
Univerzita Karlova v Praze
Matematicko-fyzikálńı fakulta

DIPLOMOVÁ PRÁCE

Ondřej Kmoch

Implementace XSLT v prostřed́ı
relačńı databáze

XSLT Implementation in Relational
Database Environment

Katedra softwarového inženýrstv́ı

Vedoućı diplomové práce: Prof. RNDr. Jaroslav Pokorný, CSc.,

Studijńı program: Informatika

2007

Na tomto mı́stě bych chtěl poděkovat svému vedoućımu Prof. RNDr. Jaroslavu
Pokornému, CSc. za odborné a př́ınosné rady, které přispěly ke zdárnému
dokončeńı celé práce.

Prohlašuji, že jsem svou diplomovou práci napsal samostatně a výhradně s
použit́ım citovaných pramen̊u. Souhlaśım se zap̊ujčováńım práce.

V Praze dne 15. srpna 2007
Ondřej Kmoch

1

Contents

1 Introduction 10
1.1 Thesis target . 11
1.2 Thesis structure . 12

2 Technologies and standards 14
2.1 XML . 14

2.1.1 Logical structure . 14
2.1.2 Kinds of XML documents 16

2.2 Namespaces in XML . 17
2.3 XPath . 19

2.3.1 Expressions . 19
2.3.2 Data model in XPath 20
2.3.3 Location paths . 22
2.3.4 Location steps . 22
2.3.5 Axes . 24
2.3.6 Abbreviation in location paths 26
2.3.7 Predicates . 28
2.3.8 XPath core functions 28

2.4 XSLT . 29
2.4.1 Stylesheets . 30
2.4.2 XPath and XSLT . 31
2.4.3 Template rules and processing 33
2.4.4 Patterns . 33
2.4.5 Template rules . 34
2.4.6 Built-in template rules 35
2.4.7 Named templates . 36
2.4.8 Creating the result 36
2.4.9 Creating the result by XSLT elements 37

2

2.4.10 Generating text by XPath 38
2.5 Variables usage . 40

2.5.1 Variables definition 40
2.5.2 Variables value usage 40

2.6 Other constructs in XSLT 41

3 Implementation prerequisites 42
3.1 Firebird relational engine . 42

3.1.1 Engine connection architectures 43
3.1.2 SQL procedural extensions 43

3.2 IBExpert . 44
3.3 Java . 45

3.3.1 XML API and Xerces 46
3.3.2 Spring Framework 46

3.4 Eclipse IDE . 47
3.5 Programming tools . 47

3.5.1 Maven . 48
3.5.2 Subversion . 48

3.6 ToXgene . 48
3.7 Tools usage . 49

4 Implementation top view 50
4.1 Implementation structure . 50
4.2 The design of XSLT implementation 51

4.2.1 Large XML documents processing 52
4.2.2 Current relational databases usage 52
4.2.3 Hardware of current relational databases 53
4.2.4 Integration with other systems 53
4.2.5 Work with XML stored in relations 53

5 XML storage implementation 54
5.1 Possible relational mappings 54

5.1.1 Generic mappings . 54
5.1.2 Schema driven mappings 55
5.1.3 Indexing XML data 55

5.2 Implemented generic mapping 56
5.2.1 Database structure 56
5.2.2 Indexing . 60

3

6 XSLT processing implementation 63
6.1 Implementation technologies 63
6.2 XPath evaluation . 64

6.2.1 Query conversion into SQL 64
6.2.2 Convertor implementation in Java 66
6.2.3 Convertor integration into XSLT implementation . . 67

6.3 Algorithm of XSLT processing 69
6.4 Pattern matching implementation 69
6.5 Stylesheet programming styles 70

6.5.1 Push model of stylesheets 70
6.5.2 Pull model of stylesheets 70
6.5.3 Different performance for different models 70

6.6 XSLT stored procedures . 71
6.6.1 Procedure XSLT PROCESS 71
6.6.2 Procedure XSLT EXECUTE TEMPLATE 72
6.6.3 Procedure XSLT APPLY TEMPLATES 73
6.6.4 Procedure XSLT VALUEOF 73

7 Limitations 74
7.1 XML database limitations 74
7.2 XPath convertor limitations 74
7.3 XSLT limitations . 75

8 Implementation usage 76
8.1 Installation . 76
8.2 Executing implementation 77
8.3 User interface . 77

9 Experiments 80
9.1 Functionality experiment . 80
9.2 Performance and possible optimizations 80
9.3 Possible architecture changes 82

10 Conclusion 83

Bibliography 84

A UML model for SQL select statement 87

4

B XML database structure 88

C Example 89
C.1 Source XML document . 89
C.2 Stylesheet document . 89

D Large data example 91
D.1 ToXgene generated sample document 91
D.2 Stylesheet document . 92

E CD-ROM Content 93

5

List of Figures

2.1 XML document example . 15
2.2 XML attribute example . 16
2.3 XML rewrite example . 16
2.4 XML Namespaces example 17
2.5 XML namespace redefinition 18
2.6 Default namespace definition 18
2.7 XPath location paths . 19
2.8 Location path types . 22
2.9 Location paths evaluation 23
2.10 Location step example . 24
2.11 XPath axes example . 26
2.12 Example of abbreviated location path 27
2.13 Predicates with number value 28
2.14 XSLT Namespace URI . 29
2.15 Stylesheet example . 30
2.16 Stylesheet importing and overriding 32
2.17 Location path pattern example 34
2.18 Built-in XSLT templates . 36
2.19 Template with literals . 37
2.20 Result generated by XSLT elements 38
2.21 Value-of element example 39
2.22 Attribute value templates example 40
2.23 Variable example . 41

3.1 Firebird Select procedure . 45
3.2 Dependency injection example 46
3.3 Spring configuration example 47

4.1 XSLT processing schema . 51

6

4.2 Top view of XSLT implementation 52

5.1 XML tree with XIDs . 57
5.2 Example XPath evaluation with simple path index 62

6.1 Window function example 65
6.2 Implementation of window function 66
6.3 Parameter usage in SQL . 68
6.4 Stored procedures calling graph 71

8.1 Command line for executing implementation 77
8.2 Command line arguments example 78

9.1 Comparing to other implementation 81

7

List of Tables

2.1 String value of objects in XPath 21
2.2 Abbreviations in XPath . 27
2.3 XPath core functions . 29

5.1 Simple path index example 61

8.1 Implementation connection properties 79

9.1 Parameters of the performance test 82

8

Název práce: Implementace XSLT v prostřed́ı relačńı databáze
Autor: Ondřej Kmoch
Katedra: Katedra softwarového inženýrstv́ı
Vedoućı diplomové práce: Prof. RNDr. Jaroslav Pokorný, CSc.
e-mail vedoućıho: pokorny@ksi.mff.cuni.cz
Abstrakt:

XML je rozš́ıřený formát, který je využ́ıván k ukládáńı všech druh̊u dat,
a XSLT představuje standardizovaný jazyk pro transformaci XML dat a je-
jich struktury. Dnes existuje mnoho implementaćı XSLT, ale věťsina z nich
udržuje zdrojové XML dokumenty ve strukturách př́ımo v paměti.

Implementace představená v této práci použ́ıvá pro udržováńı těchto do-
kument̊u relačńı databázi a využ́ıvá jazyk SQL k vyhodnocováńı všech XPath
dotaz̊u, které se použ́ıvaj́ı v XSLT.

Nejdř́ıve je představeno nahráváńı zdrojových XML dokument̊u do gene-
rického relačńıho mapováńı. Dále je představena transformace XPath dotaz̊u
př́ımo na SQL dotazy a nakonec je popsáno vyhodnocováńı XSLT transfor-
maćı pomoćı prostředk̊u relačńı databáze.
Kĺıčová slova: XSLT, relačńı databáze, SQL, XPath

Title: XSLT Implementation in Relational Database Environment
Author: Ondřej Kmoch
Department: Department of Software Engineering
Supervisor: Prof. RNDr. Jaroslav Pokorný, CSc.
Supervisor’s e-mail address: pokorny@ksi.mff.cuni.cz
Abstract:

XML is widely used format for storing all kinds of data and XSLT stan-
dard represents a standardized way, how to transform a XML document to
a different structure. Many XSLT implementation has been introduced, but
the most of them uses an in-memory representation of the transformed XML
document.

The implementation done in this thesis uses the relational database en-
gine to store processed document and takes advantages of SQL to evaluate
XPath expressions used by XSLT.

First, importing source XML document into the generic relational map-
ping is described. For processing XPath expressions, the XPath to SQL con-
vertor is introduced. Lastly, the processing of XSLT stylesheets by relational
database engine is shown.
Keywords: XSLT, relational database, SQL, XPath

9

Chapter 1

Introduction

Information system integration and data exchange between systems are very
important topics. There exists many different formats of data stored in dif-
ferent systems and an important problem is how to integrates this data
together.

World Wide Web Consortium1 created XML working group. Its target
is to publish recommendation about Extensible Markup Language (XML),
which is a simple text format primarily intended to be used for electronic
publishing. Howeve, XML data format can be also used for interchange data
between different systems and this role of the XML data format has become
very important. Contemporary systems usually have a XML support and
are able to export and import data in this format and these features are
usually very uncomplicated to be used. But XML standard is flexible text
format, which does not force users to use any specific structure of data. A
data format can be written in many different XML forms. For that reason
a part of the XML initiative is XSL working group, which created recom-
mendations especially about how to describe transformations between XML
formats. This recommendation is very important for interoperability of XML
formats, because it is a standardized way, how to describe transformations of
XML structure. It defines syntax, which is based on XML, and also defines
semantics, how these transformations has to be interpreted.

However, XSL Transformations recommendation does not define, how
these XSLT processors has to be implemented. This brings many different
opinions, how a XSLT processor should work. This can be very important,
because XML and XSLT are used for very different data and for very different

1W3C, http://www.w3.org/

10

http://www.w3.org/

amount of data. An implementation has to be quite mistakeproof and robust,
but on the other side it has to be fast. These two objectives are against each
other and today implementations are quite different in fulfilling of these
targets.

Very important part of XSLT recommendation is the XPath query lan-
guage heavily used by XSLT for addressing parts of XML documents and
is also used by other applications and languages for orientation in XML
documents and for selecting parts of documents.

This is contemporary situation of ideas about XML data and their trans-
formations. However, there is another technology, Relational Database Man-
agement Systems (RDBMS). They are usually basic technology to store any
data in systems. This technology is quite old, well examined, well docu-
mented and is used in most cases, if there is necessary to store any data.
World of RDBMS and world of XML are quite different and were quite sepa-
rated. But it has changed. Usual feature of wide spread RDBMSs is to export
and import data in XML. It brings new target for XSLT implementations.
Exported data from databases has to be processed to other formats and this
can be done by XSLT.

1.1 Thesis target

The main target of this thesis is to demonstrate that a RDBMS2 is able to
work as a XSLT processor as well. RDBMSs are widely used and it should be
very effective to use it for processing XML data. Today RDBMSs can usually
store XML data in text formats3, some implementations are able to import
and export XML data from and to native tables and decompose XML into
fields of tables. Usually XSLT stylesheets are already written for process-
ing this XML data. It should be profitable to use these XSLT stylesheets
for processing XML data stored in RDBMS. But today implementation of
XSLT (e.g. Saxon [17], Microsoft XSLT4, Xerces [22], libxslt5) are able to
work on XML files, not XML stored in a database. Then it is necessary to
export XML data from database, process it by a third party XSLT proces-
sor and then again import back to the database. It is not quite effective,
because export into XML text format from database representation is not

2Relational Database Management System
3Uses Binary Large Objects (BLOB) to store large XML data in a table column
4http://msdn2.microsoft.com/
5http://xmlsoft.org/XSLT/

11

http://msdn2.microsoft.com/
http://xmlsoft.org/XSLT/

necessary. This thesis demonstrates, how to implement processing of XSLT
stylesheets directly in a database. It tries to employ all database features
like internal procedure languages and especially query language used in rela-
tional databases called SQL. Database implementations are very effective in
evaluating SQL queries and this effectiveness is an advantage for processing
XSLT stylesheets.

Today XSLT implementations usually follows recommendations done by
XSL working group to use in-memory representation of processed XML data.
This is very important for effectiveness of processing XSLT programs. But
it is not unusual, that, e.g. extracts from RDBMS databases, are in XML
formats and these extracts are very huge. Then it is not possible to load
entire XML source file into memory. This thesis uses relational database
itself as a temporary XML storage and XSLT program is executed directly
on relational representation. This implementation tries to benefit from the
relational database usage as much as possible and aims not to be dependent
on the size of possible memory usage to be able to process large XML data.

For implementation the open source relational database is used. The
chosen implementation is described further. This database (like many other
relational databases) does not have tools, how to load external data from
files into tables, so Java environment has been chosen to import data and
export data to and from database. For parsing XML documents the standard
SAX ([16]) interface for Java has been used and open source parser Xerces
([22]) is used for parsing.

Structure of tables, which are used for storing XML data can be very dif-
ferent, but analysis of possible choices, how to store XML data into database
is beyond the scope of this thesis. Structure of tables and ideas about in-
dexing of XML data has been taken from [23].

The target of this thesis is to implement XSLT interpreter by environ-
ment of relational database and very important task is to implement XPath
query processing on the relational representation of XML. The XSLT im-
plementation will use stored source XML files and stored XSLT programs.
Output XML files will be primarily written into the relational database in
the same way the source files are stored.

