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Chapter 1 

Introduction

1.1 Motivation and aims of our work

Phenomena produced by thermal radiation forces and torques have been extensively studied 
during last 20 years, since they were recognized to be very important with respect to the dy­
namics of small Solar System bodies. A phenomenon which is known as the Yarkovsky effect 
is able to secularly change the semimajor axis of an orbit, while the YORP effect affects the 
rotation state of a body.

The Yarkovsky force and the YORP torque were previously calculated with many constrain­
ing assumptions like spherical shapes, circular orbits, small variations of the surface tempera­
ture, principal axis rotation, constant thermal parameters, etc. We developed a model of the 
Yarkovsky/YORP effect without such simplifications. With this model we were able to study 
thermal phenomena in more complex circumstances.

1.2 A brief review of our research

At first we focused on the YORP effect recently re-discovered by [Rubincam, 2000]. We stud­
ied the YORP effect on a sample o f artificially generated shapes, roughly resembling Main 
Belt asteroids, and also on several shapes of real asteroids [Čapek and Vokrouhlický, 2002], 
[Vokrouhlický and Čapek, 2002]. These bodies were approximated by a polyhedral description, 
we assumed that their surface has a zero thermal conductivity and their orbits were circular.

We then improved our model and took into account the finite thermal conductivity and 
elliptical orbits. With this model we determined the Yarkovsky effect on asteroid (6489) 
Golevka for the purpose of the direct detection of the semimajor axis drift [Chesley et al., 2003]. 
The same model was used for the more general investigation of influence of the finite ther­
mal conductivity on the YORP effect [Čapek and Vokrouhlický, 2004] and prediction of the 
detection of the YORP effect on asteroid (25143) Itokawa [Vokrouhlický et al., 2004]. The 
subsequent improvement of our model allowed to determine the Yarkovsky effect for tum­
bling asteroid (4179) Toutatis [Vokrouhlický et al., 2005a] and the binary system 2000 DP107 
[Vokrouhlický et al., 2005b]. The last modification of the model allowed us to incorporate the 
temperature and spatial dependence of material parameters o f an asteroid. It was used for the 
determination of Golevka’s regolith parameters [Čapek and Vokrouhlický, 2005b].

As a result we have developed a sophisticated model which has following features: (i) It is 
able to describe very complicated shapes of asteroids by polyhedral representation, with several 
thousands surface triangular facets, (ii) It assumes arbitrary eccentric orbits, (iii) The rotation 
of the body can be both regular or tumbling, (iv) The insolation term (necessary for the 
determination of the surface temperature) is computed including mutual shadowing between
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CHAPTER 1. INTRODUCTION 2

different parts of the body’s surface. (In the case of binary systems it takes into account mutual 
eclipses between the components.) (v) The surface temperature (needed for the evaluation of 
the thermal force and torque) is solved numerically for each surface facet individually, using 
one-dimensional heat diffusion equation without any linearization. This approach assumes the 
body is larger than several tens of meters, (vi) Thermal parameters of the body can depend 
both on the temperature and the depth.

1.3 Structure of the thesis

This thesis is divided to four chapters and five appendices. Chapter 2 is devoted to the com­
mon base of the thermal effects: forces produced by a radiation. Chapter 3 deals with the 
YORP effect, while Chapter 4 discusses the Yarkovsky effect. There are brief summaries at 
the end of both chapters. In the Appendices we present details about our numerical model 
of the Yarkovsky/YORP effect: first, we deal with methods of solution of the heat diffusion 
problem (Appendix A). Then we present the polyhedral representation of the asteroidal shapes 
(Appendix B), the method for generation of artificial Gaussian shapes (Appendix C) and also 
several examples of shapes resembling real bodies (Appendix D). Finally we present a list of 
publications (Appendix E), with reprints of some of them (Appendix F).



Chapter 2

Radiation and corresponding forces

Let us suppose the situation in Figure 2.1, where the Sun illuminates the surface element o f an 
asteroid. The incident direct solar radiation (D ) is partially reflected (R ) and partially absorbed 
(C ). The surface with non-zero temperature emits thermal radiation (T ).  Here we shall derive the 
expressions for the forces that are applied on the surface element due to these three components 
o f radiation.

Figure 2.1: Direct (D ), reflected (R ) and thermally re-emitted (T )  radiation from a surface 
element of an asteroid.

2.1 Direct solar radiation

The energy dE o f the solar radiation, hitting the oriented surface element dS during the time 
dt can be expressed as

3

or

if  the Sun is below the local horizon. Here, Φ denotes the solar energy flux (in W/m2 units) 
at the given distance from the Sun, s the unit vector aiming towards the Sun and n the outer 
surface normal. The force df8rp produced by the solar radiation pressure1 is

'Note that the relationship between the momentum and the energy of a photon is p = E/c, where c denotes 
speed of light (e.g., [Swihart, 1971]).
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where r denotes the radius vector. It is able to cause small variations of rotation during one 
spin period; over longer time scale it completely vanishes. [Breiter et al., 2007] showed that the 
torques produced by direct radiation pressure acting on spheroids are zero.

2.2 Reflected radiation

Figure 2.2: Reflection of direct solar radiation on a surface element dS. Here Φ is the flux of 
the solar radiation, n is the unit outer normal to dS, the unit vector s points to the Sun and 
the unit vector v parallel to the reflected radiation, is described by spherical angles Θ and φ.

A part of incident photons is not absorbed but it is immediately reflected into the space 
in the optical band. Let us suppose the situation in Figure 2.2 describing geometry of the 
incident and reflected radiation. The direction of reflected radiation is characterized by the 
unit vector v, which can be described by angles θ, φ with respect to the base (i, j,  n) as 
v =  (sin Θ cos φ, sin Θ sin φ, cos Θ). The intensity of the radiation reflected in the direction v can 
be expressed as

where c is the speed o f light. Integrating (2.1) over the surface Σ  of a body we obtain the total 
force fgrp produced by the solar radiation pressure:

Under normal circumstances, this force points directly from the Sun thus it is not able to 
secularly change the semimajor axis of an orbit. For larger bodies it only effectively weakens 
the solar gravitation, but it can even surpass the solar gravitation for particles with very small 
mass-to-area ratio. This usually occurs for <  1 μιη dust particles, e.g. [Bertotti et al., 2003]. 
[Vokrouhlicky and Milani, 2000] showed that the direct radiation pressure (i.e., the absorbed and 
reflected radiation together) can produce observable long-term orbital effects for non-spherical 
bodies or for bodies with nontrivial albedo distribution. The total torque T8rp, corresponding 
to the direct radiation pressure, can be calculated as
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Under normal circumstances, this force is not able to change the orbit of a body on a long time 
scale (like the force caused by direct radiation). On contrary, the torque

of this reflected-radiation force does not vanish and it is able to change the rotation of the body. 
In fact it is equal to the YORP with the assumption of zero thermal conductivity multiplied by 
a factor A/( 1 — A). For bodies with higher albedo, such as the E-type asteroids, it is necessary 
to take this reflected-radiation torque into account.

2.3 Thermal radiation

Assuming isotropic emission, the intensity of a black body radiation can be expressed by 
Stephan-Boltzmann's law:

where p{s,v ) represents a reflectance (or scattering) function and Φ the incident flux. Let us 
introduce the hemispheric albedo A h by the relation (see [Breiter et al., 2007]):

where cos =  s ■ n · The recoil force acting on the surface element dS is given by

Assuming Lambert’s law of diffuse reflection, we can express the intensity of the reflected radi­
ation as (e.g. [Breiter et al., 2007]):

where A  =  const. With this approximation (which has been used in the whole text), the 
resulting force acting on dS reads

Integrating (2.5) over the surface Σ of an asteroid we obtain the whole recoil force arising from 
reflected radiation:
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where σ  =  5.67051 x ΙΟ-8 W /m 2/K 4 is the Stephan-Boltzmann constant, e the emisivity and T 
is the temperature. Similarly as in Section 2.2, the recoil force due to the thermal radiation can 
be expressed as

In the case of zero thermal conductivity (K  =  0), all absorbed solar energy is immediately 
re-radiated and the resulting force on a non-shadowed facet can be expressed as

This represents the thermal (Yarkovsky) force. It is able to secularly change the semimajor axis 
of an asteroid’s orbit. This effect arises from an anisotropic temperature distribution (due to 
the finite thermal inertia) across the surface2. The precise knowledge of the surface temperature 
T  is necessary (see Appendix A).

The total thermal torque acting on the asteroid is given by integration over its surface:

This thermal torque (or the YORJP torque, Chapter 3) is able to change the spin rate and 
obliquity of the body. The main difference between the YORP and the Yarkovsky effect is that 
the YORP is strongly dependent on the shape of an asteroid (it affects only bodies with a certain 
amount of “windmill” asymmetry3). The Yarkovsky effect is nonzero for rotating sphere but 
vanishes for zero thermal inertia. On the other hand, the YORP effect is nonzero even for a 
vanishing thermal conductivity (i.e., without any thermal lag).

2The thermal emission from irregularly shaped surface with zero thermal inertia is alsot able to change the 
orbit on a long term, but it is much smaller.

3For example, it does not affect spheroids [Breiter et al., 2007].

For a shadowed facet dft%=0 =  0. In reality, even shadowed facets experience thermal recoil force 
because their temperature T  is not zero, but this needs to be determined using heat diffusion in 
the body.

The total thermal force acting on the asteroid is given by an integration of (2.9) over asteroid’s 
surface:
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Isothermal body

Our numerical results show that fth =  0 and T th =  0 for an isothermal body o f an arbitrary 
shape. This is an important limit for highly conductive small bodies which are effectively 
isothermal. This is in accordance with an intuition but we shall prove it in a rigorous way. Let 
us recall Gauss ’ theorem in vector analysis:

where the first integral is over the closed surface Σ, the second over the corresponding enclosed 
volume V , a represents a general vector field. The Gauss’ theorem gives rise to the following 
identities (e.g. [Sedlák and Štoll, 1993]):

where 6 is a general scalar field.
Let Tc be a constant temperature o f the body. The total thermal force is

Here we used Equations (2.9), (2.12), (2.15) and the well-known relation V  x r =  0. We can see 
clearly, that neither thermal force nor thermal torque affect a body with a constant temperature.

2.4 Example: (1620) Geographos

Here we shall demonstrate the effect o f the direct, reflected and thermal radiation on the as­
teroid (1620) Geographos. We assumed the following orbital parameters: semimajor axis a =  
1.24547 AU, eccentricity e =  0.3354, inclination » =  13.34°, argument o f perihelion ω =  277.8°, 
longitude o f ascending node Ω =  337.3° and the pole o f rotation λ =  55°, β  =  -46°. The 
rotation period is P  =  5.22484 hours. We used the density o f surface layers p, =  1.7g/cm3, the 
bulk density p(, =  2.5g/cm3, the thermal conductivity K  =  0.02 W/m/K, the thermal capacity 
c =  680 J/kg/K and the Bond albedo 0.1. The shape was represented by a polyhedron with 4092 
surface triangular facets according to [Hudson and Ostro, 1999]. (See also Appendix D.) We 
used a numerical one-level scheme (see Appendix A ) to model forces and torques corresponding 
to the direct, reflected and thermal radiation.

The magnitude o f radiative acceleration can be seen in Figure 2.3. The left plot shows 
perturbations o f the semimajor axis da/dt o f the orbit during first 12 hours after the perihelion

Here we used Equations (2.9), (2.11), (2.14) and the assumption o f the constant temperature Tc 
(i.e., V TC =  0). Similarly, the thermal torque can be expressed as
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time (h) time (orbital period)

Figure 2.3: Perturbations of semimajor axis by the thermal radiation (solid curve), reflected 
radiation (dashed curve) and direct radiation (dotted). Left: Perturbations during the first 12 
hours after passage of perihelion. Right: Perturbations averaged over spin period during one 
revolution about the Sun. The perihelion passage corresponds to t =  0. The orbit-averaged 
value of the semimajor axis drift (da/dt) produced by direct and reflected radiation is zero, but 
the thermally induced value is (da/dt) =  —1.4 x 10-4 AU/Myr.

passage and the right one shows these perturbations averaged over spin periods during one whole 
revolution about the Sun.

The thermal acceleration is able to secularly change semimajor axis by a mean (i.e. orbit- 
averaged) rate (da/dt) =  —1.4 x 10-4 AU/Myr. The variations caused by this force are shifted 
with respect to the variations produced by the reflected radiation due to finite thermal inertia. 
The reflected radiation is able to produce short-term perturbations but their orbit-averaged 
value is zero (the actual value ~  10-7 AU/Myr is due to minor numerical inaccuracies in our 
model). Perturbations of semimajor axis produced by direct radiation are precisely symmetric 
with respect to the perihelion. They can be the largest for a short term but their orbit-averaged 
effect is also zero (~  10-8 AU/Myr due to numerical round-off errors).

We next demonstrate how the radiative torques affect the spin rate in Figure 2.4. The left 
plot shows perturbations of the spin rate dw/dt during 12 hours after passage of perihelion while 
the right one shows the perturbations averaged over the spin period during the whole revolution 
about the Sun.

The thermal torque produces both short-term and long-term perturbations of the spin rate, 
with the orbit-averaged value ~  2.7 x 10-19 s-2 . These perturbations are somewhat shifted with 
respect to the perturbations produced by reflected radiation which has a smaller amplitude. The 
value of the orbit-averaged perturbations of reflected radiation is ~  3 x 10-20 s-2 . The direct 
radiation produces only short-term variations of the spin rate, but the orbit-averaged value is 
zero (<  10-21 s-2 due to numerical inaccuracies).

Note the resulting torque strongly depends on the shape model. See Section 3.4.2.
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lime (h ) lim e (orbital period)

Figure 2.4: Perturbations of the spin rate dio/dt by the thermal radiation (solid curve), reflected 
radiation (dashed curve) and direct radiation (dotted curve). Left: The perturbations during 
the first 12 hours after passage of perihelion. Right: The perturbations averaged over the spin 
period during one revolution about the Sun. The perihelion passage corresponds to t =  0. The 
orbit-averaged value o f perturbations of spin rate (du/dt) produced by direct radiation is zero, 
but the thermally induced value is {dw/dt) =  2.7 x 10-19 s-2 .



Chapter 3

The YORP effect

3.1 Introduction

The rotation of small asteroids or meteoroids is modified especially by mutual collisions with 
other small solar system bodies [Farinella et al., 1992] and by solar and planetary tides. More­
over, a dissipation of free-precession energy inside larger bodies (which are larger than sev­
eral hundreds of meters), which are though to be rubble piles, causes a principal-axis rotation 
[Burns and Safronov, 1973], [Efroimsky and Lazarian, 2000].

Aditionally, there are several non-gravitational effects caused by absorption, reflection or 
reemission of the solar radiation, that can also change rotation. For example [Radzievskii, 1954] 
showed that small (~  cm) body with a realistic albedo distribution across the surface can be spun 
up by solar radiation to the disruption limit on a time scale of thousand years. [Paddack, 1969] 
studied a possibility of destruction of small meteoroids and tektites due to the rotational fission. 
His “windmill effect” is due to the reflection of sunlight from surface of body with an appropriate 
shape. He estimated this effect is able to spin up a several cm long body, composed from tektite 
glass, to the bursting limit in about 60000 years.

General properties o f  the Y O R P  effect. Recently, [Rubincam, 2000] investigated spin­
ning up and down of small asteroids due to the infrared emission from their irregularly shaped 
surfaces. He named this phenomenon the YORP effect as an acronym of Yarkovsky-O’Keefe- 
Radzievskii-Paddack (four names of planetary scientists). Rubincam computed thermal torques 
on bodies that were assumed to be (i) blackbodies with (ii) zero thermal conductivity on (iii) cir­
cular orbits around the Sun and (iv) rotating about the principal axis of inertia tensor. Their 
shapes were described by (v) spherical harmonic expansion of the shapes of real asteroids. Ru­
bincam showed there are two important components of the YORP torque. The first one is able 
to change the rotation rate and the second one the obliquity of the asteroid. Both components 
depend on the obliquity. Rubincam’s conclusions are: (a) The YORP effect is able to spin up 
or spin down an asteroid with 5-km radius during ~  108 years, (b) The YORP effect dominates 
collisions in the inner Solar System for bodies with radius R  smaller than 5 km and it dominates 
tidal encounters for bodies with R <  1 km. (c) The YORP may be responsible for the observed 
excess of slow and fast rotators among small asteroids, (d) Due to inevitable interplay between 
the torque affecting rotation rate and torque affecting obliquity, a rotational bursting due to the 
YORP effect actually happens very rarely, (e) The YORP effect may explain rotation states of 
several NEAs.

[Vokrouhlický and Čapek, 2002] studied the YORP effect on 10 shapes of real bodies (8 
asteroids and Phobos and Deimos) and also on a sample of 500 automatically generated shapes

10
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corresponding to small Solar System bodies. They assumed the Rubincam’s approximation1 
but used polyhedral description of shapes of asteroids instead. They classified the bodies into 
four classes according to the dependance of the YORP effect on the obliquity. Most often the 
obliquity is slowly driven to 0°/180° or 90° and the rotation is asymptotically decelerated. Only 
a minority of the bodies is asymptotically accelerated. They also present several examples of the 
spin-state evolution due to the YORP effect where also gravitational torques due to the Sun and 
gravitational perturbations of the orbit by planets play an important role. They realized the 
YORP effect may be important for driving the rotation into resonances between the precession 
of the spin axis due to the solar torques and the precession of the orbital plane by planetary 
perturbations. In the case of small members of the Themis family, the evolution due to the 
YORP alone describes the evolution quite well whereas in the case of Flora family asteroids the 
evolution of rotation is usually much more complicated.

[Čapek and Vokrouhlický, 2004] analyzed the influence of the surface thermal conductivity 
K  both on a sample of artificial shapes and on several real bodies for which the possibilities of 
the YORP detection were also discussed. They found, unlike in the zero conductivity model, 
the YORP effect preferentially drives the spin axis to be perpendicular to the orbital plane 
(i.e., the obliquity 0° or 180°) for the realistic values of K . They also found a nearly complete 
independence of the YORP component affecting the spin rate on surface thermal conductivity. 
They showed that asymptotical spinning up and down are equally likely and (unlike the results 
of [Rubincam, 2000]) the rotational bursting due to the YORP effect can be relatively common.

[Vokrouhlický et al., 2007] eliminated the principal axis rotation constraint used in previous 
studies and numerically integrated Euler’s equations for several bodies. They found several new 
asymptotic states and analytically proved an onset of the tumbling caused by the YORP instead 
of slow-rotation asymptotic state.

[Scheeres, 2007] derived linearized analytical equations describing evolution of spin rate and 
obliquity of uniformly rotating asteroids due to YORP effect. (Non-zero thermal inertia was 
involved by simplified “thermal lag"·) He also introduced several dimensionless parameters 
dependent only on the shape and mass distribution across the body, which describe the strength 
of YORP effect. He was able to analytically confirm a lot of results on general YORP properties 
obtained previously by numerical studies.

[Breiter et al., 2007] derived an analytical expression for the YORP torque acting on spheroids 
and proved the YORP does not contribute to the long-term evolution of their rotation.

The observation o f  the Y O R P  effect in the Solar System . [Slivan, 2002] photometri­
cally observed rotation o f several Koronis family members and found a surprising anisotropy of 
their spin axes distribution. The prograde rotators have spin periods between 7.5 and 9.5 hours 
and obliquities 42° — 50°. On the other hand, spin periods of retrograde rotators are < 5h or 
> 13h and their obliquities are > 154°. Moreover, he found the longitudes of spin axes are 
clustered. Such distribution can not be explained by mutual collisions.

[Vokrouhlický et al., 2003] succeded to explain the non-random distribution of the obliqui­
ties and spin periods of the Koronis family asteroids as a consequence of the YORP effect. 
They used a numerical model involving torques produced by reflected and thermal radiation 
as well as gravitational effects of the Sim and planets. With a wide range of initial conditions 
(shapes, spin periods and obliquities) they reproduced the observed distribution of the spin axes. 
[Vokrouhlický et al., 2003] found that the se spin -  orbit resonance is important for the prograde 
rotators resulting in the capture of the spin axes longitudes. Their research showed the YORP 
effect may be more important to changing rotation state than collisions for bodies < 40 km in 
diameter.

‘ Namely, asteroids are blackbodies with zero thermal conductivity on circular orbits around the Sun and 
rotating about the principal axis of the inertia tensor.
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[Vokrouhlický et al., 2004] investigated a possibility of direct detection of the YORP effect 
on the asteroid (25143) Itokawa by precise measurement of its rotation period or rotation phase. 
They used a generalized model of the YORP effect, taking into account a finite thermal con­
ductivity of asteroid’s surface, actual elliptical orbit and proper spin axis orientation. They 
predicted an observable 1 — 3 hr delay of the lightcurve maximum in January, 2004. Unfortu­
nately their results were incorrect due to an inaccurate shape model and some other mistakes 
see Section 3.4.2).

[Scheeres et al., 2007] used a more precise shape, rotation pole and mass of Itokawa, deter­
mined by the Hayabusa mission ([Demura et al., 2006], [Gaskell et al., 2006], [Saito et al., 2006]), 
and calculated how the YORP affects the asteroid’s rotation rate. They found Itokawa’s rotation 
is decelerated so that doubling time is 50000 -  90000 years (see Equation (3.10)). They predict 
the detection of the YORP effect for Itokawa during future apparitions. They also discussed the 
distant-past rotation history of Itokawa and concluded, Itokawa’s rotation was accelerated. 100 
-  180 Myr ago, spin period of Itokawa reached 6.5 hours, corresponding to the bursting limit. 
Then the shape had been changed to the present state and it has been decelerated since that 
time (However, they noticed the possibility that Itokawa had a close approach with the Earth 
during this period, which could also change it’s shape.)

Recently, the YORP effect was directly detected for small (~  57 m) near-Earth asteroid 
(54509) 2000 PH5 ([Lowry et id., 2007], [Taylor et al., 2007]). The acceleration of rotation (2.0± 
0.2) X 10-4 deg/day2 was determined from radar and lightcurve data. This value corresponds 
to the theoretical prediction by the YORP model calculated for the shape of (54509) 2000 PH5, 
simultaneously determined by photometry and radar.

In the same time, [Kaasalainen et al., 2007] analyzed (1862) Apollo’s photometric observa­
tions from 1980 to 2005. These authors concluded that Apollo’s spin behaviour is not consistent 
with the assumption of a constant period of rotation. They found a change angular velocity 
dij/dt =  (5.3 ±  1.3) X 10~8 rad/day2. For the shape determined by photometry they calculated 
corresponding YORP effect and found that it is consistent with observed du/dt, such that they 
interpret acceleration of Apollo’s rotation rate by effects of YORP.

Here we shall present some of our results concerning the YORP effect. In Section 3.2 we 
derive expressions of YORP evolution of asteroid’s rotational state. Basic facts concerning 
YORP effect are demonstrated on a simple example in Section 3.2.1. Following Section 3.3 is 
devoted to study of YORP effect on large sample of artificial bodies. Section 3.3.1 is based 
on our paper [Vokrouhlický and Čapek, 2002] and describes YORP dependence on obliquity, 
while 3.3.2 is based on [Čapek and Vokrouhlický, 2004] and deals with the thermal conductivity 
dependence of YORP. The YORP effect on the real asteroids is presented in 3.4, which is based 
on [Čapek and Vokrouhlický, 2004]. In the case of asteroid Itokawa we corrected our results 
from [Vokrouhlický et al., 2004].

3.2 Theory of the YORP effect

The YORP effect changes spin state of an irregularly shaped body due to the thermal torque. 
This torque is caused by a recoil force due to thermal emission from surface, heated by absorption 
of sunlight. The thermal torque was expressed in previous chapter by Equation (2.12). The 
torque arising from the reflected radiation also contributes to the total torque (see Section 2.2). 
The torque T  changes the angular momentum L of the body (with respect to the inertial frame) 
according to the relation
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Figure 3.1: Three coordinate systems: Ecliptical system (X  — Y  — Z) defined by the plane of 
ecliptic and the vernal equinox X , the orbital system defined by orbital plane and perihelion 
and finally the equatorial system defined by the base vectors ej_i, e j.2 (the intersection of the 
equatorial and the orbital plane) and e (parallel with the spin vector).

If we assume that dissipation of the rotation energy inside the body is so rapid, that any non­
principal axis rotation is quickly damped and thus the body rotates around the shortest axis 
of the inertia tensor (corresponding the moment of inertia C), the angular momentum will be 
simply

L — Cue, (3.2)

where ω denotes the angular velocity and e corresponds to the unit vector of the spin axis. This 
together with (3.1) leads to the expression

The scalar product of this equation with the vector e allows us to express the change of the 
angular velocity due to the torque2:

The spin vector direction e is usually characterized by the obliquity c which is the angle between 
the spin vector and the normal to the orbital plane, and by the precession angle in longitude

2Here we use that é ■ e =  0, because d(e ■ e)/dt — 2ée and e · e =  1.

Substituting (3.4) back into (3.3), we obtain the expression for the change of the spin axis 
direction:



0. The components of the unit vector e with respect to the inertial system connected with 
the orbital plane of the body, where x — axis corresponds to the nodal line (see Fig. 3.1), are 
e =  (sinesin(V> +  fi),sinecos(V» +  ii),cose). The scalar product of (3.5) and the unit vector 
N, perpendicular to the orbit of the body, leads to the expression for the change rate of the 
obliquity e:
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The rate of change of the precession angle φ can be derived by a cross product of Equation (3.5) 
and the vector N. After some algebra we have

where

where

So, the thermal torque T  has three components (Te,T^, Τω) with respect to the system (ej_i, βχ2, e) 
which change the obliquity, the angle of precession and the angular velocity.

Useful quantities

The characteristic timescale of the YORP-driven evolution of the rotation rate can be described 
by the quantity called doubling time [Rubincam, 2000]:

After the time t the YORP effect increases the rotation rate ω twice or decrease it to the half 
value. This is because u>(t) is quasilinear in time.

The quantity describing the windmill asymmetry - windmill factor - of the given shape can 
be defined as

where V  denotes volume of the body, e the unit vector of the spin axis, r the position vector of 
the surface element dS, n the outer unit normal of dS and s the unit vector perpendicular to 
spin axis. (In the body-fixed frame it can be expressed as s =  (cos <£, sin </>, 0).) The integration 
is realized over the surface Σ of the body and over one revolution of s about the spin axis. The 
“mutual shadowing” function <S(r, s, Σ) is equal to 1 if half-line starting at r and propagating in 
the direction s does not intersects the surface Σ and it is equal to 0 in the opposite case.
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y 

Figure 3.2: A simple test body. The small letters denote the axes of the body-fixed frame, while 
the capital letters the inertial frame. The facets causing the non-zero torques are denoted by 
"A" and "B" and <P represents the angle of rotation about Z-axis. 

This expression is established on the basis of computing the YORP effect for a simple body 
composed of cylinder with two wedges, as described in following Section 3.2.1. The windmill 
factor is a dimensionless parameter and it depends only on the shape of the body. In reality it 
has value approximately from -0.15 to 0.15, but most frequently for usual asteroid-like shapes, 
the absolute value l'PI is about 0.015. The positive value indicates spinning up of the body and 
the negative value indicates spinning down. 

There is a simple relationship between the windmill factor 'Pw and the mean change of the 
angular velocity caused by the YORP effect, under the assumption of a circular orbit, zero 
thermal conductivity K, zero albedo A and zero obliquity E: 

(w) = _ 2(2 - J2) <I> 'Pw(l + <pw) m, 
3nc d2 p C 

(3.12) 

where <I> is the solar flux at the heliocentric distance d, p is the bulk density of the asteroid and 
m its mass. 

3.2.1 The YORP effect on a windmill shape 

Here we shall explain the basic YORP efect properties, using an example of the artificial body 
shown in Figure 3.2. It is composed from a cylinder with two wedges. This body rotates about 
the z-axis and the Sun shines from the X -axis direction. At first, we express the thermal torque 
acting on arbitrary surface element. Let us suppose that all incoming radiation is immediately 
re-radiated as a thermal radiation. This means there is no thermal conductivity of the surface 
material, no thermal lag. Assuming the thermal emission obeys Lamberťs law, the thermal 
radiation pressure acting on i-th surface element Si causes the force 



where Ei is the incomming solar energy (W /m 2) and c the speed of light. This force acting on 
the arm r* results in a torque
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The whole thermal torque acting on the body is the sum over all its surface elements:

The mean change of the angular speed ω over the time is given by

where C  is the principal moment of inertia around the spin axis, {Tz) =  JQP Tz dt /  P  denotes 
mean z—component of the thermal torque T  and P  is the orbital period.

Let us now compute the thermal torques applied on the windmill from Figure 3.2. The jacket 
of the cylinder as well as its bases do not cause any torque, because any force acting on each 
facet has a zero arm. The only facets that can cause a thermal torque are the inclined facets 
denoted by A and the facets perpendicular to the xy—plane denoted by B. These facets have 
the outer normals

The incomming solar energy (neglecting mutual shadowing) can be expressed as

where Φ is the solar flux at the asteroid’s orbit and s =  (1,0,0) is the direction toward the Sun. 
Putting all these facts together we obtain a mean torque caused by one wedge:

The principal moment of inertia can be approximated by the moment of inertia of the cylinder 
part of the body:

Finally, the mean change of the angular velocity caused by the two wedges can be expressed as
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In the radius interval from 10 meters to 10 km, the YORP doubling time is smaller than typical 
collisional reorientation time. Then the YORP effect predominates the collisions in the evolution 
of spin axes for the bodies with assumed properties in the Main Belt.

Though expression (3.13) was derived for the body and situation described above, it can be 
generalized and we can summarize the YORP effect dependance on several parameters:

• Our first simple model (i.e., the equation describing the long term evolution of the rotation 
state) is valid only for bodies with sufficiently fast rotation which is strong enough to damp 
any deviations from principal axis rotation via inelastic dissipation of energy inside the 
body [Efroimsky and Lazarian, 2000]. If the spin period increases up to several hundreds 
hours, the asteroid begins to tumble and the approach used here is unreliable. This slow 
rotation limit has been studied by [Vokrouhlický et al., 2007].

3The main belt asteroids have (|v>u|) ~  0.015.

Figure 3.3: Doubling time for the body from Figure 3.2 as a function of radius of the body. The 
solid line corresponds to time necessary for double the rotation period due to YORP effect for 
body with windmill factor =  0.014, bulk density p =  2.5g/cm3 and orbit with semimajor axis 
d =  2.5 AU. Period of rotation is assumed P[hr] =  0.01Ä[m]. Dashed line describes timescale 
corresponding to reorientation of the spin axis due to collisions in the Main Belt.

where Φο =  1366 W /m 2 is the solar flux at 1 AU, d is semimajor axis of the orbit (in AU units) 
and ipw the dimensional-less windmill factor, which can be expressed as <pw =  h/R in this simple 
case.

Let us now estimate a characteristic timescale of the YORP acting on the body. Using (3.13) 
and (3.10) the doubling time is:

We can see the dependence of the doubling time on the radius of the body in Figure 3.3. 
We used Equation (3.14) and assumed windmill factor3 φυι =  0.014, period of rotation P[hr] =  
0.01ß[m] and bulk density p =  2.5g/cm3. The solid line corresponds to the semimajor axis 
d =  2.5 AU. Dashed line denotes the timescale to i corresponding to complete change of the spin 
axis due to collisions according to [Farinella et al., 1998]:
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• The shape is the key property affecting the YORP effect. There are no thermal torques 
acting on spheres, triaxial ellipsoids or other bodies with lack of “windmill asymmetry” 
(The analytical proof can be found in [Breiter et al., 2007].) It can be roughly described 
by the windmill factor ipw.

• The YORP (i.e., mean change of angular velocity) decreases with square of the size of an 
asteroid a  1/R2. It is important only for bodies smaller than, say ~  10km in diameter4.

• The shape of the orbit, especially the semimajor axis is important. The YORP decrease 
with square of the distace from the Sun oc 1/d2.

• The YORP decreases with the bulk density of the body as 1/p.

This simple model does not describe the dependence of the YORP effect on mutual position 
of the spin axis and the orbital position of the spin axis and the orbital plane, and also on thermal 
behaviour of the surface material. The dependence of the YORP effect on these quantities is 
discussed in Section 3.3.

4On the other hand, the dissipation of the free-rotation energy does not operate for very small bodies and 
moreover the temperature differences between the insolated and shadowed facets are minimal due to fast rotation 
and effective heat transfer through the body. These facts are not included in this simple model.
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3.3 Statistical study of the YORP effect

Here we shall demonstrate the diversity of the YORP results with respect to various parameters. 
By computing the YORP torque on several asteroids with known shapes we can conclude that 
the shape of the body is the most important characteristic that determines the overall effect. 
Since the YORP depends sensitively on shape, we decided to study this effect on a large sample 
of Gaussian random spheres that sufficiently describe the shape characteristics of small asteroids 
in the Main Belt (see Appendix C).

We use a polyhedral description of shapes which consists of a list of surface vertices and their 
mutual identifications as triangular facets. This description allows us to determine the volume, 
inertia tensor, surface area and self-shadowing of the surface in a simple way (see Appendix B).

We are interested in the long-term evolution of the spin state. Hence we discuss the torques 
(Tt) and (Τω) averaged over rotation and revolution cycles.

3.3.1 O b liq u ity  d e p e n d en ce  -  the Y O R P  classifica tion

This section is based on [Vokrouhlický and Čapek, 2002]

A study of the dependence of the YORP on obliquity was performed for 500 Gaussian random 
spheres orbiting on a circle with radius 2.5 AU. All bodies rotated about the shortest axis of 
inertia tensor with a period P  =  6 hr. The bulk density was pbuik =  2.5 g/cm 3 and the volume 
corresponding to the sphere with radius 1 km. The surface thermal conductivity was assumed 
K  =  0 and albedo >1 =  0. For each value of the obliquity (e goes from 0° to 180° with a 30° 
step) the thermal force causing the YORP torque was determined according to (2.10) for all 
surface facets in 250000 points during the orbital period. The final YORP torque was given by 
a sum over the whole body’s surface (2.12) and an averaging along the orbit.

According to the dependence of the YORP component (Te) on obliquity e we can distinguish 
four principal types. Their description follows. We also attempt to illustrate a typical evolution 
of the spin axis of each type due to the YORP effect alone. We neglect influence of the grav­
itational torques due to the Sun and planets as well as meteoroid impacts. (These effects on 
rotation state are discussed in [Vokrouhlický and Čapek, 2002].) We use the four-order Runge- 
Kutta integrator with a timestep of 100 years. We compute the evolution of the spin axis for the 
initial rotation period o f 6 hours and various initial obliquities. Each integration was stopped 
when the YORP effect increased the spin period to the value equal to the orbital period.

Type I. Figure 3.4a shows the averaged YORP torques (Tc)/C and (Tu)/C for one of Gaussian 
random spheres. This type is characterized by positive values of (T()/C in the (0°, 90°) obliquity 
range and negative values for e G (90°, 180°). This means (see Equation (3.6)) that obliquity 
of such body will be driven to the “asymptotic obliquity” c / =  90°, i.e., the spin axis will be 
parallel with the orbital plane. The torque affecting the rotation rate (TJ)/C is negative for 
€ G (50°, 130°), and consequently the rotation of the asteroid is decelerated in this obliquity 
range and accelerated elsewhere. Type I is (together with Type II) the most probable YORP 
type and represents approximately 40% of all cases for the zero thermal conductivity.

Figures 3.4b and 3.4c show the evolution of obliquity and rotation rate during 50 Myr. We 
assumed the initial rotation period to be 6 hours. Initial obliquities were chosen with a step of 
10°. For example, an obliquity with initial value to =  80° monotonously increases and after 
~  38.5 Myr reaches 90°. The corresponding rotation frequency monotonously decreases and 
after the same time reaches zero. The rotation of bodies with smaller initial obliquities evolves 
more slowly. If the initial obliquity is smaller than ~  55°, the rotation rate initially increases 
until this obliquity is reached. For instance, rotation of a body with Co =  10° is accelerated 
during the first ~  24.3 Myr.
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Figure 3.4: The YORP-type I: a) The dependence of (Tt)/C (solid line) and (TJ)/C (dashed 
line) on the obliquity, b) the evolution of obliquity, c) evolution of rotation rate. For explanation 
see the text.

The evolution of obliquities of bodies with eo > 90° is symmetric with respect to the value 
of 90°. This means that obliquities monotonously decrease and finally reach 90° after the same 
time as bodies with initial obliquity 180° — eo- Nevertheless, the rotation rates evolve in the 
same way.

The rate of obliquity change depends also on angular velocity; if a body rotates slowly, 
obliquity changes faster and vice-versa.

After the obliquity of a body reaches 90°, its rotation rate falls to zero. Our model is not 
able to describe the YORP effect during this slow rotation limit consistently. One of the basic 
presumptions - principal axis rotation - is not valid in this state. [Vokrouhlický et al., 2007] 
studied this limit and realized onset of non-principal axis rotation of slow rotators due to the 
YORP effect. The non-YORP effects (solar or planetary torques or meteoroid impacts) play an 
important role during slow rotation state.

Type II represents just an opposite case to the Type I (see Figure 3.5b). Here, (T()/C is 
negative in (0°,90°) and positive in the (90°, 180°) obliquity range. Obliquity of this body will 
move to e/ =  0°, if the initial obliquity eo is less than 90°, or to e/ =  180°, if the initial obliquity 
co is larger than 90°. The spin axis becomes perpendicular to the orbital plane. The spin rate 
increases due to positive value of {TJ)/C for e € (55°, 125°) and decreases elsewhere. The Type 
II is (together with Type I) the most probable YORP-behaviour and represents approximately 
40% of all cases for zero thermal conductivity.

Evolution of obliquity and rotation frequency can be seen in Figure 3.5b and 3.5c. The initial 
conditions are the same as in the case of Type I. Focusing on the curve with initial obliquity 
80° we see that obliquity is decreasing to zero. Rotation rate increases during first ~  20Myr
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Figure 3.5: The YORP-type II: a) The dependence of (Tf) /C  (solid line) and (Tu) /C  (dashed 
line) on obliquity, b) the evolution of obliquity, c) evolution of rotation rate. For explanation 
see the text.

(obliquity is > 55° and (Τω) >  0 here) and then decreases to zero. The zero rotation rate as
well as zero obliquity is reached after ~  46 Myr.

Spin states o f bodies with smaller initial obliquities evolve faster. Some of them do not 
undergo a phase of acceleration of rotation frequency, because their obliquity has never been 
larger then 55° and therefore (Tw) is always less than zero.

Bodies with eo > 90° have a similar evolution. In this case the obliquity increases up to 180° 
and it is symmetrical to cases with co, while the evolution of the rotation rate is the same.

For the slow rotation limit, see the discussion in the previous paragraph.

Type III represents a more complicated case than types I and II discussed above (see Figure 
3.6). There are two asymptotic obliquities: the first one in (0°,90°) obliquity interval and the
second one in (90°, 180°). In the particular case of Figure 3.6 these asymptotic obliquities are
t j  =  44° and c / =  136°. The spin axis will be tilt to the first one, if the initial obliquity is less 
than 90°, and tilt to the second one, if initial obliquity is higher then 90°. The dependence of 
(Tu) /C  on c differs from case to case, but in the asymptotic obliquities it is always negative. 
Type III represents less probable case of YORP behaviour (7%).

We can see from Figure 3.6b, that obliquities of bodies with eo < 90° are driven to the value 
44°, but they reach this obliquity after longer time than 50 Myr. Obliquities e higher then 90° 
evolve toward value of 136°. In each case the rotational speed is finally decelerated, but some 
bodies undergo a phase of spinning up before deceleration (Figure 3.6c).

Type IV. There are three asymptotic obliquities for the type IV. The first one is e/ =  0° and 
the spin axis tilt to this value if the initial obliquity is less than 42°. If cq is more than 138°, the
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Figure 3.6: The YORP-type III: a) The dependence of (T()/C (solid line) and (TJ)/C (dashed 
line) on obliquity, b) the evolution of obliquity, c) the evolution of rotation rate. For explanation 
see the text.

spin axis is driven to e/ =  180°. If initial obliquity lies inside (32°, 138°) range, the asymptotic 
obliquity will be e/ =  90°. The behaviour of (TJ)/C differs from case to case again.

The YORP effect drives obliquities of bodies with e<j <  45° to final value 0°, while initial
obliquity greater than 135° is driven to e =  180°. If eo is between 45° and 135°, the obliquity
ivolves toward 90°. The evolution of the spin rates is similar as in the previous cases. Initially 
some bodies undergo a spin up but finally all of them are decelerated.

Symmetries

General dependence of averaged torques on obliquity can be described by these symmetries5:

<Te)(e) =  —(Tt)(180 — e), (3.15)
(Tw)(e) =  (Τω)(180 — e). (3.16)

Another symmetry stems from change of the spin axis orientation to the opposite one. This is 
mportant in the situations when a body is decelerated to zero angular velocity and then spun 
jp in the opposite direction. Then:

e — > 180- e ,  (3.17)
<Tť)(e) — >· -<Te)(e), (3.18)
(Tw)(e) - +  —(Tu){e). (3.19)

‘ Derived from the geometry of the problem.
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Figure 3.7: The YORP-type IV: a) The dependence of (Te)/C (solid line) and (Tu)/C (dashed 
line) on obliquity, b) the evolution of obliquity, c) the evolution of rotation rate. For explanation 
see the text.

Note that all these symmetries are valid only for bodies with zero thermal conductivity on 
circular orbits. An elliptic orbit and non-zero thermal conductivity lead to deviations from 
symmetries mentioned above.

3.3.2 T h e  n o n -z e r o  co n d u ct iv ity  o f  th e  surface  m ateria l

This section is based on [Čapek and Vokrouhlický, 2004].

Here we discuss our statistical investigation of the influence o f conductivity of the surface 
material on the orbit-averaged YORP torques (Tc) and (Τω) for a sample of 200 Gaussian 
random spheres. We assume three different values of surface conductivity: K  =  0, 0.001 and
0.01 W /m /K . The thermal conductivity represents a very important quantity -  it can vary by 
several orders of magnitude for different materials. This is discussed especially in Appendix A 
and Section 3.4.1.

We assumed that orbits are circular with a =  2.5 AU and period of rotation are 6 hr. The 
volume corresponded to a sphere with radius 1 km, the bulk density was p =  2.5g/cm3, the 
surface density was a bit smaller pSUTf  =  l-7g/cm 3, the thermal capacity was c =  680 J/kg/K  
and albedo >1 =  0.

The computation of surface temperature was performed by a one-level scheme (see Appendix 
A), with a non-constant spatial step, increasing as a geometrical series with quotient q ~  1.0725, 
and a time step Δ ί  =  500 s (it corresponds to ~  8° of rotation). The temperature computation 
along the orbit was made so many times, until the temperature difference between the last 
two turns was less than 0.5 K. The lower boundary condition was put down in the depth 15£„
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where i s represents the penetration depth of a seasonal temperature wave. For more details see 
Appendix A.

We focused mainly on the following characteristics of the YORP effect:

1. An abundance of particular YORP-types.

2. A fraction of asymptotically accelerated bodies.

3. A strength of the YORP torque. An appropriate quantity describing the torque component 
(Tu) (which affects the angular velocity) is the doubling time ί<*. The amplitude of (Tt) 
torque component (in units degrees per Myr) was chosen a description of obliquity change.

Zero conductivity. We studied this quite unrealistic limit case at the beginning of our in­
vestigation, because it is simple to evaluate -  it is not necessary to solve HDE in this case. The 
thermal force (and torque) can be determined directly from insolation (see (2.10)). This allows 
to compute YORP effect for relatively large number of bodies.

Figure 3.9 shows orbit averaged rate of change of the obliquity and Figure 3.9 shows orbit 
averaged rate of change of the rotation speed. Among 200 Gaussian random spheres, there is 
roughly the same number of type I and type II objects: 40.0% and 46.5%, respectively. This 
means almost the saune number of spin axes are driven to asymptotic obliquities 0°/180° and 
90°. Among 500 Gaussian random spheres the difference between occurrences of these two types 
is even smaller6 A minority of cases is represented by type III (7%) and IV (6.5%). The rotation 
of only 2% of all the bodies is accelerated in the asymptotic obliquity; ail these cases correspond 
to bodies of type III or IV. Strength of the YORP torque can be characterized by a median of 
doubling times which is 14 Myr, and by a median o f (de/dt) amplitude, which is 3°/M yr (see 
Figure 3.1 la,b).

Conductivity 0.001 W /m /K . We chose this value to describe a thermal behaviour of highly 
particulated regolith-like surface. This is actually close to the lunar regolith value. The compu­
tation of the HDE is necessary here.

The balance between the YORP types I and II disappears completely in this case, as we can 
seen in Figure 3.8. A lot of types I transform to types II: only 7% of bodies remain in the type I, 
while 88% form type II. As a consequence the spin axes are driven with a higher likelihood to 
the asymptotic obliquity 0°/180°. The spin rate affecting YORP torque is almost the same as 
in the case of zero obliquity, as shown in Figure 3.8. This means that all types I transformed to 
types II will be asymptotically accelerated (40% of al the bodies).

Type III is represented by 5% of objects and there is no type IV. The median of doubling 
times is 13 Myr and the median of (de/dt) amplitude is 6 °/M yr (see Figure 3.11c,d).

Conductivity 0.01 W /m /K . This thermal conductivity value was chosen to describe surface 
composed o f a mixture of regolith and fresh rock.

The largest difference between abundance of types I (3.5%) and types II (95.5%) can be seen 
in Figure 3.10. The number of asymptotically accelerated bodies as well as spin axes driven to 
0°/180° is even higher than in the case of K  — 0.001 W /m /K . Abundance of types III and IV is 
the same - 0.5%. This corresponds to the most powerful YORP effect among among the studied 
conductivities: The median of doubling times is 12 Myr and the median of (de/dt) amplitude is 
9°/M yr (see Figure 3.11e,f).

eAbundance of type I, II, III and IV are 39.2%, 40.4%, 10.2% and 6.2%. The remaining 4% correspond to 
cases with a more complicated evolution.
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thermal conductivity 
(W /m /K ) I

abundance of types 
II- II+ III IV

de/dt
(deg/Myr)

td
(Myr)

#  of accelerated 
%

0.000 40 46.5 0 7 6.5 3.33 14.3 2
0.001 7 52.5 35.5 5 0 5.94 13.1 40
0.010 3.5 52 43.5 0.5 0.5 8.60 11.9 45

liable 3.1: Influence of surface conductivity on the abundance of different YORP-types and the 
YORP evolution timescale among 200 (or 500 in the case of zero conductivity) gaussian random 
spheres. The II— (II+) denotes YORP type II with the asymptotic deceleration (acceleration) 
3f rotation.

3.3.3 D iscu ssion

The study of the YORP effect on a large sample of artificial shapes, corresponding to small 
Main Belt asteroids with the assumption of zero thermal conductivity, shows that shapes can 
be divided according to the obliquity-affecting YORP component Tt into four principal groups. 
The Type I is driven to the obliquity 90° and rotation is asymptotically decelerated. Type II 
is characterized by driving the initial spin axis to obliquity 0° or 180° and asymptotic spinning 
down again. Less frequent types III and IV have more complicated behaviour, but in most cases 
;hey are also asymptotically decelerated.

The statistical study of YORP effect on a sample of Gaussian random spheres shows that 
the surface thermal conductivity K  strongly affects YORP component Tt, which changes the 
)bliquity, while spin rate affecting torque Τω is nearly independent on the surface conductivity 
K. Very low value of conductivity (zero limit) results in an equal likelihood of driving the spin 
ixes to the asymptotic obliquity 0°/180° and 90° and the rotation of the most of bodies is 
isymptotically decelerated. More realistic values of conductivity (0.001 and 0.01 W /m /K ) lead 
;o higher likelihood of driving spin axes to the obliquity 0°/180° and almost equal probability 
)f accelerating and decelerating rotation in the asymptotic states. The quantitative results are 
summarized in Table 3.1.

We also found that the rotation of bodies with obliquity e ~  55° and e a  125° is neither 
accelerated nor decelerated.

The YORP evolution timescales are shorter than collisional timescales. The YORP effect 
s then able to significantly accelerate the rotational speed (maybe up to a bursting limit) or 
iecelerate it (to the state of very slow tumbling rotators).

Our model is not able to describe the YORP effect in these two limit states. In the case of 
rery fast rotators it is because of very large CPU expenses and in the case of very slow rotators 
and also in case of bodies with size comparable to penetration depth of seasonal temperature 
vave -  i.e. meteodoids) due to possible non-principal axis rotation of such bodies and more 
implicated heat diffusion inside of them.

Since the YORP component Τω does not depend on the surface thermal conductivity K , the 
ipproximation of zero K  can be used for modeling the short-time evolution of spin states due to 
he YORP effect. For instance, it can be used for the prediction and subsequent direct detection 
>f the YORP effect. On the other hand, the Tt depends on the thermal conductivity. The model 
vith the finite value of the surface thermal conductivity should be used for an investigation of 
he long-time evolution of the spin states due to the YORP effect.
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Figure 3.8: The orbit averaged YORP effect as a function of obliquity for 200 Gaussian random 
spheres for thermal conductivity K  =  0.001 W /m /K . The figures in the left column represent 
the orbit-averaged rate of change of the obliquity (de/dt), while the figures in the left column 
represent the orbit-averaged change rate of angular velocity (duj/dt). The upper row describes 
Type I objects, the lower one Type II. Here, the Type II is more likely. Type I produces 
asymptotic deceleration while Type II produces both deceleration and acceleration of rotation.
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Figure 3.9: The orbit averaged YORP effect as a function of obliquity for 200 Gaussian random 
spheres in case of a zero conductivity limit. The figures in the left column represent the orbit- 
averaged rate of change of the obliquity (de/dt), while the figures in the left column represent 
the orbit-averaged change rate of angular velocity (duj/dt). The upper row describes Type I 
objects, the lower one Type II. Both cases are equally likely and both produce an asymptotic 
deceleration of rotation.
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Figure 3.10: The orbit averaged YORP effect as a function of obliquity for 200 Gaussian random 
spheres for thermal conductivity K  =  0.01W /m /K . The figures in the left column represent 
the orbit-averaged rate of change of the obUquity (de/dt), while the figures in the left column 
represent the orbit-averaged change rate of angular velocity (dui/dt). The upper row describes 
Type I objects, the lower one Type II. A great difference between the number of Type I and 
Type II bodies can be seen clearly. Type I produces asymptotic deceleration while Type II 
produces both deceleration and acceleration of rotation.
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Figure 3.11: Histograms of statistical distributions of the characteristic timescales of the YORP 
effect acting on sample of 200 Gaussian random spheres for conductivity K  =  0 W /m /K  (upper 
row, a and b), K  =  0.001 W /m /K  (middle one, c and d) and K  =  0.01 W /m /K  (lower row, e 
and f). The left column shows the distribution of maximal obliquity change rate. Small lines 
at the bottom of plots represent actual values and the arrow is the median value. Tn the right 
column we present distribution of doubUng time at the asymptotic values of obliquity.
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3.4 The YORP effect on individual bodies

This section is based on [Vokrouhlický and Čapek, 2002] and [Vokrouhlický et al., 2004]·

We chose several asteroids with available shape models (see Appendix D) and investigated 
how the YORP effect acts on these bodies. We study both the YORP dependence on the 
thermal conductivity for bodies on circular orbits [Čapek and Vokrouhlický, 2004] and how it 
affects rotation rate of asteroids in actual orbital and spin configuration including possible direct 
detection o f the YORP effect [Vokrouhlický et al., 2004].

3.4.1 T h e  Y O R P  d ep en d en ce  on  th e  surface  th erm al co n d u ctiv ity

The material properties, like the density p and thermal capacity c of small Solar System bod­
ies can be roughly determined by laboratory measurement of its meteorite analogues (e.g. 
[Yomogida and Matsui, 1983]). In the case of the surface thermal conductivity K  the situation 
is more complicated. We do not know the composition and degree of porosity of surface material 
and then have to assume some similar material measured in laboratory, or use measurements of 
the lunar soil returned by Apollo missions (e.g. [Cremers, 1972])

Another way to determine K  is to use data from infrared observations [Delbo et al., 2006], 
[Delbö et al., 2007] or measurements of non-gravitational (Yarkovsky) semimajor axis drift which 
is strongly dependent on asteroid’s surface thermal inertia [Chesley et al., 2003]. The value of 
the thermal conductivity can vary by several orders of magnitude. For highly particulated re- 
golith it can be K  ~  10-4 W /m /K , while for fresh iron surface K  ~  80 W /m /K . Moreover, 
[Delbo et al., 2007] discovered a dependence of thermal inertia on asteroids diameter. So, the 
value of thermal conductivity of surface is the most uncertain quantity of all.

Here we present a study of the YORP effect dependence on the thermal conductivity K . We 
used several bodies with precisely determined shapes and assumed they are on a circular orbit 
about the Sun with semimajor axis a =  2.5 AU. Other important quantities are listed in Table 
3.2. The surface thermal conductivity varies from 10-9 W /m /K  to 10 W /m /K .

semimajor axis 2.5 AU
period of rotation 6 hours
bulk density 2.5 g/cm 3
surface density 1.7g/cm3
thermal capacity 680 J/kg/K
albedo 0.1
emissivity 0.9

Table 3.2: Orbital and physical parameters used for the study of the YORP if-dependence. The 
orbit is assumed circular and the thermal conductivity in the range (10- 9,101) W /m /K .

The computation was performed by a one-level scheme with a non-constant spatial step which 
is increasing as a geometrical series with a quotient q =  1.0725, and a time step A t =  500 s (it 
corresponds to ~  8° of rotation phase). The computation of surface temperature along the 
orbit was made several times, until the temperature difference between the last two turns was 
less than 0.5 K. The lower boundary condition was applied in the depth 15£e, where i e is the 
penetration depth of seasonal temperature variations. For more details see Appendix A.
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Figure 3.12: The orbit averaged rate of change of the angular velocity ω (left) and obliquity 
£ (right) due to the YORP effect for asteroid (433) Eros. Grey levels denote different surface 
thermal conductivities from 10-9 W /m /K  (darkest, corresponding to the Rubincam’s limit) to 
10 W /m /K  (lightest, corresponding to highly conductive material). For more discussion see the 
text.

(433) Eros

The dependence of the YORP torque on the thermal conductivity for an Eros-shaped body is 
shown in Figure 3.12. There is a orbit-averaged rate of change (du/dt) of angular velocity and 
a rate of change of the obliquity (de/dt) due to the YORP effect.

It can be seen that the component o f the YORP affecting the speed of rotation u  almost 
does not depend on the thermal conductivity in the studied interval of K . On the other hand, 
the YORP-induced obliquity change depends on the thermal conductivity K  very strongly. Low 
values of K  lead to the type I of the YORP classification. This means the spin axis would evolve 
toward the obliquity 90° and the rotation would decelerate. As K  increases, the amplitude of 
{de/dt) decreases. For the conductivity K  ~  5 x 10-4 W /m /K , the YORP changes to the Type
II. In this case the spin axis is driven to 0° or 180° obliquity, but the rotation of the body will 
be accelerated in these states because (du/dt) remains unaffected by the thermal conductivity. 
For higher K's the amplitude of (de/dt) increases with thermal conductivity and reaches the 
maximal value when K  ~  10-2 W /m /K . Subsequently, the amplitude decreases. Note that for 
high conductivities the symmetry of (de/dt) with respect to e =  90° is broken.

(6489) Golevka

We can see (du/dt) and (de/dt) for Golevka in Figure 3.13. Like Eros, the component of the 
YORP effect changing the speed of rotation is nearly independent on the thermal conductivity 
in the studied interval, unlike the YORP component affecting the obliquity. Low values of K  
lead to the type IV of the YORP classification. As K  increases, the amplitude of de/dt decreases 
and also the node moves slightly from e ~  60° towards zero obliquity7. For the conductivity 
K  ~  5 X 10~4 W /m /K , the YORP changes to the type I. In this case, the spin axis is driven 
to obliquity 90° but the rotation of the body will be accelerated in this state, because (du/dt) 
remains almost unaffected by thermal conductivity K . As K  further increases, the amplitude 
of (de/dt) increases, reaches the maximum value for K  ~  10~2 W /m /K  and then falls-off a 
little. The symmetry of (de/dt) with respect to obliquity e =  90° is broken again for higher 
conductivities.

