PDT 2.0. A thorough study of the PDT 2.0 annotation is needed
to form conclusions about requirements on a search tool for this dependency tree based
corpus, consisting of several layers of annotation and having an extremely complex
annotation scheme.

16

2 The Problem Analysis

2.1.2 Existing Search Tools

Manatee/Bonito

Manatee/Bonito (Rychly 2000) is the first tool that needs to be mentioned. It is a well known
search tool used for the Czech National Corpus (CNC), a huge corpus of Czech texts
annotated automatically with morphological information (Cermak 1997), and also for many
other linearly annotated linguistic corpora. Manatee/Bonito is a client-server oriented
program. Many clients (Bonitos) can connect simultaneously to a server (Manatee), while
the server performs the searching.

The query language is quite simple yet powerful for searching in the linear data. Let us give
an example of a query:

[lemma="jaro" & tag="NNN.6.+" & word="j.+"]

will return all occurrences of words that have lemma “jaro”, are in locative (both plural and
singular since the position of number in the tag is filled with a dot), and begin with a
lowercase character.

Manatee/Bonito is a very advanced tool for searching in linear linguistic data (such as
morphologically annotated texts). Its usage for searching in structural data is naturally
limited, since it is not intended for such a task.

The way of annotation of CNC is very similar to the way the morphological layer of PDT 2.0
is annotated. Manatee/Bonito can very well be (and actually is) used for linear searching in
the morphological annotation of PDT 2.0.

TGrep

TGrep (Pito 1994) is a traditional line-based search tool developed primarily for the Penn
Treebank (Marcus et al. 1993; Marcus et al. 1994). It can be used for any treebank where
each node is evaluated with only one symbol — either a non-terminal or a token. Regular
expressions can be used for matching node symbols. A set of predicates is used for
expressing relations between nodes. A query example:

S <1 /"NP/ < (VP < (NP $.. NP))

means: Get all Ss that start with an NP and that dominate a VP that in turn has two NP sons.
The predicates used in this example mean:

<1 immediate dominance, first child

< immediate dominance
$.. brotherhood, precedence
TGrep2

TGrep2 (Rohde 2005) is a sequel to TGrep. It is almost completely backward compatible
with TGrep but brings a number of new features, from which we select:

e nodes can have full Boolean expressions of relationships to other nodes
e nodes can be given unique labels and may then be referred to by those labels in the

17

2 The Problem Analysis

pattern specification

e patterns are no longer restricted to simple tree architectures; the use of node labels
and segmented patterns allows links in a pattern to form back-edges as well,
permitting cycles of links

e multiple search patterns may be specified and one can retrieve the first subtree
matching any pattern, the first subtree matching each pattern, or all subtrees
matching any pattern, or all matches between subtrees and patterns

e scveral new predicates have been introduced

e macros can be defined and used to simplify pattern specification

Introduction of Boolean expressions allows setting such complex query patterns as:
A[<B | !'[.C!, F]]l | '[<D!.. E]

which means: (2 has son B or it does not (immediately precede C and not immediately follow
F)) or (2 does not (have son D and is not followed by E)).

TigerSearch

TigerSearch (Lezius 2002) is a graphically oriented searching tool for the Tiger Treebank
(Brants et al. 2002). The query language consists of three levels. On the node level, nodes
can be described by Boolean expressions over feature-value pairs:

[word="1lacht" & pos="VVFIN"]

On the node relation level, descriptions of two or more nodes are combined by a relation.
There are two basic relations - immediate precedence (” .) and immediate dominance
(”>"). There are also derived node relations such as underspecified dominance, brotherhood
etc. A labelled dominance is used in the following example:

[cat="NP"] >RC [cat="3S"]

Finally, on the graph description level, Boolean expressions over node relations, without
negation, are allowed, and variables can be used to express coreference of nodes or feature
values, as shown in the next example (a node with category s is assigned to variable #n and
used again in the second expression (as the very same node)):

(#n:[cat="S"] > [pos="PRELS"]) & (#n > [pos="VVFIN"])

It is important to add that all node expressions in the query are existentially quantified.

Oraculum

Oraculum (Ljubopytnov et al. 2002) is a tool developed for searching in the Prague
Dependency Treebank, although it can be used for other treebanks, too. It is a client-server
application, with the client part web-browser based. Oraculum is able to combine several
data sources in one query and use the full power of logical programming in the queries.
Making queries is a combination of clicking on buttons and writing logical formulas. Writing
more complex queries requires a knowledge of logical programming in Prolog. To
demonstrate the complexity of such queries, let us copy an example from the paper
mentioned above, without detailed explanation. As the authors say, the following code finds
all tectogrammatical trees, whose head clause is a verb having either “agens” or “’patiens”

18

2 The Problem Analysis

valency actant and an actant, whose morphological tag is not the same as of some descendant
of the “agens”/”’patiens” actant:
query ([],[]).

query ([Tree|Trees],Output) :-
(struct (Tree,

[[x, central, [left-any-eg-y, y-any-eg-z, z-any-eqg-right], [y-z],[("tag’,’'V*")]1],
[y, [left-any-eg-right], [(’afun’,’agens’), (or), ("afun’,’patiens’)]],

[z, [left-any-eg-right], [(’'tag’,V)]], Matching struct 1]),

not (struct([u, ("tag’,V)]), path(u, y, ['vu’, (1,INF)]))

-> Output = [Tree, NextTrees] ; Output = [NextTrees]

) s

query (Trees, NextTrees).

Oraculum is a product of a student project and its development stopped shortly after the
project had been defended.

TrEd

Tred (Pajas 2007) has been developed for the Prague Dependency Treebank since the year
2000. It is primarily a tool for editing trees but has been widely used for searching,
especially during post-annotation corrections. Users can write complex queries in Perl
programming language and access tree structures in object-oriented way. The search can be
parallelized. The data can be processed non-interactively using scripts, which can also
change the content of the data. The creation of a query requires at least a limited knowledge
of Perl programming language. The following example shows a function for printing
sentences containing a patient in plural dependent on a negated verb, regardless on any
combination of coordination in the structure:
sub pluralpat() {
if ($this->attr ('gram/number') eq "pl" and S$this->{functor} eg "PAT") {
foreach my $eparent (PML T::GetEParents(Sthis)) {
if (grep {$ ->{t lemma} eq "#Neg"} PML T::GetEChildren (Separent)) {
print " ($this->{t lemma}) ".PML T::GetSentenceString($root)."\n";

}
}
}
}

All components including the treebank must reside at the same computer, or at least a local
network.

VIQTORYA

Viqtorya (Steiner, Kallmeyer 2002) is a search tool developed for the Tiibingen Treebanks
(Hinrichs et al. 2000). It has a graphical interface, but without a visual depiction of the
query. A first order logic without quantification is chosen as a query language, with some
restrictions. The following example query searches for a preposition von linearly preceding
a preposition bis and, moreover, a prepositional phrase (with syntactic category Px) that
dominates both prepositions:

token (1l)=von & token(2)=bis & 1..2 & cat(3)=PX & 3>>1 & 3>>2

Natural numbers are used as variables, ”. . ” means a linear precedence, and ”>>" marks a

19

2 The Problem Analysis

transitive dominance.

Fsq

Finite structure query (fsq, Kepser 2003) is another query language developed for the
Tiibingen Treebanks. It uses the full first-order logic (with quantification), with LISP-like
syntax. The following example query searches for trees without a subject in a subordinate
clause and all its subclauses (written in in-fix syntax):

dxdy SIMPX(x) A SIMPX(y) A (x > y) A (x !=y) A (Vz ! ((y > z) AN ON(z)))

SIMPX is a predicate expressing a clause node, ON denotes an Object in the nominative,
”>>" means a transitive dominance, and ” ! ” means negation.

In Chapter 6, in Section “6.5 - Comparison to Other Treebank Query Systems*, we show to
what extent some of these other tools fulfill the requirements of PDT 2.0 and how they
compare to our proposed system. Let us present now a starting point of the development of
our own query system.

2.2 Netgraph 1.0 — The Starting Point

The development of Netgraph started in 1998 as Roman Ondruska's Master Thesis
(Ondruska 1998). We describe the result of his work in this section, in other words, what had
been done before the work on the topic of this thesis began.

Netgraph 1.0 was being developed along with the annotation of PDT 1.0 as a search tool for
the analytical layer of the corpus. It was a client/server application working in the internet
environment. The server was written in C Programming Language and worked on Linux, the
client was written in Java 1.0 as an applet for a web browser.

The core architecture of the tool was set and has not since then significantly changed. The
server used FS File Format, which was one of two formats used during the work on PDT 1.0,
both for treebank files and as a query language. Multiple users could connect to the server
simultaneously. The user could choose files for searching, enter a query in the textual form
and browse the result trees, displayed along with the sentences. It was possible to select
attributes that would be displayed at nodes in the result trees. An individual node could be
selected and all its attributes were displayed in a table. In queries, wild cards could be used
(2" stood for one character, ”*” for a sequence of characters). Unfortunately, the client
only supported ASCII characters; Czech accented characters could not be entered in the
query, nor displayed in the trees.

Except for the wild cards, the query language was identical to FS File Format. A formal
description of the format, still used in Netgraph, is given in Appendix B: FS File Format
Description. Informally, the query language allowed defining tree structure and set values of
attributes of individual nodes, using alternative values of attributes and nodes. Given the
query tree, the search algorithm performed a subtree matching on the trees of the corpus.

In the query language of Netgraph 1.0, square brackets enclose a node, parentheses enclose a
subtree. The following example query in Netgraph 1.0 searches for a Predicate governing

20

2 The Problem Analysis

directly an Object in the accusative:
[afun=Pred] ([afun=0bj, tag=222724*])

For several limitations (like missing support for Czech accented characters), Netgraph 1.0
had never been really used for searching. Nevertheless, the core of the tool was well
designed and proved to be a sound basis for further development. Also the query language
was extremely intuitive and proved to be a good basis for a simple and full-featured query
language for PDT 2.0.

2.3 Linguistic Phenomena in PDT 2.0

In this section, we make a list of linguistic phenomena that are annotated in PDT 2.0 and that
determine the necessary features of the query language (partially published in Mirovsky
2008d).

PDT 2.0 has three layers of annotation: the morphological layer, the analytical layer, and the
tectogrammatical layer. To be exact, there is one more layer — the word layer — that only
keeps the tokenized original data and (apart from the tokenization) does not contain any
annotation. Our work is focused on the two structured layers — the analytical layer and the
tectogrammatical layer. For using the morphological layer exclusively and directly, a very
good search tool Manatee/Bonito, described in Section 2.1.2, can be used.

We intend to access the morphological information only from the higher layers, not directly.
Since there is relation 1:1 among nodes on the analytical layer (but for the technical root)
and tokens on the morphological layer, the morphological information can be easily merged
into the analytical layer — the nodes only get additional attributes.

There is also almost 1:1 relation among tokens on the word layer (the layer of segmented
text) and tokens on the morphological layer. The only exceptions are misprints in the input
text. They do not cause any troubles in merging the word layer information into the
morphological information, since the data format allows using alternative values for the case
of merging two (or more) tokens from the word layer into one token on the morphological
layer (the morphological token then has two (or more) counterparts on the word layer,
represented as alternative values of respective attributes). In case of dividing one word token
into two (or more) morphological tokens, the two (or more) morphological tokens simply
refer to the same word token.

It is worth noting that the word layer only needs to be accessed if these particular misprints
are studied. Otherwise, the corrected word layer information is present on the morphological
layer. This area of studies is well outside our interest and scope of this work.

We therefore study two ways of accessing the data of PDT 2.0:

e the analytical layer directly, the morphological and word layer information merged
into the analytical layer; the tectogrammatical layer inaccessible

e the tectogrammatical layer directly, the analytical layer “through” this layer, the
morphological and word layer annotation merged into the analytical layer.

In other words, we either see/search in/study the analytical layer with all information from
the lower layers available, or the tectogrammatical layer, also with all the information from

21

2 The Problem Analysis

the lower layers available. The difference between these two approaches is not only in the
presence of the tectogrammatical layer, but also in the way of accessing the information from
the lower layers, which is inevitably caused by non-1:1 relation between the analytical and
tectogrammatical layer.

Since the tectogrammatical layer is by far the most complex layer in the treebank, we start
our analysis with a study of the annotation manual for the tectogrammatical layer (t-manual,
Mikulova et al. 2006) and focus also on the requirements on accessing the lower layers with
non-1:1 relation. Afterwards, we add some requirements on the query language set by the
annotation of the lower layers — the analytical layer and the morphological layer.

During the studies, we have to keep in mind that we do not only want to search for a
phenomenon, but also need to study it, which can be a much more complex task. Therefore,
it is not sufficient e.g. to find a predicative complement, which is a trivial task, since
attribute functor of the complement is set to value COMPL. In this particular example, we
also need to be able to specify in the query properties of the node the second dependency of
the complement goes to, e.g. that it is an Actor.

2.3.1 The Tectogrammatical Layer

Basic Principles

The basic unit of annotation on the tectogrammatical layer of PDT 2.0 is a sentence as a
basic means of conveying meaning (t-manual, page 8).

The representation of the tectogrammatical annotation of a sentence is a rooted dependency
tree. It consists of a set of nodes and a set of edges. One of the nodes is marked as a root.
Each node is a complex unit consisting of a set of attribute-value pairs. The edges express
dependency relations between the nodes. The edges do not have their own attributes;
attributes that logically belong to the edges (e.g. a type of the dependency) are represented as
node-attributes (t-manual, page 9).

It implies the first and most basic requirement on the query language: one result of the search
is one sentence along with the tree belonging to it. Also, the query language should be able
to express the node evaluation and the tree dependency among nodes in the most direct way.

Valency

Valency of semantic verbs, valency of semantic verbal nouns, valency of semantic nouns
that represent the nominal part of a complex predicate and valency of some semantic adverbs
are annotated fully in the trees (t-manual, pages 162-3). Since the valency of verbs is the
most complete in the annotation and since the requirements on searching for valency frames
of nouns are the same as of verbs, we will (for the sake of simplicity in expressions) focus on
the verbs only. Verbs usually have more than one meaning; each is assigned a separate
valency frame. Every verb has as many valency frames as it has meanings (t-manual, page
105).

Therefore, the query language has to be able to distinguish valency frames and search for
each one of them, at least as long as the valency frames differ in their members and not only

22

2 The Problem Analysis

in their index. (Two or more identical valency frames may represent different verb meanings
(t-manual, page 105).) The required features include a presence of a son, its non-presence,
and a possibility to control number of sons of a node.

Coordination and Apposition

The tree dependency is not always the linguistic dependency (t-manual, page 9).

Coordination and apposition are examples of such a phenomenon (t-manual, page 282). If a
Predicate governs two coordinated Actors, these Actors depend on a coordinating node and
this coordinating node depends on the Predicate. The query language should be able to skip
such a coordinating node. In general, there should be a possibility to skip any type of node.

Skipping a given type of node helps but is not sufficient. The coordinated structure can be
more complex, for example the Predicate itself can be coordinated too. Then, the Actors do
not even belong to the subtree of any of the Predicates. In the following example, the two
Predicates (PRED) are coordinated with conjunction (CONJ), as well as the two Actors
(ACT). The linguistic dependencies go from each of the Actors to each of the Predicates but
the tree dependencies are quite different:

#Comma
CONJ

| ra\nt _se
CONJ PRED

vlastnlk najemce
ACT ACT PAT PAT
In Czech: S ¢im mohou viastnici i najemci pocitat, na co by se méli pripravit?
In English: What can owners and tenants expect, what they should get ready for?

The query language should therefore be able to express the linguistic dependency directly.
The information about the linguistic dependency, as well as many other phenomena, is
annotated in the treebank by means of references (see Coreferences below).

Idioms (Phrasemes) etc.

Idioms/phrasemes (idiomatic/phraseologic constructions) are combinations of two or more
words with a fixed lexical content, which together constitute one lexical unit with a
metaphorical meaning (which cannot be decomposed into meanings of its parts) (t-manual,
page 308). Only expressions which are represented by at least two auto-semantic nodes in
the tectogrammatical tree are captured as idioms (functor DPHR). One-node (one-auto-
semantic-word) idioms are not represented as idioms in the tree. For example, in the
expression “chlapec k pohledani” (“a boy to look for”), the prepositional phrase (in Czech)
gets functor RSTR, and it is not indicated that it is an idiom.

23

2 The Problem Analysis

Secondary prepositions are another example of a linguistic phenomenon that can be easily
recognized in the surface form of the sentence but is difficult to find in the tectogrammatical
tree.

Therefore, the query language should also offer a basic searching in the linear form of the
sentence, to allow searching for any idiom or phraseme, regardless of the way it is or is not
captured in the tectogrammatical tree. It can even help in a situation when the user does not
know how a certain linguistic phenomenon is annotated on the tectogrammatical layer.

Complex Predicates

A complex predicate is a multi-word predicate consisting of a semantically empty verb
which expresses the grammatical meanings in a sentence, and a noun (frequently denoting an
event or a state of affairs) that carries the main lexical meaning of the entire phrase
(t-manual, page 345). Searching for a complex predicate is a simple task and does not bring
new requirements on the query language. It is valency of complex predicates that requires
our attention, especially dual function of a valency modification. The nominal and verbal
components of the complex predicate are assigned the appropriate valency frame from the
valency lexicon. By means of newly established nodes with t 1emma substitutes, those
valency modification positions not present at surface layer are filled. There are problematic
cases where the expressed valency modification occurs in the same form in the valency
frames of both components of the complex predicate (t-manual, page 362).

To study these special cases of valency, the query language has to offer a possibility to
define that a valency member of the verbal part of a complex predicate is at the same time a
valency member of the nominal part of the complex predicate, possibly with a different
function. The identity of valency members is annotated again by means of references, which
is explained later (see Coreferences below).

Predicative Complement (Dual Dependency)

On the tectogrammatical layer, also cases of the so-called predicative complement are
represented. The predicative complement is a non-obligatory free modification (adjunct)
which has a dual semantic dependency relation. It simultaneously modifies a noun and a verb
(which can be nominalized).

These two dependency relations are represented by different means (t-manual, page 376):

e the dependency on a verb is represented by means of an edge (which means it is
represented in the same way as other modifications),

e the dependency on a (semantic) noun is represented by means of attribute
compl . rf, the value of which is the identifier of the modified noun.

In the following example, the predicative complement (COMPL) has one dependency on a
verb (PRED) and another (dual) dependency on a noun (ACT):

24

2 The Problem Analysis

wyjit
PRED
o
recese jednicka stat
DIR1 COMPL ACT
t-In94210-147-p2s1Aw8
svetovy Spojeny
RSTR RSTR

In Czech: Ze svétové recese vysly jako jednicka Spojené staty.
In English: The United States emerged from the world recession as number one.

The second form of dependency, represented once again with references (still see
Coreferences just below), has to be expressible in the query language.

Coreferences
Two types of coreferences are annotated on the tectogrammatical layer:

e grammatical coreference
e textual coreference

The current way of representing coreference uses references (t-manual, page 996).

Let us finally explain what references are. References make use of the fact that every node of
every tree has an identifier (the value of the attribute id), which is unique within PDT 2.0. If
coreference, dual dependency, or valency member identity is a link between two nodes (one
node referring to another), it is enough to specify the identifier of the referred node in an
appropriate attribute of the referring node. Reference types are distinguished by different
referring attributes. Individual reference subtypes can be further distinguished by the value
of another attribute.

The essential point in references (for the query language) is that at the time of forming

a query, the value of the reference is unknown. For example, in the case of dual dependency
of predicative complement, we know that the value of attribute compl . r £ of the
complement must be the same as the value of attribute id of the governing noun, but the
value itself differs tree from tree and therefore is unknown at the time of creating the query.
The query language has to offer a possibility to bind these unknown values.

Topic-Focus Articulation

On the tectogrammatical layer, also the topic-focus articulation (TFA) is annotated. TFA
annotation comprises two phenomena:

25

2 The Problem Analysis

e contextual boundness, which is represented by values of the attribute t fa for each
node of the tectogrammatical tree.

e communicative dynamism, which is represented by the underlying order of nodes.

Annotated trees therefore contain two types of information — on the one hand, the value of
contextual boundness of a node and its relative ordering with respect to its brother nodes
reflects its function within the topic-focus articulation of the sentence, on the other hand, the
set of all the TFA values in the tree and the relative ordering of subtrees reflect the overall
functional perspective of the sentence, and thus enable to distinguish in the sentence the
complex categories of topic and focus (however, these are not annotated explicitly)
(t-manual, page 1118).

While contextual boundness itself does not bring any new requirement on the query
language, communicative dynamism requires that the relative order of nodes in the tree from
left to right can be expressed. The order of nodes is controlled by attribute deepord, which
contains a non-negative real (usually natural) number that sets the order of the nodes in the
tree from left to right. Therefore, we will again need to refer to a value of an attribute of
another node but this time with relation other than “equal to”.

Focus Proper

Focus proper is the most dynamic and communicatively significant contextually non-bound
part of the sentence. Focus proper is placed on the rightmost path leading from the effective
root of the tectogrammatical tree, even though it is at a different position in the surface
structure. The node representing this expression will be placed rightmost in the
tectogrammatical tree. If the focus proper is constituted by an expression represented as the
effective root of the tectogrammatical tree (i.e. the governing predicate is the focus proper),
there is no right path leading from the effective root (t-manual, page 1129).

Quasi-Focus

Quasi-focus is constituted by (both contrastive and non-contrastive) contextually bound
expressions, on which the focus proper is dependent. The focus proper can immediately
depend on the quasi-focus, or it can be a more deeply embedded expression.

In the underlying word order, nodes representing the quasi-focus, although they are
contextually bound, are placed to the right from their governing node. Nodes representing
the quasi-focus are therefore contextually bound nodes on the rightmost path in the
tectogrammatical tree (t-manual, page 1130).

The ability of the query language to distinguish the rightmost node in the tree and the
rightmost path leading from a node is therefore necessary.

Rhematizers

Rhematizers are expressions whose function is to signal the topic-focus articulation
categories in the sentence, namely the communicatively most important categories — the
focus and the contrastive topic.

26

2 The Problem Analysis

The position of rhematizers in the surface word order is quite loose, however they almost
always stand right before the expressions they rhematize, i.e. the expressions whose being in
the focus or the contrastive topic they signal (t-manual, pages 1165-6).

The guidelines for positioning rhematizers in tectogrammatical trees are simple (t-manual,
page 1171):

e arhematizer (i.e. the node representing the rhematizer) is placed as the closest left
brother (in the underlying word order) of the first node of the expression that is in its
scope.

e if the scope of a rhematizer includes the governing predicate, the rhematizer is placed
as the closest left son of the node representing the governing predicate.

e if a thematizer constitutes the focus proper, it is placed according to the guidelines
for the position of the focus proper —i.e. on the rightmost path leading from the
effective root of the tectogrammatical tree.

Rhematizers therefore bring a further requirement on the query language — an ability to
control the distance between nodes (in the terms of deep word order); at the very least, the
query language has to distinguish an immediate brother and relative horizontal position of
nodes.

(Non-)Projectivity

Projectivity of a tree is defined as follows: if two nodes B and C are connected by an edge
and C is to the left from B, then all nodes to the right from B and to the left from C are
connected with the root via a path that passes through at least one of the nodes B or C. In
short: between a father and its son there can only be direct or indirect sons of the father
(t-manual, page 1135).

The relative position of a node (node A) and an edge (nodes B, C) that together cause a non-
projectivity forms four different configurations: (“B is on the left from C” or “B is on the
right from C”) x (“A is on the path from B to the root” or “it is not”). Each of the
configurations can be searched for using properties of the language that have been required
so far by other linguistic phenomena. Four different queries search for four different
configurations.

To be able to search for all configurations in one query, the query language should be able to
combine several queries into one multi-query. We do not require that a general logical
expression can be set above the single queries. We only require a general OR combination of
the single queries.

2.3.2 Accessing Lower Layers
Studies of many linguistic phenomena require a multilayer access.

For example, the query “find an example of a Patient that is more dynamic than its governing
Predicate (with greater deepord) but on the surface layer is on the left side from the
Predicate” requires information both from the tectogrammatical layer and the analytical
layer.

27

2 The Problem Analysis

1

a:i o gt
= PRED
N =
‘e &
® @ @
#PersPron les
: ACT) . DIR3
¥ r B '
o 5§35 3-
AXS P & &3
¥ &l
g 20
(—::5 p,-gd Auxk
© [¥ Y
W @ [
Byl by do ™\ y
AuxV AuxV AuxP ()
lesa
Adv
- L) LJ \J Y Y Y
:‘% @ @ e e e e
= Byl by sel do |lesa
i byt jit do les
E Rty Y S S — — VpYS—NR-AA— AR—2—— [T 11 S WA S— -
. —
= Y Y 21
'; Byl by el dolesa

In Czech: Byl by sel do lesa.
In English: He would have gone to the forest.

The picture above is taken from the PDT 2.0 guide and shows the typical relation among
layers of annotation for a sentence.

As we already said, information from the lower layers can be easily compressed into the
analytical layer, since there is relation 1:1 among tokens/nodes of the layers (with some rare
exceptions like misprints in the w-layer). The situation between the tectogrammatical layer
and the analytical layer is much more complex. Several nodes from the analytical layer may
be (and often are) represented by one node on the tectogrammatical layer and new nodes
without an analytical counterpart may appear on the tectogrammatical layer. It is necessary
that the query language addresses this issue and allows access to the information from the
lower layers.

2.3.3 The Analytical Layer (and Lower Layers)

Here, we focus on linguistic phenomena annotated on the analytical layer (or any lower
layer) that bring a new requirement on the query language (that has not been set in the
studies of the tectogrammatical layer).

The analytical layer is much less complex than the tectogrammatical layer. The basic
principles are the same as on the tectogrammatical layer — the representation of the structure

28

2 The Problem Analysis

of a sentence is rendered in the form of a dependency tree, whose nodes are labelled with
complex symbols (sets of attributes). The edges are not labelled (in the technical sense). The
information logically belonging to an edge is represented in attributes of the depending node.
One node is marked as a root.

Requirements (on a query language) of most linguistic phenomena annotated on the
analytical layer have already been covered in the previous section, discussing the
tectogrammatical layer. The lower layers only supplement a few additional requirements.

Morphological Tags

In PDT 2.0, morphological tags are positional. They consist of 15 characters, each
representing a certain morphological category, e.g. the first position represents part of
speech, the third position represents gender, the fourth position represents number, the fifth
position represents case. For a full description of the morphological tags, please consult
Appendix D: List of Attributes in PDT 2.0.

The query language has to offer a possibility to specify a part of the tag and leave the rest
unspecified. It has to be able to set such conditions on the tag as “this is a noun”, or “this is a
plural in the accusative”. Some conditions might include negation or enumeration, like “this
is an adjective that is not in the accusative”, or “this is a noun either in the dative or the
accusative”. This is best done with some sort of wild cards. The latter two examples suggest
that such a strong tool as regular expressions may be needed.

Agreement

There are several cases of agreement in the Czech language, like agreement in case, number
and gender in attributive adjective phrases, agreement in gender and number between
predicate and subject (though it may be complex), or agreement in case in apposition.

To study agreement, the query language has to allow to make a reference to only a part of a
value of an attribute of another node, e.g. to the fifth position of the morphological tag for
case.

Word Order

Word order is a linguistic phenomenon widely studied on the analytical layer, because it
offers a perfect combination of a word order (the same as in the sentence) and syntactic
relations between the words. The same technique as with the deep word order on the
tectogrammatical layer can be used here. The order of words (tokens) and also nodes in the
analytical tree is controlled by attribute ord. Non-projective constructions are much more
often and interesting here than on the tectogrammatical layer. Nevertheless, they appear also
on the tectogrammatical layer and their contribution to the requirements on a query language
has already been mentioned.