1.2 Thesis structure

Thesis begins with introduction of all used technologies. This is covered in
Chapter 2. It describes XML standard in Section 2.1, XML namespaces in

12

Section 2.2, XPath language in Section 2.3 and a primary standard, XSLT,
in Section 2.4. Than the actual implementation details follows. It begins with
description of all used tools and third party products described in Chapter 3.
It consists mainly of the Firebird engine in Section 3.1 and the Java environ-
ment described in Section 3.3. The following Chapter 4 describes the main
parts and the main ideas of the XSLT implementation and is divided into
Section 4.1 and Section 4.2. The former one is focused on the main parts of
the XSLT implementation and the further one is focused on ideas and con-
ception considered in the implementation. The next two chapters, Chapter 5
and Chapter 6 are core of this thesis. The Chapter 5 describes implemen-
tation of XML storage in relational database and Chapter 6 continues with
description of the XSLT algorithm implementation. Found limitations of this
implementation are summarized in Chapter 7. Chapter 8 contains practical
instructions, how the implementation can be installed and used by users.
There are tests and performance optimizations summarized in Chapter 9.
The closing part is covered by Chapter 10. The thesis ends with appen-
dices, which describe used relational structure in Appendix B, structures of
demonstrating examples in Appendix C and Appendix D. A content of the
enclosed CD is described in Appendix E.

13

Chapter 2

Technologies and standards

It is necessary to describe precisely all used technologies and standards. It
means especially XSLT 1.0 recommendation, XPath 1.0 recommendation
and partly XML recommendation.

2.1 XML

Extensible Markup Language1 has to be mentioned first, because this W3C
recommendation is a foundation for all the following standards. XML is a
text based format for storing data and to store data structure within this
format. It has been created as a subset of older SGML2 and it was created to
be a format for publishing data over the internet, to be easy to use. Today
XML is used in many different cases and it is usual that data from any
application or system can be exported to XML and imported back. This
expansion of XML usage brought new opportunity to easily exchange data
between applications and systems.

2.1.1 Logical structure

The structure of XML documents follows. It will be discussed in a logical
manner. Syntax structure is a little mentioned too for the purposes of this
thesis. However, detailed description of XML syntax is not part of this work
and can be found in the original XML recommendation ([6]).

1XML
2Standard Generalized Markup Language, see http://www.w3.org/MarkUp/SGML/

14

http://www.w3.org/MarkUp/SGML/

The logical structure of XML document is divided especially into two
parts — elements and attributes.

Elements

XML is a markup language. It means that all data in XML file are marked
and this mark is called tag. Tags are of two kinds: start tags and end tags.
One start tag and relevant end tag forms an element, which is the base
structure of XML data. Each element can contain other elements or text.
Start tag is made of char ‘<’, element name and char ‘>’. End tags are
similar to start tags. They have the same name, but they start with ‘</’.
There is one exception, that there can be empty elements, which do not
have any subelement or text inside. They can be made of start tag and
immediately following end tag or they can be also made of char ‘<’, name
of element and of ‘/>’. It is demonstrated in Figure 2.1. There is one root
element in the example called book — there is the start tag ‘<book>’ and
the end tag ‘</book>’ of this element. And there is also an empty element
called empty — it is defined by the tag ‘<empty/>’.

<book>

<title>Designing XML applications</title>

<author>

<family>Nick</family><given>Marcus</given>

<family>Bob</family><given>Pant</given>

</author>

<text>Example text</text>

<empty/>

</book>

Figure 2.1: XML document example

Attributes

Data in XML format can be also represented by attributes. An attribute
belongs always to an element — the parent element. An attribute is written
in the start tag of the parent element. Syntax is shown in Figure 2.2.

There is one XML attribute in the example called name. This attribute
has value ‘XML Applications’ and its parent element is book element.

15

<book name="XML Applications">

<title>Designing XML applications</title>

</book>

Figure 2.2: XML attribute example

A piece of information can be represented in XML by elements, by at-
tributes, by values of attributes or by text written as a content of elements.
It cannot be strictly decided, when to use each style of data storage kind in
XML. The example in Figure 2.3 shows, how to store the same information
as in Figure 2.2 by an attribute.

<book>

<name>XML Applications</name>

<title>Designing XML applications</title>

</book>

Figure 2.3: XML rewrite example

2.1.2 Kinds of XML documents

Elements, attributes, attribute values and text in a XML document hold
information. Usage of this components of XML divides documents into the
two kinds: data driven documents and text oriented documents.

Data driven documents

This kind is quite similar to the relational databases. XML documents hold
information in attributes or as a content of elements. However, elements con-
tain only text data and not mixed content. When element contains mixed
content, it means, that it contains text data mixed together with subele-
ments. Elements in data driven documents hold only text, only subelements
or they are empty.

Data driven documents are very often generated by programs to export
data, e.g. from a relational database. They can be very large and are not
intended to be used or read by humans.

16

Text oriented documents

Text oriented documents are in previously mentioned points antipole of data
driven documents. They heavily use mixed content (mentioned in previous
subsection) for storing data. They are very often written and read by hu-
mans. They cannot be usually straightforwardly mapped into tables of a re-
lational database. They are especially used to store documents, e.g. XHTML
documents3, Docbook documents4, etc.

2.2 Namespaces in XML

Expansion of the XML language all over the world brought some problems.
One of them was that names of elements and attributes defined by users be-
come duplicated and element defined by one user could not be distinguished
from elements with the same name of another user. For this purpose names-
paces wee published in a W3C recommendation ([14]). This is a simple
method, how to fully qualify element names and attribute names. Because
of namespaces XML syntax has slightly changed. Each name, names of at-
tributes or elements, is called qualified name and can have a prefix separated
by a colon from a local name. However, the qualified name has always speci-
fied a namespace and a local name, despite it does not have specified prefix.
Namespaces are shown in Figure 2.4.

<b:book b:name="XML Applications"

xmlns:b="http://www.book.cz/book/2007">

<b:title>Designing XML applications</b:title>

</b:book>

Figure 2.4: XML Namespaces example

There is one namespace prefix definition in the example. Definitions of
namespace prefixes are done by XML attributes with special namespace pre-
fix xmlns, which is reserved and cannot be used by users for other purposes.
Local name of this attribute specifies prefix for defined namespace. Standard
recommends for namespaces to use URIs for worldwide uniqueness, but it
is not necessary. So there is namespace http://www.book.cz/book/2007,

3The Extensible HyperText Markup Language, see http://www.w3.org/TR/xhtml1/
4XML based format for documentation, see http://www.docbook.org/

17

http://www.w3.org/TR/xhtml1/
http://www.docbook.org/

which is represented by the prefix b and this prefix is used by all attributes
of the XML document in Figure 2.4. For a namespace there can be unlimited
number of defined prefixes. The same prefix redefines namespace prefix for
the content of its parent. It is shown in Figure 2.5.

<b:book b:name="XML Applications"

xmlns:b="http://www.book.cz/book/2007">

<b:title xmlns:b="http://www.document.cz/document">

Designing XML applications

</b:title>

</b:book>

Figure 2.5: XML namespace redefinition

Element ‘book’ and attribute ‘name’ are from namespace
http://www.book.cz/book/2007, but element title is from namespace
http://www.document.cz/document.

It has been mentioned, that all qualified names has always specified
namespace. For this purpose there is default namespace with no prefix. If it is
not defined explicitly, value of default namespace is empty string. Definition
and usage of default namespace is shown in Figure 2.6.

<book name="XML Applications"

xmlns="http://www.book.cz/book/2007">

<title>Designing XML applications</title>

</book>

Figure 2.6: Default namespace definition

Attribute xmlns without specified prefix defines default namespace and
then all attribute and element names without specified prefix are considered
to be within this namespace. This means, that in the preceding example all
attributes and elements are from namespace
http://www.book.cz/book/2007.

Namespace recommendation also defines how to validate namespace def-
initions, attribute name uniqueness of an element and more. This can be
found in [14].

18

2.3 XPath

There is discussed transformation language for XML in Section 2.4, XSLT.
As a part of this language the language for addressing parts of XML doc-
uments has been developed too. This navigation language called XPath is
mentioned before the whole transformation language for better understand-
ing of transformation examples.

This implementation uses XPath in version 1.05 ([24]). XPath recom-
mendation defines syntax and semantics for navigation language to address
parts of XML documents. Syntax of this language is stand-alone and have
nothing to do with XML syntax. XPath syntax has been inspired by URLs
and filenames. Examples are shown in Figure 2.7. The first example selects a
title element of the root book element, if there is any. The second example
selects all chapter elements of the root book element, where exists a title

element, which string value is equal to value ‘XML applications’.

/book/title

/book/chapter[title="XML applications"]

Figure 2.7: XPath location paths

This two examples are called in XPath terms Location Paths and rep-
resent the essential XPath expressions. These paths specifies Steps, how to
“walk” through XML document and find specified part of the XML docu-
ment.

2.3.1 Expressions

Expression is a basic syntax construct in the XPath language. Each expres-
sion is evaluated relatively to the context. The result of the evaluation is an
object, which is one of these types:

• node-set(a collection of nodes without duplicates)

• boolean (true or false)

• number (a floating point number)

5XPath is further used to reference this version of the language

19

• string(a sequence of characters)

The context for evaluation consists of these parts:

• context-node

• context-position

• context-size

• variables definitions and their values

• functions

• namespace declarations

Context-node is a reference to a node in a XML document, which is
considered as a current node for evaluation. Context-position is an integer
number. It is supposed, that the context-node is inside a node-set. Nodes in
this node-set are ordered and the first node has a context-position equal to
1, the second node 2 and so on. The context-size is a count of nodes in the
node-set.

Variables definitions is a set of pairs variable name and variable value.
These variables can be used inside XPath expressions and their values are
objects, which can be of any type of XPath expression: node-set, boolean,
number or string.

XPath contains definitions of many functions, which can be used inside
expressions. Functions part of context is a mapping from function name to its
definition. XSLT adds to XPath core functions, which have to be supported
by any XPath implementation, additional functions.

The last part of context, namespace declarations, is a set of pairs names-
pace prefix and namespace URI, which is used for expanding qualified names
used by XPath expressions.

2.3.2 Data model in XPath

XPath operates on a tree built from a XML document. XPath defines own
data model, which is used to built this tree, and is derived from XML Infor-
mation Set Mapping [24].

The XML tree contains these kinds of nodes:

20

• root node

• element nodes

• attribute nodes

• namespace nodes

• processing instruction nodes

• comment nodes

• text node

The root node and element nodes have a list of child nodes and are parent
nodes of these nodes. Every node except root node has exactly one parent
node. Root node is always root of the tree. So the interior nodes of tree can
be only element nodes and remaining kinds of nodes are always leaves of
tree, because they do not have children.

Node kind String value definition
root node concatenation of string values

of all descendants
element node concatenation of string values

of all descendant text nodes
attribute node attribute value
namespace node namespace URI
processing instruction node content
comment node content
text node content

Table 2.1: String value of objects in XPath

XPath defines a string value of each of this node kind. The definition of
this value is shown in Table 2.1. XPath also defines ordering called document
ordering and it is defined for all nodes in a tree. This ordering is defined by
occurrence of nodes in a XML document. The first node of the document is
always root node. Then follow its descendants. The element nodes occur be-
fore their children. Then follow their namespace prefix definitions, attributes
and then remaining kinds of nodes in order as they occur in document. Order
of attributes and order of namespace definitions is not defined.

21

1. Absolute location path: /step1/step2/step3

2. Relative location path: step1/step2/step3

Figure 2.8: Location path types

2.3.3 Location paths

Paths are essential expressions of XPath. Every path consists of location
steps, which are separated by ‘/’. Location path is evaluated from the left
to the right. Each step is evaluated relatively to the context node, which
changes during the evaluation process. The context node for evaluation of a
location path is defined by the context (see Subsection 2.3.1).

If the location path starts with ‘/’ (Item 1 in Figure 2.8), then the path
is called absolute location path and the context node for location steps is the
root node of the document containing context node. Otherwise the location
path is called relative location path (Item 2 in Figure 2.8) and the context
node is taken from the context.

Each step is evaluated relatively to the context node and the nodes se-
lected by a step are context nodes for evaluation of the following step. The
nodes selected by the last step are a result of entire location path.

Evaluation of a location path can be simplified into instructions shown
in Figure 2.9.

2.3.4 Location steps

Location step has three parts: axis, node test and zero, one or multiple
predicates. Axis specifies the base set of nodes, which can be in a result of
a location step. The detailed description of all defined axes can be found in
Subsection 2.3.5. Node test defines a simple filter on the node set returned by
an axis. Predicates contain XPath expressions, which are used for accurate
filtering of nodes, which are returned.

XPath defines a principal node type for each axis. The attribute axis has
a principal node type attribute, the namespace axis has a principal node type
namespace. For all other axes the principal node type is element. This node
type is important for evaluating node tests in a expression.

Node test can be of two kinds: name test and node type test.
A name test is consisted of a fully qualified name, a namespace URI and

22

1. add the root node (for an absolute path) or the context node (for a
relative path) to the temporary node set

2. loop for each step of the path

3. get all nodes of the axis, which is evaluated relatively to the all nodes
in the temporary node set

4. filter all these nodes by the node test

5. for each node evaluate all predicates (predicates can contain location
paths, which are evaluated relatively to the examining node)

6. clear temporary node set and put nodes, which has passed by all
predicates, into it

7. if there is any next step, go to Item 2

8. return temporary node set as a result of the location path

Figure 2.9: Location paths evaluation

23

a name. A node passes the name test, if the type of the node is the principal
node type of the axis and if the qualified name of the node is equal to the
qualified name in the name test. The name in a name test can be replaced
by ‘*’, which means that name is not specified and all nodes principal node
type are returned. Asterisk mark can be also used only for local name part
of fully qualified name to filter nodes, which are within specified namespace.

A node type test can be of these types:

• comment()

• text()

• processing-instruction()

• node()

The first three types filter an axis to the nodes, which are of the cor-
responding type (a comment node, a text node or a processing instruction
node). The last type, node(), does not filter axis at all. All nodes selected
by an axis are returned in result.

The location step shown in Figure 2.10 specifies child axis (all axes are
described in Subsection 2.3.5). The nodes from this axis are filtered by the
node test, which specifies that only elements with name ‘book’ will be in
a result. Only elements are returned, because the principal node type of
the child axis is the element type. At the end, the nodes are filtered by
predicate. There is an expression in the predicate, which decides to return
only nodes, which have a title child element with a content equal to ‘XML’.
The predicate in this example contains another one location path, which is
evaluated relatively to the nodes selected by the axis and the node test.