7The node at 120° moves towards e = 180°.
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Figure 3.13: The orbit averaged rate of change of the angular velocity u  (left) and obliquity e 
(right) due to the YORP effect for asteroid (6489) Golevka. Grey levels denote different surface 
thermal conductivities from 10-9 W /m /K  (darkest, corresponding to the Rubincam’s limit) to 
10 W /m /K  (lightest, corresponding to highly conductive material). For more discussion see the 
text.

(243) Ida

Figure 3.14 shows the orbit-averaged rate of change (du/dt) of angular velocity and rate of 
change (de/dt) of the obliquity for asteroid (243) Ida. As in previous cases, (du/dt) does not 
depend on K , while (de/dt) does. The YORP type is II and increasing thermal conductivity 
only changes its amplitude. Up to K  ~  10-2 W /m /K  the amplitude increases and for higher 
conductivities decreases.

(25143) Itokawa

The dependence of the YORP effect on the surface thermal conductivity for asteroid Itokawa 
can be seen in Figure 3.15. This is the same case as Eros. The YORP component (du/dt) is 
nearly independent on K , while (de/dt) belongs to the Type I for low conductivities and to the 
Type II for high ones. The transition occurs for K  ~  5 x 10-5 W /m /K . Note that we used the 
shape model derived from radar observations, see Figure D.7.

1998 KY26

Figure 3.16 shows the orbit-averaged rate of change of angular velocity (du/dt) and the rate of 
change of obliquity (de/dt) due to the YORP effect. Again, we can see nearly AT-independent 
YORP component affecting the speed of rotation and the YORP component changing the obliq­
uity strongly dependent on K . In this case increasing thermal conductivity does not change the 
YORP type (which is I) but only decreases the amplitude of (de/dt).

Discussion

The study of the if-dependence of the YORP effect for several real shapes shows a strong 
dependence of (T() or (de/dt) on thermal conductivity in the range 10-9 to 101 W /m /K , like 
in the case of the artificial shapes. In most cases the YORP for realistic values of K  belongs to 
the Type II. The YORP component (TJ) or (du/dt) is nearly independent on K.
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Figure 3.14: The orbit averaged rate o f change o f the angular velocity ω (left) and obliquity 
€ (right) due to the Y O R P  effect for asteroid (243) Ida. Grey levels denote different surface 
thermal conductivities from 10-9 W/m/K (darkest, corresponding to the Rubincam’s limit) to 
10 W/m/K (lightest, corresponding to highly conductive material). For more discussion see the 
text.

Figure 3.15: The orbit averaged rate o f change o f the angular velocity ω (left) and obliquity e 
(right) due to the Y O R P  effect for asteroid (25143) Itokawa. Grey levels denote different surface 
thermal conductivities from 10-9 W/m/K (darkest, corresponding to the Rubincam’s lim it) to 
10 W/m/K (lightest, corresponding to highly conductive material). For more discussion see the 
text.
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Figure 3.16: The orbit averaged rate of change of the angular velocity ω (left) and obliquity 
c (right) due to the YORP effect for asteroid 1998 KY26. Grey levels denote different surface 
thermal conductivities from 10-9 W /m /K  (darkest, corresponding to the Rubincam’s limit) to 
10 W /m /K  (lightest, corresponding to highly conductive material). For more discussion see the 
text.
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3.4.2 The Y O R P  effect for real objects and their orbits

We computed the Y O R P  effect for several asteroids with known orbits, shapes and spin pa­
rameters. The list o f bodies and their orbital and physical parameters can be found in Table 
3.3:

Eros Geographos Golevka Ida Itokawa 1998KY26
semimajor axis (AU) 1.45823 1.24547 2.5065 2.816276 1.32274 1.23215
excentricity 0.222891 0.335416 0.604317 0.04616 0.279475 0.201462
inclination (°) 10.83 13.342 2.277 1.138 1.728 1.481
arg. perihel. (e) 178.645 275.8 66.06 108.55 161.021 209.181
ascend, node (°) 304.404 337.3 211.502 324.21 70.917 84.451
pole of rotation λ. β (°) 17.2. 11.3 55. -46 202. -45 262, -68 355, -84
obliquity (°) 89.1 150 134.6 157 172.3
period of rotation (h) 5.27 5.23 6.03 4.63 12.13 0.17837
precision of period determ, σ l x l O -7 1 .4 x l0 -7 1 .7 x l0 -8 1 .5 x l0 _e 5x10··* 7x10"®
thermal conductivity (W/m /K) 0.01 0.02 0.01 0.01 0.01 0.001
thermal capacity (J/kg/K) 680 680 680 680 800 680
bulk density (g/cm3) 2.5 2.5 2.7 2.7 2.5 2.5
surface density (g/cm3) 1.7 1.7 1.7 1.7 2.0 1.7
albedo 0.1 0.2 0.1 0.2 0.1 0.1
emisivity 0.9 0.8 0.9 0.8 0.9 0.9
A t - first level (s) 222 87 500 192
At - second level (s) 4 5 10

Table 3.3: Orbited and physical parameters o f asteroids used for our study o f the YORP. 
Orbital data was taken mainly from NeoDyS site http://newton.dm .u n ip i . i t  and Ast- 
Dys h ttp :/ / h a n ilto n .d in .u n ip i.it . Information about the spin state was taken from 
[Miller et al., 2002] for Eros, [Hudson and Ostro, 1999] for Geographos, [Hudson et al., 2000] 
for Golevka, [Davies et al., 1996] for Ida, [Kaasalainen et al., 2003] for Itokawa and 
[Ostro et al., 1999b] for 1998KY26. For information about the shape models see Appendix 
D.

The surface temperature along the orbit was computed by a two-level scheme. The timestep 
was a few hundred seconds in the first level and several seconds in the second level (see Table 3.3). 
The initial spatial step was chosen in order to fulfill the von Neumann stability criterion. The 
precision o f the surface temperature is typically better than 0.1 K. We computed components o f 
the YO R P  torque in equally spaced right anomalies.

A possible direct detection o f the Y O R P  effect was also studied. For this purpose the most 
important quantity is the change o f angular velocity ω and, especially, the phase o f rotation φ. 
These quantities are observable (while the change o f the obliquity is too small). Moreover, (Τω) 
is nearly independent on the surface thermal conductivity, which is not known accurately. The 
angular velocity and the phase o f rotation changes due to the Y O R P  effect can be expressed as:

where ωο is the initial angular velocity at the time ίο and the initial phase o f rotation is assumed 
φο =  0. We can also express a fractional change o f rotation period as (dP/dt)/P =  —(Tw/C)/ω. 
Using the orbit-averaged value o f Τω/0 , the angular velocity will change linearly with time, 
whereas the phase o f rotation will change as a square o f time (here we neglect an eccentricity o f

http://newton.dm.unipi.it
http://hanilton.din.unipi.it
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(433) Eros

Figure 3.17 shows the behaviour of the Tw/ C  during one orbital period of Eros. The origin of 
time is chosen at an instant of perihelion passage. The mean value (Tu/C )  =  —1.48 x 10-20 s-2 
corresponds to a doubling time 709 Myr. Eros’s rotation is decelerated.

With this YORP torque and NEAR/Shoemaker data, rotation period P  =  5.27025547 hr, 
σ  =  1 X  10-7 ([Miller et al., 2002]), we have determined the change o f rotational period and the 
phase from 1900 to 2020 as can be seen in Figure 3.18. The origin was chosen on Jan 1, 2001. 
The phase of rotation changed due to YORP effect by ~  4° in 100 years, while the uncertainity 
in rotation period makes phase shift ~  7° after the same time. In terms of the period, the YORP 
leads to a relative change of period (P  — Po)/Po — —1.5 x 10-7 in 1900, which is slightly higher 
than uncertainity σ.

[Ďurech, 2005] compared photometric data of Eros from years 1901 -  1931 with a synthetic 
lightcurve derived from shape and rotation state obtained by NEAR/Shoemaker space probe. 
He found that (du/dt) cannot be higher than ~  5 x 10~20 s“ 2. It is interesting, that the formal 
fit gives the value (duj/dt) =  —1.4 x 10-2os~2, which corresponds well to the value predicted by 
us, but the case is not statistically conclusive.

Urwerzia Kartrv;. v *;· 
^pfpmahcK&Vt1̂ ·»

/ttrsync

The phase φ is the most easily observable quantity that can be used for a detection of the 
YORP effect. At least three measurements of φ with appropriate time delay are necessary for 
a discovery of the quadratic time dependence of φ, indicating the YORP effect. If we take into 
account that the period of rotation Po can be initially determined with an error δΡ, then this 
uncertainity propagates and causes apparent changes of ω and φ:

where σ =  SP/Pq is a relative period error. The detection of the YORP effect via a phase shift 
is possible if it exceeds the effect of uncertainity. This happens after sufficient time interval:

Moreover, the phase shift produced by an uncertainity of the rotation period must be less thj 
180°. In other words, |φβρ — wqí| < π. It corresponds to the time

In the case of a detection by a change of the rotation period, the required time interval is

which is shorter than (3.22) by a factor (σ + 1)/2 and moreover there is no restriction like (3.23).
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Figure 3.17: The YORP component affecting the angular velocity of (433) Eros during one 
revolution about the Sun. This was computed using data from Table 3.3.

Figure 3.18: Left: The relative change of rotation period of Eros. Right: The corresponding 
change of the rotation phase. The results are referred to the value Pq =5.27 hr on Jan 1, 2001. 
The dotted line corresponds to a change of period or phase of rotation due to an uncertain 
determination of the initial period Pq. The relative uncertainity is σ  =  1 x 10-7 . The solid one 
corresponds to the orbit-averaged YORP effect. Note a linear growth of (P  -  Po)/Pq and the 
corresponding quadratic dependence of phase O — C.

(6489) Golevka

The time dependence of the YORP component Tw/C that affects angular velocity of Golevka can 
be seen in Figure 3.19. The orbit-averaged value is (Τω/0) =  2.04 x 10-18s. This corresponds 
to a doubling time of only 4.5 Myr, the asteroid’s rotation is accelerated in this state.

A possibility of a successful direct detection of the YORP can be seen in Figure 3.20: The 
mean value of the fractional change of rotation period is ((dP/dt)/P) =  —2.2 x 10-7 yr-1 . We 
used data obtained during the close encounter with the Earth in 1995 from [Hudson et al., 2000]: 
P =  6.0289, σ  =  1.7 x 10-5 , and chose an origin of integration on Jan 2, 1995. It can be seen, 
that the YORP (though relatively strong) does not exceed the effect of uncertainity of rotation 
period. Unfortunately, no usable photometric data were recorded during the close approach in 
2003. Next opportunities will be in 2007, 2011, 2015 and 2019. Due to the large YORP effect on 
Golevka, the data from these future encounters may lead to a successful detection of the YORP.
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Figure 3.19: The YORP component Tw/C affecting the angular velocity for (6489) Golevka 
during one revolution about the Sun. This was computed using data from Table 3.3.

Dale Date

Figure 3.20: The same plots as in Figure 3.18 but for Golevka. The results are referred to the 
value P q =6.02667 hr on Jan 2, 1995. Note the large variations of (Po -  P)/Po due to high 
eccentricity of Golevka’s orbit e ~  0.6.

1998 KY26

The asteroid 1998 KY26 has an unknown orientation of the spin axis. We can only scale the 
results obtained in the previous section. We assumed values listed in Table 3.3 and zero obliquity. 
Then the orbit-averaged YORP component changing the angular velocity is (Tw/C) =  1.52 x 
10-14 and the doubling time =  20 400 yr. This corresponds to a mean fractional change of 
rotation period ((dP/dt)/P) =  5x 10-5 yr-1 . Thus, we expect the possible successful detection of 
the YORP effect for this body during its next apparition is September 2013. (The determination 
of the pole orientation is also probable during this apparition.) Even more probable YORP effect 
detection will be during the close-Earth encounter in June 2024.

(243) Ida

We do not compute YORP effect for the actual orbital configuration as listed in Table 3.3, but 
scaling the results from previous section, the orbit averaged component of YORP is (Tt/C) ~
3.5 X 10-21 s~2 and the doubling time ~  3.4 Gyr. This is comparable to the age of the Koronis 
asteroid family and might have caused the evolution of spins discussed by [Vokrouhlický et al., 2003]. 
Nevertheless, for direct short-term detection, the YORP is too weak.
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Figure 3.21: The YORP component affecting the angular velocity of (25143) Itokawa during one 
revolution about the Sun. This was computed using data from Table 3.3.

(25143) Itokawa

[Vokrouhlický et al., 2004] computed the YORP effect strength for this asteroid and predicted 
the possible detection of the YORP effect by an observation of the ligtcurve maximum shift 
during its close encounter in 2004. Unfortunately, this conclusion was incorrect: (i) we un­
derestimated the uncertainly of the rotation period by a factor 2π and (ii) we used am in­
correct component of the YORP torque (Tt or Τψ instead of Τω) . This led to conclusion 
that the rotation of Itokawa is accelerated and a fractional change of Itokawa’s rotation is 
(dP/dt)/P ~  1.5 — 3 X  10- 4yr_1. An attempt to detect failed.

Using the correct data (see Tfoble 3.3) and the same shape model as [Vokrouhlický et ad., 2004], 
based on radar and opticad Eairth-based observations (see Figure D.7), we found that Itokawa’s 
rotation is accelerated due to the YORP torque (Tf/C) =  6.6 x 10-17 s-2 and the vadue of the 
fractional change of spin period is (dP/dt)/P =  —1.45 x 10- 5yr-1 . This corresponds to the 
doubling time ~  69 000 years. The phaae shift due to the YORP effect then increases as
Δ<£ =  1.89° and after three years it is ~  17°.

We adso used the shape model determined by Hayabusa mission [Gaiskell et ad., 2006], see 
Figure D.8. The shape model with 2000 surface elements leads to the deceleration of Itokawa’s 
rotation: (Tt/C) =  -1 0 - l 7s-2 and (dP/dt)/P =  2 x 10- 6yr-1 . The shape models with higher 
number of the surface elements give even ~  3x higher values of the YORP effect (D. Vokrouh­
lický, personal communication).

[Nesvorný and Vokrouhlický, 2007] found that intermediate and small-surface-airea features 
are important for the overall YORP torque on Itokawa. This fact cam explain the difference 
between YORP effect computed for low-resolution shape models (e.g. [Ostro et ad., 2004]) and 
detailed shape models determined by Hayabusa mission.

Recently, [Scheeres et ad., 2007] have used data of shape and rotation o f Itokawa from Hayabusa 
mission to Itokawa and with aid of semianalyticad theory of YORP effect they found Itokawa’s 
spin rate deceleration —(2.5 — 4.5) x 10~17s~2, depending on the shape model used. They also 
discussed strong dependence of strength amd sense of YORP on the shape model. Itokawa seems 
to be an exemplary case in this sense.

(1620) Geographos

Using data from Table 3.3 we computed the YORP effect on the asteroid (1620) Geographos.
In this case we faced a problem with the choice of the right shape model. Using the shape 
model derived from combination of the radair and opticad observations (available at the website
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Figure 3.22: The same as 3.18 but for Itokawa. The results are referred to the value 12.134 hr on 
Jan 1. 2001. The upper row corresponds to the shape mode determined from radar observations 
and the lower one corresponds to the Hayabusa shape model (2000 surface elements). See 
Appendix D.

h ttp ://w w .p s i.e d u /p d s /a 8t e r o id /), we obtained the YORP torque (produced by thermal 
and reflected radiation) changing the spin rate du/dt =  Tw/C =  —4.4 x 10-18 s-2 . In this model, 
the z—axis does not correspond to the axis of the maximal moment of inertia.

Then we made rotation of the body-fixed frame (90° about the z-ax is) to the system of 
proper axes and achieved an agreement of « —axis orientation with the axis of maximal moment 
of inertia and also with the position of “north pole” in [Hudson and Ostro, 1999] (see Figure 
D.l). In this case, the change of spin rate is du/dt =  3 x 10- l 9s-2 .

Another shape model derived by J. Ďurech (personal communication) from ligtcurve analysis 
(see Figure D.2) gives a value du/dt =  2.4 x 10_ 18s“ 2. Here we used the pole of the spin axis 
derived by Ďurech: λ =  51.5°, β  =  —57.3°. The volume of Öurech’s model was scaled to the 
same volume as model of [Hudson and Ostro, 1999]. We also made rotation of body-fixed frame 
to the system of principal axis o f inertia tensor.

The possibility of detection of the YORP effect on (1620) Geographos is shown in Figure 
3.23. Here we used the shape model of Ďurech. The next opportunity to observe Geographos 
during its approach will be in 2008. The YORP effect produces a phase lag ~  13° between 1994 
and 2008. Thus, if the shape derived by Ďurech is the correct one8, we can expect the successful 
detection in 2008.

8The shape of [Hudson and Ostro, 1999] leads to phase lag ~  1.3° between 1994 and 2008. This is not enough 
to successful detection in 2008.

http://ww.psi.edu/pds/a8teroid/
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Figure 3.23: Left: Relative change of rotation period of (1620) Geographos. Right: Change of 
the rotation phase. The results are referred to the value Pq =5.23 hr on September 15, 1994. 
The dotted line corresponds to the change of period or phase of rotation due to uncertain 
determination of the initial period Pq. The uncertainly of the spin period is σ  =  1.4 x 10-7 
(according to [Hudson and Ostro, 1999]). The dashed one corresponds to the orbit-averaged 
YORP effect. Note linear growth of (P  -  Pq)/Pq and corresponding quadratic dependence of 
phase O — C.

Discussion

We have shown that the YORP component Τω causes the changes of the angular velocity du/dt 
(or the phase shift), which can be measured directly. Moreover, the YORP component Τω does 
not depend on thermal conductivity K . Thus the principal moment C  of inertia and the bulk 
density pb of the asteroid can be determined by measured du/dt together with the YORP effect 
model.

3.5 Summary

• The YORP effect affects both the spin period and the obliquity of the asteroids with 
certain amount of the windmill asymmetry. The shape and obliquity are the key quantities 
affecting the YORP effect.

• A typical YORP evolution timescales are shorter than collisional timescales (for asteroids 
smaller than several tens of kilometers in the Main Belt). The YORP effect can double 
the rotation period of 2 km Main Belt asteroid in «12  Myr.

• The obliquity-affecting YORP component Te depends on the thermal conductivity K  of 
surface material, while the component Τω, affecting the angular velocity, is almost K- 
independent.

• There is a wide variety of possible YORP evolution paths of the spin states. In the most 
likely case, the spin axis is driven to be perpendicular with respect to the orbital plane.

• The spin period can be both accelerated (maybe up to a bursting limit and possible 
formation of binary asteroids) or decelerated (to the state of very slow tumbling rotators).

• The spin period of bodies with obliquity c 2* 55° and e — 125° is not affected by the YORP 
effect.
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• We computed the YORP effect for several asteroids, assuming their actual shape and or­
bital, rotational and physical configuration, and showed possibilities of a successful YORP 
effect detection via change of the rotation period or a phase shift of the lightcurve. We 
predict the successful direct detection of the YORP effect for (6489) Golevka, 1998 KY26, 
(25143) Itokawa and (1620) Geographos in the near future.



Chapter 4

The Yarkovsky effect

4.1 Introduction

4.1.1 The principle of the Yarkovsky effect

The Yarkovsky effect is a relatively weak non-gravitational force arising from anisotropic thermal 
emission from the surface of a body, which is heated by the absorption of the solar radiation. 
The principle of the effect can be explained as follows: Let us assume an asteroid orbiting about 
the Sun and rotating about the spin axis perpendicular to the orbital plane. The surface of the 
body absorbs solar radiation1 which heats it up. Due to the finite thermal inertia of the surface 
material the temperature follows the insolation with some delay, as can be seen in Figure 4.1. 
This causes the “morning” hemisphere is cooler and the “evening” one is warmer. The surface 
emits thermal radiation which takes certain amount of momentum away. This causes a repulsive 
thermal force, which direction is somewhat shifted from the direction opposite to the Sun due 
to disbalance of temperature between the morning and evening hemispheres. The transverse 
component of this force, parallel to the velocity vector of the asteroid, then causes (according to 
the laws of celestial mechanics) a change of the semimajor axis of the orbit. If the body’s rotation 
is prograde, its semimajor axis increases, if it is retrograde the semimajor axis decreases. (The 
body spirals inwards or outwards.) The above described effect is called the Yarkovsky diurnal 
effect (see Figure 4.2a). The strength of this effect depends on the distance from the Sun, the 
diameter of the body, its mass, thermal parameters of the surface (the thermal conductivity K , 
thermal capacity c, surface density ps), the speed of rotation and the obliquity.

Another component of the Yarkovsky effect is connected with the orbital motion about the 
Sun and, consequently, it is called seasonal. It is independent on the rotation speed and always 
leads to the semimajor axis decay. It is caused by the effect o f thermal inertia during the 
revolution about the Sun. The necessary condition is the obliquity not equal 0° or 180°. Let 
us expect the Sun is shining on the northern hemisphere during the summer (see Figure 4.2b). 
In the autumn equinox the Sun illuminates both hemispheres equally, but due to the thermal 
inertia the northern one is warmer and then the resulting thermal force is shifted from the 
direction opposite to the Sun and against the direction of motion. A similar situation occurs in 
the spring equinox: The southern hemisphere is warmer than northern one and the thermal force 
again aims against the velocity vector. In real situations, the Yarkovsky effect is a combination 
of the above mentioned components.

‘ The momentum of this absorbed radiation together with the radiation reflected due to non-zero albedo give 
rise to the solar radiation pressure. But this force has direction opposite to the direction towards the Sun and its 
effect overall averaged over orbital period only decreases the solar gravitation force.

43
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t (h)

Figure 4.1: The delay δ between the maximal insolation (dotted line) said the maximal temper­
ature (solid line) due to the thermal inertia of the surface material. The figure corresponds to 
an equatorial surface element during one rotation cycle lasting 6 hours.

4.1.2 The Yarkovsky effect in the Solar System

The Yarkovsky effect plays an important role in the dynamics of meter to multi-kilometer sized 
bodies in the Solar System. It helps us to explain many observed (and previously puzzling) 
facts. Some of them we shall briefly mention here.

Delivery of meteorites to the Earth. The first application of the Yarkovsky effect was 
an explanation of the meteorite transport from the Main Belt to the Earth’s vicinity (e.g.,
[Opik, 1951], [Peterson, 1976]). Recently the subject was studied for example by [Farinella et al., 1998] 
and [Vokrouhlický and Farinella, 2000]. According to the model of [Vokrouhlický and Farinella, 2000], 
the asteroida! fragments, ejected after the disruption of parent body, slowly spiral due to the 
Yarkovsky effect. A typical semimajor axis drift rate da/dt is from ~  10-4 to ~  10-2 AU/Myr.
It depends mainly on diameters of fragments, densities and thermal parameters of the surface.
The obliquity also affects the strength and direction of Yarkovsky effect. During this stage (that 
can take from several Myr up to several 10 Myr) the fragments may undergo secondary colli­
sions, causing changes of their spin axes or even further fragmentation. Finally the fragments 
reach a powerful gravitational resonance (3:1 mean motion resonance with Jupiter or ι/ζ secular 
resonance), where they are captured and their excentricity rapidly increases up to 1. This stage 
lasts only a few Myr. Most bodies then fall directly into the Sun and only less than 1% hit the 
Earth. There is a good agreement between the calculated transport timescales and the observed 
cosmic ray exposure times of various meteorite types (they differ for various materials), and it 
is also possible to explain the observed total meteorite flux.

Delivery of small asteroids to the near Earth space. It was recognized that most of the 
near-Earth asteroids originate in the Main Belt from where they are delivered to the Earth’s 
vicinity via powerful resonances. [Bottke et al., 2002] estimated that approximately 220 objects 
per Myr with absolute magnitude H <  18 (i.e., with diameter D  >  1 km) must escape from 
the inner Maun Belt in order the population of NEAs to be in steady state. Refilling of new 
asteroids to the resonances can be explained by a semimajor axis drift caused by the Yarkovsky 
effect. [Morbidelli and Vokrouhlický, 2003] studied the transfer of bodies towards 3 : 1 and 
ι/β resonances, assuming random reorientation of spin axes due to collisions and the YORP 
effect. Their model gives the same flux as derived by [Bottke et al., 2002]. Moreover, due to the
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Figure 4.2: The principle of Yarkovsky effect: (a) diurnal and (b) seasonal component. More 
explanation in the text. (The autor of this figure is M. Brož)

Tarkovsky effect sensitivity on size, they are able to explain the difference between the cumulative 
size distribution o f main belt asteroids N (>  D) oc Z>-1·3 and thet of the near-Earth asteroids 
N(> D) cx £>-1·75. [La Spina et al., 2004] also noticed the dominance of the Yarkovsky effect 
jver collisions in injecting the bodies into resonances. They found that retrograde rotators2 
imong NEA’s are more numerous than the prograde ones. This is most probably caused by the 
Fact that the ve resonance transport route is more effective than the 3 :1 ,  and because the uq is 
located inside the Main Belt, the bodies have to drift inwards (and thus have retrograde spins).

Evolution o f  asteroid families due to the Yarkovsky effect. Asteroid families originate 
Erom a catastrophic collisions or cratering event of a parent body that produced fragments, 
which we can observed today as clusters in the space of proper elements dp, βρ, sin ip; they 
ilso exhibit similar spectral properties. Subsequent evolution is driven by the Yarkovsky effect, 
mutual collisions of the fragments and planetary perturbations.

For example [Bottke et al., 2001] investigated the evolution of the Koronis family. They 
»plain the observed shape in (a, e, sin*) space evolution in three steps. Firstly, the catastrophic 
iisruption produces multi-kilometer fragments with random orientation of spin axes. Next, their 
semimajor axes evolve due to the Yarkovsky effect. The fragments also interact with numerous 
weak resonances, which results in the changes in eccentricity. The most important of them is 
;he secular resonance g +  2g$ — 3<?6> located at 2.92 AU, that typically increases the eccentricity 
)f passing asteroids, producing the separation of Koronis family into two parts. Finally, if the 
Dody reaches the powerful resonances 5:2 or 7:3, its eccentricity and inclination rapidly increases, 
»using an ejection from the Solar System, an impact on the Sun or a planet.

[Vokrouhlický et al., 2006b] studied the structure of the Eos family. They found that after 
;he primary collision, a compact family arose and it consequently have evolved by the Yarkovsky 
jffect and by planetary perturbations. The fragments, which were driven by the Yarkovsky effect 
;o the smaller semimajor axes and encounter 7 : 3 mean motion resonance with Jupiter were

*15 from 21 bodies with known obliquity rotates in a retrograde sense.
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removed. This explains the sharp boundary of the family located exactly at the above mentioned 
resonance. On the other side the fragments driven outward from the Sun meet a bit weaker 9:4 
resonance and only some of them pass it. By this scenario they are able to explain the asymmetric 
distribution of the family members with respect to the 9:4 mean motion resonance with Jupiter. 
They also estimated the age of this family to be 1.3l{j;25 Gyr.

[Vokrouhlický et al., 2006a] developed a method for determination of ages of asteroida! fam­
ilies on the basis of the Yarkovsky/YORP maturity. They determined the ages for families 
Astrid, Erigone, Massalia and Merxia, as well as their initial dispersion velocities of fragments 
after the primary collision.

Detection of the Yarkovsky effect. The first measurement o f the Yarkovsky force was 
achieved by observations of the drag of satellite Lageos from 1976 to 1987 (e.g., [Rubincam, 1990]).

[Vokrouhlický et al., 2000] studied a possibility of direct detection of the Yarkovsky effect 
via precise orbit determination of near-Earth asteroids. Since the Yarkovsky perturbation ac­
cumulates quadratically with time, they predicted a successful detection on several asteroids 
(namely (6489) Golevka, (1620) Geographos, (1566) Icarus) with orbits determined by radar 
ranging during their next apparitions. In May 2003 the radar ranging of (6489) Golevka was 
made during its close encounter with the Earth and non-gravitational perturbation was de­
tected [Chesley et al., 2003]. This perturbation corresponds to the predicted shift due to the 
Yarkovsky effect and allows to estimate the bulk density of Golevka. as 2.71^6 6 /cdq3 and thermal 
conductivity as 0.01 W /m /K .

Further detections of the Yarkovsky effect for more near-Earth asteroids are expected in the 
near future [Vokrouhlický et al., 2005a]. An interesting opportunity to detect the Yarkovsky 
effect (both on the motion of centre of mass and on relative motion of components) appears in 
the case of near-Earth binary asteroids [Vokrouhlický et ail., 2005b].

[Nesvorný and Bottke, 2004] studied the young Karin family, with age only 5.8±0.2 Myr, and 
on the basis of convergence of orbits they determined the Yarkovsky effect for its ~  70 members. 
The magnitude of the measured Yarkovsky orbital drift agreed with the theoretical predictions. 
They also determine the surface conductivity of asteroidal fragments as ~  0.1 W /m /K .

[Chesley et al., 2006] focused on the small near-Earth asteroid 1992 BF. Orbital calculations 
based on the observations from 1992-2005 poorly fit the pre-discovery observations from 1953, 
but with the Yarkovsky effect included into the force model they were able to fit the com­
plete observational arc 1953-2002. The resulting semimajor axis drift is da/dt =  —(11 ±  2) x 
10-4 AU/Myr, which corresponds to the Yarkovsky effect with a retrograde spin axis orientation 
with obliquity 120° — 180°.

4.1.3 The theory of the Yarkovsky effect

The computation of the Yarkovsky effect usually consists of the determination of asteroid’s 
surface temperature, the computation of the corresponding thermal force and the determination 
of its effect on asteroid’s orbit. The surface temperature T  is calculated from the heat diffusion 
equation (HDE for short) inside the body (see Appendix A)

where the density p, the thermal capacity c and the thermal conductivity K  describe the thermal 
properties of asteroid material. The HDE is connected with the surface boundary condition:

(4.2)
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where v(ť) denotes the velocity vector of the asteroid, m its mass and n the mean motion.
As mentioned in Section 4.1, the key phenomenon controlling the strength of Yarkovsky 

effect is an anisotropic thermal radiation from asteroid’s surface caused by thermal lag due to 
non-zero thermal inertia of the asteroid’s surface material. As we shall see, the Yarkovsky effect 
is not so sensitive to the asteroid’s shape as the YORP effect.

The heat diffusion problem can be solved analytically or numerically. In analytical theories 
the boundary condition is often linearized (e.g. [Vokrouhlický, 1998a], [Vokrouhlický, 1999]). 
Moreover, the analytical theories assume (i) spherical objects, (ii) circular orbits, (iii) uniform 
rotation, (iv) constant thermal parameters. Several attempts to remove these constraints were 
meide. For example [Vokrouhlický, 1998b] took into account the effects of non-sphericity for the 
Yarkovsky diurnal effect, [Vokrouhlický and Brož, 1999] computed the seasoned effect assuming a 
regolith layer above the higher conductive core and [Vokrouhlický and Farinella, 1999] presented 
a semianalytical theory of seasonal effect which is able to involve elliptical orbits.

The numerical approach allows to eliminate all the above mentioned constraints, but it may 
be very time-consuming (it depends on the precision and complexity of the model). The numeri­
cal model was used for prediction of Yarkovsky orbital drift of (6489) Golevka [Chesley et al., 2003] 
In [Vokrouhlický et al., 2005a] the Yarkovsky effect on irregularly shaped (1620) Geographos and 
tumbling (4179) Toutatis was also computed numerically, as well as in the case of binary asteroid 
2000 DP107 [Vokrouhlický et al., 2005b].

Here, n denotes the outer normal to the surface, e the emisivity, σ  the Stephan-Boltzmann 
constant, A  the albedo and £ incident solar flux. This equation is essentially the energy conser­
vation law: The first term represents the energy conducted from the surface to the interior of 
the body, the second one is the energy taken away by thermal radiation and the right hand side 
term represents the absorbed solar energy.

The thermal force fth(i) acting on a body can be determined by Equation (2.11). Knowing the 
force we can obtain the change of the semimajor axis a of asteroid’s orbit due to the Yarkovsky 
effect by Gauss equation
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4.2 Yarkovsky diurnal effect on irregularly shaped objects

This section is based on the poster [Čapek and Vokrouhlický, 2002] presented at the 
ACM conference 2002 in Berlin.

Analytical theories of the Yarkovsky effect usually assume spherical objects and rely on linearized 
surface boundary condition of the HDE. Our goal is to remove both simplifying assumptions by 
solving the heat diffusion problem numerically for an arbitrarily shaped body. Here we present 
the comparison of results obtained by an analytic theory and those of numerical model. We 
proved that (i) the Yarkovsky effect is not very sensitive to the exact asteroid’s shape and (ii) 
the linearized analytical theory is a good approximation.

4.2.1 Numerical model

Our approach can be briefly described in the following four steps:

1. For a body described by a polyhedron, with typically several thousands of triangular 
surface facets, we determine the insolation of a given surface element, including effects of 
self-shadowing between different surface elements (see Appendix B). The time step is Is, 
which corresponds to only 1' of rotation phase.

2. With this insolation, we solve the one-dimensional HDE during one rotation cycle from 
surface to depth of 15^ (see Appendix A). The initial condition is derived from the mean 
insolation.

3. We repeat the previous scheme (with the initial condition corresponding to the temperature 
determined in the previous turn), until the convergence of the HDE solution is attained. 
Usually, we require the uncertainty of the surface temperature is less than 0.1 K.

4. With the converged solution we compute the corresponding mean Yarkovsky force acting 
on each surface element according to Equation (2.9). The Yarkovsky force is then given by 
a sum over all surface elements. The mean rate of change of the semimajor axis is given 
by the corresponding Gauss’ equation (assuming circular orbit):

Note that because of the assumption of zero eccentricity and obliquity, it is sufficient to 
evaluate the Yarkovsky effect at a single point only during its revolution around the Sun. 
Here, n denotes mean motion, et the along-track vector of the orbit fth the Yarkovsky 
force per unit mass.

4.2.2 Analytical vs. numerical approach for a sphere

As a test of our method, we first computed the diurnal Yarkovsky drift on a sphere, both analyt­
ically and numerically. We assume a circular orbit with semimajor axis a =  2.5 AU, the rotation 
period 6h, the radius 1km, the bulk and surface density p =  2500 kg/m3, thermal capacity 
c =  680J/kg/K and zero obliquity. Thermal conductivity of the surface regolith was varied 
from 10-9 to 102 W /m /K . Analytical model was adopted from [Vokrouhlický, 1999]. Numerical 
approach uses a “sphere” consisting of 1004 surface triangular facets.

The resulting Yarkovsky orbital drift as a function of the thermal conductivity, computed by 
the analytical and numerical theory, can be seen in Figure 4.3. The most likely values of K  (as 
well as the peak of da/dt) inferred from infrared observations of small NEA’s are in the interval
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Figure 4.3: Left: The diurnal Yarkovsky orbited drift da/dt as a function of the thermal con­
ductivity K  for a sphere with radius 1km and zero obliquity. The solid line corresponds to 
the numerical solution of the HDE and the dashed line to the analytical one. Right: The ratio 
between the Yarkovsky orbital drift computed numerically and analytically as a function of the 
thermal conductivity for the same sphere.

0.001 -  0.1 W /m /K  [Delbo et al., 2006]. The results of numerical and analytical model is shown 
in Table 4.1.

A comparison of Yarkovsky orbital drift da/dt computed numerically and analytically is 
shown in Figure 4.3 right. It can be seen that the amplitude of ratio of numerical and analytical 
results is decreasing with increasing thermal conductivity. This is caused by the fact, that due to 
great thermal variations in the case of low conductivity, the analytical linearization of HDE fails 
and produces incorrect results. Nevertheless, the analytical results are only 1.6 times smaller for 
conductivity 10-9 W /m /K . For the realistic values of thermal conductivity (K  >  10-4 W /m /K ) 
the difference is less than 10%.

4.2.3 Irregularly shaped bodies vs. sphere

We tested the calculations of the Yarkovsky effect for irregular bodies on a sample of 100 
Gaussian random spheres (see Appendix), all having the same mass as a sphere with radius 
1 km and density 2500 kg/m3. We computed the Yarkovsky orbital drift assuming the thermal 
conductivity 10-3 and 10-2 W /m /K , keeping other parameters as above for the spherical body. 
The resulting distributions of da/dt are shown in Figure 4.4.

The analytical result systematically overestimates the semimajor axis drift, both with respect 
to the numerical solution for a sphere and with respect to the mean value over the Gaussian 
spheres sample. Quantitative results are summarized in Table 4.1.

The analytical theory thus gives higher values by a factor of 1.25 or 1.19. Overall, however,

Table 4.1: The diurnal Yarkovsky semimajor axis drift da/dt in the units of (AU/Myr) computed by 
numerical and analytical model. See the text.
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this difference is comfortably small so that the results of the linearized analytical theory can 
be used for modelling statistical parameters of the meteorite transport, the origin of NEAs, 
evolution of asteroid families and for simillar applications.

do/dt (10 ”4AU/Myr) do/dt (10 '*A U /M yr)

Figure 4.4: The distribution of the diurnal Yarkovsky orbital drift computed for 100 Gaus­
sian random spheres with zero obliquity. Left plot corresponds to the thermal conductivity 
0.01 W /m /K  and right one to 0.001 W /m /K . The symbols at the bottom of the plot represent 
actual individual values of da/dt.
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4.3 Yarkovsky effect on individual bodies

4.3.1 (6489) Golevka -  the direct detection of the Yarkovsky effect

In the following text we describe our computations which were used for the prediction
and detection of the Yarkovsky effect on asteroid (6489) Golevka ([Chesley et al., 2008]).

(6489) Golevka (1991 JX) is a ~  500 m size Apollo-type object with an orbit close to the 
3 : 1 mean motion resonance with Jupiter and also near to the 1 : 4 resonance with the Earth. 
It was discovered during a close encounter with the Earth on May 10, 1991 [Helin et al., 1991]. 
A large international observing campaign during its apparition in 1995 allowed to determine the 
spin vector, period of rotation, shape model and other physical properties, as well as precise 
orbit [Mottola et al., 1997], [Hudson et al., 2000].

[Vokrouhlický et al., 2000] investigated a possibility of detecting of the Yarkovsky effect via 
precise orbit determination of near-Earth asteroids. They showed that such a detection is pos­
sible only using an accurate radar astrometry at several apparitions. The radar observations 
must cover sufficiently long time span to accumulate Yarkovsky perturbations, which depend 
quadratically on the time. In the case of Golevka they predicted the Yarkovsky orbital drift 
da/dt ~  — 6 x 10-4 AU/Myr (assuming thermal conductivity K  =  0.01 W /m /K ) and correspond­
ing displacement o f 15.2 km, with respect to the purely gravitational model of orbital evolution, 
during time interval between apparition in 1991 and 2003. On the basis of known astrometric 
observations they determined the initial state vector and its uncertainity. Then they propagated 
it using the pure gravity model and also the model that included the Yarkovsky force. For the 
time of the close encounter in 2003 they determined 3σ uncertainity ellipses in the range (R) vs. 
range-rate (dR/dt) plane. (These quantities are directly observable by radar.) They showed that 
the ellipsoids corresponding to standard and Yarkovsky-included model are shifted by ~  15 km 
and are well separated. They concluded that the Yarkovsky effect could be dected by radar 
ranging during 2003 approach.

On the basis of this prediction, Golevka was observed by radar facility of Arecibo on May 
24, 26 and 27 2003 and the Yarkovsky semimajor axis drift effect was successfully detected 
[Chesley et al., 2003]. In this case the Yarkovsky effect was modeled by our numerical method 
for various thermal parameters as is described below. In the propagation of the uncertain­
ity ellipses, they took into account uncertainities of astrometric measurements, planetary and 
small bodies masses and Yarkovsky modeling. The resulting 3σ uncertainity ellipses were well 
separated again. With the best fitting values of the surface conductivity and bulk density3 
K =  0.01 W /m /K , pb =  2.7g/cm3, the actual Arecibo astrometry of Golevka falls into the 
ellipse corresponding to Yarkovsky model (the offset of ~  15 km in R  and ~  5 x 10~6km/s 
in dR/dt). In what follows we give some more details about the Yarkovsky model used in 
[Chesley et al., 2003].

The model

Unlike [Vokrouhlický et al., 2000], we have used fully numerical model which is able to take 
into account eccentric orbit, irregularly shaped surface of a body and precise solution of heat 
diffusion problem without any linearization [Chesley et ad., 2003]. Some specific features of our 
model are described in detail in Appendices.

The shape model of Golevka represented by a 4092-hedron (see Appendix D) was taken from 
[Hudson et al., 2000]. We determined the insolation of all surface elements along whole elliptical 
orbit, including effects of self-shadowing between different surface elements (see Appendix B).

3K  and p are fully correlated.
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With this insolation, we solved the one-dimensional HDE by a two-level scheme, during 
one orbital period, from surface to depth of 15£, (see Appendix A). We usually made several 
iterations until the surface temperature precision was better than 0.1 K. The timestep in the 
first level was ~  500 s while in the second one only ~  5 s. The spatial steps increase with the 
depth according to A x * =  Δχο exp(0.1 k). The initial spatial step was ~  0.76 Id in the first level 
and ~  0.0076 Id in the second one. Here td represents penetration depth of diurnal temperature 
variations.

Table 4.2: Penetration depths of seasonal (ts) and diurnal (id) temperature waves as functions of 
the thermal conductivity K.  The surface density was assumed 1.7g/cm3, the thermal capacity 
680 J/kg/K  and the period of rotation 6h.

With the converged solution of surface temperature we computed the corresponding Yarkovsky 
force acting on each surface element according to Equation (2.9). The total Yarkovsky force fth 
is then given by a sum over all surface elements (Eq. 2.11). The mean rate of change of the 
semimajor axis is given by the corresponding Gauss’ equation (4.3).

We used the following orbital parameters: semimajor axis a =  2.5065 AU, excentricity e =  
0.604317, inclination x =  2.277°, argument o f perihelion ω =  66.06°, longitude of ascending 
node Ω =  211.502°. The pole of rotation was I =  202°, b =  —45° (ecliptical coordinates) and 
corresponding obliquity e =  134°. Period of rotation Prev =  6.0264 h was slightly modified to 
Prev — 6.02666 h in order the fraction PTtv/Parb to be am integer number4. The thermal capacity 
was c =  680 J/kg/K , the surface density5 ps =  1.7g/cm 3, the bulk density pb =  2.5 g/cm3, Bond 
albedo A =  0.1 and emisivity e =  0.9. We assumed the thermal conductivity K  from 10-4 to 
10“ 1 W /m /K .

Results

For the given material parameters K , c and ps we computed components of the Yarkovsky 
thermal force with respect to the inertial frame and corresponding semimajor axis drift da/dt. 
Figure 4.5 shows an example of da/dt behaviour during one orbital period for K  =  0.01 W /m /K . 
The orbit-averaged da/dt as a function of surface thermal conductivity is shown in Figure 4.6. 
We also present results obtained by an analytical theory [Vokrouhlický, 1999]. We can see 
that both numerical and analytical approaches lead to almost the same averaged value of the 
Yarkovsky orbital drift for Golevka.

Due to a priori unknown thermal conductivity of the surface material, we had to compute 
the Yarkovsky orbital drift for a wide range of possible K 'b from 10~4 to 10-1 W /m /K  (see the 
discussion in Section 3.4.1).

4In this case Prev/Porb =  5772. Such change of the period do not affect the results, but it allows to use a 
impler approach.

®We also made a few computation assuming the surface density 1 g/cm3 and 2.5 g/cm3.
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Figure 4.5: The Yarkovsky orbital drift as a function of the orbital phase (t/Porb)· The origin of 
time is chosen at the perihelion passage. The solid curve was computed for K  =  0.01 W /m /K , 
c =  680J/kg/K, pb =  1.7g/cm3. The dashed one represents the average value (da/dt) =  
-5.5 X 10" 4 AU/Myr.

Figure 4.6: The Yarkovsky semimajor axis drift da/dt according to the numerical and analytical 
theory as a function of the surface conductivity K . The solid line (with diamond symbols 
indicating the actually determined values) represents da/dt determined by the numerical method, 
expecting the density of the surface material 1.7 g/cm 3. The dash-dotted line is computed by the 
analytical theory, with the same density assumed. The dotted and dashed curves were computed 
analytically, assuming the surface density lg /cm 3 and 2.5 g/cm 3 respectively. The square and 
triangle symbols denote numerical results for densities lg /cm 3 and 2.5g/cm 3 respectively.
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4.3.2 (6489) Golevka -  plausible constraints on its surface layer

This section is based on the poster [Čapek and Vokrouhlický, 2005b] presented at the 
conference ACM 2005 in Brlzios, Brazil.

We improved our numerical model o f Yarkovsky/YORP effect (which was used for example 
in [Chesley et al., 2003]) by taking into account spatial and temperature dependence of the 
thermal capacity c and thermal conductivity K . As a result we can derive constraints on the 
surface properties such as regolith thickness for this asteroid.

The m odel

We assumed the same spin, orbital and shape parameters of Golevka as in Section 4.3.1. The 
main differences are in the thermal parameters: we assumed a the high-conductive core, com­
posed from fresh basalt covered by a layer with low thermal conductivity ( “regolith” ). More­
over, we allow for temperature dependence of thermal parameters. This is discussed in de­
tail in Section A. 1.3. We adopt the temperature dependence of the thermal capacity c from 
[Urquhart and Jakosky, 1997] as

Tkble 4.3: The thermal parameters used in our model of Golevka. The B term of regolith 
corresponds to the lunar regolith (Tkble 1 in [Cremers, 1972]).

The solution of the heat diffusion equation was more difficult due to the dependence of 
thermal parameters on the temperature. We had to modify the Crank-Nicolson scheme and 
find an appropriate combination of spatial and time steps (see Appendix A). This scheme 
is much more time consuming. We computed the Yarkovsky effect only for regolith depths 
h = 1mm, 1cm, 10 cm and for conductivities A — 0.001, 0.01, 0.1 W /m /K . We again assumed 
exponentially increasing spatial step (the initial one was 0.01 mm) and timestep 300 s and used 
polyhedral shape of Golevka (4092 surface elements).

where T  (in Kelvins) is the temperature. The thermal capacity for a given temperature is almost 
the same for a wide range of stony materials. But due to the temperature dependence it can 
vary from ~  400 to ~  800 J/kg/K  at aphelion and perihelion of Golevka, respectively.

The temperature dependence of the thermal conductivity K  was assumed as

where the term A corresponds to a heat transfer by conduction and B  T 3 represents a radiative 
heat transfer. The second term is important in materials like regolith containing voids. In the 
case of Golevka, the second term plays only a minor role.

The density is not affected by temperature variations. The thermal conductivity and density 
of the core and regolith used in our model are summarized in Table 4.3.
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Results

Our results are summarized in Figures 4.7 and 4.8. Figure 4.7 shows the dependence of da/dt on 
the regolith depth for three values of its conductivity6 (K  =  0.1, 0.01, 0.001 W /m /K ). Focusing 
on the right side panel we can see the Yarkovsky effect is similar for the three conductivity 
values. For large regolith thickness (h >  10 id) the semimajor axis drift approaches the value 
corresponding to infinite regolith depth, while for h small (compared to /<*) it approaches the 
zero regolith depth limit (—3 x 10-4 AU/Myr corresponding to uniform composition with K  =  
2.5 W /m /K ). There is transition zone between these two limit cases, characterized by a peak of 
da/dt for h ~  4 id and local minimum at h ~  1/2 id- The left panel shows the same dependence, 
but the X—axis is in the metric units. We can notice the horizontal line corresponding to 
measured orbital drift (da/dt) ~  5.5 x 10-4 AU/Myr. This measurement is consistent with our 
model only for some particular combinations of the regolith depth h and the thermal conductivity 
K: 1.3cm or 3cm for K  =  0.01 W /m /K  and 3cm or 13cm for K  =  0.1 W /m /K .

More complex constraints on combination’s of the regolith’s depth h and the thermal con­
ductivity K  can be inferred from Figure 4.8, where we plot a 2D function da/dt(h, K).

The measured value of da/dt for Golevka is —5.5 x 10-4 AU/Myr ([Chesley et al., 2003]). 
We assumed 10% uncertainity of this value (or our model) and marked the corresponding area 
(upper right part of the figure) by dots. This area denotes plausible combinations of the regolith 
depth h and its thermal conductivity K , which are consistent both with our model and with 
measured value of non gravitational da/dt. We can conclude:

• If Golevka has a high-conductive (basalt) core, the thickness of the low-conductive surface 
layer is larger than 1 cm and its thermal conductivity is larger then 0.004 W /m /K .

• The radiative term BT3 in the thermal conductivity (Eq. 4.5) has a negligible effect on 
the resulting da/dt for Golevka.

Future improvements

In reality, many asteroids seem to be covered by both regolith and fresh rock. Recently we 
took this fact into account and developed a model with thermal parameters dependent both 
on depth under the surface and on the position on the asteroid’s surface. Only facets with the 
slope7 smaller than the angle of repose of regolith have a regolith layer above the fresh rock 
core; others are assumed to be regolith-free fresh rock. (See Figure 4.9.)

For example, we assumed the angle of repose 30°. Regolith parameters were: depth h =1 mm, 
thermal conductivity Kregoiith =  (0.1 +  2 x 10-11 T3) W /m /K  and density pregolith =  1.7 g/cm 3 
and fresh rock parameters were: K n =  2.5 W /m /K , pr0Ck =  2.5 g/cm 3 Other quantities were 
the same as in [Čapek and Vokrouhlický, 2005b]. We obtained the semimajor axis drift —3.2 x 
10" 4 AU/Myr. If we chose the regolith depth 100 times larger (0.1 m), we obtained the semimajor 
axis drift (da/dt) =  —5.4 x 10-4 AU/Myr. Details of this model need to be developed in the 
future work.

®In fact, it is the conductivity parameter A in Equation (4.5).
rDefmed as the angle between outer normal and vector of local gravity + centrifugal acceleration.
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Figure 4.7: The Yarkovsky semimajor axis drift dependence on regolith depth for three values 
of thermal conductivity. The dashed curve corresponds to K  =  0.1 W /m /K , dotted one to 
U.01 W /m /K  and solid one to 0.001 W /m /K . The x-axis in the left panel represents the depth 
of regolith in metric units and horizontal line indicates the actually measured da/dt on Golevka 
by [Chesley et al., 2003]. The right panel has i-axis in the units of penetration depth of diurnal 
temperature variations id· See the text for discussion.

Figure 4.8: The dependence of the Yarkovsky semimajor axis drift on the depth of the regolith 
layer (j-axis) and its thermal conductivity (y-axis). The thick solid straight line represents 
the penetration depth of diurnal temperature variations f,t, while dashed ones correspond to 
1/4 id and Aid- The thick contour corresponds to a value -5 .5  x 10~4 AU/Myr and dotted area 
indicates a 10% interval of its uncertainity.
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Slope (beg)

Figure 4.9: Left: The abundance of slopes for the asteroid (6489) Golevka. Right: The distri­
bution of gravitational plus rotational acceleration across the surface o f asteroid Golevka. The 
short lines correspond to directions and the colors to magnitudes of accelerations on the surface. 
(White color corresponds to the lowest value (<7min =  1-35 x 10“ 4 πι/s2) and blue color to the 
highest value (gmax =  1.86 x 10-4 m/s2).)
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4.3.3 (4179) Toutatis - an asteroid with non-principal axis rotation

This section is based on the investigation presented in [Čapek and Vokrouhlický, 2005a] 
and [Vokrouhlický et al., 2005a].

(4179) Toutatis, a body with dimensions ~  4.6 x 2.4 x 1.9 km, is an Apollo-type asteroid in the 
3:1 mean motion resonance with Jupiter and in the 1:4 mean motion resonance with the Earth. 
During its frequent close encounters to the Earth, radar observations revealed its irregularly 
elongated shape [Hudson et al., 2003], non-principal axis spin state [Hudson and Ostro, 1995] 
and precisely determined its orbit.

[Vokrouhlický et al., 2000] studied a possibility of the Yarkovsky effect detection on this 
body, but several mistakes occurred in their calculations. [Vokrouhlický et al., 2005a] corrected 
the older results, taking into account the right shape, dimensions, the non-principal axis rotation, 
and solved the HDE numerically. In the following text we shall briefly describe our method used 
in [Vokrouhlický et al., 2005a].

The model

We have used a reduced shape model determined by [Hudson et al., 2000]. This model consists 
of 12796 surface facets (see Appendix D).

The main problem, we faced in this case, was the non-principal axis rotation of Toutatis. 
In the body-fixed frame, the spin axis wobbles about the long principal axis with a period of 
5.367 days and this axis precedes about the angular momentum axis with period 7.420 days 
[Ostro et al., 1999a]. The orientation of such a freely rotating body never exactly reaches the 
initial orientation. It can pose a problem for the HDE solution, since we do not dispose with a 
condition of its exact periodicity.

We first determined the orientation of Tbutatis by a numerical solution of Euler equations 
(see [Kryszczyňska et al., 1999]):

where φ, φ and Θ denote Euler’s angles, A < B < C  principal moments of inertia and u >a , u >b  

and u c  are projections of spin vector to the principal axes {A is the longest axis and C  the 
shortest one). The first set of equations solves for the spin axis vector with respect to the body 
frame whereas the second one solves for the orientation of the body with respect to the inertial 
frame.

We used the initial conditions listed in Table 4.4 and propagated them for one orbital period8. 
Then we determined deviations of the body axes from the initial position as a function of time 
and searched for the best agreement with the initial orientation. We found that Toutatis reaches

®The angles had been transformed due to a different orientation of our shape model.
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Φο -103° ωΑ 20.7°/day
V»o -134° mb 31.3°/day
00 97° wc 98.0°/day

T̂ ible 4.4: Initial conditions of the Toutatis’s rotation taken from [Ostro et al., 1999a], Table 
VII. The data corresponds to the date Dec 11, 1992, 9:21 UTC.

Figure 4.10: Angular deviations of the x  (thin solid curve), y (dotted curve), and z-axis (dashed 
curve) from initial orientation in space as a function of time for asteroid (4179) Toutatis. Here 
we show only a short segment of 20 days near one revolution period of the asteroid. The thick 
solid curve denotes the maximal angular deviation. Almost the same orientation as the initial 
one is reached after 1454.4 days, which is very close to the orbital period 1451.7 days, denoted 
by the arrow.

a nearly identical orientation in the space with a period 1454.4 days, which is close to the orbital 
period Porb =  1451.7days (see Figure 4.10). This result is very surprising and we have no 
explanation for this fact yet. In any case, this circumstance greatly helps the HDE solution 
because we may use the near periodicity of Toutatis’ orientation in space as a boundary condition 
in the time coordinate.

The semimajor axis of Toutatis’ orbit was then slightly changed in order the orbital period to 
be exactly 1454.4 d (due to the periodic initiad condition). We assumed these orbital parameters: 
semimajor axis a =  2.5123 AU, excentricity e =  0.64038, incUnation i =  0.466°, argument of 
perihelion ω =  276.2° and ascending node Ω =  126.6°.

With known orientation in space, we determined the insolation of each facet. (Including 
effects of self-shadowing between different surface elements -  see Appendix B.) For the surface 
temperature determination we chose the following thermal parameters: thermal capacity c =  
800 J/kg/K, surface density p3 =  2g/cm 3, bulk density pb =  2.6g/cm 3, Bond albedo A =  0.08 
and the emisivity e =  0.92. We assumed values of the thermal conductivity K  from 5 x 10“ 4 to 
5 X  10" 1 W /m /K .



CHAPTER 4. THE YARKOVSKY EFFECT 60

Figure 4.11: The orbit averaged semimajor axis drift for asteroid (4179) Toutatis as a function 
of the thermal conductivity. The thick solid line represents the result obtained by a precise 
numerical method, while the other two curves correspond to simplified analytical approaches. 
For more information see the text.

Thanks to Toutatis’ slow rotation, we can solve the one-dimensional HDE by a one-level 
scheme, during orbital period, from the surface to the depth of 15t s (see Appendix A). We 
made 5 iterations, leading to the temperature precision better than 0.009 — 0.04 K, depending 
on the thermal conductivity. The timestep was 125 s (62 s in the case of K  =  5 x 10-4 W /m /K ). 
The spatial steps increased with the depth according to A xt  =  Δχοβχρ(0.1 k), where the initial 
spatial step was 1/200 l t .