The only new requirement on a query language is an ability to measure the horizontal
distance between words, to satisfy linguistic queries like “find trees where a preposition and
the head of the noun phrase are at least five words apart”.

29

2.4

2 The Problem Analysis

Linguistic Requirements

Let us summarize what features a query language has to have to suit PDT 2.0. We list the
features from the previous section and also add some obvious requirements that have not
been mentioned so far but are very useful generally, regardless of a corpus.

24.1

2.4.2

2.4.3

244

Complex Evaluation of a Node
multiple attributes evaluation (an ability to set values of several attributes at one
node)

alternative values (e.g. to define that functor of a node is either a disjunction or a
conjunction)

alternative nodes (alternative evaluation of the whole set of attributes of a node)

wild cards (regular expressions) in values of attributes (e.g. m/tag="N...4.*"
defines that the morphological tag of a node is a noun in the accusative, regardless of
other morphological categories)

negation (e.g. to express “this node is not an Actor”)
relations less than (7<) , greater than (”>") (for numerical attributes)

Dependencies Between Nodes (Vertical Relations)

immediate, transitive dependency (existence, non-existence)
vertical distance (from root, from one another)
number of sons (zero for leaves)

Horizontal Relations

precedence, immediate precedence (positive, negative)
horizontal distance
secondary edges, secondary dependencies, coreferences, long-range relations

Other Features

multi-tree queries (combined with general OR relation)

skipping a node of a given type (for skipping simple types of coordination,
apposition etc.)

skipping multiple nodes of a given type (e.g. for recognizing the rightmost path)
references (for matching values of attributes unknown at the time of creating the
query)

accessing several layers of annotation at the same time with non-1:1 relation (for
studying relation between layers)

searching in the surface form of the sentence

30

3 The Query Language

3 The Query Language

We introduce a query language that satisfies linguistic requirements stated in the previous
section. We present the language informally on a series of examples. A formal definition of
the textual form of the query language can be found in Appendix C: FS Query Format
Description. The query language is an extension of the existing query language of Netgraph
1.0, as presented in Section 2.2.

The proposed query language has two forms — a graphical form, which we call Netgraph
Query Language, and a textual form, which we call FS Query Language. Netgraph Query
Language is a graphical representation of FS Query Language. The query languages are
equivalent. Each query in the textual form has its graphical counterpart and vice versa.

Users usually work with the graphical form of the query. It follows the idea “what you see is
what you get”, or rather “what you want to see in the result is what you draw in the query”.
The textual form cannot contain any formatting white characters. In this chapter, we always
show both the graphical and the textual version of the query. In the subsequent chapters, we
usually use only one of the versions, to save space. We present examples both from the
analytical and the tectogrammatical layer; the attributes used in the query always show
which of the layer is used (see “Appendix D: List of Attributes in PDT 2.0%). In the result
analytical trees, usually the attributes m/1lemma and afun are displayed, while in the
tectogrammatical trees, usually the attributes t lemma and functor are displayed.

The query in Netgraph is always a tree (or a multi-tree, see below) that forms a subtree in the
result trees. The treebank is searched tree by tree and whenever the query is found as a
subtree of a tree, the tree becomes a part of the result.

3.1 The Basics

The simplest possible query is a simple node without any evaluation:
o

In the textual form, a node is enclosed in square brackets:
[]

This query matches all nodes of all trees in the treebank, each tree as many times as how
many nodes there are in the tree.

Values of attributes of the node can be specified in the form of attribute=value pairs:
o

afun=>5b
m/lemma=Klaus

In the textual form, the attribute=value pairs are separated by a comma (”, ”):

[m/lemma=Klaus, afun=Sb]

The query searches for all trees containing a node evaluated as Subject (7 Sb”) with lemma
Klaus.

31

3 The Query Language

3.2 Alternative Values and Nodes

3.2.1 Alternative Values

Alternative values of attributes are separated by a vertical bar (” | ”):
i

afun=5b|0Obj
m/lemma=Klaus
with the textual form:

[m/lemma=Klaus, afun=Sb|0bj]

This time, the node with lemma Klaus can either be a Subject (”Sb”) or an Object (”0bj").

3.2.2 Alternative Nodes

It is possible to define an entire alternative set of values of attributes, like in the following

example:
i@

afun=5b
m,flemma_=l(laus

afun=0bj
m/lemma=2Zeman
In the textual form, the alternative set of attributes, actually an alternative node, is separated
by a vertical bar (7 | ”):

[m/lemma=Klaus, afun=Sb] | [m/lemma=Zeman, afun=0bj]

This query matches trees containing a node that is either a Subject with lemma Klaus, or an
Object with lemma Zeman.

3.3 Wild Cards

Two wild cards can be used in values of attributes:
e 72" stands for any one character
e ”* stands for a sequence of characters (of length zero or greater)

The special meaning of these wild cards can be suppressed with a backslash (”\”). (To
suppress the special meaning of a backslash, it can itself be escaped with another backslash.)

The following query searches for all trees containing a node that is a noun in the dative (the
first position of the tag denotes part of speech, the fifth position denotes case)':
@]

m/tag=N77?3*
with the textual form:
[m/tag=N??223%]

1 See “Appendix D: List of Attributes in PDT 2.0 for a description of positions of the attribute m/tag.

32

3 The Query Language

To suppress the special meaning of these wild cards in the textual form of the query, two
backslashes (”\\”) must be used.

3.4 Regular Expressions

Beside the wild cards in values of attributes, a Perl-like regular expression (Hazel 2007) can
be used as a whole value of an attribute. If a value of an attribute is enclosed in quotation
marks, the value is considered a regular expression. The following query searches for all

trees containing a node that is an Object, also a noun but not in the dative:
&

afun=0bj
m/tag="N...[~3].*"

In the textual version, some characters (namely ~ [, 717, 7 (7,)", ”=",",” and " | ")

have to be escaped with a backslash (”\”):

[afun=0bj,m/tag="N...\["3\].*"]

Although regular expressions can fully replace wild cards introduced above, for backward
compatibility and maybe for simplicity, the wild cards remain in the language. Moreover,

references (see Section 3.9 below) cannot be a part of a regular expression but they can be
combined with the wild cards.

3.5 Dependencies Between Nodes

Dependencies between nodes are expressed directly in the syntax of the query language.
Since the result is always a tree, the query also is a tree (or a multi-tree, see Section 3.10
below) and the syntax does not allow non-tree constructions. The following query searches
for Predicates (” PRED”) that directly govern an Actor (”ACT”), a Patient (“PAT”) and an
Addressee (”ADDR”).

functorM@

functor=ACT functor=PAT functor=ADDR

In the textual version, sons of a node are separated by a comma (”, "), together they are
enclosed in parentheses (” (”,)) and follow directly their father:

[functor=PRED] ([functor=ACT], [functor=PAT], [functor=ADDR])

The following tree is a possible result for this query:

33

3 The Query Language

#Gen #Gen mozZna dnes hpdina pfimo stadion
ACT ADDR MOD TWHEN TSIN RHEM LOC

16
R53TR

vstupenka pét
MAT RSTR

In Czech: Rezerva péti tisic vstupenek se mozna bude prodavat dnes od 16 hod. primo na
stadionu.
In English: A reserve of five thousand tickets may be sold today from 4 pm. directly at the
stadium.

The subtree matching the query is highlighted with green, the node matching the root of the
query is highlighted with yellow colour.

It is important to note that the query does not prevent other nodes in the result being sons of
the Predicate and that the order of the sons as they appear in the query can differ from their
order in the result tree.

To make quite clear how to stack dependencies in the textual form of the query, let us give
another example. The following query searches for a Patient (”PAT ") that governs a
Restriction (“RSTR”) that governs a Material (“MAT”) and another Restriction (“RSTR”).
The result tree given above matches this query too:

functor=PA
functor=R5

functor=MAT functor=RSTR

With the textual version (matching parentheses are highlighted with respective colours in
this example):

[functor=PAT] ([functor=RSTR] ([functor=MAT], [functor=RSTR]))

3.6 Arithmetic Expressions

Some attributes contain numeric values. Simple arithmetic expressions can be used in values
of these attributes, namely addition (”+”) and subtraction (”-"). Since it is impossible to
give a meaningful example now, we postpone giving an example until after references are
introduced in Section 3.9.

34

3 The Query Language

3.7 Other Relations

In setting values of attributes, the following relations can be used:
equal to (”=")

not equal to (7 !="

less than (<~

less than or equal to (7<=")

greater than (”>"

greater than or equal to (”>=")

For numeric values, the relations are understood in their mathematical meaning. For textual
values, alphabetic ordering is used. For each attribute, the relation can only be set once. It is
therefore common for all alternative values of the attribute. If alternative values are used
with relation “not equal to”, the meaning is “the value is neither of these values”.

The following query searches for all nodes that are neither Subjects, nor Objects:
i

afun!=5b|0Ohj
With the textual form:
[afun!=Sb|0bj]

3.8 Meta-Attributes

The query language presented so far offers no possibility to set more complex negation,
restrict the position of the query tree in the result tree or the size of the result tree. Nor the
order of nodes can be controlled. Meta-attributes bring additional power to the query system.

Meta-attributes are attributes that are not present in the corpus, yet they pretend to be
ordinary attributes and users can treat them the same way as normal attributes. There are
eleven meta-attributes, each adding some power to the query language, enhancing its
semantics, while keeping the syntax of the language on the same simple level.

To be easily recognized, names of the meta-attributes start with an underscore (”_”).

3.8.1 _transitive

This meta-attribute defines a transitive edge. It has two possible values: the value t rue
means that a node may appear anywhere in the subtree of a node matching its query-father,
the value exclusive means, in addition, that the transitive edge cannot share nodes in the
result tree with other exclusively transitive edges®.

A truly transitive edge merely expresses the fact that a node belongs to a subtree of another
node. The following query searches for a tree containing two Patients anywhere in the tree:

With the textual version:

2 In Netgraph, alternative values cannot be defined for meta-attribute _transitive.

35

3 The Query Language

functor=PAT functor=PAT
_transitive=true _transitive=true

[] ([functor=PAT, transitive=true], [functor=PAT, transitive=true])

The following tree is a possible result for this query:
i

@

#0OblIfm Moskva smlouva
DIR3 DIR1 PAT

Vaclay premiér ochrana

RSTR RSTR PAT
investice
PAT

In Czech: Premiér Vaclav Klaus privezl z Moskvy smlouvu o ochrané investic.
In English: Prime minister Vaclav Klaus has brought an agreement about a protection of
investments from Moscow.

The root of the result tree matches the root of the query. Please note that both Patients
matching the query, although in this particular result one depends on the other, are in the
subtree of the root (in the result tree), which is exactly what the query requires. To prevent
the possibility of the Patients to depend on one another, the exclusive transitivity can be used
in the query:
Ormmm e

- - - - -3

functor=PAT functor=PAT
_transitive=exclusive _transitive=exclusive

With the textual version:

[] ([functor=PAT, transitive=exclusive],
[functor=PAT, transitive=exclusive])

Exclusively transitive edges cannot share nodes in the result tree and therefore make sure
that neither of the Patients in the example query can belong to the subtree of the other
Patient. The following result tree matches this query:

36

3 The Query Language

prilakat
PRED

mnohy #Oblfm uitraliberalizmus
PAT DIR3 ACT

-

#PersPron aus acovat
DIR1 ARP

Vaclav jiz
RSTR TWHEN AGT

ktery cesky
RSTR RSTR

In Czech: Mnozi z nich byli prilakani ultraliberalismem Vaclava Klause, ktery jiz nékteri
odbornici oznacuji jako ,, cesky model “.

In English: Many of them were attracted by the ultra-liberalism of Vaclav Klaus, which
some experts already term as “Czech model”.

While both result trees match the first query (the query with two truly transitive edges), only
the second result tree matches the second query (the query with two exclusively transitive
edges).

3.8.2 optional

The meta-attribute optional defines an optional node’. It may but does not have to be in
the result tree at a given position. Its parent and its son (in the query) can be the direct parent
and son in the result. Only the specified node can appear (once or more times as a chain)
between them in the result tree. Possible values are:

e true - There may be a chain of unlimited length (even zero) of nodes matching the
optional node in the result tree between nodes matching the query-father and the
query-son of the optional node.

® a positive whole number - There may be a chain of length from zero up to the given
number of nodes matching the optional node in the result tree between nodes
matching the query-parent and the query-son of the optional node.

The following query searches for trees containing a Predicate that either directly governs an
Actor, or there is a Conjunction or a Disjunction node between the Predicate and the Actor:

3 In Netgraph, the meta-attribute _optional can only be defined once at a node. If there are alternative nodes
defined, it can be used in any of the sets of attributes. It can only be used with the relation equal (”="). It
cannot use alternative values. It cannot be used at the root of the query.

37

3 The Query Language

J|DI1S)
_optional=1

functor=ACT

With the textual version:
[functor=PRED] ([functor=CONJ|DISJ, optional=1] ([functor=ACT]))
There are two possible types of result trees for this query (with or without the optional

coordinating node). The following tree represents results with the optional coordinating
node:

Kritizovat

Lux biskup Klaus cirkev
ACT ACT ACT PAT

In Czech: Lux a biskupoveé kritizovali Klausovy vyroky o cirkvi.
In English: Lux and bishops criticized Klaus's statements about the Church.

The next tree represents results without the optional coordinating node:

b
PRE
prognéza pry realny
ACT MOD PAT
Klaus
APP

In Czech: Klausovy prognozy jsou pry realnée.
In English: Klaus's forecasts are allegedly realistic.

38

3 The Query Language

The following query demonstrates the usage of the meta-attribute optional with the
value true. It searches for Attributes (“Atr”) anywhere in the subtree of a Predicate
(”Pred”) but does not allow a subordinating conjunction (”AuxC”) appear on the path from
the Predicate to the Attribute:

afun=Pre

_optional=tru

afun=Aftr
With the textual version:
[afun=Pred] ([afun!=AuxC, optional=true] ([afun=Atr]))

The following tree is a possible result for this query:

ﬁuxK

@
plenéni nadale
Sh Adv
polevit | dédictvi
Auxy Adv AlXX Atr
&
mulj kulturni
Atr Atr

In Czech: I kdyz proud téchto kamionii polevil, plenéni naseho kulturniho dédictvi nadale
pokracuje.

In English: Even though the stream of these lorries slackened, the plundering of our cultural
heritage still continues.

In this particular result, the nodes plenéni (Sb) and d&dictvi (Atr) match the optional
node from the query, and the node mj (Atr) matches the Atr node from the query. The
three Attributes (“Atr”) on the right side of the tree can match the Attribute from the query,
while the two Attributes on the left side of the tree cannot, because of the AuxC node lying

39

3 The Query Language

on the path from the Attributes to the Predicate (“Pred”).*

3.8.3 #sons

The meta-attribute #sons (“number of sons”) controls the exact number of sons of a node
in the result tree. The following query searches for a Predicate governing an Actor and a
Patient and nothing else:

functor=PRED
_#sons=2

functor=ACT functor=PAT

With the textual version:
[functor=PRED, #sons=2] ([functor=ACT], [functor=PAT])

The following tree is a possible result for this query:

uspokojit
PRED
Klaus
PAT
R5TR
ktery how ODS
R5TR RSTR APP

In Czech: Reakce nékterych politikit na novou iniciativu ODS V. Klause uspokojily.
In English: V. Klaus was satisfied with responses of some politicians to the new initiative of

ODS.

The meta-attribute #sons prevented the Predicate from having more than two sons in the
result tree. The predicate could not have less than two sons in the result also because there
were two sons in the query.

3.8.4 #hsons

The meta-attribute #hsons (“number of hidden sons”) is similar to the meta-attribute
_#sons. It controls the exact number of hidden sons of a node in the result tree. Let us

4 The node dédictvi(Atr) can also match the Atr node from the query; Together with pokracovat(Pred) and
plenéni(Sb), these three nodes match the whole query and form another result.

40

3 The Query Language

postpone giving an example of this meta-attribute until after the hidden nodes have been
introduced in Section “3.11 - Hidden Nodes*.

3.8.5 _depth

The meta attribute _depth controls the distance of a node in the result tree from the root of

the result tree. The following query searches for all nodes that are at level 2 or greater — their
distance from the root is at least 2:

o
_depth>=2
With the textual version:
[depth>=2]

All nodes in the following tree but the root and the Predicate match the query; the first result
in the tree 1s displayed:

aus #Gen jJinak
ALT EFF MANN

Vaclav
RSTR

In Czech: Vaclav Klaus soudi jinak.
In English: Vaclav Klaus thinks otherwise.

3.8.6 #descendants

The meta-attribute #descendants (“number of descendants”) controls the exact number
of all descendants of a node (number of nodes in its subtree), excluding the node itself.

The following query searches for all trees consisting of at most 10 nodes (plus the technical
root that matches the query node (because of #depth=0)):

i

_#Fdescendants<=10
_depth=0

With the textual version:
[depth=0, #descendants<=10]

41

3 The Query Language

3.8.7 _#lbrothers

The meta-attribute #1brothers (“number of left brothers”) controls the exact number of
left brothers of a node in the result tree. The following query searches for a Predicate that
governs a Patient as its first son:

functor=PR

/

functor=PAT
_#lbrothers=0

With the textual version:
[functor=PRED] ([functor=PAT, #lbrothers=0])

The following tree is a possible result for the query:

zabranit
PRE
[&)

upadek #Unsp wykon
PAT ACT MEANS

In Czech: Upadku zabranili vykonem.
In English: They prevented bankruptcy with effort.

3.8.8 #rbrothers

Similarly, the meta-attribute #rbrothers (“number of right brothers”) controls the exact
number of right brothers of a node in the result tree.

3.8.9 #occurrences

The meta-attribute #occurrences (“number of occurrences”) specifies the exact number
of occurrences of a particular node at a particular place in the result tree. It controls how
many nodes of the kind can occur in the result tree as sons of the father of the node
(including the node itself).

The following query searches for Predicates that govern (directly) an Actor but not a Patient:

functorm

functor=ACT functor=PAT
_#occurrences=0

42

3 The Query Language

With the textual form:
[functor=PRED] ([functor=ACT], [functor=PAT,_#occurrences=0J)

The following tree is a possible result for this query:

tento informace

RSTR ACT RHEM PAT
potfebny
RSTR

In Czech: Na tomto uradeé Ize ziskat i potrebné informace.
In English: Even useful information can be obtained at this office.

The Predicate (”PRED”) in the result tree can have other sons than the Actor (”ACT”).
Nevertheless, non of them can be a Patient (“PAT").

Please note that the following query has quite a different meaning:

functc:rimO

functor=ACT functor!=PAT

With the textual version:
[functor=PRED] ([functor=ACT], [functor!=PAT])

The following tree is a possible result for the query:

43

3 The Query Language

postup praxe, s zhotovovani

ACT LOC
tento Kopie
RSTR T
overeny
RSTR

In Czech: Tento postup si vyzada v praxi zhotovovani ovérenych kopi.
In English: In practice, this procedure will require production of certified copies.

The “non-Patient” node from the query matches the Locative (”L0C”) in the result tree and
does not prevent another son from being a Patient (7 PAT").

The meta-attribute _#occurrences can be combined with the meta-attribute
_transitive for transitive meaning of the occurrences; then, it controls how many nodes
of the kind can occur in the whole subtree of the father of the node in the result tree
(excluding the father). The following query searches for trees that contain exactly two
Predicates (in the whole tree; the technical root cannot be a Predicate):

D
_depth=)
S
functor=PRED
_transitive=true
_#occurrences=2
With the textual version:

[depth=0] ([functor=PRED,_transitive=true,_#occurrences=2])

Note: If the meta-attribute #occurrences is combined with transitive=true, the
father node in the query may even be omitted and the query may consist only of the node
defining the Predicate, with the same result. It may be simpler but probably is less intuitive.

The following tree is a possible result for the query:

44

3 The Query Language

banka zpravidla uhrada #Gen #Gen #Neg
ACT THO A PAT ADDR RHEM

rychly preklenovaci diuh
RSTR RSTR PAT

In Czech: Nejrychlejsi cestou by byl preklenovaci uver, ale banky zpravidla na vuhradu dluhii
nepujcuji.

In English: The bridging loan would be the fastest way but banks usually do not lend money
for settlement of debt.

3.8.10 _name

The meta-attribute name is used to name a node for a later reference, see Section “3.9 -
References* below.

3.8.11 _sentence

The meta-attribute sentence can be used to search in the linear surface form of the trees —
in the sentences. The following query searches for all trees (sentences) that contain the
expression “v souvislosti s” (“in connection with”), regardless of its position in the sentence.
To avoid matching each node in these trees, we use the meta-attribute depth. It makes sure
that only the root will match the query node:
o

_depth=0

sentence="*[Vv] souvislosti s.*"

With the textual version:

[sentence=".*\[Vv\] souvislosti s.*", depth=0]

The following tree is a possible result for the query.

45

3 The Query Language

uzavieny mirovy posledni teroristicky lzraelec
RSTR RSTR RSTR RSTR BEN

In Czech: V souvislosti s uzavienymi mirovymi smlouvami v posledni dobé zesilily
teroristické utoky proti Izraelciim.

In English: /n connection with the signed treaties of peace, terrorist attacks towards Israelis
recently intensified.

Since the expression “v souvislosti s” is considered a secondary preposition and not an auto-
semantic word(s), it is not represented with a node at the tectogrammatical layer. Thanks to
the meta-attribute sentence, it can still be easily found.

3.9 References

References serve to refer in the query to values of attributes in the result trees, to values
unknown at the time of creating the query. First, a node in the query has to be named using
the meta-attribute _name.’ Then, references to values of attributes of this node can be used at
other nodes of the query. The following query searches for a Predicate with two sons with
the same functor in the result tree, whatever the functor may be:

functoriFWRO

_hame=N1 functor={N1l.functorj}

With the textual form:
[functor=PRED] ([name=N1], [functor={Nl.functor}])

The reference is enclosed in braces (7 {”, }) and the name of the node that is referred to is
separated from the name of the attribute with a dot (.). The first son is named N1, the
functor of the second son is set to the same value as the functor of the node N1 in the
result tree.

The following tree is a possible result for the query. In this case, the functor of the two sons
is TWHEN:

5 In Netgraph, the meta-attribute _name can only be defined once at a node. If there are alternative nodes
defined, the meta-attribute name can only be used in the first set of attributes. It can only be used with
the relation equal (”="). It cannot use alternative values.

46

3 The Query Language

o

Praha wvcera odpoledne special Rotterdam
DIR3 TWHEN TWHEN MEANS DIR1

rn rockovy
RSTR
Pink Floyd
FPHR FPHR

In Czech: Clenové rockové skupiny Pink Floyd priletéli do Prahy véera odpoledne
specialem z Rotterdamu.

In English: Members of the rock group Pink Floyd arrived in Prague yesterday afternoon
with a special flight from Rotterdam.

References can refer to the whole value (as shown above) or only to one character of the
value. The required position is separated from the name of the attribute with another dot

(.). It is also possible that references only form a substring of a defined value and appear
several times in a definition of an attribute. The following query searches for a father and a
son that agree in case and number (which are the fourth and fifth position of the
morphological tag (attribute m/tag):

mj/tag="r[5P][1-7].*"
_hame=N1
m/tag="??{N1l.m/tag.4}{N1.m/tag.5}*
With the textual version:
[name=N1,m/tag="...\[SP\]I\[1-7\].*"] ([m/tag=???{Nl.m/tag.4}

{N1.m/tag.5}*])

The definition of the tag of the father ensures that the tag is defined and sets which values
are acceptable at the fourth and fifth positions. The definition of the tag of the son makes
sure that the fourth and fifth positions of the two tags are the same, regardless of other
positions.

The following tree is a possible result for the query:

47

3 The Query Language

vt
VB-$-—-3P-AA=

pravdivy
NNIS1-——— A—— AAIS1-—-1A——-
[
tento reklamni
PDYS1-———————— AAIS1-—-1A—-

In Czech: Je tento reklamni slogan pravdivy?
In English: Is this advertising slogan honest?

A reference cannot be a part of a regular expression.

3.10 Multi-Tree Queries

A multi-tree query consists of several trees combined either with a general AND or a general
OR. In the case of AND, all the query trees are required to be found in the result tree at the
same time (different nodes in the query cannot be matched with one node in the result),
while in the case of OR, at least one of the query trees is required to be found in the result
tree. The following query also demonstrates a usage of an arithmetic expression. It takes
advantage of the fact that attribute ord controls the horizontal order of nodes in the
analytical trees. The query searches for a Subject and a node that can either be anywhere to
the left from the Subject or, if to the right, at the distance at most three:

O o

afun=5Sh ord<-={Nl.ord}+3
_hame=N1

and;or; AMND

In the textual version, the required boolean combination (AND or OR) is on the first line and
each tree is placed separately on the subsequent lines:

AND
[name=N1, afun=8Sb]
[ord<={Nl.ord}+3]

The following tree shows a possible result for the query. Attributes m/lemma, afun and ord
are displayed:

48

3 The Query Language

Vaclav vlada
Atr Atr
1 5
ok
Atr
letosni
Atr
7

In Czech: Vaclav Klaus odkryl karty viady pro letosni rok
In English: Vaclav Klaus revealed cards of the government for this year

The horizontal order of nodes is displayed in the tree. The leftmost node is the root (ord=0).
The node Vaclav (Atr) follows with ord=1, then Klaus (Sb) with ord=2 and so on. The
node leto3ni (Atr) is the rightmost but one (with ord=7), rok (Atr) with ord=8 is the
rightmost node in the tree.

3.11 Hidden Nodes

Hidden nodes are nodes that are marked as hidden by setting the attribute hide to true.’
Their visibility in result trees can be switched on and off. Hidden nodes serve as a
connection to the lower layers of annotation or generally to any external source of
information.

The search algorithm ignores the hidden nodes entirely unless a node in the query is
explicitly marked as hidden. Some meta-attributes do not take the hidden nodes into account
either. The meta-attribute _#descendants only counts non-hidden nodes in a subtree, as
well as the meta-attribute _#sons. The meta-attribute #occurrences, on the other hand,
if used at a hidden node, treats hidden nodes as normal nodes. The meta-attribute #hsons
counts a number of hidden sons of a node.

6 In Netgraph, the attribute hide can only be defined once at a node. If there are alternative nodes defined,
the attribute hide can only be used in the first set of attributes. It can only be used with the relation equal

(”:”)'

49

3 The Query Language
Netgraph uses the hidden nodes as a connection to the lower layers of annotation with
non-1:1 relation, as described later in Section “4.6 - Hidden Nodes*.

The following query searches for a node that has at least three hidden sons, two of which are
verbs (their morphological tag starts with 7v~):

_#hscm52\D

m/tag=v*
hide=true
_#occurrences=2

With the textual form:

[#hsons>=3] ([hide=true,m/tag=V*, #occurrences=2])

The following tree is a possible result for the query:

ten #PersPron #Gen

INTF ACT PAT
byt se divit
Ve-P-—2-———— P7-X4-———— VpY5-———XR-AA———
ten
PDNS4-—————————

In Czech: To byste se divil.
In English: You would be surprised.

The blue nodes and the yellow node are nodes belonging to the tectogrammatical layer. All
other nodes are the hidden nodes (now displayed), providing connection to the lower layers
of annotation. The attributes t lemma and functor are displayed at the tectogrammatical
nodes, the attributes m/1lemma and m/ tag are displayed at the hidden nodes. The
tectogrammatical node divit se (PRED) has three tectogrammatical sons and three hidden
sons.

50

4 The Data

4 The Data

Before we proceed to using the proposed query language, we need to describe the data used
in the tool that implements the query language, because the language is not independent of
the data and has some requirements on the data. We first talk about the file format

(Section 4.1), then we mention the definition of corpus-specific features in the header of the
files (Section 4.2). Section 4.3 shows that some additional information in the data can help
the tool from needless computing. Section 4.4 talks about realization of references in the data
and Section 4.5 describes one very corpus-specific property of the data that required an
adaptation of the tool. Section 4.6 elaborates hidden nodes — a way of accessing lower layers
of annotation in cases with non-1:1 relation among nodes on the layers.