2.3.5 Axes

The XPath [24] defines following axes for selecting node sets:

• child

child::book[child::title=’XML’]

Figure 2.10: Location step example

24

• parent

• attribute

• namespace

• ancestor and ancestor-or-self

• descendant and descendant-or-self

• following

• preceding

• following-sibling

• preceding-sibling

• self

Child axis selects all child nodes of context node. If the axis is omitted
in a location path, the child axis is the default one for evaluation.

Parent axis contains for each node except root nodes one parent node.
That is a result from Subsection 2.3.2

Attribute axis selects all child attributes of current context node and
Namespace axis selects all namespace prefix definitions of it. Both axes con-
tain any nodes if and only if the context node is an element. Otherwise it is
empty.

Ancestor and ancestor-or-self axes select parent node, parent’s parent
node and so on. These axes always contain root node. The root node does
not have a parent node, thus the recursive definition always stop at a root
node. Ancestor-or-self axis furthermore contains current context node.

Descendant and descendant-or-self axes contain child nodes of the con-
text node, children of each child and so on. These axes never contain at-
tribute nodes and namespace nodes. Again, descendant-or-self axis contains
current context node besides others.

Following axis and preceding axis contain all nodes, which follow, re-
spectively precede, the context node in document order. These axes does
not contain descendants of the context node and does not contain attribute
and namespace nodes.

Following-sibling axis and preceding-sibling axis contain following, re-
spectively preceding, siblings of the context node. Siblings of the node are

25

nodes with the same parent node. These axes are empty, when the context
node is an attribute or namespace node, because document ordering is not
defined for set of attributes of a node and set of namespace prefix definitions
(see Subsection 2.3.2).

Self axis always contain exactly one node, which is the context node.
Each axis is forward axis or reverse axis. The forward axis returns nodes

ordered in document order and these are axes, which returns context node
or nodes, which follows context node in document order. Therefore ances-
tor, ancestor-or-self, preceding, and preceding-sibling axes are reverse axes.
These axes return nodes in reverse document order. This fact influences the
XPath context-position evaluation. Context-position in a result of a reverse
axis is counted on nodes ordered in reverse document order.

The most of axes are shown in Figure 2.11. The picture does not contain
variants of axes with “-self” suffix. These axes would contain context node
moreover. The attribute axis and namespace axis are not presented too.

Figure 2.11: XPath axes example

2.3.6 Abbreviation in location paths

XPath defines abbreviations for most usually used expressions. All abbrevi-
ations are shown in Table 2.2.

Figure 2.12 shows an example of abbreviations.

26

The long syntax Abbreviation type The abbreviated syntax

parent::node() location step ..
self::node() location step .
descendant-or-self::node() location step //

attribute axis @
child axis default axis, does not

have to be specified

Table 2.2: Abbreviations in XPath

Abbreviated location path

//para/../text()

Unabbreviated location path

/descendant-or-self::node()/child::para/parent::node()/

child::text()

Figure 2.12: Example of abbreviated location path

27

• select the last book in a document
/book[last()]

• select the second book in a document
/book[2]

Figure 2.13: Predicates with number value

2.3.7 Predicates

An axis (Subsection 2.3.4) together with a node test produce a node set,
which can be furthermore filtered by predicates. A predicate is an XPath
expression in square brackets ([]). Its result is converted into the boolean
value by XPath boolean function, which is a part of XPath core functions.
Description of this function can be found in Subsection 2.3.8. Only if the
predicate is evaluated to the true value, the node is included into the result
set.

There is one exception to the previously mentioned rule. If the result of
a predicate is a number, the predicate is true, if the context position equals
to this number. Otherwise the predicate is evaluated to false.

The example of the predicate with number is shown in Figure 2.13. The
used function last is described in Subsection 2.3.8.

The first predicate of a location step filters the result set of an axis and
a node step. The result set of the first predicate is the input of the next
predicate of the location step. Therefore, the node is in the result set of
entire location step, if it passed all predicates.

2.3.8 XPath core functions

XPath defines the set of functions, which have to be supported by any XPath
implementation. The detailed description of these functions is not part of
this thesis and can be found in [24]. A few of them are shown in Table 2.3.

The boolean function converts objects into boolean values by these rules:

• a number is true if it is not zero or NaN

• node-set is true if it is non-empty

• a string is true if its length is non-zero

28

Function name Description
last() returns the context-size
position() return the context-position
count(node-set) returns count of nodes in a node-set
boolean(object) converts any XPath object into a boolean value
string(object?) converts an object into a string value

Table 2.3: XPath core functions

The conversion of objects into a string value is shown in Table 2.1.

2.4 XSLT

For specifying formatting of XML documents the Extensible Stylesheet Lan-
guage has been developed and a part of it XSL templates, shortly XSLT,
has been designed. The target of XSLT is to prepare and transform XML
document for final formatting process. XSLT in version 1.0 has been pub-
lished and this version is used in this implementation. However, there is a
new version of XSLT — 2.0. This version is mentioned further, but is not
a part of this implementation. Thus XSLT abbreviation is used to reference
XSLT in version 1.0 further.

A transformation described by XSLT is called stylesheet. Stylesheets are
XML document with a specified structure defined by XSLT. The elements
and attributes are defined in XSLT namespace with standard URI (see Fig-
ure 2.14). Each stylesheet contains set of template rules. These rules consists
of two parts: pattern and template.

http://www.w3.org/1999/XSL/Transform

Figure 2.14: XSLT Namespace URI

Stylesheet is interpreted by a XSLT processor on a source document.
The processor applies all template rules defined in a stylesheet on a source
document and an output document is built.

The template rule contains pattern, which is an XPath expression. The
template rule is applicated on a node, if the pattern matches examined node.
The processing is done by finding template rule for a root node of a source

29

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

...

</xsl:template>

</xsl:stylesheet>

Figure 2.15: Stylesheet example

document. Template of the template rule can contain instruction to process
child or descendants of the root node. When a template is applicated the
context for this application is held. This context consists of a current node
and a current node list.

It has been mentioned that patterns are XPath expressions. XSLT uses
XPath in many attributes for selecting node, for evaluating conditions and
for generating text output.

The output of the XSLT processor can be of these kinds: a XML doc-
ument, a HTML document or a text document. XSLT can generate non-
wellformed XML documents, because it does not have requirements on
the children of a root node of an output document. Therefore it can generate
e.g. documents with many root elements.

XSLT does not specify connection between a stylesheet and a source
XML document. There is recommendation, that this should be done as de-
scribed in [3]. This connection can be done by stylesheet processing instruc-
tion in the source XML document.

2.4.1 Stylesheets

Stylesheets are XML documents with stylesheet root element from the XSLT
namespace (Figure 2.14). This element has to contain version attribute with
specified version number. For XSLT in version 1.0 it has to contain ‘1.0’

string. Furthermore stylesheet element can contain different controlling in-
structions. The example of a stylesheet with one specified template rule is
shown in Figure 2.15.

30

Controlling instructions

The XSLT processor can be instructed to format an output document in
many ways. Strip-space and preserve-space instructions can be used to con-
trol processor, when the whitespaces in a source document or in a stylesheet
should be stripped or written to the output document. Format of numbers
can be controlled by decimal-format instruction. The detailed description of
these instructions can be found in [25].

Stylesheet importing and including

Stylesheet can contain import or include instructions, which reference by
URI another stylesheet document. Templates from included stylesheet are
added to the set of templates defined in the main stylesheet and are used for
transformation process. It is an error, if any stylesheet is included multiple
times directly or indirectly.

The stylesheet can also import another stylesheet. Meaning of import
is nearly the same like include, but imported template definitions has a
lower import precedence during XSLT processing. It means that templates in
importing stylesheet overload templates in imported stylesheet. This can be
used for rewriting some part of stylesheet function. The example of importing
stylesheets is shown in Figure 2.16.

The example demonstrates, that the imported template rules have lower
import precedence and so the template rule for title element is overridden
and rule from stylesheet myarticle.xsl is used. The detailed description of
template rule searching can be found in Subsection 2.4.5.

2.4.2 XPath and XSLT

XPath language is used by XSLT to select nodes, to process conditions and
to generate text values. The data model used by XPath is used in XSLT
too. XSLT defines the value of the context for XPath evaluation as follows:

• context-node is the current node

• context-position is the position of the current node in the current node
list

• context-size is the size of the current node list

31

Source XML document book.xml

<book>

<title>XML</title>

</book>

Stylesheet book2article.xsl

...

<xsl:template match="book">

<article><xsl:apply-templates /></article>

</xsl:template>

<xsl:template match="title">

<caption><xsl:apply-templates /></caption>

</xsl:template>

...

Stylesheet myarticle.xsl

...

<xsl:import href="book2article.xsl" />

<xsl:template match="title">

<title>Title: <xsl:apply-templates /></title>

</xsl:template>

...

Result of processing myarticle.xsl on book.xml

<article>

<title>Title: XML</title>

</article>

Figure 2.16: Stylesheet importing and overriding

32

• variables definitions are variables defined by variable or parameter in-
struction

• functions consists of XPath core functions and many XSLT specific is
added (details can be found in [25])

• namespace declarations contains all namespace definitions, which are
in the scope of the element containing the attribute, which content is
an XPath expression

2.4.3 Template rules and processing

A stylesheet contains a set of template rules: pairs of a pattern and a tem-
plate. The processing begins on the list of nodes, which contain only root
node of the source document. Each node is processed by matching template
rule with the highest priority. The result of processing the node is appended
to the result document. Templates usually contain instruction for selecting
descendant nodes and applying the processing algorithm recursively on this
list. The processing ends, when there is no source node to process.

2.4.4 Patterns

A pattern is a set of conditions on a node. A node matches a pattern, if all
conditions are for the node satisfied.

Pattern grammar is a subset of the XPath language (Section 2.3). A
pattern is a set of location path patterns separated by ‘|’. These location
path patterns are considered to be alternatives. It is evaluated as a boolean
or operator. A location path pattern is an XPath location path, which uses
only the child or the attribute axes. No other axes are permitted. However,
predicates used in steps are not limited to these axes.

A pattern cannot use the descendant-or-self axis, but the ‘//’ separator
between steps can be used. The location path pattern is evaluated from the
right to the left as follows:

• a node matches the pattern if and only if the rightmost step of the
pattern matches the node

• if there is another step separated by ‘/’, then the parent node must
match the step

33

/book//section[title="XML"]

Figure 2.17: Location path pattern example

• if there is another step separated by ‘//’, then there must exist an
ancestor node, that match the step

• the definition repeats for all next steps from the right to the left of the
location path pattern

The example of the location path pattern is shown in Figure 2.17. This
pattern matches any section element in the source document, which has a
title element and its string values is equal to ‘XML’. The section can be
any descendant of the root element book.

If the predicate is presented in a step, the node, which matches the node
test, is the context node for predicate evaluation and siblings of this node,
which match the node test, are content of the context node list.

2.4.5 Template rules

Subsection 2.4.3 mentioned, that the template rules are the basic construct
for XSLT processing. The rules are defined in a stylesheet by template

element with specified match attribute, which contains a pattern. When the
current node matches the pattern, the template is interpreted by processor.

The template can contain apply-templates element, which instructs
processor to recursively search for template rules for all children of the cur-
rent node. This element can have specified select attribute. The content
has to be an XPath expression, which is evaluated into a node-set. Then
the searching for template rules is done only for these nodes. The expression
of the select attribute are not limited and so it can select ancestor nodes,
which can lead to nonterminating loops. The implementation should detect
these loops.

That is possible that more than one template rule matches a node. Than
the priority mechanism is defined and the template rule with the highest
priority is used for transformation. If the processor cannot decide, the error
can be reported and transformation is stopped. Or processor can choose
from the remaining ones the template rule last occurred in the stylesheet
and recover from this error. The following rules are used for decision:

34

• the all imported template rules, which have lower import precedence,
are removed from the deciding process

• the priority is obtained from the priority attribute of the template

element

• otherwise the default priority is computed:

– priority is computed separately for all alternatives

– paths, which consists of only one step with child or attribute axis
and a node test (not using asterisk mark), have the priority 0

– if the pattern is the same like previous, but uses asterisk mark
for local name in the node test and specifies namespace, it has
the priority −0.25

– if the entire node test is specified by asterisk mark, the priority
is equal to −0.5

– otherwise the priority is set to 0.5

The algorithm for decision prefer more specific patterns. The most spe-
cific pattern, which contain more than one step, cannot be distinguished and
have default priority 0.5.

2.4.6 Built-in template rules

XSLT defines set of standard built-in template rules. These template rules
are used for nodes of the source XML document, when user does not define
any template rule, but processor searches for a rule for the node. It defines
behaviour for these nodes. The definitions are shown in Figure 2.18 and
follows their semantics in the same order:

• Text nodes and attribute values are generated to the output document.

• Processing instruction nodes and comment nodes are ignored.

• Other nodes (element nodes and document root node) does not gener-
ate output, but the processor is instructed to search for templates re-
cursively by apply-templates instruction. This instruction is described
in the following section.

Details about used XSLT elements can be found in the following sections.

35

<xsl:template match="text()|@*">

<xsl:value-of select="."/>

</xsl:template>

<xsl:template match="processing-instruction()|comment()"/>

<xsl:template match="*|/">

<xsl:apply-templates/>

</xsl:template>

Figure 2.18: Built-in XSLT templates

2.4.7 Named templates

The Subsection 2.4.3 described the processing model of XSLT. The template
rules are applicated on matching nodes. However, templates can be also
instantiated by their names. Element template can contain name attribute.
Its content is a qualified name, which can use namespaces ([14]). A template
can contain call-template element, with specified name attribute, which
specifies the template to be invoked. It is instantiated with the same current
node and current node list as is for call-template element.

The priorities and modes are not considered during call process. That
is an error, where exists more than one template, with the same name and
import precedence. However, the named templates can be overridden by
importing as described in Section 2.4.1.