With the converged solution of the surface temperature and the known orientation of the 
body we computed the corresponding Yarkovsky effect by the same way as in the case of Golevka 
(Section 4.3.1).

Results

The resulting orbit-averaged semimajor axis drift can bee seen in Figure 4.11. We compared 
this result with an estimation by a simplified analytical method (solving the linearized HDE). In 
the analytical approach, Toutatis was represented by a sphere of the same mass as real asteroid. 
Moreover, we assumed regular rotation about the vector of Toutatis angular momentum which 
has the pole ί  =  180°, b =  —52° in ecliptical coordinates. We chose two periods: 7.24d and 
5.367 d. The result of the analytical method (solving linearized HDE) with the period 7.24 d is 
in a surprisingly good agreement with the more sophisticated numerical theory.

We predicted the range9 offset +40 ps between Yarkovsky and non-Yarkovsky orbit during 
its encounter with Earth in October 2004, giving a good perspective of a second direct detection 
of the Yarkovsky effect.

Unfortunately, the detection failed so far. The measurement o f the range offset led to the

eThe Range means the quantity 2Δ β /c , where Δ Λ  is the distance from the Garth (radar) to the asteroid, and 
c is the speed of light.
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value (—23.5 ±  4) μ». According to [Vokrouhlický and Chesley, personal communication], this 
was caused by several facts: (i) the Yarkovsky force was badly incorporated into the software 
computing the orbit. The correct value of the Yarkovsky range offset should have been (+16 ±  
5) μβ (instead of +40 /is) on October 7th 2004. (ii) More importantly, the effects of asteroid 
perturbers, and their poorly known masses, were not taken into account, though they are very 
important. Thus the combination of the Yarkovsky and asteroidal perturbations leads to the 
range offset (—41 ±  18) μ8. Then the observation (—23.5 ±  4) ßs fits into the predicition but the 
difference between the “Yarkovsky” and “non-Yarkovsky” models is not statistically significant 
yet (due to the large uncertainities). It is yet to be determined if data from the 2008 radar 
ranging will allow a clear detection of the non-gravitational signal.
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4.3.4 2000 D P 107 -  a binary system

The section is based on the investigation presented in [Čapek and Vokrouhlický, 2005a] 
and [Vokrouhlický et al., 2005b].

Radar observations of 2000 DP107 ([Margot et al., 2002]) revealed this object is a binary sys­
tem consisting of a primary with diameter ~  800 m and a secondary with diameter ~  300 m. The 
orbital period of the pair is P2 =  1.755 day, the rotation period o f the primary is Pi =  2.77536 h, 
while the secondary has a synchronous rotation. [Margot et al., 2002] also estimated the par 
rameters of the relative orbit: semimajor axis a =  2622 m, excentricity e =  0.01, inclination 
i =  17°, argument of perihelion ω =  7° and ascending node Ω =  10° with a large error in ω due 
to almost circular orbit. Binary nature of this body helped to determine the mass of the sys­
tem M  =  4.6 X  1011 kg and corresponding bulk density of the primary component as 1.7g/cm3 
(we expected the same density of the secondary). The heliocentric orbit of the whole system 
is characterized by the semimajor axis a =  1.3662 AU, excentricity e =  0.376863, inclination 
* = 8.663°, argument of perihelion ω =  289.687° and ascending node Ω =  358.829°.

We studied this system [Čapek and Vokrouhlický, 2005a], [Vokrouhlický et al., 2005b] as an 
example of the Yarkovsky effect influence on binary asteroid. In this cases the Yarkovsky force 
affects both the motion of the center of mass (COM for short) of the system and the relative 
motion of the components.

The model

Most parameters of the relative orbit and orbit of the COM were taken as above. The only 
exception was the semimajor axis of the COM and primary’s rotation period that were changed10 
slightly, in order to the ratios between orbital period P„b  of COM, rotation period of secondary 
P 2 and rotation period of primary Pi were integers: P ^  : P2 =  332 : 1 and : P \ =  5034 : 1.

Next we expected the spin axes of both components are perpendicular to the plane of mutual 
motion. The corresponding pole in ecliptical coordinates is i  =  280° and b =  73°. We modeled 
both components as spheres with appropriate diameters, which were approximated by regular 
polyhedrons with 1004 triangular facets. In contrast to other studied bodies, the self shadowing 
of the asteroid’s surfaces plays only a minor role here, but the mutual shadowing of both com­
ponents during the revolution about the COM is very important and we had to incorporate this 
phenomenon into our model.

The thermal capacity was assumed c =  800 J/kg/K , the bulk and surface density Pb =  Ps =  
1.7g/cm3, the albedo A =  0.1 and emisivity e =  0.9. We computed the Yarkovsky effect for
thermal conductivities in the range from 0.001 W /m /K  to 1 W /m /K .

We solved the HDE by a one-level scheme (see Appendix A) with an exponentially increasing 
spatial step. The exponent was 0.1 and the initial step Δχο =  0.36 id for the primary, and Δ ίο  =  
0.18 id for the secondary, where id represents the penetration depth of diurnal temperature 
variations. The lower boundary condition lied in the depth 15i s, where i ,  is penetration depth 
of the seasonal temperature variations. The time step was 50 s for the primary and 200 s for the 
secondary. We determined the Yarkovsky acceleration fi for primary and f2 for the secondary
separately. The Yarkovsky acceleration of the whole system (COM) is given by

(4.12)

and the Yarkovsky perturbation of the relative motion is given by:

10Tb the values a =  1.365264 AU and Pi ~  2.7779 h.
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Results

Firstly, we focus on Yarkovsky perturbations o f the COM  motion. Figure 4.12 shows the orbit 
averaged semimajor axis drift due to the Yarkovsky effect. We also computed the Yarkovsky 
effect only for primary - both analytically and numerically. We can see that the contribution of 
the secondary to the whole effect is negligible for low conductivities and its significance increases 
with thermal conductivity. This can be explained by the fact that the Yarkovsky effect for the 
primary decreases with increasing K  more quickly than for the secondary due to the rapid 
rotation of the primary, and thus vanishing diurnal temperature variations for high K.  We can 
also see the disagreement o f the linearised analytical solution with the numerical one for low K,  
due to higher temperature variations, causing the HDE linearization to fail.

The time dependence o f the absolute value o f Yarkovsky acceleration is shown in Figure 
4.13. We can see deep minima o f the secondary’s acceleration due to its eclipses. The eclipses 
are total near the perihelion and apohelion and they are partial near the quadratures. Eclipses 
of the primary are only partial and minima o f the acceleration o f this component are smaller. 
After the main minimum we can observe oscillations with decreasing amplitude and a period 
equal to the rotational period o f the primary. This phenomenon is caused by the rotation o f a 
cold spot arose from the passage o f the secondary’s shadow and its subsequent warming.

The Yarkovsky perturbation o f the relative motion is caused by 6f . The most important 
is the component parallel to the relative motion 6fT. In the long time scales this component 
produces a linear increase of the mutual distance and a quadratic advance of the longitude in 
the relative orbit. The orbit averaged (δf T) as a function o f the surface thermal conductivity is 
shown in Figure 4.14.

The time dependence o f the along-track component is shown in Figure 4.15. During a 
shadowing o f the secondary, SfT temporarily increases. This is because the shadow at first 
reaches the morning side o f the secondary and then this side is colder than the evening one, 
causing an increase o f the along-track component o f the Yarkovsky force. An opposite situation 
occurs during an emersion from the shadow. Due to thermal relaxation after occulations, the 
along-track component 5/T does not average to zero (like the solar radiation pressure) and can 
produce observable effects [Vokrouhlický et al., 2005b].

We demonstrated the Yarkovsky effect is able to produce both perturbations o f a heliocentric 
orbit o f the COM and perturbations o f a relative orbit o f components about the common COM. 
Both these effects can serve to a detection o f the Yarkovsky effect, but in the case o f 2000 D P I07, 
the effect on the relative motion is too small to be detected. Detection o f Yarkovsky effect via 
its influence on the COM motion can be successful in 2016 if radar observations in 2008 are 
successful.

Our model is able to describe the Yarkovsky effect on binary asteroids but in this particular 
case, the approach is very simplified. This is mainly due to unknown orientation of spin axes, 
unknown shapes and due to an uncertain evolution o f the rotational states and the relative orbit 
by tides. In the future we plan an application to better characterized systems, such as (66 391) 
1999 KW 4 [Ostro et al., 2006].

4.3.5 Discussion

We are able to determine the Yarkovsky effect for a wide variety o f asteroids: simple cases of 
spherical bodies with semimajor axis rotation, as well as irregularly shaped bodies, tumbling
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asteroids or binaries. Our model realistically describes the thermal behaviour of the surface 
material (the temperature and spatial dependence of the thermal parameters).

The knowledge of the Yarkovsky effect is necessary for the prediction of the asteroid’s orbit. 
For instance, the precise knowledge of the orbit is important in the case of potential Earth 
impactors [Giorgini et al., 2002].

The Yarkovsky and YORP effect can be also used for determination of the thermal conduc­
tivity of the asteroid’s surface and its bulk density pb and consequently the mass, porosity and 
type of the surface material (the fresh rock, regolith or mixture of them).

The independent measurement of the bulk density via direct detection of the Yarkovsky effect 
alone is not possible, because bulk density is coupled with the surface thermal conductivity K  as 
pbK. However, if the Yakrovsky and the YORP effect are measured together, the independent 
determination of pb and K  is possible. (See Chapter 3.)
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Figure 4.12: The orbit averaged semimajor axis drift da/dt for 2000DP107. The solid line 
represents numerical results for the whole system, while the dashed one is computed for the 
primary alone. The dotted line corresponds to the analytical results for a solitary primary.
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Figure 4.13: The absolute value of the Yarkovsky acceleration of 2000PD107 as a function of 
time for the thermal conductivity K  =  0.01 W /m /K . Lower figure shows the acceleration of the 
primary (the curve with a smaller amplitude) and the secondary (the larger amplitude) during 
one revolution about the Sun. Upper figures show in detail the situation near the perihelion 
(left) and aphelion (right) during one revolution of the components about the COM. Here the 
upper grey curve denoted by “2” represents the secondary, the lower denoted by “1” the primary 
and the black curve corresponds to the acceleration of the COM (according to Equation (4.12)). 
More explanation in the text.
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Figure 4.14: The orbit averaged along-track component / T as a function of the surface thermal 
conductivity K.

Figure 4.15: The long-track component of i f  as a function o f time. Left plot shows the depen­
dence during one revolution about the COM. The vertical lines correspond to the entry and exit 
of occulations. The first is the occulation of the primary and the second the partial occulation 
of the secondary. The dashed line denotes an effect of the solar radiation pressure, the solid 
curve denoted by “1” corresponds to the thermal conductivity K  =  1 W /m /K  and the solid 
curve denoted by “2” to K  =  0.001 W /m /K . Right plot zooms the occulation of the secondary. 
Dotted curves correspond to a situation when no occulations occur.
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4.4 Summary

• Our numerical model was used succesfully for the prediction and the following detection 
of the Yarkovsky effect on asteroid (6489) Golevka. It was the first direct detection of this 
phenomenon effect on a natural body.

• We also computed the Yarkovsky effect and estimated possibilities of the detection for 
several other asteroids. We are able to describe highly eccentric orbits, non-principal axis 
rotation (e.g., (4179) Toutatis), or mutual shadowing in components of binary systems 
(e.g., 2000 DP107).

• On the basis of the detected Yarkovsky orbital drift for (6489) Golevka and our model 
involving depth and temperature dependence of thermal parameters, we estimated the 
depth and thermal conductivity of the surface regolith layer.

• We compared the results of the analytical theory with our sophisticated numerical model 
and concluded that the analytical model mostly gives very similar results as the numerical 
one.

• In contrast to the YORP effect, where the shape plays a key role, we showed near complete 
independence of the Yarkovsky effect on the detailed shape of the body.

• As a by-product, we revealed an interesting agreement between the orbital period of the 
tumbling asteroid (4179) Toutatis and the period needed to its return to the initial orien­
tation with respect to the inertial system (i.e., its “rotational” period).



Appendix A

The heat diffusion equation

This chapter deals with a problem of the determination o f the asteroid’s surface temperature, 
which is necessary for the calculation o f the Yarkovsky force and the Y O R P  torque. We will 
assume that the asteroid is thermally relaxed, this means the temperature variations are caused 
by insolation only. Neither radiogenic nor other sources o f heat are taken into account.

A .l Introduction

A .l . l  Derivation o f the Heat Diffusion Equation

Any gradient o f the temperature V T  inside a body is connected with the heat flow q according 
to Fourier’s law:

'We use the notation SQ instead of dQ, because Q depends on the integration path between initial and final 
state, i.e., SQ is not a total differential.
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where / i [W m  1 s *] is the thermal conductivity. This heat flow through the closed surface S 
increases an energy o f the enclosed volume V  o f a body after time dt by

The second law o f thermodynamics is1 (e.g. [Svoboda and Bakule, 1992]):

and for the volume V :

where 9 is density o f entropy. Together with equation (A.2) we have (assuming there is no 
deformation):

If there are no heat sources, as a decay o f radioactive elements, and no deformations (i.e., 
constant volume) we can write
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which is a second order partial differential equation of parabolic type for the temperature T(r, ť) 
as a function of position r and time t. Due to simplicity, we are using the notation “c” , but it 
always means “c„” .

A .1.2 In itia l and  b ou n d a ry  con d ition s

The uniqueness of the solution of the HDE requires additional equations constraining the tem­
perature field. These are called initial and boundary conditions.

An initial condition defines temperature field in a given time r: T (t  =  r,r ) =  /i(r ) ; 
alternately, the initial condition can be sometimes replaced by periodic boundary condition 
T (t , r) =  T (t  +  P, r), where P  is the constant period.

An boundary condition describes the behavior of the temperature at the boundaries of the 
body. Here we list a few examples of the most common boundary conditions (e.g., [Isachenko et ad., 196! 
[Vitásek, 1987]).

• If the temperature is predefined at the boundary as a function of time, T(t, r) =  / 2(ť, r) 
for r G Σ, then it is cailled the Dirichlet condition.

• The Neumann condition specifies the gradient of the temperature at the boundary: VT(i, r) =  
/ 3(i,r) for r G Σ  and actuadly represents a contact with a defined thermad flux.

• Another type of boundary condition describes a cooling or heating of the body by a 
surrounding reservoir. Then the heat flux is proportional to heat-transfer coefficient a 
(W /m 2) and the difference between the temperature o f the body’s surface T (t, r € Σ) auid 
temperature of the reservoir Tp: —K V T (t, r G Σ) =  a (T (t, r G Σ) — Tp). In fact, this is a 
combination of Dirichlet and Neumann boundary condition.

AU these boundary conditions are linear in the temperature. In the following sections we face 
a more complicated non-linear boundaury condition, which stems from the energy conservation 
law on the surface, where the heat tramsfer by the radiation and the conduction occurs.

A .1.3 T h erm op h y sica l param eters

In a solid material with a non-zero porosity the heat is tramsferred by the conduction and by the 
thermal radiation in the voids. The thermail conductivity K  cam be divided into the conduction 
term K a and temperature-dependent radiative term K^T3:

3Sometimes called thermal capacity.

where Cy [J kg"1 K_1] is the specific heat capacity2 for constant volume. Finally, together with 
(A.4) we can obtain the heat diffusion equation (HDE for short)

The typical vadues of both terms for various materiads are shown in Table A.I.
The thermad capaicity c adso depends on temperature. This dependence is often approximated 

by a power law. [Winter and Saari, 1969] derived a model, that is appropriate for a wide range of 
materials (Ca-feldspar, magnesium silicate, quartz, basalt, diorite, granite) aind for temperatures 
from few tens to ~  500 K:

c(T) =  -0.034 T 1' 2 +  0.008 T  -  0.0002 T3/ 2. (A.7)
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Material K a (W /m /K ) K b (W /m /K 3)
Moon’s regolith 0.001 -  0.002 ~ 2 x  ΙΟ' 11
Basalt powder 0.002 -  0.005 ~  4 χ 10-12
Fresh basalt 2.56 0

Table A.l: Typical thermal conductivities ([Urquhart and Jakosky, 1997])

[Urquhart and Jakosky, 1997] use another model for lunar materials in the range from 70 K to
400 K:

c(T) =  -0.037 +  4.98 x 10~3 T -  8.21 x 10“ 6 T2 +  5.19 x 10~9 Τ 3. (A.8)

The thermal capacity c(T) for both models can be seen in Figure A.I.

T{K)

Figure A.l: Dependance of the thermal conductivity c on the temperature according to 
[Winter and Saari, 1969] (solid) and [Urquhart and Jakosky, 1997] (dashed).

We shall demonstrate the importance of these variable thermal parameters on the example of 
asteroid (6489) Golevka. In the perihelion (0.99 AU), the mean temperature at the equator (for 
zero albedo) is approximately 297 K and the corresponding thermal capacity c ~  800 J/kg/K. 
The mean temperature in the aphelion (4.01 AU) is 148 K, which corresponds to c ~  400 J/kg/K. 
The value of the thermal capacity does not depend on the chemical composition of the material 
and it changes solely due to temperature dependence by ~  ±33%.

If we turn our attention to the thermal conductivity, we can see that its value depends 
especially on the type of material, rather then on temperature. Material like Moon’s regolith 
has K  ~  0.00106 W /m /K  and 0.0015 W /m /K  at the aphelion and perihelion respectively. For 
different materials the value of K  may differ by 3 orders of magnitude (see Table A.l).

We can conclude that the material dependence of the thermal conductivity is the most 
important. The knowledge of surface material and especially its K  is a crucial factor for correct 
determination of the temperature and consequently the Yarkovsky/YORP effect.

Except for the laboratory measurements of lunar or terrestrial materials ([Cremers, 1972], 
[Winter and Saari, 1969], [Urquhart and Jakosky, 1997]), we mention several more ways how to 
estimate surface thermal properties of asteroids: laboratory studies of their meteorite equivalents
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[Yomogida and Matsui, 1983], direct measurements o f the Yarkovsky effect [Chesley et al., 2003], 
or infrared observations o f asteroids [Delbö et al., 2007].

For the purpose o f this section we shall to introduce very useful quantity describing the 
thermal wave propagation, which is penetration depth of the temperature variations

(A.9)

Here ω denotes a frequency o f variations o f the temperature3. In fact, this represents a depth, 
where the amplitude o f the surface temperature variations decreases by a factor 1/e.

A.2 One dimensional approach

[Vokrouhlický, 1999] presented an analytical solution o f the linearized HDE in three dimensions 
for a spherical body. Unfortunately, the analytical solution o f the HDE for irregularly shaped 
objects is not known. Moreover, the numerical solution o f the HDE in three dimensions is unac- 
ceptably time-consuming (and computer’s memory-intensive) in our applications. Fortunately, 
there are possibilities how to avoid the solution o f the complete HDE (A.5).

I f  several conditions are fulfilled, the surface temperature o f irregularly shaped asteroids can 
be determined by separate solutions o f one dimensional-HDE for each surface element individ­
ually. We assume the surface o f an asteroid is approximated by a polyhedron composed o f a 
large number of triangular facets. Next we assume that

• the temparature of each surface element does not significantly affect its neighbouring 
elements,

• depth o f the layer thermally affected by solar radiation is much smaller than size o f the 
asteroid.

If this is fulfilled, we can determine the temperature o f any surface elements separately, using 
one-dimensional form o f the HDE:

3Usually diurnal and seasonal frequency, i.e., rotation frequency or the mean motion about the Sun.
4Its value increases from the surface into the centre of the body.

where z coordinate represents depth below the surface4. This approach can be quantitatively 
tested by means o f penetration depth o f seasonal temperature variations f-nt which corresponds 
to Equation (A.9) with frequency equal to the mean motion n. The thermal variations must 
occur only in a relatively thin layer close to the surface, which is thin compared to the dimension 
of the asteroid.

Figure A.2 shows, how the depth in depends on surface thermal conductivity K. I f  a main 
belt body (a =  2.5 AU ) has a regolith layer with K  =  0.001 — 0.01 W/m/K, then this depth is 
several tens o f cm. For s body with a fresh surface (K  =  1 — 10 W /m/K), tn may be several 
meters. The penetration depth o f the diurnal temperature wave (assuming rotational period 
6 hours) is about 100 times smaller than seasonal. So, our one-dimensional approach can be 
used for regolith covered bodies larger than several meters and regolith free bodies larger than 
several tens o f meters.

The two boundary conditions complement the HDE. The first one arises from the energy 
conservation at the surface (z =  0):
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K (W/m/K)

Figure A. 2: The dependence o f the seasonal temperature penetration depth on the thermal 
conductivity. The upper line corresponds to the orbital period 3.95 yr, that is appropriate for 
bodies with the semimajor axis a =  2.5 AU. The lower one denotes the penetration depth o f 
daily temperature variations ( P  =  6hr). The thermal capacity is assumed 800 J/kg/K and the 
density 2500 kg/m3.

Here a =  5.6697 x 10-8JK ~4 is the Stephan-Boltzmann constant, e the infrared emisivity, 
A the Bond albedo and £(t)  the insolation o f the surface element. The first term on the 
left hand side represents the energy conducted into core, the second term (which is usually 
linearized in analytical theories) is the energy thermally radiated into space and the right hand 
side term describes the absorbed solar energy. The second boundary condition corresponds to 
the assumption o f the isothermal core o f the asteroid

(A.14)

We also use the periodic initial condition arising from the assumption that the body is thermally 
relaxed:

where P  is usually the orbital period.

A.3 Linearized analytical solutions

A .3.1 Infinite regolith depth

In this section we shall assume the case o f material parameters K , c, p which depend neither on 
depth nor temperature. Then the heat diffusion Equation (A. 10) reads
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According to [Vokrouhlický, 1998a], we introduce new variables which are appropriate for solving 
this equation. Instead of time t we use ζ =  exp (ini), where n is a mean motion, and the depth 
is replaced by x =  z/i. Next we assume the temperature can be split into constant and variable 
component and we express it in terms of mean temperature T* as T  =  T*(l +  ST'). The mean 
temperature T* follows from the balance between the emmited and the absorbed energy,

where £* =  (£{t)) is the mean value of the insolation at the given surface element. With these 
variables, the heat diffusion equation (A.14) has a form

Note, that Θ is the only dimensional-less quantity left in the heat diffusion problem; it is often 
called the thermal parameter (e.g. [Spencer et al., 1989]). The boundary condition (A.12) in the 
core of an asteroid reads

If the insolation term can be written as a sum of Fourier coefficients

and consequently the temperature variations will have simillar form

Substitution these expressions to (A. 15) and comparison of terms with the same power of ζ leads 
to a set of second order linear differential equations

which has general solution
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where λ* =  6\/k/32 and φ* =  — y/k/2x +  knt. FVom this expression we can conclude, that the 
amplitude of the temperature variations decreases with increasing depth below the surface as 
e-y/k/2x There is also a thermal lag (given by the combination of trigonometric functions in 
(A.25)).

The Bk coefficients must be zero due to the constant temperature in the large depth (A.18). The 
Aic coefficients can be expressed by the substitution (A.22) and (A.20) into to surface boundary 
condition (A. 16):

Since £ ' is a periodic real function then /*  =  /_ *  for k =  21 and /*  =  - / _ *  for k =  21 +  1. 
Moreover is a real number, while 1 is an imaginary number. After a little algebra we end 
up with the expression for the temperature:
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A .3.2 Finite regolith depth

Here we assume a more general model for a body which surface is covered by a regolith layer of 
depth h, with the density pi, thermal capacity ci and thermal conductivity K\, while the core 
has the material parameters p2, c2, K 2. We also assume these constants do not depend on tem­
perature. (A similar model for a spherical body was derived by [Vokrouhlický and Brož, 1999].) 
Similarly as in the previous section we introduce new variables. In the reeolith laver xi =  z l í  1.

where
*Note that x\ —► ftf means that n  approaches hi from lower values of n  and x\ —f h f means that x\ 

approaches hi from higher values of n .
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and bo =  Co + Do 12· The four boundary conditions mentioned above can be used to express 
the coefficients A^, Bk, C* and D*. The assumption of constant temperature in the large depth 
(A.29) can be satisfied only if D* =  0 (but note that B* Φ 0). At first, we discuss coefficients 
with k φ  0. The energy balance on the surface (A.28) leads to
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All the sumations are made from k =  —oo to k =  oo, without k =  0.
We can see, that these expressions for temperature inside a two-layered body approach the 

expression (A.24), describing the temperature in a homogeneous body. In particular, (A.43) 
approaches (A.24) when h -> oo, (A.43) approaches (A.24) when h -> 0 and both (A.43) and 
(A.44) approach (A.24) when ci —> C2 and K\ -> K 2 and p\ —>■ p2.

A.4 A numerical method for constant material parameters

The linear analytical theories are valid when the temperature variations are relatively small; 
for larger variations the linearization fails. Moreover, present analytical theories are derived on 
the basis of several simplifications (e.g., the temperature independence of thermal parameters). 
In this section we shall derive a numerical model that uses non-linearized boundary condition. 
This model can be used even for cases with large temperature variations.

If the depth z is scaled by l n and time by orbital period P, then the heat diffusion equation 
(A. 14) has a form

where t € (0, 1) and x  =  ζ/ίη· The energy conservation law on the surface (A.11) reads

Derivatives must be expressed in terms of finite differences. We suppose constant time step 
Δί =  l/L, where L is the number of time intervals. Time will be denoted by an upper in­
dex I — 1. . .  L. Since analytical theory predicts exponential decrease of amplitude of temper­
ature variations, we chose exponentially spatial step exponentially increasing with depth (like 
[Hamilton and Matson, 1987]) as A ij  =  Xj+i —Xj =  A xq exp(aj) with j  =  0 . . .  /imQI — 1. Lower 
index will denotes spatial coordinate. Then partial derivatives o f the temperature according to 
time or depth are
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Using these expressions, the HDE (A.45) reads

which represents an explicit formula for the temperature at time I. Here j  =  1. . .  J -  1 and 
I =  Selection of the time step and initial spatial step is restricted by von Newmann
stability criterion6

The surface boundary condition (A.46) in terms of finite differencies is

This equation needs to be solved numerically, for instance by the method of Laguerre (e.g. 
[Presset al., 1992], online version h ttp ://w v .n rbook .eom /a /book fp d f.p h p ). Finally, lower 
boundary condition reads

These equations together with some suitable initial temperature allow to determine the temper­
ature in any time tl and any depth Xj.

Now we will briefly describe the algorithm how to compute the surface temperature of a 
single facet of an asteroid.

1. Determine the insolation function £  of the given facet. This is discussed in (Appendix B).

2. Chose the initial temperature so that

http://wv.nrbook.eom/a/bookfpdf.php
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Figure A.3: A “two-level scheme” : In the first level we solve the HDE with a longer timestep Δίχ 
along the orbit and save the temperature profiles. In the second level we choose an appropriate 
amount of time instants and solve the HDE with a shorter timestep A t 2 for several tens of 
rotational periods. Here we use initial temperature profile determined in the first level.

6. The third and following choices of initial temperature are done by T° =  Tj'J and new tem­
perature is again computed according to 4. This is repeated until the required relaxation 
of temperature is reached.

The time step At must be chosen small enough, in order the time delay between the maximal 
temperature and the “noon" is sufficiently covered.

A problem arises, when the rotational period is small compared to the orbital period. In 
this case, the necessary number of time steps is so high, that the requirements on computer’s 
memory and computational time are unacceptable. We begin with a longer timestep and save 
the temperature (their depth profiles) in an appropriate amount of time instants (usually 100). 
Than we integrate temperature during several tens of rotational periods after these time instants 
and we use the saved temperatures as the initial ones. The integration with the rough timestep 
gives a sufficient determination of the sesonal temperature profile, whereas the integration with 
the fine time step gives a precise diurnal temperature variations. We call this technique a 
“two-level scheme” , whereas the former a “one-level scheme” . See Figure A.3.

A.5 Numerical method for non-constant material perameters

In this section we will deal with the case, when material parameters depend both on depth 
and temperature. The dependance on depth follows namely from a possible existence of surface 
regolith layer, which has severed orders of magnitude lower thermal conductivity than a fresh 
rock beneath.
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A.5.1 Modification of the Crank-Nicholson scheme

We can not use the explicit numerical scheme (A.50) here, because it would be very difficult to 
fulfill the von Neumann stability criterion due to thermal dependence of material parameters. 
So, we have to modify implicit Crank-Nicholson method which is unconditionally stable and 
moreover it is of second order in At. The one-dimensional heat diffusion Equation (A. 10) for 
non-constant material parameters is

which allows to solve the HDE explicitely with non-constant material parameters. If the partial 
derivatives with respect the time are expressed in the time n +  1, instead of n, then we obtain 
purely implicit scheme:
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Figure A.4: A typical example of slow convergence of surface temperature. The cross symbols 
denote iterated temperatures (65 iterations), the solid curve is temperature computed analyti­
cally from the first four iterations. The limit temperature Too is represented by the top margin of 
the y—axis. It can be seen, that more than 200 iterations would be necessary for good relaxation 
of the right value. Here, the analytical estimation of Too is needed.

for j  =  1. . .  J — 1. (Aj  =  1, B j  — —1.) The temperature in the time / +  1 can be expressed 
from the equation system (A.56) and the surface boundary condition:

System (A.56) represents a modified Crank-Nicholson scheme, which is unconditionally stable 
and thus there are no restrictions on spatial or time step from the stability point of view.

A .5.2 Improvement of the convergence

The main trouble is that the matrix D as well as the right hand side R depends non-linearly 
on the unknown temperature T i+1. (Matrix KJ is expressed in the time I +  1 and contains 
coefficients A|+1, Bl·*·1 and Cj+l which are functions of the temperature dependent material 
parameters K  and c. The same situation is in the case of right hand side R.) This problem can 
be solved iteratively so that initially we determine D and R using T 1 instead of T i+1. Then we 
obtain the first iteration T <+1|o and use it again instead of T i+1. This would be repeated until a 
difference between t-th and (* -I- l)-th iteration will be smaller than a given precision. However, 
our experience shows that sometimes a huge number of iterations is necessary to reach a right 
value of T ,+1. Thus we had to develop a technique which accelerates the convergence of T i+1, 
and we describe it below.

Let Ti denotes the t-th iteration of the temperature T <+1. We expect that iterations expo­
nentially approach a limit Too which means that Too — Τχ =  j/oo^- *· We shall try to estimate 
this limit from the first few iterations. (See Figure A.4.)
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Here, a special care must be taken if the denominator is zero or nearly zero. This indicates, 
that temperature iterations converge too slowly and due to small differences between them they 
seem to change linearly and not exponentially. In this case, we substitue t =  4, 8, 16, etc. until 
the exponential convergence (or large number of iterations) is reached. Finally, we substitute 
the limit temperature T«, into (A.56) and verify it does not differ from T i+1.

Let us to estimate the number of iterations necessary to reach a good approximation of j/oo· 
Let p — yi/yoo· Then a- * =  1 — p and t =  — ln(l -  p )/ ln(a). For example, if we want y» to be 
99% of yoo, we need roughly -  ln(O.Ol)/ ln(o) iterations.

A .5.3 The algorithm

Our algorithm for the computation of the surface temperature on a facet of an asteroid is the 
following:

1. Determine the insolation function £(t) for the given facet. This is discussed in (B).

7 rejecting the solution t =  2
®The fraction is always positive because if j/j > y, then y, >  0 and if y, < y, then y< <  0 
0Optionally, with a smaller time step Δίι

2. Chose the initial temperature so that Tf -

3. Chose appropriate initial time step Δίο and spatial steps Δι*. (See the example in Sectio 
A.6.)

4. Solve the temperature Tj} during the whole orbital period, by equations (A.56), (A.51 
using method described in Section A.5.2.

5. The second choice of initial temperature T® is given by the averaging of the surface ten 
peratures Tq over the whole orbit (i.e., for / =  1 , . . . ,  L): T® =  (7q), and the temperatui 
is further computed9 according to 4.

6. The third and following choices of the initial temperature are performed simply by
and the temperature is again computed according to 4. The time step can be smaller 
and smaller in the subsequent turns. This is repeated until a satisfactory relaxation of 
temperature is reached.



Figure A.5: Left: The insolation as a function o f time. An amplitude is 1366 W/m2. Right:
geometry o f the problem. More explanation in the text.

In the following figures A.6-A.8 we present the solution o f the surface temperature corre­
sponding to the insolation £ (ť ),depicted in Figure A.5. A  detailed discussion can be found in 
the figure captions o f particular figures.

In Figure A. 6 we deal with a problem o f the right choice o f spatial and time steps (for 
homogeneous body). We found that the results (temperature and the Yarkovsky force) are 
almost independent on the time step (6 s -  600 s). I f  the initial spatial step is less than Δχο —
0.1 id, the results do not depend neither on the spatial step.

In A .7 we show the dependence o f temperature and the Yarkovsky force on the spatial step 
and the regolith depth. We found the results are nearly independent on spatial step.

Finally, in Figure A.8, we compare the results (time dependence o f the temperature, thermail 
lag and the Yarkovsky force) o f the analytical and numerical model.

A.6 A simple example of temperature behaviour

Here we shall present an example o f the temperature behaviour computed by different techniques 
described before. Let us suppose the situation described in Figure A.5. The body is at a circular 
orbit, 1 AU from the Sun. We shall focus on surface element dS at the equator. Its insolation 
£ (i) can be express as
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with the amplitude A =  1366 W/m (corresponding to the flux at 1 AU  distance from the Sun) 
and period P  =  6 hr. The along-track component o f the thermal force corresponding to the 
temperature T  is
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Figure A.6: The dependence of the numerically (modified Crank-Nicolson scheme) computed 
Yarkovsky force and the surface temperature on chosen initial spatial step Axq and time step At. 
The upper row represents the resulting spin-averaged along-track component of the thermal 
force in 10- 8 N/m units. The middle row corresponds to the maximal surface temperature 
and the lower one to minimal surface temperature in K. The left column is a countour plot 
(here, the dashed line divides the figure to upper-left area, where the von Neumann criterion 
is fulfilled and lower-right one where it is not fulfilled) while the right one is a surface plot. 
These results correspond to the insolation from Figure A.5. Here, we assume the thermal 
parameters to be independent both on temperature and spatial coordinates (but the results 
with temperature dependent material parameters are quite similar). The thermal conductivity is 
assumed K  =  0.01 W /m /K , the thermal capacity c =  735 J/kg/K  and the density p =  1.7g/cm3. 
We can see a near independence on time step in the range from 6 to 600 s. However, the initial 
spatial step is more important quantity. We found that Axq should be smaller than ~  0.1 id 
or 0.01 Id- We can also see that the usage of the modified Crank-Nicolson scheme allows us to 
prevent a very short time step < 6 s which should be used in an explicit scheme together with 
Δχο < 0 .lid  (due to von Neuman criterion of stability).
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Figure A.7: The dependence of the numerically computed Yarkovsky force and the surface 
temperature on the chosen initial spatial step Δχο for various regolith depths. As in Figure A.6, 
the upper row represents the resulting spin-averaged along track component of the thermal 
force in 10-8 N/m. The middle row corresponds to the maximal and the lower one to the 
minimal surface temperature in K. The left column is a countour plot while the right one is 
a surface plot. These results correspond to the insolation from Figure A.5. Here we assume 
(unlike in Figure A.6) the thermal parameters dependent both on temperature and space: The 
regolith layer is characterized by the thermal conductivity K  =  0.01 +  2 x 10-11(T /K )3 W /m /K  
and the thickness from 1 to 100 mm, while the core has K  — 2.6 W /m /K . The thermal capacity 
(A.8) and the density p =  1.7 g/cm 3 are the same for regolith and core. The results are again 
nearly independent on a timestep. The dependence on Δχο is fortunately also weak, though it 
is better to use Δχο <0.1 again.
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Figure A.8: A comparison of results of the numerical theories (solid curves) and the analytical 
theories (dashed curves, according to A.43) for various depths for regolith layer. Upper two 
rows show the time dependence of the temperature for regolith thickness denoted in upper right 
corner of each plot. It can be seen that there is quite well agreement between the numerical and 
the analytical theory for small regolith depths. In this case the amplitude of the temperature 
variations are small (due to highly conductive core) and the linearization in analytical theory 
works well. The lower left figure shows the dependence of the angle Í, between the direction 
opposite to the Sun and the thermal Yarkovsky force. The lower right figure shows the de­
pendence of the along-track component of the thermal force on regolith depth. These results 
again correspond to the insolation from Figure A.5. Here we assume thermal parameters de­
pendent both on the temperature and space: The regolith layer is characterized by the thermal 
conductivity K  =  0.013 W /m /K  and the thickness from 0.01 to 100 mm, while the core has 
K  =  1 W /m /K . The thermal capacity c is the same for the core and the regolith layer. It is 
(A.8) for the numerical method and 750 J/kg/K  for the analytical method. The density of the 
core and regolith is p =  1.7 g/cm 3.



Appendix B

Shape representation

In our work, the shapes of all bodies (both artificial and real) are modeled by polyhedrons with 
thousands of triangular facets. The bodies are represented by a list of vectors, describing the 
vertices, and by a list of mutual identification (which of the vectors form a triangle). This 
representation is able to describe complicated irregular shapes of small solar system bodies, 
including craters, mountains or valleys on the surface (e.g., [Simonelli et al., 1993]).

For each polyhedron we need to know the volume V  (mass), inertia tensor I (principal 
moments A, B , C, eigenvectors of I) as well as centers r<, outer normal rii and areas Si for each 
surface facet.

Moreover, we need to transform the coordinate system into the one having the origin in 
the center of mass and with axes corresponding to the eigenvectors of inertia tensor (x-axis 
corresponding to the longest axis of I, 2-axis to the shorter one).

Here we present a procedure, how to determine these quantities and insolation (including 
self-shadowing of the surface) of such a body.

Fortunately, any polyhedron (with triangular facets) can be divided into tetrahedrons (sur­
face triangular facet forms the base and some point inside the polyhedron represents vertex). 
We use the procedure published by [Dobrovolskis, 1996] and generalize it slightly, in order to 
describe the case of non-convex bodies (with respect to the origin of coordinate system). We 
call the body as “non-convex with respect to the origin” , if there exist such a half-line going 
from the origin, which intersects the surface in more than one point (see Figure B.l).

B.l Basic characteristics of the polyhedron and its facets

Consider the vertices of tetrahedron, which can be described by four position vectors Ej, Fj, G* 
and 0, which coincides with the origin of coordinate system (see Figure B.l left). The center of 
the surface triangular facet t, defined by the vectors Ej, Fj and Gj, is

88

The center of mass of the tetrahedron is

(B.l)

(B.2)
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Figure B.l: Left: The tetrahedron with the position vectors Ej, Fj, G j of the vertices, vector 
pointing to the center of surface facet t* and the center of mass r*. Right: a body which is 
non-convex with respect to the center of mass (denoted by the cross). This plot illustrates how 
the sign of n* · t* depends on the number of intersections of tj with the surface (if the number 
is odd, the dot product is negative).

Then we determine the number of intersections1 of the line 0 — tj with the surface. We denote 
this number as Vi. In the case of a body convex with respect to the origin, t/j =  0.

The outer normal to the triangular facet is given by

and η* · tj > 0 must be fulfilled if i/j is even while nj · t* <  0 if is odd (see Figure B.l right). 
The area of the facet can be expressed as Si =  |n,| and the whole area of a body is

The volume of the tetrahedron is given by

Note that for i/* odd the volume V{ is negative. The whole volume can be expressed as

'In other words, we have to find a number of facets j  /  t which are intersected by the vector tj. This means 
we solve the equation

where the vectors Ej, Fj, G> describe the j —th facet. If min (a,6,c) > 0, then the vector tj intersects the facet j.
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where the summation is made over all the tetrahedron volumes (both positive and negative). 
Assuming a uniform density p, the center of mass of the whole polyhedron is given by

Finally, the tensor of inertia of the tetrahedron can be expressed in cartesian coordinates as 
(according to [Dobrovolskis, 1996]):

For simplicity we do not write the index t of the tetrahedron. The inertia tensor of the whole 
polyhedron is given by

After the translation of the coordinate system into the center of mass (r =  0), we can proceed 
with the determination of the principal moments of inertia A < B  <  C  and the corresponding 
eigenvectors according to [Dobrovolskis, 1996].

B.2 Insolation and shadowing

Next we shall describe a procedure we use to determine the insolation £ (W /m 2) of a facet. 
There are three possible cases:

Facet pointing away from  the Sun. The facet ť is in the shadow and the insolation is zero 
when the outer normal n* and the direction to the Sun s fulfills the relation

Sunward facet shadowed by another facet. The facet i is pointing towards the Sun, if

However, even this sunward facet can be shadowed in case of non-convex shape of polyhedron. 
We must test every surface facet j  Φ i whether it casts shadow on the facet2 t: The facet t is 
shadowed by another facet j  if the ray3, defined by the center of facet tv and the vector s, lies
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where Φ is the solar flux.
This procedure is very CPU time consuming so we had to accelerate it somehow. We describe 

vector s by spherical coordinates φ and ϋ, conected with body-frame. For any φ =  0 . . .  360°
and ϋ  =  + 90 -------90 (with a 1° step) we determined all sunward facets which are self-shadowed
and stored their indices into a file.

The computation of the insolation of a polyhedron along its orbit about the Sun is made in 
several steps. At first we determine the position of the Sun s with respect to the body frame. 
Then the insolation (B.17) is calculated for sunward facets (B.14). Finally, the insolation of 
shadowed sunward facets corresponding to the vector s (described by φ, t9), whose indices has 
been stored in the file, is set to zero.

for three unknowns a, b, c. The facet i is shadowed by the facet j  if

Non-shadowed sunward facet. If the facet i obeys (B.14) and moreover there is no facet 
j  Φ i that obeys (B.15) with (B.16), we can say the facet * is insolated and its insolation is



Appendix C

Gaussian random spheres

Due to a limited number of precisely determined shapes of asteroids we turn our attention to arti­
ficially generated shapes by the technique of Muinonen (e.g., [Muinonen, 1996], [Muinonen, 1998], 
[Muinonen and Lagerros, 1998]). These shapes are called Gaussian random spheres. The radius 
of such a body in the direction given by spherical angles Θ and φ may be expressed as

where a is the scaling factor and σ  is the variance of r. The “logradius” s{6, φ) is given by a 
spherical harmonic development

Here the coefficients atm and b(m are independent Gaussian random variables with zero mean, 
and variance reading

factor a, the variance σ  of the distribution of surface heights, and a set of parameters c* from 
Equation (C.3).

[Muinonen and Lagerros, 1998] analysed accurately known shapes of 14 asteroids and they 
obtained best estimates of the parameters σ  and c; for their sample of asteroids. These param­
eters, determined for 7 smallest and 7 largest bodies, slightly differ. The most useful data for 
our purpose are those for smallest bodies1. The standard deviation σ  of radius is then 0.245 
and the coefficients ct are listed in Table C.l.

We used these parameters to generate a set of 1000 Gaussian random spheres. These bodies 
are scaled to have the same volume as the sphere with radius 104cm. Figure C.l shows the 
distribution of the dynamical ellipticity (C -  (A — B)/2)/C and triviality parameter A/B for 
the set of 1000 Gaussian random spheres. The quantities A <  B < C  denote the principal 
moments of inertia. Diamond symbols in the figure denote the va ues for several real objects 
(not used in Muinonen and Lagerros’ analysis).

‘ Namely: (4769) Castalia, (4179) Toutatis, (1620) Geographos, (915) Gaspra, Phobos, Deimos, (243) Ida.
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i  Ct t  Cl
0 9.5431 X  10"a
1 2.1972 X  ΙΟ-1
2 6.2665 X  10"1
3 8.3670 X  ΙΟ"2
4 3.1648 X  10“ 2
5 1.5512 X  10"2

6 6.7379 X  10"3
7 2.6938 X  10"3
8 2.8687 X  10“ 3
9 5.6931 X  10“ 4 

10 3.9023 X  10“ 4

Table C.l: The coefficients C( from Equation (C.3). Adapted from table 5, column “Small” in 
[Muinonen and Lagerros, 1998], computed for seven smallest bodies under study (see the text).

Figure C.l: Shape characteristics for 1000 artificially generated Gaussian random spheres. Upper 
left (a): Distribution of the dynamical elipticity (C — (A +  B)/2)/C. Upper right (b): triaxiality 
parameter A/B. Lower figure (c): the windmill factor ν?ω· The arrow denotes the median of 
absolute values, which is 0.014, and the diamond symbols indicate the values of these parameters 
calculated for real objects.

Figure C .lc depicts the distribution of the absolute value of windmill factor (<pw) defined by 
Equation 3.11 within the set of 1000 Gaussian random spheres. (The windmill factor corresponds 
to the strength of YORP effect and depends on the shape of body.) There are also values for 
several real asteroids in the plot. The median of windmill factor is the value 0.014. The shapes 
of 200 Gaussian random spheres can be seen in Figures C.2 - C.7.
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2 3 4 5 

6 7 8 9 10 

11 12 13 14 15 

16 17 18 19 20 

21 22 23 24 25 

26 27 28 29 30 

31 32 33 34 35 

Figure C.2: Gaussian random spheres no. 1 . . . 35 
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36 37 38 39 40 

41 42 43 44 45 

46 47 48 49 50 

51 52 53 54 55 

56 57 58 59 

61 62 63 64 65 

66 69 70 

Figure C.3: Gaussian random spheres no. 36 . . . 70 
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71 72 73 74 75 

76 77 78 80 

81 82 83 84 85 

86 87 88 89 90 

91 92 93 94 95 

96 97 98 99 100 

101 102 103 104 105 

Figure C.4: Gaussian random spheres no. 71 . . . 105 
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106 107 108 109 110 

111 112 113 114 115 

116 117 118 119 120 

121 122 123 124 125 

126 127 128 129 130 

131 132 133 134 135 

136 138 139 140 

Figure C.5: Gaussian random spheres no. 106 ... 140 
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141 142 143 144 145 

146 147 148 149 150 

151 152 153 154 155 

156 157 158 159 160 

161 162 163 164 165 

166 167 168 169 170 

171 172 173 174 175 

Figure C.6: Gaussian random spheres no. 141 ... 175 
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176 177 178 179 180 

181 

186 187 188 189 190 

191 192 193 194 195 

196 197 198 199 

Figure C.7: Gaussian random spheres no. 176 ... 200 



Appendix D

Shape models of real asteroids

Here we shall to present the shape models of asteroids that were used for our study of the YORP 
and Yarkovsky effect. All the bodies are represented by polyhedrons with typically several thou­
sands of surface triangular facets. Their axes coincide with the main axis of inertia tensor and 
the origin is considered in the center of mass (assuming an uniform density). The shape models 
of the following asteroids are available from h ttp ://w w w .psi.edu /p d s/astero id /: (433) Eros, 
(1620) Geographos, (6489) Golevka, (25143) Itokawa, (243) Ida, 1998KY26, (4197) Toutatis.

For each asteroid there is a file with the following format:

Golevka -0.0009 6053 -0.0064 Deimos -0.0121
Castalia 0.0031 Bacchus 0.0067 Eros 0.0219
Gaspra 0.0054 1998KY26 0.0080 Kleopatra -0.0354
Geographos 0.0054 Itokawa 0.0111 Ida -0.0436

Table D.l: Windmill factors <pw for 11 asteroids and Deimos.

100

The first part of the file represents a vertex table, each row starts with the letter v and 
contains x, y, z coordinates of one vertex. The second part is a facet table, containing the 
linkages the vertices into facets. Each triangular facet begins with the letter f .  Note the 
relationship between the number of facets n j and the number of vertices nv is n / =  2n„ — 4 for 
the body consisting of triangular facets. All important quantities, like volume, inertia tensor, 
area of facets, etc., were determined by the technique described in Appendix B.

For all the bodies, which were used in our research o f the Yarkovsky/YORP effect, we 
computed the parameter <pW} describing the windmill asymmetry, see (Equation 3.11). (The 
windmill factor is dimensionalless quantity which depends only on the shape of the body and 
corresponds to the strength and “sense" of YORP effect.) The values for particular bodies can 
be found in Table D.l. The shape models can be seen in Figures D.2 -  D.9.

http://www.psi.edu/pds/asteroid/
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Figure D.1: The shape model of (1620) Geographos based on radar and optical observations. 
Dimension of each box is 8000 m. ([Hudson and Ostro, 1999]). 
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Figure D.2: Another shape model of (1620) Geographos determined by the lightcurve inversion 
method. Dimension of each box is 8000 m. (J. Ďurech, persona! communication). 
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Figure D.3: The 4092-facets model of (6489) Golevka. The dimension of each box is 800 m. 
([Hudson et al., 2000]) 

+y 

Figure D.4: The 4092-facets model of 1998 KY26. The dimension of each box is 30 m. 
([Ostro et al., 1999b]) 



APPENDIX D. SHAPE MODELS OF REAL ASTEROIDS 103 

+y 

-x - y -z 

Figure D.5: The model of (243) Ida composed from 4036 surface triangular facets. The dimension 
of each box is 40 km. ([Thomas et al., 1996]) 

+y 
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Figure D.6: The 12796-facet model of the asteroid (4179) Toutatis. The dimension of each box 
is 6 km. ([Hudson et al., 2003]) 
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Figure D.7: The model of (25143) Itokawa, derived by radar observations [Ostro et al., 2004]. 
The dimension of each box is 800 m. 
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Figure D.8: The model of (25143) Itokawa derived from measurements of the Hayabusa mission 
(e.g. [Demura et al., 2006), [Gaskell et al., 2006)). 
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Figure D.9: The 7790-facets model of (433) Er-os. The same model with reduced number of facets 
(1708 facets) was used for the study of the K influence on the YORP effect. The dimension of 
each box is 40 km. ([Miller et al., 2002]) 
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The rotation states of small asteroids and meteoroids are deter­
mined primarily by their collisions, gravitational torques due to 
ht Sun and planets (in the case of close encounters), and inter- 
lal dissipative effects (that relax the free-precession energy toward 
be fundamental state of prindpal-axis rotation). Rubincam has 
tccntly pointed out that thermal reemission on irregular-shaped 
todies also results in a torque that may secularly change both the 
station rate and the orientation of the spin axis (the so-called 
IfORP effect). Here we pursue investigation of this effect. Keep- 
ng the zero thermal-rdaxation approximation of Rubincam and 
he assumption of the prindpal-axis rotation, we study the YORP 
Sect both for precisely determined shapes of near-Earth asteroids 
nd also for a large statistical sample of automatically generated 
tapes by the Gaussian-sphere technique of Muinonen. We find 
bat the asymptotic state of the YORP evolution is characterized 
tj an arbitrary value of the obliquity, with higher but nearly equal 
ielihood of 0°/180° and 90° states. At the adopted approxima­
ted, the most typical feature of this end state of the YORP evo- 
ution is secular deceleration of the rotation rate, which means 
hat at some instant collisions will randomize the rotation state, 
i a minority of cases, the final state of the obliquity evolution 
cads to a permanent acceleration of the body's rotation, eventu- 
Jly resulting in rotational fission. The YORP-induced slow evolu- 
ion may also play an important role in driving the rotation state 
if small asteroids toward the resonances between the forced pre- 
tssion due to the solar torque and perturbations of the orbital 
ode and inclination. We find that for small Themis asteroids these 
tsonances are isolated in the relevant range of frequencies, and 
be YORP evolving rotation may be either temporarily captured 
i rapidly jump across these resonances. In contrast, the possi- 
fe values of the forced precession for small Flora asteroids may 
( resonant with dustered, nonisolated lines of the orbital pertur- 
Btion. The individual rotation histories of small Flora asteroids 
say be thus very complicated and basically unpredictable. We 
omment on possible astronomical consequences of these results.
J 2002 E b rricr  Sctaocc (U SA )

Key Words: minor planets; asteroids; meteors; meteoroids; 
station.

1. INTRODUCTION

Small asteroids and meteoroids acquire their rotation states at 
the instant of their birth as ejecta from a parent body (e.g., Love 
and Ahrens 1997, Giblin and Farinella 1997). At later stages, mu­
tual collisions keep modifying the rotation state, which means 
that the size-distribution collisional model needs to be consis­
tently coupled with the rotation rate-distribution model (e.g., 
Harris 1979, Farinella er a/. 1992). Thus, none of the small Solar 
System bodies have primordial rotation states that are steady 
over a billion year timespan.

Though collisions represent the most extensively studied as­
pect of the long-term evolution of the small bodies' rotation state, 
other effects may be also involved. Recently, Rubincam (2000) 
pointed out that the thermal radiation by a surface of an irTegular- 

shaped object results in a torque which may secularly affect both 
the rotation frequency and the obliquity of the spin axis. Fol­
lowing Rubincam's suggestion we shall speak about the YORP 
effect (named after Yarkovsky-O’Keefe-Radzievskii-Paddack, 
scientists who all contributed to this topic in the past). The cor­
responding time scale to change the rotation rate or obliquity is 
unrealistically long for asteroids larger than 3*20 km in size, but 
it becomes short enough for kilometer-sized (or smaller) bod­
ies. The YORP effect may require a timespan comparable, or 
even shorter than, the collision time scale to significantly change 
the rotation state (~tens or hundreds of Myr) in this size range. 
For decameter-sized meteoroid precursors, the YORP time scale 
may even become so short that this effect would dominate over 
collisions (Rubincam 2000). We note in advance that this con­
clusion may not be certain because the strength of the YORP 
effect could be diminished by the finite conductivity of the me­
teoroid surface. This, as yet unaccounted for fact in the YORP 
determination will be removed in the second paper of this series. 
However, the YORP effect certainly continues to be an important 
factor for modifying the rotation state of meteoroids.

The previous “YORP facts” are important as such, since they 
may have interesting implications on the statistical distribution
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}f the rotation periods of small asteroids, occurrence of close 
binaries produced by rotational fission, etc. However, there is an 
idditional and very important implication of the YORP effect 
related to the Yarkovsky orbital effect Actually, both effects— 
ihe Yarkovsky effect and YORP effect—have a common phys­
ical origin, namely, the surface recoil force due to the thermal 
radiation of the body. The Yarkovsky effect has been studied 
Extensively over the past few yean with a number of new ap­
plications related to the transport of meteorites toward the Earth 
(e.g., Farinella et aL 1998, Hartmann et al. 1999, Bottke et al. 
2000, Vokrouhlický and Farinella 2000), origin and transport 
of large near-Earth asteroids (e.g., Farinella and Vokrouhlický 
1999, Bottke el al. 2001a), processes in the asteroid families 
(e.g., Vokrouhlický et al. 2001, Nesvorný et al. 2002, Bottke 
it al. 2001b), or the possibility of directly detecting the 
Yarkovsky orbital perturbations of the near-Earth asteroids (e.g., 
Vokrouhlický et al. 2000). It is well known that the Yarkovsky 
effect sensitively depends on the orientation of the spin axis 
(e.g., Rubincam 1995, 1998, Vokrouhlický 1998, 1999). This 
mainly applies to the diurnal variant of the Yarkovsky effect, 
which leads to an opposite orbital effect when the prograde ro­
tation of the body is changed by the retrograde rotation. Frequent 
variations of the spin axis orientation thus diminish the result­
ing (accumulated) Yarkovsky orbital perturbation, and this may 
have important implications on the relevance of the Yarkovsky 
effect as described here. Note that thus far most of the developed 
applications of the Yarkovsky effect do not include any (or just 
very simplified) evolution of the spin axis orientation. We thus 
need to understand whether some of the past investigations of 
the Yarkovsky effect have to be modified if the YORP-induced 
evolution of the spin axis is taken into account.