4.1 The Format

Netgraph uses FS File Format for storing the treebank. FS File Format was first used in the
tree editor Graph (Kifen 1996) during the work on first versions of the Prague Dependency
Treebank and was one of two main formats used in the final production of PDT 1.0 (along
with CSTS (Haji€ et al. 2001a)). By the way, the name “Netgraph” was also inspired by the
tree editor Graph.

FS format is a very simple text format. It consists of two parts: a header and a set of trees.
The header defines attributes and properties of the attributes that are later used in the set of
trees. The trees follow the header, each tree is on one line of the file.

A detailed formal description of the format is given in “Appendix B: FS File Format
Description. Let us give only a simple (very simplified) example of a header and one tree
here:

QE UTF-8

@P afun

QL afun|AuxS|Adv|AdvAtr|Apos|Atr|AtrAdv|AtrAtr |AtrObj |Atv|AtvV|AuxC|AuxG|
AuxK|AuxO|AuxP |AuxR|AuxT |AuxV |AuxX|AuxY |AuxZ | Coord|ExD|Obj |ObjAtr |Pnom|
Pred]| Sb

@P ord

@O ord

@N ord

@V w/token

[afun=AuxS, ord=0] ([afun=Pred, ord=3,w/token=vysvétluje]
([afun=Sb, ord=2,w/token=Klaus] ([afun=Atr,ord=1,w/token=Vaclav]),
[afun=0bj, ord=5,w/token=regulaci] ([afun=Atr, ord=4,w/token=mzdovou])))

It is a representation of the following tree:

51

4 The Data

Obj
regulaci

Atr Atr
Vaclavy mzdovou

In Czech: Vaclav Klaus vysvetluje mzdovou regulaci
In English: Vaclav Klaus explains wage restraint

All attributes that can be used in the trees are defined in the header, some with all possible
values. The second character on each line defines some property of the attribute

(e.g. 70" = obligatory). In the trees, a node is enclosed in square brackets (” [, ”1"),
followed by its subtree in parentheses (” (”,)). Brothers are separated by a comma (”, "),
just as different attributes of one node are. The attribute ord is used to control the left-right
order of the nodes in the tree (as defined by its property “N” in the header). Thus, crossing
edges are allowed in the data.

It can be easily seen that FS Query Format is an extension of this format.

The first line in the header says that the file is encoded in UTF-8’. Thus, the support for all
major languages is ensured and even various languages can co-exist in one file, if required.
UTF-8 is the only encoding supported in Netgraph.

There are several reasons why Netgraph uses FS File Format. The main reason is probably
historical. The format has been used in Netgraph from the beginning and it has never proved
unsuitable. In fact, it is very convenient for the purpose. It can be easily read both by people
and programs, is space-saving and programs can read it very quickly. It is also a general
format that can be easily adopted to various treebanks. The treebank-related information is
stored in the header.

4.2 Corpus-Specific Features in the Header

FS File Format can be used for various treebanks. In the header of each FS file, several
important attributes can (some of them should) be defined. The attributes can have arbitrary
names, their function is defined by a property in the header:

e Nodes order attribute (property ”N”) — this attribute controls the order of nodes in the
tree from left to right; non-negative real numbers are allowed
e Words order attribute (property “w”) — this attribute controls the order of words in

the sentence from left to right (if not defined in the header, attribute with the property
”N” is used); non-negative real values are allowed

7 UTF-8 and Unicode Standards: http://www.utf-8.com/

52

4 The Data

e Words value attribute (property ”v”) — values of this attribute are used to assemble
the original sentence (the tokens are ordered according to values of the attribute with
property W)

e Hiding attribute (property “H") — the attribute with this property is used to
distinguish hidden nodes.

4.3 How Data Can Help

Things that can be pre-computed can be stored in the data so that the tool can be simpler and
does not have to waste time. In PDT 2.0, there are several such pre-computed attributes.

The attribute eparents keeps an identifiers of a linguistic effective father of each node (but
the root)®. The algorithm that finds the effective father is quite complex (Stdpanek 2006).
Thanks to the pre-computation, Netgraph does not have to implement it.

Attribute eparents diff is another supplemental attribute. It keeps the same information
as eparents but only if the effective father of a node differs from the technical father of the
node. This fact could be determined in the query but this way the information is directly in
the data, easily accessible, making some queries simpler.

Another pre-computed attribute in the tectogrammatical trees in Netgraph is the attribute
sentence’. It is only filled-in at the root of each tree and keeps the whole sentence the tree
belongs to. The reason for this is that it would be very difficult to assemble the original
sentence from the information stored in the tectogrammatical tree, even with the hidden
nodes present (see Section 4.6), because there is no representation of punctuation in the
data'’.

4.4 References

This section discusses a rather technical feature — how to adapt the tool for references
(secondary edges etc.) that are annotated in the data, in order to display them properly.

What references are annotated in the data is closely corpus-related. Even in PDT 2.0,
different references are used on the analytical layer and on the tectogrammatical layer:

On the analytical layer, there are only two references in the data:

e cffective parentage of all nodes (the attribute eparents)

e cffective parentage of nodes where the effective father differs from the technical
father (the attribute eparents diff)

On the tectogrammatical layer, the following references are annotated in the data:

e cffective parentage of all nodes (the attribute eparents)
e cffective parentage of nodes where the effective father differs from the technical

8 If there are more than one effective father, the single references are kept as alternative values of the
attribute.

9 Not meta-attribute _sentence!

10 The situation is different on the analytical layer, where all tokens of the sentence are represented in the
tree and the sentence is assembled from values of attribute w/token.

53

4 The Data

father (the attribute eparents diff)
e grammatical coreference (the attribute coref gram.rf)
e textual coreference (the attribute coref text.rf)

e predicative complement (the attribute compl.rf)
And at the hidden nodes:

e cffective parentage of all hidden nodes (the attribute a/eparents)
e effective parentage of all hidden nodes where the effective father differs from their
technical father on the analytical layer (the attribute a/eparents diff)

Netgraph can display all these references in the depicted trees. For each corpus, references
and the way how to display them can be defined in a special textual file at the server side. A
list of the references is created in the client after the connection to the server is established.
Then, the user can switch on and off displaying of the individual references.

4.5 Attribute m/lemma

There is a very special way of treating the attribute m/1emma implemented in Netgraph. It is
a completely PDT 2.0-specific feature of the tool. The attribute m/1emma keeps a
morphological lemma of a token — a base form of the token. Without elaborating the details,
we can say that different words can have the same lemma. The lemmas are then
distinguished by a variant, which is often followed by a comment, explaining the nature of
the word. Let us give an example. Lemma “‘stat” represents five different words and has five
variants:
e stat-1 "(statni utvar)
(in English: state, country)
e stat-2 “(néco_se piihodilo)
(in English: to happen)
e stat-3 “(nc¢kdo/néco_stoji, napf. na nohou)
(in English: to stand (e.g. on feet))
e stit-4 “(néco_stoji_penize)
(in English: to cost (money))
e stat-5 "(snih)
(in English: to melt out)
Users cannot be supposed to know all variants of all lemmas or even the comments too.
Netgraph allows searching for a lemma without specifying the variant or the comment. The
expression m/lemma=stat searches for all five variants of the lemma. This behaviour can
be switched on and off in the menu. It is nevertheless always possible to specify the
particular variant of a lemma in the query, e.g. m/lemma=stat-2, to search for that
particular meaning of the lemma.

54

4 The Data

4.6 Hidden Nodes

Hidden nodes were first introduced with the Prague Dependency Treebank 1.0 in the sample
of two hundred sentences annotated on the tectogrammatical layer (and all lower layers), as a
way of representing information from several layers of annotation with non-1:1 relation
among nodes in one tree structure. Each tectogrammatical node with some counterpart on the
analytical layer contained additional attributes representing the analytical node with the
greatest contribution to the lexical meaning of the tectogrammatical node. All other
analytical nodes belonging to the tectogrammatical node appeared as hidden sons of the
tectogrammatical node (their attribute hide was set to hide (yes, really hide)).

In PDT 2.0, a new data format has been introduced — Prague Mark-up Language (PML,
Pajas, Stépanek 2005). Each layer of annotation is annotated in its own file, the files are
interlinked in order to preserve relations between the contents (Pajas, Stépanek 2006). There
are no hidden nodes any more.

Netgraph, on the other hand, presents all the available information in one tree (Mirovsky
2006). For this purpose, we decided to use the hidden nodes in a slightly different way. In
our approach, the tectogrammatical nodes contain only the tectogrammatical information,
while all the information from the lower layers is kept at the hidden nodes. Each
tectogrammatical node has as many hidden sons as there are analytical nodes corresponding
to the tectogrammatical node. (There may be zero, one or several such nodes belonging to
one tectogrammatical node.) This way, logically different information is kept at logically
different places. Moreover, the search algorithm does not take the hidden nodes into account,
unless a node is explicitly specified in the query as hidden. It is therefore no longer necessary
that the set of attributes of the hidden nodes differs entirely from the set of the
tectogrammatical attributes (although it is still true in the data). Technically, in the data, the
hidden nodes are distinguished by the value true of the attribute hide.

The hidden nodes are not a part of the tectogrammatical layer, they only provide a
connection to the lower layers. All the nodes from the analytical layer (except for the
technical root), both auto-semantic and non-auto-semantic, become the hidden nodes on the
tectogrammatical layer in Netgraph. Non-hidden nodes on the tectogrammatical layer do not

carry any information from the lower layers. This information is only accessible through the
hidden nodes.

As mentioned above, meta-attributes treat the hidden nodes in accordance with the definition
of the hidden nodes. Some meta-attributes do not take them into account at all (like
#sons), others are specifically focused on them (#hsons).

The principle of using hidden nodes for representing information from several layers of
annotation in one tree is demonstrated in the following picture, which shows how the phrase
“do lesa” (“to the forest™) is annotated on several layers of annotation and how it is
represented using the hidden nodes:

55

4 The Data

o~ — A tectogrammatical node

__— Hidden nodes

c;o les
/ AuxP Adv
/ RR——2-————————— NNIS2-————A-——-
|
i f \
|
N — Morphological informati
\ orphological information
\ ™ Analytical information

Tectogrammatical information

One node on the tectogrammatical layer with t lemma=1les (“the forest”) and
functor=DIR3 (representing the direction “to”) has two hidden sons representing a
preposition do (“to”) and an adverbial 1es (“the forest”). The information from the
morphological layer is merged into the analytical layer.

The hidden nodes are usually not displayed — they are “hidden”. The following picture
demonstrates two possible ways of displaying a tectogrammatical tree in Netgraph. On the
left side, there is a tectogrammatical tree with the hidden nodes hidden. In the same tree on
the right side, the hidden nodes are displayed:

#PersPron myslit
ACT

#PersPron Ze se byt vracet
ACT

Klausiv

In Czech: Myslim, ze ke Klausové vizi se budeme vracet.
In English: I think that to Klaus's vision we will get back.

56

5 Using the Query Language

S Using the Query Language

We show that Netgraph Query Language, described in Chapter 3, fulfils the requirements
stated in Chapter 2. We show that it meets the general requirements on a query language for
PDT 2.0, listed in Section 2.4 at the end of Chapter 2, and how it can be used for searching
for all linguistic phenomena from PDT 2.0 listed in the chapter in Section 2.3. (Parts of this
chapter were published in Mirovsky 2008c.)

5.1 General Requirements

We show that Netgraph Query Language (graphical representation of FS Query Language)
fulfils the general requirements on a query language for PDT 2.0, listed at the end of Chapter
2 in Section 2 4.

5.1.1 Complex Evaluation of a Node

It can be directly seen that Netgraph Query Language fits the requirements for the complex
evaluation of a single node. The definition of the language from Chapter 3 follows almost
exactly the points of the complex evaluation.

5.1.2 Dependencies Between Nodes (Vertical Relations)

The positive immediate dependency can be directly specified in the query, since the
language can directly form a tree structure. The positive transitive dependency can be
specified using the meta-attribute transitive. Both cases (immediate and transitive) can
be used in the negative sense with a help of the meta-attribute #occurrences, set to zero.
All these types of dependency appear in the following example:

functor=PR S SRR RRT RPN

o)@(
functor=ACT functor=PAT tfa=f functor=CONJ
_#occurrences=0 _transitive=true _transitive=true

_#occurrences=0

The first two sons represent the positive and negative immediate dependency, the third and
the fourth sons represent the positive and the negative transitive dependency. The query
searches for Predicates governing directly an Actor, not governing directly a Patient,
governing transitively a node in focus, and not governing transitively any Conjunction.

Please note that two positively defined nodes in the query cannot be merged into one
matching result node. Therefore, if the Actor (the first son) was the only transitive
descendant of the Predicate in focus, the third son (and therefore the whole query) would not
match.

The vertical distance from the root in the result tree can be simply defined with the meta-
attribute _depth. The vertical distance between two nodes can be defined with the meta-
attribute depth and references, like in the following example that searches for a node

57

5 Using the Query Language

transitively dependent on a Predicate, at the vertical distance from the Predicate greater than
10:

O'.
functor=PRED
_hame=N1 .
@
_transitive=true
_depth>={N1._depth}+10

Number of sons of a node in the result tree can be directly controlled with the meta-attribute
#sons.

5.1.3 Horizontal Relations

The precedence and immediate precedence, as well as the horizontal distance, all in the
positive and negative senses, can be specified using references to an attribute controlling the
horizontal order of nodes in the tree, which has to be present in the data.

Let us give only one example to demonstrate the definition of such a query. The following
query searches for a Predicate governing an Actor. It also states that if there is a Patient, it
must be on the right side from the Actor and at least at distance 5. The heuristic algorithm
ordering nodes in the graphical form of the query may have chosen rather unintuitive
ordering here (at least at the first sight):

functorc—)m@

deepord<={N1l.deepord}+5 functor=ACT
functor=PAT _hame=N1
_#occurrences=0

All secondary edges, secondary dependencies, coreferences, and other long-range relations
can be expressed using references. Each type of the long-range relations requires a dedicated
attribute in the data, containing an identifier of the target node. Therefore, a unique identifier
of nodes is also required. It can be common for all purposes.

The following query serves as an example of queries with a secondary edge. It searches for
an Actor with the textual coreferential relation to a Patient. Both the Actor and the Patient
can appear anywhere in the result tree.

9] -_ _ o
functor=PAT coref_text.rf={N1l.id}
_hame=N1 functor=ACT

The logical expression AND is used in the query.

5.1.4 Other Features
FS Query Language supports multi-tree queries combined either with the logical AND or the

58

5 Using the Query Language

logical OR. This simple combination seems to be sufficient for required purposes.

The meta-attribute #optional servers for skipping node(s) of a given type. Its usage has
been demonstrated in Chapter 3.

Access to lower layers of annotation with non-1:1 relation among nodes is achieved with the
hidden nodes. Their description has been given in Chapters 3 and 4.

The meta-attribute sentence can be directly used for searching in the linear surface form
of the sentences.

5.2 Using the Query Language for Searching in PDT 2.0

We show that (and how) the linguistic phenomena described in Chapter 2 in Section 2.3 can
be searched for using Netgraph Query Language. We list the phenomena again and present
representative queries for them.

5.2.1 The Tectogrammatical Layer

Basic Principles

The language should be able to express the node evaluation and the tree dependency among
nodes in the most direct way.

We believe that we have shown the capability of the language to express the complex node
evaluation and the basic dependencies among nodes in the previous text and will not bother
the reader by repeating the same examples again.

Valency

The query language has to be able to distinguish valency frames. The required features
include a presence of a son, its non-presence, as well as controlling number of sons of a
node.

Let us show two representative queries for studying valency. The first query searches for
Predicates governing an Actor, a Patient and nothing else (the Actor and the Patient are
members of the valency frame, no other member is present):

functor=PRED
_#sons=2

functor=ACT functor=PAT

The meta-attribute _#sons makes sure that there are no other sons of the Predicate in the
result trees.

The second query searches for Predicates governing an Actor and not governing a Patient.
Since Patient has to be the second inner participant of any valency frame having at least two
inner participants (t-manual, page 102), the query searches for occurrences of Predicates

59

5 Using the Query Language

with only one inner participant in its valency frame — the Actor:

functorM

functor=ACT functor=PAT
_#occurrences=0

Coordination and Apposition

The query language should be able to skip a coordinating node. In general, there should be a
possibility to skip any type of node.

The meta-attribute _optional can be used directly to skip a node. Let us only repeat the
example given in Chapter 3, searching for a Predicate governing an Actor with an optional
coordinating node in between:

functor

functor=C
_optional=1

functor=ACT

Let us recall the tree where the coordinated structure is more complex and skipping a node
does not help. The two Predicates are coordinated with Conjunction, and so the the two
Actors are. The linguistic dependencies go from each of the Actors to each of the Predicates

but the tree dependencies are quite different:

#Comma
CON]

|pra\.'|t se
CONJ PRED

vlastnlk najemce
ACT ACT PAT PAT

In Czech: S ¢im mohou vlastnici i najemci pocitat, na co by se méli pripravit?
In English: What can owners and tenants expect, what they should get ready for?

Since the information about the linguistic dependency is annotated in the treebank (by
means of references), there is no problem in creating a general query skipping any possible

60

5 Using the Query Language

combination of coordinations (the same applies to apposition):

i @

functor=PRED eparents={N1.id}
_hame=N1 functor=ACT

The attribute eparents keeps identifiers of all effective linguistic fathers of a node. If we
wanted to search only for the cases where the linguistic father(s) differ(s) from the technical
father, we might use the attribute eparents diff instead, which keeps identifiers of all
effective linguistic fathers of a node only if they differ from its technical father.

Idioms (Phrasemes) etc.

Some idioms/phrasemes and secondary prepositions are linguistic phenomena that can be
easily recognized in the surface form of the sentence but may be difficult to find in the
tectogrammatical tree. The meta-attribute sentence can be used to search directly in the
linear form of the sentences, regardless of the way a phenomenon is or even is not captured
in the tectogrammatical tree.

Let us repeat an example query from Chapter 3 and present one more. The first query
searches for the phrase “v souvislosti s”, regardless of the position of the phrase in the
sentence. To avoid matching each node in the tree, the meta-attribute depth is added:

O
_depth=0
_sentence=".*[Vv] souvislosti s.*"

The second query searches for all sentences containing words “Klaus” and “Zeman”, in this
order, anywhere in the sentence, even in forms like “Klause” or “Zemanovi”:

e
_depth=0
sentence="*Klaus.*Zeman.*"

Complex Predicates

Let us recall that the complex predicate is a multi-word predicate consisting of a
semantically empty verb which expresses the grammatical meanings in a sentence, and a
noun (frequently denoting an event or a state of affairs) which carries the main lexical
meaning of the entire phrase (t-manual, page 345).The functor of the nominal part of the
complex predicate is assigned value CPHR.

We are interested in cases with dual function of a valency modification where the expressed
valency modification occurs in the same form in the valency frames of both components of
the complex predicate (t-manual, page 362).

The following query follows the definition of the complex predicate and takes advantage of
the fact that the dual function of a valency modification is expressed with the grammatical
coreference — the attribute coref gram.rf at a valency member of the nominal part
contains an identifier of a valency member of the verbal part of the complex predicate. In

61

5 Using the Query Language

this query, we search for those cases where a valency member of the nominal part is an
Addressee (”ADDR”) and refers to a valency member of the verbal part that is an Actor
("ACT”):

gram/sempos=v

functor=ACT functor=CP
_hame=N1 gram/sempos=n.denot

coref_gram.rf={N1.id}
functor=ADDR

The following tree is a possible result for the query:

dllezity ziskat
PAT ACT
-
#PersPron #CTen #PersPron diivéra
ACT QRIG - BEN CPHR
o
#QCor #Cor
ACT ADDR

In Czech: Duilezité je, aby si ziskala duveru.
In English: It is important that she gains confidence.

Predicative Complement (Dual Dependency)

The predicative complement is a non-obligatory free modification (adjunct) which has a dual
semantic dependency relation. It simultaneously modifies a noun and a verb (which can be
nominalized). The second dependency (the dependency on the (semantic) noun) is
represented by means of the attribute compl . rf, the value of which is the identifier of the
modified noun (t-manual, page 376).

The query uses references, just like in the previous section with complex predicates. This
time, the referential information is stored in the attribute compl . r£. The query searches for
those cases of the predicative complement where the second dependency goes to a Patient:

62

5 Using the Query Language

funt:tt::urMQ

functor=PAT compl.rf={N1.id}
_hame=N1 functor=COMPL
gram/sempos=n.denot

And the following tree is a possible result for the query:

definovat
PRED
[

inflace #Gen rist
PAT ACT COMPL

hiadina
ACT

cenovy
RS5TR

In Czech: Inflace je definovana jako riist cenove hladiny.
In English: Inflation is defined as an increase of the prices level.

Coreferences

There are two types of coreferences annotated on the tectogrammatical layer — the
grammatical coreference and the textual coreference. Like other long-range dependencies,
they are annotated using referential attributes, the grammatical coreference uses the attribute
coref gram.rf, and the textual coreference uses the attribute coref text.rf.

Let us give one representative example, searching for type-1 control constructions, which is
a type of grammatical coreference where an infinitive depends on a control verb; this time,
we do not set any other condition on the nodes:

gram /sempos=y

_hame=N1 " - gram/sempos=v
gram /verbmod=nil

coref_gram.rf={N1.id}

And a result tree:

63

5 Using the Query Language

rozhovor / zacit

TPAR EFF
Vaclav premier /politik vazovat
RSTR RSTR ACT
CR predni rozsifeni #Cor samozfejmost

APP RSTR ACT EFF

unie #Gen CR
PAT ACT DIFF

In Czech: Predni politici zacali rozsiveni unie o CR povazovat za samoziejmost, uved]
béhem rozhovorii premiér CR Véclav Klaus.

In English: Prominent politicians started to take the extension of the union for granted, the
prime minister of CR Vaclav Klaus pointed out during the discussions.

Topic-Focus Articulation

The communicative dynamism requires that the relative order of nodes in the tree from left
to right can be expressed. The order of nodes is controlled by the attribute deepord, which
contains a non-negative real (usually natural) number that sets the order of nodes from left to
right. Therefore, we will again need to refer to a value of an attribute of another node but this
time with relation other than “equal to”.

The following query demonstrates searching for a Predicate governing an Actor and a
Patient, the Patient in focus and less dynamic (on the left side in the tree) than the Actor in
topic:

furlt:tc)rC=F'vaO

deepord<{N1l.deepord} functor=ACT
functor=PAT tfa=t
tfa=f _hame=N1

And a possible result tree:

64

5 Using the Query Language

acit
PRED
f
ale rast a
PREC [PAT ACT
t f t
#Cor i jedovaty
ACT RHEM RSTR
t f f

In Czech: Zacaly ale riist i houby jedovaté.
In English: But also poisonous mushrooms started to grow.

Focus Proper

Focus proper is the most dynamic and communicatively significant contextually non-bound
part of the sentence. Focus proper is placed on the rightmost path leading from the effective
root of the tectogrammatical tree, even though it is at a different position at the surface
structure. The node representing this expression is placed rightmost in the tectogrammatical
tree.

The following query searches for the focus proper:

_depth=0 . o
e T SR
tfa=f deepord>{N1l.deepord}
_transitive=true tfa=f
_hame=N1 _transitive=true

_#occurrences=0

The same query can be expressed with a multi-tree query with the logical expression AND:

o)
tfa=f deepord>{N1l.deepord}
_hame=N1 tfa=f

_#occurrences=0

In both cases, we search for a node in focus named N1, which is the focus proper, by
defining that there cannot be a node in focus on the right side from N1 anywhere in the tree.

The following tree is a possible result for both the queries; yet, the highlighted nodes show
that the first version has been used:

65

5 Using the Query Language

0
byt
PRED
f
@
ofin stimul
ACT PAT
C f
o
potrestany zlocin
RSTR BEN
f f
@
budouci
RSTR
f

In Czech: Nepotrestany zlocin je stimulem pro zlociny budouct.
In English: An unpunished crime is a stimulant for future crimes.

Quasi-Focus

Quasi-focus is constituted by (both contrastive and non-contrastive) contextually bound
expressions, on which the focus proper is dependent. The focus proper can immediately
depend on the quasi-focus, or it can be a more deeply embedded expression.

In the underlying word order, nodes representing the quasi-focus, although they are
contextually bound, are placed to the right from their governing node. Nodes representing
the quasi-focus are therefore contextually bound nodes on the rightmost path in the
tectogrammatical tree (t-manual, page 1130).

The query searching for the quasi focus is one of the most complex queries we present, and
yet, it follows the definition of the quasi focus, which is quite complex itself:

The first node under the technical root represents nodes on the rightmost path
(_#rbrothers=0) that lie above the quasi focus. The node named N2 represents the node
lying immediately above the quasi focus. Its son is the quasi focus (it is on the right side
from its father and has no right brothers, it also is in topic or contrastive topic). The optional
son of the quasi focus is defined as a part of the focus and represents the continuation of the
rightmost path, that should all be in focus, until the focus proper is reached (named N1). The
transitive son of the root makes sure that the node N1 really is the focus proper.

66

5 Using the Query Language

| T Tt el 4
_optional=t deepord>{N1l.deepord}
_#tbrothers=0 tfa=f

_transitive=true
_#occurrences=0

_optional=tru
_#rbrothers=0

The following tree represents a possible result for the query:

i

o

f
agentura prizplsobit_se organizovat

t
ptavka tuyistika
[
f f
meénici_se i individualni
f
rychly

In Czech: Agentura se prizpiisobila rychle se ménici poptavce a organizuje i turistiku
individualni.

In English: The agency has adapted to the quickly evolving demand and organizes also
individual tourism.

Although all nodes on the rightmost path from the root are highlighted as matching nodes
and therefore the quasi focus must be identified by values of attribute t fa of the nodes, the

important thing is that the quasi focus can be identified in the query and additional
conditions can be set on it.

Note: The tectogrammatical manual states that the quasi focus can consist of more than one

67

5 Using the Query Language

node (t-manual, page 1131). The query we have presented searches for its most dynamic
node.

Rhematizers

Rhematizers are expressions whose function is to signal the topic-focus articulation
categories in the sentence, namely the communicatively most important categories - the
focus and the contrastive topic.

There are two cases of rhematizers that we need to distinguish:

e the rhematizer (i.e. the node representing the rhematizer) is placed as the closest left
brother (in the underlying word order) of the first node of the expression that is in its
scope.

e if the scope of the rhematizer includes the governing predicate, the rhematizer is
placed as the closest left son of the node representing the governing predicate.

We present two queries to show how to study rhematizers. The first query searches for
rhematizers with the Predicate in its scope, i.e. for a rhematizer that is the rightmost left son
of the Predicate:

functor=PRED

ame=N1
deepord <{N1l.deepord} deepord<{N1l.deepord}
functor=RHEM _#lbrothers>{N2._#lbrothers}

_hame=N2 _#occurrences=0

The query defines that there is not a node that lies to the left from the Predicate and to the
right from the rhematizer. Since we cannot set two different conditions with two different
relations on one attribute, we have to use the meta-attribute #1brothers to define that the
undesired node is on the right side from the rhematizer. The following tree is a possible
result for the query:

zvyknout_si
PRED

vefejnost wyzva jiz

ACT RHEM
C f
podobny
R5TR
f

In Czech: Verejnost si na podobné vyzvy jiz zvykla.
In English: The public has already got accustomed to such calls.