2.4.8 Creating the result

The creating of the result can be in a template described in two very different
ways: the literals can be used or it can be described by XSLT elements.

Using literals

The elements and attributes inside a template, which are not from XSLT
namespace, are not interpreted by processor and are written to the output
document. The content of an non-XSLT element is again considered to be a
template and creates a content of the element.

Namespace nodes, which are the children of a non-XSLT element and

36

not defines alias for XSLT namespace, are created in the output document
too.

Example of generating result by literals is shown in Figure 2.19. The
article element is a non-XSLT element, also called literal element. Its child
attribute node and namespace node are literals and are created in the result
document too. The article literal element contains the mixed content.
Text node, which is the child of this element, is also created in the result
document.

Template

...

<xsl:template match="book">

<article s:owner="nobody"

xmlns:s="http://www.book.cz/owner">

Text of the book:

<xsl:apply-templates />

</article>

</xsl:template>

...

Result

...

<article s:owner="nobody"

xmlns:s="http://www.book.cz/owner">

Text of the book:

...

</article>

...

Figure 2.19: Template with literals

2.4.9 Creating the result by XSLT elements

Element and attribute nodes mentioned in Section 2.4.8, which can be gen-
erated by literals can be also generated by XSLT elements.

Elements in the result document can be created by XSLT element ele-
ment, attributes by attribute element. The attribute elements must be

37

the first child elements of the parent.
Text nodes can be created by text element, which can specify, how the

whitespaces are handled.
All these possibilities are demonstrated in Figure 2.20. It is rewritten

stylesheet from Figure 2.19 with the almost same result. The result can differ,
how whitespaces are handled by processor. The details about whitespaces
handling can be found in [25].

...

<xsl:template match="book">

<xsl:element name="article">

<xsl:attribute name="s:owner"

namespace="http://www.book.cz/owner" />

<xsl:text>Text of the book:</xsl:text>

<xsl:apply-templates />

</xsl:element>

</xsl:template>

...

Figure 2.20: Result generated by XSLT elements

The last passibility for generating result by XSLT elements is to use
copy-of element. This element has to contain the select attribute, which
contain an XPath expression. The selected fragment of the source document
is created in the output document. This means that the node set selected by
expression is created in the output document in the source document order.
The tree fragment is the whole copied to the output. When the result of
the expression is of other type, the object is converted by the XPath string
function and the text node is created in the output document. This is very
similar to the value-of element described in Section 2.4.10.

2.4.10 Generating text by XPath

XSLT uses XPath also for generating text values. The XPath expressions can
be used for this purpose in two ways: with value-of element or in attribute
value templates.

38

Value-of element

The value-of element generates a text value, which is a result of the XPath
expression. The expression is written in the select attribute of this element.
The expression is evaluate relatively to the current node and the current
node list. The examples is shown in Figure 2.21. This example for each book

element creates the article element in the result. Each article element
contains name element. The content of these elements is generated by value-
of element. It generates a text node, which contain the string value of nodes
selected by XPath query title. This query can be rewritten into unabbre-
viated form (as described in Subsection 2.3.4 and following sections):

self::node/child::title

The query is relative to the current node and selects its child title ele-
ments. It does not select attributes or other types of nodes, because element
node type is the principal node type of a child axis (details can be found in
Subsection 2.3.4).

...

<xsl:template match="book">

<article>

<name><xsl:value-of select="title" /></name>

<xsl:apply-templates />

</article>

</xsl:template>

...

Figure 2.21: Value-of element example

Attribute value templates

This mechanism is able to compute text value of attributes, which are in-
terpreted, by XPath expressions. It can be used e.g. by attributes of literal
elements (described in Section 2.4.8). An XPath expression has to be sur-
rounded by curly braces ({}). The content is then interpreted in the same
way as the value-of element. The example is show in Figure 2.22. This
example is very similar to the one shown in Figure 2.21. However, it gener-
ates name of the book as name attribute. The content is the same in both
examples.

39

...

<xsl:template match="book">

<article name="\{title\}">

<xsl:apply-templates />

</article>

</xsl:template>

...

Figure 2.22: Attribute value templates example

2.5 Variables usage

XSLT introduces mechanism of variables. The variable is the pair of a string
name and a object, which can be any of the XPath object type. It can also
point to result tree fragment, which is a new type defined by XSLT. The
details about this can be found in [25].

2.5.1 Variables definition

Variables can be declared by two elements: variable and param element. Both
has to contain name attribute with specified variable name. The content can
be selected by XPath expression in the select attribute or as a content of
the defining element.

The difference between variable and param is, that the param defines
only the default variable value. It is usual, that the value is redefined with-
param element, which can be contained by apply-templates element or by
call-template element.

2.5.2 Variables value usage

The variables can be used inside all XPath expressions in templates. Variable
name has to be prefixed by ‘$’ char.

The example is of a variable is shown in Figure 2.23. The example demon-
strates many features of XSLT. It uses recursive template calling for simu-
lating classic for cycle from 1 to $count of spaces. It is a variable declared
by param element. And for each step of the cycle it writes one space char
into the output document. So this template has to be called with specified
parameter and then it writes specified number of spaces to the output doc-

40

...

<xsl:template name="spaces">

<xsl:param name="count_of_spaces"/>

<xsl:if test="$count_of_spaces > 0">

<xsl:text> </xsl:text>

<xsl:call-template name="spaces">

<xsl:with-param name="count_of_spaces"

select="$count_of_spaces - 1"/>

</xsl:call-template>

</xsl:if>

</xsl:template>

...

Figure 2.23: Variable example

ument. This also demonstrates how to simulate for cycle in XSLT, because
this construct is not defined in XSLt.

2.6 Other constructs in XSLT

It has been mentioned many elements of XSLT and their semantic. However,
XSLT defines many more elements, which will not be described in this thesis
in details. It can be found in [25].

It means especially elements for conditional processing and for repeti-
tion. The Figure 2.23 shown how to simulate classic for cycle, which is not
included in XSLT. However, XSLT contain for-each element, which repeat
its content for each node in a selected node set. The evaluation of templates
can be controlled by if element and by choose element, which are very
similar to classic “if” and “switch” C-like statements.

XSLT was intended to prepare XML documents for publishing, so it
can sort the output by sort element and text can be formated by number

element.

41

Chapter 3

Implementation prerequisites

In this chapter the chosen technologies and third party products used dur-
ing implementation are described. The chosen relational database engine is
presented in Section 3.1. Its procedural extensions to SQL, Java program-
ming language, XML tools and integrated development environment (IDE)
are presented too.

3.1 Firebird relational engine

As a relational database the Firebird ([8]) has been chosen. This is an open
source project, which has been established at the end of the year 2000. In this
year Borland corporation took source codes of their Interbase SQL database
product to the open source community. This code became a foundation of the
future Firebird project. Interbase is still developed by Borland corporation,
but nowadays Firebird is completely stand-alone project and is developed
in other direction.

During the implementation of this work version 2.1 of Firebird engine
has been released and this version is used by this implementation. This
engine is nearly SQL-92 compliant engine and it has also many SQL:1999
([4]) and SQL:2003 features like sequences, case expressions, etc. Engine also
contains procedural extension to SQL, which is used in stored procedures
and triggers. Stored procedures are highly used by XSLT implementation to
reduce traffic between client and SQL server.

This engine has been chosen, because it is completely open source project.
It is released under Interbase Public Licence, which let to use this engine in
commercial projects too and engine is not limited in any feature like other

42

free versions of Oracle or Microsoft SQL. Firebird is a multiplatform engine,
which can be run on Microsoft Windows operating system and on Linux
operating system.

The documentation for this engine can be found in [9].

3.1.1 Engine connection architectures

Firebird can work in three very different scenarios:

• standard client-server

• local

• embedded

By using different scenario the Firebird can scale very well for different
performance requirements and for very different size of stored data. Client-
server scenario is similar to other world wide spread SQL databases. Client
communicates over the net with dedicated stand-alone server.

In local architecture the client communicates with stand-alone server by
special local network protocol. This is supported only in Microsoft Windows
operating system. The benefit of this mode is reduced network traffic.

The third scenario of the Firebird engine usage is called embedded. This
is very specific feature of this SQL engine. When this scenario is used, the
SQL server is not stand-alone. It is compiled as a dynamically linked library
and is tightly connected to the client application.

Scenarios can be chosen in any time of client application development,
because it is done, mainly, by using different connection string to connect
to the server. By using Firebird as a hosting relational engine XSLT imple-
mentation offers possibility to be used with the embedded server and so no
server application has to be installed at all. Or it can benefit from already
running Firebird database engine and use it in the client-server mode.

3.1.2 SQL procedural extensions

All contemporary relational engines offer SQL procedural extensions to sup-
port triggers and stored procedures. These features are able to move logic
directly into relational engine and these programs are run directly by rela-
tional engine.

43

Firebird supports basic procedural extensions mainly inspired by Pascal
programming language and this language is very similar to standardized
SQL/PSM language introduced in SQL 1999 and extended in SQL 2003.
However, used language is not fully compatible with SQL/PSM. It does not
support any object oriented features. It offers simple variables, which are
declared at the beginning of procedures, cycles, if statement and more. The
full description of Firebird PSQL language can be found in [7].

Stored procedures in Firebird can be of two kinds: standard procedures
and select procedures.

Select procedures

Select procedures return data in a table style. They are used in place of
relational tables in SQL selects. They have special structure. They usually
contain a cycle, which fills output variables. After filling the parameters
the suspend statement is called, which blocks executing of procedure and
returns output parameters as a new row of result set of procedure. When
client asks for a new row, the procedure continue in executing directly after
the suspend statement. The result set ends where procedure ends. These
procedures can be used for generating data, for transforming table data,
where views cannot be used, etc.

The example of select procedures is shown in Figure 3.1. This procedure
loads name of all relations in database (RDB$RELATIONS is a name of system
table in Firebird database catalog).

Standard procedures

Standard procedures can return only set of output parameters or it can
perform an action and return nothing. The return parameters are marked as
output parameters of select procedures. However, these procedures should
not contain suspend statement.

3.2 IBExpert

Development of database structures and especially stored procedures has
been done in IBExpert tool [10]. This is a fully featured integrated devel-
opment environment for Firebird database engine. It offers table and view
visual modelling, user friendly altering and many more. It has been also used

44

DECLARE RNAME CHAR(31);

DECLARE C CURSOR FOR (SELECT RDB$RELATION_NAME

FROM RDB$RELATIONS);

BEGIN

OPEN C;

WHILE (1 = 1) DO

BEGIN

FETCH C INTO :RNAME;

IF (ROW_COUNT = 0) THEN

LEAVE;

SUSPEND;

END

CLOSE C;

END

Figure 3.1: Firebird Select procedure

for creating stored procedures of XSLT implementation. This software has
been chosen because it can be freely used for personal developing and for
education.

3.3 Java

Used relational database does not offer any facility to communicate for
example with operating system, files, etc. For loading XML files into database
additional programming platform has to be used.

In this XSLT implementation Java 6 SE is used, because it is complete
object oriented fully XML featured platform with standardized relational
database access. Java is partly open source platform maintained by Sun Mi-
crosystems. It is used for XML parsing and generating and also for compli-
cated algorithms, which cannot be easily implemented directly in relational
engine.

Java is distributed in many different packages and in this implemen-
tation Java Standard Edition is used in version 6 from Sun Microsystems
[11]. Database connection to the Firebird server is done by standardized
JDBC technology. Firebird project offers for this technology own JDBC
driver called Jaybird [13], which is fully featured driver for Firebird server.

45

When JDBC is used it is actually very easy to change relational database
implementation. So it is possible to use Java parts of the XSLT implemen-
tation with another SQL engine, e.g. it is possible to load XML data by this
component into Oracle or MS SQL database engines.

3.3.1 XML API and Xerces

Java 6 Standard Edition offers full XML API1. It also contains XML parser,
but this implementation does not offer all XML features, especially names-
pace processing. Because of this other implementation is used for XML pars-
ing, Xerces for Java in version 2.9.0 [22].

Xerces is fully features XML parser, but in this thesis only its SAX parser
([16]) is used. However, XSLT implementation is not dependent on Xerces
and any SAX implementation can be used for parsing XML documents by
switching the implementation in Java XML API.

3.3.2 Spring Framework

The configuration and dependency management in object application can be
done in many different ways. This XSLT implementation uses core of Spring
Framework in version 2.0.2 [18]. This is an enterprise oriented framework,
which is used without any application server during runtime. However, this
framework offers XML based configuration and dependency injection mech-
anism. It means, that dependencies between Java classes are configured in
XML files and Spring is responsible for instantiating all these classes and
connecting them together during runtime.

Figure 3.2: Dependency injection example

1Java API for XML Processing, see http://java.sun.com/xml/

46

http://java.sun.com/xml/

<bean id="b" class="B"/>

<bean id="a" class="A">

<constructor-arg ref="b"/>

</bean>

Figure 3.3: Spring configuration example

Example of dependency problem is shown in Figure 3.2. There are two
instances in runtime, object A and object B. Object A is dependent on object
B and needs a reference to the object B. This dependency is configured in
Spring configuration file shown in Figure 3.3. Spring during runtime creates
these two objects and object A is initialized by its constructor with the first
parameter set to object B.

Details about dependency injection and entire framework can be found
in [18].

3.4 Eclipse IDE

The development process has been done in Eclipse integrated development
environment (IDE) version 3.2.2 [5]. This is a world wide used Java devel-
opment tool with a huge amount of plugins to support entire development
process. The enclosed CD mentioned in Appendix E contains Eclipse and
used plugin too.

3.5 Programming tools

The other used tools are described in this section, which has been used to
simplify development process, packaging process and other administration,
also to ensure versioning.

Some parts of implementation has been modelled in UML2 (e.g. object
model for modelling SQL selects in XPathConvertor, see Subsection 6.2.2)
and for this process the open source UML designer has been used called
ArgoUML ([1]). However, UML has been used only for designing and for
documenting. The generating of source code has not been used at all.