In this paper we investigate in a more quantitative detail the 
YORP effect in Rubincam’s approximation. The major restric­
tion of this approach is that of zero thermal inertia of the surface 
material. Following Rubincam (2000) we shall thus assume ef­
fectively immediate thermal reemission of the absorbed energy. 
Ulis assumption applies rather well for small asteroids, possibly 
down to hundreds of meters across, that are likely covered with a 
thin regolith layer. Our results for the YORP evolution of several 
small asteroids, for which we use a very precise shape model 
(mostly from the analysis of the radar ranging data), are therefore 
justified. We shall demonstrate that the individual YORP results, 
soch as the asymptotic values of the obliquity and the rotation 
rate, depend sensitively on the shape of the asteroid so that there 
is “no generic YORP result." To obtain information about “aver- 
ige YORP results” we need a larger statistical sample of objects 
than the few real asteroids with accurately known shapes. To 
that end, we analyze YORP results for a sample of small (syn­
thetic) asteroids generated by the Gaussian-sphere technique 
introduced by Muinonen (e.g., Muinonen 1996, 1998). Moti­
vated by the analysis of the proper element dispersion in the 
asteroid families (e.g., Nesvorný et al. 2002), we shall deter­
mine the characteristic YORP results (relevant time scales, etc.) 
for small members of the Flora and Themis families.

As already mentioned, the YORP effect is certainly not alone 
in affecting the rotation state of small asteroids. Of major im­
portance are mutual collisions and, under certain circumstances, 
gravitational torques due to the Sun or planets. In this paper we 
neglect the collisional influence on rotation, since this appears 
to be a complicated and, to some degree, separate problem, and 
we focus on the long-term dynamical effects that influence the 
rotation state of small asteroids. Apart from the YORP effect, 
we pay attention to the role of the gravitational torque due to 
the Sun. We show that the rate of the forced precession due to 
this effect may resonantly beat with planetary perturbations of 
the orbit. Obliquity may then undergo rapid jumps or periods of 
random wandering on a large scale. The possible past histories 
of the rotation of terrestrial planets, especially Mars, Venus, and 
Mercury, may give an idea about the degree of chaotic effects that 
are predicted here for small asteroids (e.g., Laskar and Robutel 
1993). The YORP effect may be instrumental in driving the 
rotation state of small asteroids toward these resonant phenom­
ena. Our analysis thus indicates that the rotation state evolu­
tion of small asteroids on a Myr time scale (or longer) may 
be very complicated and it that may sensitively depend on the 
asteroid shape (and its history, which may be sculpted by 
collisions).

The assumption of zero thermal inertia, used throughout this 
paper, is most likely violated for smaller bodies, such as 
decameter- or meter-sized meteoroids, for the following two rea­
sons: (i) these bodies likely rotate fast, and (ii) their surface is 
likely not insulated by regolith layer but characterized by much 
higher thermal conductivity (affected possibly by porosity only). 
We thus relegate a more detailed discussion of the YORP effect 
on meteoroids to the second paper in this series. In particular, we 
shall generalize the current YORP model by including the ther­
mal relaxation between the absorption of the solar radiation and 
thermal reemission, there by relaxing the restrictive assumption 
of the Rubincam approximation.

In the final paper of this series, we shall investigate the YORP 
effect within a full-fledged formulation. This means that we shall 
solve numerically the complete Euler's equations for the rota­
tion state of the body on a secularly evolving orbit in the Solar 
System. Gravitational torque due to the Sun, as well as the ther­
mophysical model of the YORP effect, will be included. Initial 
rotation will not necessarily be constrained to the principal-axis 
mode.

2. THEORY

Given a skin force dt acting on a body at the oriented surface 
element dS with a position vector r, referred to the center of mass 
system, we can evaluate the total torque on the whole body as

where the integration is assumed over the whole surface. The
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recoil force dt due to the thermally emitted radiation is given 
jy dt — —lea T* dS/3, where e is the thermal emissivity, a is 
he Stefan-Boltzmann constant, and T is the temperature. Note 
he minus sign due to the recoil property of the radiation effect, 
rhis formula holds for an isotropic (Lambertian) thermal emis- 
lion law. Certainly this law only approximates the directional 
jroperties of thermal emission of real objects, but a more com- 
>lex approach goes beyond the scope of this paper. However, 
in even cruder simplification, which we are going to accept, 
ollows an estimation of the surface temperature T. In principle 
ve need a thermophysical model for its determination. Only at 
he limit of zero thermal relaxation, satisfied when the surface 
s highly insulating, can we further approximate from energy 
:onservation and the
element is not shadowed by another surface element; otherwise 

Here n is the outward normal to the surface element, 
iq is the direction toward the Sun, Φ is the solar flux at the dis- 
ance of the body from the Sun, and A is the hemispheric albedo 
Vokrouhlický and Bottke 2001). Moreover, since albedo A is 
ypically small, and additionally a part of the radiation in the op- 
ical band is also diffusely reflected (the same directional char- 
icteristics as we assume for the thermal emission), we further 
ipproximate (1 — A) ~ 1. Combining the previous results we 
íave

and βχ = (scos f — N)/sine. Note a difference between our 
variables and those used by Rubincam (2000). Namely, we sys­
tematically refer the projections T, and T, of the YORP torque T 
to the spin vector (a unit vector of the rotational angular momen­
tum) and not to the body axis ez (hence we prefer the notation T, 
instead of Tt used by Rubincam). When the sense of rotation is 
changed, or in other words the spin axis is inverted with respect 
to the body (s —*■ — s), the YORP torque T and the projection 
T, do not change their sign but the projection T, does change 
sign. With Eqs. (3) this means that when the spin axis is in­
verted with respect to the body the rotation is accelerated in one 
case and decelerated in the other; the effect on obliquity is also 
reversed, since the axis inversion means the obliquity transfor­
mation € -»  180 — f. Another symmetry, involving averaging 
over a circular orbit, will be discussed in the following.

Let us emphasize our assumption that the internal processes 
resulting in dissipation of the free-wobble energy are strong 
enough to maintain the shortest axis rotation state. In Section 3.3 
we shall summarize the current knowledge of the strength of 
these dissipative effects and we shall give the corresponding time 
scale to align the generic rotation state toward the lowest energy 
state. Note, however, that the YORP effect tends to destroy the 
principal-axis rotation, since the projection of YORP torque on 
all axes in the body frame are of comparable magnitude. This 
is still true for the averaged quantities discussed in the follow­
ing. Only if the YORP evolution time scale were (much) longer 
than the estimated time scale for the wobble dissipation would 
principal-axis rotation be justified. We shall see that this is true 
for multikilometer-sized asteroids, but it becomes questionable 
for kilometer-sized objects. A thorough analysis of the YORP 
effect in the non-principal-axis rotation state, with the YORP 
contribution used to trigger this state, is beyond the scope of this 
introductory paper. The third paper in this series will be devoted 
to this problem.

Since we are interested in the long-term evolution of the rota­
tion state, it is appropriate to average T, and T, in the right-hand 
sides of (3) over both rotation and revolution cycles. This pro­
cedure may require care in the case of a very slow rotation, but 
in the majority of cases of interest the rotation period is sev­
eral orders of magnitude smaller than the revolution period. The 
double averaging can therefore be performed in rotation and 
revolution phase angles independently. Unlike in the case of the 
torque due to the direct (absorbed) solar radiation pressure, the 
YORP torque docs not average to zero. For circular orbits, as­
sumed throughout this paper, the resulting averaged torques Ť, 
and Ť, depend on the obliquity e. In the case of an eccentric orbit 
the phase angle of the spin axis projection onto the orbital plane 
would appear as a second parameter of the (/*,, f { ) torques.

In assuming a circular orbit, we should notice another “sym­
metry” related to the spin axis inversion (not identical, however.

(here again we set formally (n · no) = 0 when the surface ele­
ment is not illuminated or shadowed). Following the suggestion 
of Rubincam (2000) we additionally multiply dt from (2) by a 
“fudge factor” 2/3 to accommodate at a very rough approxima­
tion the effect of the surface thermal inertia. Though we shall 
see in the next paper of this series that this approximation rather 
weakly expresses the inertia effect, we keep the Rubincam for­
mulation in this paper.

The formula (2) for the infinitesimal surface force dt is then 
used in (1) to obtain the total radiative torque T. For a spherical 
body we would have r a n ,  which together with dt oc n leads 
trivially to the conclusion that the YORP torque vanishes. How­
ever, for a body of a genetically irregular shape the torque T 
does not vanish. After we specify the way that the body's shape 
is modeled, the integral in ( I) is computed numerically as a sum 
over infinitesimal surface facets.

Assuming then the principal-axis rotation of the body, we 
obtain (e.g., Rubincam 2000)

for the rate of change of the rotation angular velocity ω and the 
obliquity e (hence cost = N  s, with N normal to the orbital 
plane and s the spin axis). Here C is the principal moment of

451



1452 v o k r o u h l ic k ý  a n d  Ča p e k

to that just discussed). For a conserved sense of rotation, or in 
other words a conserved position of the spin axis in the body- 
fixed frame, we may be willing to investigate how the averaged 
torques f , and Ť, change at the inversion of the spin axis in 
space. For a given instant of the revolution around the Sun, this 
operation results in a different value of the YORP torque, since 
i different part of the body's surface is illuminated. However, 
there is a symmetric configuration, as far as the surface illumina­
tion is concerned, after half revolution on the circular orbit. The 
YORP torque projected onto the body-fixed axes is the same, and 
Éus so is the Tj quantity, but the T, variable changes its sign. 
As a result, the obliquity transformation (  —*■ 180 — e, with the 
conserved orientation of the spin axis in the body-fixed frame, 
results in the following (anti)symmetry of the averaged YORP 
torques: 7,(180 — f) =  f,(e) and f«(I80 — f) =  — f,(e). Note 
■Iso the fine difference between this symmetry and the one ac­
companied by the spin axis inversion in the body-fixed frame. 
In the latter case both f,(e) and T,(e) change their sign.

Throughout the text we assume that the averaging approach 
is applicable. In the real astronomical situations we have in 
mind, this constrains the rotation period to be smaller than a 
few months (a constraint that is essentially always satisfied). We 
shall see in the following that the YORP evolution may result in 
in asymptotic phase characterized by a permanent despinning 
of the rotation. We should thus keep in mind that the adopted ap­
proximation, based on the averaging technique, does not allow 
os to extrapolate this asymptotic phase too long. However, such 
long periods are probably not relevant because of collisional 
evolution, which is also neglected in this paper.

Adopting the preceding physical approximations we realize 
that the appropriate modeling of the irregular shape of the body 
is the most important issue. In the next two sections we briefly 
explain our approach in this respect. We investigate about a 
dozen cases of small asteroids for which the shapes are accu­
rately known. Unfortunately, this represents too small a sample 
for characterizing statistically the YORP effect on the long-term 
spin dynamics of asteroids. Therefore, in Section 2.2 we recall a 
powerful technique for generating irregular-shaped (synthetic) 
objects with mean characteristics fitting small asteroids. This 
will allow us to produce a larger sample of objects for which we 
may determine the “mean YORP effect” on their rotation state.

2.1. Polyhedral Model of the Asteroid Shape
Though the ellipsoidal shape model for small asteroids is by 

hr the most common and was thus used for computing their 
lightcurves in majority of cases, real asteroids typically indicate 
i much higher degree of irregularity. In addition, the fact that 
the YORP effect depends sensitively on the asteroid shape, as 
already noted by Rubincam (2000), prompts us to use a more 
accurate shape model.

There are basically two approaches that are often used for de­
scribing of an arbitrarily shaped body: (i) spherical harmonics 
development of the distance r(ff, φ) toward the surface along

the direction characterized by the spherical angles Θ and φ, and 
(ii) polyhedral model consisting of a list of surface vertexes 
and their identification as infinitesimal surface elements (facets). 
Both methods have been used for shape modeling of planetary 
satellites and small asteroids. The polyhedral model is clearly 
a more general tool (e.g., Simonelli et al. 1993). First, fine sur­
face structures (such as crater morphology or linear faults) are 
difficult to accommodate into a “reasonable-degree” spherical 
model; yet they may have influence on the exact value of the 
YORP torque. Second, the most irregular shapes cannot even 
be described by a single series within the spherical harmonic 
approach, since there might be several surface facets seen along 
a given direction from the center of mass. This situation oc­
curs, for instance, in the case of the asteroids Kleopatra and 
Geographos. These reasons led us to use the polyhedral model 
description of the asteroid shape in this paper. A practical bonus 
is the fact that the best-determined shapes of the near-Earth as­
teroids (except Eros), acquired by radar ranging, are directly 
exported in this format. We thus use data of six detailed aster­
oida! shapes available from http://echo.jpl.nasa.gov/links.html 
(their polyhedral approximation contains typically 4092 surface 
elements; the finest model of Toutatis has 12,796 surface ele­
ments). The polyhedral model of asteroid 6053 (1993BW3) is 
taken from Ďurech (2002). Additionally, we use data on asteroids 
and martian satellites acquired through satellite observations and 
available as spherical harmonics models [e.g., 24-degree Eros 
data are available from http://near.jhuapl.edu/(see also Yeomans 
et al. 2000) and a six-degree Deimos model is taken from 
Rubincam et al. 1995]. In each of these cases we have trans­
formed the original data to a polyhedral model with typically 
4000 surface elements. We started with nodes given by even 
coverage of a sphere in latitude and longitude but then iterated 
nodal positions so that the surface elements have approximately 
the same area.

Given the goal of our study, we need to compute a number of 
physical parameters of the studied objects: total mass (volume), 
surface area, inertia tensor, etc. For that purpose we basically 
follow the paper by Dobrovolskis (1996), generalizing it for a 
few complicated cases with several surface facets in a given 
(single) direction in the center of mass system.

A particular problem we faced when computing the YORP 
torque is that of illumination of a given surface facet. Given a 
frequent concave shape of small objects, there exists a possi­
bility that some surface elements may produce a shadow which 
prevents illumination of other surface elements. Interestingly, 
a similar problem is encountered in satellite geodesy, in par­
ticular for accurate determination of the atmospheric and ra­
diation drag on irregular-shaped artificial satellites. The most 
precise approach, notably the individual ray-tracing technique 
(e.g., Klinkrad et al. 1990), is typically a rather time-consuming 
procedure. We have thus chosen a compromise between the com­
putational accuracy and computer-time demands. For all surface 
elements we precomputed a list of other, potentially shadowing 
facets. The minimum local zenith angle is also precomputed and

http://echo.jpl.nasa.gov/links.html
http://near.jhuapl.edu/(see
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stored in computer memory. A special test is then performed 
when a potentially shadowing situation is detected in the course 
of computing the YORP effect. Notably, we investigate whether 
centers of the potentially shadowing facets are projected onto 
the given surface element (as seen from the solar direction).

At a still higher degree of precision one should take into ac­
count self-irradiation of the irregular shape (i.e., thermal radia­
tion from one surface facet can illuminate another facet and thus 
produce a corresponding radiation pressure). The ray-tracing 
technique can tackle complexities of this kind, but we neglect 
this effect in this study.

The precision with which we can compute the averaged values 
of the YORP torques Ť, and Ť, is limited mainly due to finite 
area of the surface facets (modeled as planar). However, we have 
verified that by taking more than 1000 facets, as we always do, 
the YORP torques can be computed with at least I % precision in 
all our cases. The fact that the computed quantities are averaged 
over the rotation and revolution cycles helps to diminish the error 
of numerical evaluation of the resulting torques.

2.2. Gaussian Random Spheres

Muinonen (1996, 1998), following previous studies of the 
finish school dealing with light scattering on small, irregular 
dust particles, pointed out that the Gaussian-sphere model is 
a robust scheme for describing shapes of small Solar System 
objects (asteroids and comets). Within this model, radii of a 
large sample of the objects satisfy log-normal statistics with a 
variance σ and a characteristic dimensional factor a (if properly 
scaled). In the center of mass system the radius r(ti, φ) in a 
direction given by spherical angles Θ and φ may be expressed as

ond Gaussian-sphere model parameter is then Γ, the correlation 
angle of the surface fluctuations. This model was later general­
ized by Muinonen (1998), who constructed the autocorrelation 
function of surface heights at given angular distance by a lin­
ear combination of two different functions of Γ (the weighting 
factor represents then an additional parameter of the model).

The most relevant, in our context, is then the work by 
Muinonen and Lagerros (1998). These authors analyzed accu­
rately known shapes of 14 asteroids to verify whether they satisfy 
the Gaussian-shape hypothesis. They obtained the best estimates 
of the parameters (σ, Γ) for their sample of asteroids, and also 
fora subset of 7 small asteroids (with sizes smaller than 10 km). 
In what follows we generate a large sample of “synthetic" shapes 
of small asteroids, represented by the Gaussian spheres with the 
previously mentioned parameters determined by Muinonen and 
Lagerros (1998) for small asteroids. Notably, we have σ =  0.274 
and Γ = 30.9°; in fact we consider directly the values of cj as 
determined by Muinonen and Lagerros (1998) and accept a cut­
off at I =  10 (see Table 5 of this reference). The scale parameter 
a, in Eq. (5), is obviously arbitrary and we typically fix its value 
at I km. As already indicated, we then convert each of the gen­
erated objects in the finite-element triangulation of the surface 
(polyhedral model); for the sake of statistical tests that follow we 
use 1004 surface elements. Figure 1 shows four typical synthetic 
asteroids in our sample.

Figures 2 and 3 show distribution of the dynamical ellip- 
ticity (C — (A + B)/2)/C and the triaxiality factor A/B for 
a sample of 1000 Gaussian random spheres generated by this 
procedure. Symbols indicate the values of the same parameter 
for the few real asteroids (and Deimos) with accurately known 
shape. Figure 2 confirms that the small Solar System objects 
are significantly different from spheres with a typical dynamical

FIG. 1. Typical shapes of four synthetic asteroids generated by the 
Gaussian-sphere method; statistical parameters of the model correspond to those 
determined for small asteroids by Muinonen and Lagerros (1998). Each of the 
objects is represented by a polyhedral model with 1004 surface elements.

where the s(ß, φ) function obeys spherical harmonic develop­
ment,

The coefficients btm) of these series are independent 
Gaussian random variables with zero mean and variance reading

with β2 = ln( 1 + σ 2) and δ to the Kronecker symbol. The model 
then depends on the variance σ of the distribution of surface 
heights and on a set of parameters cc from (7). These latter 
Parameters describe how the height anomalies fluctuate over 
the sphere, or more precisely they describe autocorrelation of 
ik log radii for a given angular distance of two surface ele­
ments. A convenient single parametric choice for this autocor- 
itlation function was suggested by Muinonen (1996); the sec-
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(C-(A+B)/2)/C

FIG. 2. Distribution of the dynamical ellipticity (C — (A +  B)/7)/C for 
■ id of 1000 generated artificial objects by the technique described in the text. 
The peak value is at about 0.3; symbols denote values of this parameter for the 
nine asteroids and Deimos, for which we have precise shape models from the 
inversion of the radar data or satellite observations.

ellipticity value of =«0.3. The distribution of both variables for 
the synthetic Gaussian spheres represents relatively well the den­
sity determined from real asteroid data. This confirms that our 
synthetic asteroids describe the asteroid population realistically. 
A curious exception is the «30-m-sized asteroid I998KY26 
(Ostro et al. 1999b).

3. RESULTS AND DISCUSSION

Hereafter we shall demonstrate the possible diversity of the 
YORP results through the parameter dependence of the averaged 
torques Ť, and Ť, [see Eqs. (4)]. In particular, we find that the 
YORP effect on these few asteroids, which basically differ just 
by their shape, may span all possible combinations of results.

A/B

FIG. 3. Distribution of the triaxiality parameter Λ/B for a set of 1000 
pnented artificial objects by the technique described in the text. The peak value 
is at about 0.7; symbols denote values of this parameter for the nine asteroids and 
Deimos. for which we have determined precise shape models from the inversion 
of the radar data or satellite observations.

After classifying these individual results, essentially according 
to the dependence of Ť, on the obliquity (with circular orbits 
assumed), we perform a statistical study to understand which of 
the different cases is the most typical. To that purpose we use a 
sample of 500 Gaussian random spheres generated as described 
in Section 2.2.

Though we use shapes of real (mostly near-Earth) asteroids 
we relegate the results to a single value of distance from the Sun, 
notably 2.5 AU. It is easy to understand from Eq. (2) that the 
results for the averaged torques scale as a l /d 2, with d being 
the mean distance from the Sun. Similarly, though in all cases 
of real asteroids we keep their true dimensions, it is easy to 
see that Ť, and Ť, scale as ocl/Z.2, where L is the linear scale 
of the object. In the case of a statistical sample of Gaussian 
spheres (Section 3.1.5), we set a =  I km for the scale parameter 
in Eq. (5). If qualitative results are reported, we always assume 
homogeneous bodies with a density of p =  2.5 g/cm3. If another 
density is more appropriate, such as for the C-type asteroids, the 
magnitude of the YORP torques scales as ocl/p.

3.1. Examples of the YORP Results
3.1.1. Type I: Eros, I998KY26, 6053. and Toutatis

Figure 4 shows the averaged YORP torques f , /C  and T,/C 
from the right-hand sides of Eqs. (3) for an Eros-shaped ob­
ject at 2.5 AU. Obviously, we adopt the real orientation of the 
spin vector in the Eros’ body-fixed frame as it corresponds to 
the real asteroid; only the obliquity (today’s value for Eros is 
^82° is allowed to span the entire (0, 180) degree interval. As 
already discussed, the averaged YORP torques then satisfy the 
following properties of (anti)symmetry: f,(e) =  f,(180 — e) 
and Ť,(t) =  —7,(180 — e). The result from Fig. 4 corresponds 
to that of Rubincam (2000) qualitatively, but as far as the 
quantitative value is concerned Rubincam indicates YORP to­
rques »3  times larger. We have checked our result several times 
and believe that it is correct. Nonetheless, this minor difference

obliquity (deg)

FIG. 4. Obliquity dependence of the averaged YORP torques Ť, (dashed 
line) and Ť, (solid line) for an Eros-shaped object at a circular orbit with radius 
of 2.5 AU. The torques are divided by the principal moment of inertia C.
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cannot change any of the conclusions from either our or Rubin- 
cam's work. Notice, in particular, that the positive value of Ť, 
in the (0°, 90°) obliquity range means that the YORP evolution 
always asymptotically reaches er =  90° obliquity. Since Ť, is 
negative at this value of obliquity, the final state of the YORP 
evolution corresponds to a permanent deceleration of the rota­
tion. Note, however, that Ť, is positive up to obliquity of 62°, 
which means that in the course of the YORP evolution the body 
may undergo a phase of spinning up of its rotation. This evolution 
characterizes type I cases in our classification. A similar result 
was found for asteroids I998KY26 and 6053 (1993BW3), and 
Rubincam (2000) reports the same result for Gaspra and Ida.

The strength of the YORP effect may be illustrated in the case 
of the small asteroid 1998KY26. Rubincam (2000) argued that 
a characteristic time scale for doubling the rotation period is 
given by ssC<u/f,. Applying this estimation to I998KY26 with 
a mean value of Ť, =a 10“ 15 s-2, we obtain a doubling of its 
rotation period in only «104 years. This is a surprisingly short 
time. We anticipate that a more complete YORP model, which 
includes the effects of the thermal inertia of the surface (which is 
neglected here but is likely for such a small object), may prolong 
this time scale by a factor % 10-100. Still, a 0.1-1 Myr timespan 
to significantly alter the rotation state of 1998KY26 (or similar 
objects) is smaller than the dynamical lifetime of its orbit. It is 
also interesting to note that the rotation period of 1998KY26 
has been measured with ~4 x 10-5 fractional uncertainty dur­
ing the 1998 observational campaign. Considering our result, 
its fractional change due to the YORP effect in 26 years, at the 
next close approach to the Earth in May 2024, is expected to 
be ~5 X  10-3. We thus predict that the YORP effect is likely to 
be observable for this object. The previous conclusion also con­
firms that the YORP effect should still be important for obliquity 
evolution of the meteorite precursors. Implications of this fact 
in a combined model with their Yarkovsky delivery toward the 
Earth (e.g., Bottke et al. 2000, Vokrouhlický and Farinella 2000) 
needs to be studied in the future.

Finally, we mention that the YORP effect on a Toutatis-shaped 
object was found of this type I (Fig. 5). We should, however, 
recall that here we assumed the principal-axis rotation of a 
Toutatis-shape object. Rather than indicating the YORP effect 
on the real Toutatis we are thus reporting a result for a ficti­
tious asteroid of the same shape (Toutatis is presently in a tum­
bling rotation state; Ostro et al 1999a). An interesting feature of 
the YORP solution of the principal-axis rotator of the Toutatis- 
shaped body is a permanent deceleration of the rotation period 
(f, is always negative).

11.2. Type II: Deimos and Kleopatru

Deimos presents an inverted case of the Eros results (see 
Fig. 6); namely, Ť, is negative in the (0°, 90°) obliquity range. As 
i result, the asymptotic obliquity value of the YORP evolution is 
n = 0° (or 180°, depending on the initial value of e). The asymp­
totic despinning of the rotation (f,(0) < 0 and f,(l80) < 0) is 
i common feature with the previously discussed type I cases.

obliquity (deg)

FIG. 5. The same as in Fig. 4, except for a Toutatis-shaped object routing 
along its shortest principal axis.

Rubincam (2000) noticed this “anomalous” behavior of YORP 
on Deimos, but he artificially inverted the rotation axis with re­
spect to the body (or the sense of its rotation). He rightly noted 
that the inversion causes Deimos to despin rather than to spin 
up its rotation for the given value of the obliquity, but he missed 
the point that the asymptotic YORP state is despinning in both 
cases.

The YORP effect on Kleopatra is qualitatively the same as for 
Deimos, but its larger size makes the YORP effect on this partic­
ular body negligible. The YORP time scale to double Kleopatra's 
rotation period is of the order of 1000 Gyr, an entirely irrele­
vant number from the astronomical point of view. However, a 
kilometer-sized object of Klepatra’s shape would double its ro­
tation period in 100 Myr only (thanks to the quadratic scaling 
of the YORP torques in the objects size).

3.1.3. Type III: Castalia and Geographos

The third type of our classification is represented by Castalia 
(see Fig. 7). The value of Ť, is positive up to some critical value 
f. of the obliquity, while for large values it becomes negative

obliquity (deg)

FIG. 6. The same as in Fig. 4, except for a Deimos-shaped object.
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(f. ~ 30° for Bacchus). This means that f . (or 180 -  e.) is the 
asymptotic value of obliquity that is reached by the YORP evolu­
tion at large time. Castalia’s peculiarity is because the f ,  torque 
is always positive. This latter fact means that the YORP effect 
permanently accelerates the body’s rotation. This finding is in­
teresting, since there is apparently a single outcome of this evo­
lution, namely, rotational fission. Obviously, in particular cases 
we should investigate the corresponding time scale needed to 
reach the fission state. For instance, in Castalia’s case we have 
estimated that its ss4-h rotation will reach =«2 h, an approximate 
disruption limit, in about 10 Myr. Though this estimation of 
(he time scale for doubling Castalia’s rotation frequency is not 
much longer than the estimated dynamical lifetime of its orbit 
(tens to a hundred million years), and thus it is astronomically 
relevant, it needs to be validated within a more general model 
(including eccentricity of Castalia's orbit, possible changes in 
its shape when approaching the critical rotation limit, deviation 
from the principal-axis rotation state, etc.). Castalia's rotational 
fission may also be facilitated by the fact that the cohesion at the 
junction of the two lobes of this asteroid, believed to be small 
steroids that collided in a “subcatastrophic way" (e.g., Ostro 
ttol. 1989), may be little lower. In any case, Castalia's result 
indicates that the YORP-induced bursting of small Solar System 
objects (see Rubincam 2000) may indeed occur is some special 
cases. Recall that this was the original motivation for studying 
the radiation torques (e.g., Radzievskii 1954, Paddack 1969).

The YORP effect on Geographos resembles closely that of 
Castalia (see Fig. 8). The Ť, is nearly always positive. 
Geographos’ rotation is thus virtually always accelerated. One 
easily estimates that the Geographos rotation frequency doubles 
in about 50 Myr. Again, though interesting, this number needs 
to be validated by a more precise model as already outlined. 
Geographos is thought to have undergone a “recent” close ap­
proach to the Earth that modified both its shape and its rotation 
sate (e.g., Bottke et al. 1999). Such events are rare enough that 
(he YORP effect may secularly change its rotation state before 
the next deep encounter, but the « 10- to 100-Myr dynamical life­
line of the Geographos orbit may prevent a significant effect.

Anyway, we found it interesting that the sub-kilometer-sized 
near-Earth asteroids have YORP time scales (to double the ro­
tation frequency) comparable to their dynamical lifetimes.

3.1.4. Type IV: Golevka and Bacchus

The final type of our classification is again characterized by 
a single node of Ť, in the (0°, 90°) obliquity range. An example 
is given by Golevka, whose averaged YORP torques are shown 
in Fig. 9. The YORP effect drives the obliquity either to 0° 
(or 180°) or to 90° depending on the initial state. Assuming a 
random initial state, there is (cos i.) probability that 0° will be 
a final state obliquity; as before, €, is the node of 7e(c) =  0. 
Interestingly, the rotation rate behaves in a different way for the 
two possible asymptotic states;namely, it decelerates at 0° (and 
180°) and accelerates at 90°. An inverse asymptotic behavior is 
observed in the Bacchus case (Fig. 10).

In the case of the real asteroidal shapes studied here we did 
not encounter a situation going beyond our classification, no­
tably with more than one node of T( (e) in the (0°, 90°) obliquity 
range. In principle, this may not be excluded, but it appears 
less common. Occasionally, two nodes of f f were observed
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FIG. tO. The same as in Fig. 4, except for a Bacchus-shaped object.

among the randomly generated shapes discussed in the next 
section.

3.1.5. Statistical Results fora Sample of Gaussian Spheres

The quantitative values, though interesting in particular cases, 
are not the most important conclusion from the previous sec­
tions. Rather, we would like to point out the diversity of the 
YORP results despite the very restricted (and randomly chosen) 
sample of objects taken into account. This means that there is no 
“generic1' YORP result. We have seen that the obliquity may be 
driven to any value (with probably a slight preference to 0°, 90°, 
and 180°) and the asymptotic states may be characterized by ei­
ther deceleration or acceleration of the rotation rate (with more 
likely the case of despinning). In several applications, mostly 
related to the Yarkovsky orbital perturbations on a large sample 
of “individually undefined” objects, we might be interested in a 
statistical description of the YORP results. This is the case of un­
derstanding the role of the Yarkovsky effect in meteorite or near- 
Earth asteroid delivery (e.g., Farinella and Vokrouhlický 1999, 
Bottke etal. 2000,2001a, Vokrouhlický and Farinella 2000) or 
Yarkovsky-driven diffusion processes in the asteroid families 
(Nesvorný et al. 2002, Bottke et al. 2001b). For this purpose 
we computed the YORP torques on a sample of 500 Gaussian 
random spheres generated by the Muinonen technique briefly 
recalled in Section 2.2. All bodies have an equivalent radius of 
I km, have a mean density of 2.5 g/cm3, and are assumed to 
move on a circular orbit at 2.5 AU from the Sun.

Figures 11 and 12 show the Ť, and f ,  torques, each for 30 
and 10 typical objects (more data would make the figures too 
busy). To bener explore the results we distinguish the different 
uses according to our previous classification; namely. Fig. 11 
shows 30 type I and Π results and Fig. 12 shows 10 type ΠΙ 
and IV results. We found that the abundance of the type I and 
Π cases is approximately the same, 39.2% and 40.4%, while 
type ΙΠ and IV cases occur statistically less frequently (only 
10.2 and 6.2% of all cases). As previously, mentioned, we have 
•I» occasionally identified peculiar cases with two nodes of Ť,

in the (0°, 90°) obliquity range that cannot be fit into any of the 
four classes—there were 20 such cases in the sample of 500 
generated objects. In principle, the number of these nodes is not 
limited and the likelihood of the complicated cases decreases 
quickly with number of nodes. Since the classification is not 
a substantial result of our paper (rather it is a mean to more 
easily distinguish different possible results), we do not extend 
the classification given here for these more complicated cases.

Separating the results according to the classes introduced here 
fixes the behavior of the Ť, torque, but it does not constrain the 
Ť, torque. Figures 11 and 12 indicate that the asymptotic decel­
eration of the rotation frequency is statistically much more likely 
than its acceleration (here “asymptotic” means at the obliquity 
value toward which YORP drives the spin axis at long term, 
i.e., 90° for the type I and 0 or 180° for the type Π solutions). 
This result may look peculiar, but we want to warn the reader 
not to draw hasty conclusions. We have carefully checked that 
there is an equal likelihood of positive value of T, moment at 
a given point on the orbit among the sample of the randomly

3 

2 

1 

0 

-1

2 

1 

0 

- 1

- 2  

- 3

0  3 0  6 0  9 0  120  150  180
obliquity

FIG. II.  Behavior of die f,(e)/C (left, e < 90°) and f,(<)/C (right, t >  
90°) for a randomly chosen 30 cases from the sample of Gaussian spheres. 
The values in the complementary parts of the obliquity interval follow from 
the obvious symmetries 7Y(I80 — *) =  — f,(c) and f,(180 — «) =  The 
upper part of the figure corresponds to the type I solutions, while the lower 
part of the figure corresponds to the type II solutions. The ordinate units art 
ΙΟ-1* s " 1. Note that in both cases there is an asymmetry in the asymptotic 
deceleration/acceleration of the rotation frequency toward deceleration.
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FIG. 12. The tame u  in the Fig. 11. except for for 10 randomly chosen 
řpe III and IV  results (more examples would make the figure too busy). The 
rtinaie units are I O '19 * -2.

generated asteroids (even when we average over the rotation cy­
cle). This finding fits the intuitive idea that might be gained, for 
instance, from Fig. 1 in Rubincam (2000): YORP may equally 
well accelerate or decelerate the rotation (imagine two senses of 
rotation of the windmill-shaped asteroid). But here we refer on 
the asymmetry of the YORP effect at the asymptotic value of 
its long-term evolution (and, moreover, averaged over both the 
rotation and revolution cycles). This is by no means an intuitive 
quantity, and we in fact did not find such an easy argument in 
favor of our result (except a careful check of our code). A part of 
this problem may also be that our representation is actually not 
entirely complete; as mentioned in Section 2 the YORP naturally 
drives the rotation from the principal-axis state. The statistics of 
tbe asymptotic rotation at the final state therefore need to be 
substantiated within a more complete model in the future.

Note that within one type there is a significant scatter of the 
magnitude of the YORP effect between the minimum and maxi­
mum strengths. Obviously, more “regular" objects are subject to 
(smaller effect while YORP is larger for more irregular-shaped 
objects. In Section 2 we recalled a trivial result, that the YORP 
effect is nil for spherical bodies. It can however, be easily shown 
that the averaged torques f,(e ) and Ť, (e) vanish for triaxial ellip­
soids (see Rubincam 2000). Figure 13 shows the distribution of 
the maximum values of Ť,{e) for obliquities within the (0°, 90°)

T./C

FIG. 13. Distribution of maximum values of Ť,/C for lype I and I! 
cases among the sample of 300 Gaussian random spheres. Abscissa units aie 
i<r ■»!-*.

range for the population of 196 identified type I cases from the 
entire sample of 500 Gaussian spheres. Although the spherical 
bodies are statistically absent in our sample (Fig. 2), a relative 
“excess” of small values in Fig. 13 is caused by objects with 
shapes that are rather well approximated by an ellipsoid.

Figure 14, showing the distribution p(t) of the asymptotic 
obliquity values from the whole sample of objects, confirms that 
the values 0° (and 180°) and 90° are dominant. The intermediate 
values, corresponding to the type ΙΠ class, represent a minority of 
cases (in total only 6.3%). When constructing p(e) we assume 
a random initial orientation of the spin axis. This means, for 
instance, that in the case of the type IV solution we assign (cos (.) 
probability of the 90° asymptotic solution of the obliquity and 
(sin2(e./2)) probabilities to 0° and 180° asymptotic values of the 
obliquity. The results indicate that the likelihood of the 90° (“in­
plane”) asymptotic obliquity is about the same as the sum of the

FIG . 14. Distribution p (0  of the asymptotic obliquities of the YORP evo­
lution for the sample of 500 Gaussian random spheres. The maximum of the 
distribution is normalized such that the integral [ ζ  dtp(t)tin e is unity.
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0° and 180° (“perpendicular”) asymptotic states. The majority 
of these cases are produced by the type I and type Π cases.

As mentioned in Section 1, the Yarkovsky effect, together 
with a slow chaotic diffusion, may significantly influence dis­
persion of (small) members of the asteroid families and thus help 
to reconcile inconsistency between the velocity fields inferred 
from the families and those from the hydrocode simulations (see 
Nesvorný et al. 2002, Bottke et al. 2001b). Together with the 
problem of leaking of small asteroids from the main belt (e.g., 
Farinella and Vokrouhlický 1999, Bottke etal. 2001a), the histo­
ries of asteroid families strongly motivate understanding of the 
spin axis evolution of the kilometer-sized asteroids.

Given this motivation, and using the YORP data on the sam­
ple of 500 Gaussian random spheres, we may investigate several 
interesting problems. For instance, we sought the characteristic 
YORP time scale to reach the slow-rotation state for the small 
members of the asteroid families in the main belt. Starting with a 
generic orientation of the spin axis, assumed isotropic in space, 
and a 5-h rotation period, we found that a small member of the 
Themis family with a characteristic radius of 1 km reaches the 
rotation period of 100 h in =»35 Myr (in the same time the initial 
obliquity is tilted to its asymptotic value). This is a median time 
computed over a large number of simulations where we consid­
ered 319 objects of YORP type I and type Π from our sample 
of Gaussian random spheres. For each body we performed 500 
simulations of the long-term time evolution of the rotation state. 
We assumed a bulk density of 1.3 g/cm3 and recalibrated the 
mean distance to the Sun to 3.13 AU. Obviously, the rotation of 
larger bodies would evolve more slowly, approximately with the 
square of the characteristic size. A similar result was found also 
for small members of the Flora family; here the closer prox­
imity to the Sun is compensated by the assumed higher bulk 
density of the asteroids (%2.5 g/cm3). Such results indicate that 
the reinitialization of the rotation state of small family members 
across the whole asteroid belt might be very frequent since the 
family formed (=»Gyr or longer in some cases). The influence 
of the YORP cycles thus needs to be taken into account, or at 
least estimated, in modeling the long-term dynamical fate of the 
asteroid families and leakage of kilometer-sized asteroids from 
the main belt.

3.2. The Role of the Solar Torque and Precession 
of the Orbit

Apart from the YORP effect and collisions, the gravitational 
torque due to the Sun represents an additional phenomenon that 
affects the asteroid spin axis orientation over the long term. 
Planetary torques may be relevant for the Earth-crossing pop- 
niation of asteroids, but they are negligible for the main belt 
asteroids.) Were the orbit fixed in space, the resulting effect of 
he solar torque would not be important for Yarkovsky appli- 
ations. Namely, it would consist of a regular precession with 
requency (3;a cose, where a is the precession constant “at 
am obliquity”) around the normal to the orbital plane, there 
ly leaving the obliquity e constant. Assuming the principal-axis

(8)

where (A, B, C) are principal moments of inertia, n is the mean 
orbital motion, and ω is the proper rotation frequency. The es­
timated minimum periods of such forced precession range be­
tween 3*0.3 Myr and several million years, depending on the 
object’s oblateness, distance from the Sun, and rotation period. 
Notably, by taking the average value of the dynamical elliptic- 
ity [C -(A  + B)/2]/C 0.3 for small asteroids (Fig. 2) and a
5-h average rotation period we obtain the maximum precession 
rates a in different parts of the asteroid belt as indicated in the 
Table I.

The situation is, however, complicated by the fact that the 
orbital plane is not fixed in space, but it is instead perturbed 
by the gravitational influence of the planets. The fundamental 
point here is that some of the frequencies by which the orbit pre- 
cesses (or oscillates) may be close to the estimated frequency 
(»sor cos f ) at which the asteroid spin axis processes around the 
orbit due to the solar torque (see Table I). This proximity may 
cause complex resonant effects and significantly influence the 
long-term evolution of the spin axis orientation (and thus its 
obliquity). Even in the cases when the initial forced precession 
is outside of resonance with the planetary perturbations of the 
orbit, the underlying slow obliquity and rotation frequency evo­
lution due to the YORP effect may drive the rotation state toward 
some of the resonances. Bottke et al. (2000) noticed the potential 
importance of the spin axis precession due to the solar torque, 
though they did not mention explicitly the possibility of the res­
onance phenomena [see also a previous work by Vokrouhlický 
and Farinella (1998)]. Here we want to develop the problem in 
more detail and show the potential complexity of individual ro­
tation histories of asteroids in different parts of the main belL 
Our particular aim is to see whether the YORP evolution itself 
may represent in average the typical rotation history of a small 
asteroid in the main belt (including the quantitative aspects such 
as the time scale to drive the rotation to a slow rotation limit).

We should not neglect to mention that the resonant spin axis 
dynamics has been extensively studied within the context of 
the long-term evolution of planetary rotation. Following these 
works, Skoglöv et al. (1996) and Skoglöv (1997, 1999) then
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applied the same approach to investigation of the rotation state of 
asteroids. To our mind, the powerful global approach of Laskar 
and his collaborators (e.g., Laskar and Robutel 1993, Laskar 
ti al. 1993, Nčron de Surgy and Laskar 1997) is also the most 
suitable for our application. We thus refer the reader for more 
details to Laskar and Robutel (1993) and Nčron de Surgy and 
Laskar (1997), while here we just summarize the principal steps 
and assumptions.

The power of Laskar’s approach is mainly that the irrelevant 
degrees of freedom are eliminated by averaging, while the funda­
mental degrees of freedom are retained. In the absence of spin- 
orbital resonances, appropriate for our application, we can thus 
average over fast proper rotation and revolution around the Sun 
(as was done for the YORP effect). Considering the effect of 
the solar gravitational torque only, the fundamental degree of 
freedom is described by canonically conjugated variables X = 
L cost  and ψ·, here L is the conserved angular momentum of 
rotation, e is the obliquity, and ψ is the precession in longitude. 
Note that here we implicitly assume rotation about the princi­
pal axis of the inertia tensor, which seems justified for at least 
multikilometer-sized asteroids (sec Section 3.3). It turns out to 
be suitable to introduce a complex variable χ =  sin ť exp(ίψ) 
(with i = V —ϊ), so that cos t = y/\ — χχ· (where the star de­
notes a complex-conjugated quantity). The resulting equations 
describing the long-term evolution of the spin axis orientation 
then read (e.g., Laskar and Robutel 1993, Néron de Surgy and 
Laskar 1997)

gates the coordinate singularity to £ =  180°. The corresponding 
dynamical equations then look a little less compact but they are 
easily obtained from (9).

Equation (9) can be generalized to include the YORP effect 
by extending the right-hand side by a term

The equation dw/dt =  T,/C  [see (3)] should be considered 
along with this generalized form of (9). Note that the preces­
sion constant a from (8) depends on the rotation rate ω, which 
presents an additional coupling of the resulting system of three 
differential equations for variables (χ, ω). Equation (8) appar­
ently suggests a oc l/ω ; hence increasing the precession con­
stant as the YORP effect asymptotically decelerates the rotation 
rate, but the exact dependence α(ω) may be more complicated 
because the dynamical ellipticity [C — (A + B)/2\/C may also 
depend on u>. As an example we mention that for planets, with 
fluid or viscoelastic layers, the rotational deformation leads ap­
proximately to [C — (A + B)/2]/C  oc ω2. For smaller asteroids 
that are likely to be rubble piles we do not have an exact estimate 
of the rotational deformation, so that at the zero approximation 
we shall assume [C — (A + B)/2]/C 3s constant. This should 
not hold for rotation periods approaching the zero-strength dis­
ruption limit by the centrifugal force, which appears to be about 
2 h (consistent with the upper limit of the observed rotation pe­
riods for asteroids larger than =s200 m in size; Pravec and Harris 
2001).

Following the motivation from the end of Section 3.1.5, we 
next illustrate the complexity of the long-term evolution due 
to the aforementioned effects for small members of Themis 
and Flora families. Interested readers may found additional re­
sults for small asteroids in the Eunomia family on our Web site 
http://sirTah.troja.mff.cuni.czrdavok/.

3.2.1. Example: Themis Asteroids

We intentionally start our discussion with Themis, since the 
effects of the mutual interaction between the gravitational so­
lar torque and the orbital excitations is weak and restricted 
to isolated events. There are several reasons for this conclu­
sion, the most important of which are (i) small orbital incli­
nation of the Themis asteroids and (ii) a good separation of 
the proper and forced frequencies by which the orbital plane 
is perturbed from the estimated precession rote of the spin axis 
(see Table I)· Fourier analysis of the orbital data, namely, the 
(  =  sin //2exp(i'S2) variable and the Ψ quantity from (11), in­
dicates that in the relevant range of frequencies their spectrum 
is composed of well-isolated lines (dominant frequencies are 
the proper frequency s =» 103"/year and the forced frequencies 
*6 ~  25.7"/year, si =» 2.9"/year, and sg =» 0.7"/year and the rel­
evant sidebands). This suggests a near regularity of the spin 
axis evolution, except from singular resonant cases. The YORP 
effect may obviously drive the rotation evolution toward these

The complex variable ζ =  sin(//2)exp(i'í2) describes orienta­
tion of the orbital plane in space; /  is the inclination and Ω is the 
longitude of the ascending node. If ζ were constant, we easily 
verify that the solution of (9) is the regular precession of ψ with 
frequency a cos € (and f  =  constant). However, the complexity 
of the problem stems from the fact that ζ is time dependent, 
describing orbital motion due to planetary perturbations. It may 
be given by a Fourier series approximation from the analytic 
theory, or—as in our case— as a purely numerical output from 
integration of the orbital motion of an asteroid. As a part of 
another research project we have integrated orbits of hundreds 
of asteroids in main belt families over hundreds of Millions of 
years (e.g., Nesvorný et al. 2002), and we “borrow" these results 
for our study of the long-term evolution of their spin axes.

We mention that in our simulations we actually used a slightly 
modified variable χ' = (1 — cose)exp(i'^r) that suitably rele­

(12)

http://sirTah.troja.mff.cuni.czrdavok/
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resonances, but none of them is expected to trigger a large-scale 
chaotic motion of the spin axis.

As far as the YORP effect is concerned, we shall use a typical 
(“average”) result from the Gaussian-sphere sample of kilometer- 
sized objects discussed in Section 3.1.5 and scale them to the 
appropriate distance from the Sun. In the Themis case, we also 
renormalize the assumed mean density of the asteroid to 1.3 g/ 
cm3, which better fits the C-type asteroids. The orbital data are 
taken from a 150-Myr direct numerical integration of a test par­
ticle at 3.13 AU (the eccentricity and inclination fits the mean 
of the Themis family). Gravitational perturbations of the outer 
planets were included. Our intention is not to investigate all 
possible results spanning the whole initial data parameter space, 
such as the initial period, obliquity, precession constant, and 
so on, but rather to show several examples. A more systematic 
search is beyond the scope of this paper.

Figure 15 shows one of the possible histories of the rotation 
state of a 2-km-sized Themis asteroid (with initial data given 
in the caption of the figure). As in all the examples that fol­
low, we always compare two simulations: (i) a restricted one 
with only the YORP effect included, and (ii) a more complete 
simulation including both the YORP effect and the gravitational 
solar torque. Notice that both models yield very similar results. 
In the complete model, the obliquity gets only very slightly 
perturbed as a consequence of the passage through the sj reso­
nance (when dyjf/dt — si — 0); apart from this small effect the 
restricted model, containing the YORP effect only, follows the 
results of the complete model closely. In both cases, we no­
tice the outstanding characteristics of the YORP evolution (see 
Rubincam 2000). Notably, the obliquity is secularly driven to 
in asymptotic value of 90° (type I case); given the small initial 
obliquity, the rotation period is first decreased to about 4 h, while 
at later epochs of the YORP evolution it rapidly increases. We 
terminate the simulation when the rotation period reaches 100 h, 
since our model is inappropriate and incomplete for longer pe­
riods for two reasons. First, nondisruptive collisions may easily 
modify the rotation state at this slow-rotation phase, and second, 
the averaging method used for modeling the YORP effect may 
not be applicable when the rotation period becomes a fair frac­
tion of the revolution period. It may also be noticed that about 
90 Myr is enough time to reach the near-asymptotic state and 
till the axis by 70s in obliquity. Regarding the size-scaling of 
the YORP torques, we may conjecture that this time will scale 
with the square of the characteristic length of the object. For a 
10-km-sized asteroid the evolution from Fig. 15 may thus take 
«2.25 Gyr.

Figure 16 shows another possible history of the Themis 
kilometer-sized asteroid rotation. The main difference from the 
previous example concerns the YORP type; here, the asteroid 
is assumed to belong to the type Π class. The obliquity is then 
driven to the 0° state. Nevertheless, this expected evolution is 
temporarily inverted in the complete model due to a capture in 
it and j resonances; the Si resonance is too weak for a capture. 
Figure 16c clearly illustrates that the precession rate άψ/dt is

time (Myr)

FIG. IS. Long-term evolution of (a) the obliquity t, (b) the rotation period 
/*, and (c) the forced precession frequency dý/dl for a typical, kilometer-sized 
Themis asteroid. The simulation includes the gravitational torque due to the Sun 
and the YORP effect: initial data are «(0) =  20°, P(0) =  6 h. and the precession 
constant a =  KT/year. The black curve (labeled 2) shows evolution with only 
the YORP effect included, the gray curve (labeled I ) corresponds to evolution 
with both the YORP effect and the solar gravitational torque. The asteroid orbit 
evolves due to planetary perturbations. The YORP solution corresponds to type t 
according to our classification (i.e . driving the spin axis to the orbital plane).

trapped to the resonance value. Since the rotation rate is per­
manently decayed, the obliquity is forced to decrease, as can 
be seen between 47 and 56 Myr (Fig. 16a). The situation is 
similar to a temporary capture of dust particles in the exterior 
orbital resonances with planets, where eccentricity is forced to 
increase when the orbit is trapped in the resonance as a result 
of continuous draining of the angular momentum with “stopped 
evolution” of the semimajor axis. However, even disregarding 
such fine details of the evolution, it can still be rather well ap­
proximated by the restricted model with the YORP effect. This 
is true, in particular, with regard to the time scale needed to reach 
the near-asymptotic state of a very slow rotation.

We have seen in Section 3.1 that the YORP obliquity evo­
lution may asymptotically reach any value in the admissible 
range. This is the type ΙΠ case, which is illustrated in Fig. 17. 
The evolution is fairly similar to that from Fig. 16, with the
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Ume (Myr)

FIG. 16. The same as in ihe Fig. 15, except for for the initial obliquity 
<(0) =  80° and the YORP effect of type II (i.e.. the spin axis tends to align with 
Ac normal to the orbital plane). Notice (hat the precession rate df/dt (c) is 
mporirily captured in the st and s resonances; since the rotation period is 
constantly increased, the obliquity is forced to resonantly increase (a).

».ly difference being in the asymptotic value of the obliquity. 
The st and s resonances temporarily capture the slow increase 
of the precession rate, but the permanent decrease of the rota­
tion energy eventually releases the evolution from these reso­
nances. The unavoidable slow-rotation late phase will then be 
interrupted by a collision with a sufficiently large projectile. Res­
onance captures may not necessarily result in prolonging the spin 
uis evolution; this is actually seen in Fig. 17, since the com­
plete model evolution to the 100-h rotation period takes some 
8 Myr less than in the YORP case only. Compared to the entire 
»*110-Myr evolution, this is only a minor effect. However, there 
are also cases where the resonances may halt the rotation evo­
lution for a more considerable period. Figure 18 shows an ex- 
imple with the underlying YORP effect of type IV. We may 
notice long-lasting captures in the í j and s resonances. As a re­
sult, the rotation evolutions to the long-period state takes longer 
(140 Myr compared to 90 Myr) when only the YORP effect is 
taken into account.

Despite of the limited number of cases discussed here, we 
may preliminarily conclude that the YORP evolution itself is

a very good approximation of the complete model. The rare 
and separated resonances between the forced precession of the 
spin axis due to the solar torque and the orbital excitations may 
temporarily affect the smooth YORP evolution, but they do not 
generally result in a large-scale wandering of the spin axis.

3.2.2. Example: Flora Asteroids

We have repealed the previous examples for the small 
(kilometer-sized) members of the Flora family. In practice this 
means that we rescaled the magnitude of the YORP-averaged 
torques to the 2.2 AU distance from the Sun and we used a nu­
merically integrated orbit of the asteroid Flora over a 140-Myr 
timespan. We assumed a mean density of 2.S g/cm3, conformal 
to the S-type asteroids. The closer proximity to the Sun results 
in two important differences if compared to the Themis case; 
(i) since the orbit is further from Jupiter, the proper nodal fre­
quency s is smaller (see Table I) and gets close to the forced 
frequencies (especially st ~  25.7"/year), and (ii) since the rev­
olution period is shorter, the precession constant a increases for 
a typical Flora asteroid to approximately the Sf, value. The first 
item means that the Fourier spectrum of the ζ and Ψ variables

time (Myr)

FIG. 17. The same as in the Fig. 15, except for the initial obliquity <(0) =  
80: and the YORP effect of type III (i.e., the obliquity is asymptotically driven 
to an intermediate value of »44").
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time (Myr)

FIG. 18. The same at in the Fig. 15. except for the YORP effect of type IV 
Lt_ the spin axis asymptotically driven either to the orbital plane or into align- 
acni with its normal depending on the initial value of the obliquity; in this case 
i ipproaches the O-obliquity state).

is no longer composed of well-isolated lines, but the bulk of the 
signal is poorly periodic and the spectrum contains clusters of 
lines [compare, e.g., with the spectrum of A and B variables 
for Mars from Laskarand Robutel (1993)]. The resonances may 
“communicate” with each other and drive the precession rate 
iý/dt over a larger range. Such a chaotic wandering of ψ may 
trigger a similar effect in the obliquity, as has been found by 
laskar and his collaborators for most of the inner planets and 
Skoglöv for some asteroids. The second item mentioned here 
means that the typical precession rates for the Flora asteroids 
should be located close to these resonance clusters. As a result 
of this qualitative insight, we may expect a less regular evolution 
of the obliquity than in the Themis case. Additionally, higher in­
clination of the Flora orbits may cause larger oscillations of the 
obliquity.

Figure 19 formally corresponds to the same initial data as 
in Fig. 15, except with the Flora orbit and YORP parameters. 
Apart from larger amplitude oscillations of the obliquity (and 
the precession rate), the results are comparable. The YORP evo­
lution itself corresponds rather well to the complete model re- 
"ilt. Interestingly, the time scale needed to reach the asymptotic.

slow-rotation state is approximately the same as in the Themis 
case (see also results in Sections 3.1.5); the larger radiation flux 
in the Flora zone is roughly compensated for by a higher mean 
density of the Flora S-type asteroids.

Figure 20 shows a more perturbed case of the possible Flora- 
asteroid rotation history, notably corresponding formally to the 
same initial data as in Fig. 16. A type Π YORP effect drives 
the alignment with the orbital angular momentum at late epochs 
of the evolution, which—together with the secularly deceler­
ated rotation rate—means that the precession rate encounters 
the large resonance zone. When this occurs (at =»22 Myr), the 
obliquity undergoes large oscillations. Figure 16c indicates that 
the evolution alternates in a random way between the nearby 
56 and s resonances. Eventually, the resonance lock is inter­
rupted and the evolution quickly heads the slow-rotation phase. 
The entire timespan is shortened about 25% compared with the 
YORP-only evolution.

Significant obliquity perturbations may be also seen in Fig. 21. 
the Flora counterpart of the Themis simulation shown in Fig. 17. 
Here, the obliquity approaches an intermediate asymptotic value 
of about 44° and the resonance phenomena in the complete 
model largely mask the smooth YORP-only evolution. In

0 20 40 60 Θ0
time (Myr)

FIG. 19. The same as in the Fig. IS. except for a kilometer-sized Bora 
asteroid.
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less frequent (see Section 3.1.5 where we found that the type IV 
YORP objects comprise only =«6% of all bodies).