68

5 Using the Query Language

The second query searches for the cases where the Predicate is not in the scope of the
rhematizer. The query also states that the first rhematized node is an Actor:

deepord-<<{Nl1.
functor=FRE

functor=RHEM functor=ACT
_hame=N1 _#lbrothers={N1._#lbrothers}+1

This time, the Predicate is on the left side from the rhematizer and the Actor is an immediate
right brother of the rhematizer.

The following tree is a possible result for the query:

mit
PRED
f
9]
zZor i
CPHR RHEM
t f

#QCor #Gen stejny
ACT PAT RSTR
t t f

#PersPron soukromy
APP RSTR
t f

In Czech: Stejny ndzor ma i rada nasich soukromych podnikateli.
In English: Also a number of our private investors have the same opinion.

(Non-)Projectivity

Let us recall a simple definition of projectivity of a tree: between a father and its son (in the
left-right order) there can only be direct or indirect sons of the father (t-manual, page 1135).
We present a query that searches for non-projective trees. It consists of four trees (combined
with the logical expression OR). Each tree represents one of the four possible configurations
of nodes causing the non-projectivity. Since the (non-)projectivity is much more important,
interesting and often on the analytical layer than on the tectogrammatical layer, the query
searches on the analytical layer (and therefore uses the attribute ord, which controls the
order of nodes on the analytical layer). The query is too wide to fit the page, therefore it is

69

5 Using the Query Language

split into two rows:

O - o o o
- - - e)

transitive=exclusive

=N1

ord<{N1l.or
_transitive=exclusive

ord>>{N2.ord}
_transitive=exclusive

ord>{N1l.ord} ord<{N2.ord}

.'-o O-".
_name=N3 _name=N4 "

ord>{N4.ord}
_transitive=true

ord <{N3-:
_transitive=true

ord>>{N3.ord} ord<{N4.ord}

The former two trees represent non-projective configurations where the node proving the
non-projectivity is not on the path from the non-projective edge to the root of the tree. The
latter two trees represent non-projective configurations where it is on the path. The exclusive
transitivity is used to make sure that node N1 (or N2) cannot appear in the subtree of the
non-transitive edge (as it might if the true transitivity was used; then, the edge might be
projective).

Note: If we used the attribute deepord instead of ord, we might use the same query on the
tectogrammatical layer.

The following tree is a possible result for the query; attributes m/1emma and ord are
displayed:

14

on-1
4

Klaus
3

premiér Vaclay , nechat
1 2 6 10
prosetfit
15
zalezitost” brzy
9 12
tento co-5
8 11

In Czech: Premiér Vaclav Klaus mu slibil, Ze tuto zdleZitost nechd co nejdiive prosetrit.
In English: The prime minister Vaclav Klaus has promised him that he will have the affair
investigated.

70

5 Using the Query Language

5.2.2 Accessing Lower Layers

Let us present three examples of queries that access the lower layers of annotation from the
tectogrammatical layer.

The first query searches for Patients (on the tectogrammatical layer) that are expressed with
a preposition “k and a noun in the dative on the morphological layer:

functc:rihw‘D

m/lemma=k m/tag=N7??3*
hide=true hide=true

The Patient has (at least) two hidden sons, the former with lemma “k”, the latter with a
morphological tag that states that the node is a noun in the dative. The following tree is a
possible result for the query. Both tectogrammatical and hidden nodes are displayed. The
attribute functor is displayed at the tectogrammatical nodes, the attribute m/1emma is
displayed at the hidden nodes. For saving space, the attribute m/ tag is not displayed (the
node with lemma “ekologie” has the morphological tag “NNFS3-----A----""):

kritizovat
pfistup

KDU CsL-1 Klausliv k-1 ekologie

In Czech: KDU-CVIS:L kritizuje Klausuv pristup k ekologii.
In English: KDU-CSL criticizes Klaus's attitude towards ecology.

The second query searches for an Actor less dynamic than a Patient (on the left side from it
in the tectogrammatical tree), but with the opposite order of respective lexical nodes on the
analytical layer (and therefore also on the surface — in the sentence):

71

5 Using the Query Language

.deepord} functor=P
functor=ACT _name=N1

ajref_type=Ilex a/ord<{N2.a/ord}
hide=true a/ref_type=lex
_name=N2 hide=true

The attribute a/ref type set to the value 1ex makes sure that the two hidden nodes
represent the lexical counterparts of the Actor and the Patient. References to the attributes
deepord and a/ord ensure the required order of the nodes. The following tree is a possible
result for the query; the hidden nodes are not displayed:

komentowvat

PRE
o
Ricard
ACT PAT

Ronaldo #PersPron
ACT ACT

#PersPron dobre
ACT DPHR

In Czech: Myslim si, Ze udélal dobre, komentuje prichod Ronalda Ricardo.
In English: I think that he did well, Ricardo says about Ronald's coming.

The third query shows how to study a difference in the structure of the tectogrammatical and
the analytical tree. It searches for the tectogrammatical father and son whose lexical
counterparts on the analytical layer have the opposite relation:

a/parent={N1l.a/id}
hide=true

hide=true
_hame=N1

The attribute a/parent keeps the identifier of the father of the node on the analytical layer.

The following tree is a possible result for the query. To show the difference in the structure,
the respective analytical tree is displayed as well (it was found with another query on the

72

5 Using the Query Language

analytical layer). The attributes t lemma and functor are displayed in the
tectogrammatical tree, the attributes m/1emma and afun are displayed in the analytical tree:

kandidovat Kandidowvat

strana Zena

SUBS ACT Sb
& o
Klaus malo strana-2 Zena
RSTR RSTR Atr
Klausiv
Atr

In Czech: Za Klausovu stranu kandiduje malo Zen.
In English: Not enough women candidate for Klaus's party.

5.2.3 The Analytical Layer

Morphological Tags

The regular expressions are a powerful tool and allow complex searching for an
underspecified morphological tag. An example of such a query has been given in Section
3.4.

Agreement

To study agreement, the query language has to allow to make a reference to only a part of a
value of an attribute of another node, e.g. to the fifth position of the morphological tag for
case. Since the regular expressions cannot contain references (for technical reasons''), we
have to use the old-style wild cards. The following query searches for a noun (m/tag=N*)
with an attributive adjective (a dependent adjective that agrees with the noun in gender,
number and case, which are at the third, fourth and fifth position of the morphological tag):

11 A regular expression has to be compiled before it can be matched with a string. The compilation is only
made once for each regular expression in the query. If it could contain references, it would have to be
compiled each time a value is substituted for the reference, i.e. many times for each searched tree.

73

5 Using the Query Language

m/tag=
_hame=N1

afun=Atr
m/tag=A?{N1.m/tag.3}{N1.m/tag.4{N1.m /tag.5}*

The following tree is a possible result for the query. The attributes m/lemma and m/tag are
displayed:

generace uh .
NNFP4————— A-——— NNIP7—— A i
o
hasledujici
AGFP4-———- A—— RR-- 22—
minulost
NMNFS2———— A

In Czech: Nechceme nasledujici generace zatézovat dluhy z minulosti, rekl V. Klaus.
In English: We do not want to burden next generations with debts from the past, said V.
Klaus.

Word Order

The only new requirement on a query language that studies of word order on the analytical
layer bring is an ability to measure the horizontal distance between words. The following
query searches for trees where a preposition and a noun head of the prepositional phrase are
at least five words apart:

ord>{N1l.ord.5}+5
m/tag=N*

74

5 Using the Query Language

The following tree is a possible result for the query; the attributes m/lemma and afun are
displayed:

. ktery se posili
Atr AuxX / Atr AuxX 5b AuxT Obj

sila
Obj

svilj-1 ekonomicky
Atr Atr

In Czech: Thajsko je dalsim z mladych, ale velmi rvavych tygru, kteri se snazi posilit svoji
ekonomickou silu.

In English: Thailand is another one of young but very combative tigers that try to strengthen
their economic power.

75

6 Notes on the Query Language

6 Notes on the Query Language

6.1 Netgraph Query Language vs. FS Query Language

Netgraph Query Language is a graphical representation of the textual FS Query Language.
They are equivalent, every query in the textual form has its graphical counterpart and vice
versa. Therefore, we sometimes mix these terms in the text.

6.2 Trees Only

The syntax of some search languages allows defining queries that are not trees — queries that
contain a cycle, although their primary purpose may be to search in a corpus of trees where
no cycle can occur. For example, it is very easy to make a cycle in TGrep2:

VP=v << (NP << =v)

The query says that a VP (named v for a later reference) dominates (transitively) an NP that
in turn dominates (transitively) the same VP (referred to as v).

Even in much simpler TGrep, where no cycle can be defined, a nonsensical construction is
easily created:

VP < (NP > NP)

The query says that a VP immediately dominates an NP, which is immediately dominated by
another NP. But obviously, we do not want a node to have two fathers.

A query in Netgraph Query Language is also supposed to be a tree (or a multi-tree). An
important property of the syntax of this query language is that the syntax itself does not
allow to create any other structure than trees. It is a simple way how to avoid needless
mistakes.

Please note that only the primary dependency structure has to be a tree in Netgraph Query
Language. Secondary edges and all other “secondary/long-range relations” are expressible
using the references (Section 3.9).

6.3 Redundancy

It can be easily shown that the features of the presented query language are redundant. It
means that there are often several ways of creating a certain query. In other words, there are
often several queries that do the same thing — search for the same trees (generally, regardless
of the corpus) — using different features of the query language.

Let us give a simple example. The following two queries both search for Actors that have
exactly one son (of any kind). The first query uses the meta-attribute #sons:

@]

functor=ACT
_#sons=1

76

6 Notes on the Query Language

The second query uses the meta-attribute #occurrences at a node without any
specification:

functorENﬁ

_#occurrences=1

Both the queries find exactly the same trees and the same occurrences in the trees (see
Section 6.4 below about a difference between result trees and result occurrences).

Even one node queries that do not use any meta-attribute can show the redundancy of the
query language. The following two queries are quite equivalent, both of them search for a
node that is either an Addressee or a Benefactor. The first query uses alternative values of an
attribute:

O
functor=ADDR|BEN

The second query uses an alternative node:

=]
functor_=ADDR

functor=BEN

The redundancy in the query language can be (and has been) used for testing the tool. If
there are two or more different queries that should theoretically find the same number of
result trees (or result occurrences), it can be easily checked if they really do so.

6.3.1 Two Types of Redundancy

There are two primary reasons for adding features to the query language, causing two types
of redundancy:

e simplification of the query language — a feature is added that does not increase the
power of the query language but simplifies some queries; it can be completely
substituted by a combination of other features

e increasing the power of the query language — a feature is added that increases the
power of the query language; nevertheless, it is often the case that some particular
queries using this feature can be substituted by a combination of other features

Both reasons for adding features have been exercised during the development of Netgraph
Query Language, although the second reason has been much more often.

There are three features worth noticing that simplify the queries and do not increase the
power of the query language:

e alternative values of an attribute — it is always possible to express alternative values

77

6 Notes on the Query Language

of an attribute using alternative nodes. Nevertheless, it is much simpler to use three
alternative values for one attribute and three alternative values for another attribute
instead of nine combinations of these values if we could only use alternative nodes.

e multi-tree queries with trees combined with logical AND — this type of multi-tree
queries can be expressed with one-tree queries with the transitive dependency on the
root (provided that there is always a technical root that we are not interested in in the
queries). For example, searching for two nodes without a specified relation between
them can be accomplished with two transitive sons of the root or with a multi-tree
query with relation AND.

e exclusive transitivity — as demonstrated later in Section 6.7, the exclusive transitivity
can be substituted by a much more complex expression using only the true
transitivity. After new values to the meta-attribute optional were added to the
query language, it is also possible to use expressions with the meta-attribute
_optional=true to substitute the exclusive transitivity, yet the exclusive
transitivity is still simpler.

The other features that have been added to the query language increase its power. Non of

these features can be removed from the language without weakening it. But of course, in
some cases several different queries can search for the same thing.

6.4 Result Trees and Result Occurrences

A query can match a result tree more than once, at different places in the result tree or with
different configurations of the nodes. We call each configuration of the nodes of the query in
the result tree an occurrence of the query in the result tree, or shortly an occurrence'.

The following three queries are equivalent in the sense that they find exactly the same result
trees, but they each match different times — the numbers of occurrences the queries match are
different.

The queries search for Actors that have at least two sons. The first query uses the meta-
attribute _#sons:

o

functor=ACT
_#sons>1

This query matches only once for each Actor with at least two sons. The second query uses
the meta-attribute #occurrences:

functorZNﬁ

_#occurrences>1

This query matches for each Actor with at least two sons as many times as how many sons
the Actor has. The third query uses two son nodes without any specification. It defines that

12 The term “occurrence” used in this sense should not be confused with the meta-attribute #occurrences
(number of occurrences).

78

6 Notes on the Query Language

the Actor has two sons but it does not specify their order:

functor%{

This query matches for each Actor with at least two sons as many times as how many
combinations of matching two query-sons with the result-sons of the Actor there are.

6.5 Comparison to Other Treebank Query Systems

Since FS Query Language (Netgraph Query Language) belongs neither to path based query
languages nor to logic based query languages, which are well understood, it may be difficult
to assess its exact expressive power.

To show the power of FS Query Language, we use an indirect approach of comparing the
language to four other query languages, languages of TGrep, TGrep2, TigerSearch, and fsq
(see Section “2.1.2 - Existing Search Tools*)."

6.5.1 A Biased Table

Let us first offer a table showing to what extent the five tools (Netgraph and the other four
tools) fulfil the requirements stated in Section “2.4 - Linguistic Requirements®. Please note
that the table is biased in favour of Netgraph, because Netgraph has been designed to fulfil
the requirements. The table does not contain query language features that do not belong to
the requirements. The other tools have been designed for different corpora and may
implement features that Netgraph does not. A detailed unbiased comparison of the
expressive power of Netgraph Query Language and the query languages of TGrep, TGrep2
and TigerSearch follows in the subsequent subsections.*

In the table, the following marks are used:

+ ... the feature is supported

- ... the feature is not supported

* ... the feature is partially supported

N/A ... the feature is not applicable to the query language

‘ Complex Evaluation of a Node H TGrep H TGrep2 H TigerSearch H fsq HNetgraph‘

multiple attributes evaluation (an ability to set values

: - - + + +

of several attributes at one node)
alternative values (e.g. to define that functor of a node n n " N o

is either a disjunction or a conjunction)

‘alternative nodes (alternative evaluation of the whole H N/A H + H + H + H + ‘

13 We were unable to find information about Viqtoria sufficient to include this tool into the comparison. The
development of Oraculum has long ago been discontinued and TrEd is not meant as a tool for searching.

14 A detailed comparison to fsq could not be written since the available user manual for fsq is not detailed
enough (http://tcl.sfs.uni-tuebingen.de/fsq/fsq-userman.pdf)

79

6 Notes on the Query Language

‘set of attributes of a node) H

‘wild cards (regular expressions) in values of attributes H + H + H + H + H + ‘
‘negation (e.g. to express “this node is not an Actor”) H + H + H + H + H + ‘
‘relations less than (<) , greater than (>) H - H - - H + ‘
‘ Dependencies Between Nodes (Vertical Relations) H TGrep ‘ ‘ TGrep2 H TigerSearch H fsq ‘Netgraph‘
immediate, transitive dependency (existence, non- n

existence)

‘Vertical distance (from root, from one another) il Il

‘nurnber of sons (zero for leaves) H + H + + + H +

‘ Horizontal Relations H TGrep ‘ ‘ TGrep2 H TigerSearch H fsq HNetgraph‘
preceflence, immediate precedence (positive, n n %IV n n
negative)

‘horizontal distance ‘ ‘ - ‘ ‘ - ‘ ‘ *V ‘ ‘ *V ‘ ‘ + ‘
secondary edges, secondary dependencies, *VI *VI n n n
coreferences, long-range relations

‘ Other Features H TGrep ‘ ‘ TGrep2 H TigerSearch H fsq HNetgraph‘
multi-tree queries (combined with the general OR i i v X X
relation)

skipping a node of a given type (for skipping simple i 4 X n n
types of coordination, apposition etc.)

skipping multiple nodes of a given type (e.g. for X X X1V n N
recognizing the rightmost path)

references (for matching values of attributes unknown i n n i n

at the time of creating the query)

accessing several layers of annotation at the same

time with non-1:1 relation (for studying relation N/A N/A N/A N/A +
between layers)

searching in the surface form of the sentence H +XV H +XV H +XV H + H +

Notes referred to from the table:

I: Only OR relation is supported.

II: Variables (nodes in the query) are existentially quantified. If the query specifies that A does not dominate

B, then B must appear somewhere else in the tree.

III: Vertical distance can only be measured for nodes that are in the transitive dependency relation.

IV: Variables (nodes in the query) are existentially quantified. If the query specifies that A does not precede

B, then B must appear somewhere else in the tree.
V: Horizontal distance can be measured for leaf nodes.

VI: Only one type of dependency can be set but multiple times at a node.

VII: Full Boolean expressions on patterns are supported.

VIII: Boolean expressions without negation on patterns are supported.

IX: At least first-order logic formula can be used.
X: Only the general OR or general AND are supported.
XI: Thanks to general Boolean expressions on patterns.

80

6 Notes on the Query Language

XII: Thanks to Boolean expressions on patterns.

XIII: But there are special predicates for the rightmost/leftmost descendant of a node.
XIV: But there are special predicates for the rightmost/leftmost leaf descendant of a node.
XV: Using predicates for precedence and immediate precedence on terminals.

6.5.2 Comparison to TGrep

As we presented in Mirovsky 2008a, all predicates of TGrep can be translated to FS Query
Language. Let us show only a few examples of the translation here. We use the textual
version of the translated queries'’; labels A and B stand for any evaluation of the node
possible in TGrep:

“A immediately dominates B”:

In TGrep: A < B
In Netgraph: [A] ([B])

“B 1is the X-th son of A”:

In TGrep: A <X B
In Netgraph: [A] ([B, #lbrothers=x-1])

“A dominates B”:

In TGrep: A << B
In Netgraph: [A] ([B, transitive=true])

“B is the leftmost (rightmost) descendant of A:

In TGrep: A <<, B
In Netgraph: [A] ([B, transitive=true, name=N1],
[transitive=true,ord<{Nl.ord}, #occurrences=0])

B is a transitive descendant of A and there is no transitive descendant of A that has smaller
ord than B. The rightmost descendant is similar (ord>{N1.ord}).

And a few translations of negative predicates:

“A does not immediately dominate B”:

In TGrep: A !< B
In Netgraph: [A] ([B, #occurrences=0])

15 The graphical version would have to be faked, because in the graphical interface of Netgraph, a node
cannot be marked only with label A or B. Therefore, the translations of the queries cannot be directly
copied to Netgraph. The labels A and B would have to be replaced by concrete evaluations of the nodes.

81

6 Notes on the Query Language

“A does not dominate B”’:

In TGrep: A !'<< B
In Netgraph: [A] ([B, transitive=true, #occurrences=0])

“B is not the X-th son of A”:

In TGrep: A !<X B
In Netgraph: A ([B, #lbrothers!=X-1])

But note that it also means that B is a son of A. Using the meta-attribute #occurrences
again, we may have another try on this example with a different meaning:

In Netgraph: [A] ([B, #lbrothers=X-1, #occurrences=0])

Here, B still may be a son of A, but not necessarily, and in any case not the X-th one.

This way, all TGrep predicates, as they are listed in the TGrep manual (Pito 1994), can be
translated to FS Query Language, as we presented in the cited paper (Mirovsky 2008a). It
was not shown, however, whether any combination of the predicates in TGrep can also be
translated. It is possible that there might be a combination of negative TGrep predicates
(whose translation leads to more complex expressions in FS Query Language) that cannot be
translated. Nevertheless, we have not found any such combination, partly because TGrep
manual does not state clearly the semantics of the single negative predicates and does not say
anything about the semantics of their combination.

As stated in Section 6.2, TGrep also allows to define constructions where a node has two
fathers. Since such constructions are undesirable, it can hardly be considered a disadvantage
that Netgraph cannot create them.

On the other hand, there is no difficulty in finding a query in Netgraph that cannot be
translated to TGrep, as was also shown in Mirovsky 2008a. Let us put aside the fact that
TGrep is a one attribute searcher (it is designed for treebanks where every node of the trees
has only one attribute with one value) and let us focus on the structure of trees. Since TGrep
always searches for one pattern only, it cannot reproduce multi-tree queries from Netgraph,
combined with the expression OR. The meta-attribute optional also represents a type of
an OR-expression on the tree structure and even the following simple example cannot be
reproduced in TGrep:

[A] ([B, optional=1] ([C]))

Therefore, we can conclude that (at least in most aspects) FS Query Language is more
powerful than the query language of TGrep.

6.5.3 Comparison to TGrep2

TGrep2 brings several new predicates in comparison with TGrep. Most of them can be
translated to Netgraph, one cannot:

82

6 Notes on the Query Language

“B is the only child of A™:

In TGrep2: A <: B
In Netgraph: [A, #sons=1] ([B])

“There is a single path of descent from A and B is on it”:

In TGrep2: A <<: B
In Netgraph: [A, #sons=1] ([#sons=1, optional=true] ([B]))

“A has the same name as B”:

In TGrep2: 2 ~ B

In Netgraph: independently of the structure of the whole query, this predicate can always be
expressed with a reference from node B to node A, referring to the principle attribute, e.g.

[name=N1] ([afun={Nl.afun}]).

In TGrep2, node A immediately precedes node B if the last terminal symbol produced by A
immediately precedes the first terminal symbol produced by B. In the following rather
complex translation to Netgraph, we assume that values of the attribute ord at the leaf nodes
are identical to the left-right order of the nodes (which should be true for the constituent-
structure trees TGrep2 is designed for):

In TGrep2: 2 . B

In Netgraph: [depth=0] ([A, transitive=true] ([transitive=true, #sons=0, name=N1],
[transitive=true,ord>{Nl.ord}, #occurrences=0, #sons=0]),
[B, transitive=true]
([_transitive=true, #sons=0, #occurrences=0,ord<{N2.ord}],
[transitive=true, #sons=0, name=N2,ord={Nl.ord}+1]))

“A 1s the same node as B”:
In TGrep2: 2 = B

This predicate cannot be generally translated to Netgraph, where two nodes in the query
cannot match one node in the result tree at the same time. The equal sign is usually used
together with another predicate, e.g. A <<= B means that B is either dominated by A, or B
is equal to A. The only possibility to translate these constructions to Netgraph is using multi-
tree queries with logical OR. More complex patterns in TGrep2 with more than one such
predicate with equal sign therefore cannot be translated to Netgraph.

As stated in Section 6.2, TGrep2 allows defining a cycle in edges connecting the nodes. This
ability, though usually not useful, also makes TGrep2 query language more powerful in
certain aspect than FS Query Language.

One of the major additions in TGrep2 (in comparison with TGrep) is the ability to specify
Boolean expressions over the relationships between nodes. Thus, very complex queries can
be made:

83

6 Notes on the Query Language

A[<B | I'[.C!, FI]1 | '[<D!.. E]

The example is taken from TGrep2 User Manual (Rohde 2005) and it means: (A has child B
or it does not (immediately precede C and not immediately follow F)) or (A does not (have
child D and is not followed by E)). Such complex queries cannot be reproduced in Netgraph.

On the other hand, queries in Netgraph can be found that cannot be translated to TGrep2,
even if we put aside the fact that (just like TGrep) TGrep2 is designed only for treebanks
with nodes evaluated with one attribute.

One of such queries combines the meta-attribute optional with the meta-attribute
_#sons. It searches for a node A with node B in its subtree and only with nodes with
exactly two sons on the path from A to B:

[A] ([_optional=true, #sons=2] ([B]))

There is a special predicate for paths with nodes that have exactly one son in TGrep2, but the
query with the path with nodes with two sons cannot be reproduced.

The reason is not in the combination of the meta-attributes but already in the usage of the
meta-attribute _optional with the value true. TGrep2 has no feature to substitute this
meta-attribute, to set a condition on a path of nodes of an arbitrary length.

In TGrep2, it is also impossible to substitute references in general. For example, the
following query in Netgraph cannot be translated to TGrep2:

[]1 ([name=N1], [#sons={Nl. #sons}])
It searches for two brothers that have the same number of sons (unspecified in the query).
And also other constructions can be found in Netgraph, untranslatable to TGrep2.

We do not claim here that the queries (either in Netgraph or in TGrep2) that cannot be
translated to the other query language are linguistically relevant. We only wanted to compare
the power of the two query languages.

As shown in the previous paragraphs, neither of the query languages (TGrep2 or FS Query
Language) is unambiguously superior to the other. Neither all queries from TGrep2 can be
translated to Netgraph, nor all queries from Netgraph can be translated to TGrep2. In some
areas, TGrep2 is more powerful than Netgraph, in other areas Netgraph is more powerful
than TGrep2. We could also say that the power of the tools is not comparable.

6.5.4 Comparison to TigerSearch

Node Description

In TigerSearch, on the node level, nodes can be described by Boolean expressions over
attribute-value pairs, where each value can also be expressed as a Boolean expression over
single values.

Netgraph uses alternative nodes and alternative values of attributes for the description of a
node. Thus, it has a slightly lesser power in expressing a node evaluation than TigerSearch.
The only drawback of Netgraph is that it cannot set more than one condition on one attribute

84

6 Notes on the Query Language

with relation “AND”, i.e. set two conditions on one attribute that should be valid at the same
time.

On the other hand, in contrast to Netgraph, TigerSearch cannot use relations less than (7<”
and greater than (”>") in setting values of attributes.

Both tools allow using regular expressions as single values.

Node Relations

TigerSearch uses a similar set of predicates like TGrep2. Most of the predicates can be
translated to Netgraph. Let us show the translation of predicates that are not present in TGrep
or TGrep2:

“A dominates B directly with a labelled dominance”:

In TigerSearch: 2 >L B
In Netgraph: [A] ([B, afun=L])

All labelled versions of TigerSearch predicates can be translated this way (the label of the
edge is moved to an attribute of the son-node).

“A dominates B with a distance between m and n (0<m<n)”:

In TigerSearch: A >m,n B
In Netgraph: [A, name=N1] ([B, transitive=true, depth={Nl. depth}
+m|...[{N1. depth}+n])

“B is the leftmost (rightmost) terminal successor of A”:

In TigerSearch: B >@1 A
In Netgraph: [B] ([A, transitive=true, name=N1, #sons=0],
[transitive=true,ord<{Nl.ord}, #occurrences=0, #sons=0

1)

It is very similar to TGrep predicate “B is the leftmost descendant of A” (A <<, B), we
only added #sons=0 here to make sure the descendants are leaves. The rightmost version
only differs in the relation at the attribute ord.

The definition of precedence for non-terminals in TigerSearch is: a node A precedes a node
B if the left corner (the leftmost terminal successor) of A precedes the left corner of B. Quite
a complex query has to be used in Netgraph to translate this type of precedence,
nevertheless, for the sake of comparing the power of the query languages, it can be done:

“A precedes B with at least distance 1”:

In TigerSearch: o .* B

In Netgraph: [depth=0] ([A, transitive=true] ([transitive=true, #sons=0, name=N1],
[transitive=true,ord<{Nl.ord}, #occurrences=0, #sons=0]),
[B, transitive=true]

85

6 Notes on the Query Language

([_transitive=true, #sons=0, #occurrences=0,ord<{N2.ord}],
[transitive=true, #sons=0, name=N2,ord>{Nl.ord}]))

“A precedes B with a distance at least n (n>0)":

In TigerSearch: 2 .n B
In Netgraph: as above, with ord={N1.ord}+n in the last line; we assume that the values of
the attribute ord increase by one for the terminals.

“A precedes B with a distance between m and n (0<m<n)”*:

In TigerSearch: 2 .m,n B
In Netgraph: similarly, with ord<{N2.ord}+n in the first line and ord>{N1.ord}+m in
the last line

“There is a secondary edge from A to B”

In TigerSearch: A >~ B
In Netgraph: [depth=0] ([B, name=N1, transitive=true],
[A, transitive=true,s.rf={N1l.id}])

Where s. rf is a referential attribute for the secondary edge.