2Unified Modeling Language, see http://www.uml.org/

47

http://www.uml.org/

3.5.1 Maven

The building and packaging process of a Java application is possible by
Eclipse IDE itself. But this is is not appropriate for projects with many
third party dependencies and with several separated modules. The Maven
project in the current version 2.0 [2] has been chosen for these purposes.
Project configuration is stored in a Maven POM file3, which is the central
configuration point of an application and Eclipse project files are automat-
ically generated from this file. Then it is possible to run and debug Maven
based project directly from IDE. Maven is also responsible for managing de-
pendencies of application. The dependencies are defined in POM file too and
Maven downloads necessary files from central Maven repository by internet
connection.

Maven community has created large central repository with huge amount
of applications and components. Then any project, like this XSLT implemen-
tation, can be very easily uploaded to this repository and served to all Maven
users.

3.5.2 Subversion

For central storage repository of source code files with versioning features
the Subversion [20] has been used and all project files are stored there.
The Eclipse plugin Subclipse [19] has been used for comfortable Subversion
usage, committing changes, etc. Due to Maven usage the files of dependencies
and generated files are not stored in Subversion repository. The Subversion
updates, commits, etc. can be done by Maven too, but this feature has not
be used, because Subclipse plugin is better integrated into Eclipse IDE.

3.6 ToXgene

The entire implementation was tested on a large XML data generated by
ToXgene generator [21]. This is the template based XML documents gen-
erator. The used templates for generating XML data can be found in Ap-
pendix D. The ToXgene is able to generate complex XML content, with
mixed content too, supports integrity constraints and many more. In this
thesis the ToXgene has been used only for generating a large XML document
to demonstrate robustness of implementation.

3Project Object Model, see http://maven.apache.org/pom.html

48

http://maven.apache.org/pom.html

3.7 Tools usage

Majority of tools is not necessary for XSLT implementation in a relational
database environment. Maven, Spring Framework, Subversion has been used
because of purpose to find out the learning requirements to establish large
enterprise project with usage of open source projects, a project with prepared
team infrastructure and ensured functioning of building process, versioning
process, etc.

49

Chapter 4

Implementation top view

The idea, how to implement XSLT with relational engine, is presented by
Figure 4.1. The source XML document and the stylesheet document has
to be imported into relational engine. Both these documents are parsed by
XML parser and stored in tables. Then the stylesheet has to be prepared
for interpreting and then the stylesheet is interpreted directly in the rela-
tional engine. The output document is stored in the relational storage as a
new XML document. The output document is then exported out from the
relational engine into the XML file. The XSLT implementation has a user
interface and this interface controls all parts of XSLT implementation.

4.1 Implementation structure

Entire implementation can be divided into several parts. Figure 4.2 shows
all these parts.

The starting point of the implementation is XML importer. XML im-
porter together with XML exporter forms interface of XML storage in the re-
lational database. Both these components are written in Java. XML importer
parses source XML document and stores its data in relational database.
XML exporter is responsible for exporting XML documents from relational
database into XML files.

Next part written in Java is XPathConvertor. This component is de-
scribed in Subsection 6.2.2. In simplicity, this component is responsible for
converting XPath expressions used in XSLT stylesheet into SQL. Result
statements are used during XSLT processing for navigating in XML docu-
ments, computing values for destination document, etc.

50

Figure 4.1: XSLT processing schema

Next parts of XSLT implementation are implemented in the relational
database. This covers storage XML tables for storing decomposed XML data,
tables for XSLT processing support like temporary values, XPath SQL se-
lects, etc. Another part of implementation are stored procedures. By this
instrument core XSLT processing is implemented directly in relational en-
gine. Views defined in database are the last part of implementation. Views
help to simplify stored procedure code by moving logic into views from stored
procedures.

In the next section the main targets are discussed. Targets influenced very
much decisions, how to implement XSLT processing and what technologies
should be used.

4.2 The design of XSLT implementation

There are many different XSLT implementation, commercial or free and
open-source too world wide. But several ideas of this XSLT implementation
are not contained in any of them. Some features, which are significant for

51

Figure 4.2: Top view of XSLT implementation

this XSLT implementation, are discussed in the following sections.

4.2.1 Large XML documents processing

The XSLT standard recommends to build representation of the source XML
document in memory. It is very useful for navigating in XML data during
XSLT processing. But this is impossible to be done for very large XML
documents. XML is already used for storing generated data and this data
can be very large, in units gigabyte and more. This implementation should
not have requirements (mainly memory requirements) derived from source
XML files size. This is already done by relational database usage. Relational
database are very robust and are able to process huge amount of data.

4.2.2 Current relational databases usage

Relational databases are spread all around the world and are used for storing
different types of data. It is natural, that there is an inclination to use these
system for storing XML and for processing XSLT too and not to set up new
XML databases. Moreover, relational databases and SQL processing is very
well examined.

52

4.2.3 Hardware of current relational databases

With previous item is related usage of hardware of relational databases. This
hardware is usually very huge and prepared for processing large amount of
data. And XSLT processor can be next application, which can take advan-
tage of this robustness.

4.2.4 Integration with other systems

Usage of relational database implicates integrating of systems working with
relational data. This integration can be extend by XML data integration.
This can be easily done by storing XML data directly in relations and this
data can be easily prepared by XSLT stylesheets. Results can be used by
other programs or exported to other tables used by other systems.

On the other hand, implementing XSLT in relational databases brings
new problems, which dit not exist in standard implementations.

4.2.5 Work with XML stored in relations

XSLT recommendation advises to build in-memory representation of the
source XML document. Generally, the widely used in-memory representation
for XML data is DOM standard1. By this, in principal, object mapping an
application creates a tree of nodes and can easily use e.g. pointer to some
important node in XML tree. This cannot be efficiently implemented in
relational database and application has to work with data in a batch-style.
This means that application should endeavour to retrieve as much nodes as
possible by each select statement and then process these nodes by a cycle.

1Document Object Model, see http://www.w3.org/DOM/

53

http://www.w3.org/DOM/

Chapter 5

XML storage implementation

Before XSLT processing XML data has to be decomposed into the rela-
tional form. This conversion can be done in many different ways. Possible
mappings has been described in [23] and these possibilities are described in
the following section. Section 5.2 describes chosen XML relational mapping,
which is used by XSLT implementation.

5.1 Possible relational mappings

In general, the relational mappings can be divided into two groups: generic
mappings and schema driven mappings.

5.1.1 Generic mappings

Generic mapping is not influenced by a structure of stored XML documents.
Structure of relational tables is fixed and can store any XML document.
Disadvantage of these mappings is, that structure of tables has to be very
universal and usually is very similar to tree storage in relational databases.
It means, that the tree is decomposed into edges and these edges are stored
in tables. It leads to often join usage in used queries and database structure
does not show the structure of stored data.

On the other hand, databases with generic mapping are able to store
any XML document, data driven or text oriented documents, and are able
to store XML documents with mixed content.

54

5.1.2 Schema driven mappings

All disadvantages of generic mappings are advantages of schema driven map-
pings and vice versa. Structure of relational tables is influenced by structure
of stored XML documents. Therefore the structure of stored documents has
to be known before processing these documents and the tables has to be
created from this structure. If new structure appears in requirements, new
tables has to be created.

Advantages of schema driven mappings are, that structure and names of
tables can express structure of stored data and can be very easily recognized
by humans and usually not all edges of XML tree are represented by con-
nection between relational tables. For that reason joins in queries are not so
often like in queries for generic mappings and are usually much simpler.

It has been mentioned first disadvantage, that the structure of stored
documents has to be known before processing documents. The second dis-
advantage of these mappings is, that it is quite difficult to store text oriented
documents in these mappings. Their structure is usually very complex and
hierarchy is very deep. Then schema driven mapping does not have advan-
tage, that the queries does not use many joins and queries are very similar to
queries for generic mappings. The third problem is mixed content in text ori-
ented documents. Mixed content is not usually supported by schema driven
mappings.

It may seem, that the schema driven mapping has too many disadvan-
tages, but it can be used for mapping XML to the existing relational struc-
tures, e.g. for importing and exporting data from relational databases into
XML documents.

5.1.3 Indexing XML data

Tree structure is not very common for relational databases and SQL lan-
guage before SQL:1999 standard it did not have support for recursive query-
ing ([4]). For this purpose special indexing has been developed, e.g. regions
pair, path indexes, etc. All these structure are described in [23]. These struc-
tures allow to evaluate recursive queries by SQL queries without recursive
construct, e.g. all descendants, all followings nodes in document, etc.

55

5.2 Implemented generic mapping

Previous section described two possibilities how to store XML data in a
relational database and this section describes chosen relational mapping,
which is used by the XSLT implementation.

A XSLT processor is intended to process any XML document. That is
why the generic mapping has been chosen for XML storage of the XSLT
processor. Any XML document can be stored by this mapping, data driven
or text oriented. Because implementation of XML storage is not target of
this thesis and because generic mapping can be easily implemented, generic
mapping is used.

5.2.1 Database structure

Used generic mappings uses combination of many features described in [23].
The database structure is derived from XPath XML data model, where
all nodes of XML tree are of these kinds: root, element, attribute, text,
namespace, processing instruction and comment node. The overview of entire
database structure used by implementation can be found in Appendix B

Document table

The list of all stored documents is held by XML DOCUMENT table. Each docu-
ment has assigned document ID, which is the generated integer number. This
ID is used for identifying all data in the remaining tables of XML database.
This ID is also used by user interface mentioned in Section 8.3 to identify
working documents. Name of stored document is derived from filename given
to XML importer. XSLT implementation generates results of XSLT process-
ing and these new documents have name always set to ‘XSLToutput’.

XML nodes ID

For the purpose to exactly identify a node of a XML document the generated
node ID is used in the database. Each record of database, which represents
a node, has a column for node ID, which is always called XID. The XID is
unique in a XML document. The XID is an integer number and is assigned
successively to nodes of a XML document and these nodes has to be ordered
in document ordering (see Subsection 2.3.2). The first node of a XML doc-

56

ument has always XID 1, following node in document ordering has XID 2
and so on.

The root node of XML document is not represented by a record of any ta-
ble in database. It is only used by all nodes view (described in Section 5.2.1)
to be consistent for evaluating XPath queries. In this view the root node
record is added synthetically with XID set to −1 (it is consistent with par-
ent IDs described in Section 5.2.1).

The XML nodes ID principles are demonstrated on XML example shown
in Figure 2.2. The XML tree of this document is shown in Figure 5.1.

Figure 5.1: XML tree with XIDs

Tree storage

A tree of an XML document has to be decomposed into relations without
loss of information. Section 5.2.1 has described, how the ordering is stored
in database by XID. The parent-child relationship of tree is stored for each
node by parent ID. The parent ID is XID of the parent node. Top-level nodes
of a XML document has a parent ID set to −1, which is the XID of a root
node element.

57

Dials

Namespace URIs and names used by elements or attributes are stored in
similar tables, XML NAMESPACE and XML NAME, which consists of ID and value.
It reduces size of database to store names and namespace URIs only once.
However, the joins in queries has to be used very often.

Element node table

This table contains all element nodes of all XML documents stored in
database. Table is called XML ELEMENT. It contains document ID and a node
ID, which is called XID (described in Section 5.2.1). Furthermore, it contains
a region end XID called ENDID (see Section 5.2.2), a namespace ID, a name
ID, a path ID for the simple path index (see Section 5.2.2) and a parent ID.

Attribute node table

This table contains all attribute nodes of stored XML documents. Its name
is XML ATTRIBUTE and its structure is very similar to element table. However,
the simple path index is not used for attributes. Attributes do not have a
region (see Section 5.2.2) and the content of an attribute is stored directly
in the table in the column called CONTENT.

Text node table

All text nodes of all documents are stored in XML TEXT table. The text node
can be represented by multiple rows of this table because of restrictions of
the char column length in the database. This table consists of a document

ID, a XID, a parent ID and a CHUNK column, which can hold maximum
256 chars.

Namespace prefix definition table

Namespace prefix definitions are hold by XML NAMESPACE DEF, despite it can
be stored as normal attributes in attribute table. It contain standard columns
(a document ID, a XID, a parent ID) and a prefix column called ALIAS and
a namespace ID, which is referenced by prefix, in NAMESPACEID.

58

XPath tables

XPathConvertor uses two tables: XPATH COMPILATION and
XPATH COMPILATION TEXT. First table contains one record for each converted
XPath expression and the second table then contains a text of the generated
select statement. This statement is divided into the rows and each row is
stored as a one record of the XPATH COMPILATION TEXT table.

For the purpose of row numbering, the XML COUNTING is used together
with procedures CLEAR COUNTER and NODE COUNTER to implement
the ROW NUMBER function (see Subsection 6.2.1).

XSLT tables

XSLT processing procedures use three specific tables: XSLT TEMPLATE,
XSLT TEMPLATE NODE and XML ELEMENT STACK. The first template is used
by XSLT PROCESS template to prepare a list of all templates in a processed
stylesheet. The second table, XSLT TEMPLATE NODE is used for pattern match-
ing (see Section 6.4). The last table is used for simulating a stack (see Sub-
section 6.6.2).

Document all nodes view

So there are these tables in the database: XML ELEMENT, XML ATTRIBUTE,
XML TEXT, XML NAMESPACE DEF (all these tables with their structures are
shown in Appendix B. These tables are called node tables in the follow-
ing text. Processing instructions and comments are not supported by this
implementation. XML DOCUMENT table contains list of all stored XML docu-
ments and there is generated primary key called docId, which is generated
during importing process. This key is used to distinguish nodes owned by
a document in each node table, e.g. XML ELEMENT. All IDs in database are
generated integer numbers. They are generated by SQL function called gen-
erators. There is only one exception called XID, which is used to identify a
node of XML document. This ID is unique in the entire XML document,
but not in the entire database. First node of document has always XID 1,
following has XID 2 and so on. Therefore union of nodes from node tables
filtered by docId produces entire XML document stored in database and
XID produces ascending sequence of numbers, which is similar to document
order of nodes in source document. This is used in all queries for ordering
results by this XID. Tree structure is stored by parent ID. Each node in

59

database has its parentId and that is XID of parent node. Root element
has parent ID set to −1 and then root node has XID −1. Root node is in
fact represented by record in XML DOCUMENT table, but there is no record in
node tables, which represent root node of documents.