3.3. Comments on Inelastic Relaxation of the Tlimbling 
State of Rotation

The assumption of rotation around the principal axis of the 
inertia tensor is one of many approximations we adopted in this 
paper. A single periodicity of lightcurves of most asteroids does 
suggest that this is a commonly satisfied situation, but in some 
cases we have evidence for non-principal-axis (tumbling) rota­
tion (e.g„ Toutatis and Comet Hailey). We have seen the YORP 
effect implies at least two reasons for analyzing whether the 
principal-axis rotation is appropriate for small asteroids: (i) the 
YORP effect naturally produces torque components, which drive 
the rotation out of the fundamental-energy state, and (ii) even if 
(i) is weak the predicted long-term evolution of the asteroidal ro­
tation due to the YORP effect may include a final slow-rotation 
phase, interrupted eventually by a larger collisional event that 
may increase the rotation rate. After undeigoing such an event, 
the asteroid rotation should be genetically placed in an ex­
cited (tumbling) state. On the other hand, inelastic processes 
tend to dissipate the energy of the wobble. A comparison of a 
characteristic time scale for such dissipative processes with that

20 30
time (Myr)

FIG. 20. The same os in the Fig. 16. except for a kilometer-sized Flora 
ttroid.

contrast to the previous example, the resonance effects delay the 
rotation evolution toward the long-period phase by some 20%. It 
is, however, very important to notice that despite the difference 
in the obliquity evolution, the accumulated Yarkovsky change 
in the semimajor axis would differ by only % 10%. This actually 
applies also to the example shown in Fig. 20, since the shorter 
evolution is partially compensated for by a smaller obliquity (in 
average), which increases the semimajor axis drift for the diumal 
variant of the Yarkovsky effect.

Our final example. Fig. 22, demonstrates a less frequent case 
when the rotation histories as given by the complete and YORP- 
only models are significantly different. This is the case of the 
type IV YORP effect, which may be asymptotically driven ei­
ther to 0° or 90° obliquity depending on its initial value. The 
chosen initial data (namely, 20° for the obliquity) are nominally 
attracted by the 0“-obliquity asymptotic state if only the YORP 
effect is assumed. However, the large oscillations of the obliq­
uity caused by the Si resonance may invert this evolution and 
drag the obliquity toward the complementary asymptotic value 
of 90°. This case is actually seen in the evolution presented in 
the Fig. 22 (we stopped the simulation at 140 Myr since this 
is the time interval over which we have the oibital data). We 
should, however, comment that this last example is statistically

60 60 
time (Myr)

FIG. 21. The same as in the Fig. 17, except for a kilometer-sized Flora 
asteroid.
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by different techniques typically occur at different frequencies 
and for different composition than the presumed nibble piles for 
small asteroids. The quality factor Q is thus largely uncertain 
in our application; admissible values range from about 100 (or 
even less) to about 300. The upper value is consistent with the 
high-frequency determinations for lithospheric rocks (both in 
the laboratory and from the free modes of Earth oscillations). 
At lower frequencies, Q typically decreases, satisfying roughly 
a power law, down to about 30 for Earth tides (monthly and 
semimonthly periods). A value of Q «s 100-150 thus seems to 
be likely for small, rubble-pile asteroids with strain periods of 
a few days; this value is also commonly adopted for the small 
planetary satellites (e.g., Peale 1999). The low-rigidity C types 
may have even a slightly smaller Q, conformal to the assumed 
value for Comet Hailey.

Bums and Safronov (1973) determined, from general princi­
ples and qualitative reasoning, that the characteristic time scale 
to dissipate the free-precession energy is

0 20 40 60 80 100 120 140
time (Myr)

FIG. 22. The some *s in the Fig. 18. except for t kilometer-sized Flora 
■steroid.

of the YORP evolution is then of fundamental importance for 
understanding whether the principal-axis rotation assumption 
is justified (over at least a major part of the YORP evolution). 
Rubincam (2000) noted these facts and here we are try to elab­
orate the corresponding estimations in somewhat more detail.

Free precession of a rotating body causes alternating stresses 
in its interior. A variety of processes, such as unpinning of dis­
locations, sliding at grain boundaries, or interaction of internal 
faults, then result in irreversible dissipation of the rotation en­
ergy, which is thus damped toward the minimum state of rota­
tion around the principal axis of inertia tensor. Since a detailed 
modeling of such molecular-level microscopic processes is very 
complicated, if not impossible, one usually characterizes the 
energy dissipated over one alternating cycle of internal forces 
by an empirical quality factor Q. Its value has been determined 
from a number of astronomical observations and laboratory mea­
surements for a variety of materials and frequencies of their 
excitations. It has been indeed found that the Q values are com­
positional and frequency dependent. Relevant periods at which 
uteroidal interiors are strained range from about half a day to 
several days (excluding the slowly rotating population of aster­
oids). Not only do we luck any direct observational calibration 
of the quality factor for asteroids, but also the values obtained

where R is the radius, ω is the rotation frequency, and μ is the 
rigidity (or shear elastic modulus) of the asteroid. The major 
uncertainty here follows from inaccurate knowledge of (i) the 
quality factor Q (as already mentioned), (ii) the numerical coef­
ficient K, and to some extent (iii) the rigidity μ. This numerical 
coefficient κ depends on the geometry of the body and the fre­
quency spectrum of the internal strain. There has recently been 
some discussion about the appropriate value of κ (e.g., Lazarian 
and Efroimsky 1999, Efroimsky and Lazarian 2000, Efroimsky 
2000), with a tendency for smaller values being favored. Bums 
and Safronov (1973) determined κ «  10-100 (cgs units), de­
pending on the sphericity of the asteroid (upper value for near 
spherical objects), while Efroimsky and Lazarian (2000) advo­
cate a value κ =« 4-5. Though the latter authors seem to rightly 
point out the importance of the second harmonic of the wobble 
frequency, the difference in κ is ultimately not that fundamental 
given the degree of other simplifications. Moreover (J. A. Bums, 
private communication), the very low κ results still need to be 
confirmed by a direct numerical model of a strained, rotating, 
inelastic body (with currently controversial conclusions). We 
shall thus assume κ *  20 in the following estimations. As for 
the rigidity, we shall assume »*5 x 10n dyne/cm2 for the sil­
icate asteroids (S types), which is consistent with laboratory 
measurements of elastic moduli of the ordinary chondrites (e.g., 
Yomogida and Matsui 1983). Actually, this value fits the data 
of H-chondrites, while L-chondrites have μ typically somewhat 
smaller. For asteroids located in the outer belt (C types) we as­
sume a smaller value «5  x 10lodyne/cmJ, fitting approximately 
the cometary data (with Q % 100 this is about what other authors 
suggest; e.g., Jewitt 1997). We thus obtain the following char­
acteristic time scales for relaxation of the free wobble due to the 
inelastic internal processes: 7" 0.36 x (P&/RI,„) for S types
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period in hours, Äkm is the radius in kilometers, and T is then 
given in millions of years). Harris (1994) also considered the 
problem of the tumbling asteroids and obtains T 0.0S x 
(P /̂Ä^n) in average. This is slightly less than our value for 
S types, because this author assumed a smaller value of μ β . 
Taking our estimates and 5 h for the typical rotation period of 
kilometer-sized asteroids (excluding slow rotators like Mathilde 
or Toutatis; see, e.g., Pravec and Harris 2001), we have a damp­
ing time scale of ««45 Myr for the S-type and =a5 Myr for 
the C-type asteroid of «  1. Since the average rotation rate 
is approximately constant in the 1-10 range of the esti­
mated damping time scales diminish as oc 1 /  R^ in this range of 
interest.

A comparison with the estimated YORP time scales (e.g., 
from the statistical result in Section 3.I.S or the examples in 
Section 3.2) indicates that the C-type kilometer-sized asteroids 
might relax toward the fundamental stale of rotation around the 
principal axis of rotation on a time scale shorter than that of 
YORP evolution. So, as an example, assuming a YORP model 
with principal axis rotation might be rather well justified for 
Themis kilometer-sized members. On the other hand, the small­
est Flora members may have a damping time scale comparable 
to (or even longer than) their YORP evolution time scale and 
we should consider modeling of YORP with some precaution. 
However, if we would consider Harris’s (1994) estimate for the 
tumbling relaxation, the principal-axis rotation would be well 
justified even for the small Flora asteroids. We thus tentatively 
conclude that the simplifying assumption of the principal-axis 
rotation is rather well justified, being obviously violated only 
for the unusual, slow-rotation population of asteroids.

4. CONCLUSIONS

The main results of this paper can be summarized as follows:

• We have investigated the role of the thermal radiation torque 
on the long-term rotation history of smal I asteroids (up to 10 km 
in size). Except for the unrealistic cases of spherical bodies and 
perfect ellipsoids, this torque always secularly affects the rota­
tion; in particular the obliquity is slowly driven to some asymp­
totic value while the rotation period typically secularly increases 
(a permanent decrease of the rotation period is also possible, but 
this is statistically less frequent). Four principal approximations 
were assumed in this text: (i) applicability of the averaging prin­
ciple, (ii) zero thermal relaxation of the asteroidal surface, (iii) 
circular orbits (this assumption, however, just conveniently con­
strains the parameter space of the solutions and does not present 
i theoretical limitation of our approach), and (iv) the principal- 
axis rotation state.

• By analysing the functional dependence of the obliquity- 
affecting torque 7C on the obliquity value, we have classified 
possible cases of the YORP-induced evolution of the obliquity.

• The YORP torques were computed for 10 shapes of real 
objects (nine asteroids and Deimos) and also for a large sample 
of synthetic objects generated by the Gaussian random sphere 
technique. Since the Gaussian model parameters were fitted to 
the known shapes of small asteroids, the sample is assumed to 
well represent the shape characteristics of small Solar System 
bodies. As a result we were able to estimate a statistically aver­
aged YORP influence on small members of Themis and Flora 
asteroid families for such properties as the characteristic time 
scale to reach the asymptotic, slow-rotation regime. This find­
ing is important for improving models of slow semimajor axis 
dispersion in asteroid families.

• As a particular result, we predict that the YORP effect may 
be directly observable through change of the rotation frequency 
of the small near-Earth asteroid 1998KY26 during its next close 
approach in May 2024.

• If YORP were the only cause of the long-term evolution of 
the asteroid rotation state, it would drive the obliquity to some 
particular value (depending on the type). When this value of the 
obliquity is reached, and the averaging approach is still applica­
ble, the rotation frequency is preferentially decreased. This is a 
result from the sample of 500 Gaussian random spheres. The less 
likely case of a permanent spinning up of the body may occur, 
and we found it, as an example, for an object of Castalia’s shape.

• In addition to the slow YORP-induced evolution of the 
rotation state, we include in our model the influence of the grav­
itational torque due to the Sun. Since the orbital elements evolve 
in time due to planetary perturbations, the forced precession of 
the spin axis may resonantly beat with the orbital excitations. 
This is indeed the case of small asteroids, with sizes larger than 
several hundred meters across and with slow enough rotation 
(«hours). We illustrate the obliquity effects triggered by such 
resonant phenomena. The YORP effect may drive the nonres­
onant states toward the resonances. Meteoroid precursors, with 
sizes up to tens of meters, presumably rotate fast enough so that 
the precession rate due to the solar torque is significantly dif­
ferent (smaller) than the orbital excitation. The resonant effects 
studied in this text are thus likely to be unimportant for these 
very small objects in the Solar System.

• The assumption of principal-axis rotation seems well justi­
fied in average for multikilometer-sized asteroids; however, the 
kilometer-sized objects may relax toward the principal-axis rota­
tion state slowly. The YORP torque may also continuously drive 
the rotation state away from the fundamental state of rotation. 
These effects need to be studied in the future.

A major issue omitted in this paper concerns the role of colli­
sions within the model we investigated. Yet, collisions are nec­
essarily an inherent part of the model, since they must tune the 
limit to which the asteroids decelerate their rotation rate by the 
YORP effect. Inclusion of the collisional processes, however, 
represents an entirely new and vast dimension to the studied 
problem and we feel that this would already go beyond this 
introductory paper of the series. We certainly need to return to 
this issue in the future.

466
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me. At the CIS level, the energy needed to 
fisociate one NH} molecule from the cluster is 
alculaled to be about the same as that available 
him the exoergicity of the H transfer reaction.

The configuration contributing dominant­
ní 10 the excited wave function involves pro­
notion of an electron from the highest occu- 
lied it orbital of 7HQ to the antibonding 
irbitaU shown in Kig. 4 at different steps of 
lie reaction. For the enol, this is the antibond- 
ng ir* orbital of 7HQ shown in Fig. 4A, 
»hereas for HTI it is an antibonding σ* 
«bital on the newly generated NH„ moiety 
Fig. 4B). Accompanying this change of ex- 
ittd-state character is a transfer of about 0.9 
tec iron from the 7HQ moiety to NH3( I); i.e., 
be incipient proton transfer becomes a H 
iom transfer in the vicinity of TSg,,. After 
assing the TS ,̂ barrier, the lowest excited 
tale retains the w *  character along the 
dislocation coordinate up to TS^. As seen 
& Fig. 4, B to D, the σ* orbital accompanies 
be H atom as it moves along the ammonia 
we via HTI, HT2, and HT3. A reverse σ* 
■* π* stale switching occurs near TS1/K; the 
XQ orbital shown in Fig. 4E is a π* orbital 
imilar to that of the enol.

The π* —* σ* -* ττ* crossovers correlate 
liih large changes of oscillator strength for 
he S, —► S0 transition: In C, symmetry, 
luorescence is allowed from the ittt* but 
«bidden from the ττσ* state. Even without 
ymmetry, this selection rule holds approxi- 
alely: The calculated S, -* S0 oscillator 
trength from the 7KQ wir* state is /  = 
1.294, whereas from the mx'-type states of 
ΓΓΙ to HT3 the /  values vary from 0.001 to 
1004. This difference explains why the HTI, 
ΓΓ2, and HT3 forms have much longer radi- 
live lifetimes and why no fluorescence is 
(served from these intermediates.

We show that single-file H atom transfer can 
e induced along the ammonia wire of the 
-bydroxyquinoline-(NHj)j cluster. The reaction 
i initiated by S, «— S0 excitation of 7-hy- 
roxyquinoline but does not proceed from the 
ibntionless S, state. Additional excitation of S, 
me immonia-wire solvent vibrations is neces­
ty to activate the reaction. The measured reac- 
an threshold is only 2.S kJ mol'1, increasing to 
U mol-1 when fully deuterating the ammonia 
m. Ab initio calculations of the S, and S2 
Hes predict a crossing of τητ* and w * poten- 
il energy curves along the H atom transfer 
wdinate (21-25) that creates an initial barrier 
f—44 kJ mol- ’. The fust reaction step involves 
■nttim tunneling from the ground state of the 
ι-H mode. It is exothermic by about 30 kJ 
el"1, which provides the driving force for the 
ihsequent reaction steps. The ammonia-wite 
odes that characterize the entrance channel 
pon of the reaction are amenable to detailed 
Klroscopic investigations both below and 
eve the reaction threshold and will allow state- 
ccific kinetic investigations. The vibrational

energy and deuteration dependences underline 
the crucial role of the solvent coordinates on the 
tunneling rale (/, 9-13).
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emission and its associated recoil force from the 
Sun’s direction, resulting in a slow but steady 
drift in the semimajor axis of the object’s oibit. 
Over millions of years, this drift can move 
main-belt asteroids and meteoroids until they 
reach a resonance, at which point gravitational 
perturbations lake over and reroute them into 
the inner solar system (J, 7-9). The Yarkovsky 
effect also explains meteorite cosmic-ray expo­
sure ages that are too long for the classical 
delivery scenarios (3,10) and the large diver­
sion of asteroid family members that would 
otherwise have required unrealistically large 
collisional ejection velocities (6, II). It can also 
limit the long-term predictability of possibly 
hazardous close-Earth approaches (12). The Yar­
kovsky effect has been detected in the motion

Direct Detection of the Yarkovsky 
Effect by Radar Ranging to Asteroid 

6489 Golevka
Steven R. Chesley,1·  Steven J. Ostro,1 David Vokrouhlický,2 

David Čapek,2 Jon D. Glorglni,1 Michael C. Nolan.3
Jean-Luc Margot,4 Alice A. Hlne,3 Lance A. M. Benner,1 

Alan B. Chamberlin1

Radar ranging from Arecibo, Puerto Rico, to the 0.5-kilometer near-Earth asteroid 
6489 Golevka unambiguously reveals a small nongravitational acceleration caused 
by the anisotropic thermal emission of absorbed sunlight The magnitude of this 
perturbation, known as the Yarkovsky effect, is a function of the asteroid's mass 
and surface thermal characteristics. Direct detection of the Yarkovsky effect on 
asteroids will help constrain their physical properties, such as bulk density, and 
refine their orbital paths. Based on the strength of the detected perturbation, we 
estimate the bulk density of Golevka to be grams per cubic centimeter.
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of artificial Eanh satellites (13) but not Γο γ any 
latural bodies. Vokrouhlický et al. (14, IS) 
explored the possibility o f direct detection by 
means o f the precise determination o f near-

Ei asteroid (N EA) orbits and concluded that 
a detection would be feasible for N E A s  up 

jo a few kilometers in size, given precise radar 
tstrometry spanning a decade or more. In par­
ticular, they predicted that radar ranging in M ay 
W03 to the asteroid 6489 Golevka (which has a 
530-m diameter) would reveal direct evidence 
for Yarkovsky accelerations. Here, we report 
ht outcome of that radar experiment, which 
onfirms Yarkovsky-induced modification o f 
steroid orbits.

Measurements o f the distribution of radar 
ctoo power in time delay (range) and Doppler 
liquency (radial velocity) constitute lwo-di- 
jcnsional images that can spatially resolve as- 
froids. The fine fractional precision of radar 
me-delay measurements and their orthogonali- 
f to optical plane-of-sky angular astrometry 
»ke them powerful for refining orbits (16). 
Mar observations of Golevka were conducted 
oring its clotse-Earth approaches in 1991, 1995, 
ml 1999. Delay-Doppler measurements were 
■ade at Arecibo, PR, and Goldstone, CA, in 
991 (17) and extensively at Goldstone in 1995 
IÍ). The asteroid's shape and spin state were 
nermined from the 1995 radar results (IS). We 
naged Golevka from Arecibo on 24,26, and 27 
lay 2003 (Fig. I), during the asteroid's closest 
arth approach until 2046. With the shape model

1 1. Arecibo delay-Doppler images of Go­
to (top row) along with corresponding syn- 
tsized images based on the shape model (78) 
*d<*e row) and plane-of-sky views of that 
odd (bottom row). The 24, 26, and 27 May 
suits ire shown in the left, middle, and right 
tomns. respectively. Each of the nine frames 
i 1.0-km square centered on Golevka’s COM. 
the radar images, time delay increases from 
p to bottom and Doppler frequency Increases 
m left to right The delay resolution is 0.5 μ5 
5 m in range) and the Doppler resolution is 
Z38 Hz, or about 60 m. depending on the 
serving geometry. North is up in the plane- 
-sky views. The images are sums of data from 
average of six transmit-receive cycles and 

m an average of 18* of rotation phase.

(IS), we used least squares to estimate the loca­
tion in each image of Golevka’s center o f mass 
(C O M ) (table SI). The radar time delays from 
1991 were originally referenced to the peak 
power of the delay-Doppler distribution (17). 
Delay measurements from the 1995 observations 
(18) were referenced to the C O M  under the 
assumption that the C O M  was 390 m beyond the 
echo’s leading edge in each image, whereas the 
shape model indicates that the range from the 
leading edge to the C O M  Tor those observations 
varied from about 225 m to about 320 m. Using 
images synthesized from the shape model, we 
reanalyzed the 1991 and 1995 images to estimate 
revised time delays, which are uniformly refer­
enced to the C O M  (table SI).

We used a nonlinear numerical Yarkovsky 
model incorporating Golevka’s radar-derived 
shape and spin state (IS) to compute the Yark­
ovsky effect (19). The Yarkovsky acceleration 
depends on a number o f physical parameters, 
including the spin slate, which is known for 
Golevka, the surface conductivity K and the 
surface density p,, which affect the strength of 
the recoil force, and the bulk density pb, which 
only affects the acceleration through the aster­
oid’s mass (20). Although our prediction is un­
certain. we can place constraints on these param­
eters if the Yarkovsky effect can be measured. 
However, the principal measurable feature o f the

Yarkovsky effect is a drift in the asteroid’s mean 
anomaly that is quadratic with time and is caused 
by a linear semimajor axis drift da/dt (fig. SI). 
Because the perturbation is manifested only 
through the anomaly variation, ihe signatures of 
the individual parameters are not separable. The 
dependence on the bulk density is trivial (daldt *  
pb_1), whereas the parameters K and p, affect 
daldi in a complicated way but only through 
their product Kp, (V).

Asteroid surface thermal conductivities range 
from as low as 10“* to I0~3 W  m "1 K~‘ for 
highly particulate surfaces (from both laboratory 
experiments (21) and observations (22.23)] to as 
high as 0.1 to I W  m '1 K _l for bare-rock sur­
faces of ordinary chondrite meteorites (24). The 
latter value drops by an order of magnitude when 
surface porosity increases from 0 to 10% (24). 
The steep surface gravitational slopes o f Go­
levka (18) suggest a surface comprising both 
porous rock and thin regolith, which leads us to 
conclude that, for Golevka, K should be in the 
range 10"’ to 10"' W  m~' K - '. Golevka is clas­
sified as a Q-dass asteroid (25). Whereas there 
are as of yet no measured Q-class densities, there 
are several known for the mineralogically related 
S-class asteroids (19). Consistent with these re­
sults. we have assumed an a priori bulk density 
of pb =  2.5 g cm*3 and a surface density of p, =  
1.7 g cm-3, because o f presumed porosi-

n g . 2 .  Predicted Yarkovsky-induced offset with 90%  confidence ellipses in the space of radar delay 
(range) and Doppler (range rate) measurements on 26 May 2003 09:38 UTC. (The depiction is 
similar for the other radar observation dates in May 2003.) The predictions are based on 
astrometric data from April 1991 through October 1999, which marked the end of the previous 
apparition, and do not include observations made during the April to May 2003 observing 
apparition. The Yarkovsky prediction assumes the nominal values Pb =  2.5 g  cm-3 and K  =  0.01 W  
γτΓ1 K"1. Ellipses labeled OBS, SBM, PLM, and YRK represent the dispersions caused by uncertainties 
in astrometric measurements, small body masses, planetary masses, and Yarkovsky modeling 
respectively. The SUM1 ellipse, which is the combination of the OBS. SBM, and PLM uncertainties, 
depicts the 90%  confidence region for a non-Yarkovsky prediction. Similarly, the SUM2 ellipse, 
which indudes the added uncertainty of the Yarkovsky modeling (79), represents the 90%  
confidence region for the prediction with Yarkovsky accelerations. The actual Arecibo radar delay 
and derived Doppler (79) measurement at this epoch is shown by a diamond with error bar.
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I ly and particulate matter on the asteroid surface.
The prediction o f  the orbit o f  Golevka is 

uncertain because o f noise in the measured 
astrometric positions and uncertainties in the 
forces acting on the asteroid. The most sig­
nificant force-modeling errors arise from so- 
hr radiation pressure, gravitational perturba­
tions from the planets and other asteroids, 
md the Yarkovsky effect {12). For Golevka, 
«« considered the prediction errors at the 
lime o f the 26 M ay 2003 radar observation,

12 years after discovery (Fig. 2). W e found 
that direct and reflected radiation pressure 
causes a minor shift o f  only 2 to 3 με  in the 
predicted delay (19). Similarly, planetary 
masses are well determined and associated 
uncertainties can affect the prediction for G o­
levka by just 2 to 3 μ$ (19). The masses o f 
perturbing asteroids, however, are very poor­
ly constrained, and this represents a larger 
source o f  prediction uncertainty, — 13 μ5 at 
I i t  for Golevka (19). The modeled Yar­

kovsky acceleration uncertainty is dominated 
by uncertainty in the bulk density and surface 
thermal conductivity o f  Golevka. Sensitivity 
tests indicated ler dispersions on the order of 
16 μβ because o f  realistic uncertainties on 
these parameters (19).

The separation between the Yarkovsky 
and non-Yarkovsky orbital predictions (Fig. 
2) is about 15 km o f range or 100 μ$ in radar 
delay, a 6<r discrepancy with respect to the 
non-Yarkovsky prediction. Thus, none o f  the 
estimated uncertainties are large enough to 
obscure the Yarkovsky effect. The actual 
Arecibo astrometry falls al 7.5σ from the 
non-Yarkovsky prediction and 1.3σ from the 
Yarkovsky prediction (Fig. 2). The formal 
probabilities o f  a measurement falling at or 
beyond these significance levels are — 10"12 
and 0.43, respectively.

An alternative approach to testing for Yark­
ovsky acceleration is to use all of the available 
optical and radar observations and consider how 
well they fit a particular force model. For Go­
levka. such fits are unacceptably poor when 
Yarkovsky accelerations are not used, whereas 
excellent fits are obtained with Yaikovsky accel­
erations (Fig. 3). In the latter case, one can fix the 
Yarkovsky acceleration by fixing p,, and AT, or 
one can estimate one or (he other of the two 
parameters. Varying either of these parameters 
only affects the mean anomaly of the orbit, so 
they are fully correlated and cannot be simulta­
neously estimated. Even so, we can form a con­
straint in (p,,, Af)-space by estimating p,, for a 
variety of assumed values of K (Fig. 4), or vice 
versa. For bulk densities in the expected range 
(2.5 ±  0.5 g  cm"3) we find Κ >  Ι(Τ3 W  n r ' K~ ' 
(Fig. 4). Alternatively, if we assume that K falls 
in the interval from ΙΟ"25 to ΙΟ "1-' W  n r 1 K ’ 1, 
then we infer a bulk density o f 2.1 to 3.1 gem-3. 
Fixing K = I0~2 W  m '1 K~ ' yields p,, =  2.7 ±  
0.2 g  cm-3, which we take to be the best fitting 
value and which implies a mass of 2.1 X  10 " kg 
(2(1). Based on the mean bulk density of ordinary 
chondrite meteorites. 3.34 g  cm-3 (26). the 
macroporosity p of Golevka is 19% with a range 
o f 7 to 37%, placing it within the “fractured” 
group of asteroids (27). These values o f pb and p 
are comparable to values estimated for much 
larger S-class asteroids (27).

A s  radar tracking o f  N E A s  continues, Go­
levka is likely to be only the first of many 
objects with detectable Yarkovsky accelera­
tions (14). This suggests that the effect will 
eventually become a crucial component of pre­
cision orbit determination for small asteroids, in 
much the same way that nongravitational accel­
erations on comets are routinely computed.

The analyses described here can be used 
to estimate the physical properties of any 
small N E A  for which a sufficient set o f  radar 
astrometry can be acquired. I f  additional ob­
servations that would allow decorrelation of 
pb and K were available (such as infrared or 
radar backscatter observations) this technique

\  3. Radar delay residuals for all Golevka range measurements (table SI). The residuals are the 
iferences between the measured position and the computed postfit prediction. They are expected 
D be generally smaller than the measurement standard errors, which are indicated by error bars, 
tcsiduals that are systematically inconsistent with the measurement errors are indicative of 
»modeling, in this case because of the absence of Yarkovsky accelerations in the asteroid force 
nodeL In addition to the depicted delay measurements, the fits included 748 right ascension/ 
ledhation measurements from 15 April 1991 to 22 May 2003. Residuals from fits without the 
fjrkovsky effect are markedly worse than those from fits with the Yarkovsky effect For solutions 
nth and without the Yarkovsky acceleration, the root mean square values of the 20 delay residuals, 
ermaliied by the assigned measurement uncertainties, are 0.42 and 1.82, respectively.

% 4. Estimated bulk 
kreity pb of Golevka as 
fmction of the as- 

nned thermal conduc- 
My K. Dashed curves 
«fate the extent of 
*  formal error esti- 
utt The p,, and K oon- 
mints assume a sur-
0  density of p, =
1 g στΓ* varying p,
*· a reasonable range 
uses a shift in the ab- 
isa as depicted at the 
sttom of the plot The 
mimum in the curve is 
xboned fortuitously, 
lowing us to place 
i independent upper 
ud  <  3l1 g  a ir1, 
ins from the lower
It of the plot are inconsistent with probable values for both density and thermal conductivity; however, 
Italy independent lower limits cannot be determined. The descending branch of the cun« for K >  10"' W  
r’ K"' (29) allows reasonable densities, but with unrealistically high conductivities. The macroporosity 
dnate is based on the mean bulk density of type I  ordinary chondrite meteorites, wttichis 334g cnr3 (26).
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R e p o r t s

Water Isotope Ratios D/H, 180 /160, 
170 /160  in and out of Clouds Map 

Dehydration Pathways
Christopher R. Webster1* and Andrew J. Heymsfield2

Water Isotope ratios have been measured by laser absorption spectroscopy in and 
out of cirrus clouds formed in situ and convectively generated in anvils over 
subtropical regions. Water vapor in the tropical and subtropical upper troposphere 
shows a wide range of isotopic depletion not observed previously. The range 
suggests that dehydration of upper tropospheric air occurs both by convective 
dehydration and by gradual dehydration mechanisms. Twenty-five percent of 
upper tropospheric water sampled is in ice particles whose isotopic signatures are 
used to Identify those grown in situ from those lofted from below.

would be strengthened. Still, apart from the 
roughly one-sixth o f the N E A  population 
thought to be binary systems (28), measuring 
the strength o f the Yarkovsky acceleration 
offen the only means o f  estimating the mass­
es of sub-kilometer N E A s  from Earth-based 
observations.
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Tropospheric water vapor is the most impor­
tant greenhouse gas and a key component o f  
the climate system (/). In the upper tropo­
sphere (U T ) and lower stratosphere (LS), wa­
ter vapor, liquid clouds, and ice particles 
substantially affect the radiation balance, at­
mospheric circulation, and chemistry (2). C ir­
rus clouds in particular afTect U T  water ice 
and vapor content, which global climate 
models indicate have large effects on Earth’s 
radiative balance (3-5), especially in the dry 
subtropical U T  (6).

Understanding the sources and sinks o f 
water in the U T  and L S  and the mechanism o f 
stratospheric dehydration is one o f the impor­
tant remaining challenges in Earth science, 
because water vapor feedback mechanisms 
can increase ozone depletion (7) and lead to 
stratospheric cooling (8). A  doubling in 
stratospheric humidity over the last half cen­
tury has been reported (9). despite decreasing 
tropical tropopause temperatures (10).

The extent to which the humidity o f  air 
transported from the troposphere into the 
stratosphere is controlled by tropopause min­
imum temperatures, cloud microphysics and 
convection, and mixing o f  air between high 
and low latitudes is not fully understood. The 
water vapor content o f  air entering the L S  [3 
to 4 .1 pans per million volume (ppmv) (//)] 
is lower than the ice saturation m ixing ratio 
(--4.5 ppmv) that would be determined by 
freeze-drying at the global mean tropopause 
temperature. Although there is consensus that 
dehydration occurs principally in the tropical 
tropopause layer (TTL) [covering the altitude 
range from — 13 to 19 km (12, 13)], two 
competing mechanisms have been proposed: 
“convective dehydration" and “gradual dehy­
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Pasadena. CA 91109. USA. 'National Center for At­
mospheric Research (NCAR), Boulder, CO 80301, 
USA.
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dration" (J3). Convective dehydration re­
sults from rising air masses overshooting 
their level o f  neutral buoyancy (L N B )  to 
become severely dehydrated ( s  1 ppmv by 
condensation and fallout) before m ixing 
(14-18) with moister air. In gradual dehy­
dration (13, 19-21), air detrains from con­
vection near its L N B  at the bottom o f  the 
T T L  and becomes dehydrated during slow 
ascent through regions that have tempera­
tures below the tropopause global average 
temperature. Th is “cold trap" region need 
not be the local tropopause for a sampled 
air parcel, because time scales for horizon­
tal versus vertical transport allow air par­
cels to “v is it " far away cold pools such as 
that o f  the tropical Western Pacific (13).

Water vapor has a long lifetime (22), has 
an observed seasonal cycle (19, 23), and is a 
good tracer o f  atmospheric transjjort. Its sta­
ble isotopes, especially H D O  and H 2'* 0  
compared with H2I60 ,  suffer large fraction­
ations in an air parcel [expressed as delta-0 
(BD) and delta-'®0 (δ '® 0) (24), respectively] 
as a result o f  condensation and sedimentation 
(25). Since the first tropospheric (26) and 
stratospheric (27) H D O  measurements, sub­
sequent studies (28-33) have recognized that 
water isotope fractionation is, in principle, a 
sensitive tracer for diagnosing transport and 
dehydration mechanisms.

Gradual dehydration is expected to follow 
Rayleigh distillation (34) in which all con­
densate is removed during adiabatic cooling. 
In this case, the vertical profile o f 6D  for 
atmospheric water vapor is expected lo begin 
at — - 8 6  per mil (%») above the ocean [stan­
dard mean ocean water (S M O W ) is 09ío (J 5 )]  
and reduce monotonically to — 950%o at the 
coldest tropopause. Few in situ measure­
ments exist, particularly in tropical regions. 
Before the work presented here, such low 
values were usually not observed [except 
- 8 3 7  i  10(Méo (36) in the polar vortex, and 
- 8 1 0  *  21396« in the U T  over Texas (37)]. 
At mid- and low-latiludes, U T  values down 
to -6 7 0 % o  have been reported (38).
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Abstract We predict that the YO R P  thermal-emission effect can be directly detected through a measurable increase in the 
rotation period of the several-hundred-meter near-Earth asteroid 25143 Itokawa. The fractional change of Itokawa’s rotation 
rale in between 2001 and 2004 should be (1-2) x  10~*, significantly larger than its currently estimated uncertainty » 5 x  10~]. 
The corresponding change of sidereal rotation phase, normalized to unity in a cycle, is »(0.09-0.25) in January 2004, producing 
>(1-3) h delay o f lightcurve maximum.

K ty  words, solar system: minor planets, asteroids -  radiations mechanisms: thermal

1. Introduction

Torques produced by the reflection and thermal re-emission 
of sunlight from an asteroid’s surface can alter its spin state. 
This Yarkovsky-O’Keefe-Radzievskii-Paddack or Y O R P  effect 
(Rubincam 2000; Vokrouhlický &  Čapek 2002; Vakrouhlický 
et al. 2003) is related to the Yarkovsky effect, by which the 
anisotropic re-radiation o f  absorbed sunlight causes object’s 

orbital semimajor axis to drift at a rate that depends on the ob­
ject's physical properties, especially its mass, its spin state and 
its surface's thermal characteristics (Bottke et al. 2002). Y O R P  
torques depend on these factors and especially on the shape; 

energy re-radiated from an irregularly shaped body allows the 
YORP effect to change the spin period and the obliquity, while 

there would be no net Y O R P  torques on a homogeneous sphere 

or ellipsoid.

Whereas the obliquity effect is unlikely to be measureable 

with ground-based astronomical techniques, rotation rate vari- 
itions could in principle accumulate rapidly enough to be de­
tectable over time scales as short as several years. Here we 
irgue that precise measurements o f  the rotation period o f  the 

small near-Earth asteroid 25143 Itokawa (1998 SF36 ) may 
field, for the first time, a direct detection o f  the Y O R P  effect.

2. YORP effect

Solar energy absorbed by an asteroid and re-radiated at thermal 
wavelengths causes an infinitesimal pressure on each surface 
element. I f  conditions for a nonuniform distribution o f  surface 

temperature are satisfied, the resulting net force F  and torque T 
from the thermal re-radiation are nonzero. Th is torque alters 

the asteroid’s angular velocity ω  at a rate (see Rubincam 2000; 

Vokrouhlický &  Čapek 2002)

where s is the unit vector along the spin axis and C  is the largest 
proper value o f  the moment o f  inertia. Th is simplified model 
assumes a body rotating along its shortest axis (a condition 
well satisfied for Itokawa; Kaasalainen et al. 2003; Ostro et al. 
2003). A s  a result, the rotation rate changes as

Here /  is the orbit’s true anomaly, ωο is a reference value o f 

the rotation rate at fa, e  is the orbit’s eccentricity, n its mean 

orbital motion and η =  V l  -  A  Variation δω  o f  the rotation 

rate produces a variation <5Φ o f  the sidereal rotation phase Φ 
defined as
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where Φο is a linearly increasing nominal value of the phase 
corresponding to the constant rotation rate ωο (note in this pa­
per the rotation phase is always normalized to unity in a rela­
tion cycle). With Eq. (3) we thus have

(5)

Note that any (linear) secular change in the rotation rate trans­
lates into a quadratic change in the rotation phase, hence prop­
agating faster than observation uncertainty (see also Fig. 3).

3. Results for 25143 Itokawa

Itokawa’s orbit, not far from the 3/2 exterior resonance with the 
Earth, is favorable for detection of YORP modification of the 
asteroid's spin period. During Itokawa's 2004 close approach, 
its photometric observability mimics that during its 2001 ap­
parition even though the approach occurs near the descending 
node. Itokawa will be observable with small and medium size 
telescopes during two periods: January through March 2004 
and June through September 2004; Fig. 1 shows Itokawa's path 
on the sky during the apparition. It starts January 1 in the up­
per right comer, turns back around March 15, swoops very fast 
through the southern latitudes in June/July during the closest 
approach, and approaches the plane of the ecliptic again in 
late September. Itokawa’s elongation is smaller than 60° be­
tween May 20 and June 25 (about when its solar phase an­
gle exceeds I ΙΟ"). After this, Itokawa is a bright target from 
late June (when it reaches very high phase angles) until early 
August. The visual magnitudes in Fig. 1 are estimated from 
Itokawa’s solar phase curve in Kaasalainen et al. (2003); those 
in May-June at high phases are wide extrapolations and thus 
uncertain. A similar situation then occurs also in 2007, af­
ter it is visited by the Japanese spacecraft Hayabusa during 
June-November 2005 (Fujiwara et al. 1999; Farquhar et al. 
2003). Below we show that this sequence of observation op­
portunities, their expected precision of rotation period determi­
nation, and the estimated strength of the YORP effect imply 
detectability of the effect

We have carried out a numerical simulation using the model 
by Vokrouhlický & Čapek (2002) generalized to include effects 
of finite surface thermal inertia. The assumed surface parame­
ters are as follows: thermal conductivity K = 0.05 W/ιη/Κ, heat 
capacity C = 800 J/kg/K and surface density pm,t = 2 g/cm1, 
consistent with Itokawa's value of thermal inertia derived from 
infrared observations (Ishiguro et al. 2003) and with radar ob­
servations reported by Ostro et al. (2003). The assumed ther­
mal conductivity and surface density correspond to appropri­
ate for L chondrites with about (10-20)% surface porosity 
(Yomogida & Matsui 1983) and the assumed heat capacity, 
which is very dependent on temperature, corresponds to the 
mean temperature along the orbit. However, we note that, un­
like for the Yarkovsky effect, results of this paper do not de­
pend critically of the value of the surface thermal inertia so 
that uncertainty in this parameter contributes very little to the 
error budget of our YORP effect prediction. We assume the 
value for Itokawa’s geometric albedo of =(0.23-0.35) from 
infrared observations reported by Sekiguchi et al. (2003) and

Fig. I. Itokawa's motion in the sky during most of 2004 (ecliptic lon­
gitude and latitude in degrees on axes); legend gives visual magni­
tude (V) and phase angle (ir) on selected dates.

Ishiguro et al. (2003). We include the cffect of both the torque 
due to the thermally radiated energy (the “proper” YORP ef­
fect) as well as the torque due to radiation reflected in optical. 
For that component we assume diffuse reflection on the surface 
and mean geometric albedo of 0.3. The bulk density is taken 
to be 2.5 g/cm3 consistent with Itokawa’s spectral type S; see 
e.g. Yeomans et al. (2000) and Ostro et al. (2003). We use the 
radar-derived shape model from Ostro et al. (2003), which as­
sumes the pole and rotation period of Kaasalainen et al. (2003). 
(Itokawa’s high obliquity (=172°) contributes to the strength of 
the YORP effect.) As a check, we also used the shape model 
derived by Kaasalainen et al. (2003) from analysis of 2001 
optical photometry, rescaling its dimensions to make it 18% 
larger in order to give it the same volume and mass as the radar 
shape model. The YORP torque from the photometrically de­
rived shape model is about 15% larger than that from the radar 
shape model.

Figure 2 shows time evolution of the relative change (P -  
Po)/Po of Itokawa’s rotation period P due to the YORP effect 
relative to the value Po = 12.132 h determined during its 2001 
apparition. We estimate an uncertainty of 30% in the nominal 
model prediction, with the following principal components: (i) 
uncertainty in the shape model (we created 10 “clone” Itokawa 
models by slight shape variations and verified that the resulting 
YORP torque does not change by more than 15%); (ii) uncer­
tainty in linear size of Itokawa of »10% (Ostro et al. 2003; 
note that such linear rescaling implies a quadratic rescaling 
of the YORP torques); (iii) uncertainty in Itokawa’s bulk den­
sity of = 10%; (iv) uncertainty in the pole position; and (v) un­
certainty in the surface optical and thermal parameters. Even 
in the worst case, the difference between the YORP modified 
rotation period in 2004 and that determined in 2001 amounts 
to about = 2  standard deviations (expressed in the 2001 uncer­
tainty). Assuming Gaussian statistics, there is about 0.04 prob­
ability that such fluctuation would happen in the constant rota­
tion rate model; the probability drops to 0.003 for the result of 
the nominal YORP model that differs by as much as =3 stan­
dard deviations from the constant rotation model. Therefore we
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Date

Fig. 2. Relative change of the rotation period P, referred to a nomi- 
ul value Po =  12.132 h in MJD  =  52 000 (Kaasalainen et al. 2003), 
is a function of lime due to the YORP effect. The thick solid curve 
:otresponds to a nominal model described in the text, and the thin 
»lid curves are results for YORP torques varied by ±30%  from the 
ximinal model. Solid curves show the complete expected variation 
>f Itokawa's rotation period, and dashed lines show the mean linear 
ite of rotational slowing. The dotted lines indicate the formal uncer- 
linty of the rotation period determination from the 2001 campaign. 
Πκ shaded intervals correspond to future optical observing opportu- 
lilies, notably in 2004 from Earth and in 2005 from Hayabusa. The ar- 
w  shows the asteroid's close encounter with the Earth, during which 
he rotation period may fractionally change by 3.1 x  10~] at maximum 
lue to the effect of Earth's gravitational torque (see the text).

irgue that the 2004 observations should be able to detect YORP 
Otational slowing of Itokawa.

The Hayabusa observations, if comparable in accuracy to 
hose of the NEAR/Shoemaker spacecraft (Yeomans et al. 
1000; Konopliv et al. 2003), should be able to contribute im­
portantly to the YORP effect measurement. First, the shape 
model and thermal properties of the asteroid will be determined 
more accurately than by the Earth-based observations (though 
significant refinements of Itokawa’s shape model will be also 
obtained from radar imaging in June 2004 and optical observa­
tions throughout 2004). Additionally, Hayabusa measurements 
should in principle be accurate enough to themselves reveal the 
YORP-induced deceleration of the asteroid rotation. A link to 
the previous (and possible future) observations should then give 
i superb probe of the thermal effects on this body (indepen­
dently, Ostro et al. 2003, also demonstrate that Hayabusa radio 
ranging should be also able to detect the Yarkovsky effect af­
fecting Itokawa's orbit around the Sun).

Figure 3 shows the accumulated change <5<t> of Itokawa’s 
sidereal rotation phase due to the YORP effect. As expected, 
Wi propagates quadratically with time, much faster than the 
growth in its uncertainty, and by January 2004 the YORP- 
induced δΦ dominates. The expccted value of at least »0.09 
translates into a delay of lightcurve maximum by =1 h, which 
should be easily detectable.

An asteroid’s spin state can also be modified by grav­
itational torques during close approaches (CA) to planets. 
Scheeres et al. (2000) investigated the effcct of a planetary

Dot·

Fig. 3. Change of the rotation phase <5Φ, with an arbitrary zero value at 
MJD =  52000 (Kaasalainen et al. 2003), as a function of time due to 
the YORP effect; notation as in Fig. 2. The formal uncertainty of the 
previous determination of asteroid's rotation rate causes a linear in­
crease of the uncertainty in phase (dotted line), while the YORP effect 
signature in 6Φ is quadratic and hence easily observable in the future.

where A <; B £C  are proper values of the inertia tensor, C the 
gravitational constant, M planetary mass, q is minimum dis­
tance to the planet during the approach and v. is relative veloc­
ity at large distance. For Itokawa we estimate (B -  A)/C = 0.6. 
With i/«· * 7 km s_l and <7 = 0.013 AU appropriate for the 2004 
encounter (Ostro et al. 2003 and Fig. 2), we thus obtain a 
maximum impulsive change of Itokawa’s rotation rate of about 
(<5w/<j)ca - 3.1 χ 10~s. The exact value, and its sign, depends 
on rotation phase at pericenter of the Earth flyby. Though not 
negligible, the effect of gravitational torques is small compared 
to YORP.

We noted above that measurement of the YORP-induced 
slowing of Itokawa's rotation is uncertain due several unknown 
parameters, principally the asteroid’s precise shape, size and 
mass, but once detected these parameters may be in turn de­
termined. Since the scheduled radar and optical observations 
during 2004 should reduce uncertainty in shape and size of 
Itokawa, YORP detection would result mainly in constraining 
its mass (as it is the case of the Yarkovsky effect detection; 
Chesley et al. 2003).
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flyby along a hyperbolic orbit on rotation of a quasi-rigid body. 
With their results we estimate maximum relative change of 
Itokawa’s rotation rate during a flyby as ,
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Abstract

The Yarkovsky-O’Keefc-Radzievskii-Paddack (Y O R P ) effect has been recently suggested to significantly change, on a long-term, rotation 

state o f small asteroids and meteoroids. Though Y O R P  is closely related to the Yarkovsky (orbital) effect, it differs from the latter in two 
aspects: (i) Y O R P  needs bodies o f  irregular shape to be effective, and (ii) Y O R P  acts on bodies o f  zero surface thermal conductivity. To 
simplify computations, Y O R P  has been so far investigated in the zero surface thermal conductivity limit only. Here we analyze the role 
of the surface conductivity and we find it substantially changes previous conclusions. M ost importantly, unlike in the zero-conductivity 
limit, (i) Y O R P  preferentially tilts obliquity toward two asymptotic states perpendicular to the orbital plane, and (ii) Y O R P  asymptotically 
decelerates and accelerates rotation rate in about equal number o f  cases. Our work also indicates that direct detection o f  the Y O R P  effect for 

a small asteroid may significantly constrain its mass.

0  2004 Elsevier Inc. A ll rights reserved.

Keywords: Asteroids, rotation; Meteoroids; YORP cfTcct

I. Introduction

The Yarkovsky-O’ Keefe-Radzievskii-Paddack (YORP) 
effect is a radiation torque due to thermally re-emitted sun­
light by cosmic bodies (Rubincam, 2000; Vokrouhlický 
and Čapek, 2002). On a long-term, YORP can signifi­
cantly change rotation rate and obliquity of small bodies 
in the Solar System, driving them toward some asymptotic 
values. Together, and sometimes in concert, with the re­
lated Yarkovsky effect, YORP may represent a key element 
to explain several puzzling facts about rotational, orbital 
and physical parameters of small asteroids and meteoroids 
(Rubincam, 2000; Rubincam et al., 2002; Vokrouhlický and 
Čapek, 2002; Bottke et al., 2003; Morbidelli and Vokrouh­
lický, 2003; Vokrouhlický et al., 2003). YORP can be also 
directly detected through a measurable change in phase of 
the sidereal rotation of small asteroids (Vokrouhlický et al., 
2004a).

* Corresponding author. Fax: +420-2-2191-2567.
E-mail address: vokrouhl@mbox.ccsnet.cz (D. Vokrouhlický).

0019-1035/S -  sec front matter O  2004 Elsevier Inc. All rights reserved, 
doi: 10.1016/j.icams 2004.07.003

These applications require an accurate determination of 
the YORP effect strength for a given object or a class of ob­
jects, a task which is often uneasy because of the intrinsic 
YORP dependence on its/their detailed shape. The only sim­
plification, as regards to the Yarkovsky effect, is that YORP 
does not need finite surface thermal conductivity to operate 
and can be estimated in the (unrealistic) limit of zero con­
ductivity. To our knowledge, previous literature (Rubincam, 
2000; Vokrouhlický and Čapek, 2002) adopted this simpli­
fying assumption, mainly to allow faster computation, and at 
best arbitrary fudge factors have been introduced to account 
for finite surface conductivity.

In this paper, a follow-up of Vokrouhlický and Čapek 
(2002), we compute the YORP effect for various individ­
ual bodies, and also a large, statistical sample of synthetic 
bodies, and we account for a finite value of the surface ther­
mal conductivity using a full-fledged thermal model. We find 
the conclusions o f the simplified, zero-conductivity model 
change both quantitatively and qualitatively. An important 
specific result concerns ability of YORP to accelerate or de­
celerate asteroid’s rotation rate. By proving that the relevant 
YORP component depends weakly on surface conductivity

http://www.sciencedirect.com
http://www.clscvicr.com/locatc/icanis
mailto:vokrouhl@mbox.ccsnet.cz
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value, we show here that the YORP detection constrains as­
teroid’s mass more tightly than analogous detection of the 
Yarkovsky effect (Chesley et al., 2003).

In practice, we describe irregular shapes using the polyhe­
dral model (see, e.g., Simonelli et al., 1993; Dobrovolskis, 
1996; Vokrouhlický and Čapek, 2002), with surface com­
posed of a finite number of triangular facets; fine-resolution 
models, e.g., Asteroids 1998 KY26, Golevka, Ida or Eros 
in Section 3, have a couple thousands to tens o f thousands 
dements, while Gaussian spheres in Section 4 are trans­
formed into 1004-facet polyhedrons.1 The integration (2) is 
performed as a sum over the triangular surface elements.

Assuming the body rotates around the shortest axis of the 
inertia tensor (with the moment of inertia C), the main sim­
plification adopted in this paper, we have L =  Cwe for the 
angular momentum of the body; ω is the angular velocity of 
rotation and e is the unit vector o f the spin axis. The rate 
of change of L in the inertial frame is equal to the applied 
torque T: dL/dt =  T. For C =  const, this equation splits 
into

It is useful to parametrize the spin vector e with the obliq­
uity e, the angle between e and normal vector N to the orbital 
plane, and the precession in longitude ψ, such that e decom­
position into orbital plane unit vectors (χ-coordinate along 
the nodal line) reads: (sine sin(i/r +  Ω), sinecos(ý +  Ω), 
tose), where Ω is the longitude of ascending node (see

1 Our cxpcricncc shows this number of surface facets makes the YORP 
ptngth computation accurate to several up to ten percents in the wont 
Uses; this does not corrupt out statistical conclusions.

Fig. I. Vcctors and angular parameters introduced in the text; the XYZ  ref­
erence frame is that of ecliptic of a fixed date, to which the moving orbital 
plane of date is inclined by / (and the nodal line offset by Ω  from the 
X  direction). Spin axis of the asteroid is along the unitary vector c, and 
the asteroid equatorial plane of date defines auxiliary vectors βχι and βχ2 · 
Obliquity e is the angle between normal vector N to the orbital plane and 
the spin vector e. The angular distance of e’s projection onto the orbital 
plane and nodal line is equal jt/2 — (φ +  Ω).

Fig. 1 for various vectorial and angular variables defined). 
Then (4) yields

In reality T includes, aside to the YORP torque (2), addi­
tional contributions such as the gravitational torque due to 
the primary and/or inertial terms due to the motion of the or­
bital frame to which the angles e and ψ are referred (e.g., 
Vokrouhlický and Čapek, 2002). The gravitational and in­
ertial terms generally prevail in the precession component 
Τψ, so that the corresponding YORP contribution is negligi­
ble and will not be discussed below. On the other hand, their 
long-term value in T, and T( is nil, while YORP produces 
non-zero secular effects in the rotation speed and obliquity. 
We thus focus here on these two components of the ther­
mal torque. Since the major effects of the YORP torque 
act on long time scales, we always assume Ts and T( av­
eraged over rotation and revolution cycles. We assume no 
commensurability between rotation and orbital motion. As 
a simplification, we also assume circular orbit of the body 
around the primary which implies that T, and T, depend on 
the obliquity only. Our method can be easily used for eccen­
tric orbits too, but for discussion in this paper it would mean 
further extension of the parameter space. Focusing on the

2. Theory

We start with a brief comment on the YORP theory. 
A common basis of the Yarkovsky and the YORP effects 
is a recoil force dt, applied to an oriented surface element 
dS, due to thermal re-emission of the absorbed sunlight. 
With the simplifying assumption o f Lambert (isotropic) 
surface emission we have (Spitale and Greenberg, 2001; 
Bottke et al., 2003)

where ε is the thermal emissivity, a the Stefan-Boltzmann 
constant, T the surface temperature and c the light velocity. 
Integrating over the whole surface, one obtains the resulting 
thermal torque

The YORP effect with finite thermal conductivity
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role of the surface conductivity, we thus stay with circular 
orbits.

The major unknown quantity in (1) is the surface tem­
perature T that depends on external sources of energy (such 
as the incident solar radiation and body's reflectivity in the 
optical band expressed by the albedo coefficient A), and 
the way how the absorbed energy is conducted into deeper 
layers in the body. The latter is the heat diffusion problem 
(HOP) with appropriate boundary conditions and depends on 
various thermal constants, primarily thermal conductivity. 
To avoid necessity o f solving HDP, one can, in the crud­
est approximation, assume a limit of zero thermal conduc­
tivity in which thermal radiation is emitted with no time 
lag; then εσΤΑ (1 — Α)Φ(η ■ no), where Φ is the solar 
radiation flux impinging on the surface element with exte­
rior normal vector n along direction no (Rubincam, 2000; 
Vokrouhlický and Čapek, 2002). Rubincam (2000) proposed 
to account for the effects o f the finite thermal conductivity by 
using a scaling (“fudge”) factor 2/3, but we shall see below 
that this is far too simplified approach.

The main purpose of this paper is to remove the approx­
imation of zero-themial conductivity and compute YORP 
Γογ its realistic values. To that end we need to solve HDP, 
a sufficiently difficult task for a body of irregular shape. The 
problem may be however reasonably simplified, and still 
stay fully appropriate for most Solar System applications, 
when penetration depth of the thermal phenomena is much 
smaller than the geometric size o f the body.2 In this case, 
the fully three-dimensional HDP solution is not necessary 
and one-dimensional model accounting only for depth under 
a surface element is sufficient. We adopt this approach and 
solve HDP for each of the surface elements independently 
calculating temperature T depending on depth z and time I.

I The heat diffusion equation thus reads

where p is the density, C is the specific heat capacity and K 
is the thermal conductivity.3 Appropriate boundary condi­
tions, notably (i) energy input on the surface, (ii) constancy 
of the temperature at large depth, and (iii) periodicity of the 
solution over the rotation and revolution cycles are taken into 
account. The first two read

2 Note the penetration depth of the seasonal thermal wave in solid rocks 
is i  few meters Tor typical asteroida! distances from the Sun; the diumal 
ihctmal wave penetrates to a depth smaller by at least an order of magnitude. 
Our results arc thus safely applicable for asteroids larger than tens of meters 
«ross.

3 These physical constants should be understood as cflcctivc values in 
de surface slab with thickness of several penetration depths of the seasonal 
■'— al wave.

where we explicitly made clear the boundary position in 
depth z. Here E =  (1 -  Α)Φ(η ■ no) is the radiative energy 
flux. The “no-boundary” condition in time is best expressed 
using the orbital mean anomaly I instead of4 I, so that 
T(C, z) is constructed 2jt-periodic in I. Standard discretiza­
tion method is used to represent the heat diffusion equation 
(9)(e.g., Press etal., 1994) and Spencer etal. (1989) scheme 
is used for the non-linear surface boundary condition (10). 
The surface energy input function E(t) is computed from 
the known position o f the Sun with respect to the surface ele­
ment which is a function of the chosen orbit and the rotation 
pole of the asteroid. We also take into account a possibil­
ity of mutual shadowing on the surface. The “isothermal- 
core” condition (11) is applied at typically 10-15 penetration 
depths of the seasonal thermal wave. Practice shows that an 
isothermal initial seed in the whole mesh converges to the 
desired solution fast enough, so that we stop iterations of the 
numerical solution when a fractional change in temperature 
of all surface elements between two successive iterations is 
smaller than 0.001.

With the procedure outlined above, we obtain tempera­
ture T for each o f the surface facets at any time along the 
orbit around the Sun. This value is used in Eq. (1) to com­
pete the corresponding radiative recoil force differential.