There are several predicates for the declaration of brothers in TigerSearch. These can be
easily translated to Netgraph, both in the positive and negative sense, by creating a mutual
father of the nodes, or respectively, by creating two different fathers of the nodes. A
combination of brotherhood and precedence can also be transformed, similarly to the
predicate for precedence (. *”) above.

Negation

All variables/node patterns in TigerSearch are existentially quantified. Therefore, the
expression “A does not directly dominate B” (2 !> B) means “A and B appear in the tree
but A does not directly dominate B”. The full negation cannot be expressed in TigerSearch.
This “weak” type of negation can be translated to Netgraph using the “real” negation and the
existence of the node B somewhere else in the tree. Let us give one example of the
translation:

“A does not directly dominate B”:

In TigerSearch: 2 !> B

In Netgraph: [depth=0] ([A, transitive=true] ([B, #occurrences=0]),
[B, transitive=true])

Graph Description

TigerSearch uses restricted Boolean expressions over node relations and node descriptions
for the further description of the query. Negation is not allowed, only conjunction (” &) and

86

6 Notes on the Query Language

disjunction (” |) are supported.

Since negation is not allowed, Netgraph can translate graph descriptions from TigerSearch in
their disjunctive normal form without negation using multi-tree queries with relation OR. For
the “inner” relation AND it can use the transitive dependency on the root-node, for example:

In TigerSearch: (A &« B) | (C & D)

In Netgraph: OR
[depth=0] ([A, transitive=true], [B, transitive=true])
[depth=0] ([C, transitive=true], [D, transitive=true])

In the terms of the power of the graph description, the two tools are equal.

Variables

TigerSearch uses variables to bind values of attributes of different nodes. It can be translated
to Netgraph using references.

Graph Predicates

TigerSearch defines several graph predicates; it uses variables for identifying a node that the
predicate applies to; for the sake of simplicity, we use labels like A and B in the previous
examples:

“A 1s the root”:

In TigerSearch: root (2)
In Netgraph: [A, depth=0]

“A has from m to n sons’:

In TigerSearch: arity (A, m,n)
In Netgraph: [A, #sons=m|...|n]

“A dominates from m to n leaves™:

In TigerSearch: tokenarity (A, m,n)
In Netgraph: [A] ([transitive=true, #sons=0, #occurrences=m|...|n])

“A only dominates leaves that form a continuous string”:

In TigerSearch: continuous ()
This predicate cannot be translated to Netgraph.

“A dominates leaves that do not form a continuous string””:

In TigerSearch: discontinuous ()
This predicate cannot be translated to Netgraph.

87

6 Notes on the Query Language

Let us finish the comparison of the expressive power of the two tools. We have shown that
TigerSearch has a few features that cannot be translated to Netgraph. Let us look on the
opposite direction — what the disadvantages of TigerSearch in comparison with Netgraph are.

The most serious disadvantage of TigerSearch is without a doubt its lack of real negation.
All nodes used with negative predicates have to appear somewhere else in the tree.

Also other examples of queries in Netgraph that cannot be translated to TigerSearch can be
found. Just like with TGrep2, it is impossible to set a condition on a path of nodes of an
arbitrary length in TigerSearch, i.e. generally translate queries from Netgraph with the meta-
attribute optional set to the value true.

We can conclude, similarly to the comparison with TGrep2, that neither of the query
languages (TigerSearch or FS Query Language) is superior to the other. Neither all queries
from TigerSearch can be translated to Netgraph, nor all queries from Netgraph can be
translated to TigerSearch.

6.5.5 Why Is It So Complex in Netgraph?

Some of the translations from the other tools to Netgraph may seem very complex,
sometimes much more complex than the original expressions in the other tools.

The main reason is that we matched the predicates from the other tools. It is clear that
Netgraph that uses a different set of features cannot be as straightforward as these tools in
mimicking their predicates. For our purpose of comparing the expressive power, it is
sufficient that the translation exists. We also believe that in Netgraph, even the complex
expressions remain well readable when displayed in the graphical form (to save space, we
always used the textual form in this section).

If we tried to translate simple Netgraph expressions to the other tools, we might get similarly
complex translations. For example, searching for nodes A that have two or three sons is quite
straightforward in Netgraph (since we have a convenient meta-attribute at our disposal),
while in TGrep, we have to rephrase it indirectly and much less intuitively by defining that
there are two sons of A of any kind but there are not four sons of A of any kind:

In Netgraph: [A, #sons=2]3]
In TGrep: A <2 1<4

6.6 Universality

Netgraph has been primarily developed for the Prague Dependency Treebank. Nevertheless,
it can be used for any other linguistic treebank, as long as the treebank is converted to FS
File Format (described shortly in Section “4.1 - The Format* and in detail in “Appendix B:
FS File Format Description”), and as long as its size does not substantially exceed the size of
PDT 2.0 (for the sake of the search speed; see the discussion of the search speed in
Subsection 9.2.2). The features of the query language are general enough for other
dependency treebanks, and as shown in the previous section (6.5), it can also be used for
constituent-structure treebanks.

We have described in Chapter “4 - The Data* how to adapt the tool for a treebank — by a

88

6 Notes on the Query Language

declaration of attributes of the treebank in the file header, by creating a configuration file for
all references (secondary edges etc.) in the data, and by adding some necessary information
to the data (like an attribute for left-right order of nodes in the tree etc.).

Several examples of usage of Netgraph for other treebanks are given in “Appendix E: Other
Usages of Netgraph”.

6.7 Feedback From Users

During the years of development, Netgraph has been used by many users. Their feedback
influenced the way the query language and also the tool developed.

Several seminars have been organized during the past years with frequent users of Netgraph.
They had prepared linguistic phenomena they wanted to search for, and during the seminars,
we tried to create queries in Netgraph that would search for those phenomena. If it was not
possible, we discussed what new features might be introduced to Netgraph Query Language
in order to satisfy the requirements. If it was possible to create a query but the query was too
complex, we also tried to figure out what new feature of the query language would make the
query simpler.

A lot of inspiration has also come from using Netgraph for other treebanks than PDT 2.0.
Netgraph has been used both for dependency and constituent structure treebanks, and for
several languages, e.g. Arabic, Chinese, Latin, Slovak, English etc. Some of these usages for
other treebanks are related in “Appendix E: Other Usages of Netgraph*.

Let us give an example of a feature introduced to simplify the query language at a request
from the users. The following query searches for all non-projective constructions on the
analytical layer:

OR

[1([transitive=exclusive, name=N1l], [transitive=exclusive,ord<{Nl.ord}] ([ord>{Nl.ord}]))
[]([:transitive:exclusive,:name:N2],[:transitive:exclusive,ord>{N2.ord}]([ord<{N2.ord}]))
[name=N3] ([transitive=true, ord<{N3.ord}] ([ord>{N3.ord}]))

[name=N4] ([transitive=true,ord>{N4.ord}] ([ord<{N4.ord}]))

The graphical representation of the query was given in Chapter 5. The query consists of four
trees, representing possible configurations of a node and an edge causing the non-
projectivity.

The query is not simple, yet before the value exclusive of the meta-attribute
_transitive was introduced, it consisted of ten trees and was much more complex:

OR

[1 ([ord<{Nla.ord}] ([ord>{Nla.ord}]), [name=Nla])

[1([]1([transitive=true,ord<{Nlb.ord}] ([ord>{Nlb.ord}])), [name=Nlb])

[]1 ([ord<{Nlc.ord}] ([ord>{Nlc.oxrd}]), [] ([transitive=true, name=Nlc]))
[1([]([_transitive=true,ord<{Nld.ord}] ([ord>{Nld.ord}])), [] ([_transitive=true, name=N1d]))
[1 ([ord>{N2a.ord}] ([ord<{N2a.ord}]), [name=N2a])

[1([]1([transitive=true,ord>{N2b.ord}] ([ord<{N2b.ord}])), [name=N2b])

[1 ([ord>{N2c.ord}] ([ord<{N2c.ord}]), [] ([transitive=true, name=N2c]))

[1([] ([transitive=true,ord>{N2d.ord}] ([ord<{N2d.ord}])), [] ([transitive=true, name=N2d]))
[name=N3] ([transitive=true,ord<{N3.ord}] ([ord>{N3.ord}]))

[name=N4] ([transitive=true,ord>{N4.ord}] ([ord<{N4.ord}]))

89

6 Notes on the Query Language

Let us focus on the first tree of the first query:
[1([_transitive=exclusive, name=N1], [transitive=exclusive,ord<{Nl.ord}] ([ord>{Nl.ord}]))
With the graphical form:

O em o

I

ord<{N1l.or transitive=exclusive

_transitive=exclusive

ord>{N1l.ord}

It represents the configuration of a node and an edge forming a non-projective construction
where the node (N1) does not lie on the path from the edge to the root and the left node of
the edge is the father of the right node. The value exclusive of the meta-attribute
_transitive makes sure that no nodes of the two transitive edges are shared. Therefore,
the node N1 cannot belong to the subtree of the non-projective edge.

With only the value true of the meta-attribute _transitive available, this is much more
complicated to achieve. If we simply used transitive=true instead of
_transitive=exclusive, the node N1 might be a son of any of the two nodes of the
non-projective edge (the edge might not be non-projective then), because the true transitivity
would only say that the node N1 could appear anywhere in the subtree of the root of the
query. In fact, four query trees must be used instead of the one with the exclusive transitivity,
to make sure that this cannot happen:

[] ([ord<{Nla.ord}] ([ord>{Nla.ord}]), [name=Nla])

[1([]1([transitive=true,ord<{Nlb.ord}] ([ord>{Nlb.ord}])), [name=Nlb])
[1([ord<{Nlc.ord}] ([ord>{Nlc.ord}]), [] ([transitive=true, name=Nlc]))
[1

([]([7transitive:true,ord<{N1d.ord}]([ord>{ﬁid.ord}])),[]([7trghsitive:true,7name:N1d]))
With the graphical form:
ord<{Nla.ordf—name=N1la _hame=N1b
ord>{Nla.ord} ord<{N1lb.ord}

_transitive=true

ord>{N1lb.ord}

ord<{N1lc.or N
ord<{N1ld.o

o
_transitive=true

_transitive=true ord>{N1lc.ord}
_hame=N1lc

ord>{N1ld.ord}

These four trees substitute one tree with the exclusive transitivity. The root of the query has
always two non-transitive sons that make sure that their transitive subtrees are disjoint. It can
also happen that any of these two sons is already a part of the non-projective edge or the

90

6 Notes on the Query Language

non-projective node. Since a transitive edge in Netgraph cannot have zero length (the father
and the son of a transitive edge cannot merge into one node in the result tree), four trees with
four different configurations are needed, as presented.

The introduction of the value exclusive of the meta-attribute transitive makes the
query not only much simpler but also much more intuitive.

91

7 The Tool

7 The Tool

We have implemented Netgraph Query Language in a search tool called Netgraph. As a
basis, we used Netgraph 1.0, a simple tool described in Chapter 2 in Section “2.2 - Netgraph
1.0 — The Starting Point*.

A short description of the installation and usage of the tool can be found in “Appendix F:
Installation and Usage of Netgraph — A Quick How-To*. The tool itself, as well as a detailed
manual and the technical documentation, can be found on the attached CD-ROM.

In this chapter, we concentrate on the properties that are important for a search tool for
PDT 2.0. We also discuss changes since version 1.0 of the tool and mention its known bugs.

7.1 Properties of the Tool

We present a list of features that we consider important for a search tool for a treebank,
especially for the Prague Dependency Treebank 2.0. We do not include general features that
can be expected from any graphically oriented tool, like saving or printing capability. We
rather focus on features that are connected with searching in treebanks. All these features
have been implemented in Netgraph, so we present them this way. Some of the features were
implemented on a request from users:

e client-server architecture

With the client-server architecture, data can reside at one place in the Internet.
Multiple users (clients) can access the server simultaneously (Mirovsky, Ondruska
2002a, Mirovsky et al. 2002b). The version control has been implemented in the tool,
in order to keep the server and the client compatible.

e authentication of users

In order to protect the data, the authentication of users is available. Each user gets a
login name and a password to access the server. Different users can have different
permissions (maximum number of found trees, a permission to change the password,
a permission to save the result trees to the local disc).

e graphical creation of the query

Especially for non-programmers, a graphical creation of the query, in our case a full
implementation of Netgraph Query Language, is important.

e browsing the result trees

Obviously, users have to be able to browse the result of a query. A graphical
representation of the trees is again an important feature. It includes displaying
coreferential arrows and other references, as well as hidden nodes on request.

e access to context trees

Since the annotation on the tectogrammatical layer captures the linguistic meaning of
the sentence in its context, the context of the sentence has to be accessible as well.
The tool allows displaying context trees in both directions (forward and backward).

92

7 The Tool

e chained queries

To refine a result of a query, another query can be set on top of the previous query.
The second query searches only in the result of the previous query. This way, queries
can be chained unlimitedly.

e inverted search

Some queries can be much simpler if the inversion of matching is available. We can
simply define a query that represents a phenomenon that we do not want in the result
trees and invert the search. Only trees that do not match the query become a part of
the result.

e search only for the first occurrence in each tree

If we are only interested in the result trees and not in multiple occurrences of a query
in the result trees, a possibility to search only for the first occurrence in the result
trees can be useful. Although the tool allows to browse the result trees in such a way
that multiple occurrences of a query in one tree are skipped, they are still searched
for (thus the search slows down); searching only for the first occurrence makes the
search faster. It is also very useful for chained queries if the subsequent query does
not search in several same trees representing multiple occurrences of the previous
query in one tree.

e removing trees from the result

Sometimes, it is difficult to refine a query further to obtain the exact set of result
trees a user wishes. Therefore, a possibility to remove an unwanted result tree from
the result is available (e.g. before the result is saved to the local disc).

e right-left trees

Some languages, like Arabic, require right-left ordering of nodes in the trees, as well
as of the tokens in the sentence. The tool has to offer this feature.

e multi-language support

UTF-8'® has become a standard in coding characters of natural languages. Thanks to
this universal coding, all major languages are supported in Netgraph, even at the
same time (in one corpus).

e basic statistics

The tool has to provide at least the most basic statistics about the result. It provides
the following numbers: number of searched trees, number of found (result) trees,
number of found occurrences in the found trees (see Section 6.4), and also number of
the actually displayed tree/occurrence.

e external command

For further processing of the found tree, an external command can be run from the
tool. Several variables for identifying the file, the tree and the position in the tree are

16 UTF-8 (http://www.utf-8.com) stands for Unicode Transformation Format-8. It is an octet (8-bit) lossless
encoding of Unicode characters (http://www.unicode.org).

93

7 The Tool

substituted before the external command is launched.!”
e speed/portability

For the server, speed is the most important factor. Therefore, C programming
language'® (Herout 2002) has been chosen for the implementation.

On the other hand, the most important factor for choosing the programming language
for the client is portability. Java 2'° (Eckel 2006) belongs to the best portable
programming languages and it has also a very good support for various natural
languages; it uses its own fonts and supports UTF-8 very naturally. Therefore, Java 2
has been chosen as a programming language for the client.

7.2 Changes since Version 1.0

The actual version of Netgraph is 1.93. We call the original version of Netgraph
programmed by Roman Ondruska (described in Chapter 2 in Section 2.2) Netgraph 1.0.
Here, we describe the main changes that have been done to the tool since this 1.0 version.

Let us start with several numbers representing code lines. Netgraph Client 1.0 had 1 526
lines of code. Netgraph Client 1.93 consists of more than 21 thousand lines. Netgraph Server
1.0 had 3 973 lines of code. Netgraph Server 1.93 has more than 11 thousand lines.

The following lists contain the most principle changes that have been done since the version
1.0. The first list describes extensions to the query language, the second list describes
changes in the tool. A complete and more technically oriented list of the changes can be
found on the attached CD-ROM in the technical documentation.

7.2.1 Main Extensions to the Query Language

Meta-attributes have been introduces to the system.

References to values of attributes of (other) nodes can be set in the query.
Regular expressions in values of attributes can be used.

Other relations than equation can be used for setting values of attributes.
Arithmetic operations in numerical values of attributes can be used.
Multi-tree queries are supported.

Support for hidden nodes has been added.

7.2.2 Main Extensions to the Tool

e The tool now supports the tectogrammatical trees (hidden nodes, coreferences), both
in searching and displaying; a configuration file defining how to display individual
references is available.

e Authentication of users has been implemented.

17 With a suitable configuration, e.g. the analytical tree corresponding to the actually depicted
tectogrammatical tree can be opened in TrEd using the external command.

18 GCC compiler of C programming language has been used (http://gcc.gnu.org/)

19 http://java.sun.com

94

7 The Tool

Queries can be chained.
The matching of a query can be inverted.

History of queries is created; queries or the whole history can be saved to the local
disc; a list of selected files for searching can also be saved.

Result trees can be printed or saved to the local disc.
The tool now supports the UTF-8 encoding.
Right-left trees are supported.

Version control has been implemented.

A query is created in a fully graphical way.

Basic statistics about the search are provided.
Context trees can be displayed.

Individual trees can be removed from the result.

An external command with variables substitution can be launched from the tool.

7.3 Bugs

In the course of development, bugs (errors in program) are discovered (often by users) and
subsequently fixed, while new bugs are involuntarily introduced to the system, again to be
discovered and fixed. It is probably never possible to create a completely bug-free program,
unless the program is a trivial one.

In the current version of Netgraph (1.93), there is one known, quite important but not yet
fixed bug. In resolving references, only the first value of alternative values of a node in the
searched trees is taken into account. It means that if a reference to a value of an attribute of a
node is used in the query, the reference is replaced by the first value found in the result tree
and possible alternative values of the same attribute of the same node are ignored.

Thus, e.g. the following query, searching for nodes (N1) that have two different effective
linguistic fathers, is not processed correctly:

AND

[id={Nl.eparents}]

[id={Nl.eparents}]

[name=N1]

Both references are resolved only with the first value of the attribute eparents of the node
N1. If there is an alternative value, pointing to the second effective father, it is never used.
Therefore, the query finds no trees.

95

8 Real World

8 Real World

After we have presented all features of Netgraph Query Language and shown what can be
searched for with the language, it might be interesting to know to what extent the features are
put to use by the users and what the users really do search for. There are about 40 registered
users and an anonymous access to the server for PDT 2.0 is also available.

Since October 2002, the Netgraph server stores all queries to a log file. By then, only the
analytical trees were searched through in Netgraph. Since February 2005, also the
tectogrammatical trees (though not publicly released yet) have been made available in
Netgraph for the internal usage of our institute, and later (after PDT 2.0 publication) the
tectogrammatical trees were made available for the registered public users, too.

From these two servers (the analytical and the tectogrammatical trees), all queries entered by
users have been stored in log files. However, we have not had access to queries that had been
processed on local installations of the Netgraph server, e.g. on notebooks, which are quite
numerous. All the following numbers come only from the two public servers mentioned
above (from the dates stated above up to March 24, 2008). For obvious reasons, before any
statistics were counted, we excluded all queries that we had entered.

Number of: Total Analytical Trees Tectogrammatical
Trees
all queries 16870 10299 6571
one-node queries 10146 | 7180 | 2966 |
‘structured queries (more than one node) H 6 724 H 3119 H 3 605 ‘
queries without a meta-attribute 15575 9989 | 5586
queries with a meta-attribute 1295 310 985 |
| _transitive | 174 | 81 | 93
. _optional | 172 | 18 | 154 |
- _#isons | o1 | 2 | 69
~_#hsons | 36 - 36
~_depth | 51 1 40
‘ _#descendants H 103 H 24 H 79 ‘
- _#lbrothers | 35 25 | 10 |
- _#rbrothers | 1 0o 1|
‘ _#occurrences ‘ ‘ 197 ‘ ‘ 12 ‘ ‘ 185 ‘
. _name | 397 116 | 281 |
‘ _sentence ‘ ‘ 28 ‘ ‘ 1 ‘ ‘ 27 ‘
‘queries with a reference H 363 H 110 H 253 ‘
‘queries with a hidden node H 1194 H - H 1194 ‘
‘queries with an alternative value H 884 H 314 H 570 ‘

96

8 Real World

Number of: Total Analytical Trees Tectogrammatical
Trees

“queries with an alternative node H 94 H 19 H 75 ”

The table shows numbers of queries using various features of the query language, both on
the analytical layer and on the tectogrammatical layer. The total usage is also counted.

Some values in the table should be equal but they are not. The number of queries that use the
meta-attribute name should be equal to the number of queries that use a reference. The
discrepancy is caused by errors in some queries (e.g. queries that contain a named node but
the name is never used).

8.1 The Queries

We present a representative selection of queries put in by the users. Examples from the
analytical layer are typed in italic, examples from the tectogrammatical layer are typed in the
regular font.

8.1.1 One-Node Queries

Most of one-node queries on the analytical layer are also one-attribute queries, queries
setting only one attribute, most often m/form or m/1emma, occasionally m/tag or afun,

e.g..
[m/form=chlapec]
[m/form=kluk]
[m/form=nejspis*]
[m/lemma=plzeriské]
[m/lemma=plzerisky]
[m/tag=Vf*]
[afun=AtvV]

One node queries that combine several attributes, mostly used for studies of word class
(POS) conversion, also use mainly the attributes m/form, m/lemma, m/tag, and afun:

[m/lemma=vedouci,m/tag=NN*]
[m/lemma=vedouci,m/tag=A*]
[m/lemma=vedouci,m/tag=N*,afun=Atr*]
[m/lemma=vedouci,m/tag=A*,afun=Atr*]
[m/tag=N*,m/form=vzhledem]
[m/tag=R*,m/form=vzhledem]
[m/lemma=vecler,m/tag=N*]

[m/lemma=vecler,m/tag=D*]

97

8 Real World

[m/lemma=veler,afun!=Atr|Adv]

[afun=AtvV,m/tag=A*]

[afun=AtvV,m/lemma=sdm]

The attribute t 1emma is the most often used attribute in one-node queries on the

tectogrammatical layer. Also the attribute functor and various grammatemes are
frequently used:

[t lemma=proménit] | [t lemma=proménovat]
[t lemma=plvodni, functor=TWHEN]

[t lemma=podobny|stejny, functor=PREC]
[t lemma=séam, functor!=COMPL|RSTR]

[functor=APPS|CONFR|CONJ|CONFR|CONTRA|CSQ|DISJ|GRAD|OPER|REAS|
ADVS]

[functor=ACT, is generated!=1, gram/sempos=v]

[gram/sempos=v, gram/aspect=cpl, gram/tense=ant, gram/verbmod=nil, gra
m/person=3]

8.1.2 Structured Queries without Meta-Attributes

Structured queries on the analytical layer much more often use the attributes m/tag and
afun and less the attributes m/form and m/lemma. The following examples are typical
queries without meta-attributes:

a noun valency:

[m/lemma=vzkaz] ([m/tag=N???3%])

infinitive constructions, dependent on atypical verbs:

[m/tag=A*,afun=Pnom] ([m/tag=Vf*,afun=0bj])

[m/tag=Vf*,m/lemma!=byt|lze|muset|moci|chtit|umét|smét|dovést]|
potrebovat|zacdit|zacdinat|prestat|nechat|hodlat| jet|jit|odmitat|
potrebujul|prijet|prijit|chodit|dokdzat|ddt|ddvat|mit]|stacit]|
nechdvat|umozriovat] ([m/tag=Vf*] ([m/lemma=se]))

comparative constructions:

[m/form=*&5j1i] ([m/form=neZ])

coordination:

[m/tag="Vp.*"] ([afun=Coord] ([afun=Sb,m/tag="NNF.*"],
[afun=Sb,m/tag="NNM.*"]))

On the tectogrammatical layer, the attribute functor is undoubtedly the most often used
attribute in the structured queries. Grammatemes and the attribute t 1emma are also widely
used. Other attributes are used less frequently, depending on the phenomena they describe.
The following examples represent queries without meta-attributes on the tectogrammatical
layer:

98

8 Real World

topic-focus articulation and systemic ordering:

[functor=PRED] ([functor!=ADVS|APPS|CONFR|CONJ|CSQ|DISJ|GRAD|OPER]
([tfa=c]))

[] ([functor=TWHEN, tfa=f], [functor=L0OC, tfa=£f])

coordination:

[functor=CONJ] ([functor=PRED] ([functor=ACT]), [functor=PRED]
([functor=ACT]), [functor=PAT])

multiple adverbial time complement, combination of time modifications:
[functor=TWHEN] ([functor=TWHEN, gram/sempos=adj.denot])

[gram/sempos=v] ([functor=TSIN, gram/sempos!=n.quant.def]
([gram/sempos!=n.quant.def]), [functor=TTILL, gram/sempos
=n.quant.def] ([gram/sempos!=n.quant.def]))

valency of verbs, co-occurrence of valency members:

[gram/sempos=v] ([functor=ACT], [functor=ADDR], [functor=EFF],
[functor=0RIG], [functor=PAT])

8.1.3 Queries with Meta-Attributes

The following examples show typical queries (put in by users) that use meta-attributes, both
on the analytical layer and on the tectogrammatical layer. Sometimes, interesting examples
of queries could only be found on one of the layers. The queries are divided into sections by
the principal meta-attribute; nevertheless, many queries use several meta-attributes at once.
Again, examples from the analytical layer are typed in italic, while examples from the
tectogrammatical layer are typed in the regular font:

_transitive

The meta-attribute _transitive is most often used to express possibly non-direct
dependencies between nodes.

non-projectivity:
[name=nl] ([ord<{nl.ord}, transitive=true] ([ord>{nl.ord}]))

relative position of a noun and an enclitic in a subordinate clause:

[m/form=Ze] ([] ([transitive=true,m/tag=N.*, name=N1], [m/form=by|
se|lmu|mi|silho,ord>{Nl.ord}, transitive=true]))

surface word order:

[afun=Pred] ([name=N1,afun=Adv, transitive=true],
[ord<{Nl.ord}, #occurrences>=1, transitive=true])

possibly deep nested modifier:
[functor=PRED,t lemma=byt] ([] ([t lemma=téZky, transitive=true]))

nodes without the adnominal adjunct in their subtree:

99

8 Real World

[functor!=RSTR] ([functor=RSTR, #occurrences=0, transitive=true])

grammatical coreference:

[functor=PRED, gram/sempos=v] ([name=N1l, transitive=true],
[transitive=true,gram/sempos=v,gram/verbmod=nil]
([functor=ACT, coref gram.rf={Nl.id}]))

_optional
On the analytical layer, the meta-attribute optional is generally used to skip one node,

most often a preposition, a coordination or an apposition:

valency on surface (three objects with prepositions (in two cases optional)):

[m/tag=V*] ([afun=AuxP,m/lemma=za] ([afun=0bj]),
[afun=AuxP, optional=1] ([afun=0bj]), [afun=AuxP, optional=I1]
([afun=0bj]))

coordination/apposition:

[m/tag=N*] ([afun=Coord, optional=1]| [afun=Apos, optional=1]
([m/tag=N???3%]))

On the tectogrammatical layer, also usually one node of certain type is skipped (the value
true has only recently been introduced to the language and has not yet been widely used by
the users, at least on the public server®):

coordination etc.:
[t lemma=zajem] ([functor=CONJ, optional=1] ([functor=PAT]))

[functor=PRED] ([nodetype=coap, optional=1]
([functor=CNCS, gram/sempos=v]))

topic-focus articulation:

[functor=PRED] ([functor=ADVS|APPS|CONFR|CONTRA |CONJ|GRAD|CSQ|REAS |
OPER, optional=true] ([] ([tfa=f])))

_#sons

The meta-attribute _#sons is often used to study “extreme cases” of how a type of node can
be modified.

valency of verbs:

[gram/sempos=v] ([#sons>5])
leaf of the tree:
[functor=LOC] ([#sons=0, functor=PAR])

20 To be exact, the expression optional=true used to have the same meaning as optional=1 has
now and it was the only possible usage of the meta-attribute. The old examples of queries have been
modified to comply with the recent semantics of the query language.