5.2.2 Indexing

XIDs and parent IDs are enough to construct entire XML tree and therefore
that is enough to build XML document from relation data. But it has been
mentioned in preceding chapter, that SQL is not able to evaluate recursive
queries and these queries would be necessary for some queries, which are
quite often in XPath language, e.g. all descendants. For this reason indexing
structure has been added to the database architecture.

Regions

The main structure taken over from [23] is region. Each element
in XML ELEMENT table has its region, which is a pair of integer numbers,
which bound entire subtree of the element. In this implementation the begin
of a region is XID of an element node itself. The end of region is XID of
a node, which is the last child of the element. With this structure queries,
e.g. all-descendants (see Subsection 2.3.5) of an element, can be very eas-
ily evaluated by SQL — the result are nodes with XID between the start
of region and the end of region. In the same way can be evaluated queries
for all ancestors of node. The XML ELEMENT table contains end ID column,
which is end region. But it does not contain start region integer, because
this is already element XID. Firebird engine does not support recursive SQL
queries, so regions are only way, how to support all XPath queries, and this
way is very powerful.

Disadvantage of region is necessity to recompute nearly all regions in
database during inserting nodes into database or deleting nodes. This can
be reduced by recomputing regions after all updates to a XML document.
XSLT processor does not use inserting or deleting nodes from XML doc-
ument. It appends new nodes to the end of output document. Implemen-
tation uses stack of nodes, which is represented by temporary table called
XML ELEMENT STACK, and regions are directly computed during appending of
nodes.

60

Simple path index

The second indexing structure is called Simple path index. For each ele-
ment node and attribute node is stored a path expression, which is very
similar to XPath location path expressions. There has been a mention in
Subsection 2.3.3, that location paths with child axes with name tests are
the most usual. Due to this, the simple path index contains all possible lo-
cation paths, which consists of child axes and name tests. Each element and
attribute stored in database then contain ID of corresponding path in simple
path index. The simple path index is demonstrated on the XML example
shown in Figure 2.2. The index is shown in Table 5.1.

XML node Path index Location path
element book 1 /book

element title 2 /book/title

Table 5.1: Simple path index example

Then evaluating of these paths is very simple by querying simple path
index. This index can be also used for better evaluation of all paths relative
to the context node. Each prefix of all location paths, which consists of child
axes and name tests can be evaluated by simple path index.

The evaluation of these XPath expressions is done by SQL like opera-
tor. The document from example shown in Figure 2.2 would be a current
document. Then the evaluation of example XPath expressions is shown in
Figure 5.2

61

• Expression: /book/title

select XID from XML_PATH where XPATHEXP = ’/book/title’

• Expression: //title

select XID from XML_PATH where XPATHEXP like ’title’

• Expression: title
Context node: element book

select XID from XML_PATH where XPATHEXP like ’%title’

and PARENTID = 1

Figure 5.2: Example XPath evaluation with simple path index

62

Chapter 6

XSLT processing
implementation

This chapter describes in details, how implementation of XSLT described in
Section 2.4 is done in relational engine environment.

6.1 Implementation technologies

It has been discussed that there are mainly two approaches, how to im-
plement XSLT evaluation in a relational engine. It can be done directly in
relational engine, by SQL queries and by non-standard procedural extensions
to SQL. The further method is to use external facilities like Java or .NET
environment. This method is not very suitable for implementing XSLT pro-
cessing algorithm, because all data, which should be processed by processor,
has to go through the database driver and it means copying data between
processes, a database server and a client application. However, this copying
is not required, because the target of this XSLT implementation is to store
the output document in the same relational database.

For this purpose the implementation by SQL and its procedural exten-
sions has been chosen and the Section 6.6 describes structure of procedures
and how it processes a stylesheet.

63

6.2 XPath evaluation

XPath has been developed together with XSLT and is very important part of
XSLT, because it is used for navigating in source XML document, for select-
ing parts of this document and for evaluating values for output document.
Implementation of XPath is principal for XSLT processor implementation.
XPath is declarative query language and in this basic characteristic it is very
similar to SQL.

6.2.1 Query conversion into SQL

In essence there are two approaches, how to evaluate XPath queries against
XML data stored in relational database. Former is to parse XPath query and
emulate going through XML document tree like it is described by XPath
location paths. This emulation can be implemented on the client side of
relational database engine, e.g. in Java, or, for better performance, in proce-
dural extensions of SQL. The latter approach to evaluate XPath is to convert
XPath statement into SQL select statement, which selects the same rows in
relational database like XPath in source XML document.

The former one approach can be quite easily implemented and can im-
plement all complicated features of XPath language, like numbering, context
sensitiveness of XPath language, when it is used in XSLT. Successfulness of
implementation of XPath to SQL conversion is not so obvious. Although SQL
is declarative query language like XPath, standard SQL does not have some
features, which are essential in XPath, e.g. row numbering. This problem
can be solved by new features of SQL:2003 standard called window func-
tions, e.g. ROW NUMBER function. This function is able to compute sequence
number for each row, or for group of rows. Unfortunately this feature is not
implemented in open source relational engines and chosen Firebird engine
does not support this feature at all. But row numbering is very important for
evaluating XPath expressions, where XPath position function is used. In this
work, the row numbering has been evaluated by set of stored procedures and
a table for handling current index for groups. For ordering is used standard
SQL clause ORDER BY. Window functions are able to filter output directly in
SELECT statement by usage of QUALIFY clause. In the following example
is shown SQL:2003 statement.

The statement shown in Figure 6.1 selects third row from each group of
rows from the XML ELEMENT table. Rows are sorted by XID column ascending

64

SELECT

*

FROM

XML_ELEMENT

QUALIFY

ROW_NUMBER() OVER (PARTITION BY PARENTID

ORDER BY XID ASC) = 3

Figure 6.1: Window function example

and grouped by PARENTID column. Then from each group, the third row is
selected. In used XML mapping into relations, XID represents unique iden-
tifier, which is assigned in document order. A PARENTID is the XID of the
parent element.

In this thesis a way, how to substitute this feature, has been developed.
Firebird supports stored procedure, which look like normal relations. These
procedures are called select procedure and can be used in select statements
anywhere the normal tables or views can be. Procedural extension of SQL
in Firebird does not offer any advanced way, how to store temporary values.
So the normal table is used for storing current value of row counting during
select statement evaluation. Example of usage of this scenario follows.

The example in Figure 6.2 is rewritten example in Figure 6.1. Selecting
of elements is done in inner select. Outer select is used because of ordering
of inner select. Row numbering cannot be done in inner select, because rows
for NODE COUNTER procedure are served in random ordering and the result is
ordered. But this cannot be used. So outer select is used with NODE COUNTER

select procedure and row from inner select are returned in right order, they
get row number from NODE COUNTER procedure and result are filtered by stan-
dard SQL clause where. CLEAR COUNTER procedure, which is the first table
in FROM clause of outer select, is used for automatic deleting of temporary
table.

It is obvious that this solution has to be less effective than ROW NUMBER

function, because optimizer cannot presume anything
of a NODE COUNTER procedure results. On the other hand, ROW COUNT func-
tion is plain increasing function and equal result suggest that the following
rows from the same group will not be in result set. Usage of this scenario
is not so clear too. But it can be considered as a proof of concept, that the

65

select

s.eXID as XID

from

CLEAR_COUNTER, (

select

e.PARENTID as ePARENTID

,e.DOCID as eDOCID

,e.PATHID as ePATHID

,e.CONTENT as eCONTENT

,e.CHUNK as eCHUNK

,e.ENDID as eENDID

,e.NAMESPACEID as eNAMESPACEID

,e.XID as eXID

,e.NAMEID as eNAMEID

from

XML_ELEMENT as e

order by e.XID ASC

) as s

left outer join NODE_COUNTER(2, s.ePARENTID, s.eXID) as r

on 1 = 1

where

r.ONODEINDEX = 3

order by s.eXID ASC

Figure 6.2: Implementation of window function

lack of SQL:2003 features can be substituted by stored procedures in this
relational engine.

6.2.2 Convertor implementation in Java

In this XSLT implementation the conversion into SQL has been chosen, be-
cause this approach should be much more effective than to interpret XPath
paths. Conversion to SQL is quite complex process, so conversion is imple-
mented in Java and module of implementation is called XPathConvertor.
At the beginning of conversion process, parsing of XPath expressions has to
be done. However, a parser implementation is not a part of this thesis, so
open source implementation called Jaxen ([12]) is used for parsing. This Java

66

implementation parses expression and returns XPath object model. Object
model is quite similar to constructs defined in XPath grammar. Then the
conversion of these objects into SQL can be done.

It is necessary to use any object representation of SQL select statement
to be able to dynamically change the result select statement. Unfortunately
there is no implementation of this model, so own simple implementation
has been created. This object model represents a select statements with all
necessary features to be able to represent queries like previous examples. It
means especially inner selects, select procedure, all kinds of joins, ordering,
etc. The UML class diagram of this model can be found in Appendix A.

Implementation has been written by hand. So far no generation has been
used to convert UML class diagram into Java classes. XPathConvertor uses
this object model to create select statement from XPath expression object
model. Result of this process is object model of select statement. Into se-
lect object model has been implemented features to convert this model into
pretty written string representation.

6.2.3 Convertor integration into XSLT implementa-
tion

The previous sections described XPathConvertor, which has been imple-
mented in Java language, and other section mentioned, that it has been
decided to implement XSLT processing algorithm directly by relational en-
gine procedural extensions to SQL. These two worlds has to be integrated
together to create functioning XSLT engine. Firebird database engine has
only one possible option, how to call external routines from SQL and pro-
cedures. It is called user defined functions (UDF), but so far there is only
support for binary routines with C-style calling interface. In a new version
of Firebird there will be already support for Java functions called by SQL
statements.

So far this function is not ready, thus XSLT implementation uses com-
piling of XSLT stylesheets. XSLT processor is controlled by Java application
and this application before starting XSLT processing algorithm uses compil-
ing of XSLT stylesheet. It means that all known attributes containing XPath
are retrieved from databases and XPath2SQL convertor creates SQL queries.
These queries are then saved to database to XPATH COMPILATION and
XPATH COMPILATION TEXT tables

These queries usually depend on parameters or context, which are not

67

select

s.eXID as XID

from

CLEAR_COUNTER, (

select

e.PARENTID as ePARENTID

,e.DOCID as eDOCID

,e.PATHID as ePATHID

,e.CONTENT as eCONTENT

,e.CHUNK as eCHUNK

,e.ENDID as eENDID

,e.NAMESPACEID as eNAMESPACEID

,e.XID as eXID

,e.NAMEID as eNAMEID

from

XML_ELEMENT as e

order by e.XID ASC

) as s

left outer join NODE_COUNTER(2, s.ePARENTID, s.eXID) as r

on 1 = 1

where

r.ONODEINDEX = ${PARAMETER_INDEX}

order by s.eXID ASC

Figure 6.3: Parameter usage in SQL

known during compiling process. This implementation does not support
complex parameters, e.g. entire XPath paths, because for parameter support
it uses string replace routines. It means that entire logic of XPath query has
to be known during compilation. Parameters are replaced by shortcuts and
these shortcuts are replace by valid values during XSLT processing. The
same way the context sensitiveness is supported in these queries.

The example in Figure 6.3 shows usage of parameters in generated SQL.
The query returns ordered list of element nodes identified by their XIDs.
But this query is parametrized by PARAMETER INDEX, which filters list
to only one element node with specified position in document order.

68

6.3 Algorithm of XSLT processing

Algorithm is implemented in Firebird procedural extensions to standard
SQL. Before starting of this algorithm, that is necessary to convert all XPath
queries to standard SQL. This queries are stored in compilation tables in
text format. It is standard SQL query, but it contains parameters and con-
text variables in text format. These parameters are replaced by valid values
during process.

XSLT algorithm has been described in Section 2.4. XSLT processor reads
root node element and looks for template. If no template is found, then the
built in templates are used. Templates are searched by their patterns and
the pattern matching implementation is described in the next section.

6.4 Pattern matching implementation

XSLT template can have pattern attribute, which content is a subset of
XPath language. This XPath expression can be evaluated into the list of
nodes and these nodes can be processed by this template.

In this implementation, pattern matching is done directly by this algo-
rithm. For each pattern the SQL select is prepared and stored in compi-
lation tables. Before actual XSLT stylesheet processing, XSLT procedure
evaluates their pattern selects and results, exactly set of nodes, are stored in
table called XSLT TEMPLATE NODE, which has a primary key combined
of XSLT stylesheet document ID, stylesheet document ID and template el-
ement XID.

During XSLT processing processor looks for correct template for an
node, which is identified by its XID. So valid template can be selected
from XSLT TEMPLATE NODE table by filtering XID of examined node,
stylesheet id and source document id. It is possible, that multiple templates
are selected. Then the priority attribute of templates has to be tested or
default priority for each template has to be computed. This is not so far
implemented and only one template is chosen randomly and interpreted.

This solution of pattern matching in relational databases can be quite
exhausting for table space resources for very large tables. But it is very
powerful for fast evaluation of pattern matching, because pattern matching
is done by one SQL query based on indexed table.

69

6.5 Stylesheet programming styles

Basically XSLT provides possibilities, how to write same functions by dif-
ferent XSLT instructions. This section discuss two different ways, how to
write XSLT stylesheets. These two approaches are usually called push and
pull model.