3. YORP dependence on surface conductivity: 
individual cases

In this section we illustrate the role of thermal conduc­
tivity for YORP determination in the case of four asteroids 
whose shape in accurately known from either spacecraft re­
connaissance or radar ranging analysis. Though their shapes 
will be accounted for, the orbits are all assumed circular 
and at a =  2.5 AU distance from the Sun (we note that the 
YORP torques scale as oc 1 /a2 for circular orbits). In gen­
eral, elliptic orbits are not considered here in order to demon­
strate YORP dependence on the surface thermal conductivity 
without unnecessarily extending the free-parameter space. 
However, our method is straightforwardly applicable to spe­
cific bodies on elliptic orbits too (e.g., Vokrouhlický et al., 
2004a). In what follows we provide accurate results for 
Golevka and Eros, in order to estimate a possibility of the 
YORP detection for these targets.

A general feature o f the YORP-driven evolution is to tilt 
the axis toward a specific value of the obliquity. In accord 
with Rubincam (2000), Vokrouhlický and Čapek (2002) or 
Bottke et al. (2003), we call this obliquity value asymp­
totic. While reaching this obliquity state, the YORP model 
adopted above predicts a permanent increase or decrease of 
the rotation period (see, however, comments in Section 5).

4 It also appears useful to scalc depth z with the penetration depth h j  of 
the diumal thermal wave, thus introduce 1' — ι/hr', soc Vokrouhlický and 
Farinella (1998).



The YORP effect *ith finite thermal conductivity 529

Shape models of both Golevka and 1998 K.Y26, available 
at http://www.eecs.wsu.edu/~hudson/ as 4092-facet polyhe­
dral figures, were obtained by analysis of radar ranging 
echoes in 1995 and 1998 (Hudson et al., 2000; Ostro et al., 
1999). Both are small near-Earth asteroids on Apollo-type 
orbits; Golevka resides in the 3/1 mean motion resonance 
with Jupiter and close to the 4/1 exterior mean motion reso­
nance with the Earth (that makes it now observable in close 
approaches with the Earth every 4 years during a couple 
decades). Both Golevka and 1998 KY26 were predicted to 
be good candidates for detection of the Yarkovsky effect 
(Vokrouhlický et al., 2000), and in the Golevka’s case that 
detection has been already achieved (Chesley et al., 2003). 
Assuming a plausible bulk density of 2.S g/cm3, Chesley 
et al. (2003) estimate surface thermal conductivity of K 
0.01 W/(m K), also a likely value for the surface character­
ized as a mixture of dusty areas and exposed porous rocks 
(Hudson et al., 2000). Below we investigate dependence of 
the YORP effect strength on Golevka’s surface conductiv­
ity for the simplest orbital configuration (circular orbit), and 
then provide accurate computation of the YORP effect for 
the real Golevka’s orbital and spin parameters and the value 
of the surface conductivity inferred from the Yarkovsky ef­
fect detection.

Figure 2 shows mean rate of change o f the angular ve­
locity (left) and obliquity (right) due to YORP for a number 
of values of the surface conductivity K in the range 10-9 
to 10 W/(mK). Other surface thermal and physical para­
meters were: surface density 1.7 g/cm3, mean bulk density
2.5 g/cm3, specific heat capacity C =  680 J/(kgK) and 
albedo set to zero for simplicity. A striking conclusion from 
Fig. 2 is a near independence of the angular velocity YORP 
torque (7i/C ) on K, while in the same time a strong depen­
dence of the obliquity YORP torque (7i/C ) on K. Zero, or 
vtty low conductivity YORP model would predict three pos­

3.1. Golevka sible asymptotic obliquity states 0°, 90°, and 180° (Type IV 
in Vokrouhlický and Čapek, 2002), while only a single 
asymptotic state—90°—occurs for K ^ 5 x 10-5 W/(m K),

The near independence of the rotation rate effect on K 
is important, see also other results below and discussion in 
Section 5, and warrants a comment. Equation (3) indicates 
that the rotation rate change is determined by the torque T 
projection onto the rotation axis e. As such, it basically de­
pends on the amount o f energy thermally reprocessed at a 
given latitude on the body. Thermal inertia (conductivity) 
affects delay with which the absorbed energy is re-emitted, 
but not the total amount of this energy; rotation cycle av­
eraging, assumed in our procedure, then effaces differences 
between solutions corresponding to different values of sur­
face thermal conductivity and explains our result. Note that 
the obliquity variation—Eq. (5)—depends on projection of 
T onto βχ i and thus breaks the symmetry. We only note 
that as the surface conductivity increases to large values the 
amplitude o f the effect decreases as a response to more Iati- 
tudinally uniform temperature distribution.

Next we determined YORP-induced evolution o f the ro­
tation period and sidereal rotation phase for Golevka using 
formulation by Vokrouhlický et al. (2004a). Thermal para­
meters as above, thermal conductivity K =  0.01 W/(mK) 
in accordance with Chesley et al. (2003), but here we con­
sider the true orbital and spin parameters of the asteroid 
(e.g., Hudson et al., 2000). With that model we estimate the 
mean value o f the fractional change of the rotation period P, 
(d P/dt)/P ~  —2.2 χ 10-7 yr-1 . This translates into a side­
real rotation phase change of ~  70° by 2010 and ~  95° by 
2015, assuming origin in 1995 when a large international 
campaign was organized to determine Golevka’s rotation 
state (Mottola et al., 1997). Unfortunately no photometry 
was recorded during the last decent close approach to the 
Earth in May 2003 and this means that the uncertainty inter­
val of the sidereal phase, as follows from the 1995 data, is

0 30 60 90 120 150 180 0 30 60 90 120 150 180
obliquity (deg) obliquity (deg)

if. 2. YORP-induccd mean rate of changc of the rotation rate ω  and obliquity e as a function of the obliquity for Asteroid 6489 Golevka (a circular orbit at
.5 AU assumed). Eleven values of the surfacc thermal conductivity log K  — —9, —8..... — 1.0.1 are shown in the dccrcasing scalc of grey (the result for
χ lowest value— black— is identical to the zero-conductivity case analyzed by Vokrouhlický and Čapek, 2002). The rotation effect shows small dependence 
D K, while the obliquity effect depends on K  significantly.

http://www.eecs.wsu.edu/~hudson/
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obliquity (deg)

Fig. 3. The same as in Fig. 2 but for Asteroid 1998 KY26.

obliquity (deg)

larger than the YORP signal up until ~  2020. We did not in­
vestigate in detail whether analysis of the radar echoes from 
May 2003 (and those from June 1991) could help to signif­
icantly reduce the phase uncertainty. The next observation 
possibilities occur in October/November 2007,2011, 2015, 
and 2019, but the object fades from ~  20.4 to ~  22.3 mean 
visible magnitude. Given the rather large effect, and reliably 
well known shape of Golevka, we deem to think that a com­
bined analysis of the available data and from those future 
apparitions might have a power to reveal existence of the 
YORP effect on this target. This appears interesting since in 
combination with the Yarkovsky measurement (Chesley et 
al., 2003) the bulk and surface parameters of this asteroid 
might be better constrained.

3.2. 1998 KY26

This is an unusual case of a very small asteroid whose 
fortuitously close encounter with the Earth in June 1998 al­
lowed a detailed radar and photometric observations (Ostro 
et al., 1999). Analysis of the radar data allowed shape recon­
struction, but rotation pole remains uncertain (though prob­
ably far from the ecliptic plane; P. Pravec, private commu­
nication). Little is also known about the physical properties 
(narrow-band photometry color indexes and radar polariza­
tion data slightly preferring C-type classification), but the 
small size and the fast rotation suggest a dust-free surface 
with likely a higher conductivity value.

1998 KY26’s small size gives fewer chances to observe 
the target than it is usual; luckily the orbit has been secured 
by optical astrometry taken in February 2002 (Tholen, 2003) 
and fairly good prospects are to observe in September 2013, 
when the asteroid becomes a ~  23.4 magnitude object, and 
especially in June 2024 during the next decent5 close ap­
proach to the Earth. Vokrouhlický et al. (2000) predicted that 
by that time the Yarkovsky effect should be easily detected

for this asteroid, and Vokrouhlický and Čapek (2002) no­
ticed that the YORP effect should be revealed too (using the 
zero-conductivity model). Here we substantiate the second 
of these predictions by using a thermal model and YORP 
computation that takes into account a finite value of the sur­
face conductivity.

Figure 3 shows mean rate o f change of the angular ve­
locity (left) and obliquity (right) due to YORP for the sur­
face conductivity K values in the same range as above for 
Golevka. We again note near-independence of the rotation 
rate effect on K , and a strong dependence of the obliquity 
effect on AT. In this case, the increasing value of K decreases 
strength o f the obliquity effect without modifying its asymp­
totic values.

If our result is scaled to the pericenter distance of ~  1 AU 
we confirm that YORP should fractionally change sidereal 
rotation period of this asteroid in June 2024 by ~  (1 — 2) x 
10-3, a comfortably large value to be detected.6 However, 
already the 2013 apparition of 1998 KY26 may represent a 
first possibility to directly detect the YORP effect for this 
target The September observations, with a large (~  3-m) 
telescope, might by themselves reveal the effect since the 
affordable synodic rotation period uncertainty in a two- 
week period observation run could be ζ  10-4 (fraction­
ally). By that time, the expected fractional change of the 
sidereal rotation period due to the YORP effect should be 
~  (5 -  10) X 10-4 . Moreover observation during the April 
2013 opposition could yield data at entirely different phase 
than in 1998, helping thus to constrain pole orientation (and 
thus determining transformation between the synodic and 
sidereal rotation periods). We note the 2024 encounter is 
closer to the Earth, but does not yield a possibility of such a 
larger phase coverage as the 2013 apparition.

5 On June I, 2024 the asteroid distance from the Earth becomes
20.03 AU, smaller than any other value till 2099.

4 The same result might be also obtained for a very small target 2004 
FH, for which P. Pravcc and his group measured the synodic rotation period 
of ~  3.02 min with a fractional error of ~  1.6 x I0 -4  in March 2004. This 
asteroid gets in a elose approach in January 2018, and with even a smaller 
size than 1998 KY26, notably D  ~  20 m, we may expect the YORP change 
of the rotation period is safely larger that the uncertainty level in 2004.
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obliquity (deg)

Fig. 4. The same as in Fig.

S.3. Eros

From the multitude of the Eros shape models in the post- 
NEAR era (e.g., Miller et al., 2002; Konopliv et al., 2002), 
we use the 7790 facet representation downloaded from the 
PDS node http://pdssbn.astro.umd.edu. This is a convenient 
compromise between satisfactory accuracy and yet reason­
able computer time expenses to solve HDP for each of the 
surface elements along one revolution about the Sun.

The mean YORP-induced variations of the Eros-shaped 
object on a circular orbit at 2.S AU distance from the Sun 
are shown at Fig. 4. We again conclude near-independence 
of the rotation rate effect on the value of surface conductiv­
ity K, while significant dependence of the obliquity effect on 
that parameter. In particular, for K ~  5 x 10- 4  W/(m K) the 
asymptotic obliquity values become 0 ° and 180°, while for 
lower conductivities was 90° (in Section 4 we find this be­
havior typical for high-conductivity situation). Interestingly, 
this 5 χ 10- 4  W/(mK) threshold value is near the plausi­
ble one that Eros might have had when it was residing in the 
main asteroid belt. This might suggest that the characteris­
tic YORP timespan to modify initial obliquity was perhaps 
long, comparable or longer than the Solar System age. On 
the other hand, the characteristic YORP timespan to modify 
rotation rate is of the order of ~  750 Myr. This information 
is interesting after Vokrouhlický et al. (2004, work in prepa­
ration) have found Eros rotation state unusual and speculate 
about its implication about past orbital (and rotational) evo­
lution of this asteroid.

t To check a possibility of the YORP detection we com- 
; puted the corresponding orbit-averaged torque components 
for the actual Eros’ orbit and its spin state (e.g., Miller et al.,
2002). We used surface conductivity K — 0.005 W/(m K), 
specific heat capacity C =  680 J/(kgK), surface and bulk 
densities of 2 and 2.67 g/cm3, respectively corresponding 
to predominantly powdered regolith (e.g., Morrison, 1976; 
Harris and Davies, 1999; Sullivan et al., 2003). With those

obliquity (deg)

2 but for Asteroid 433 Eros.

parameters we obtained the mean fractional change of Eros’ 
rotation period (dP/dt)/P ~  1.4 x 10- 9  yr-1 .

Eros is the largest near-Earth asteroid so it is not sur­
prising that detection of the YORP effect, despite of very 
accurate NEAR/Shoemaker data, is unlikely. With results 
above, we estimate that the sidereal rotation phase change 
due to YORP at around 1900 was ~  4°, more than an order 
of magnitude smaller than would be necessary.7 Eros is ob­
viously easily observable target, but we estimate that YORP 
would be discernible only after decades. Yet, it might have 
sense to record Eros lightcurve in the future (enough once 
every decade) as a low priority, long-term project for detec­
tion of the YORP effect at this target; amateur astronomers 
might perhaps be interested in this effort.

3.4. Ida

The shape of Ida, 2° x 2° latitude-longitude grid model 
constructed from Galileo images (Thomas et al., 1996), has 
been obtained from the PDS node http://pdssbn.astro.umd. 
edu-and transformed to the appropriately dense polyhedral 
mádel. Figure 5 shows mean rate of change of the angular 
velocity and obliquity due to YORP for different values of 
the surface conductivity for this body. As expected from the 
work of Vokrouhlický et al. (2003), YORP drives obliquity 
toward its extreme values (0 ° or 180°) while decelerating 
its rotation rate. The characteristic YORP timescale, such as 
to double its rotation rate, is ~  2 Gy in a very good agree­
ment with Vokrouhlický et al.’s model. The only surprising 
element is the asymptotic deceleration o f Ida’s rotation rate, 
since its rotation period o f ~  4.63 hr is comparatively fast. 
Formation event o f the small moon Dactyl might have re­
cently perturbed Ida’s rotation, but without more constraints 
we cannot resolve this problem.

7 Wc (hank J. Ďurech for having shown us his careful analysis of early 
Eros photometric data from the beginning of 20th century prior publication.

http://pdssbn.astro.umd.edu
http://pdssbn.astro.umd
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Fig. 5. The same as in Fig. 2 but for Asteroid 243 Ida.

4. YORP dependence on surface conductivity: 
statistical analysis

Above we dealt with individual bodies, for which space­
craft or radar observations allowed detailed shape recon­
struction. There is, however, only a limited number of such 
cases and we need additional sample o f plausible asteroid- 
shape objects that could serve to derive statistical charac­
terization of YORP. To date, the best suited technique in­
troduced by Muinonen (1998), and Muinonen and Lager­
ros (1998), uses Gaussian random spheres to construct a 
large set of shapes in an automated way. Parameters of the 
Gaussian random spheres used in this paper are those of 
Muinonen and Lagerros (1998) fitted to a limited sample of 
small main-belt asteroids. Similar bodies have been already 
used by Vokrouhlický and Čapek (2002) to characterize sta­
tistical properties of YORP in the zero conductivity limit.

In what follows we considered a sample of 200 Gaussian 
random spheres normalized to have the same volume, equal 
to a sphere with a radius of 1 km. All bodies were assumed 
to revolve about the Sun on a circular orbit with semima­
jor axis of 2.5 AU. Mean bulk and surface densities were 
2.5 g/cm3, surface heat capacity 680 J/(kgK) and albedo 
set to zero for simplicity. Surface thermal conductivity var­
ied from 0.001 W/(mK), appropriate for highly particu­
late, regolith-type surface, to 0.01 W/(mK), appropriate to 
a mixture of particulate and stony surface. For comparison 
we also performed simulations with zero surface conductiv­
ity using the technique o f Vokrouhlický and Čapek (2002). 
Higher values of conductivity were not investigated in this 
study, partly because of large CPU expenses and partly be­
cause high-conductivity surfaces are less likely for small, 
kilometer-size inner-main-belt asteroids (compatible with S 
spectral classes; e.g., Harris and Lagerros, 2003). For sake of 
definiteness we assumed 6 hr rotation period when reporting 
mean values o f the obliquity change, but these results may 
be easily re-scaled to an arbitrary value o f rotation period 
using Eq. (5).

Figure 6 shows orbit-averaged rate of change of the rota­
tion rate (right part) and obliquity (left part) due to YORP 
effect in the zero-conductivity limit. We note about the 
same likelihood o f asymptotically approaching 0° (or 180°) 
and 90° obliquity. Comparison of bottom and top panels, 
where we separated the solutions with different asymptotic 
obliquity values, indicate that in majority of the cases ro­
tation becomes asymptotically decelerated (see also Fig. 11 
in Vokrouhlický and Čapek, 2002). A typical timescale to 
evolve the rotation state, e.g., double the rotation period or 
significantly change the obliquity, is about 15 Myr for our 
test objects (see also Fig. 9).

Figures 7 and 8 show the same quantities as in the 
Fig. 6, but here the surface conductivity K was 0.001 and 
0.01 W/(mK), respectively. As expected from results in 
Section 3, the rotation rate variation dw/dt is little mod­
ified by the finite value o f the surface conductivity, while 
the rate de/dt by which obliquity changes due to YORP de­
pends significantly on the K value. Most importantly, as the 
conductivity increases, majority of bodies are asymptotically 
driven to 0° (or 180°) obliquity; for instance this happens in 
95% of the cases for K =0.01 W/(m K). Because the rota­
tion rate torque did not change much, this result also implies 
that YORP with finite surface conductivity nearly equally 
accelerates and decelerates bodies rotation. These conclu­
sions are in sharp contradiction with those from the zero- 
conductivity model, indicating that the value of the surface 
conductivity significantly influences statistical properties of 
the way how YORP modifies rotation of small bodies.

Another perspective to see these results is given in Fig. 9 
to 11 where characteristic strength of both YORP torques— 
Ts/C and Te/C—is compared for the three surface conduc­
tivity cases: K =  0 W/(m K) (Fig. 9), K =  0.001 W/(m K) 
(Fig. 10), and K =  0.01 W/(mK) (Fig. 11). The left pan­
els of these figures show characteristic timescale to double 
nominal rotation period o f 6 hr by YORP at the asymptotic 
obliquity value binned in 5 Myr cells, while the right pan­
els show maximum value of the obliquity rate de/di due to 
YORP binned in 2.5 deg/Myr cells. Median values, roughly
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obliquity (deg)

:i|. 6. Estimated mean rate of changc of the rotation frequency (right pans) and the obliquity (left parts) due to the YORP effect as a function of obliquity. 
 ̂sample of 200 Gaussian random spheres used, all normalized to have a volume of a sphere with a radius of I km and rotation period of 6 hr; the obliquity 

itc is proportional to the assumed rotation period. Results here assume zero surface thermal conductivity. Wc note άω/dt is symmetric in the complementary 
ibliquity interval, while dt/dt is antisymmetric under this transformation (sec discussion in Vokrouhlický and Čapek, 2002). For clarity, wc separate solutions 
«hose asymptotic obliquity value is 90° (upper panels), from those whose asymptotic obliquity value is 0° (180°; bottom panels). In this way wc note that 
here is approximately equal number of eases for cach of the asymptotic obliquity values, while most of the cases— 95%— asymptotically dccclcrate rotation

0 30 60 90 120 150 180

obliquity (deg)

Ϊ&. 7. The same as in Fig. 6 but now a surface thermal conductivity of I0 -3 W/(m K) assumed. Here about 80% of cases is driven toward the asymptotic 
Miquity values of 0° or 180°, and about 40%  of objects asymptotically accelerate rotation rate.
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obliquity (deg)

Fig. S. The same as in Fig. 6 but now a surface thermal conductivity of I0~2 W/(mK) assumed. Here about 95%  of cases is driven toward the asymptotic 
obliquity values ofO® or 180°, and about equal number of bodies asymptotically accelerate and decelerate rotation rate.

(2 χ amplitude de/dt (deg/Myr)

Fig. 9. Statistical occurrence of the characteristic timcscalc to double rotation period al the asymptotic obliquity value (left) and maximum obliquity rate (right) 
over a sample of Gaussian random spheres. Small bars at bottom indicate the actual values and the arrow shows median values. These results assume bodies 
with volume equivalent to a sphere of I km radius and rotation period of 6 hr, the doubling-timcspan scales inversely proportionally, while the obliquity rate 
proportionally to tbc assumed rotation period. Zero surfacc thermal conductivity for all bodies.

10-15 Myr and a couple deg/Myr, are also indicated. While 
the rotation rate characteristics are similar for all values of 
the surface conductivity K, the obliquity variation strength 
increases as K increases.

5. Discussion and conclusions

Finite (non-zero) value o f the surface conductivity is not 
necessary for YORP to operate, but here we proved that it

significantly affects YORP component tilting spin axis with 
respect the orbital plane, while leaving unaffected the com­
ponent accelerating or decelerating rotation rate. Using a 
large sample of Gaussian random spheres, believed to repre­
sent shape of small main-belt asteroids, we determined that 
for vast majority of bodies YORP drives spin axis to become 
perpendicular to the orbital plane. In the same time, rotation 
rate may appear accelerated or decelerated with about equal 
probability. Both these results are novel and in contradiction 
with conclusions from zero surfacc conductivity model.
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t2x (Myr) amplitude de/dt (deg/Myr)

Fig. 10. The same as in Fig. 9 but here Tor a surface thermal conductivity of I0-3  W/(mK). While the median doubling timcspan shortens, the median 
obliquity rate increases.

*2x (MyO amplitude de/dt (deg/Myr)

Fig. II. The same as in Fig. 9 but here for a surface thermal conductivity of 10-2  W/(mK). While the median doubling timcspan shortens, the median 
obliquity rate increases.

Results of Vokrouhlický et al. (2003) are in accordance 
with these conclusions, because their model explaining 
anomalous distribution o f spin axis orientation and rotation 
rates of Koronis asteroids requires preferential evolution of 
the obliquity toward its extreme values. Another hint may 
come from a slightly preferential overall orientations of as­
teroid rotation axes toward poles o f the ecliptic (e.g., Pravec 
ct al., 2003; La Spina et al., 2004). However, before draw­
ing more detailed conclusions we need to account, aside to 
YORP, for additional important effects such as secular spin- 
orbit resonances or mutual asteroid collisions.
' Vokrouhlický et al. (2004b) have recently suggested that 
leveral detections of the Yarkovsky effect every year are

Pely during the next decade. The YORP detection pos- 
lilities (e.g., Vokrouhlický et al., 2004a) will be also 
searched, and certainly rapidly increase in number in the 

next years. Here we investigated YORP discovery possi­
bilities for Golevka, 1998 KY26 and Eros, and found (or 
sonfirmed) very good prospect for 1998 KY26 and perhaps 
Golevka. Moreover, a discovery o f a very weak dependence

of the relevant YORP torque on the surface conductivity is 
important in general because it suggests the YORP detec­
tions might constrain asteroid’s mass independently from 
its surface thermal conductivity. Obviously a caveat of such 
a YORP determination o f asteroid’s mass is the necessity 
to know its shape very precisely; so far only radar rang­
ing or direct spacecraft reconnaissance meet the required 
level of accuracy. However, it also seems likely that good 
YORP detection candidates would also allow detection of 
the Yarkovsky effect (e.g., Ostro et al., 2004), and conjunc­
tion o f both detections would fairly well constrain asteroid’s 
mass and surface thermal properties in an uncorrelated way.

All previous studies o f the YORP effect (Rubincam, 
2000; Vokrouhlický and Čapek, 2002), including this paper, 
assumed principal axis rotation and rigid shape of the body. 
These assumptions are well satisfied for “normal rotators” 
(rotation periods o f several hours, say) but fail for slow rota­
tors (Pravec et al., 2004) or very fast rotators (Pravec et al., 
2003). Not only the current YORP models cannot be applied 
to these extreme cases, but more importantly, by making the
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bodies to evolve toward fast and slow rotators, YORP makes 
a generic link between normal and extreme rotators. What 
exactly happens along this evolutionary path cannot be de­
termined with the limited YORP models today. For instance, 
YORP may despin rotation enough to trigger non-principal- 
axis rotation mode and become thus a natural mechanism to 
explain a class of tumbling asteroids (Pravec et al., 2004). 
In the opposite limit, YORP may steadily accelerate rota­
tion rate of an asteroid until structural changes, and possibly 
even fission, occur; this would make YORP an interesting 
candidate mechanism for creating binary systems. Further 
YORP-work needs to be directed along these generalizations 
of the current models.

Acknowledgments

This work has been supported by the Grant Agency of 
the Czech Republic, under the grant No. 205/02/0703. We 
also thank Observatory and Planetarium at Hradec Králové 
whose computer facility has been partly used. Suggestions 
from D. Nesvorný and D.P. Rubincam, as referees, helped to 
improve the original form of this paper.

References

Bottke, W.F., Vokrouhlický, D., Rubincam, O.P., Brož, M., 2003. Dynam­
ical evolution of asteroids and meteoroids using the Yarkovsky effect 
In: Bottke, W.F., Cellino, A., Paolicchi, P., Binzel, R.P. (Eds.), Asteroids 
III. Univ. of Arizona Press, Tucson, pp. 395-408.

Chesley, S.R, Ostro, S.J., Vokrouhlický, D., Čapek, D., Giorgini, J.D., 
Nolan, M.C., Margot, J.-L., Hinc, A.A., Benner, L.A.M., Chamberlin, 
A.B., 2003. Direct detection of the Yarkovsky effect via radar ranging 
to near-Earth Asteroid 6489 Golevka. Science 302, 1739-1742.

Dobravolskis, A.R., 1996. Inertia of any polyhedron. Icarus 124, 698-704.
Harris, A W., Davies, J.K., 1999. Physical characteristics of near-Earth as­

teroids from thermal infrared spectrophotometry. Icarus 142,464-475.
Hams, A.W., Lagerros, J.S.V., 2003. Asteroids in the thermal infrared. In: 

Bottke, W.F., Cellino, A., Paolicchi, P., Binzel, R.P. (Eds.), Asteroids 
III. Univ. of Arizona Press, Tucson, pp. 205-218.

Hudson, R.S., 26 colleagues, 2000. Radar observations and physical mod­
eling of Asteroid 6489 Golevka. Icarus 148, 37-51.

Konopliv, A.S., Miller, J.S., Owen, W.M., Yeomans, D.K., Giorgini, J.D., 
Garmicr, R , Barriot, J.-P, 2002. A  global solution for the gravity Held, 
rotation, landmarks, and cphcmcris of Eros. Icarus 160,289-299.

La Spina, A., Paolicchi, P., Kryszczinska, A., Pravec, P., 2004. Retrograde 
spins of near-Earth asteroids from the Yarkovsky effect. Nature 428, 
400-401.

Miller, J.K., 10 colleagues, 2002. Determination of shape, gravity, and ro­
tational state of Asteroid 433 Eros. Icarus 155, 3-17.

Morbidelli, A., Vokrouhlický, D., 2003. The Yarkovsky-driven origin of 
near Earth asteroids. Icarus 163, 120-134.

Morrison, D., 1976. The diameter and thermal inertia of433 Eros. Icarus 28, 
125-132.

Mottola, S., 28 colleagues. 1997. Physical model of ncar-Earlh Asteroid 
6489 Golevka ( 1991 JX) from optical and infrared observations. Astron. 
J. 114, 1234-1245.

Muinonen, Κ., 1998. Introducing the Gaussian shape hypothesis for aster­
oids and comets. Astron. Astrophys. 332, 1087-1098.

Muinonen, Κ., Lagerros, J.S.V., 1998. Inversion of shape statistics for small 
Solar System bodies. Astron. Astrophys. 333, 753-761.

Ostro, S.J., 19 colleagues, 1999. Radar and optical observations of Asteroid 
1998 KY26. Science 285, 557-559.

Ostro, S.J., 15 colleagues, 2004. Radar observations of Asteroid 25143 
Itokawa (1998 SF36). Meteorit. Planet. Sei. 39,407-^24.

Pravec, P., Harris, A.W., Michalowski, T., 2003. Asteroid rotation. In: Bol- 
tke, W.F., Cellino, A., Paolicchi, P., Binzel, RP. (Eds.), Asteroids III. 
Univ. of Arizona Press, Tucson, pp. 113-122.

Pravec, P., 18 colleagues, 2004. Tumbling asteroids. Icarus. In press.
Press. W.H., Flannery, B.P., Tcukolsky, S.A., Vencrling, W.T., 1994. Nu­

merical Rccipcs. Cambridge Univ. Press, Cambridge.
Rubincam, D.P., 2000. Radiative spin-up and spin-down of small asteroids. 

Icarus 148,2-11.
Rubincam, D.P., Rowlands, D.D., Ray, R.D., 2002. Is Asteroid 951 Gaspra 

in a resonant obliquity state with its spin increasing due to YORP? 
J. Gcophys. Res. 107 (E9), 5065.

Simonclli, D.P., Thomas, P.C., Carcich, B.T., Veverka, J., 1993. The gen­
eration and use of numerical shape models for irregular Solar System 
objects. Icarus 103,49-61.

Spencer, J.R., Lcbofsky, L.A., Sykes, M.V., 1989. Systematic biases in ra­
diometric diameter determinations. Icarus 78, 337-354.

Spitalc, J., Greenberg, R., 2001. Numerical evaluation of the general 
Yarkovsky effect: effects on semimajor axis. Icarus 149,222-234.

Sullivan, R.J., Thomas, P.C., Murchic, S.L., Robinson, M.S., 2003. Aster­
oid geology from Galileo and N EA R  Shoemaker data. In: Bottke, W.F., 
Cellino, A., Paolicchi, P., Binzel, R.P. (Eds.), Asteroids III. Univ. of Ari­
zona Press, Tucson, pp. 331-350.

Tholcn, D.J., 2003. Recovery of 1998 KY26: implications for detecting the 
Yarkovsky effect. Bull. Am. Astron. Soc. 35, 972.

Thomas, P.C., Belton, M.J.S., Careich, B.T., Chapman, C.R., Davies, M.E., 
Sullivan, R„ Veverka, J., 1996. The shape of Ida. Icarus 120, 20-32.

Vokrouhlický, D., Čapek, D., 2002. YORP-induced long-term evolution of 
the spin state of small asteroids and meteoroids. Rubincam's approxi­
mation. Icarus 159,449-467.

Vokrouhlický, D., Farinella, P., 1998. The Yarkovsky seasonal effect on as- 
tcroidal fragments: a non-linearized theory for the plane-parallel case. 
Astron. J. 116,2032-2041.

Vokrouhlický, D., Milani, A., Chesley, S.R, 2000. Yarkovsky effect on 
small near-Earth asteroids: mathematical formulation and examples. 
Icarus 148, 118-138.

Vokrouhlický, D., Nesvorný, D., Bottke, W.F., 2003. Thermal torques 
produce spin vector alignments among Koronis family asteroids. Na­
ture 425, 147-152.

Vokrouhlický, D., Čapek, D., Kaasalaincn, M., Ostro, S.J., 2004a. De­
tectability of YORP rotational slowing of Asteroid 25143 Itokawa. As­
tron. Astrophys. 414, L2I-L24.

Vokrouhlický, D., Čapek, D., Chesley, S.R., Ostro, S.J., 2004b Yarkovsky- 
dctcction opportunities. I. Solitary asteroids. Icarus. In press.



Available online at www.sciencedirect.com -------

ICARUS
(cams 173 (2005) 166-184 -------------

www.elscvicr.com/locatc/icanis

Yarkovsky detection opportunities. I. Solitary asteroids
D. Vokrouhlický*·*, D. Čapek®, S.R. Chesley\ S.J. Ostrob

• Institute ofAstronomy, Charles University, V HoleSoviíkách 2. CZ-18000 Prague 8. Czech Republic 
b Jet Propulsion Laboratory, California Institute o f Technology, Pasadena, CA 91109-8099, USA

Rcccivcd 28 May 2004; revised 22 July 2004

Available online 25 September 2004

Abstract
We show that, over the next two decades, the current radar and optical astrometric technology is adequate to allow detection o f the 

Yarkovsky effect acting on at least two dozen N E A s  from a variety o f  orbital regimes and with effective diameters ranging from about ten 

meters up to several kilometers. The Yarkovsky effect will likely be detected for objects o f rarer spectral types X , C, and E, as well as the more 
common S  and Q. The next predicted detection o f the Yarkovsky effect is for 4179 Toutatis in October 2004, which would be also the first 
multi-kilometer case. The Asteroid 2 5 143 Itokawa, with a likely detection at the end o f  2005, could offer an important test due to the indepen­

dent “ground-truth” measurements o f  the asteroid mass and surface thermal inertia expected from the Hayabusa spacecraft. Earth co-orbital 
asteroids (e.g., 2000 PH 5 or 2003 Y N 107) are the best placed for rapid determination o f the Yarkovsky effect, and the timespan between 
discovery o f  the object and detection o f the Yarkovsky effect may be as short as 3 years. B y  2012, the motion o f  potential Earth impactor 
(29075) 1950 D A  will likely reveal the magnitude o f  the Yarkovsky effect, which in turn will identify which o f  two possible pole orientations 

is correct. Vis-a-vis the 2880 impact, this new information will allow a substantial improvement in the quality o f  long term predictions.
O 2004 Elsevier Inc. A ll rights reserved.

Keywords: Asteroids; Yarkovsky effect; Orbit determination

I. Introduction

The Yarkovsky effect is a tiny non-gravitational self­
acceleration of asteroids and meteoroids due to radiative 
recoil of the anisotropic thermal emission (Bottke et al., 
2003). There is an inevitable time delay between the ab­
sorption of solar radiation on the Sun-facing side and its 
subsequent re-emission as thermal radiation, thus the result­
ing recoil force on the body is offset from the solar direction 
because of the asteroid's rotational and orbital motion. This 
produces an along-track perturbation of the orbital motion, 
specifically a secular variation of the osculating semima­
jor axis and an associated variation of the osculating or­
bital longitude that increases quadratically with time. This 
quadratic runoff allows the Yarkovsky acceleration to be de­
tected much more rapidly, despite its very small magnitude,

* Corresponding author. Fax: +420-2-2191-2567.
E-mail address: vokrouhl@mbox.ccsnet.cz (D. Vokrouhlický).

0019-1035/S -  see front matter O  2004 Elsevier Inc. All rights reserved, 
doi: 10.1016/j.icarus,2004.08.002

which distinguishes it from the majority of other perturbing 
effects, such as planetary perturbations.

The ability to steadily change the orbital semimajor axis 
means the Yarkovsky effect is a fundamental transport mech­
anism for small bodies in the Solar System. In particular, 
the majority of Earth-crossing meteoritic and asteroidal ma­
terial has presumably been supplied by certain mean mo­
tion and secular resonances in or near the main belt, which 
are in turn fed by the Yarkovsky-driven transport of ma­
terial (Vokrouhlický and Farinella, 2000; Morbidelli and 
Vokrouhlický, 2003). As the bodies continue their motion 
in the planet-crossing region, the brief but intense gravi­
tational tugs during planetary encounters, rather than the 
continuous Yarkovsky-force perturbations, determine their 
lifetime. However, the Yarkovsky effect may also be impor­
tant for precise orbit determination on a short timespan, as 
noted by Vokrouhlický et al. (2000,2001), who predicted the 
Yarkovsky perturbation may surpass the orbital uncertainty 
for a few near-Earth asteroids (NEAs) in the first decade
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of the 21st century. Following their prediction, Chesley et 
al. (2003) conducted radar observations of 6489 Golevka 
in May 2003 and confirmed Yarkovsky perturbation in its 
orbit. This result immediately implies that the Yarkovsky ef­
fect should be detected in the orbits o f many more NEAs in 
the near future. 1,2 Moreover, the strength o f the Yarkovsky 
perturbation depends on a number of notoriously inacces­
sible physical parameters that can actually be constrained 
by measuring the Yarkovsky orbital displacement. The as­
teroid’s mass (and hence bulk density unless the volume is 
poorly known) is the most important of these parameters.

Here we continue the work of Vokrouhlický et al. (2000) 
and discuss a sample of NEAs that may permit detection of 
the Yarkovsky effect within the next decade or so. In some 
cases we correct errors or substantiate conclusions from 
that early work. We also note several objects overlooked by 
Vokrouhlický et al. (2 0 0 0 ), and we find new bodies discov­
ered after 2000 that are suitable for the Yarkovsky detection. 
A recent discovery does not necessarily mean that we need 
to wait “generations” for detection of the Yarkovsky effect. 
In Golevka’s case it took 12 years between the asteroid dis­
covery (Helin et al., 1991) and the Yarkovsky detection. In 
what follows we show, that for a small body on a suitable 
orbit the period between discovery and the Yarkovsky detec­
tion may be as short as 3-6 years.

1.1. Selection criteria

It appears difficult, and perhaps even unnecessary, to 
perform our analysis for all known NEAs and we thus 
adopted the following selection criteria. The first, and the 
most straightforward, is that the Yarkovsky effect strength 
increases for small objects. Second, the Yarkovsky effect 
becomes discernible as a perturbation of the orbital longi­
tude that increases with time. Third, astrometry as accurate 
as possible is needed. With those rules, we note several cat­
egories of candidate objects: (i) bodies with suitably long 
optical astrometry, past radar astrometry (even if modest 
in quality) and having an opportunity to be radar ranged 
once or twice soon (e.g., Apollo, Aten, Icarus; Section 2), 
(ii) very small bodies (e.g., 2000 UK.11, 1998 KY26, 2002 
JR100; Section 4) and (iii) bodies on unusual orbits allow­
ing extensive radar astrometry in the near future (e.g., 2 0 0 0  

PH5, 1999 MN; Section 3) or bodies with unusual observa­
tion circumstances (e.g., Itokawa to be visited by Hayabusa 
spacecraft). Each of these groups has its own difficulties, 
especially because a “productive” Yarkovsky detection re­
quires additional information like the rotation pole position

1 We also no»c the work of Nesvorný and Bottke (2004) who showed 
that semimajor axes of the young Asteroid Karin cluster members have 
changed during the past S.8 Myr in a way compatible with prediction of 
the Yarkovsky efTect. obtaining thus the first direct evidence of Yarkovsky 
cflcct acting on the main-bclt asteroids.

2 We find it symbolic that the Yarkovsky efleet might be detected in the
orbits of 1862 Apollo and 2062 Aten, “the namesakes of their dynamical 
Boups," within the next decade (Section 2).

and rotation period, the shape model, etc. Surprisingly, in 
spite of the large strength o f the Yarkovsky efTect for the 
smallest bodies, these are generally not the most attractive 
candidates since it is difficult to acquire this additional in­
formation for them. The currently most interesting candidate 
group are bodies a few hundreds of meters across that make 
frequent close encounters with the Earth during the next 
decade or so. We discuss the special case of binary aster­
oids in a separate paper.

The selection rules described so far should isolate the 
most promising candidates for a successful Yarkovsky detec­
tion. But since a main purpose is to acquire physical infor­
mation, as well as orbit refinement, we may also adopt addi­
tional criteria. For instance, we may wish to select a sample 
of asteroids whose spectral classes are as heterogeneous as 
possible. Although NEAs are known for their spectral di­
versity, S- and Q-types dominate (e.g., Binzel et al., 2003,
2004), so our selection criteria may be “biased” towards bod­
ies of spectral classes other than S and Q. Similarly, despite 
the difficulties mentioned above, we may seek the Yarkovsky 
signal in orbits o f asteroids of diverse sizes, from tens of 
meters to kilometers. This is an important goal, recalling 
that the Yarkovsky detection analysis constrains bulk den­
sity of the target and thus its interior structure. Experimental 
and theoretical work dating to the 1960s has converged to 
a consensus that a fundamental change, from the strength- 
dominated regime to the gravity-dominated regime, occurs 
in the structure of Solar System bodies as sizes increase be­
yond about 100-200 m (e.g., Asphaug et al., 2003). The 
Yarkovsky effect detections may offer a unique possibility 
to probe the two regimes by constraining the bulk density 
of bodies ranging from as small as ten meters up to a few 
kilometers in diameter.

1.2. Methodology

For any given asteroid the methodology of our work is 
the same as in Vokrouhlický et al. (2000). We use all avail­
able past optical and radar astrometry data to fit orbits using 
two different force models, one with only gravitational in­
teractions and the other with the addition of Yarkovsky ac­
celerations. For both models, the best-fitting orbit and its 
uncertainty3 are propagated to the nearest close encounter

3 In this work, we consider the uncertainty due to the observation errors 
only. As in Chesley et al. (2003), an extended analysis taking into account 
uncertainty in the gravitational influence of asteroids, planets and parame­
ters of the Yarkovsky effect may be necessary when real data arc processed. 
Experience with Golevka shows that predictions made in this paper arc re­
liable and that the influence of the uncertain mass of asteroids does not 
overwhelm the observation-based uncertainty intervals (and becomes actu­
ally negligible for orbits sufficiently decoupled from the main asteroid belt). 
Uncertainty in Mercury's mass may be a concern for some deep Atcns (e.g., 
Section 3.3), but in the post-Mcssenger era this efTect should be negligible. 
In the cases of long-lasting encounters with unusually small relative veloc­
ity (e.g.. Section 3.2), the role of the Earth-mass uncertainty should be also 
chcckcd.
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with the Earth that allows good-quality radar data to be 
taken. In practice we require the single day signal-to-noise 
ratio (SNR) of the radar echoes (e.g., Ostro, 1993; Ostro et 
al., 2003) to be larger than 10.4 We assume ranging from 
the Arecibo or Goldstone facilities, as appropriate, using 
the current system parameters (see http://echo.jpl.nasa.gov/). 
At the next radar observation opportunity we check for 
overlap or separation o f the two prediction uncertainty el­
lipses (one with and one without Yarkovsky) in the de­
lay/Doppler (range/range-rate) plane. If the separation of 
the two confidence ellipses is statistically significant then 
observations at that epoch can reveal Yarkovsky accelera­
tion.

Unfortunately for our purposes, however, the uncertainty 
regions often overlap. In that situation, the radar astrom­
etry serves to further constrain orbital uncertainty and a 
subsequent radar opportunity allows the actual detection of 
the Yarkovsky effect. To consider this scenario, we sim­
ulate radar observations during the next close encounter 
and check overlap/separation of the no-Yarkovsky and the 
Yarkovsky solutions during the subsequent approach. In 
some cases we also simulate optical astrometry. It should 
be pointed out that the purpose of these simulations is to 
see how they confine future orbital uncertainty and not to 
“guide the orbit along some direction” and thus they are 
constructed in accord with the current observations. We as­
sume current technology for the simulation o f optical and 
radar astrometry, typically taking the estimated size of the 
object as a formal uncertainty of the radar observations, 
and one arcsecond as a formal uncertainty o f the opti­
cal observations. It is likely that future astrometry technol­
ogy, such as the GAIA project (e.g., Mignard, 2002, and 
http://astro.estec.esa.nl/GAIA), will enhance Yarkovsky de­
tection possibilities; also if radar systems are upgraded, or 
a dedicated NEA radar network is eventually built (e.g., 
Ostro, 1997), Yarkovsky detections could become more fre­
quent

Our analyses used two different software sets: The Orb- 
Pit package (http://newton.dm.unipi.it/) and the JPL orbit 
determination program. Both programs implement a lin­
earized formulation of the diurnal and seasonal variants of 
the Yarkovsky effect (e.g., Vokrouhlický et al., 2000) that 
assumes spherical bodies with constant thermal and rota­
tional parameters. Our Golevka experience has shown that 
predictions made with this simplified approach can be con­
sidered reliable, so in most of the simulations reported below 
we used the linearized models and OrbFit. But in two 
cases the linear method was judged unreliable so we used 
the JPL software, which has a special high-accuracy mode 
that allows the lookup of externally computed Yarkovsky 
force components. This approach, which was also used for 
Golevka (Chesley et al., 2003), applies force components

4 Whenever we report a SNR value we mean the malehed-filtered SNR 
in one day of observation.

that are pre-computed and tabulated as a function of aster­
oid true anomaly. These high accuracy forces are obtained 
with dedicated software that accommodates such details as
(i) the precise shape o f the body, (ii) a complete, non-linear 
heat diffusion numerical solver and (iii) temperature and 
depth dependence of the thermal parameters. A particular 
novelty in the present paper is a full-fledged nonlinear com­
putation o f the Yarkovsky force components for Toutatis, 
characterized with a non-principal-axis rotation (such that 
the spin vector undergoes free wobble about the long body 
axis; Hudson and Ostro, 1995; Ostro et al., 1995a, 1999). 
We also use this formulation to refine our earlier prediction 
for Geographos, taking into account its extremely elongated 
shape (Ostro et al., 1995b, 1996).

In what follows, we investigate the possibility o f Yarkovs­
ky detection for a number o f objects in the three different 
classes noted above. These objects are tabulated in Table 1. 
For each case, we summarize the basic information relevant 
for estimation o f the strength o f the Yarkovsky effect, and, 
when needed, we comment on the simulated future obser­
vations, outlining an optimum schedule for an early detec­
tion.

2. Targets with long observation records

In this section we discuss Yarkovsky detectability for ob­
jects having a long record o f optical astrometry. Yeomans 
(1991,1992) analyzed several NEAs with long observational 
histories (most also having some radar astrometry) for em­
pirical accelerations common to the motion of active short- 
period comets, eventually reaching the conclusion that there 
was at the time no evidence for nongravitational accelera­
tions on any NEAs. However, the passage of time and the 
corresponding increase of optical and radar astrometry for 
these objects will soon enable the detection of much smaller 
forces than was possible in 1991. Conveniently, except the 
cases with pre-discovery identifications, these are typically 
large asteroids with enough photometric observations to re­
veal the pole direction. Sometimes we also make use of 
infrared observations that help to constrain the surface ther­
mal inertia. Of course, a detrimental factor for these bodies 
is their large size and the correspondingly small strength for 
the Yarkovsky effect. An extreme case is the large (32 km 
long) Asteroid 433 Eros, with the longest known observa­
tional history among NEAs. Surprisingly, the possibility of 
detecting the Yarkovsky effect for Eros is not out of the ques­
tion in light of the fact that the NEAR Shoemaker mission 
enabled a series of high-accuracy range measurements to 
be derived from the spacecraft tracking data. A major hin­
drance in this case, however, is a very unlucky orientation 
of the spin axis, with obliquity o f ~  90° (e.g., Konopliv 
et al., 2002; Souchay et al., 2003), which diminishes the 
otherwise dominant diurnal variant of the Yarkovsky ef­
fect.

http://echo.jpl.nasa.gov/
http://astro.estec.esa.nl/GAIA
http://newton.dm.unipi.it/
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Tabic I
Sclcctcd candidate asteroids for Yarkovsky dctcction within the next two dccadcs

Note Asteroid Spectral Size Year of Yarkovsky Required pre-dctcction observations

No. Ident. class [m] detectability Radar Optical

a.b 4179 Toutatis S 2450 c 20047-2008 (2004)
a 25143 Itokawa S 360 c 2005 2004
• 54509 2000 PH5 7 100 2006 2004, 2005

2004d• 2003 Y N 107 7 20 2006 2005
a 1862 Apollo Q 1400 2007 2005
lb 1620 Geographos S 2560 c 20087-2019 (2008)
a 1999 M N 7 250 2010 2005, 2009

2005d1 2000 U K I I 7 32 2010? 2005
• 3103 Eger E 1750 2011 2006

2004-20I2d1 29075 1950 DA 7 1 (OO 20127-2023
1 2062 A  ten Sr 900 2014 2012,2013 2011
t 1566 Icarus SU .Q 1270 2015 2006

2000 W N 10 7 350 20157 pre-2015 possibilities
33342 1998 WT24 E 500 20157 2012

a 2100 Ra-Shalom Xc 2780 20167-2019 2006(2016)
2001 YE4 7 250 20167-2017 2007,2012 2006d
1989 VA Sq 800 2017 2007,2012

a 2002 JR100 ? 50 2018 2010, 2011 20I0*1
a 1991 VG ? 10 2018 2017·*

1998 SD9 ? 50 20187-2021 2008,2011 20081*

2002 BF25 7 115 2020 2010,2012 20l0d
b 1998 KY26 C ? 30c 20207-2024 2009,2013

2340 Hathor Sq 530 2021 2007,2014
3361 Orpheus - Sq 500 2021 2017

20l8d2004 FH 7 25 2021 2018
1995 CR 7 80 2022 2014,2017 2005d

7341 1991 V K Sr 1400 20227 2007, 2012,2017
6037 1988 EG 7 600 2023 2008,2013

Note. Objects are sorted according to the estimated year of Yarkovsky dctcction. Only solitary asteroids arc considered here; binary asteroid systems arc to be 
reported in a follow-on paper. Additional candidate objccts will be posted on http://sirrah.troja.mlT.cuni.cz/-davok/.
'  A full simulation and discussion is included in this paper.
k Previously analyzed by Vokrouhlický ct al. (2000). Here we report refined results for Geographos and Toutatis for which wc compute the Yarkovsky 

acceleration using a complete nonlinear model accounting for their specific shape and rotation state. 
c A  precise shape is known. Wc indicate the diameter of a sphere with equivalent volume. 
d Accurate optical astrometry is required for a successful detection.

2.1. 1862 Apollo

Like Golevka, Apollo is a Q-type candidate for the detec­
tion of the Yarkovsky effect.5 Apollo has a long, though not 
exceedingly extensive, optical astrometry data series since 
December 1930. Radar astrometry comprises a single cam­
paign in November 1980 with modest accuracy (see Ostro 
et al., 2 0 0 2 ), but still providing a valuable constraint on the 
orbit.

Assuming data from Binzel et al. (2003), namely the 
absolute magnitude H =  16.23 and the geometric albedo 
pv =  0.26 (implying, with the slope parameter 0.23, a Bond 
albedo6 A ~  0.12), one obtains for Apollo an effective size 
D n  1.4 km. These results are in accord with Harris (1998), 
who used a thermo-physical model to remove drawbacks

5 Apollo was inadvertently omitted from the analysis of Vokrouhlický et 
il. (2000).

6 Wc note that Bond's albedo is used in the expression for the Yarkovsky 
Torce within the linearized theory; Vokrouhlický and Bottke (2001).

of the standard thermal analysis by Lebofsky et al. (1981), 
yielding a size in the range 1.2—1.5 km with slightly higher 
value of the albedo. Ostro et al. (2002) place an upper limit 
o f 1 .6  km on the effective diameter from the analysis of 1980 
radar data. Hereafter we use the Binzel et al. values.

The rotation period ( P =  3.065 hr) and pole information 
(ecliptic longitude I =  56° and latitude b =  -26° both with 
formal uncertainty less than 10°) are due to Harris et al. 
(1987). We note a similar rotation period but slightly differ­
ent value of pole position (£ =  38° ±  12° and b =  —36° ±  
10°) by De Angelis (1995), who also indicates polar flatten­
ing o f about 1.87. From shape inversion, J. Ďurech (2003, 
private communication) obtained a solution with a still larger 
obliquity (relevant for the Yarkovsky effect strength) and 
an asteroid silhouette compatible with Ostro et al. (2002), 
but the statistical significance of this solution does not ex­
ceed those mentioned above. Good photometry and radar 
data during Apollo’s 2005 apparition should significantly 
improve pole and shape solutions. At present we use Har­
ris et al.’s solution which is, in a sense, conservative, since

http://sirrah.troja.mlT.cuni.cz/-davok/
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it has the lowest obliquity and thus the minimum strength of 
the Yarkovsky force.

Lebofsky et al. (1981) recorded radiometric observations 
of Apollo in the range 4.8-20 μιη; these data were also 
analyzed by Harris (1998) who used his empirical thermo­
physical model to conclude that this target should have a 
non-zero, but small, surface thermal inertia. (The beaming 
factor η ~  1.15 suggests a slightly larger thermal inertia 
than that of Eros.) Without more detailed information, we 
adopted the following tentative set of surface thermal para­
meters: thermal conductivity K =0.01 W/(mK), specific 
heat capacity C =  680 J/(kgK), and surface and bulk densi­
ties Ps =  2 .0  g/cm3 and pb =  2 .6  g/cm3, all corresponding 
to a mixture of particulate layer and rocks. The Yarkovsky 
acceleration scales inversely with pb, but a less trivial scaling 
relates the other parameters (except for a correlated depen­
dence on p3K; see, e.g., Chesley et al., 2003). With the other 
parameters fixed, the maximum Yarkovsky signal occurs for 
K ~  0.05 W/(mK).

There are two good opportunities to observe Apollo, in 
November 2005 from Goldstone and Arecibo and in May 
2007 only from Goldstone. The Arecibo 2005 signal should 
reach SNR of nearly 5000, while Goldstone in 2007 peaks at 
SNR 2 :80. A single ranging in either 2005 or 2007 will not 
unambiguously reveal the Yarkovsky effect, hence it will be 
necessary to acquire radar data in both 2005 and 2007. The 
importance of the 2005 run is twofold: (i) it should yield 
an accurate shape model and pole position for Apollo, and 
(ii) it should reduce orbital uncertainty. We simulated two 
Arecibo range/range-rate measurements separated by two 
days in early November 2005.7 Assumed uncertainties are 
0.5 km in range and 0.75 km/day in range-rate.

With these simulated observations, plus all previous opti­
cal and radar observations, we determined the separation of 
the no-Yarkovsky and Yarkovsky orbits, together with their 
uncertainty regions, in mid-May 2007, when the asteroid 
is within range of the Goldstone radar. Figure 1 promises 
a good separation of the two solutions with no statistically 
significant overlap of the uncertainty regions,8 permitting an 
unambiguous Yarkovsky detection.

The next deep close approach to the Earth is not un­
til 2046, but we note that Apollo will be within reach of 
Arecibo radar during shallow approaches in December 2021 
(peak SNR ~  40) and June 2023 (peak SNR ~  70). We 
also note an interesting close approach of Apollo to 4 Vesta 
in 2017; post-2017 radar and optical astrometry data may 
produce an independent estimate of Vesta’s mass, provided 
Apollo’s orbit is well modeled, including good characteriza­
tion of the Yarkovsky perturbation.

7 Apollo has been also scheduled for Goldstonc observations in Novem­
ber 2005 (http://ccho.jpl.na.sa.gov/), but these arc not considered here.

8 Should the surface conductivity be an order of magnitude smaller, say
K =0.001 W/(mK), which is unlikely (Harris, 1998), the Yarkovsky dis­
placement in Fig. 1 would be rcduced by half.

Range [km]

Fig. I. Predicted Yarkovsky-induccd offset with 3a  (99%) confidence el­
lipses in the space of radar range and rangc-ratc for 1862 Apollo on 
May 11.6, 2007. The statistical significance of the potential Yaikovsky de­
tection opportunity is indicated by the degree of separation between the 
no-Yarkovsky prediction (gray ellipse, centered on origin) and Yarkovsky 
prediction (black ellipse). The predictions assume simulated Arecibo radar 
astrometry in November 2005 as described in the text.

2.2. 1566 Icarus

The case o f Icarus has already been considered by 
Vokrouhlický et al. (2000), but we update their prediction for 
two reasons: (i) There are ambiguities in size of this object, 
and Vokrouhlický et al. (2000) selected what now appears 
to be an unlikely diameter, and (ii) a low-SNR possibility 
to radar range Icarus in 2006 was overlooked. Specifically, 
system upgrades at Arecibo should allow ranging to Icarus 
in late June 2006, when the SNR peaks at around 14 as the 
asteroid approaches the Earth at ~  0.3 AU. There is also 
some likelihood, not considered here, that optical astrome­
try in 2006,2009, and 2010 will reduce the orbit uncertainty 
(Vokrouhlický et al., 2001).

Vokrouhlický et al. (2000) assumed an effective diame­
ter D =  0.9 km based on a value of the geometric albedo 
pv =  0 .6 , which was rather high, but consistent with the 
IRAS standard thermal model. However, like other simi­
lar cases (Harris, 1998), this was almost certainly wrong. 
Harris (1998), using an empirical thermo-physical model, 
obtained a more reasonable interpretation of Icarus’ radio- 
metric data with D =  1.27 km and pv =  0.33, which, with 
a slope parameter 0.09 implies a Bond albedo of A =  0.12. 
The approach o f Harris (1998) does not let us solve for sur­
face thermo-physical parameters, like thermal inertia Γ = 
yJKpgC, directly, yet the high value of the beaming fac­
tor η =  1.15 suggests a substantial value for Γ. Moreover, 
the low perihelion orbit o f this asteroid also suggests a 
high thermal inertia, since all factors in Γ  increase with 
effective temperature9 (e.g., Wechsler et al., 1972). As a 
result, we assume the following set o f parameters in our 
simulations: thermal conductivity K =  0.05 W/(m K), spe-

9 Moreover, fast rotation of Icarus may suggest fewer regolith deposits 
on its surfacc.

http://ccho.jpl.na.sa.gov/
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cific heat capacity C =  800 J/(kgK), surface and bulk den­
sities ps =  2.0 g/cm3 and Pb — 2.6 g/cm3. Rotation pe­
riod (P =  2.274 hr) and pole direction (ecliptic longitude
1 =  214° ±  5° and latitude b =  5° ±  12°) are from De Ange- 
lis (1995).