100

8 Real World

type of node (phraseme) with any modification:

[nodetype=dphr, #sons>0]

_depth

The meta-attribute depth is usually used as an auxiliary attribute, e.g. with the meta-
attribute _sentence, to avoid an unwanted multiplication of results. Only occasionally,
users are directly interested in some levels in the result trees.

topic-focus articulation at certain levels:
[tfa=c, depth=2]

[functor=ADVS|CONFR|CONJ|CSQ|DISJ|GRAD|OPER|REAS |APPS|CONTRA]
([tfa=c, depth=3])

technical usage with the meta-attribute _sentence:
[sentence=".*na zakladé .*", depth=0]
with the meta-attribute #descendants to search for small results with a given functor:

[#descendants<=11, depth=1] ([functor=AIM, gram/sempos=v])]

_#descendants

The meta-attribute _#descendants is most often used to set the minimal or maximal
(sometimes exact) size of the whole tree (as in the previous example with the meta-attribute
_depth), or of a subtree of a certain node, representing a linguistic phenomenon.

exact size of a subtree:
[afun:Pred,_#descendants:5|6|7|8]([afun:Obj]([m/lemma:svﬁj]))
leaf of the tree:

[functor=CONJ] ([functor=ADDR, t lemma=#PersPron, #descendants=0])
small trees or subtrees containing specific information:

[functor=PRED,_#descendants<=10]([nodetype=coap,_optional=1]
([functor=CNCS, gram/sempos=v]))

[t lemma=vidét] ([functor=PAT,gram/sempos=v, #descendants<=3])
big trees or subtrees:
[#descendants>12, functor=PRED] ([sempos=v, functor=AIM])

_#lbrothers, #rbrothers

The meta-attributes #1brothers and #rbrothers are used to study phenomena related
to the left-right order of sons of a node; on the analytical layer, it corresponds closely to the
surface word order, on the tectogrammatical layer, the order of nodes reflects the
communicative dynamism.

101

8 Real World

position of an enclitic:

[] ([afun!=AuxX|AuxG|AuxC, #lbrothers=0],
[m/lemma=se, #lbrothers>1])

topic-focus articulation:
[depth=1] ([tfa=c, #lbrothers>0])
rhematizers, their position:

[functor=PRED]([functor=RHEM,t_lemma=také,_#lbrothers:o])

[] ([_name=N1, functor=RHEM],

[#occurrences=0, deepord<{N2.deepord}, #lbrothers>0],
[name=N2, deepord>{Nl.deepord}])

[functor=PRED, name=N1]
([deepord<{Nl.deepord}, name=N2, functor=RHEM, t lemma!=#Neg],

[deepord<{Nl.deepord}, #rbrothers<{N2. #rbrothers}, #occurrences=
01)

_#occurrences

The meta-attribute #occurrences is most often used to study valency of words or classes

of words. It is most frequently (but not only) used to forbid a presence of a certain son
(_#occurrences=0) of a node.

surface valency:
[] ([afun=0bj, #occurrences>1])

[afun!=AuxS,m/form!=zZe|aby|at’| zda|ad|ackoli*|kdyz|jako| jestlize]|
jelikoz| kdyby| kdyZz| nebot’| pokud|protoze|prestoze|takze|zatimco]
([_optional=l,afun:CoordlApos]([m/tag=VB*|?c*l?e*l?i*l?m*l?p*l?
g*| ?s*| ?t*] ([m/tag=2K*| 2u*| 2Y*| 24*| 2J*| ?PE*| 2z*| 2Q0%*|
TT*,_#occurrences=0],[m/form=jak|kamlkdelkudyl
proc¢, #occurrences=0])))

valency, co-occurrence of related functors:
[gram/sempos=v]([functor:LOC,_#occurrences>=3])
[]([functorzDIRl],[functorzDIRB,_#occurrences=0])
systemic ordering near the verb (in combination with references):

[functor=PRED, name=N1l] ([deepord<{Nl.deepord}, name=N2],
[deepord<{Nl.deepord}, #rbrothers<{N2. #rbrothers}, #occurrences=
01)

_name

See Subsection “8.1.4 - Queries with References® below.

102

8 Real World

_#hsons

See Subsection “8.1.5 - Queries with Hidden Nodes* below.

_Sentence

As expected, the meta-attribute sentence is used to search in the linear form of the
sentence for a sequence of words, mainly on the tectogrammatical layer.

[sentence=".*\[Nn\]a zdkladé.*"]

[_sentence="éeské televize.*", depth=0]

8.1.4 Queries with References

References are widely used by the users, more often on the tectogrammatical layer, as there
are more complex phenomena annotated there.

binding a form and a lemma together:

[name=N1,lemma={NI1.form}]

word order:

[afun=Pred, name=NI1] ([afun=Sb,ord>{NIl.ord}])

[m/tag=N*, name=N1] ([m/lemma=ten,ord={N1.ord}-3])
[ord>{N2.ord},m/tag="Vf.*"]([m/tag:"Vf.*",_name:NZ,ord>l])
non-projectivity:

[name=nl] ([ord<{nl.ord}, transitive=true] ([ord>{nl.ord}]))

[

] ([_transitive=exclusive, name=N1,t lemma!=#*],
[transitive=exclusive,deepord>{N1l.deepord}]
(

[deepord<{Nl.deepord}]))
topic-focus articulation:
[functor=PRED] ([tfa=t, name=N1l], [deepord={Nl.deepord}+1, tfa=1f])
[] ([is _member=1, name=N1l], [is member=1l,tfa!={Nl.tfa}])
rhematizers:

[] ([name=N1, functor=RHEM],
[#occurrences=0,deepord<{N2.deepord}, #lbrothers>0],
[name=N2, deepord>{Nl.deepord}])

communicative dynamism in conditional expressions:

[functor=PRED] ([functor=COND, deepord<{N1l.deepord},gram/sempos!=v],
[functor=PAT, name=N1])

re-generated node with the same t lemma:

[]1 ([_name=N1l,is generated!=1],
[is generated=1,t lemma={Nl.t lemma}])

103

8 Real World

coreference:

[] ([functor=ACT, name=N1], []
([functor=ACT,coref gram.rf={Nl.id},t lemma=#Cor]))

8.1.5 Queries with Hidden Nodes

Of course, queries with hidden nodes only appear on the tectogrammatical layer. Most
queries combine attributes from several layers, fewer queries only use attributes from the
hidden nodes. In all the queries, users are either interested in the surface representation of a
tectogrammatical phenomenon, or in a linguistic meaning (tectogrammatical annotation) of a
surface expression.

specific words deleted on the tectogrammatical layer:

[m/lemma=zatimco, hide=true]

conditional expressions:
[gram/sempos=n.denot] ([functor=COND] ([hide=true,m/form=pokud]))

[functor=PRED] ([functor=COND] ([m/lemma=kdyby,hide=truel]),
[t lemma=#Gen, functor=ACT])

subtype of subject clauses:

[t lemma=byt,gram/verbmod!=cdn]
([functor=PAT, gram/sempos=adj.denot], [gram/verbmod=1ind |
cdn, functor=ACT] ([m/lemma=aby,hide=true]))

surface form with (or without) a given meaning (correlative expressions):
[t lemma=ten, #hsons=1, functor!=MEANS |MANN]

([hide=true,m/form=tim])

reference to a preceding context with a specific dependency:

[functor!=PRED, nodetype!=coap, #hsons=1] ([functor=PREC],
[hide=true,m/tag!=V*])

re-generated verb with the same t lemma:

[] ([name=N1l,is generated!=1] ([hide=true,m/tag=v*]),
[is generated=1l,t lemma={Nl.t lemma}])

specific functor (cause, location) expressed with a given number of surface words:
[functor=CAUS,_#hsons>3]([a/afun=AuxC,hide=true])
[functor=LOC, #hsons=3]

topic-focus articulation of specific words (pronouns with the stress):

[tfa=t] ([hide=true,m/form=jemu|jeho|mne |mné|tebe|tobé|sebe|
sobé&,m/tag!=PS*])

topic-focus articulation at a specific position in the sentence:
[tfa=c] ([hide=true,a/ord=12])

104

8 Real World

time expression expressed with the accusative:

[functor=TFHL | TFRWH | THL | THO | TOWH | TPAR | TTILL | TWHEN]
([hide=true,m/tag=\"....4.*\"])

specific time expression:
[t_lemma=hodina]([hide=true,m/form=pfed])

Actor expressed as a subject in the genitive:

[functor=ACT] ([hide=true,m/tag="....2.*",a/afun=Sb])
specific expression of a Patient:

[gram/sempos=v] ([functor=PAT] ([hide=true,m/tag!="....
4 FM Y FM "R |"T . *" a/afun!=Pnom|Sb]))

specific type of expression on the surface, noun valency:

[t lemma=obchod] ([] ([hide=true,m/form=s], [hide=true,m/tag="N...
T.*"1))

105

9 Conclusion

9 Conclusion

9.1 What Has Been Done

In the thesis, we have studied the Prague Dependency Treebank 2.0 and created a list of
linguistic phenomena annotated in the treebank that bring a requirement on a query language
for searching in the treebank. We have assembled a list of requirements that any query
language should satisfy in order to fit the Prague Dependency Treebank 2.0.

We have proposed Netgraph Query Language —a simple to use and graphically oriented
language that meets the requirements.

The proposed query language is an extension to an existing query language — a query
language of Netgraph 1.0. The following three features are the most important additions to
the query language:
e meta-attributes — for setting complex types of relation between nodes and complex
properties of the nodes
® hidden nodes — for accessing lower layers of annotation with non-1:1 relation among
nodes

e references — for setting relations between values of attributes of nodes that are
unknown at the time of creating the query

We have shown that the proposed query language really meets the requirements on a query
language for the Prague Dependency Treebank 2.0.

We have discussed properties of the data for the query language and compared the proposed
query language to some other query languages.

We have also studied to what extent the features of the query language have been put to use
by real users and presented representative examples of real-world queries that use the
features.

The proposed query language has been implemented in Netgraph, which is also an extension
to the existing search tool — Netgraph 1.0. Thus, a comfortable, simple to use and fully
graphically oriented client-server system for searching in the Prague Dependency Treebank
2.0 has been created.

9.2 Future Work

9.2.1 The Query Language

We present several ideas about future work on Netgraph Query Language and on the tool as
well. Obviously, no change can be made in the language without changing the tool too. On
the other hand, the tool can be improved while preserving the same query language.

106

9 Conclusion

Simplification

Searching for complex phenomena inevitably leads to complex queries. It is always possible
to extend the query language to support a special operation in a simple way, at the cost of
making the query language more extensive.

Constructions searching for the left-/rightmost node of certain kind can serve as an example.
Let us recall two queries. The query searching for the rightmost descendant of a node in a
tectogrammatical tree:

Choreree - e
o R >®<
_transitive=true deepord>{N1l.deepord}
_hame=N1 _transitive =true

_#occurrences=0

and the query searching for the rightmost left son of a node in a tectogrammatical tree:

e=N1
deepord<{N1l.deepord} deepord<{N1l.deepord}
_name=N2 _#lbrothers>{N2._#lbrothers}

_#occurrences=0

Both construction are defined in a negative way, there has to be a definition of an undesired
node. If we added several special constants to the query language, it might be possible to
create these queries positively and more simply. The constants might be:

‘ Name ‘ ‘ Description

‘C_MAX_T‘ ‘Conditioned maximum possible value in the tree

‘CﬁMAXﬁB‘ ‘Conditioned maximum possible value among brothers

‘C_MIN_T HConditioned minimum possible value in the tree

‘C_MIN_B HConditioned minimum possible value among brothers

‘U_MAX_T‘ ‘Unconditioned maximum possible value in the tree

U_MAX_ Unconditioned maximum possible value among brothers

B

‘U_MIN_T HUnconditioned minimum possible value in the tree

‘U_MTN_B HUnconditioned minimum possible value among brothers

Conditioned constants mean that the maximum value is selected from nodes matching all
other attributes defined at the node, taking also the position of the node in the query into
account (for * T constants). Unconditioned constants mean that the maximum value is
selected regardless of other attributes of the node, i.e. from all nodes in the tree, or from all
sons of the father of the node (not taking the position of the node in the query into account
for * T constants).

107

9 Conclusion

Using the constants, the two queries from above could be considerably simplified. The first
query would search for the rightmost descendant of a node:

-
RS
deepord=C_MAX_T
_transitive=true

The second query would search for the rightmost left son of a node:

deepord<{N1l.deepord}
_#lbrothers=C_MAX_B

If we used the unconditioned constant deepord=U_ MAX T in the first query, it would
search for those cases where the rightmost node in the tree is a descendant of the father-node
from the query.

If we used the unconditioned constant #1brothers=U MAX B in the second query, it
would search for those cases where the rightmost left son of a node is also the rightmost son
of the node.

Further Extensions

More conditions on values of one attribute

One of extensions that might be useful is a possibility do define more conditions on values of
one attribute that should be true at the same time, possibly with different relations. It would
be a counterpart to alternative values of an attribute. This way, we might, for example, create
a query that would search for a node with the morphological tag that is a noun but is not in
the accusative, without using a regular expression. We would specify two conditions that
should be true at the same time: m/lemma=N* & m/lemma!=2272724*.Itis only a simple
example, the query can be actually created using a regular expression without any extension:
m/lemma="N...\[~4\].*". Yet, there might be queries where such an extension would
prove necessary, like defining complex references among nodes. In all tasks in searching in
PDT 2.0, we managed to find another way of defining the required query, nevertheless it is
true that in the current state of the query language we cannot directly define that node A is
on the left side from node B and on the right side from node C. We must define e.g. that A is
on the left side from B and C is on the left side from A. There might be a reasonable query
that cannot be defined this way and the possibility of setting two conditions on one attribute
would help.

More complex logical combinations of trees in a multi-tree query

We tried to make the query language, especially its graphical representation, as simple as
possible. We also had to take into account that the research in this thesis was not only

108

9 Conclusion

theoretical but the proposed query language would have to be implemented. Therefore, and
since the simple AND or OR logical expression combining trees in multi-tree queries proved
sufficient for searching in PDT 2.0, we did not propose more complex logical combinations
in the query language.

Yet, they might be sometimes useful. Purely for technical reasons, implementation of the
disjunctive normal form?®' without negation would be simplest and it might be the first step
towards allowing full logical expressions in combination of trees in a multi-tree queries in
the future. The conjunctive normal form* would require more fundamental changes in the
search algorithm.

Corpus-Wide Comparing and Statistics

Netgraph query language has no support for corpus-wide searching in the sense of
comparing different trees in the corpus. It is not possible to search e.g. for a tree with the
greatest number of nodes in the corpus. Or for a tree with the longest path from the root to a
leaf in the corpus. Yet, some linguists might be interested in such a kind of working with the
treebank. It is of course already possible to set a series of queries, searching first for trees
with more than e.g. 50 nodes, increase the number in subsequent queries and thus finally find
the biggest tree. Nevertheless, a more direct method would be nice.

Also the statistics that are acquired during the searching might be richer. The language might
have support for specifying a part of the query that further statistics might be acquired about.
The query tool might then provide statistics e.g. what types of nodes appear (and at what
counts) at a certain position in the trees. (Thus providing e.g. a list of all possible sons of a
Predicate along with numbers how often they appear.)

9.2.2 Speed

The linear searching implemented in Netgraph is quite sufficient for searching in PDT 2.0.
Most queries are processed within 30 seconds or less (on the Netgraph public server). Only
complex underspecified queries (presenting nodes without definite evaluation of their
attributes) need more processing time.

PDT 2.0 consists of approx. 1.5 million tokens (on the analytical layer). It is unlikely that a
manually annotated corpus might be of a higher-order size. Nevertheless, an automatically
annotated corpus can easily be much larger. For example, the Czech National Corpus
(Cermék 1997) consists of approx. 300 million” tokens. Simple arithmetic shows that
searching in such a large corpus (if it was automatically parsed on the analytical layer) might
take (300/1.5) * 30 seconds = 6000 seconds, which is almost 2 hours. Such a time is of
course unacceptable.

21 A logical formula is considered to be in the disjunctive normal form (DNF) if and only if it is a
disjunction of one or more conjunctions of one or more literals. The only propositional operators in DNF
are AND, OR, and NOT. The NOT operator can only be used as a part of a literal. In our case, a literal
means a tree.

22 A logical formula is considered to be in the conjunctive normal form (CNF) if and only if it is a
conjunction of one or more disjunctions of one or more literals. The only propositional operators in CNF
are AND, OR, and NOT. The NOT operator can only be used as a part of a literal.

23 Czech National Corpus version SYN2006PUB

109

9 Conclusion

There are two possible solutions of the problem and can be implemented separately or
simultaneously:

e parallelization
Since the searching is performed tree by tree independently, there is no problem
in splitting searching of the entire data in many sub-parts.

e indexing
A set of candidate trees from the corpus can be significantly reduced using
indexing of some attributes.

Non of the methods, nor their combination, can solve the problem entirely. Parallelization is
expensive and we can hardly expect to achieve 200 parallel searching processes for each user
(which is the approximate number that would decrease the time of searching through the
parsed Czech National Corpus back to 30 seconds). Indexing can be extremely effective for
queries that specify indexed attributes but becomes useless for underspecified queries
searching for structural phenomena.

9.2.3 Further Improvements

There are many other possible improvements, mainly to the tool, which are often wishes
from users that have been collected during the years of development and usage of Netgraph
and have not yet been implemented. The full To-Do list is much longer, let us only
demonstrate the type of improvements to the tool that users wish, in a short selection from
the To-Do list, without a special order:

displaying list of found sentences

saving/exporting trees in other formats than only FS

highlighting the words in the sentence corresponding with the nodes matching the
query

command-line interface without GUI

better support for external data sources (dictionaries etc.)

support for scripts (plug-ins)

cut and paste in the query

auto-scrolling a large result tree so that a node matching a specified query node is
displayed (especially useful for flat morphological “trees”, trees without a structure
where all nodes depend directly on the root)

110

10 References

10 References

Bird et al. (2000): Towards A Query Language for Annotation Graphs. In: Proceedings of
the Second International Language and Evaluation Conference, Paris, ELRA, 2000.

Bird et al. (2005): Extending Xpath to Support Linguistc Queries. In: Proceedings of the
Workshop on Programming Language Technologies for XML, California, USA, 2005. .

Bird et al. (2006): Designing and Evaluating an XPath Dialect for Linguistic Queries. In:
Proceedings of the 22nd International Conference on Data Engineering (ICDE), pp
52-61, Atlanta, USA, 2006.

Boag et al. (1999): XQuery 1.0: An XML Query Language. IW3C Working Draft,
http://www.w3.org/TR/xpath, 1999.

Brants S. et al. (2002): The TIGER Treebank. In: Proceedings of TLT 2002, Sozopol,
Bulgaria, 2002.

Cassidy S. (2002): XQuery as an Annotation Query Language: a Use Case Analysis. In:
Proceedings of the Third International Conference on Language Resources and
Evaluation, Canary Islands, Spain, 2002

Clark J., DeRose S. (1999): XML Path Language (XPath). http://www.w3.org/TR/xpath,
1999.

%

Cermadk, F. (1997): Czech National Corpus: A Case in Many Contexts. International Journal
of Corpus Linguistics 2, 1997, 181-197.

Eckel B. (2006): Thinking in Java (4" edition). Prentice Hall PTR, 2006.

Hana J., Zeman D., Haji¢ J., Hanova H., Hladka]3., Jetabek E. (2005): Manual for
Morphological Annotation, Revision for PDT 2.0. UFAL Technical Report TR-2005-27,
Charles University in Prague, 2005.

Hajic J. (1998): Building a Syntactically Annotated Corpus: The Prague Dependency
Treebank. In Issues of Valency and Meaning, Karolinum, Praha 1998, pp. 106-132.

Haji¢ J. (2004): Complex Corpus Annotation: The Prague Dependency Treebank.
Jazykovedny ustav L. Stura, SAV, Bratislava, 2004.

Haji¢ J., Vidova-Hladk4 B., Panevova J., Hajicova E., Sgall P., Pajas P. (2001a): Prague
Dependency Treebank 1.0 (Final Production Label). CD-ROM LDC2001T10, LDC,
Philadelphia, 2001.

Haji¢ J., Pajas P. and Vidova-Hladkd B. (2001b): The Prague Dependency Treebank:
Annotation Structure and Support. In IRCS Workshop on Linguistic databases, 2001, pp.
105-114.

Haji¢ J. et al. (1997): A Manual for Analytic Layer Tagging of the Prague Dependency
Treebank. UFAL Technical Report TR-1997-03, Charles University in Prague, 1997.

Hajic J., Panevova J., Buranova E., UreSova Z., Bémova A. (1999): Annotations at analytical
level, Instructions for annotators. Available from http://ufal.mff.cuni.cz/pdt2.0/doc/pdt-

111

10 References

guide/en/html/ch05.html; also available on PDT 2.0 CD-ROM (Hajic et al. 2006), 1999.

Haji¢ J. et al. (2006): Prague Dependency Treebank 2.0. CD-ROM LDC2006701, LDC,
Philadelphia, 2006.

Hajicova E. (1998): Prague Dependency Treebank: From analytic to tectogrammatical
annotations. In: Proceedings of 2nd TST, Brno, Springer-Verlag Berlin Heidelberg New
York, 1998, pp. 45-50.

Hajicova E, Panevova J. (1984): Valency (case) frames. In P. Sgall (ed.): Contributions to
Functional Syntax, Semantics and Language Comprehension, Prague, Academia, 1984,
pp. 147-188.

Hajicova E., Partee B., Sgall P. (1998): Topic-Focus Articulation, Tripartite Structures and
Semantic Content. Dordrecht, Amsterdam, Kluwer Academic Publishers, 1998.

Hajicova E., Havelka J., Sgall P., Vesela K., Zeman D. (2004): Issues of Projectivity in the
Prague Dependency Treebank. MFF UK, Prague, 81, 2004.

Havelka J. (2007): Beyond Projectivity: Multilingual Evaluation of Constraints and
Measures on Non-Projective Structures. In: Proceedings of ACL 2007, Prague, pp.
608-615.

Hazel P. (2007): PCRE (Perl Compatible Regular Expressions) Manual Page. Available from
http://'www.pcre.org/

Herout P. (2002): Ucebnice jazyka C. Kopp 2002.

Hinrichs E. W., Bartels J., Kawata Y., Kordoni V., Telljohann H. (2000): The VERBMOBIL
Treebanks. In Proceedings of KONVENS, 2000.

Kallmeyer L. (2000): On the Complexity of Queries for Structurally Annotated Linguistic
Data. In Proceedings of ACIDCA'2000, Corpora and Natural Language Processing,
Tunisia, 2000, pp. 105-110.

Kepser S. (2003): Finite Structure Query — A Tool for Querying Syntactically Annotated
Corpora. In Proceedings of EACL 2003, pp. 179-186.

Kralik J., Hladka B. (2006): Proména Ceského akademického korpusu (The transformation
of the Czech Academic Corpus). In: Slovo a slovesnost 3/20006, pp. 179-194.

Kien M. (1996): Editor graft. Master Thesis, Charles University in Prague, 1996.

Kucova L., Kolafova-Reznickova V., Zabokrtsky Z., Pajas P., Culo O. (2003): Anotovani
koreference v Prazském zavislostnim korpusu. UFAL Technical Report TR-2003-19,
Charles University in Prague, 2003.

Lai C., Bird S. (2004): Querying and updating treebanks: A critical survey and requirements
analysis. In: Proceedings of the Australasian Language Technology Workshop, Sydney,
Australia, 2004.

Lezius W. (2002): Ein Suchwerkzeug fiir syntaktisch annotierte Textkorpora. PhD. Thesis
IMS, University of Stuttgart, 2002.

Ljubopytnov V., Némec P., Pilatova M., Reschke J., Stuchl J. (2002): Oraculum, a System
for Complex Linguistic Queries. In: Proceedings of SOFSEM 2002, Student Research

112

10 References

Forum, Milovy, 2002.

Lopatkova M., Zabokrtsky Z., BeneSova V. (2006): Valency Lexicon of Czech Verbs
VALLEX 2.0. Tech. Report No. 2006/34, UFAL MFF UK, 2006.

Marcus M., Santorini B., Marcinkiewicz M. A. (1993): Building a large annotated corpus of
English: the Penn Treebank. In: Computational Linguistics, 19, 1993.

Marcus M., Kim G., Marcinkiewicz M. A., Maclntyre R., Bies A., Ferguson M., Katz K., &
Schasberger B. (1994): The Penn Treebank: annotating predicate argument structure. In

Proceedings of the human language technology workshop. Morgan Kaufmann Publishers
Inc, 1994.

Merz Ch., Volk M. (2005): Requirements for a Parallel Treebank Search Tool. In:
Proceedings of GLDV-Conference, Bonn, Germany, 2005.

Mikulova M., Bémova A., Haji¢ J., Hajicova E., Havelka J., Koldfova V., Kucova L.,
Lopatkova M., Pajas P., Panevova J., Razimova M., Sgall P., gtépének J., UreSova Z.,
Vesela K., Zabokrtsky Z. (2006): Annotation on the tectogrammatical level in the Prague
Dependency Treebank. Annotation manual. Tech. Report 30, UFAL MFF UK, 2006,

Mirovsky J. (2008d): PDT 2.0 Requirements on a Query Language. In. Proceedings of ACL
2008, Columbus, Ohio, USA, 16th - 18th June 2008, in print.

Mirovsky J. (2008c): Does Netgraph Fit Prague Dependency Treebank? In: Proceedings of
the Sixth International Language Resources and Evaluation (LREC 2008), Marrakech,
Marocco, 28th - 30th May 2008.

Mirovsky J. (2008a): Towards a Simple and Full-Featured Treebank Query Language. In:
Proceedings of ICGL 2008, Hong Kong, 9th - 11th January 2008, pp. 171-178.

Mirovsky J. (2006): Netgraph: a Tool for Searching in Prague Dependency Treebank 2.0. In
Proceedings of TLT 2006, Prague, pp. 211-222.

Mirovsky J., Ondruska R., Prisa D. (2002b): Searching through Prague Dependency
Treebank - Conception and Architecture. In Proceedings of The First Workshop on
Treebanks and Linguistic Theories, Sozopol, 2002, pp. 114—122.

Mirovsky J., Ondruska R. (2002a): NetGraph System: Searching through the Prague
Dependency Treebank. In: The Prague Bulletin of Mathematical Linguistics 77, 2002, pp.
101-104.

Ondruska R. (1998): Tools for Searching in Syntactically Annotated Corpora. Master
Thesis, Charles University in Prague, 1998.

Pajas P. (2007): TrEd User's Manual. Available from http://ufal. mff.cuni.cz/~pajas/tred/

Pajas P., Stépanek J. (2006): XML-Based Representation of Multi-Layered Annotation in the
PDT 2.0. In: Proceedings of the LREC Workshop on Merging and Layering Linguistic
Information (LREC 2006), Paris, France, 2006, pp. 40-47.

Pajas P., Stépanek J. (2005): A Generic XML-Based Format for Structured Linguistic
Annotation and Its Application to Prague Dependency Treebank 2.0. In: UFAL Technical
Report, 29, MFF UK, Prague, 2005.

113

10 References

Pito R. (1994): TGrep Manual Page. Available from
http://www.ldc.upenn.edu/ldc/online/treebank/

Rohde D. (2005): TGrep2 User Manual. Available from http://www-
cgi.cs.cmu.edu/~dr/TGrep2/tgrep2.pdf

Rychly P. (2000): Korpusové manazery a jejich efektivni implementace. PhD. Thesis, Brno,
2000.