6.5.1 Push model of stylesheets

This style of XSLT programming is based on many small templates in
stylesheet. It is very usual, that each template has a pattern for some sort
of source nodes, generate some output and contains one or more apply tem-
plates instruction. This style is very flexible, because templates can be over-
ridden by other templates with other import precedence. Therefore users can
rewrite parts of XSLT stylesheet with preserved main functionality. This
possibility has be described in Section 2.4.1. Data from source document are
firstly read by XSLT processor and are “pushed” to the templates.

6.5.2 Pull model of stylesheets

Pull model is very different. Stylesheet contains very small number of tem-
plates, even more it can contain only one template for root node or root
element of XML document. All logic is concentrated to this template. Data
from source XML document are “pulled” from source document by value-of
instructions and for-each instruction is used for iterating over source docu-
ment. In these XSLT stylesheets the apply-templates instructions is rarely
used.

6.5.3 Different performance for different models

Push and pull model is very differently interpreted by XSLT implementation.
For push model the patterns are evaluated before real XSLT processing and
are evaluated only once. The value-of instructions are used with very simple
queries or they are not used at all, because for getting data from source
document to the output the built-in templates are used.

Pull model does not use XSLT TEMPLATE NODE table, so it saves
table space resources. On the other hand, value-of instructions are used very
often and usually contain complicated XPath expression. These expressions

70

has to be evaluated for each value-of evaluation and it can be quite time-
consuming.

6.6 XSLT stored procedures

XSLT processing are implemented by stored procedures of Firebird relational
engine and are written in SQL with procedural extensions called PSQL.
In fact entire processor is implemented in four procedures: XSLT PROCESS,
XSLT EXECUTE TEMPLATE, XSLT APPLY TEMPLATES and XSLT VALUEOF. Call-
ing graph of these procedure is shown here Figure 6.4.

Figure 6.4: Stored procedures calling graph

6.6.1 Procedure XSLT PROCESS

XSLT PROCESS is the main procedure and an entry point to the XSLT func-
tionalities. This procedure has this header:

71

XSLT_PROCESS(XSLTDOCID, SRCDOCID) RETURNING DSTDOCID

Calling of this procedure launches XSLT processing of the source docu-
ment with document id SRCDOCID, stylesheet stored as the document with
the document id XSLTDOCID. This procedure returns only one value,
DSTDOCID, which is a document id of output document. This procedure is
called by Java control part of XSLT implementation. It prepares output doc-
ument ID and inserts new record with this ID into XML DOCUMENT table. The
name of output document is always set to ‘XSLToutput’ constant.

This procedure is responsible for reading stylesheet element of stylesheet
document. For each template element searches their match attributes and
then looks for select statement, which has been prepared by XPath convertor
into XPATH COMPILATION and XPATH COMPILATION TEXT tables. These select
statements are executed by EXECUTE STATEMENT statement, which is
able to execute statements stored in a CHAR variable. Results are stored in
XSLT TEMPLATE NODE table.

When patterns of all templates are evaluated, the procedure looks for
root node template. XPath convertor is not used for root node patterns and
root node template has to equal to ‘/’ string. When the root node template
is found, directly XSLT EXECUTE TEMPLATE is called for root node template.
Otherwise the XSLT APPLY TEMPLATES is called for all root elements of source
XML document.

6.6.2 Procedure XSLT EXECUTE TEMPLATE

This procedure interprets content of a template element of stylesheet. The
processing can be divided into two parts: XSLT content and non-XSLT con-
tent. XSLT content means XSLT elements and attributes, which semantics
has to be evaluated. Non-XSLT content is directly written to the output
document. Non-XSLT content is also XML and the closing element tags has
to be generated. It means that end XIDs has to be properly computed for
elements in output document. For this purpose a stack of opened XML ele-
ments has to be kept during processing template. Firebird engine does not
have a data structure like stack, which can be accessed by stored procedures.
So the stack is simulated by table called XML ELEMENT STACK and by three
stored procedures: XML STACK POP, XML STACK PEEK and XML STACK PUSH.
This table holds opened elements (and their end XID for elements from read
XSLT document) during XSLT processing. This procedure interprets certain
template and after the processing the stack is leaved in the same state like

72

when the procedure started. This procedure also evaluated XSLT element
instruction and calls XSLT VALUEOF procedure for XSLT value-of instructions
and writes the output of XSLT VALUEOF procedure to the output document.

6.6.3 Procedure XSLT APPLY TEMPLATES

This procedure is called for each XSLT apply-templates instruction inside
stylesheet. It iterates over all children of context node, which is passed in
parameter. It has to be mentioned, that children in the previous sentence
are meant in XSLT style. Children of an node for apply-templates instruc-
tion means only child element nodes and child text nodes. For each child
node the proper templates is searched in XSLT TEMPLATE NODE table. The
priority of templates is not so far supported. If some template is found, the
XSLT EXECUTE TEMPLATE is called. Otherwise built-in templates are used. It
means for element nodes to recursively call apply-template instruction. Text
nodes are in built-in template directly generated to the output document.

6.6.4 Procedure XSLT VALUEOF

XSLT value-of instructions are evaluated in this procedure. Select attribute
is loaded from database and its XPath value is searched
in XPATH COMPILATION table and then the text of select statement for this
XPath expression is loaded from XPATH COMPILATION TEXT table. Context
parameters are inserted into this statement by string replace function. Then
this statement is evaluated by EXECUTE STATEMENT and for each node in
result set the text value is computed. It means that for each node all de-
scendant text nodes and all attribute values are retrieved and written to
the output of this procedure. This procedure does not write directly into
the output document. However, it is select procedure, which returns set of
text values. These values are then written to the output document, e.g. by
XSLT EXECUTE TEMPLATE procedure.

73

Chapter 7

Limitations

The target of this thesis is to prove, that implementation of XSLT with
relational engine resources is possible and is quite efficient. It is not a target
of this thesis to completely implement XSLT standard. Some limitations of
this implementation are covered in the further sections.

7.1 XML database limitations

XML database implements storage for any kind of XML document. The sup-
port for missing features like storing comments and processing instructions
can be easily implemented, but it is not interesting for targets of this thesis.
There are not any other limitations in XML storage implementation.

7.2 XPath convertor limitations

XPath convertor to SQL has been designed to be able to properly evalu-
ate the standard XPath expressions like relative and absolute paths. It also
supports document ordering and expressions with predicates, which selects
by position in document. This position cannot be prepared before querying,
because the position is computed inside selected context nodes and this con-
text is not known before processing. The architecture of the XPath convertor
supports this node numbering.

Other predicates can be very easily supported by recursively adding gen-
erated selects for predicates into the outer select generated for outer expres-
sion. The joining of these selects is done in SQL select object model by proxy

74

column objects for all possible context values.
The main limitation of XPath convertor is impossibility to easily evaluate

the last XPath context function (description of this function can be found
in Subsection 2.3.8), which returns index of the last node in current con-
text. This is only possible by SQL count function, but this function can be
used only in a separated select statement with group by clause. This is not
supported because the select statements would become much more compli-
cated and unreadable. This problem can be very easily solved by SQL:2003
window functions.

7.3 XSLT limitations

It has been implemented essential features of XSLT standard. This XSLT
implementation is able to evaluate apply-templates, value-of and element in-
structions. Template patterns and select attributes of value-of instruction are
limitations are derived from XPath convertor limitations. All implemented
features are presented in examples shown in Appendix C.

The implementation does not evaluate the whitespace stripping as it is
described in XSLT standard ([25]). It generates all found text nodes to the
output document. It has been considered for the testing purpose, that two
XML documents are not different, when they differ only in text nodes of
whitespaces. This is important to be able to compare this implementation
with other third party implementation.

75

Chapter 8

Implementation usage

In this chapter instructions for usage of this XSLT implementation will be
described. It means installation instructions to establish entire environment
and a brief overview of user interface of this XSLT implementation.

8.1 Installation

Installation process consists of installation Firebird database engine and
Java environment.

Firebird engine and Java installation process instructions can be found
on the websites of these projects ([8] and [11]). And the following text as-
sumes that these parts are properly installed. However, installation files are
included on the enclosed CD (its content is described in Appendix E).

Firebird engine database alias has to be configured for XSLT processor.
This alias is called xmldb and has to point to the database file xml.fdb. The
database alias configuration file can be found on the CD and this configu-
ration file has to be updated according to the location of the database file.
Then this alias file has to be copied into the Firebird installation directory.

Next, the rFunc UDF library ([15]) has to be installed. The implemen-
tation uses strreplace function for parametrizing SQL queries. The instal-
lation contains rfunc.dll for Windows operating system and rfunc.so for
Linux. This dynamic library has to be copied into %FIREBIRD_HOME%\UDF

directory.
Entire Java implementation is packed into the one archive called

xsltproc-1.0.0.zip with all Java dependencies (it does not include Java
runtime). All the files from this archive has to be extracted to a directory.

76

8.2 Executing implementation

It has been mentioned, that the Firebird database engine (see Section 3.1)
supports several different connection architectures. Because of the perfor-
mance issues, the default implementation setting uses LOCAL connections,
which does not uses network sockets for communication and uses binary
driver. For this purpose the necessary dynamic library has to be supplied
to the implementation process. It has to be done by Java system prop-
erty as shown in Figure 8.1. The %JAYBIRD HOME% has to contain library
jaybird21.dll for Windows operating system and libjaybird21.so for
Linux.

If the binary driver cannot be used, the connection parameters of im-
plementation can be reconfigured by Java system properties. All possible
properties are shown in Table 8.1.

java -Djava.library.path=%JAYBIRD_HOME%

-jar xsltproc-0.0.1.jar

...

Figure 8.1: Command line for executing implementation

8.3 User interface

Implementation can be very easily controlled by any Java program by using
its XSLTProcessor class, which is an entry point into the implementation.
For standard usage implementation has a user interface in a console program
style.

When the Java archive is started without any argument, the console of
the XSLT processor appears. It supports following commands, which can be
connected together by semicolon for batch processing:

• help – prints list of all possible commands

• quit or exit – stops XSLT processor

• delete(filename) – deletes document selected by the filename
from database

77

• deleteId(documentId) – deletes document selected by its document
id from database

• clear – deletes all data from database

• import(filename) – imports file from file system into database; gen-
erated new document id for this file is printed to the console (if doc-
ument with the same name already exists in database, this document
is deleted before import)

• export(filename,destinationFilename) – exports document from
database selected by its filename into the destination filename
(destination filename is overwritten, if already exists)

• exportId(documentId,destinationFilename – exports document
selected by its document id into the destination filename

• process(sourceDocumentId,xsltDocumentId – executes XSLT
stylesheet selected by document id on the source document selected
by document id; new generated document id for output is printed to
the console and output has XSLToutput filename always

• xslt(sourceFilename,xsltFilename,destinationFilename) – stan-
dard XSLT usage command – imports source and stylesheet documents
into the database and processes stylesheet on the source document;
output document is exported into the destination filename; all three
documents are leaved in the database

The XSLT processor can be also controlled by command line arguments.
These arguments are the command, which are the same previously men-
tioned. Each argument is considered to be a valid statement. An example of
running XSLT processor by command line arguments is shown in Figure 8.2.

java -jar xsltproc-0.0.1.jar import(.\\samples\\catalog.xml)

Figure 8.2: Command line arguments example

78

jdbc.driverClassName The class name of the Jaybird
driver. It should not be changed
and the standard value is
org.firebirdsql.jdbc.FBDriver.

jdbc.username The database username.
jdbc.password The plain text password for specified user-

name.
jdbc.rolename The role name used for connection. In

the supplied database, the role called
XML ADMIN has all privileges to use the
database.

firebird.database The only database name or alias
name for LOCAL communication style.
Its default value is xmldb. However,
it can be configured to a filename in
the system, if aliases are not properly
configured. For the network communi-
cation the entire network path has to
be supplied (the last part can be alias):
//host:port/path/database.fdb,
e.g. //localhost:3050/xmldb

firebird.connection.type This is the connection type of the Firebird
relational engine. The default value is
LOCAL and binary driver library has to be
used. It can be changed to TYPE4 and then
the network sockets are used for commu-
nication.

Table 8.1: Implementation connection properties

79

Chapter 9

Experiments

This implementation has been intended to be able to process large XML
documents without large resource requirements. The tests are summarized in
this chapter and some possible architecture changes to improve performance
of the implementation are designed.

9.1 Functionality experiment

The development of the implementation has been done with continuous test-
ing of XSLT processing. For comparing, the thirdparty XSLT implementa-
tion has been used called Saxon ([17]). Open source version of this imple-
mentation has been used. It is widely used conformant implementation of
XSLT Version 1.0.

All results generated by this implementation has been compared to the
results generated by Saxon. The small example is shown in Figure 9.1. As
mentioned in Chapter 7, the implementation does not do whitespace strip-
ping and so the implementation slightly differs. In essence, this could be
a problem for text oriented XML documents (see Section 2.1.2). The im-
plementation does not support XML processing instructions, so it is not
generated to the output document.

9.2 Performance and possible optimizations

The implementation has been tested on a generated XML documents. These
source XML documents have been created by ToXgene (see Section 3.6). The

80

Saxon result (the text is wrapped because of document, however, Saxon
generates the entire document on a one line, because all other whitespaces
are stripped by default)

<?xml version="1.0" encoding="utf-8"?>

<library><member>8907319714</member><member>5610617979</member>

...<member>2897127464</member><member>2034052068</member>

</library>

Implementation result

<library>

<member>8907319714</member>

<member>5610617979</member>

...

<member>2897127464</member>

<member>2034052068</member>

</library>

Figure 9.1: Comparing to other implementation

one of them has about 10 000 book elements. The structure of the generated
document and used stylesheet can be found in Appendix D. The parameters
of the test are shown in Table 9.1.

The problems with performance appeared firstly during importing phase.
The communication with the server over the network sockets appeared to
be a bottleneck for importing of the XML documents into the database.
This problem has been solved by the Firebird database engine architecture
possibilities. The LOCAL communication style has been used and the per-
formance of the importing phase rapidly changed. The duration decreased al-
most twenty times. The problem with network is probably hidden in TCP/IP
protocol, because neither Firebird server nor client Java application dit not
used CPU to full capacity.