To test different hypotheses, we briefly report the re­
sults of several model runs. First, we propagated Icarus' 
orbit, as defined by the currently available set of astromet­
ric observations, to the nearest future encounters with the 
Earth, in June 2006 and June 201S. The 2015 approach is 
close enough to gather detailed information about this target 
with both the Arecibo system (SNR ~  3500) and at Gold- 
stone (SNR ~  600). Figure 2 shows the no-Yarkovsky and 
Yarkovsky predictions and their associated uncertainty re­
gions in the radar-observable plane in both 2006 and 2015. 
Unfortunately, at both epochs a partial overlap of the uncer­
tainty regions occurs, so that the statistical significance of 
the Yarkovsky acceleration is modest, perhaps 2-3 sigma.10 
In fact, results by Vokrouhlický et al. (2000, Fig. 11) are 
somewhat similar. As discussed above, the way to improve 
the Yarkovsky signal is to further constrain the 2015 predic­
tion using the 2006 ranging opportunity. To this purpose we 
have simulated Arecibo delay and Doppler astrometric data 
taken on June 27,2006 with an equivalent range accuracy of
2 km and range-rate accuracy o f 7 km/day. As a result, the 
orbit uncertainty region in 2015 is considerably diminished 
(Fig. 2b, interior ellipses), enough to ensure a statistically 
significant detection of the Yarkovsky effect.11

2.3. 2062 Aten

Like Apollo, Aten is another enigmatic “ leader in its 
group,” the first asteroid discovered having semimajor axis 
smaller than 1 AU (Helin et al., 1976). Apart from excep­
tional cases, Aten-like orbits typically suffer from sparse 
observational possibilities, especially for large orbital incli­
nation. As a result, past optical astrometry of this target is 
sporadic, although the observed arc is long, from December 
1955 (three pre-discovery observations) until February 1997. 
Also, a single Doppler measurement has been obtained from 
Goldstone in January 1995 (Benner et al., 1997).

Early radiometry of Aten (Morrison et al., 1976; Cruik- 
shank and Jones, 1977; Veeder et al., 1989) resulted in an 
estimation of its diameter D ~  900 m for pv =  0.2, yielding 
a Bond albedo Λ ~  0.1. Because o f the orbital and spectral 
similarity to Icarus (e.g., Lebofsky et al., 1979; Binzel et al., 
2003) we assume the same thermal surface parameters listed 
above for Icarus.

10 Higher values of the surface thermal inertia increase the significance, 
but still not enough to remove ambiguity, even in 2015.

11 Figure 2a suggests the range measurement in 2006 placcs the most 
significant constraint to reduce orbital uncertainty (required for the 20IS 
dctcction of the Yarkovsky cfTccts). It can be replaced with a single Doppler 
measurement equivalent to a range-rate datum with an uncertainty better 
than i  0.5 km/day.

Fig. 2. Yarkovsky oflscts for 1366 Icarus on (a) June 27,2006 and (b) June 
19.6, 2015, depicted as in Fig. 1. Only currently available astrometry is 
used, cxccpt for the interior ellipses in (b), which include simulated Arecibo 
radar astrometry from June 2006 when the target is barely observable with 
the Arecibo radar (SNR — 14).

Reliable photometry o f Aten has been recorded during the 
1995 apparition by Mottola et al. (1995), who report a syn­
odic rotation period of P =  40.77 hr. So far, no constraint on 
the rotation pole orientation has been obtained, undermining 
an accurate prediction of the Yarkovsky perturbation. We as­
sume an arbitrary pole orientation, t =  0° and b =  +30°, 
with corresponding obliquity ~  43°, which gives an “aver­
age” strength to the Yarkovsky effect.

Low solar elongation makes Aten barely observable till 
2009, but a series of yearly encounters with the Earth from 
2012 to 2015 gives a good prospect for accurate orbit deter­
mination, including the possibility to detect the Yarkovsky 
effect. Arecibo can range this target during its shallow en­
counters in July 2012 and June 2013 with a maximum SNR 
of ~  18 and ~  20, respectively. Deeper encounters with 
the Earth occur in January 2014 (SNR ^  135) and 2015 
(SNR ~  45). Our analysis indicates that the 2012 and 2013 
radar opportunities are important to constrain the orbit un­
certainty of this target. Assuming delay-Doppler measure­
ments with effective noise levels o f 1 km range and 
~  2 km/day range-rate are acquired at both of these radar
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:ig. 3. Yarkovsky offsets for 2062 Aten on (a) January 8.4, 2014 and (b) 
anuary 17.8, 20IS, depleted as in Fig. I. In (a) we have simulated Arecibo 
idar astrometry in 2012 and 2013; in (b) we extend the data set to include 
ie 2014 radar astrometry.

ipportunities, the January 2014 ranging can marginally re- 
eal the Yarkovsky perturbation for this object (Fig. 3a). A 
'ear later (January 2015), a more statistically substantial de- 
ection can be reached with radar astrometry acquired during 
irevious possibilities12 (Fig. 3b).

14. 2100 Ra-Shalom

This asteroid has a good record of optical astrometry 
since October 1975) and four radar runs with increasing lev- 
:ls of accuracy (from August 1981 to August 2003). With 
i nearly 3 km diameter, Ra-Shalom is the largest asteroid 
or which we expect the Yarkovsky effect may be detected 
vithin the next decade or so.

This is a first chance to detect the Yarkovsky effect for 
in Xc-type body. Prior to accurate radiometry, there was a 
air amount of fluctuation in estimates of this object’s size, 
fhe latest work o f Delbó et al. (2003) confirms earlier es-

12 We checked that this result can be obtained with ranging in 2013 and 
014 only.

timates (e.g., Lebofsky et al., 1979; Veeder et al., 1989; 
Harris et al., 1998) of a large size D ~  2.78 km and small 
albedo pv =  0.083, which is consistent with the spectral 
type and with the analysis o f the radar data (Shepard et 
al., 2000,2004). These authors conclude Ra-Shalom should 
have an unusually high value of the surface thermal iner­
tia, “comparable to, or exceeding, that of solid rock.” Thus 
we adopt thermal conductivity K =  1 W/(mK) and spe­
cific heat capacity C =  800 J/(kgK). We use low surface 
and bulk densities ps =  pt =  2.0 g/cm3, as appropriate for 
the spectral type Xc. This choice o f parameters yields ap­
proximately the same value o f surface thermal inertia (Γ  — 
1100 J/(m2 Ks*/2)) as that reported by Harris et al. (1998).

Kaasalainen et al. (2004) recently re-analyzed the avail­
able photometry on this asteroid and obtained a sidereal ro­
tation period o f ξ: 19.8 hr with pole direction £ =  73° and 
b =  13°. A preliminary, convex shape model was also de­
rived, consistent with Shepard et al.’s (2000) conclusion that 
this object is not elongated.

Ra-Shalom has an exceptionally good record of close 
encounters with the Earth,13 though none of them is par­
ticularly deep within the next century or so. Nevertheless, 
Arecibo is able of observe this target several times in the 
near future, with the best opportunities occurring in August 
2006 (SNR ~  130), September 2016 (SNR ~  70) and Sep­
tember 2019 (SNR ~  170) and still better possibilities in the 
early 2020s. There is also a more challenging radar window 
in September 2013 with the peak SNR ~  25. An “optimistic” 
scenario is to constrain Ra-Shalom’s orbit by the 2006 radar 
observations (in our simulation we assumed one range ob­
servation o f 0.3 km accuracy and one range-rate observation 
o f 0.75 km/day accuracy) and achieve the Yarkovsky effect 
detection with the 2016 radar observations. However, Fig. 4a 
(envelope ellipses) suggests that the orbital uncertainty re­
mains large, leaving some overlap for the no-Yarkovsky and 
Yarkovsky predictions.

There are two ways to improve the situation. First, we 
simulated low-quality radar astrometry from September 
2013,14 specifically a range measurement with 2 km un­
certainty and a range-rate measurement with 7.5 km/day 
uncertainty. These reduced the uncertainty regions in 2016 
enough to allow a statistically significant detection of the 
Yarkovsky effect in 2016 (Fig. 4a, interior ellipses).

Another option is to record radar astrometry in 2006 and 
2016 (for the latter we simulated data as in 2006) and attempt 
to detect the Yarkovsky effect by September 2019. Figure 4b 
confirms that the Yarkovsky effect should be easily revealed 
in this scenario.

This is becausc Ra-Shalom belongs to what Milani et al. (1989) clas­
sify as a ‘Toro orbital class"; in particular, this asteroid presently resides in 
the 21/16 mean motion resonance with the Earth. Note this is close to the 
4/3 resonance and thus Ra-Shalom appears to encounter the Earth every 3 
years in separated periods of time.

14 Wc did not investigate the possibility of numerous and accuratc optical 
astrometry in 2013.
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Fig. 4. Yarkovsky offsets for 2100 Ra-Shalom on (a) September 12.6,2016 
and (b) September 9.8, 2019, depicted as in Fig. I. The larger pair of el­
lipses in (a) assume a simulated Arccibo radar observation in August 2006, 
while ihc smaller ellipses includc simulated radar measurements from both 
2006 and September 2013. In (b) we assume simulated radar apparitions in 
August 2006 and September 2016.

2.5. 3103 Eger

After being recognized as the first E-type NEA (Veeder 
et al., 1989), this target has attracted attention as a putative 
parent body of the enstatite achondrite meteorites (Gaffey 
et al., 1992). Since this result, additional spectrally-similar 
bodies have been identified among the NEA population (e.g., 
Binzel et al., 2003), but Eger remains somewhat enigmatic 
as a large body residing on what may be an unusually long- 
lived planet-crossing orbit.15 This suggests a possible link 
to the spectrally similar group of Hungaria asteroids, which 
have similarly large values for inclination and which tend to 
heliocentric distances similar to Eger’s aphelion distance. So 
far, we do not have density information about any of the rare

15 Milani et al. (1989) recognized the orbit being presently locked in the 
exterior 3/S mean motion resonance with the Earth, providing thus a pro­
tection mechanism against elose encounters with the planet; moreover, the 
collisional probability to encounter/interact with other planets is decreased 
by the high orbital inclination.

Range [km]

Fig. S. Yarkovsky offsets for 3103 Eger on July 24.0, 2011, depleted as in 
Fig. I . These solutions assume simulated Arccibo astrometry from 2006.

E-type asteroids (Britt et al., 2003), so the Yarkovsky effect 
measurement might provide an interesting clue.

The orbit o f 3103 Eger has not been heavily observed, al­
though its available optical astrometry, dating to 1982, and 
two moderately accurate radar apparitions (July 1986 and 
July 1996) form a solid basis for detecting the Yarkovsky 
effect. However, some uncertainty does arise from poor 
knowledge of the size of this asteroid. We adopt the radar- 
suggested effective value D ~  1.75 km (Benner et al., 1997). 
Biaxiality o f the asteroid shape was found by Kaasalainen et 
al. (2002) from lightcurve inversion. The same analysis gave 
reliable information about Eger’s pole direction (t =  10°, 
b =  -50°) and sidereal rotation period (P  =  5.707 hr). The 
retrograde sense of rotation (obliquity ~  121°) makes the or­
bit drift inward to the Sun due to the (diumal and seasonal) 
Yarkovsky effect.

Little is known about the surface properties of this aster­
oid, except for a high radar circular polarization (Benner et 
al., 1997), which may be interpreted as a signature of ex­
treme near-surface roughness at centimeter to meter scales. 
This would suggest a higher value of the surface thermal 
inertia, but a thin dusty cover of a few penetration depths 
of the diurnal thermal wave is certainly not excluded. We 
thus assume moderate values o f thermal conductivity K =  
0.01 W/(mK), specific heat capacity C =  800J/(kgK), 
and surface and bulk densities p, =  2.0 g/cm3 and p* =  
2.6 g/cm3.

The same resonant orbit that protects Eger from collision 
with the Earth is responsible for shallow close approaches 
once every 5 years. This pattern allows Arecibo observa­
tions in July 2006 (SNR ~  120), July 2011 (at SNR ~  85), 
July 2016 (SNR ~  52), as well as a 2021 approach with a 
still lower value o f SNR. We find that the 2006 observa­
tions, while helpful for refining the shape and spin state, 
are definitely needed to constrain the orbital uncertainty so 
that radar observations in 2011 observation will reveal the 
Yarkovsky effect. To that end we simulated 2006 radar as­
trometry with a 0.2 km range measurement and a 0.5 km/day 
range-rate measurement at the time of the peak SNR. Fig-
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ure 5 confirms that the no-Yarkovsky and the Yarkovsky 
predictions are distinct at the 6σ level, with minimal over­
lap of the 3σ confidence regions. Obviously, the 2016 radar 
measurements would further refine the solution reducing its 
uncertainties.

2.6. 1620 Geographos

Geographos has been considered as a Yarkovsky-detec- 
tion candidate already by Vokrouhlický et al. (2000). Here 
we refine that solution by (i) taking into account Ge­
ographos’ extreme elongation as derived by previous radar 
and optical observations (e.g., Ostro et al., 1995b, 1996; 
Magnusson et al., 1996; Hudson and Ostro, 1999), and (ii) 
by removing a mistakenly considered possibility to radar- 
sense the asteroid in March 2015 (should have been in Au­
gust 2019).

Geographos underwent its closest post-discovery ap­
proach to the Earth in August 1994 and during that ap­
parition detailed radar data were acquired (Ostro et al., 
1995b, 1996). Based on those observations, Hudson and 
Ostro (1999) constructed a shape model of this asteroid. 
Since Geographos appears to be one o f the most elongated 
objects known, we wondered how reliable was the predic­
tion of Vokrouhlický et al. (2000), who assumed a spherical 
asteroid. In our present simulation, we use the 4092 surface- 
facet polyhedral model available at http://www.psi.edu/pds/ 
archive/rshape.html. Heat diffusion is numerically solved in 
a one-dimensional approximation (e.g., Vokrouhlický and 
Farinella, 1998) for each of the surface facets, taking into 
account daily and seasonal cycles of illumination, and any 
mutual shadowing between different parts of the asteroid 
surface. After the recoil force is computed for each of 
the surface elements as a function o f time and true anom­
aly, their effects are combined to obtain the resulting total 
Yarkovsky force along one revolution and exported as a 
look-up table used by the orbit determination program.16 
Our model assumes the effective thermal parameters o f the 
surface are constant; we fixed the value of the specific heat 
capacity to C =  680 J/(kgK), surface and bulk densities 
Ps =  1.7 g/cm3 and Pb =  2.5 g/cm3, while leaving the value 
of the surface conductivity to span a wide range of values 
between 10“ 4 and I W/(m Κ.). As noted by Chesley et al. 
(2003) these results may be scaled to obtain solutions with 
other values o f the fixed parameters; namely the Yarkovsky 
acceleration (i) scales inversely proportionally with pb, and 
(ii) is invariant for p, K constant.

The radar shape model uses a pole position at ecliptic lon­
gitude I =  55° ±  6° and ecliptic latitude b =  —46° ±  4° and 
a sidereal rotation period of 5.2233 hr. These are identical 
to the values derived by Magnusson et al. (1996) from the 
photometric lightcurve data.

We first note that the orbit-averaged value of the semima­
jor axis drift due to the Yarkovsky effect determined with a

16 Data available at httpiZ/sirrah.troja.mfF.cuni.cz/~davok/.

Fig. 6. The Yarkovsky-induccd average scmimajor axis drift rate (da/dt) 
for Geographos, as a function of surface conductivity K. The solid line 
is the result from the complete numerical model accounting for details of 
Geographos' irregular shape. The dashed line shows the result from a lin­
earized approximation of heat conduction and a fictitious spherical body 
having the same volume as Geographos, which is equivalent to the approx­
imation used by Vokrouhlický et al. (2000).

fully numerical model in this paper and the much simplified 
solution used in Vokrouhlický et al. (2000) yield surpris­
ingly similar results (Fig. 6), with a maximum difference of 
~  10% when K ~  0.03 W/(mK).

Geographos approaches Earth in March 2008 (offering 
SNR ~  625 from Arecibo) and in September 2019 (offering 
SNR ~  15 from Arecibo). Figure 7a indicates that the de­
tectability of the Yarkovsky effect in 2008 is somewhat du­
bious, with the Yarkovsky signal at about the 2σ level. Con­
straining the current uncertainty seems difficult, although in 
December 2004 Geographos’ sky-plane uncertainty in right 
ascension will increase up to ~  0.036 arcsec. High accuracy 
optical astrometry— if successful and prolific—may slightly 
improve the situation. For the sake o f an illustration we sim­
ulated 0.01 arcsec astrometry on December 15, 2004, and 
we verified that it can shrink the 2008 uncertainty ellipse 
to about 2/3 o f its current extent. This would shift the es­
timated Yarkovsky displacement to about 3σ value in the 
uncertainty region.

Ultimately, even though the 2008 radar astrometry may 
be only suggestive of the Yarkovsky displacement, it would 
confine the orbital uncertainty enough to make the Yarkovs­
ky effect detectable in 2019 (Fig. 7b).

2.7. (29075) 1950DA

1950 DA has been the object of considerable attention 
due to a small possibility o f Earth impact in the year 2880 
(Giorgini et al., 2002). Although they did not compute an im­
pact probability, Giorgini et al. did place an upper bound at 
3.3 χ 10“ 3. Interestingly enough for the present paper, the 
chief obstacle to computing the impact probability relates 
to uncertainty surrounding the Yarkovsky effect. In particu­
lar, the pole orientation was not uniquely determined by the 
2001 radar imaging, so there are two equally probable spin

http://www.psi.edu/pds/
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Fig. 7. Yarkovsky offsets for 1620 Geographos on (a) March 3.1,2008 and 
(b) October 5.0,2019, depicted as in Fig. 1. Only currently available astrom­
etry is used, except for the interior ellipses in (b), which include simulated 
Arecibo radar astrometry from 2008, despite the poor observability at that 
time (S N R ~  15).

axes, a direct solution (I =  97°, b =  79°) and a retrograde 
solution (£ =  18°, b =  -40°). Giorgini et al. showed that 
the impact is effectively ruled out by the retrograde rotation 
pole, but the impact remains possible for the direct rotation 
pole.

The observation set for 1950 DA is robust. It was discov­
ered in February 1950 and observed for a period o f 17 days 
at that time. It was rediscovered in the last hours of 2000 and 
observed heavily during 2001, including radar ranging from 
Goldstone and Arecibo in March 2001. Additionally, obser­
vations from 1981 have been measured on archival plates. 
The combination of long optical baseline and precise radar 
measurements provide an excellent constraint on the orbit, 
but not enough to reveal the Yarkovsky effect directly.

The next Earth close approach— and Yarkovsky detection 
opportunity—for 1950 DA occurs in May 2012. To account 
for ongoing observations between now and then, we have 
simulated precise optical astrometry on 16 nights (two ob­
servations per night with accuracy of 0"2) from late 2004 
to mid-2012. Radar ranging from Arecibo in 2012 will be 
challenging, with peak SNR ~  15, but precise optical as­
trometry will be straightforward, with magnitudes brighter

Fig. 8. Yarkovsky offsets for (2907S) 1950 DA for (a) optical astrometry on 
July 1,2012 and (b) radar astrometry on May 29,2012, depicted as in Fig. 1. 
The offsets are presented for the two possible pole solutions dcscribcd in the 
text. The solutions include 32 simulated optical observations over the period 
from November 2004 to March 2012.

than ν' =  17. Figure 8 indicates the observability of the 
Yarkovsky signal in 2012, for both radar and optical mea­
surements and for both putative pole solutions. From the 
figure it is clear that the correct pole solution should be easily 
discerned from either optical or radar observations in 2012. 
In the case of direct rotation, the Yarkovsky signal will be 
readily apparent in 2012, but the 2880 impact possibility 
would likely persist at some level. If, on the other hand, the 
retrograde pole solution is favored then the actual Yarkovsky 
detection will be less clear (although the combined power 
o f radar and optical measurements should strengthen the 
Yarkovsky signal beyond the level indicated by Fig. 8), but 
the possibility o f impact would presumably be eliminated. 
We note that it is very likely that the pole will have been in­
dependently determined through lightcurve inversion by late 
2012. In any event, even if the detection in 2012 is some­
how marginal, a conclusive detection during the subsequent 
approach in 2023 is all but guaranteed from optical measure­
ments alone.

The simulations in Fig. 8 assume diameter D =  1.1 km, 
albedo A =  0.1, thermal conductivity K =  0.01 W/(mK), 
specific heat capacity C =  680 J/(kgK), and surface and
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bulk densities ps — 1.7 g/cm3 and p* =  3.0 g/cm3. The high 
value of bulk density is suggested to strengthen gravitational 
binding in order to prevent rotational fusion; note 1950 DA 
has one of the shortest rotational periods P ~  2.11 hr for 
bodies of its size.

3. Targets on unusual orbits

This is currently the most promising class of objects for 
Yarkovsky detection. Except for 25143 Itokawa, for which 
results have already been reported by Ostro et al. (2004) and 
which is only briefly mentioned here, a key characteristic of 
bodies in this group is a series of frequent close encounters 
with the Earth. As we have seen, the Yarkovsky acceleration 
is generally evident at the third suitably accurate radar ap­
parition, and so objects that support frequent radar observing 
opportunities are particularly favored for an early detection.

Asteroids visited and orbited by a spacecraft form an 
interesting (and “expensive” ) exception. After 433 Eros, 
25143 Itokawa is expected to be the second such near-Earth 
asteroid (Farquhar et al., 2003). The Japanese spacecraft 
Hayabusa will hover near this target in the May-September 
2005 time frame, performing observations in several spectral 
bands and collecting a small sample o f the asteroid surface 
to be returned back to the Earth. The telecommunication link 
to the satellite can be used to generate pseudo-range obser­
vations to the asteroid with about 100 m accuracy. Since 
Itokawa has been successfully radar-ranged in June 2004 
both by Goldstone and Arecibo, the Hayabusa data should 
be enough to convincingly reveal the Yarkovsky signal in 
this asteroid’s motion17 (Ostro et al., 2004).

The Yarkovsky detection for Itokawa would be funda­
mental for two reasons. First, measurement o f the Hayabusa 
motion near Itokawa itself will allow an independent deter­
mination of the target’s mass (from its gravitational effect 
on the spacecraft) and the on-board infrared observations 
should allow detailed understanding of the temperature vari­
ations on the surface. Both parameters are those that are, in 
a correlated way, determined through the measurement of 
the Yarkovsky perturbation. Independent measurements of 
these properties will help us to test the reliability of estimates 
derived from measuring the Yarkovsky effect Secondly, 
Vokrouhlický et al. (2004) suggested the YORP effect, a

17 Here we specify parameters of the Yarkovsky model used in Ostro 
etal. (2004): (i) rotation period P  =  12.132 hr and rotation pole ecliptic 
longitude I = 355° and latitude b = —84° by Kaasalainen et al. (2003), 
(ii) radar shape model by Ostro et al. (2004), and (iii) thermal and bulk 
physical parameters, the surface thermal conductivity K  =  0.05 W/(mK), 
the specific heat capacity C  =  800 J/(kgK), the surface and bulk densities 
ft =  2.0 g/cm3 and Pt, =  2.S g/cm3. These latter parameters arc consistent 
with Ishiguro et al.'s (2003) radiometric observations indicating the surface 
ihctmaJ inertia Γ  =  290 J/(kgm2 s1/2), thus the thermal parameter Θ  =  
1.3 at about I AU. These infrared observations also suggest a geometric 
•Ibcdo py  =0.35, that, with the slope parameter G =0.29, implies a Bond 
ilbcdo of Λ =0.17.

rotational variant of the Yarkovsky effect, might also be de­
tected for Itokawa by 2004 (and nearly certainly in 2005 
using Hayabusa observations). Hence 25143 Itokawa would 
be the first target for which both Yarkovsky and YORP ef­
fects will be simultaneously determined. Also, Vokrouhlický 
et al. (2004) report that the YORP effect depends only lit­
tle on the surface thermal inertia value while still depending 
on the asteroid’s mass or bulk density (see also Čapek and 
Vokrouhlický, 2004), thus the YORP detection itself would 
also help to decorrelate the Yarkovsky-detected parameters 
(mass and the surface thermal inertia).

3.1. 4179 Toutatis

This asteroid is exceptional in several respects. Toutatis, 
like Golevka, currently resides in the 3/1 mean motion res­
onance with Jupiter, but it also temporarily interacts with 
much weaker exterior 1 /4 mean motion resonance with the 
Earth (e.g., Marsden, 1970; Whipple and Shelus, 1993). 
As a result, Toutatis undergoes close encounters with the 
Earth every 4 years for some period of time around 2000. 
This fact gives a splendid opportunity to acquire good or­
bital data, including radar astrometry. 18 Secondly, early af­
ter Toutatis* discovery, Bardwell (1989) established a con­
nection between its orbit and that o f lost object 1934 CT. 
Pre-discovery identifications are now frequent, 19 but link­
ing observations nearly 60 years apart is still unusual. It has 
been also claimed for some time (e.g., Sitarski, 1998), that 
these early Toutatis observations are not exactly aligned with 
modem data, and actually lie several arc-seconds from the 
prediction. Speculations have been made about comet-like 
propulsion effects on this orbit. Prompted by these puzzles, 
Vokrouhlický et al. (2000) asked whether the Yarkovsky ef­
fect might be the missing element in the long-term Toutatis 
dynamics, but concluded negatively. Here we confirm this 
finding.

As in the case o f Geographos, we have several reasons 
to revisit the Vokrouhlický et al. (2000) analysis of this 
object. First, Toutatis is highly elongated with an accurate 
shape model (Hudson and Ostro, 1995, 1998; Ostro et al., 
1999; Hudson et al., 2003), and we want to know whether 
the simple spherical model used by Vokrouhlický et al. 
(2000) gives reasonable results. Second, and more impor­
tant, Vokrouhlický et al. (2000) included two errors in their 
analysis that likely affect their conclusions: (i) they assumed 
a spherical Toutatis-equivalent body o f 5.5 km size, more 
than twice the real value (2.45 km; Hudson and Ostro, 1995, 
1998), and (ii) they assumed a 7 hr rotation period instead 
of much longer proper periods of the non-principal-axis ro­
tation of the real body (see below).

18 Radar data were obtained at all of these possibilities, with particularly 
accurate measurements in 1992 and 1996.

19 In fact, Toutatis has been recovered on five more pre-discovery plates 
taken in July 1988.
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Hudson et al. (2003) recently derived the highest reso­
lution model of Toutatis’ shape, a model with 39996 tri­
angular facets of roughly equal area. However, the pur­
pose of this work does not need such fine resolution, which 
would require unrealistically large computational costs. We 
instead use a 12796 facet model derived by Hudson and 
Ostro (1995); the corresponding source files can be found 
at http://www.psi.edu/pds/archive/rshape.html. We assume 
(he following thermal and physical parameters: geometric 
albedo pv =  0.08 (Ostro et al., 1999; see also Lupishko et 
al., 1995), specific heat capacity C =  800 J/(kgK), surface 
and bulk densities of ps =  2 .0  g/cm3 and pb =  2 .6  g/cm3 
(compatible with results of Ostro et al., 1999). The value 
K =  0.01 W/(mK) is most compatible with the thermal in­
ertia reported by Howell et al. (1994), so we use that value 
in our 2004 Yarkovsky displacement prediction (Fig. 10).

Modeling of the Yarkovsky effect for Toutatis is par­
ticularly difficult because of its curious rotation state. In­
deed, this is the first case for which a computation of the 
Yarkovsky effect has been performed for an asteroid in a 
non-principal-axis mode of rotation. We use the spin state 
derived by Hudson and Ostro (1995) (see also Hudson and 
Ostro, 1998, and Ostro et al., 1999), namely (i) Euler angles 
characterizing transformation of the ecliptic (inertial) frame 
and the body-fixed frame of principal axes of the inertia ten­
sor, and (ii) projection of the angular velocity vector onto 
the principal axes (in the body-fixed frame) for given epoch. 
These initial conditions are propagated numerically (e.g., 
Landau and Lifschitz, 1976;Kryszczynskaetal., 1999), giv­
ing at any time the transformation matrix between the body- 
fixed frame and the inertial (ecliptic) frame. We note the 
period of free motion o f the angular velocity vector about the 
longest axis of the inertia tensor in the body fixed frame— 
s: 5.37 days—and the period of precession of the body-fixed 
frame about the nearly-constant angular momentum vector 
in the inertial frame—~  7.42 days (Hudson and Ostro, 1995; 
Ostro et al., 1999; see also Scheeres et al., 1998). A par­
ticular problem, relevant to the heat diffusion modeling, is 
that there is no exact periodicity in Toutatis’ rotation state 
(e.g., Landau and Lifschitz, 1976). Though in principle Tou­
tatis never returns to the same configuration in inertial space, 
there is a near-exact periodicity of ~  1454.4 days, curiously 
close to Toutatis orbital period. This near periodicity o f Tou­
tatis’ orientation in space after one revolution is important, 
because it facilitates formulation of the boundary conditions 
for the heat diffusion problem, which are otherwise trivial 
for principal axis rotation.

With the asteroid shape and rotation specified, we use 
the same numerical method as in the Geographos case to 
solve the heat diffusion problem, namely we use a one­
dimensional reduction to depth and time variables for each 
of the surface facets. The surface boundary condition is a 
nonlinear enetgy conservation law. As described above, the 
solution is forced to be periodic with a period of the aster­
oid’s revolution about the Sun. A look-up table of numer­
ically computed Yarkovsky acceleration components along
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Fig. 9. The Yarkovsky-induced average semimajor axis drift rate (da/dt) 
for Toutatis, as a function of surfacc conductivity K. The solid line is the 
result from complete numerical model described in the text. The other two 
lines show the result from a linearized approximation of heat conduction 
and a fictitious spherical body having the same volume as Toutatis rotating 
about an axis dinxtcd along Toutatis’ angular momentum with periods of 
7.42 days (dashed) and 5.39 days (dotted), respectively.

the asteroid’s orbit is exported20 and later used in the orbit 
determination program.

Figure 9 shows the orbit-averaged value of semimajor 
axis drift due to the Yarkovsky effect as a function of sur­
face thermal conductivity. We noted above that our result 
supersedes that o f Vokrouhlický et al. (2000, Fig. 5); the 
Yarkovsky effect is stronger than previously reported mainly 
due to correction in size, and, due to slow rotation, the 
maximum effect now occurs for high conductivity. Inter­
estingly, the much simplified linearized approach of the 
Yarkovsky force computation using a spherical body and a 
fictitious spin axis in the direction of Toutatis angular mo­
mentum (dashed curve) gives a fairly satisfactory result. Fu­
ture analyses of the Yarkovsky effect on tumbling objects 
may thus use this simplified formulation as a reliable zero- 
order approximation.

Ahead of us are four radar-observable close approaches 
o f Toutatis to the Earth, and it is virtually certain that the 
Yarkovsky perturbation will be detected; the question is 
when. The close encounters in October 2004 and December 
2012 are particularly deep so that Arecibo’s SNR for such 
a large object will reach 50,000. In November 2008 the en­
counter is more distant, yet the SNR for the Arecibo system 
is still ~  4000, and the latest radar-astrometry possibility un­
til 2069 occurs in January 2017 (with SNR ~  70). In what 
follows we argue that already the first chance, October 2004, 
will likely reveal existence and strength of the Yarkovsky ef­
fect for this target; further observations will only sharpen this 
information. Toutatis will thus be the first multi-kilometer 
asteroid for which the Yarkovsky effect would be measured, 
and it will be also the first target for which the Yarkovsky 
perturbation may be repeatedly measured and refined.

20 Data available at http://sirrah.troja.mfT.cuni.cz/~davok/.

http://www.psi.edu/pds/archive/rshape.html
http://sirrah.troja.mfT.cuni.cz/~davok/
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Fig. 10. Yarkovsky offsets for 4 179 Toutatis on Octobcr 8.5, 2004, dcpictcd 
as described in Fig. I.

Figure 10 shows the predicted orbital displacement due 
to the Yarkovsky effect in October 2004, assuming the sur­
face and bulk parameters as described above. We note the 
Yarkovsky signal, subject to our assumptions, surpasses the 
6σ significance level for all dates, ensuring a Yarkovsky de­
tection. The Goldstone radar is unavailable due to scheduled 
maintenance, but the relevant observations have been pro­
posed at Arecibo.

3.2. (54509) 2000 PHS

This body belongs to an interesting subgroup of NEAs, 
namely the Earth co-orbital asteroids (see, e.g., Christou, 
2000; Wiegert et al., 2000; Morais and Morbidelli, 2002) 
that temporarily librate about the unitary circle in the So­
lar System. Occasionally, this motion causes the asteroid to 
experience a sequence of yearly close approaches whenever 
the heliocentric longitudes of the Earth and the co-orbital 
are similar.21 In the case o f 2000 PH5 such radar-observable 
close encounters will last until 2006 (for distances less than 
~0.08 AU).

In spite of its small size (D — 100 m assuming a 
mid-range geometric albedo of 0.15) and recent discovery 
(Hergenrother, 2000), the unusual orbit has allowed ob­
servers to obtain some useful information about this target. 
So far we know accurately the rotation period P =  12.173 
min (e.g., http://www.asu.cas.cz/~ppravec/), although no 
good constraint is available on the rotation pole except for 
P. Pravec’s (2004, personal communication) claim that \b\ > 
30°, based on an extensive photometric campaign during 
2003. Hereafter we presume a pole position o f I =  0° and 
b =  +30°. (Any position closer to the ecliptic poles makes 
the Yarkovsky perturbation stronger, up to a factor of 2.) We 
also, somewhat conservatively, use D =  120 m because the

21 Similarly, bodies inside or near the 1/2 exterior resonance with the 
Earth may happen to closcly approach the Earth every second year, a good 
example, and also a good Yaikovsky-dctcction candidate, is the Asteroid 
2003 YT70.

Range [km]
(a)

Range [km]
0>)

Fig. 11. Yarkovsky offsets for (54509) 2000 PH5 on (a) July 26.7,2005 and 
(b) July 22.6, 2006, dcpictcd as in Fig. 1. In (a) wc assume Arecibo radar 
astrometry in July 2004. In (b) wc assume radar astrometry from 2004 and 
2005.

size is currently derived from the absolute magnitude only 
and no constraint on albedo is available, although in 2004 
the situation should much improve if radar ranging from 
Arecibo is successful. Similarly, we have little information 
about this target’s surface properties. We adopt the following 
plausible values: thermal conductivity K =  0.05 W/(m Κ.), 
specific heat capacity C =  800 J/(kgK), surface and bulk 
densities ps =  2 .0 g/cm3 andp* =  2 .6 g/cm3.

2000 PH5 will be observable annually from Arecibo dur­
ing the next three years with a fading SNR: ~  20000 in July 
2004, ~  1200 in July 2005 and ~  37 in July 2006. With radar 
astrometry in July 2000 and optical astrometry since then, 
the Yarkovsky effect should be easily detectable. In 2004, 
however, the observations cannot serve for that purpose, yet 
they will be very important. First, the very large SNR value 
should provide an excellent opportunity for physical char­
acterization, including shape, size, rotation state and surface 
properties. Moreover, the orbit uncertainty will be dramati­
cally reduced, so that radar astrometry in July 2005 or 2006 
should reveal the Yarkovsky perturbation (Fig. 11). In our 
simulation we assumed radar astrometry of 50-m accuracy 
taken in July 2004 and 2005. The 2005 data may still be am­
biguous judging from the partial overlap of the confidence

http://www.asu.cas.cz/~ppravec/
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Fig. 12. Yarkovsky offsets for 2003 YN107 on June 13.4,2006, depicted as 
in Fig. 1. These solutions assume current optical astrometry together with a 
simulated optical recovery in December 2004 and Arecibo ranging in 200S 
as described in the text.

regions (Fig. 11 a), and this motivates the 2006 observations 
(Fig. 11b).

3.2.1. Other remarkable co-orbitals
For the same reason discussed for 2000 PH5, sev­

eral other Earth co-orbitals are promising candidates for 
Yarkovsky effect detection: Yearly repetition o f close en­
counters with the Earth allows us to gather very detailed 
orbital and physical information. Below we briefly outline 
several other interesting objects in this class, although we do 
not present a detailed simulation for all of them.

• 1998 UP1. This ~  250 m object unfortunately fades 
from radar detectability by 2007, but yearly data may 
have the power to reveal the Yarkovsky effect before that 
point. The two pre-discovery observations from Octo­
ber 1990 are both offset in right ascension (on average 
by ~  2 arcsec); this might already be an effect of the 
Yarkovsky force acting on this body.

• 2003 YNI07. This ~  20 m object was discovered dur­
ing its close encounter in December 2003 after being 
missed during a series of close approaches since 1997; 
any recovery from archival data would be important (but 
may be contingent on estimation o f the Yarkovsky per­
turbation). 2003 YN107 resides on an exceptional quasi­
satellite orbit around the Earth (Brasser et al., 2004), 
with numerous close encounters at distance <  0.07 AU 
till May 2007. The radar ranging possibilities are in De­
cember 2004, June 2005 and June 2006 (the latter two at 
SNR ^ 200 and ~  600 from Arecibo). According to our 
estimate (Fig. 12), the 2006 radar astrometry should re­
veal existence of the Yarkovsky perturbation at a very 
significant statistical level. This solution assumes re­
covery of the target in mid-December 2004, which is 
necessary for further steps in our scenario, and Arecibo 
ranging in June 2005 (with — 200 m and — 500 m/day 
uncertainties in range and range rate). Obviously, none 
of the physical parameters needed for accurate estima­

tion of the Yarkovsky effect strength are known today 
so we have adopted the following values: rotation pe­
riod P ~  10 min, pole orientation I =  0° and b =  +30°, 
thermal conductivity K =  0.1 W/(mK), specific heat 
capacity C =  800 7 / (kg Κ.), surface and bulk densities 
p, =  2.0 g/cm3 and pb — 2.6 g/cm3.

• 2003 WP25. This ~  50 m body has been observed since 
October 2002. It may be radar detected from Arecibo 
in February 2008 and in March 2009, while optical as­
trometry may be obtained yearly till 2010. The nearly 
10-year timebase should allow Yarkovsky detection.

• 2000 WN10. This ~  350 m object will be undergoing 
shallow close approaches to the Earth (within ~  0.2 AU 
distance) up until November 2027. On several occasions 
between November 2005 and November 2014, Arecibo 
SNR surpasses 20, allowing ~  1 km accurate radar as­
trometry. If at least some of these ranging possibilities 
are used, the Yarkovsky effect should be readily de­
tected.

• 1999 JV6. This 350-400 m size body is drifting toward 
close approaches with the Earth in between January 
2014 and January 2018. At each of these occasions the 
target is observable either from Arecibo or Goldstone 
with comfortably large SNR values, the best in January 
2016 from Arecibo when SNR surpasses 1000. Apart 
from that, this asteroid is optically observable every 
year.

3.3. 1999 MN

This is an example o f another interesting class of NEAs: 
A deep Aten-type object with aphelion distance (1.12 AU) 
just outside the Earth’s orbit and perihelion distance 
(0.22 AU) well inside Mercury’s orbit. Its proximity to the 
Sun indicates that the Yarkovsky effect should be particu­
larly strong on this orbit. Moreover, this body is also among 
the 25 NEAs whose relativistic perihelion drift exceeds 
10 arcsec/cy (it is 18.8 arcsec/cy for 1999 MN), and which 
may serve to test relativity theory (Margot, 2003). Here we 
do not study a possible correlation of the Yarkovsky and rel­
ativity parameters, and we focus on the Yarkovsky signal 
only.

Little is known about the body right now, except for the 
likely value o f the rotation period o f ~  5.5 hr, kindly com­
municated to us by C. Hergenrother. 1999 MN was recov­
ered by Spacewatch in late May 2004, and subsequently 
scheduled for both Goldstone and Arecibo observations in 
June and July 2004. The orbit is unusual in its frequent 
close encounters with the Earth (and both Venus and Mer­
cury) during the next decade or so. Favorable approaches 
to the Earth occur in July 2004, June 2005, July 2009 and 
June 2010 (to mention the nearest only). At all these oc­
casions Arecibo can range this target with SNR larger than 
35 (a minimum peak value for the 2009 encounter). Results 
presented below are to be considered more as a feasibility
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Fig. 13. Yarkovsky offsets for 1999 M N  on May 30, 2010 (a) and June 3, 
2010 (b), dcpictcd as in Fig. I. Part (a) shows the range and range-rate 
plane, appropriate for radar astrometry, while part (b) shows the sky-planc, 
appropriate for optical astrometry. These solutions assume the current opti­
cal astrometry together with simulated Goldstonc radar observation in 2004 
•nd Arecibo radar observations in 2005 and 2009 as dcscribcd in the text.

analysis than a real prediction, since they make use of the 
four nearest radar apparitions mentioned above.

In the absence of other information, we use a fictitious 
pole position (£ =  0°, b =  +30°) in our simulations, which 
yields about an average strength o f the Yarkovsky effect. We 
further assume a size of D Ξ: 170 m. Also, we expect the 
surface thermal parameters are affected by the proximity to 
the Sun along most of the orbit, hence the following values 
seem appropriate: thermal conductivity K =  0.05 W/(m K), 
specific heat capacity C =  800 J/(kgK), surface and bulk 
densities p, =  2 .0  g/cm3 and Pb =  2 .6  g/cm3.

As expected, the orbit uncertainty must be well con­
strained before attempting to detect a perturbation as fine 
as the Yarkovsky effect; we find that any astrometry from 
2004, 2005, and most likely also 2009, will serve only that 
purpose. However, Fig. 13 indicates that in May 2010 we 
may expect a fairly strong Yarkovsky signal revealed both 
in radar and optical astrometry (we assumed 300-m range, 
and 800-m/day range-rate, astrometry during the pre- 2 0 1 0  
ranging possibilities).

We also note 1999 MN undergoes further close encoun­
ters with die Earth in June 2015 and June 2020 when addi­
tional orbital information may improve the Yarkovsky solu­
tion for this object.

4. Very small targets

Here we discuss examples of very small NEAs for which 
the strength o f the Yarkovsky effect is generally large and 
thus the possibility to detect it is good, at least a priori. How­
ever, it is often difficult to acquire necessary information 
about the physical properties of the object (rotation state, 
constraints on the surface thermal parameters, etc.). In most 
of the cases discussed below we do not yet know these char­
acteristics, so our analyses should be considered only as 
feasibility studies rather than accurate predictions.

The case o f 1998 K.Y26 was discussed by Vokrouhlický et 
al. (2 0 0 0 ) and we do not have new results for that object, al­
though we note that challenging recovery observations were 
obtained from Mauna Kea in early 2002 (Tholen, 2003). 
Also, we have already discussed the small co-orbital Aster­
oids 2003 WP25 and 2003 YN107 that would naturally fall 
into this category. Another interesting case is the recently 
spotted small Asteroid 2004 FH (D ~  25 m) that on March 
18, 2004 passed at a geocentric distance of only 49100 km. 
In spite of observations spanning just ~  3 days, the body 
may be recovered in January 2018, when it undergoes a 
more distant Earth encounter. If radar astrometry is recorded 
during that flyby (marginally possible from Arecibo), the 
Yarkovsky effect should be easily detected in February 2021.

4.1. 2000 UK 11

Virtually nothing is known about this body, except its 
small size; 22 the absolute magnitude H ~  25 implies a size 
in the interval 20-50 m (in our simulations we consider 
D =  32 m). Optical astrometry includes observations dur­
ing October and November 2000, when radar data were also 
acquired. No additional information that would hint about 
the rotation or physical properties of this object exist. Given 
the small size of this body and its Aten orbit we consider it 
reasonable to assume a higher value o f the surface thermal 
inertia, hence the thermal conductivity K =  0.05 W/(m Κ.), 
the specific heat capacity C — 800 J/(kg Κ.), surface and 
bulk densities p, =  2.0 g/cm3 and pb =  2.6 g/cm3. Con­
sistent with results for other small asteroids (e.g., Pravec et 
al., 2004), we assume a short rotation period, P =  10 min, 
and an arbitrary pole position, t  =  0° and b =  +30°.

A common feature to many of the “small-target scenar­
ios” is the necessity of their recovery. In the 2000 UK 11 case

22 Al the revision of this manuscript, M. Nolan communicatcd to us that 
the 2000 Arecibo radar data indicate a very fast rotator al the limit of 
=: 3 min period. Rc-analysis of those data might also provide a more tight 
radar astrometry that would shrink uncertainty intervals in Fig. 14.
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Fig. 14. Yarkovsky offsets, depicted as in Fig. I, for 2000 UK11 in (a) the 
plane-of-sky on Octobcr 10, 2010 and (b) in the range vs. range-rate projec­
tion on July 7, 2024. These solutions assume the current optical astrometry 
plus Arecibo radar observations in 2005.

the task is reasonably simple: In late October 2005 the object 
will be at visual magnitude23 — 2 0 .8  and the sky-plane un­
certainty will be ~  1 arcmin along the line of variation. The 
recovery would be timely because in early November 2005 
the target is observable from Arecibo with an estimated SNR 
of ~  350. New radar astrometry would be crucial to con­
strain the orbital uncertainty and to acquire additional infor­
mation about the body itself. Here we assume radar ranging 
in 2005 with 300 m uncertainty. The Yarkovsky effect detec­
tion itself should, however, wait for later close encounters 
with the Earth.

Should the technology allow, the Yarkovsky effect could 
be detected optically by October 2010 when the asteroid ap­
proaches the Earth at 0.159 AU. Figure 14a shows the diffi­
culty: The target is at magnitude ̂  24.1, and the sought sky- 
plane displacement, though surpassing the 3σ-uncertainty, 
is less than half an arcsecond. Should the rotation pole be 
closer to the pole of the ecliptic, the effect may be a little

larger, perhaps by a factor o f 2 , but, on the other hand, a 
higher surface conductivity might hamper detection, making 
the orbital displacement smaller, by as much as a factor of
5. We conclude that the Yarkovsky detection in 2010 may be 
difficult, but is indeed possible, even with current technol­
ogy, as long as the magnitude of the Yarkovsky acceleration 
is not much less than we have modeled.

Further close approaches to the Earth occur in July 2024 
and August 2029. During the first, shallower encounter this 
target is barely observable by the Arecibo radar (estimated 
SNR ~  10), though Fig. 14b suggests the Yarkovsky dis­
placement might be readily detected. Hopefully, future radar 
systems devoted to asteroid observation will have the capa­
bility to reach this target at significantly higher SNR value.

4.2. 2002JR100

In many respects this body resembles 2000 UK 11, though 
the estimated size, D ~  50 m, is a little larger. We as­
sume the same thermal and bulk properties as for 2 0 0 0  
UK11, the same pole orientation, and a rotation period of 
15 min. Current observations of this object cover only about 
two weeks in May 2002, but future possibilities to observe 
this object are considerably better than in the case of 2 0 0 0  
UK11. Promising radar-observability windows occur during 
April/May 2010, September 2011 and April/May 2018.

In the ideal scenario, the target will be recovered in April 
2 0 1 0 , when it becomes reasonably bright (~  2 0  magnitude) 
and the sky-plane uncertainty stretches over about 2 ° along 
the line of variations. After recovery the orbit may be se­
cured within a few days, in time for the optimum Arecibo 
(SNR ~  1200) or Goldstone (SNR~ 180) observing win­
dows. If this scheme succeeds and some 200-m radar ranging 
is obtained in 2010, plus some less precise ranging in Sep­
tember 2 0 1 1 ,24 we may expect later observations would re­
veal the Yarkovsky perturbation. Figure 15a shows the esti­
mated range vs. range-rate Yarkovsky displacement relative 
to the no-Yarkovsky solution in April 2018 (the estimated 
SNR of the Arecibo system is ~  1450). Note the comfort­
ably large separation o f the 3σ-uncertainty intervals of the 
two orbits. In fact, even the sky-plane position is signifi­
cantly displaced by the Yarkovsky effect and by itself may 
reveal the sought signal (Fig. 15b).

4.3. 1991 VG

With an estimated absolute magnitude H ~  28.4, 
1991 VG is among the smallest objects ever observed. As­
suming a diameter D 2 : 10 m, it is comparable to or smaller 
than the estimated size o f the precursors of several mete­
orites. 1991 VG was discovered during its deep close en­
counter with the Earth in November 1991 (Scotti and Mars- 
den, 1991), and it was briefly observed again in April 1992.

23 As an optimistic scenario we may hope to obtain lightcurve data in the
same epoch.

24 In our simulation we assumed 500 m accurate range measurement and
I km/day accurate range-rate measurement from Arecibo.
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Fig. 15. Yarkovsky offsets, dcpictcd as in Fig. 1, for 2002 JRIOO on April 
29.9,2018. Both radar (a) and optical (b) offsets arc plotted. These solutions 
assume the current optica] astrometry plus Goldstonc and Arecibo radar 
observations in 2010 and 2011.

This secured the orbit remarkably well: The sky-plane un­
certainty is only a few arcmin during its next close encounter 
with the Earth in August 2017. And, at a visual magnitude 
of ~  23.4, we expect it to be recovered and the orbit dramat­
ically improved (Fig. 16), enabling a possible measurement 
of the Yarkovsky perturbation in February 2018.

To demonstrate feasibility of this scenario, we first 
simulated the effect of recovery in 2017 on the orbit 
uncertainty—dashed lines 1 and 2 on Fig. 16. We simulated 
three optical measurements with 1 arcsec uncertainty in both 
right ascension and declination, which reduces the sky-plane 
uncertainty below ~  0.3 arcsec. As a result, the orbit uncer­
tainty remains sub-arcsecond during the 2018 approach to 
the Earth. The estimated sky-plane displacement due to the 
Yarkovsky effect (up to ~  9 arcsec; Fig. 16) during that ap­
parition might be measurable, but a large telescope is needed 
for this task since the visual magnitude peaks at only ~  24.5. 
This solution assumes the following surface and bulk pa­
rameters: thermal conductivity K =  0.1 W/(mK), specific 
heat capacity C = 800 J/(kgK), surface and bulk densi­
ties Ps —2 g/cm3 and pb — 3 g/cm3, and rotation period

Fig. 16. Right-asccnsion uncertainty (formal 1σ-value) of 1991 VG dur­
ing the 2017-2018 period; the upper dashed curve (I) is a solution with 
the current observational data, the lower dashed curve (2) accounts for 
simulated optical observations in August 2017 when the object closely ap­
proaches to the Earth. The 2017 observations cause a sharp “collapse" of 
the orbital uncertainty. The thick solid curve shows the estimated maximum 
right-asccnsion displacement due to the Yarkovsky effect (see the text). This 
signal could be observable during the February 2018 apparition (shaded pe­
riod, during which the estimated visual magnitude drops below 2S).

~  5 min. Should the asteroid rotate more slowly, or should 
the surface conductivity be smaller, the effect would be still 
larger, up to a factor o f 5. On the other hand, our adopted 
pole maximizes the Yarkovsky efTect.

With this simulation, we tentatively conclude that the pe­
culiar object 1991 VG might be the first case for which the 
Yarkovsky perturbation would be determined without any 
radar astrometry data at all. This certainly remains excep­
tional, but future high-accuracy optical astrometry projects 
(including space missions like GAIA;25 e.g., Mignard, 2002, 
and http://astro.estec.esa.nl/GAlA/) might boost power of 
“non-radar means” to detect the Yarkovsky effect.

5. Conclusions

In this paper we point out a number of asteroids for 
which the Yarkovsky effect might be detected within a 
decade or two. Additional candidate objects will certainly 
be discovered after publication, as the automatic programs 
will continue their search for smaller objects (e.g., Stokes 
et al., 2003). For that reason we plan to maintain a web 
site (http://sirrah.troja.mff.cuni.cz/~davok/) where the list of 
candidate bodies will be updated. We have intentionally 
postponed to a follow-on paper the discussion of possible 
Yarkovsky detection for binary asteroid systems, for which 
the orbital analysis is much more complicated than for single 
asteroids.

25 Note, however, that limiting magnitudes might prevent efficient obser­
vations of very smalt targets by these cosmic astrometrie missions and the 
radar astrometry during their close encounters with the Earth may remain 
to be the principal tool for decades.

http://astro.estec.esa.nl/GAlA/
http://sirrah.troja.mff.cuni.cz/~davok/
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The wide variety of asteroids and circumstances for 
which the Yarkovsky effect could be detected suggests that 
this technique could become an important tool in asteroid 
science. The capability of measuring the mass o f a can­
didate asteroid is the most important finding.26 However, 
to complement the radar astronomy, an interdisciplinary 
collaboration— including light curve observations to con­
strain shape and spin states, optical astrometry to refine 
the orbits and infrared observations to constrain the thermal 
properties—is needed to fully exploit this information.
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Abstract
We consider the possibility of detecting the Yarkovsky orbital perturbation acting on binary systems among the near-Earth asteroids. This 

task is significantly more difficult than for solitary asteroids because the Yarkovsky force affects both the heliocentric oibit of the system’s 
center of mass and the relative orbit of the two components. Nevertheless, we argue these are sufficiently well decoupled so that the major 
Yarkovsky perturbation is in the simpler heliocentric motion and is observable with the current means of radar astrometry. Over the long term, 
the Yarkovsky perturbation in the relative motion of the two components is also detectable for the best observed systems. However, here we 
consider a simplified version of the problem by ignoring mutual non-spherical gravitational perturbations between the two asteroids. With the 
orbital plane constant in space and the components’ rotation poles fixed (and assumed perpendicular to the orbital plane), we do not examine 
the coupling between Yarkovsky and gravitational effects. While radar observations remain an essential element of Yarkovsky detections, 
lightcurve observations, with their ability to track occultalion and eclipse phenomena, are also very important in the case of binaries. The 
nearest possible future detection of the Yarkovsky effect for a binary system occurs for (66063) 1998 RO| in September 2006. Farther out, 
even more statistically significant detections are possible for several other systems including 2000 DP]07 , (66391) 1999 KW4 and 1996 FG3 . 
Published by Elsevier Inc.
Keywords: Asteroids; Yarkovsky cffcct; Orbit determination

1. Introduction

In a recent paper (Vokrouhlický et al., 200S; see also 
Vokrouhlický et al., 2000, 2001), we demonstrated that fu­
ture radar and optical astrometric observations o f near-Eaith 
asteroids (NEAs) will likely provide many opportunities to 
detect the Yarkovsky effect (e.g., Bottke et al., 2002) in their 
orbital motion. We considered candidate asteroids with a 
variety of sizes, orbital parameters, shapes, rotation states, 
spectral types, etc., but we intentionally omitted discussion 
of binary systems in that work. The purpose of this paper is
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to extend the analysis in Vokrouhlický et al. (2005) to ac­
count for these cases.

The possibility of detecting the Yarkovsky efTect for bi­
nary systems is both appealing and challenging. The attrac­
tive quality, as compared to solitary asteroids, is due to an 
independent constraint on the total mass of the system from 
analysis of the relative motion. Experience from the first 
successful detection o f the Yarkovsky effect (Chesley et al.,
2003) reveals an “unpleasant intrinsic correlation” of the sur­
face thermal inertia and the asteroid's mass. When one of 
these parameters is independently known the Yarkovsky sig­
nal may be used to determine the other, or if both parameters 
are somehow independently constrained their uncertainties 
may be reduced. Binary systems naturally offer this possi­
bility. The other face of the same reasoning, however, is the 
necessity of solving both the motion of the two asteroids 
relative each other and the motion of their center of mass
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(COM) about the Sun. This dramatically increases the com­
plexity of the problem.