Smrz O., Pajas P., Zabokrtsky Z., Haji¢ J., Mirovsky J., Némec P. (2005): Learning to Use
the Prague Arabic Dependency Treebank. In: Elabbas Benmamoun. Proceedings of
Annual Symposium on Arabic Linguistics (ALS-19). Urbana, IL, USA, Apr. 1-3: John
Benjamins, 2005.

Steiner 1., Kallmeyer L. (2002): VIQTORYA — A Visual Tool for Syntactically Annotated
Corpora. In: Proceedings of the Third International Conference on Language Resources
and Evaluation (LREC), Las Palmas, Gran Canaria, 2002, pp. 1704-1711.

Stépanek J. (2006): Zavislostni zachyceni vétné struktury v anotovaném syntaktickém
korpusu (néstroje pro zajisténi konzistence dat). PhD. Thesis, Prague, 2006.

Vidova-Hladka B., Haji¢ J., Hana J., Hlavacova J., Mirovsky J., Votrubec J. (2007): Czech
Academic Corpus 1.0 Guide. Karolinum - Charles University Press, 2007, ISBN:
978-80-246-1315-4

114

11

11 Appendixes

Appendixes

The following appendixes have been enclosed to this work:

Appendix A: Publications about Netgraph

Appendix B: FS File Format Description

Appendix C: FS Query Format Description

Appendix D: List of Attributes in PDT 2.0

Appendix E: Other Usages of Netgraph

Appendix F: Installation and Usage of Netgraph — A Quick How-To
Appendix G: CD ROM

The Appendix G: CD ROM contains:

(To access the content of the CD-ROM, please open the file “index.html” on the CD-ROM
in any web-browser.)

the Netgraph client and the Netgraph server

o installation programs

o source code

the user and technical documentation for the client and the server
installation instructions (detailed instructions and also a quick how-to)
tutorials of usage of the client

PDT 2.0 sample data in FS File Format

publications and presentations about Netgraph

and more...

115

11 Appendixes

11.1 Appendix A: Publications about Netgraph

This is a list of publications about Netgraph (or mentioning Netgraph) written or co-written
by the author of this thesis, ordered from the most recent to older ones. A short description of
the content of each paper is offered. The publications are available in the electronic form on

the included CD-ROM.

Mirovsky J. (2008d): PDT 2.0 Requirements on a Query Language. In: Proceedings of ACL
2008, Columbus, Ohio, USA, 16th - 18th June 2008, in print.

Linguistic phenomena annotated on all layers of PDT 2.0 are studied in the paper and a list of
requirements on a query language is formulated here.

Mirovsky J. (2008c): Does Netgraph Fit Prague Dependency Treebank? In: Proceedings of
the Sixth International Language Resources and Evaluation (LREC 2008), Marrakech,
Marocco, 28th - 30th May 2008.

This paper presents the most complex linguistic phenomena annotated on the tectogrammatical
layer of PDT 2.0 and shows how it can be searched for and studied with Netgraph.

Mirovsky J. (2008b): Netgraph - Making Searching in Treebanks Easy. In: Proceedings of
the Third International Joint Conference on Natural Language Processing (IJCNLP
2008), Hyderabad, India, 8th - 10th January 2008, pp. 945-950.

The paper presents Netgraph query language and shows how its advanced techniques can be
used for searching for important linguistic phenomena.

Mirovsky J. (2008a). Towards a Simple and Full-Featured Treebank Query Language. In:
Proceedings of ICGL 2008, Hong Kong, 9th - 11th January 2008, pp. 171-178.

Netgraph query language is presented in the paper and all meta-attributes are listed here. A
comparison to TGrep is offered, all TGrep predicates are translated to Netgraph query language.

Mirovsky J., Panevova J. (2007): Learning to Search in Prague Dependency Treebank. In:
Proceedings of Grammar and Corpora 2007, Liblice, Czech Republic, 25th - 27th
September 2007, still in print.

In this paper, we demonstrate how the Prague Dependency Treebank can be queried with
Netgraph. New meta-attributes are introduced.

Mirovsky J. (2006): Netgraph: a Tool for Searching in Prague Dependency Treebank 2.0. In
Proceedings of The Fifth International Treebanks and Linguistic Theories conference
(TLT 2006), Prague, pp. 211-222.

In this paper, Netgraph query language is presented along with a detailed description of meta-
attributes. Hidden nodes, as well as references, are first introduced here.

Smrz O., Pajas P., Zabokrtsky Z., Haji¢ JI., Mirovsky J., Némec P. (2005): Learning to Use
the Prague Arabic Dependency Treebank. In: Elabbas Benmamoun. Proceedings of
Annual Symposium on Arabic Linguistics (ALS-19). Urbana, IL, USA, Apr. 1-3: John
Benjamins, 2005.

This paper (among other topics) shows the usage of Netgraph for searching in the Prague Arabic
Dependency Treebank.

116

11 Appendixes

Mirovsky J., Ondruska R., Prisa D. (2002b): Searching through Prague Dependency
Treebank-Conception and Architecture, In: Proceedings of The First Workshop on
Treebanks and Linguistic Theories, Sofia, Bulgaria and Tuebingen, Germany, Sozopol,
Bulgaria, 20th and 21st September 2002, pp. 114-122.

It offers an introduction to the inner architecture of the Netgraph server. It also presents the
query language and introduces first meta-attributes.

Mirovsky J., Ondruska R. (2002a): NetGraph System: Searching through the Prague
Dependency Treebank. In: The Prague Bulletin of Mathematical Linguistics 77, 2002, pp.
101-104.

This paper introduces the client-server architecture of Netgraph and the basics of the query
language.

117

11 Appendixes

11.2 Appendix B: FS File Format Description

The origin of this description of the syntax of FS File Format has been taken from CD-ROM
Prague Dependency Treebank 1.0 (Hajic et al. 2001a). It has been updated to the current
state of the format, used in Netgraph (and in TrEd (Pajas 2007)).

FS files serve for encoding the tree annotation of sentences in a natural language. Each FS
file contains a sequence of trees, which represent the sentences. Each node is described by a
set of attributes.

The names and data types of particular attributes are not a part of the FS format. Rather, each
FS file has a header that defines attributes for its tree nodes locally.

11.2.1 Notes on Metasyntax

The non-terminal symbols are enclosed in "<" and ">" characters, terminal symbols or
strings of terminal symbols are enclosed in double quotes. A C-like notation is used inside
the quotes, thus "\ t'" means the character with code 9, i.e. HTAB. The character "\n"
represents the end of line regardless of the platform, i.e. it matches not only real "\n" in its C
sense, but also "\r\n" (DOS-Windows EOL), or even "\r".

The unary postfix operators "*", "+" and "?" mean that the operand appears n-times in a
row, where n>=0 for *, n>0 for +, and n is 0 or 1 for ?.

n_n

In contexts where a non-terminal can be interpreted as a set, the binary operator can be

used. It denotes a difference of two sets.

11.2.2 The FS File Structure

The FS file contains a header with node attribute definitions, and a sequence of trees.
Anything following the trees is considered a configuration for an editor and is ignored in
Netgraph.

<fs-file> ::=

<encoding-line>? <definition-line>+ "\n"+ (<tree> "\n")+ <editor-configuration>?
<encoding-line> ::=

"@E " <encoding>
<encoding> ::=

"utf-8"

Netgraph only accepts files encoded in UTF-8.

11.2.3 Identifiers, Attribute Names and Values

An identifier is one of the main elements of the FS file syntax. It is a string of arbitrary
characters starting by the first character and ending before the first functional character.
Functional characters can be parts of identifiers when they are escaped by a backslash (the
backslash used for escaping a special character is not a part of the identifier).

118

11 Appendixes

Note: The length of identifiers is limited, the limit depends on the usage. In Netgraph, an
attribute name is limited to 30 bytes, an attribute value it is limited to 5000 bytes.

<attribute-name> ::
<identifier>
<attribute-value> ::
<identifier>
<identifier> ::=
<identifier-character>+
<identifier-character> ::=
<normal-character> | <escaped-character>
<functional-character> ::=
R R
<normal-character> ::=
<any-character> - <functional-character>-"\n"
<escaped-character> ::=
"\" (<any-character> - "\n")

11.2.4 Node Attributes Definition

The beginning of each file contains a header with definitions of the attributes which can
appear in tree nodes. Each header line begins with the "@" character. A capital letter follows,
denoting properties of the attribute, then a space and the attribute name. For example "@P
m/lemma".

<definition-line> ::=
("@" <property> " " <attribute-name> "\n") |

("@L" " " <attribute-name> "|" <values> "\n")
<property> ::=

HKH | HPH | HOH | "NH | HV" | HWH | HH"
<values> ::=

<attribute-value> ("|" <values>)?

Properties
‘ Property H Description
K A key attribute. The word "key" does not really mean anything except "this has no specific
properties".
A positional attribute. All other attributes require that their name is written before their value
P in the data (e.g. a/ord=7). Positional attributes do not. The name of a positional attribute is
figured out of the relative position of its value with respect to the previous values (see details
below in the paragraph "Node").
o An obligatory attribute. Its value has to be non-empty for every node (the empty string is the
default value for all attributes). Thus the value must appear in the data.

119

11 Appendixes

‘ Property H Description ‘
L A list attribute. Such an attribute can only have a value from a predefined list, or be empty.
The values cannot be repeated in the definition of the list.
‘ H HA hiding attribute. Nodes that have value "true" in this attribute are hidden. ‘
N A numeric attribute (the value is a non-negative real number), specifying the order of the
nodes in the tree from left to right. Maximally one such attribute per FS file can be defined.
W Another numeric attribute. It denotes the order of words in the sentence. If it is not defined in

the header, the attribute with the property @N (which is obligatory) is used.

A value attribute. The linear form of the sentence is assembled from values of this attribute,
v the values are ordered according to an attribute with the property @W. Maximally one such
attribute per FS file can be defined.

More than one property can be defined for one attribute. The definition lines with all the
properties need not follow each other in the file header. They must however fulfil the
following constraints:

Only one @V attribute per file can be defined.

Only one @w attribute per file can be defined.
Only one @N attribute per file can be defined.

The @N property cannot be combined with other properties. Nevertheless, the @N
attribute has automatically the properties @P and @0 as well.

An attribute cannot be both @v and QL.

e QL must be the last property defined for an attribute but it cannot be the only property
of that attribute.

11.2.5 A Tree

Trees are described in the usual parentheses notation, i.e. after the description of a node, the
parenthesized comma-separated list of its sons (or their subtrees) follows. The order of the
brothers is not significant, since the attribute with property @N is used for controlling the
order of nodes.

<tree> ::=

<node> ("(" <children> ")")?
<children> ::=

<tree> ("," <children>)?

11.2.6 A Node

Besides the pure syntax, it is also necessary to check the relations between the element
<attributes> and the definitions of the respective attributes in the header of the file. The
constraints following from these relations are described below.

120

11 Appendixes

<node> ::=

<attribute-set> ("|" <node>)?
<attribute-set> ::=

"[" <attributes>? "]"

<attributes> ::=

<attribute> ("," <attributes>)?
<attribute> ::=

(<attribute-name> "=")? <values>
<values> ::=

<attribute-value> ("|" <values>)

The element <attributes> must fulfil the following constraints (based on the particular
definition of attributes in the file header):
The attribute name is required for non-positional attributes.

If the attribute name is not present it is necessary to figure out the attribute the value
belongs to. It is the first positional attribute whose definition in the header follows
the definition of the last read attribute (positional or not).

e The identifier in the <attribute-name> element must equal to a name of an attribute
defined in the header.

No attribute can be read more than once.

The identifier representing a value of a numeric attribute can contain only non-
negative real numbers

e The value of a @L attribute must be one of the predefined values from the definition
of the attribute.

e Values of all obligatory attributes (with property @0) have to be defined.

121

11 Appendixes

11.3 Appendix C: FS Query Format Description

The syntax of FS Query Format is almost identical to FS File Format (described in
“Appendix B: FS File Format Description). We therefore only show the different parts.

11.3.1 The FS Query Structure

The FS Query contains a header with node attribute definitions, a single tree or a logical
combination and a sequence of trees. FS Queries are always encoded in UTF-8, therefore the
encoding line is missing.

<fs-query> ::=

<definition-line>+ "\n"+ <query-definition>
<query-definition> ::=

<tree> | <multi-tree-query>
<multi-tree-query> ::=

<logical-combination> ("\n" <tree>)+
<logical-combination> ::=

"AND" | "OR"

The syntax of the header (<definition-line>) is identical to its definition in FS File Format.

In Netgraph, the user only creates <query-definition>. The header is generated automatically.
All attributes in FS Query in Netgraph are positional and non is obligatory.

The syntax of the tree (<tree>) is the same as in FS File Format, with the exception of
definition of node (<node>) and attribute value (<attribute-value>), see below.

11.3.2 A Node

The definition of a node (<node>) in FS Query Format differs from FS File Format only in
allowing other relations than "=".

<node> ::=

<attribute-set> ("|" <node>)?
<attribute-set> ::=

"[" <attributes>? "]"
<attributes> ::=

<attribute> ("," <attributes>)?
<attribute> ::=

(<attribute-name> <relation>)? <values>
<values> ::=

<attribute-value> ("|" <values>)
<relation> ::=

R R e e

The same constraints as in FS File Format apply to the element <attributes>, with the

122

11 Appendixes

exception of a numeric attribute, which can contain any value.

11.3.3 Attribute Values

The syntax of the attribute name (<attribute-name>) is identical to its definition in FS File
Format, only the definition of attribute value differs in allowing regular expressions,
arithmetic operations and references.

Note: The length of identifiers is limited, the limit depends on the usage. In Netgraph, an
attribute name is limited to 30 bytes, an attribute value it is limited to 5000 bytes.

<attribute-value> ::=

<regular-expression-value> | <value>
<regular-expression-value> ::=

"' <perl-like-regular-expression>
<value> ::=

<one-value> (<operator> <value>)?
<one-value> ::=

(<identifier-character> | <reference>)+
<identifier-character> ::=

<normal-character> | <escaped-character>
<functional-character> ::=

R R
<normal-character> ::=

<any-character> - <functional-character>-"\n"
<escaped-character> ::=

"\" (<any-character> - "\n")
<reference> ::=

"{" <node-name> "." <attribute-name> ("." <position>)? "}"
<node-name> ::=

<identifier-character>+

LUETAL

<perl-like-regular-expression> is a regular expression defined in Hazel 2007 with
<functional-attributes> escaped with "\". <position> is a positive natural number.

123

11 Appendixes

11.4 Appendix D: List of Attributes in PDT 2.0

This appendix contains a list of all attributes in PDT 2.0, available in Netgraph, along with
their brief description.

Not all attributes from the lower layers are accessible at the hidden nodes from the
tectogrammatical layer. For those that are, the names that are used at the hidden nodes are
noted in parentheses.

11.4.1 The Word Layer

w/token (w/token at hidden nodes)

A word token as it appears in the source data, even with misprints. Words, numbers,
punctuation marks all form individual tokens.

w/no_space_after (w/no_space_after at hidden nodes)

This attribute contains value "1" if there is no space between the actual token and the next
token in the data (e.g. there is usually no space between the last word in the sentence and the
full stop).

w/id

A unique identifier of the word token (the position in the data).

11.4.2 The Morphological Layer

For a detailed description, see Hana et al. 2005.

m/form (m/form at hidden nodes)

A word token copied from w/ token with the original capitalization but with corrected
misprints.

m/form_change

If the attribute m/ form differs from w/token, this attribute describes the nature of the
change. For example, for corrected misprints it contains the value "spe11".

m/id

A unique identifier of the morphological annotation of the m/ form.

m/lemma (m/lemma at hidden nodes)

A base form of the m/ form. For example, for nouns, m/1emma contains the noun in the

124

11 Appendixes

nominative, singular and non-negative. Together with m/tag, it can be used to regenerate
the original form of the token.

If several “different” words have the same base form, the lemmas are distinguished by a
variant, often followed by a short description. If the variant is present, it is always expressed
by a number and is separated from the base form by a dash ("-"). The comment may follow
after " ","~"or"~" (and may even appear at lemmas without variants). For example,
stat-1 ~(statni atvar) is adifferent lemma from

stat-2 " (néco_se ptihodilo), although the base form is the same.

(In English: stat-1 ~ (state system), stat-2 ~ (something happened))

Note: Netgraph automatically searches for different variants and comments if only a base
form is set in the query. This behaviour can be changed in the settings.

m/sre.rf

The source of the morphological annotation. In PDT 2.0, it is always "manual".

m/tag (m/tag at hidden nodes)

A positional morphological tag describing morphological categories of the form (m/ form).
It is a string of 15 characters. Every position encodes one morphological category using one
character (mostly upper case letters or numbers); if not specified, the position contains a dash

("-"):

‘ Position H Description H Examples of Values ‘
‘1 HPart of speech HN —noun, A — adjective, V — verb, R — preposition ‘
‘2 HDetailed part of speech H# — sentence boundary, R — preposition, V — vocalized preposition ‘
3 Gender Ee:ltf:rminine, I — masculine inanimate, M — masculine animate, N —
‘4 HNurnber HD — dual, S - singular, P — plural, X — any ‘
‘5 HCase Hl — nominative, 2 — genitive, ..., 7 — instrumental, X — any ‘
‘6 HPossessor's gender HF — feminine, M — masculine animate, Z — non feminine ‘
‘7 HPossessor's number HS — singular, P — plural, X — any ‘
‘8 HPerson Hl — 1% person, 2 — 2" person, 3 — 3" person, X — any ‘
‘9 HTense HF — future, P — present, R — past, H — past or present ‘
‘10 HDegree of comparison Hl — positive, 2 — comparative, 3 — superlative ‘
‘11 HNegation HA — affirmative, N — negated ‘
‘12 HVoice HA — active, P — passive ‘
‘13 ‘ ‘Reserve ‘ F ‘
‘14 ‘ ‘Reserve ‘ F ‘
‘15 HVariant, style 1,2 — variant, 5,6,7 — colloquial, 8 — abbreviation ‘

125

11 Appendixes

11.4.3 The Analytical Layer
For a detailed description, see Hajic et al. 1999.

afun (a/afun at hidden nodes)

Afun is a principle attribute on the analytical layer. It contains an analytical function, in
other words, a type of relation to the governing node. The following table, which is taken
from Haji¢ et al. 2006, shows possible values of the attribute.

‘ afun ‘ ‘ Description

‘Pred HPredicate, a node not depending on another node; depends on #

‘Sb HSubj ect

Obj Object

Adv | Adverbial

‘Atv HComplement (so-called determining) technically hung on a non-verb. element
‘AtVV HComplement (so-called determining) hung on a verb, no ond gov. node

‘Atr ‘ ‘Attribute

‘Pnom HNominal predicate, or nom. part of predicate with copula be

AuxV Auxiliary vb. be
‘Coord HCoord. node

‘Apos HApposition (main node)

‘AuxT HReﬂex. tantum
‘AuxR HRef., neither Obj nor AuxT, Pass. refl.

‘AuxC HConjunction (subord.)
‘AUXO HRedundant or emotional item, 'coreferential' pronoun
‘AuxZ HEmphasizing word
‘AuxX HComma (not serving as a coordinating conj.)
‘AuxG HOther graphic symbols, not terminal
‘AuxY HAdverbs, particles not classed elsewhere
‘AuxS HRoot of the tree (#)
‘AuxK HTerminal punctuation of a sentence
A technical value for a deleted item; also for the main element of a sentence without predicate
ExD
(Externally-Dependent)
‘AtrAtr HAn attribute of any of several preceding (syntactic) nouns
Structural ambiguity between adverbial and adnominal (hung on a name/noun) dependency
AtrAdv . 7
without a semantic difference

‘AdVAtr HDtto with reverse preference

|
|
|
|
|
|
|
|
|
|
|
|
|
‘AUXP HPrimary prepos., parts of a secondary p. ‘
|
|
|
|
|
|
|
|
|
|
|

‘AtrObj HStructural ambiguity between object and adnominal dependency without a semantic difference

126

11 Appendixes

‘ ‘ afun ‘ ‘ Description ‘ ‘

“ObjAtr HDtto with reverse preference ”

eparents (a/eparents at hidden nodes)

The attribute eparents contains identifiers (values of attribute id) of effective linguistic
parents of the node. If there are more than one effective parent, alternative values are used.

eparents_diff (a/eparents_diff at hidden nodes)

The attribute eparents_diff contains identifiers (values of attribute id) of effective
linguistic parents of the node only if the effective parents differ from the technical parent of
the node in the tree.

id (a/id at hidden nodes)

A unique identifier of the node in the corpus. At the root, it is a unique identifier of the
analytical tree.

is_member (a/is_member at hidden nodes)

The attribute is member is set to "1" if the node is a member of a coordination or an
apposition.

is_parenthesis_root

If set to "1", this attribute denotes a root of a parentheses (an inserted word or clause).

ord (a/ord at hidden nodes)

The attribute ord controls the order of nodes in the analytical tree from left to right. It may
contain non-negative real numbers. It also controls the order of words in the sentence (the
sentence is assembled from values of attribute w/token).

s.rf

The attribute s.rf is only used at the root of the tree. It contains a unique identifier of the
sentence in the corpus.

- (a/parent at hidden nodes)

The attribute a/parent is only available at the hidden nodes in the tectogrammatical trees.
It contains an identifier (value of attribute a/id) of an analytical parent of the node (a
technical parent of the node in the analytical tree).

127

11 Appendixes

- (a/ref type at hidden nodes)

The attribute a/ref type is only available at the hidden nodes in the tectogrammatical
trees. It classifies the hidden node in relation to a given tectogrammatical node. Value "lex"
means that this hidden node contributes most to the lexical meaning of its tectogrammatical
counterpart. Each tectogrammatical node can have at most one hidden son with value "1ex".
All other hidden sons have value "aux", meaning that these analytical nodes have less
lexical meaning and are rather auxiliary. The only exception is the only hidden son of the
technical root of each tectogrammatical tree; the value of attribute a/ref type of this
hidden node is set to "tree".

11.4.4 The Tectogrammatical Layer
For a detailed description, see Mikulova et al. 2006.

atree.rf

The attribute atree.rf only appears at the root of a tectogrammatical tree. It links the
tectogrammatical layer with the analytical layer through a reference to an analytical tree. It
contains a value of attribute id of the root of the analytical tree, prefixed with "a#".

compl.rf

The attribute comp1 . rf is used to record second dependency of predicative complements. It
contains an identifier (value of attribute id) of a node of the tectogrammatical tree which the
particular node also depends on (apart from the dependency expressed by an edge).

coref gram.rf

The attribute coref gram.rf is used to record the grammatical coreference. It contains an
identifier of a node of (usually the same) tectogrammatical tree that the particular node
grammatically corefers to.

coref _special

The attribute coref special marks special types of the textual coreference in which the
coreferred element is not represented by a node or a subtree of a tectogrammatical tree.
Value segm indicates that the coreferred element is a segment, a larger section of a text.
Value exoph indicates an exophoric reference, i.e. coreference in which the coreferred
element is represented by a extratextual situation which is not further specified.

coref text.rf

Like coref gram.rf, but concerns the textual coreference.

128

11 Appendixes

deepord

The attribute deepord reflects the deep structure word order and controls the order of
nodes in the tectogrammatical tree from left to right. It may contain non-negative real
numbers.

eparents

The attribute eparents contains identifiers (values of attribute id) of effective linguistic
parents of the node. If there are more than one effective parent, alternative values are used.

eparents_diff

The attribute eparents diff contains identifiers (values of attribute id) of effective
linguistic parents of the node only if the effective parents differ from the technical parent of
the node in the tree.

Sfunctor

A principle attribute on the tectogrammatical layer. Functors represent semantic values of
syntactic dependency relations; they express the functions of individual modifications in the
sentence. There are too many possible values to be listed here. Let us only present (from our
point of view) the most important functors (most of them have been used in the examples in
this thesis). For details on all functors, see Mikulova et al. 2006.

‘ functor ‘ ‘ Description

‘ACT Hargument - Actor

‘ADDR Hargument - Addressee

‘AIM Hadjunct expressing purpose

‘APPS che root node of an appositional structure

‘BEN Hadjunct expressing that sth is happening for the benefit (or disadvantage) of sb/sth
‘CAUS Hadjunct expressing the cause (of sth)

‘COMPL Hadjunct - predicative complement

‘COND Hadjunct expressing a condition (for sth else to happen)

‘CONJ Hparatactic structure root node - simple coordination/conjunction
‘CPHR che nominal part of a complex predicate

‘DIRI Hdirectional adjunct - answering the question "odkud (=where from?)"
‘DIRZ Hdirectional adjunct - answering the question "kudy (=which way?)"
‘DIRB Hdirectional adjunct - answering the question "kam (=where to?)"
‘DISJ Hparatactic structure root node - disjunctive relation

‘DPHR che dependent part of an idiomatic expression

‘EFF Hargument - Effect

‘LOC Hlocative adjunct - answering the question "kde (=where?)"

129

11 Appendixes

‘ functor ‘ ‘ Description

‘MANN Hadjunct expressing the manner (of doing sth)

‘MEANS Hadjunct expressing a means (of doing sth)

‘ORIG Hargument - Origo

‘PAT Hargument - Patient

‘PREC Hatomic expression referring to the preceding context

‘PRED Heffective root node of an independent verbal clause (which is not parenthetical)
‘RHEM Hatomic expression - rhematizer

‘RSTR Hadnominal adjunct modifying its governing noun

‘TSIN Htemporal adjunct - answering the question "od kdy? (=since when?)"
‘TTILL Htemporal adjunct - answering the question "do kdy? (=until when?)"
‘TWHEN Htemporal adjunct - answering the question "kdy? (=when?)"

Grammatemes (attributes gram/*)

Grammatemes are tectogrammatical correlates of morphological categories. All
grammatemes start with the prefix gram/. All 16 grammatemes are listed in the following
table, along with a very short and sometimes simplified description. For further information,
see Mikulova et al. 2006.

‘ Grammateme ‘ ‘ Description ‘
‘gram/aspect Ha tectogrammatical correlate of the morpho-lexical category of aspect ‘
‘gram/degcmp Ha tectogrammatical correlate of the (adjectival/adverbial) category of degree ‘
‘gram/deontmod Hexpresses the fact that the event is understood as necessary, possible, permitted etc.‘
‘gram/dispmod Hsignals whether the clause expresses the so called dispositional modality ‘
‘gram/ gender Ha tectogrammatical correlate of the morphological category of gender ‘
. a semantic feature in which the pronoun / adverb / numeral in question differs from

gram/indeftype L

the t-lemma it is represented by
‘gram/iterativeness ‘ ‘marks multiple/iterated events ‘

. expresses whether a given semantic noun / adjective / adverb occurs in its negated

gram/negation >

or non-negated form in the surface structure of the sentence
‘gram/number Ha tectogrammatical correlate of the morphological category of number ‘

a semantic feature in which the given numeral is distinct from the corresponding
gram/numertype .

cardinal numeral
‘gram/person Ha tectogrammatical correlate of the morphological category of person ‘
‘gram/politeness Hsignals a polite usage of pronouns ‘
‘gram/resultative Hmarks the so called possessive passive ‘
‘gram/sempos Ha semantic part of speech ‘
‘gram/tense Ha tectogrammatical correlate of the morphological category of tense ‘

130

11 Appendixes

‘ ‘ Grammateme ‘ ‘ Description ‘ ‘

“gram/verbmod Ha tectogrammatical correlate of the morphological category of (verbal) mood ”

id
A unique identifier of the tectogrammatical node in the corpus. At the root, it is a unique
identifier of the tectogrammatical tree.

is_dsp root

The attribute is dsp root indicates (with value "1" or "0") whether a node is a root of a
direct speech.

is_generated

The attribute is generated indicates (with values "1" or "0") whether a node represents a
word on the surface layer.

is_member

The attribute is member is set to "1" if the node is a member of a coordination or an
apposition.

is_name_of person

The attribute is name of person issetto "1" at all nodes representing expressions that
are constituents of proper names of people.

is_parenthesis

The attribute is parenthesis isset to "1" at all nodes that are a part of a parentheses (an
inserted word or clause).

is_state

The attribute is state is set to "1" at all modifications expressing the meaning of “being
in a state” or “getting into a state”.

nodetype

The attribute nodetype distinguishes eight types of tectogrammatical nodes: the technical
root node (value "root"), the atomic node ("atom"), the paratactic structure root node
("coap"), the list structure root node ("1ist"), the node representing a foreign-language
expression ("fphr"), the node representing the dependent part of an idiomatic expression
("dphr"), the complex node ("complex"), and the quasi-complex node ("gcomplex").