The performance of the XSLT processing phase was examined
by IBExpert application (see Section 3.2). It is able to show total num-

81

Count of books in the source doc-
ument

10 000

Hardware configuration Laptop Pentium M 1.6 GHz

Number of elements of the source
document

c. 100 000

Total count of nodes of the source
document

c. 200 000

Import phase c. 1 minute
XSLT processing phase c. 5 minute
Export phase c. 15 seconds

Table 9.1: Parameters of the performance test

ber of the readings and writings in the database engine. However, it is not
able to show the worst queries. The debugger of this application has been
very useful for development of the XSLT processing procedures.

It has been discovered, that the XSLT implementation has no memory
requirements for XSLT processing, which would be dependent on the size of
the source documents. However, the current implementation of the process-
ing procedures depends on the stack simulated by a table. This is probably
performance issue, which can be solved by recursive procedure calling. These
two concurrent approaches has not been compared in this thesis.

9.3 Possible architecture changes

The implementation uses generic mapping for XML storage and so it cannot
be easily used for processing existing relational data. It could be useful
to update implementation to use schema driven mapping, which could be
easily mapped on the existing data to transform relational data by XSLT.
However, the generic mapping has an advantage, that all kinds of XML
files can be processed, even with mixed content. Integration with existing
relational schema could be done by implement conversion from an relational
schema into generic mapping used by this implementation.

The used XPath to SQL conversion cannot use advanced SQL features.
However, these constructs are usually common in commercial database en-
gines and generated SQL queries would be quite simpler.

82

Chapter 10

Conclusion

The targets has been described in the Section 1.1. This XSLT implementa-
tion uses relational databases as a temporary storage and uses SQL and its
procedural extensions to process entire XSLT algorithm directly inside rela-
tional engine. XPath convertor demonstrates, that it is possible to convert
entire XPath semantics into the one SQL select statement. It can be very
powerful for evaluating complicated queries against large XML documents.

Many of the problems of the conversion XPath to SQL, e.g. row num-
bering, has been solved and implemented in this thesis. The XPath2SQL
convertor architecture is ready to be able to implement almost entire XPath
language. But some approaches used to be able to implement some features
would be a performance problem.

This thesis also served as a opportunity to build fully featured devel-
opment environment for Java based database applications. Many tools, e.g.
Maven, SVN, has been installed and configured and used during entire de-
velopment process of the implementation, despite it was not necessary for
the thesis. However, it brought some unique possibilities, e.g. to be able to
share the XSLT implementation with Maven community very easily.

The all targets of this thesis are in principals implemented and the imple-
mentation can be considered as a base for further implementations. Despite
quite small resource requirements there are some optimization issues de-
scribed in Chapter 9. However, these optimizations are not a part of this
proof of concept implementation.

The proof, that XSLT can be evaluated by procedural extensions of SQL
can be considered as a biggest contribution of this thesis, together with
XPath to SQL conversion.

83

Bibliography

[1] (ArgoUML), Tigris.org, 2007,
available at http://argouml.tigris.org/ 47

[2] Apache Maven Project, The Apache Software Foundation, 2007,
available at http://maven.apache.org/ 48

[3] James Clark, Associating Style Sheets with XML documents Version
1.0, W3C, 1999,
available at http://www.w3.org/TR/xml-stylesheet 30

[4] Jaroslav Pokorný, Dotazovaćı jazyky, Karolinum, 2002 42, 55

[5] Eclipse SDK 3.2.2, Eclipse contributors and others, 2007,
available at http://www.eclipse.org/ 47

[6] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler and
François Yergeau, Extensible Markup Language (XML) 1.1 (Second Edi-
tion), W3C, 2006,
available at http://www.w3.org/TR/2006/REC-xml11-20060816/. 14

[7] Firebird 2.0 Online Manual, Janus Software, 2007,
available at http://www.janus-software.com/fbmanual/ 44

[8] Firebird 2.0.1, Firebird Foundation Incorporated, 2007,
available at http://www.firebirdsql.org/ 42, 76

[9] Firebird Documentation Set, IBPhoenix, 2007,
available at http://www.firebirdsql.org/manual/. 43

[10] IBExpert 2007.07.04 Personal Edition, HK-Software, 2007,
available at http://www.ibexpert.com/ 44

84

http://argouml.tigris.org/
http://maven.apache.org/
http://www.w3.org/TR/xml-stylesheet
http://www.eclipse.org/
http://www.w3.org/TR/2006/REC-xml11-20060816/
http://www.janus-software.com/fbmanual/
http://www.firebirdsql.org/
http://www.firebirdsql.org/manual/
http://www.ibexpert.com/

[11] Java Runtime Environment 6 Update 2, Sun Microsystems, Inc., 2007,
available at http://java.sun.com/javase/ 45, 76

[12] Jaxen 1.1, Codehaus, 2007,
available at http://jaxen.org/ 66

[13] Jaybird 2.2, 2006,
available at http://jaybirdwiki.firebirdsql.org/ 45

[14] Tim Bray, Dave Hollander, Andrew Layman and Richard Tobin,
Namespaces in XML 1.0 (Second Edition), W3C, 2006,
available at http://www.w3.org/TR/REC-xml-names/ 17, 18, 36

[15] rFunc UDF Library, Polaris Software, 2003,
available at http://rfunc.sourceforge.net/ 76

[16] David Megginson, SAX, SourceForge, 2000, avilable at http://www.

saxproject.org/ 12, 46

[17] Michael H. Kay, Saxon 6.5.3, SourceForge, 2007,
available at http://saxon.sourceforge.net/ 11, 80

[18] Spring Application Framework 2.0.2, Interface21 and community, 2007,
available at http://www.springframework.org/ 46, 47

[19] Subclipse 1.0.5, Tigris.org,
available at http://subclipse.tigris.org/ 48

[20] Subversion 1.3.2, Tigris.org,
available at http://subversion.tigris.org/ 48

[21] Denilson Barbosa, ToXgene 2.3, the University of Toronto, the IBM
Toronto Lab,
available at http://www.cs.toronto.edu/tox/toxgene/ 48

[22] Xerces2 Java Parser, The Apache Software Foundation, 2006,
available at http://xerces.apache.org/xerces2-j/ 11, 12, 46

[23] Irena Mlýnková and Jaroslav Pokorný, XML in the world of (Object-)
Relational Database Systems, Universitas Carolina Pragensis, 2003. 12,
54, 55, 56, 60

85

http://java.sun.com/javase/
http://jaxen.org/
http://jaybirdwiki.firebirdsql.org/
http://www.w3.org/TR/REC-xml-names/
http://rfunc.sourceforge.net/
http://www.saxproject.org/
http://www.saxproject.org/
http://saxon.sourceforge.net/
http://www.springframework.org/
http://subclipse.tigris.org/
http://subversion.tigris.org/
http://www.cs.toronto.edu/tox/toxgene/
http://xerces.apache.org/xerces2-j/

[24] James Clark and Steve DeRose, XML Path Language (XPath) Version
1.0, W3C, 1999,
available at http://www.w3.org/TR/xpath. 19, 20, 24, 28

[25] James Clark, XSL Transformations (XSLT) Version 1.0, W3C, 1999,
available at http://www.w3.org/TR/xslt. 31, 33, 38, 40, 41, 75

86

http://www.w3.org/TR/xpath
http://www.w3.org/TR/xslt

Appendix A

UML model for SQL select
statement

Select

public int newAttr

TableReference

public String name

Query

public String alias

Column

public String alias
public String functionalValue

FromClause

WhereClause

JoinedQuery

public int joinType

JoinColumn

public int predicate

GroupByClause

Relation

public int predicate

Logical

1

public query

1..*

public columns

1

public select

0..1

public from
1

public select

0..1

public where

1

public from

1..*
public joins

1

public query

1

public joinedQuery

1

public joinColumn

1

public sourceColumn

1
public joinColumn

1
public destColumn

1

public joinedQuery

1..*
public joinColumns

1

public select

0..1
public groupBy

1

public groupBy

1..*
public columns

1

public predicate

1

public leftArgument

1

public predicate

1

public rightArgument

1
public where

1
public condition

Conjunction

public String connector

1
public conjunction

1..*

public child

1

public from

1
public mainQuery

SelectProcedure
1

public procedure

0..*

public parameters

87

Appendix B

XML database structure

88

Appendix C

Example

C.1 Source XML document

<?xml version="1.0" encoding="windows-1250"?>

<x:book style="textbook"

xmlns:x=’http://p3500.kolej.mff.cuni.cz/xslt’>

<x:title>Designing XML applications</x:title>

<x:author>

<x:family>Nick</x:family><x:given>Marcus</x:given>

<x:family>Bob</x:family><x:given>Pant</x:given>

</x:author>

<x:test>ssss</x:test>

</x:book>

C.2 Stylesheet document

<?xml version="1.0" encoding="windows-1250"?>

<xsl:stylesheet

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:x=’http://p3500.kolej.mff.cuni.cz/xslt’ version="1.0">

<xsl:template match="/"><xsl:apply-templates/>

</xsl:template>

<xsl:template match="x:book">

89

<chapter>

<style><xsl:value-of select="@style"/></style>

<xsl:apply-templates />

</chapter>

</xsl:template>

<xsl:template match="x:author">

<test xmlns="test.test" test="test" test2="test">

</test>

</xsl:template>

<xsl:template match="x:title">

<title>

<xsl:apply-templates/>

</title>

</xsl:template>

<xsl:template match="x:test">

<example>

</example>

</xsl:stylesheet>

90

Appendix D

Large data example

D.1 ToXgene generated sample document

<?xml version="1.0" encoding="US-ASCII"?>

<!-- generated by ToXgene Version 2.3

on Wed Aug 01 00:27:42 CEST 2007 -->

<catalog>

<book isbn="0957220188" genres="Mystery,Suspense">

<title>

sentiments dazzle final epitaphs;even,

daring realms engage?pearls engage during

the stealthly stealthy sheave

</title>

<author>Lem Martella</author>

<author>Wessel Bladen</author>

<author>Sujatha Nyrup</author>

<author>Jiandong Ziavras</author>

<author>Qinglan Mattoso</author>

<author>Rosemarie Priestley</author>

<author>Clarence Hansdah</author>

<price currency="CDN">63,90</price>

</book>

<book isbn="7924503433" genres="Children">

<title>

permanently sly theodolites solve attainments?silent,

blithe attainments beyond the ruthless, quick pains

91

will have to maintain quickly

</title>

<author>Herkimer Messner</author>

<author>Vidyadhar Port</author>

<author>Zhongyang Dymetman</author>

<author>Jarno Morihara</author>

<author>Chaitali Henriksson</author>

<author>Gregor Hemerik</author>

<author>Roxanne Vedrine</author>

<author>Russel Hanakawa</author>

<price currency="CDN">113,00</price>

</book>

...

</catalog>

D.2 Stylesheet document

<?xml version="1.0" encoding="windows-1250"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="catalog">

<library>

<xsl:apply-templates />

</library>

</xsl:template>

<xsl:template match="book">

<member><xsl:value-of select="@isbn" /></member>

</xsl:template>

</xsl:stylesheet>

92

Appendix E

CD-ROM Content

Entire implementation, all necessary libraries and examples are supplied on
the enclosed CD-ROM. The structure of directories and the list of files follow:

cdrom.txt Contains this description.

bin/ Contains binary distribution of the implementation (without database).

database/xml.fdb Firebird database file.

document/thesis.pdf The thesis PDF document.

document/sources/ Contains all LATEX sources and images of thesis PDF
document.

install/ Contains all necessary installation files for development and run-
ning too

sources/ Contains SVN archive and Eclipse workspace with all sources of
implementation. It also contains database DDL script for recreating
database.

93

	Introduction
	Thesis target
	Thesis structure

	Technologies and standards
	XML
	Logical structure
	Kinds of XML documents

	Namespaces in XML
	XPath
	Expressions
	Data model in XPath
	Location paths
	Location steps
	Axes
	Abbreviation in location paths
	Predicates
	XPath core functions

	XSLT
	Stylesheets
	XPath and XSLT
	Template rules and processing
	Patterns
	Template rules
	Built-in template rules
	Named templates
	Creating the result
	Creating the result by XSLT elements
	Generating text by XPath

	Variables usage
	Variables definition
	Variables value usage

	Other constructs in XSLT

	Implementation prerequisites
	Firebird relational engine
	Engine connection architectures
	SQL procedural extensions

	IBExpert
	Java
	XML API and Xerces
	Spring Framework

	Eclipse IDE
	Programming tools
	Maven
	Subversion

	ToXgene
	Tools usage

	Implementation top view
	Implementation structure
	The design of XSLT implementation
	Large XML documents processing
	Current relational databases usage
	Hardware of current relational databases
	Integration with other systems
	Work with XML stored in relations

	XML storage implementation
	Possible relational mappings
	Generic mappings
	Schema driven mappings
	Indexing XML data

	Implemented generic mapping
	Database structure
	Indexing

	XSLT processing implementation
	Implementation technologies
	XPath evaluation
	Query conversion into SQL
	Convertor implementation in Java
	Convertor integration into XSLT implementation

	Algorithm of XSLT processing
	Pattern matching implementation
	Stylesheet programming styles
	Push model of stylesheets
	Pull model of stylesheets
	Different performance for different models

	XSLT stored procedures
	Procedure XSLT_PROCESS
	Procedure XSLT_EXECUTE_TEMPLATE
	Procedure XSLT_APPLY_TEMPLATES
	Procedure XSLT_VALUEOF

	Limitations
	XML database limitations
	XPath convertor limitations
	XSLT limitations

	Implementation usage
	Installation
	Executing implementation
	User interface

	Experiments
	Functionality experiment
	Performance and possible optimizations
	Possible architecture changes

	Conclusion
	Bibliography
	UML model for SQL select statement
	XML database structure
	Example
	Source XML document
	Stylesheet document

	Large data example
	ToXgene generated sample document
	Stylesheet document

	CD-ROM Content