Although the methodology of our work remains basically 
the same as described in Vokrouhlický et al. (2005), and al­
ready in Vokrouhlický et al. (2000), we need to complement 
our discussion by an appropriate analysis of the relative mo­
tion of the two binary components. This is done in Section 2, 
and in Appendix A, using the simplest possible approach. In 
particular, we do not model the coupling between the grav­
itational perturbations (due to non-sphericity of the com­
ponents) and the Yarkovsky perturbation, a problem mar­
velously difficult requiring numerical solution. Rather, we 
illustrate the principal Yarkovsky effect for the relative bi­
nary motion as if the mutual gravitational perturbations did 
not exist. This allows us to assume the orbital plane of die 
two components stays fixed in space, as well as their rota­
tion axes (that we additionally assume perpendicular to their 
orbital plane). For that reason, however, our analysis is not 
sufficient to study long-term dynamics of the binary system 
and the role of the Yarkovsky forces for its stability, but we 
focus solely on a short-term scale. The theory is applied 
in Section 3, where we consider one binary system— 2000 
DP 107—as an illustration, and some considerations concern­
ing validity of our assumptions are in Section 4. Even though 
the Yarkovsky detection might be obtained sooner for other 
systems, we consider it premature to discuss them because 
their key physical and dynamical parameters have not yet 
been reported in the peer-reviewed literature. This paper thus 
sets the concepts, which could be applied to any binary sys­
tem when enough data are available.

2. Theory

Determination of the Yarkovsky effect for close binary 
systems, which predominate among the NEA binary popu­
lation, is difficult because it affects both parts of their mo­
tion in space: (i) heliocentric motion of the system’s COM 
(“global motion”), and (ii) relative motion of the two aster­
oids about the COM (“ local motion”). A combined analysis 
of global and local dynamics certainly relies on numerical 
simulation whose complexity goes beyond standard orbit 
determination programs. However, we show that the local 
and global motions are largely decoupled,1 and the major 
Yarkovsky perturbation occurs for the global motion, for 
which the analysis is much simpler.

Let R denote the heliocentric position vector of the sys­
tem COM and r the relative position of the secondary com­
ponent with respect to the primary component. Then the 
gjobal motion is described by

1 General discussion of a coupling between the global and local motions 
is in Damour (1987).

where G is the gravitational constant and M is the solar 
mass. The term “tidal quadrupole coupling” denotes the 
leading tidal term due to interaction of the internal mo­
tion with the quadrupole part of the external gravity fields, 
which are, for the solar influence, smaller by a factor2 
of ~(r/R)2 ~  10-10 than the solar monopole accelera­
tion3 CM/R2 and may be safely neglected. There are even 
smaller terms due to higher multipole interactions and the 
interaction of the solar monopole with quadrupole fields of 
both asteroids not shown in Eq. (1). In general, however, 
the point-masses model is a very good approximation o f the 
global motion, except perhaps for very long timescales or 
deep encounters with planets. The Yarkovsky perturbation is 
represented by the terms in the second row; f| and Í2 are the 
Yarkovsky accelerations of both components with masses 
m i and m2 , and X 1 =  m\/m and X2 =  mi/m are the respec­
tive fractions with which they contribute to the total mass 
m =  m i -I- m2 of the system. Note the relative magnitude of 
the Yarkovsky effective acceleration |*if| +  with re­
spect to the solar monopole acceleration is ~5 x 10“ 10 for 
the 2000 DPio7 case studied below. But even more important 
than the absolute magnitude is a non-zero mean acceleration 
component transverse to the heliocentric position vector that 
produces a fast growing perturbation in the orbital longitude.

The local motion is given by

2 This interaction is generally very small and it docs not result in a sig­
nificant long-term perturbation of the orbit; a special topic that warrants 
a deeper analysis arc close encounters with planets (Earth) that may tem­
porarily surpass the solar tidal influence.
3 Note this is only slightly more than the uncertainty in C M  or equiva­

lently the astronomical unit (e.g., IERS, 2003).

where “quadrupole coupling” stands for quadrupole (and 
higher multipole) interactions of the two asteroids and for 
their monopole interactions with the solar and planetary 
(quadrupole) tidal fields. The Yarkovsky perturbation is 
again represented by the second row. Due to a typical prox­
imity of the binary components in NEAs, the local motion 
solution is very complicated, also because the quadrupole 
interaction is intimately coupled with evolution of the spin 
state of both asteroids. Representation o f the relative motion 
with a point mass model is inadequate on any timescale o f 
interest.

While the Yarkovsky perturbation o f the global motion 
is a weighted sum of both Yarkovsky forces, its effect on 
the local motion is given by their difference. Assuming 
that the rotation periods o f both components are compa­
rable (within an order of magnitude) and that their rota­
tion axes collinear, and neglecting mutual shadowing ef­
fects, we may approximate f| ~  |f2 , where ξ =  D2 /D 1 < 1
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is the ratio of characteristic sizes of the two components 
(here we arbitrarily assume With that, one eas­
ily shows4 , , The
effective Yarkovsky acceleration for global motion in (1) is 
dominated by the Yarkovsky effect on the larger compo­
nent. On the contrary, f2 — fi ~  (1 — f)Í2 is dominated by 
the Yarkovsky effect on the smaller component (except for 
cases with binary components of comparable size). These 
rules likely maximize the total result; mutual shadowing, 
non-collinear rotation axes and other effects perhaps lessen 
the effective Yarkovsky force and should be investigated nu­
merically.

2.1. Thermal solution for binaries

In the analyses shown below we develop a detailed ther­
mal model for binary systems.5 Our approach treats both 
components as irregular bodies whose shape is given by a 
polyhedral model (e.g., Simonelli et al., 1993). For each 
of the surface facets, we solve the heat diffusion problem 
(HDP) in a one-dimensional formulation where the temper­
ature is considered a function of time and depth below the 
surface (see, e.g., Vokrouhlický and Farinella, 1998). The 
non-linear boundary condition at the surface, namely the 
energy balance between the absorbed solar radiation and 
the heat emitted into space and conducted into the body, 
is solved by a standard approximation scheme (e.g., Ap­
pendix of Spencer et al., 1989). We take into account the 
mutual shadowing of the surface elements on each of the 
components and also the effects of eclipses between the two 
asteroids6; both determine the input of solar radiation en­
ergy on each of the surface elements and thus affect the 
HDP. The timestep of the numerical HDP solution is a small 
fraction of the primary rotation period,7 typically 10-50 s. 
The numerical step in depth is a small fraction of the es­
timated penetration depth of the diumal thermal wave. At 
large depths, in practice ~10 times the penetration depth of 
the seasonal thermal wave, we impose an isothermal core as 
a second boundary condition. The last boundary condition of 
the HDP is a periodicity in time after one revolution of the 
COM about the Sun. The solution of the HDP is iterated un­
til the surface temperature has a fractional variation smaller 
than I0"4.

11 Comparable densities of the two components are also assumed.
5 A  zero level estimate of the Yarkovsky strength in the C O M 's  motion 

may be obtained with a simpler model that contains only the primary's mo­
tion (Fig. 2). However, analysis of the Yarkovsky effect for the local motion 
necessarily requires a detailed thermal description of both the primary and 
secondary components because the main, long-term Yarkovsky perturbation 
of local motion stems from a scqucncc of shadowing cffccts.
6 We assume some zero approximation description of the relative mo­

tion for the two binary components, usually a circular orbit. This procedure 
may be, however, iteratively improved as the analysis becomes more con­
strained.
7 In fact we make sure the timestep is several times smaller than the time-

lag of the diumal thermal effect (e.g., Vokrouhlický, 1998).

With the surface temperature determined for each of the 
surface facets at any time instant during one revolution about 
the Sun, we can compute the recoil force due to the thermally 
emitted radiation (e.g., Vokrouhlický and Farinella, 1998; 
Bottke et al., 2002). Summing up over the whole surface 
of the asteroid, one gets the total Yarkovsky accelerations f] and fi on each of the two components. These results are 
stored in a computer file8 and used for further analysis, such 
as the prediction of global and local Yarkovsky displace­
ments.

Fig. 1 illustrates several important features of the ther­
mal solution in the case of the system 2000 DP107. Most 
importantly, we note the effective COM perturbation is in­
deed close to the effect on the primary component. More­
over, the smaller secondary causes only insignificant eclipse 
phenomena on the primary, so that a first glimpse of the ef­
fect may be obtained by considering the Yarkovsky force 
on the “solitary” primary component (see Fig. 2). On the 
contrary, the Yarkovsky perturbation of the local (relative) 
motion of the two components is fundamentally affected by 
the mutual eclipsing phenomena (see Appendix A) and only 
adds to the complexity o f the interpretation of their relative 
motion. The principal Yarkovsky perturbations of the global 
and local motions are of the same nature, namely a secu­
lar change in semimajor axis o f the respective orbits. The 
key difference, however, is due to the relative position of 
the Sun in the two cases. For the COM motion about the 
Sun only the COM (and not the Sun) is affected by ther­
mal forces that are internal to the system, whereas for the 
binary relative motion, where the radiation is external to 
the system, the thermal effects act on both components of 
the binary.9 This circumstance produces two variants of the 
thermal-force perturbations (both previously studied in satel­
lite geodesy):

• The heliocentric motion is steadily perturbed by the off- 
radial force component due to the time lag between sun­
light absorption and thermal re-emission in exactly the 
same way as the Yarkovsky effect acts on single aster­
oids.

• The relative motion o f the two asteroids, for which the 
Sun is an external rather than internal source of radia­
tion, is on a long term affected by the uneven thermal 
cooling and heating during and after the eclipse phases 
(see Appendix A and Fig. 1).

From the latter item it follows that eclipses are a neces­
sary condition for Yarkovsky to secularly affect the internal 
motion. Compactness of the NEA binary systems implies 
such eclipses are the rule rather than the exception, and thus

8 Our results are publicly available through http://sirrah.troja.mff.cuni. 
cz/~davok/.
* At this stage wc disregard mutual thermal irradiation of the two binary 

components.

http://sirrah.troja.mff.cuni
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Fig. 1. Time history of the magnitude of the Yarkovsky acceleration for the 2000 DP107 system. Bottom: The abscissa covcrs one revolution of the COM 
around the Sun with time equal zero at the peri center. The larger-amplitude curve is the acceleration of the secondary |f2 l, and the smallcr-amplitudc curve is 
the acceleration of the primary |f| |. The large oscillation of the secondary’s acceleration is due to cclipsc phenomena, mainly near the pericenter and apoccntcr 
where the eclipses arc total; around quadrature (e.g., time 2:80 days) the secondary eclipses arc only partial and the relative oscillation is reduced. Top: Details 
of the Yarkovsky acceleration during one revolution of the binary components about their common COM. The gray solid curvcs (labeled “ I "  for the primary 
and ”2” for the secondary) arc the individual effects on the two components. The solid black curve is the magnitude of the weighted sum |X|f| +  X  2 2̂1 from 
Eq. (I), which is the effective Yarkovsky acceleration of the system's COM, and the dashed black curve is the magnitude of |Í2 — f| | from Eq. (2), which is the 
effective Yarkovsky acceleration for the relative motion. The left part (A) is the situation near the pericenter of the heliocentric orbit (at ~0.85 AU), and the 
right part (B) is the situation near apoccntcr (at ~  I 88 AU). In both cases mutual eclipses occur. First the primary component totally cclipscs the secondary 
component and causes a deep drop of the perturbation, and a half-revolution later the secondary component partially cclipscs the primary component causing 
a smaller cffcct. Since the primary component is larger by a factor ~8/3 than the secondary component, the Yarkovsky perturbation of the secondary is 
significantly larger. As discussed in the text, the net perturbation of the heliocentric motion is roughly the effect on the primary, while the effective perturbation 
of the relative motion is close to the cffcct on the secondary. The main reason for the larger (smaller) perturbation at the periccntcr (apoccntcr) is the variation 
of solar radiation flux, which immediately explains a factor ~5  difference. The additional factor is due to the Yarkovsky force dependence on the thermal 
parameter Θ  (see, e.g., Vokrouhlický, 1998). For the dominating diurnal variant of the Yarkovsky cffcct, on the secondary component, for example, Θ  — 0.74 
at the pericenter and Θ  2: 1.33 at the apoccntcr. The larger value of Θ  near the apoccntcr means a longer relaxation time after the cclipsc seen in part (B), 
whereas in part (A) the secondary acceleration returns much more quickly to the baseline. This cffcct is also seen for the primary component, where the partial 
cclipsc is followed with a relaxation phase lasting a few rotation-cycles. Note that the details of the shadowing events arc not important for the perturbation of 
the heliocentric motion, while they are essential for the perturbation of the relative motion.

we should readily expect a strong Yarkovsky influence on 
the local motion, as well as the global motion.

3. Candidate systems: an example

Currently, as of November 2004, we know of 23 bi­
nary systems in the NEA population (e.g., Merline et al., 
2002, and updates on http://www.asu.cas.cz/~ppravec/). The 
amount of information about each of these systems is un­
equal and depends on their optical observation history and,

especially, whether they have been observed by radar (Ostro 
et al., 2002). However, even for the best known systems to­
day, their full orbital analysis is complicated and depends on 
many still unknown or poorly known parameters. For that 
reason we do not discuss all candidate systems,10 but rather 
we summarize them in Table 1. We have selected one of 
them solely to illustrate the basic concepts that should be

10 A  good candidate system is judged by estimating strength of the 
Yarkovsky effect together with a possibility to acquire high-quality astro­
metry data.

http://www.asu.cas.cz/~ppravec/
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Sclcctcd Yarkovsky-dctcction candidates among the binary asteroid systems within the next two decades or so

Asteroid Spectral
class

•
P
[g/cm3]

0 ,/D 2 *‘
[m]

Year of Yarkovsky 
detectability

Required pre-detection observations 

Radar Optical

1998 RO| 800/400 2006? 2005 2007
2000 DP, oj C 1.7 800/300 2016 2008 2005,2011,2013
1999 KW 4 Q 2.6 1200/400 2019 2017,2018 2016
1996 FGj c 1.4 1400/430 2022 2009,2011 2010
1994 AW, 900/480 2023 2015, 2022 2008, 2016
2003 YT, V 1000/200 2023 2009,2011,2016
1998 ST27 c 800/100 2024 2021 2012,2015,2018

Note. Objccts sorted according to the estimated year of Yarkovsky detection. None of the listed systems requires future astrometric recovery, and the indicated 
"optical observations” stand for putative photometry that should constrain solution of the asteroids’ relative motion (those arc typically also possible during 
the radar apparitions). Additional candidate objccts will be posted on http://sirrah.troja.mlT.cuni.cz/--davok/.

p is the bulk density from analysis of the relative motion of the two asteroids (typically with a large error bar).
”  Sizes arc usually estimated from absolute magnitude and geometric albedo, when known, and from the lightcurve eclipses; in a few cases radar ranging 
allowed to better estimate the characteristic size of the components (none of these is however known better than to — 10-20%).

kept in mind when analyzing binaries for which a prolific 
dataset is available.

3.1. 2000 DP io?

Most information about 2000 DPio7 comes from an ex­
tensive radar campaign in September/October 2000 (Margot 
et al., 2002). The system consists of two components, a pri­
mary of diameter D\ — 800 m and a secondary of diameter 
Di — 300 m, each revolving about the system center of mass 
with a period of about 1.7SS day. The primary rotates at 
a near critical rate with period of ~2.775 h (Pravec et al., 
2 0 0 0 ), while the secondary likely has a synchronous rotation 
rate. Separation between the two components is ~2620 m 
and the relative orbit is near circular. The primary compo­
nent was found to be a C-type object, 11 and a preliminary 
solution of the relative motion from the radar imaging sug­
gests a bulk density of 1.7 ±  1.1 g/cm3, appropriate for that 
spectral type (Margot et al., 2002). There is not enough infor­
mation to resolve poles o f rotation for the two components. 
For sake of simplicity we assume here that the synchro­
nized secondary component has rotation pole normal to the 
plane of mutual motion, which would be compatible with 
a spin-orbit synchronization history. Without observational 
constraints, we assume the same pole orientation for the fast 
rotating primary. The preliminary solution of the mutual mo­
tion of asteroids in this system from Margot et al. (2002) 
would give these poles at ecliptic longitude i  =  280° and 
ecliptic latitude b =  73°, consistent with lightcurve-detected 
eclipses (P. Pravec, personal communication).

In our simulation we consider the following surface phys­
ical parameters for both components: thermal conductivity 
K =  0.01 W/m/K, specific heat capacity C =  800 J/kg/K, 
surface and bulk densities ps =  Pb =  1.7 g/cm3. We note 
that, a priori, there is no strict reason why the components 
should have exactly the same physical parameters, and here

11 Alternately X-type, e.g., Yang ct al. (2003).

this is only one of many simplifying assumptions. Both com­
ponents are considered spherical and represented with 1 0 0 0 - 
facet polyhedra.

With these assumptions, we have determined the orbit- 
averaged value of the semimajor axis drift due to the 
Yarkovsky effect (Fig. 2). The effect of non-linearity is a 
10-20% reduction of the Yarkovsky acceleration (see also 
Vokrouhlický and Farinella, 1998, 1999), while the contri­
bution of the secondary component increases the Yarkovsky 
strength for larger values of the surface thermal inertia (this 
because o f its slow rotation). Generally, though, the lin­
earized theory yields fairly satisfactory results.

The nearest radar observation opportunities for this sys­
tem are two close encounters in September 2008 and August 
2016; there is also good reason to take precise optical as­
trometry during periods when the sky-plane uncertainty ex­
ceeds an arcsecond (e.g., during January-March 2005, No­
vember 2005-February 2006, and the early months o f2008). 
Photometry in December 2005, January 2011, and Decem­
ber 2013 would be also useful to track the relative motion of 
the components if mutual eclipses are recorded.

3.1.1. Heliocentric motion o f  the center o f mass
We primarily focus on the Yarkovsky perturbation in the 

heliocentric COM motion for which our force model is ad­
equate and we can produce a reliable estimate. Currently, 
the available observations constrain the orbit too weakly 
to allow statistically significant detection of the Yarkovsky 
displacement during the next close approach in 2008. We 
thus adopt the same method as in Vokrouhlický et al. (2000,
2005), simulating the 2008 Arecibo astrometry to make the 
solutions with and without Yarkovsky accelerations statisti­
cally distinct during the close approach in 2016. The 2008 
apparition is close enough (Arecibo peak SNR ~  4000) to 
allow a high-quality determination of the system’s COM; 
we assume one range measurement with formal accuracy of 
~50 m.

With this simulated data point, and with all past optical 
and radar astrometry, we propagated the two orbital solu­

http://sirrah.troja.mlT.cuni.cz/--davok/
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Fig. 2. The orbit-averaged value of the C O M  hclioccntric motion semimajor axis change (da/d/) (in I0-4  AU/My) due to the Yarkovsky cffect for 2000 
DP|07 shown as a function of surfacc conductivity K  (in W/m/K; other surfacc thermal parameters as described in the text). The thick solid line is the result 
from complete numerical model accounting for non-linear analysis of HDP on both binary components and their mutual shadowing cfTccts (Fig. I). The thin 
solid line is the non-linear HDP numerical model but only the primary asteroid is considered (as if the system did not contain the secondary). The dashed 
line shows the result from a linearized approximation of heat conduction and a perturbation of the primary component only (note the non-linearity makes the 
Yarkovsky signal smaller, sec, e.g., Vokrouhlický and Farinella, 1998, 1998). Since the secondary component rotates slowly, its own Yarkovsky drift peaks for 
higher value of the conductivity and thus contributes more importantly to the total signal. This is the reason for the divcrgcnce of the solid curvcs at larger K .

•50 -40 -30 -20 -10 0
Range [km]

Fig. 3. Range and rangc-rate projected 3<r-uncertainty ellipses of the 
no-Yarkovsky (dashed) and Yarkovsky (solid) C O M  hclioccntric orbits of 
2000 DPior on August 24.9,2016. Arccibo radar offers a ~50 SN R  ranging 
opportunity at that epoch. The origin is the no·Yarkovsky orbital solution. 
These solutions assume all past optical and radar astrometry and a simu­
lated Arccibo radar astrometry in September 2008 as described in the text. 
Different displaced ellipses of the Yarkovsky-solution arc for different val­
ues of the surfacc thermal conductivity K, whose values (in W/m/K) are 
indicated in the figure. Note a degeneracy— one ellipse may correspond to 
two conductivity values— that is due to the fact the same (da/dt) value may 
correspond to two different values of conductivity K  (Fig. 2).

tions, with and without Yarkovsky, by numerically integrat­
ing ( 1) with all necessary planetary and other perturbations 
to 2016. Nominal predictions with their formal 3σ confi­
dence ellipses were projected onto the plane of radar observ­

ables, delay and Doppler, or equivalently range and range- 
rate. Fig. 3 confirms that during the 2016 close approach, 
when Arecibo can acquire astrometric data at SNR ~  50, the 
Yarkovsky effect could be comfortably detected as a large 
COM displacement of the two solutions beyond their formal 
3a uncertainty regions.

3.1.2. Relative motion o f the components
Our solution may also be used to get a preliminary esti­

mate of the observability of the Yarkovsky perturbation in 
the relative motion of the two asteroids. However, we em­
phasize that these results are suggestive rather than predic­
tive since the force model in our simulation is not entirely 
adequate to describe the details of the internal dynamics of 
the 2 0 0 0  DPio7 system, and at present several key parame­
ters, such rotation poles, are only weakly constrained.

With our solution of the Yarkovsky effect for both binary 
components we constructed the radial, transverse and nor­
mal projections o f the effective perturbation Í2 -  f i , and from 
those quantities we determined the corresponding displace­
ments about the zero order circular orbit (see (A.6 )-(A.8 ) in 
Appendix A). The result is shown in Fig. 4.

First, we confirm the principal orbital perturbation of the 
local motion of the two components is a quadratic advance 
of the transverse displacement η (related to the linear ra­
dial displacement ξ ; upper panels) due to a non-zero mean 
transverse Yarkovsky acceleration (for a broader context see 
Appendix A). This effect is specific to the dissipative ther­
mal effects and cannot, on a long-term, correlate with grav­
itational perturbations that are conservative. In spite of in-
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completeness of our force model we may thus conclude that 
the principal Yarkovsky perturbation could be observable. 
Mismodeling of the system mass, which would produce a 
linear advance in the transverse perturbation, could mask the 
effect when data from only a few apparitions are available. In 
general, however, more observations constrain the solution 
better and thus sooner or later should reveal the Yarkovsky 
signal in the local motion.

However, Fig. 4 also indicates two obstacles of an early 
detection of the Yarkovsky effect in the relative motion of 
binaries. First, a large orbital phase uncertainty is currently 
the primary hindrance to detection of the Yarkovsky pertur­
bation of the relative motion. By the end of 2002 the formal 
uncertainty of the solution by Margot et al. (2002) had al­
ready spread over the entire range o f values from 0° to 360°. 
That situation does not allow proper linking of the 2008 
phase observations with those from 2000 and thus prevents 
determination of the Yarkovsky effect. When more data are 
obtained from short-enough interval of time, such as pos­
sible photometry and radar observations in between March

2008 and January 2011 (Table 1), the uncertainty in phase 
might be reduced. Then a tie to phases of more distant obser­
vations in time, namely those in September/October 2000, 
and later December 2013, could be possible.

Even if successful, Fig. 4 suggests the Yarkovsky signal 
in the relative motion is very weak. The linear component in 
the radial displacement ξ (upper left panel) is not actually 
seen at this scale and the related quadratic effect in the trans­
verse displacement η (upper right panel) amounts to only 
~240 m in 19 years. This stretches to circumference of the 
unperturbed circular orbit in more then a century. A very 
long-term data about the system might in principle reveal the 
Yarkovsky signal, but a more involved study of the relative 
motion would be needed to see these prospects realistically.

Fig. 5 shows the mean along-track component f T of the 
Yarkovsky acceleration fi -  fi as a function of the assumed 
surface conductivity K of both asteroids. Like the mean 
semimajor aÄis drift (de/di) for the global motion (Fig. 2), 
the mean along-track acceleration is the principal “tuning 
parameter” of the secular Yarkovsky effect for the local mo-

Fig. 4. The Yarkovsky displacement of the relative motion of the two components o f2000 OP107, according to an approximate (linearized) solution described 
in Appendix A. Top: Time history of radial (  (left) and transverse η (right) perturbations, relative to the circular orbit approximation, with origin at the 
midpoint of radar observations in 2000. The transverse displacement is folded into an interval equal to the circumference of the unperturbed circular orbit. The 
principal secular cffcct, due to the non-zero average value of the transverse Yarkovsky acceleration (discussed in Appendix A), produces a linear drift in the 
radial component (masked by periodic terms at this short timespan) and a quadratic drift in the transverse component. The latter cffcct is very distinct from 
(neglected) multipole interactions of the gravity fields of the two asteroids and it should be in principle observable. Obstacles are (i) the large observational 
uncertainty (that from the 2000  observations is shown as a shaded area; note this prevents an unambiguous link of the 2000  and 2008 observations), and 
(ii) its weakness (the total transverse displacement amounts to only ~240 m in 19 yr shown in this figure). When sparse observational data are only available, 
a correlation between this quadratic and a linear terms in η may be high and hinder the Yarkovsky signal. Bottom: Same as top part, but here the average 
values of the radial and transverse perturbing accelerations have been removed. The remaining sub- to few meter displacements arc well below the model 
uncertainties associated with the absence of multipole interactions of the gravity fields of the two asteroids.



Yarkovsky detection opportunities, II 135

K [W/m/K]

Fig. 5. Mean along-track Yarkovsky acceleration f t (in I0 - 3  pm/s2) as a 
function of the surface conductivity K  (in W/m/K) for 2000 D P ]07 system. 
Geometry of spin axes, and other surface physical parameters as in the text.

tion, since the rate/speed of the semimajor axis drift (Fig. 4, 
upper left) directly depends on its value. We find it natural 
that f x depends on AT is a similar way as (da/dt).

4. Conclusions

The formation and evolution of near-Earth binary sys­
tems is becoming a particular focus of planetary science. 
From the perspective of the present work, a key character­
istic of binaries is the fact that one can solve for the total 
mass of the system from tracking the relative motion of the 
two asteroids about their COM. With principles of gravita­
tional physics, which set a body’s acceleration independent 
of its mass, this seems to be a singular opportunity. More­
over, non-gravitational perturbations are mass-selective and 
their detection opens a second possibility of estimating as­
teroids’ mass (e.g., Chesley et al., 2003). This applies both 
to solitary asteroids (Vokrouhlický et al., 2000, 2005) and 
also to the binary systems.

In this paper we demonstrated that the prime non- 
gravitational perturbation in the asteroid’s motion—the 
Yarkovsky effect—can be detected in the global motion of 
the system’s COM about the Sun and, in the best cases, also 
in the local motion of the two asteroids relative to each other. 
The double detection of the Yarkovsky effect for binaries— 
if achieved in remote future or for more suitable systems 
than known today—would allow a more profound investiga­
tion of the systems physical parameters. Ideally one could 
characterize parameters of each of the two asteroids sepa­
rately, but the degree o f correlation with other perturbations 
and uncertainties should be studied for each of the binary 
systems individually.

The most restrictive assumption in this study, to be re­
moved in a detailed analysis of particular systems, is that of 
fixed rotation poles of the two asteroids, and a related as­
sumption of the fixed orbital plane of the relative motion of 
the two asteroids. Tidal evolution (whose timescale is uncer­
tain but perhaps fest for close binaries; Margot et al., 2002;

Merline et al., 2002) generally leads to spin synchronization 
of the satellite (lighter component) and tilts its axis toward 
the Cassini states 1 or 2, locked to the orbital plane motion 
(e.g., Peale, 1977, 1999; Gladman et al., 1996). The latter 
generally depends on dynamical flattening of the satellite 
and precession rate of its orbital plane; as in the lunar case, 
rapid precession o f the orbital plane likely excludes Cassini 
state I and the only terminal occupancy of the satellite spin 
is perpendicular to the orbital plane. Radar observations of 
the 2000 DP|07 are consistent with this situation (Margot et 
al., 2 0 0 2 ).

Long-term evolution o f the primary’s spin state is more 
uncertain. In compact systems with fast rotating primary, 
typical for NEA binaries (e.g., Merline et al., 2002), the to­
tal angular momentum of the system is weakly dominated by 
the rotational angular momentum of the primary. 12 This im­
plies a possibly complicated interplay between the rotational 
and orbital motion, affecting stability of the system (a prob­
lem not considered in detail so far). Since the secondary 
components of typical NEA systems bear a non-negligible 
fraction of mass, gravitational torque due to the secondary 
dominates solar gravitational torque, causing the primary’s 
axis to evolve toward a state similar to that occupied by the 
secondary, but timescales depend on many uncertain para­
meters. Nevertheless, dominance of the primary’s angular 
momentum in the system makes us think its pole is the most 
stable direction. As a result, we think the COM Yarkovsky 
displacement (see Fig. 3), related to the thermal effects on 
the primary, is the most justified result above. On the other 
hand, as the orbit o f relative motion processes, or the sec­
ondary’s pole moves, the linear drift in the relative distance 
of the two asteroids (see Fig. 4A) becomes periodic. The 
results given above are likely an overestimate of the inter­
nal Yarkovsky effect, though they are hopefully appropriate 
within the assumed model and the ~ 2 0  yr timescale.

To verify these conclusions we constructed a toy model 
describing relative motion and spin evolution of two quadru- 
pole-field axial bodies that retains some, though certainly 
not all, dynamical elements of NEA binaries. Initial orbital 
data and various parameters were chosen close to the 2 0 0 0  

DP|07 system and the initial rotation poles of both com­
ponents were varied within ±15° in the ecliptic longitude 
and latitude about the normal to the orbital plane of their 
relative motion. With those initial data we numerically in­
tegrated the Euler-Lagrange equations for 20 yr timespan13 

and we found small variations of the primary’s pole (gener­
ally within 1 0° from the initial position), but a rather large

12 For instance, in the 2000 DP 107 ease the ratio between the rotation an­
gular momentum of the primary and orbital angular momentum of the pair 
is ~ ( 2—3>.
13 The primary and secondary components were modeled as homogeneous
spheroids with ratio of equatorial and polar radii equal to 1.05 and I . I , 
respectively, yielding thus only moderate dynamical ellipticity.
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variation in the secondary’s pole14 (up to tens o f degrees 
from its initial position). Clearly, more observational con­
straints are needed to fully address details of the Yarkovsky 
perturbation of the local motion.
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Appendix A. Linearized perturbation of the local 
motion

In Section 2 we noted that the local motion of the binary 
system components relative each other is far more compli­
cated than the global (heliocentric) motion of its COM. This 
is because proximity of the two components implies that 
couplings of many multipole harmonics in gravity fields of 
the two asteroids are important and contribute to complexity 
of their local motion. Moreover, these couplings intimately 
depend, and in the same time affect, rotation state of both 
components. Detailed analysis of these effects is well be­
yond the scope o f this paper, both because they should be 
studied in context of the individual systems [it is hard to 
imagine that quantitative features, except from general con­
straints such as in Scheeres (2002a, 2002b), can be derived] 
and also because our primary focus here is to determine the 
major signatures of the Yarkovsky effect. For that reason, we 
relegate the in-depth model of the internal motion when rich 
enough data are available to study some of the systems.

Our approach here is to examine general properties of the 
linear perturbation theory of the Keplerian circular motion 
in Cartesian variables as the simplest possible representa­
tion of the Yarkovsky displacement in the relative position 
of the components in the binary system. We assume an 
(Yarkovsky) acceleration Sf affects a circular orbit ro (often 
a good zero approximation of the binary motion) to produce 
a small perturbation är (|ár| <K ro). With m the total mass of 
the system we have

It is common to split the displacement vector ir  into radial 
ξ =  ár · p, transverse η =  Sr ■ τ  and normal ζ =  Sr · n com­
ponents. Here p — ro/ro is unit vector in the radial direction,

n unit vector normal to orbital plane along direction of the 
orbital angular momentum, and τ =  η x p the unit vector in 
the transverse direction. We assume n is fixed, while p and τ 
uniformly rotate in space with angular velocity equal to the 
mean motion15 no: dp/d/ =  nor and dr/d; =  -nop. It ap­
pears useful to introduce scaled quantities <5f -> ( a p , a t, ας) 
so that ap =  (St-p)/nl, ax =  (if- τ  )/n\, at m ( if . n)//tjj, 
and replace time l with a phase angle of the rotating (side­
real) system t -*  τ =  not. With these new variables, (A.l) 
reads16 (e.g., Nordtvedt, 1991)

When Sf =  0, solutions of the system (A.2)-{A.4) represent 
change from one elliptic orbit to another due to variation of 
the initial conditions. This is characterized by periodic terms 
in all variables (with anomalistic frequency), a constant term 
>n £frcc [a slight change in the semimajor axis due to vari­
ation of the orbital angular momentum, a term eliminated 
from the right had side of (A.2)] and a related linear term 
in ηfrc-. Strictly speaking coefficients of constant and linear 
terms in ffrec and Wrcc are correlated, but when the total mass 
of the system is not known they independently couple to this 
additional parameter.

When Sf φ  0, the system (A.2)-(A.4) admits the follow­
ing particular solution:

14 When the initial pole positions were placed further from the perpendicu­
lar orientation to the mutual orbital plane, the system often evolved quickly 
toward satellite escape or collision.

15 We note that no here plays the role of sidereal frequency, which is in 
fact afTected by both the solar tidal field and the multipole fields of the two 
asteroids. Such details are not studied in this paper.
16 We note the unitary frequency in the left hand sides of (A.2) and (A.3) 
should be affected, in a more detailed theory, by the solar tidal terms and 
multipole interactions of the asteroids’ gravity fields, and should become 
anomalistic frequency (i.e., the natural pericenter frcqucncy).
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- a r / 2 , i.e., a “stronger gravity” requires motion with higher 
angular speed at the circular orbit of a given radius. Obvi­
ously, this perturbation is fully correlated with the solution 
of a priori unknown total mass o f the system. More im­
portant is the case of a permanent along-track acceleration 
\ap =  0 , a, =  or, a( =  0 ), which results in the proper pertur­
bation modes £prop =  2aτ and ηριορ =  -3 a r 2 /2, analogous 
to the heliocentric COM perturbation due to the Yarkovsky 
effect: a linear drift in semimajor axis produces a quadratic 
advance in the longitude in orbit. This is by far the most sig­
nificant effect both in the global and local dynamics. Finally, 
linearity of the system (A.2)-(A.4) implies any periodic term 
in ST produces perturbation Sr containing the same spectral 
components. As typical in linear resonant systems, forcing 
terms with periodicity close to the natural (anomalistic) pe­
riod of the binary component revolution are amplified due to 
the presence of small denominators (e.g., Nordtvedt, 1991, 
1995).

Out of these fundamental modes, the one due to the non­
vanishing along-track acceleration is the most important on a 
long-term (since the related orbital displacement propagates 
quadratically in time). Whether we should expect this ef­
fect in the internal motion of the binary system or not arises, 
interestingly, from an analogy with motion o f the geodynam­
ics Earth satellites among which the case o f LAGEOS has 
been the most thoroughly studied (e.g., Afonso et al., 1989; 
Métris et al., 1997; Slabinski, 1997). Thermal effects (the so 
called photon thrust or Yarkovsky-Schach effect in that con­
text) are well known to produce secular along-track orbital 
acceleration when the spacecraft enters the Earth shadow. 
The Earth-spacecraft pair represents “an extreme binary sys­
tem” where the secondary component (spacecraft) has a van­
ishing size, and only the primary (Earth) eclipses the sec­
ondary. In the case of NEA binaries both components are 
of the same size and produce a complex series of mutual 
eclipsing events, but the overall conclusion is the same: ther­
mal relaxation in re-radiation of the absorbed sunlight during 
eclipses results in a non-vanishing along-track acceleration. 
The analogy with the spacecraft dynamics makes us also to 
think that precession of the orbital plane, defined by the rela­
tive motion of the two components, approximately averages 
out this principal effect on a timescale larger than the pre­
cession period (roughly a couple of centuries as for the so­
lar gravitational torque). Certainly this compensation is not 
exact, but the purpose of this paper is not to study the long­
term dynamics of the binary asteroids due to the Yarkovsky 
forces, but to determine its observability on a short-term 
scale. Our basic model of the fixed zero-approximation rela­
tive orbital plane of the two components is thus justified.

In practice we chose a zero approximation relative or­
bit of the two asteroids and solve the HDP problem (Sec­
tion 2.1) to obtain the Yarkovsky accelerations f| and Í2 for 
both asteroids. These series are combined to get the effec­
tive Yarkovsky accelerations in the global and local dynam­
ics, Eqs. (1) and (2). From the latter, a difference Í2 -  ft, 
we compute the radial (atp), transverse (ar) and normal

(a( ) perturbation components and numerically evaluate the 
quadratures in (A.6 )-(A.8 ). From the resulting displacement 
vector (ξ , η, ζ) we subtract a part identical to the free mode 
(£(rcc, *7free, ffrcc) which goes in the solution of the initial 
orbital elements and the total mass of the system. Most im­
portantly, we disregard a linear term in η; however, any non- 
linearity in η should be observable and possibly interpreted 
as a proper Yarkovsky perturbation in the local motion of the 
system.
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Abstract. Yarkovsky effect (YE), a tiny nongravitational force due to radiative recoil of the 
anisotropic thermal emission, is known to secularly affect the orbital semimajor axis. Therefore, 
angular phases such as longitude in orbit or proper longitude of node undergo a quadratic 
perturbation. This is fast enough to allow direct detection of the YE. The first positive case was 
obtained for (6489) Golevka in 2003 and prospects are very good for many more detections in 
the near future. To make productive scientific use of the YE detections, we need to accurately 
compute its strength for a given body. Simple models, available so far, will likely not be adequate 
in many of the forthcoming YE detection possibilities. We thus developed a complex numerical 
approach capable of treating most of them. Here we illustrate its power by discussing the cases 
of: (i) Toutatis, with a tumbling (non-principal-axis) rotation state, and (ii) 2000 DP 107, a 
binary system.

Keywords. Minor planets, asteroids: individual (Toutatis, 2000 DP107).

1. Introduction
The Yarkovsky effect (YE), and its consequences for planetary science, has attracted 

a considerable attention during the past decade (e.g. Bottke et al. 2003; Vokrouhlický 
et al., this volume). It became a vital part of models for meteorite and asteroid delivery 
to the planet-crossing region (e.g. Farinella et al. 1998; Farinella & Vokrouhlický 1999; 
Vokrouhlický & Farinella 2000; Morbidelli & Vokrouhlický 2003), dynamical aging of the 
asteroid families (e.g. Bottke et al. 2001; Vokrouhlický et al. 2002; Nesvorný & Bottke
2004) or populating metastable asteroidal orbits (e.g. Vokrouhlický et al. 2001; Tsiganis 
et al. 2003; Brož et al., this volume). Though important, these applications assume large 
samples of bodies and do not allow direct detection of the YE (with the unusual exception 
of the Karin family; Nesvorný & Bottke 2004).

Since the YE continues to perturb accurately known orbits of the planet-crossing aster­
oids, Vokrouhlický et al. (2000) suggested a direct detection can follow from their precise 
tracking (see also Vokrouhlický & Milani (2000) who discuss effects of other radiative 
forces on the motion of planet-crossing asteroids). This is because the YE makes a steady 
perturbation of the orbital semimajor axis, producing a quadratic advance along the or­
bit; in a number of cases the resulting displacement exceeds ephemerides uncertainty and 
allows YE detection. With that goal, Chesley et al. (2003) conducted a successful exper­
iment by radar ranging to the near-Earth asteroid (6489) Golevka. Their analysis also 
proved the YE detection contains a significant scientific information, most importantly it 
has the capability to constrain an asteroid’s mass. Vokrouhlický et al. (2004a,b) recently 
reviewed future possibilities for YE detection and noted about a dozen cases might be 
obtained in the next decade, with more possibly later on. Several of these candidate 
objects present unforseen difficulties in terms of the YE computation.

This situation motivated us to develop dedicated software for accurate YE computa­
tion: the purpose of this paper is to discuss its properties. Our goal is to tackle most of the
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“real-world” cases, including bodies of unusual shape, orbit and/or rotation state. Here 
we discuss two spectacular objects: (i) 4179 Toutatis, a body with the most accurately 
known tumbling state, and (ii) 2000 DP107, a binary system. If the YE is detected in the 
Toutatis’ motion in October 2004 (see Vokrouhlický et al. 2004a), Toutatis might become 
a landmark case in several respects: (i) this will be the first multi-kilometre asteroid for 
which YE would be detected, and (ii) with further observation possibilities till 2012 this 
might be the first case for which the YE will be repeatedly measured. Similarly, if YE 
signal is too weak for 1998 ROl, the system 2000 DP107 might be the first binary for 
which YE will be detected (see also Vokrouhlický et al. 2004b).

2. Numerical model
Analytical expression of the Yarkovsky force components have been obtained so far 

for a spherical body residing on a low-eccentricity orbit (e.g. Vokrouhlický 1998, 1999; 
Vokrouhlický & Farinella 1999); moreover, these results assume linearization of the 
boundary condition (2.2). Though largely simplified, this formulation was successfully 
used by Vokrouhlický et. al. (2000) for low-accuracy, but reliable, predictions and is 
available at http://newton.dm.unipi.it/ as a Fortran source within the OrbFit soft­
ware package.

Apart from a non-linear nature of the heat diffusion problem (HDP), computation of 
the Yarkovsky force for near-Earth asteroids (NEAs) frequently brings some, or a com­
bination, of the following complexities: (i) large orbital eccentricity, (ii) highly irregular 
shape (such as a part of the surface may cast shadow on another part), (iii) temperature- 
dependent thermal constants and/or (iv) unusual rotation state (including free motion 
of the rotation axis in the body, i.e. the “tumbling state” ). Moreover, a fair fraction of 
NEAs are not solitary but compose binary systems (e.g. Merline et al. 2003). All these 
factors could invalidate the very simplified analytical approach and need to be considered 
for a high-accuracy YE computation.
Formulation of the heat diffusion problem.- In general, a fully 3D formulation of 
the HDP is needed to characterize the temperature inside and on the surface of a body. 
However, since we assume external energy sources only (such as impinging sunlight), in 
the most relevant situations the body consists of an isothermal core with temperature 
variations occurring in a thin surface slab. In that case, one can adopt a simplified, ID 
approach with temperature T(i, z) dependent on the depth z below the surface and time 
t (for an early formulation see Wesselink 1948). This is justified when the penetration 
depth of the most important thermal wave (diurnal or seasonal) is significantly smaller 
than the size of the body. Bodies larger than ~ 20 m generally meet this condition, unless 
a very high thermal inertiaf. The HDP is thus solved for each of the (infinitesimal) surface 
elements separately, as if there were no thermal communication between them through 
latitudinal thermal gradients.

The heat diffusion equation now reads

where p is the density, C is the specific heat capacity and K  is the thermal conductivity, 
all of which might be temperature dependent. If this effect is taken into account, we

f An exceptional group of very small NEAs, such as 1998 KY26 or 2003 YN107, may require 
a full-fledged 3D analysis as in Spitale & Greenberg (2000).
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where we explicitly made clear depth z o f  the boundary. Here e is the surface infrared 
emissivity, σ  the Stephan-Boltzmann constant and E  =  (1 -  Λ)Φ (n  ■ no) is the radiative 
energy flux through the surface element; A is the albedo value in optical, Φ the incident 
solar radiation flux, n  is the external unitary normal vector to the surface facet and no 
is the local direction to the Sun. We note E  is nil, when n · no <  0 and also when another 
part o f the body casts a shadow onto the chosen surface element (see below).

In the time coordinate we impose periodicity after interval P , thus T(t, z) =  T (t+ P , z) 
for all grid nodes. After the period P  the body must be brought into the same conditions, 
namely experience the same exterior radiation field. In practice this means to be at the 
same phase o f revolution about the Sun and to have the same orientation in space. Though 
most asteroids of interest are in the principal-axis rotation mode, their rotation and 
revolution periods are not necessarily commensurate. However, the rotation period Prot is 
usually much shorter than the revolution period Prev and it is without loss o f accuracy in 
evaluation o f the YE  to slightly modify Prot in order to become commensurate with Prev. 
Then P  =  Pnv. A more tricky situation occurs for a special class o f tumbling asteroids 
(e.g. Pravec et al., 2004), for which their orientation in space might not repeat at any 
time. Luckily, near-repetitions are usually found and they could be made commensurate 
with Prev; see Sec. 3 for an example.

We note that scaled, rather than physical, variables are best suitable in our problem. 
Depth z is expressed in terms o f the penetration depth hr =  \ /K P TOt/2npC  o f the diurnal 
thermal wave, thus introducing z' =  z /ftr · Time t is replaced with the mean anomaly £ of 
the orbital motion. The “isothermal-core” condition (2.3) is applied at typically 10 — 15 
penetration depths o f the seasonal thermal wave ( =  i /P rev/P rot / it ) ,  and the solution 
is (multiply) 2π periodic in the £ variable. Standard discretization methods are used to 
represent the heat diffusion equation (2.1) and Spencer et al. (1989) scheme is used for 
the non-linear surface boundary condition (2.2). An isothermal initial seed in the whole 
mesh quickly converges to the desired solution, though faster convergence is achieved 
when analytical approximation are used (such as in Wesselink 1948). We stop iterations 
of the numerical solution when a fractional change in temperature o f all surface elements 
between two successive iterations is smaller than 10~4.

R o ta t io n  state·— The surface energy input function E(t) in (2.2) is computed from 
the known position o f the Sun with respect to the surface element and it is a function 
o f the asteroid orbit and its orientation in space. The latter is expressed using a rota­
tion matrix R  that refers body-fixed frame to an inertial frame. In general R  may be 
parametrized by three Euler angles; for principal-axis rotators those depend on pole posi­
tion, rotation period and epoch o f local meridian,f while for tumbling asteroids the Euler

t In fact the result only weakly depends on the phase of local meridian at a given time, so 
that this information may be waived and replaced with an arbitrary zero value.

use empirical fits to laboratory and/or space measurements (e.g. Wechsler et al. 1972; 
Yomogida & Matsui 1983).

The system (2.1) must be supplemented with boundary conditions to make the solution 
unique. In the space coordinate this means (i) energy input on the surface, and (ii) 
constancy o f the temperature at large depth; put in mathematics we have

(2 .2)

(2-3)
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equations are numerically integrated with given initial data (e.g. Landau and Lifschitz 
1976; Kryszczyňska et al. 1999).
S h a p e /s h a d o w in g .-  We use polyhedron representation o f the asteroid shape with typ­
ically several thousands triangular surface elements. These models are mostly due to 
radar sensing analysis, to lesser extend due to direct satellite reconnaissance and/or 
lightcurve inversion (data are generally available at the PDS node h ttp ://w w w .p s i . 
ed u /p d s /a rch iv e /rsh a p e .h tm l). Solution o f the HDP is preceded with a preliminary 
analysis, where we store in computer memory all combinations o f mutual shadowing 
effects o f different parts o f the asteroid. This information is used for evaluation o f the 
energy source function E(t) in (2.2).
Yarkovsky force.- Once the surface temperature is determined by the numerical ana­
lysis described above, we compute components o f the Yarkovsky force. For an oriented 
surface facet dS =  ndS  their infinitesimal values read (see e.g. Milani et al. 1987)

3. Two examples
In what follows we briefly discuss results for two cases that require a high-accuracy 

YE computation. More details can be found in Vokrouhlický et al. (2004a,b).
Toutatis: a tumbling asteroid.- Toutatis was the first asteroid for which the non- 
principal-axis (tumbling) rotation state was discovered and accurately determined (Hud­
son & Ostro 1995). W ith the orbit residing near the 1 /4  exterior mean motion resonance 
with the Earth, Toutatis undergoes frequent close Earth encounters during a couple of 
decades and this might permit Y E  to be detected (Vokrouhlický et al. 2004a). Accurate 
radar astrometry was acquired in 1992 and 1996 (Ostro et al. 1999), and a single Doppler 
measurement from 2000 is less useful but still makes a valuable constraint on the orbit. 
A  spectacularly close encounter which occurs late September 2004 may give the first 
opportunity to detect YE  (Vokrouhlický et al. 2004a), with further refinements during 
2008 and 2012 encounters (all within the reach o f the current radar systems; see h t t p : / /  
e ch o . j p l .nasa.g o v /) .

As noted in Sec. 1, a productive use the YE measurement requires ability o f a high

t We also standardly compute total thermal torque dt =  r x d f (r is the position vector 
of the surface element) affecting body’s rotation, the so called YORP effect; e.g. Bottke et al. 
(2003). As an example, this has been used for prediction of the YORP observability in the case 
of asteroid (25143) Itokawa (Vokrouhlický et al. 2004c).

where the isotropic (Lambert) thermal emission is used. Total forcef components are 
expressed as a sum o f partial results for all surface elements and they are exported in 
an output file (with an appropriate header describing model parameters). In complex 
situations, like those discussed below, we export the resulting force components once 
every fraction o f the diurnal cycle (typically 20 -  200 times per asteroid rotation). In 
the case of solitary asteroids with principal-axis rotation, we further locally average 
over a diurnal cycle, making roughly 100 — 500 normal points o f the Yarkovsky force 
components per asteroid’s revolution about the Sun. This procedure makes then the 
orbit determination faster.
Data and their availability.- Examples o f our results are available through the 
h t t p : / /s i r r a h .t r o ja .m f f .c u n i .c z /~ d a v o k /  web site where we also maintain a page 
coordinating efforts for the future Y E  detections.
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time (days) thermal conductivity (W/m/K)

(a) (b)
Figure 1. Part a: The angle between body principal axes at the initial epoch and time t 
(abscissa; in days): (i) solid for the longest axis, (ii) dotted for the middle axis, and (iii) dashed 
for the shortest axis. There is a sharp minimum in all angles at time ~  1454.4 d, meaning a near 
coincidence with the initial-epoch orientation (better than 0.5°; initial epoch from Ostro et al. 
1999). The arrow indicates orbital period. Part b: Estimated mean drift rate of the semimajor 
axis of Toutatis orbit due to the YE as a function of the surface thermal conductivity. Solid curve 
from the high-accuracy model, dashed and dotted curves from a simplified analytic approach 
assuming a spherical body with two characteristic periods: (i) 5.367 d (dotted), and (ii) 7.42 d 
(dashed); this model assumes spin axis along the total angular momentum of Toutatis.

accuracy Yarkovsky force computation. This appears non-trivial for elongated and tum­
bling Toutatis. The particular trouble for this body is its non-axial rotation: spin vector 
wobbles around the longest body axis in 5.367 d (in the body-fixed frame) and the longest 
body axis precesses around the nearly conserved total angular momentum in 7.42 d (in 
the inertial frame). Both motions are slow, which means the diurnal thermal lag is small 
and this strengthens requirements on accurate prediction of the YE magnitude. As for the 
boundary condition issue we note Toutatis undergoes a near repetition of its space ori­
entation in ~  1454.4 d, remarkably close to the orbital period Prev ~  1451.7 d (Fig. la). 
Except an unlikely case of random coincidence, we do not have explanation for this inter­
esting commensurability that may warrant future theoretical work. It appears important 
for our work, since we can take P = Prev for the periodicity of the temperature solution.

We use a high-quality polyhedral model with 12 796 triangular facets adopted from 
http://www.psi.edu/pds/archive/rshape.html. Surface parameters are as follows: 
the mean density p = 2 g/cm3, the mean specific thermal capacity C =  800 J/kg/K, 
the surface albedo A = 0.1 and the mean thermal conductivity varied in the interval 
K =  0 0005 — 0.5 W/m/K (though we consider ~  0.01 W/m/K the most likely value, 
compatible with the estimated thermal inertia reported by Howell et al. (1994)). When 
converting the Yarkovsky force to acceleration components, we adopt a bulk density 
Pb =  2.6 g/cm3, slightly higher than p (presumably affected by surface microporosity).

Figure lb shows the resulting mean rate of change of Toutatis’ semimajor axis due to 
the YE as a function of the poorly constrained surface conductivity K. Because of the 
slow rotation the YE strength drops for small values of K. For interest, we also show 
prediction of the linearized analytical theory that would assume an equivalent spherical 
body uniformly rotating about the direction of Toutatis angular momentum with two 
characteristic periods. Interestingly, the 7.42 d period does a fairly good job, especially for 
high conductivity values. Adopting K  = 0.01 W/m/K we predict the YE displacement 
should exceed during the early October 2004 a 3σ formal orbit-determination error due 
to uncertainty in observations, thus being possibly detectable at a statistically significant 
level (more details in Vokrouhlický et al. (2004a)). It is, however, yet to be verified that

http://www.psi.edu/pds/archive/rshape.html
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(a) (b)
Figure 2. Part a: The effect of mutual eclipses between components of 2000 DP107 system: 
amplitude of the Yarkovsky acceleration during one revolution about their common center of 
mass. Eclipses produce dips in the signal; smooth variation during the shadow/eclipse entry 
and exit is due to a finite value of the surface thermal inertia (note the different effects for the 
fast rotating primary and the slowly rotating secondary asteroid). Solid curve is the effective 
Yarkovsky acceleration as it appears in the translational motion of the center of mass about the 
Sun. Part b: Drift rate of the orbital semimajor axis of the 2000 DP107 system due to the YE as 
a function of surface thermal conductivity K: (i) solid curve is for the whole system, (ii) dashed 
curve is for the primary component only, as if it were a solitary asteroid (no eclipses), and (iii) 
the dotted curve is for the primary component only and with the analytic formulation of the 
YE. A fair agreement indicates the effect of the secondary is minor, except for large value of K.

the orbit uncertainty due to gravitational perturbation by asteroids does not prevent 
the YE detection. This concern is mainly because o f a low inclination o f Toutatis’ orbit 
(0.44°), thus leading to frequent encounters with many asteroids in the main belt. Assum­
ing the encounter probability scales inversely proportinally with inclination (e.g. Opik 
1951, 1976), we might expect about 5 times larger orbit-uncertainty due to gravitational 
effects o f asteroids than in the case o f (6489) Golevka. This latter has been estimated 
to be about 15 με in delay measurement (Chesley et al. 2003; note the predicted delay 
displacement due to the YE  is in between 15 — 30 με in October 2004).

2000 DP107: a binary system.- 2000 DP107 belongs to the 10 -  15% population o f 
binary asteroids among NEAs (e.g. Margot et al. 2002; Merline et al. 2003). It consists o f 
two components, a primary with estimated size o f ~  800 m and a secondary o f ^  300 m. 
The primary component exhibits a fast rotation with P\ ~  2.775 h, while the secondary 
component is likely orbit-synchronous with a period o f P j — 1.755 d (in our model we 
slightly tweaked these values to become commensurable with the orbital period o f the 
system about the Sun, namely P\ be 1/5034 and P2 be 1/332 part o f that value). The 
mutual orbit o f the two asteroids is quasi-circular with radius o f ~  1310 m. Current data 
do not allow shape resolution, so that we use spherical models for both components, 
represented in our model by 1004-facet polyhedra, with spin axes perpendicular to their 
mutual orbital plane (all data from Margot et al. (2002)).

In compact binaries, such as 2000 DP107, mutual eclipses produced by the two asteroids 
play important role and must be taken into account (Fig. 2a). We accordingly adapted 
our software to compute simultaneously Yarkovsky force for both asteroids in the system. 
The C-type classification for the primary component and tracking o f mutual motion of 
the two components suggest lower density o f 1 .7g /cm 3 (Margot et al. 2002; we assume 
this value for both surface and bulk density). The specific thermal capacity is taken to be
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~ 800 J/kg/K, the surface optical albedo A =  0.1, while we again let the surface thermal 
conductivity to change in a broad range of values 0.001 -  1 W/m/K.

Figure 2b shows the mean drift rate of the semimajor axis of the center of mass orbital 
motion about the Sun due to the Yarkovsky effect (one easily shows that the effective 
YE for the center of mass heliocentric motion is given by a mass-weighted mean of 
the YE on the two asteroids). We note the contribution of the secondary component is 
small, but not entirely negligible. Not shown here, however, is the role of the YE for 
motion of the two components about their common center of mass, where the effect 
on the secondary component plays determining role (see Vokrouhlický et al. (2004b) 
for detailed discussion). With that result, Vokrouhlický et al. (2004b) conclude the YE 
should be comfortably detected for this system during its close encounter in August 2016 
provided accurate radar observations are acquired in September 2008.
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