131

11 Appendixes

quot/set _id

For each text in quotation marks, a unique identifier is selected. For all nodes representing
the relevant text, the identifier is stored in the attribute quot/set id.

quot/type

The attribute quot /type specifies the type of usage of a quotation mark. There are five
possible values: citation ("citation"), direct speech ("dsp"), metalinguistic expression
("meta"), proper noun identifier ("title"), other usage ("other").

sentence

The attribute sentence only appears at the root of the tectogrammatical tree. It contains the
linear form of the whole sentence.

sentmod

The attribute sentmod contains information about the sentential modality. It is assigned to a
node on the basis of its position in the tree. Possible values are: indicative mood ("enunc"),
exclamation ("exc1"), optative (desiderative) mood ("desid"), imperative mood
("imper"), and interrogative mood ("inter").

subfunctor

The attribute subfunctor describes a semantic variation within a particular functor.
Possible values of attribute subfunctor depend on the particular functor.

t lemma

For nodes representing lexical units present at the surface layer of the sentence, the value of
the attribute t 1emma is the basic form of the lexical unit. For newly established nodes, an
artificial value (one of almost 30 possible) is assigned to the attribute t lemma.

tfa
The attribute t fa represents the contextual boundness of the node. Possible values are: the

contrastive contextually bound expression ("c"), the contextually non-bound expression
("£"), the non-contrastive contextually bound expression ("t").

val frame.rf

The attribute val frame.rf contains an identifier of a valency frame corresponding to the
given meaning of the given word.

132

11 Appendixes

hide

The attribute hide distinguishes the hidden nodes. Nodes with value "t rue" are hidden and
are not considered a part of the tectogrammatical tree.

133

11 Appendixes

11.5 Appendix E: Other Usages of Netgraph

Netgraph query tool and its query language are general enough to be used with other
treebanks than PDT 2.0. It can be used both for dependency trees as well as for constituent
structure trees, provided the treebank is transformed to FS File Format, and also other kinds
of usage are possible. We mention some (not all) of the usages in this appendix.

11.5.1 Morphological “Trees” of the Czech Academic Corpus 1.0

During the work on the re-annotation of the Czech academic corpus (Kralik and Hladka
2006), Netgraph was used for searching for errors in the process of re-annotation of the data
from the original annotation scheme to a PDT-like annotation scheme. The first version of
the “new” Czech academic corpus contained only the morphological annotation (Vidova-
Hladk4 et al. 2007). During its preparation, the data was searched for errors on the
morphological layer. Since there is no structure in the morphological annotation (but
Netgraph only works with trees), flat morphological “trees” were used, where all nodes
depended on a technical root, as shown in the picture:

[e[s]a]

EX:

File View Options Halp
Uvazuje o utéku do nékterého zapadniho kapitalistického statu

attribute | walue :
m/lemmal |
mjarigl i
myfarigt i

mysre.rf uvazovat o-1 Lték do-1 nékiery zapadni

=0~

vl|mjtag i WB-5---3P-Ab-— RR--& MMIEE Ao RR--Z prIs2 ABEZ LA
e it :
displayed attributes
m; lemma
m/tag i
i i [ID
file: Jireebanks/CAC 0.5 /2l6s.1s | actions | showsnide | j<<- [<< | <- [5/98] [5/92/31707] > | -=> ”

LFiIes LQuery LTrees LDebug |
Next result tree has been loaded.
I

In Czech: Uvazuje o utéku do nékterého zapadniho kapitalistického statu
In English: He thinks about flying to some west capitalistic country

During the preparation of the second version of the Czech Academic Corpus (version 2.0),
which is still going on, Netgraph has been used for searching for errors on the analytical
layer. The annotation is almost identical to the analytical layer of PDT 2.0, therefore we do
not include a picture.

11.5.2 Latin IT Treebank

Index Thomisticus (IT) Treebank is an ongoing project, which is a part of the Lessico
Tomistico Biculturale (LTB) project by Father Roberto Busa. ** IT-Treebank wants to make

24 http://gircse.marginalia.it/~passarotti/. IT is considered as the pathfinder of Computer Sciences
applications in the Humanities; it retains the opera omnia by Thomas Aquinas (118 texts), plus works by
other 61 authors related to Thomas (61 texts). It is a corpus of around 11 millions of tokens (150.000
types; 20.000 lemmas).

134

IT a Treebank.

The annotation on the analytical layer is performed on the basis of the annotation guidelines

11 Appendixes

for the Prague Dependency Treebank and according to guidelines specifically written for
Latin, shared and developed with the Latin Dependency Treebank of the Perseus Project in
Boston. Presently, IT-Treebank is composed of 32 880 tokens, for a total of 1 479
syntactically parsed sentences from the Scriptum super Sententiis Magistri Petri Lombardi.

During the development of the Latin treebank, Netgraph is used for browsing the data and

searching in the data, as shown in the picture:

£ Netgraph 1.91 (12.11.2007)

E=)E

File View Options Help
#12 praeterea, omnis farma, quantum est de se, communicabilis est et universalis.
= | aftribute value ;
|_||lemma SUm - |
[tag 3-MAT - Fen
v] [farm est
] |afun Fred =
o est .
f ¥ Frad AL
| ||origf est B
[]|afunprey eterea forma et
[|semrPos Al Sh Coord
[||tagautn @
L lernauto \ omnis quantum communicabilis universalis
| ||AID Al Afr Al AuxZ A Pnom_Co Pnom_Ca
[]|ADREFS
L |jord 12 se
L||dord Ady
|_||zentord 12
LITR
[|number
e
displayed attributes
form
afun
file: thomefpassarottifpublic_htmitreebankitreebank_07.fs | actions showhide | |<<- | <<= | <- [9i22] [5111/1479] - | s u
LFiIes LQuery LTrees LDebug |
Next result occurence has been loaded.

In Latin: praeterea, omnis forma, quantum est de se, communicablilis est et universalis.
In English: In addition, every form is on its own communicable and universal.

11.5.3 Arabic Trees

In the year 2003, Netgraph was installed in LDC (Linguistic Data Consortium) in
Philadelphia, University of Pennsylvania®, to be used with their Arabic treebank. In
cooperation with LDC, the Prague Arabic Dependency Treebank (Smrz et al. 2005) was
developed at UFAL (Institute of Formal and Applied Linguistics) at Charles University in
Prague®. Netgraph was used during the annotation work for studying the treebanks. Right-
left ordering of nodes in trees was implemented for purposes of the Arabic treebanks, as
demonstrated in the picture:

25 LDC — http://www.ldc.upenn.edu/
26 UFAL — http://ufal.mff.cuni.cz

135

11 Appendixes

etgraph 1.91 (12.11.2007)

File V‘iew Options Help

#4 3yl Ol Ly 1) Lies Libeog i sli=g (45l ¥lgrw (syibl shisll Goiwd duwliall ¢l Lovg.
attribute | value :
forrm #4 - %
afun AxS i
lemma |#
tag TELT
arigr a4
ard 0
afunaux
tagauto
lermautn
parallel
paren
arahfa :
arabspec miE
arabrla 3
comment
docid
wearning
errl
errd

N Y

Atr Obj Afr t

W
displayed attributes
form

afun

iyl sl dewliall
4 E)bj Sh-

file:jlreebanks,farjArabicPI;)TfAFPjsvmaxy| actions | showsnide | 1<<- | << | <- [4/18] [4/18/18] >] E2] H

LFiIes LQuery LTrees LDehug |

Next result tree has been loaded. \
= I

11.5.4 Chinese Treebank

Netgraph has been also used for work on a Chinese treebank at UFAL. Since Java supports
Chinese language and Netgraph works with files encoded in UTF-8, no adaptation of the tool
was necessary. It is an example of usage of Netgraph with constituent-structure trees:

“'Netgraph 1.91 (12.11.2007) =
File View Options Help

T P A A TERCRET £2ET EI A W

anripute | wale |4

% form E {1
E phrasg_t... L:IHLN I 5
O TR
NR-TPC P_SB) P
P-PN QP : N v
o R [) P N

displayed attributes
phrase_type

25 B A BE

form & o & 0 o ¢
TE M % AR B
o]
T
file:3jufaunetgraph,ftreeba;kjchmesejchtb_OOB. actions | show/ hide | |==- | - | - [1/11] [1/11/11] - | - |

Files LQuer\f LTrees LDehug |

Previous result occurence has been loaded. |
= I

136

11 Appendixes

11.5.5 Vallex

Vallex is a valency lexicon of Czech (Lopatkova et al. 2006). A recent usage of Netgraph for
a sophisticated searching in this “treebank’ belongs to interesting applications of the tool.
Thanks to Petr Pajas and his tool TrEd (Pajas 2007), Vallex has been transformed to FS File
Format and can be searched through with Netgraph.

The following query searches for valency frames of the type “presila panenku z kasparka na
certa” (“she altered the puppet from the Punch to the devil”), i.e. valency frames consisting
of an Actor, a Patient, an Origo and an Effect. The query also requires that on the surface,
the Origo is expressed with the preposition “z” and the Effect is expressed with the
preposition “na”.

e
functor=ACT functor=PAT functor=

functor=£FF
lemma=z lemma=na

The following picture shows one of the results in Netgraph:

Netgraph 1.91 (12.11.2007)

File Yiew Options Help

attribute | walue

)
#label fwchowv.. |~ '
#name [frame enit.v
POS ;

afun - w . w -) w .
agreem. . vychova-ho ménila z gaunera na slusného clovéeka projek

case a

deg . - ”
example [wihov.. || ACT PAT ?QRIGC ?EF
form i
functar
gEh

@ @
heredit... [45
id v-wld. | || 1 4 zx1 ha-1 v
inherits 2
2 4

lemma —| &

-l

{nic na trvani jaderné

1

000000 OO0 0O0OCCE

o

displayed attributes
#label :
1A I I D

file:1lajufal,fnElgraph,.flreebank,f\f'allexjvallex| actions | show/ hide | |- | B | L [7/128] [7/128/10038] - | - == ‘

[_Files | query | Tress | Debug |

Mext result tree has been loaded.
I T

In Czech: vychova ho ménila z gaunera na slusného
In English: education was changing him from a scrounger 1o a decent

137

11 Appendixes

11.6 Appendix F: Installation and Usage of Netgraph
— A Quick How-To

In this appendix, we show:

how to quickly install the Netgraph client (optionally the Netgraph server too)

e how to connect to the public Netgraph server for PDT 2.0 (or to the local Netgraph
server for PDT 2.0 sample data)

e how to enter a simple query and browse the result trees

11.6.1 Installation

These are only quick instructions how to install the client (optionally also the server) in order
to access the public(/local) Netgraph server. For details, please consult the installation
instructions included on the CD-ROM?’. Further information can be found in the user manual
for the client and in the user manual for the server. Both manuals can be found on the
CD-ROM.

Java 2 Installation

Please note that Java Runtime Environment (JRE) from Sun Microsystems must be installed
in order to run the Netgraph client. It is not a part of Netgraph installation programs — it must
be installed separately. At least version 1.5 is needed (the client was compiled in Java
1.5.0_12). For Linux and MS Windows, Java 1.6 has been included to the CD-ROM in the
directory java. The newest version of JRE, as well as versions for other platforms/systems,
can be downloaded from http://java.sun.com/javase/downloads/. Please note that the
Netgraph client may not work with other-parties versions of Java Runtime Environment.
Namely, it does not work with gij (GNU libgcj) version of Java distributed with Fedora
systems. In case of troubles, please check which version of Java is started from the installed
icon of the Netgraph client.

Netgraph Client/Server Installation

For Linux and MS Windows, installation programs for the client and/or the server are
provided on the CD-ROM in the directory tool. Choose and run the appropriate version of
the installation program for your system:

® Netgraph-1.93-PDT20Sample-Linux-x86-Install - for Linux

e Netgraph-1.93-PDT20Sample-Windows-Setup.exe - for MS Windows

For other systems, please consult the installation instructions on the CD-ROM.

During the installation, the user can choose parts of the program to install. Either only the
Netgraph client is installed (to access the public Netgraph server™), or the Netgraph server
along with the Prague Dependency Treebank 2.0 sample data are installed, or both the client

27 in the file install.html
28 An internet connection is needed.

138

11 Appendixes

and the server (along with the data). For accessing the public Netgraph server, choose only
the installation of the client. At least the following icon should appear on your desktop, with
the label “Netgraph client 1.93”:

To access a locally installed Netgraph server and search in the Prague Dependency Treebank
2.0 sample data, choose the installation of the client and the server. Then, also the following
icon appears on your desktop, with label “Netgraph server 1.93”:

=

Lo

11.6.2 Connection to the Public Netgraph Server for PDT 2.0
Start the Netgraph client (by clicking on the client icon). A dialog window appears:

[zl Netgraph - the server connection

Select a URL and a port of a server you want 10 connect to:

|quest.ms.mff.|:uni.|:z

2200

Then type in your login name and your password:

[anorymous |

| Connect || Cangcel |

Fill-in the following connection and login information:

server: quest.ms.mff.cuni.cz
port: 2200 for the tectogrammatical trees (2700 for the analytical trees)
user (login name): anonymous

password: anonymous

and click on the button “Connect” to establish a connection to the server.

11.6.3 Connection to the Local Netgraph Server for PDT 2.0 Sample Data

First, start the Netgraph server (by clicking on the server icon). A terminal window should
appear with the following text:

The Netgraph server version 1.93 L (8.4.2008)
The server is trying to bind to the port: 2000 ... OK
The server has started and is waiting for connections.

Then, start the Netgraph client (by clicking on the client icon). A dialog window just like for

29 You may also want to see a flash demonstration of the Netgraph client usage (on the CD-ROM).

139

11 Appendixes

the public server appears. This time, fill-in this connection and login information:

e server: localhost

e port: 2000

e user (login name): anonymous
e password: anonymous

and click on the button “Connect” to establish a connection to the server.

11.6.4 Selection of Files for Searching

After the connection to the server is established, the following window appears:

Metgraph 1.93 (10.4.2008) :
File Yiew Options Tools Help

Connection to server

User anomgmous Server name: gquest.ms.mff.cuni.cz Connection port: 2200 Server version: 1.92 L (8.4.2008)

Actual path: {treebanks/pdt20

™ |Dire|:...| = | = = | Files clear Custom subcorpus selection | load | save
|0 ecmpra410_001.15
|0 cmprad10_ooz 15
| crmiprad10_00z 15
|0y emprod10_004.15
|0y emprod10_005 15
| cmpra410_006 15
|0 cmprs410_007.15
O crmipraq10_ooz.fs
|y crmprad10 0111
|0y emprod10_o1z.15
|Cy emprod10_013.15
|0y cmprad10_014.15
O crmpra410_ 015 15
| crmprod10_016 15
|y crmprad10_017 1
My cmpre410_o18.f6
I:|| start next connection with this subcorpus: || use the custom selection for searching ”

Files LQuery LTrees LDehug |
Files set OK.
L

Files with trees for searching are listed and can be selected here. To select the whole
treebank for searching, perform these steps (the first step is only applicable for accessing the
locally installed Netgraph server):

e (Skip this first step if you are accessing the public Netgraph server.) Double-click on
the directory “tectogrammatical” in the first column named “Directories”. A list of
files in the directory appears in the middle column.

e Click on the button “>>" in the middle column named “Files” to add all files with
trees from the current directory to the selected files. The files appear in the right
column named “Custom subcorpus selection”.

e Click on the button on the right bottom “use the custom selection for searching”

to send the selection to the server.>

30 This step is easily overlooked. Yet, it is essential and cannot be omitted.

140

11 Appendixes

11.6.5 Creation of a Simple Query
The second tab in the window named “Query” is automatically selected, as shown in the

picture:

' Netgraph 1.93 (10.4.2008) :

global head: query tree;

attributes: possible values:

eparents = ACMP |~ functor=PE]

eparents_diff | ACT 1=l

functor =@ - ADDR. x

gram/aspect A | - reference: functor=ACT

ram/degcm o=

aram degemp v fueesr [7]

gram;deontmod O <

gram/dispmod - - Tactory:

gram/gender Q<= ‘ WA RCIS || lnseiL ||"_ |v|

N | new query [] || add tree)[] H subtree] || father []§ |

gram/ indeftype [value:

gram/iterativeness| | o ._ o = | brotner) || aremate node |[) || remove node |

gram/negation

gram/number . set add X | name node: |N1

use | remove set RE add RE | undo || show the query tree || and; or; AND |

query:

[functor=PRED]{functor=ACT]y
history:

‘v“ load H save H clear ‘
stop the query [_| first only [| invert match select trees by the query above result | ‘ select trees by the query || select all trees |

LFiIes L Query LTrees L Debug |
Files set OK.

1 1

The query is created here. On the left side, there is a list of available attributes. Possible
values of the enumeration type of attributes are listed in the table “possible values”. The
graphical representation of the query is depicted in the right top corner in the panel “query
tree”. The textual representation of the query is in the text field “query”. Both

representations of the query are empty at first.
If you are connected to the server for the tectogrammatical trees, to create the query from the

picture above, follow these steps®':

e click on the button “new query” in the panel “factory” on the right side; a node
appears in the graphical representation of the query

find the attribute “functor” in the list of attributes on the left side and double-click on
it (alternatively, single-click on it and click on the button “use” at the bottom of the
list); the name of the attribute appears in the textual version of the query (NOT yet in

the graphical version)

find the value “PRED” in the list of possible values and double-click on it
(alternatively, single-click on the value and click on the button “set” below the list);
an expression “functor=PRED” appears both in the graphical and in the textual

representation of the query
click on the button “subtree” in the panel “factory”; a son-node of the Predicate is

created
e double-click on the attribute “functor” in the list of attributes

31 On the other hand, it is possible to simply browse all trees from the selected files without setting a query,
by clickingg on the button “select all trees”.

141

11 Appendixes

e find value “ACT” in the list of possible values and double-click on it; an expression
“functor=ACT” appears both in the graphical and in the textual representation of the
query at the son-node

The query should be created now just like in the picture above. Click on the button “select
trees by the query” on the bottom to send the query to the server. The interface switches
automatically to the tab “Trees”, and the first result tree should appear (if you are searching
in the locally installed sample data, a different tree appears):

Netgraph 1.93 (10.4.2008) ©

File VYiew Options Tools Help

Celni unie v ohroZenf

> | attribute | walue 4

= TR - '

L l|coref_g... —| :

[l|caref_s... :

[|coref_t...

[||deepard |2 =

[l|eparents |t-cmpr...

[||eparent. ..

v||functor |PRED

[llaram/a...

|_[{gramyd...

[|gram/d...

[llaram/d...

[]|gramjg... :

:g:mﬁl celni #Gen #Gen
o ramt.. 5 RSTR ACT PAT
[|gram/n... :

[lgramjn... [~

e T

displayed attributes

_lemma

functor

file: ebanks;pdtz0;:mpr9410_001.rs| actions show; hide | e | e | e [1/100] [1/96/139] — | —— ”

LFiIes LQuery LTrees LDehug |
Next result occurence has been loaded.

A list of available attributes can be found on the left side. Choose some of the attributes to be
displayed at the nodes in the trees, e.g. t lemma and functor, to match the picture.

Buttons “<-""and “->" can be used for browsing the occurrences of the query in the result
trees. Buttons “<<-""and *“->>" skip multiple occurrences of the query in one tree, and
buttons “<” and “>” can be used to browse the context trees.

The anonymous user has several restrictions:

e although potentially the whole corpus is searched, only first one hundred results are
found

e result trees cannot be saved to the local disc

e the password cannot be changed

For the full access to the data without restrictions, a non-anonymous user account has to be
created.*

To create another query, choose the “Query” tab from the list of tabs at the bottom of the
window.

32 Contact the author of Netgraph to have a full account created: mirovsky@ufal.mff.cuni.cz.

142

	Declaration
	Abstract/Abstrakt
	Acknowledgment
	Brief Contents
	Contents
	1 Introduction
	1.1 The Exact Setting/Přesné zadání
	1.2 The Motivation
	1.3 Outline of the Thesis
	1.4 The Prague Dependency Treebank 2.0
	1.4.1 The Morphological Layer
	1.4.2 The Analytical Layer
	1.4.3 The Tectogrammatical Layer

	2 The Problem Analysis
	2.1 Related Work
	2.1.1 More or Less Theoretical Papers
	2.1.2 Existing Search Tools
	Manatee/Bonito
	TGrep
	TGrep2
	TigerSearch
	Oraculum
	TrEd
	VIQTORYA
	Fsq

	2.2 Netgraph 1.0 – The Starting Point
	2.3 Linguistic Phenomena in PDT 2.0
	2.3.1 The Tectogrammatical Layer
	Basic Principles
	Valency
	Coordination and Apposition
	Idioms (Phrasemes) etc.
	Complex Predicates
	Predicative Complement (Dual Dependency)
	Coreferences
	Topic-Focus Articulation

	2.3.2 Accessing Lower Layers
	2.3.3 The Analytical Layer (and Lower Layers)
	Morphological Tags
	Agreement
	Word Order

	2.4 Linguistic Requirements
	2.4.1 Complex Evaluation of a Node
	2.4.2 Dependencies Between Nodes (Vertical Relations)
	2.4.3 Horizontal Relations
	2.4.4 Other Features

	3 The Query Language
	3.1 The Basics
	3.2 Alternative Values and Nodes
	3.2.1 Alternative Values
	3.2.2 Alternative Nodes

	3.3 Wild Cards
	3.4 Regular Expressions
	3.5 Dependencies Between Nodes
	3.6 Arithmetic Expressions
	3.7 Other Relations
	3.8 Meta-Attributes
	3.8.1 _transitive
	3.8.2 _optional
	3.8.3 _#sons
	3.8.4 _#hsons
	3.8.5 _depth
	3.8.6 _#descendants
	3.8.7 _#lbrothers
	3.8.8 _#rbrothers
	3.8.9 _#occurrences
	3.8.10 _name
	3.8.11 _sentence

	3.9 References
	3.10 Multi-Tree Queries
	3.11 Hidden Nodes

	4 The Data
	4.1 The Format
	4.2 Corpus-Specific Features in the Header
	4.3 How Data Can Help
	4.4 References
	4.5 Attribute m/lemma
	4.6 Hidden Nodes

	5 Using the Query Language
	5.1 General Requirements
	5.1.1 Complex Evaluation of a Node
	5.1.2 Dependencies Between Nodes (Vertical Relations)
	5.1.3 Horizontal Relations
	5.1.4 Other Features

	5.2 Using the Query Language for Searching in PDT 2.0
	5.2.1 The Tectogrammatical Layer
	Basic Principles
	Valency
	Coordination and Apposition
	Idioms (Phrasemes) etc.
	Complex Predicates
	Predicative Complement (Dual Dependency)
	Coreferences
	Topic-Focus Articulation

	5.2.2 Accessing Lower Layers
	5.2.3 The Analytical Layer
	Morphological Tags
	Agreement
	Word Order

	6 Notes on the Query Language
	6.1 Netgraph Query Language vs. FS Query Language
	6.2 Trees Only
	6.3 Redundancy
	6.3.1 Two Types of Redundancy

	6.4 Result Trees and Result Occurrences
	6.5 Comparison to Other Treebank Query Systems
	6.5.1 A Biased Table
	6.5.2 Comparison to TGrep
	6.5.3 Comparison to TGrep2
	6.5.4 Comparison to TigerSearch
	Node Description
	Node Relations
	Negation
	Graph Description
	Variables
	Graph Predicates

	6.5.5 Why Is It So Complex in Netgraph?

	6.6 Universality
	6.7 Feedback From Users

	7 The Tool
	7.1 Properties of the Tool
	7.2 Changes since Version 1.0
	7.2.1 Main Extensions to the Query Language
	7.2.2 Main Extensions to the Tool

	7.3 Bugs

	8 Real World
	8.1 The Queries
	8.1.1 One-Node Queries
	8.1.2 Structured Queries without Meta-Attributes
	8.1.3 Queries with Meta-Attributes
	_transitive
	_optional
	_#sons
	_depth
	_#descendants
	_#lbrothers, _#rbrothers
	_#occurrences
	_name
	_#hsons
	_sentence

	8.1.4 Queries with References
	8.1.5 Queries with Hidden Nodes

	9 Conclusion
	9.1 What Has Been Done
	9.2 Future Work
	9.2.1 The Query Language
	Simplification
	Further Extensions
	Corpus-Wide Comparing and Statistics

	9.2.2 Speed
	9.2.3 Further Improvements

	10 References
	11 Appendixes
	11.1 Appendix A: Publications about Netgraph
	11.2 Appendix B: FS File Format Description
	11.2.1 Notes on Metasyntax
	11.2.2 The FS File Structure
	11.2.3 Identifiers, Attribute Names and Values
	11.2.4 Node Attributes Definition
	Properties

	11.2.5 A Tree
	11.2.6 A Node

	11.3 Appendix C: FS Query Format Description
	11.3.1 The FS Query Structure
	11.3.2 A Node
	11.3.3 Attribute Values

	11.4 Appendix D: List of Attributes in PDT 2.0
	11.4.1 The Word Layer
	w/token (w/token at hidden nodes)
	w/no_space_after (w/no_space_after at hidden nodes)
	w/id

	11.4.2 The Morphological Layer
	m/form (m/form at hidden nodes)
	m/form_change
	m/id
	m/lemma (m/lemma at hidden nodes)
	m/src.rf
	m/tag (m/tag at hidden nodes)

	11.4.3 The Analytical Layer
	afun (a/afun at hidden nodes)
	eparents (a/eparents at hidden nodes)
	eparents_diff (a/eparents_diff at hidden nodes)
	id (a/id at hidden nodes)
	is_member (a/is_member at hidden nodes)
	is_parenthesis_root
	ord (a/ord at hidden nodes)
	s.rf
	- (a/parent at hidden nodes)
	- (a/ref_type at hidden nodes)

	11.4.4 The Tectogrammatical Layer
	atree.rf
	compl.rf
	coref_gram.rf
	coref_special
	coref_text.rf
	deepord
	eparents
	eparents_diff
	functor
	Grammatemes (attributes gram/*)
	id
	is_dsp_root
	is_generated
	is_member
	is_name_of_person
	is_parenthesis
	is_state
	nodetype
	quot/set_id
	quot/type
	sentence
	sentmod
	subfunctor
	t_lemma
	tfa
	val_frame.rf
	hide

	11.5 Appendix E: Other Usages of Netgraph
	11.5.1 Morphological “Trees” of the Czech Academic Corpus 1.0
	11.5.2 Latin IT Treebank
	11.5.3 Arabic Trees
	11.5.4 Chinese Treebank
	11.5.5 Vallex

	11.6 Appendix F: Installation and Usage of Netgraph – A Quick How-To
	11.6.1 Installation
	Java 2 Installation
	Netgraph Client/Server Installation

	11.6.2 Connection to the Public Netgraph Server for PDT 2.029
	11.6.3 Connection to the Local Netgraph Server for PDT 2.0 Sample Data
	11.6.4 Selection of Files for Searching
	11.6.5 Creation of a Simple Query

