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ABSTRAKT (CZ) 
 
B-buněčná lymfocytární chronická lymfatická leukémie (B-CLL) představuje nádorové 

onemocnění, pro které je význačná akumulace B-buněk v periferní krvi, kostní dřeni, 

lymfatických uzlinách a slezině v důsledku poruchy programované smrti. Klinický průběh B-

CLL je značně heterogenní, což dokazuje i fakt, že u některých pacientů toto onemocnění 

rychle progreduje, zatímco jiní pacienti přežívají několik let bez nutnosti léčby. I když se 

onemocnění charakterizuje stanovováním několika prognostických parametrů, jež jsou 

typické pro B-CLL, chybí spolehlivá indikace začátku včasné terapie. Z popsaného důvodu je 

v současnosti velice intenzivně studována nejenom biologická role malých nekódujících RNA 

(tzv. mikroRNA), ale také spojitost těchto molekul se vznikem a průběhem leukemických 

onemocnění včetne B-CLL. Proto jsme se zaměřili na studium miR-155, která reguluje 

diferenciaci buněk krvetvorby, zánětlivých reakcí a produkci protilátek. Zvýšená exprese 

miR-155 se objevuje v leukemogenezi, kde se předpokládá, že má vliv na zástavu buněčné 

diferenciace a narušení normální funkce B-buněk. Naše výsledky potvrdily zvýšenou expresi 

jejího primárního transkriptu miR-155 a také maturované formy u pacientů s B-CLL. Analýza 

expresních dat kohorty 239 pacientů s B-CLL naznačuje, že vzorky pacientů s nepříznivou 

prognózou vykazují signifikantně vyšší hladiny obou forem miR-155 s nimiž prokazatelně 

souvisí nízké hladiny proteinu PU.1 oproti kontrolám. Domníváme se, že jedním 

z mechanizmů vzniku leukémie by mohla být nižší exprese proteinu PU.1 zapříčiněná 

vysokou hladinou miR-155. Naše výsledky dále ukazují, že transkripční faktor, proto-

onkogen MYB z rodiny E-box proteinu se přímo váže do promotorové oblasti genu pro miR-

155 - MIR155HG, čímž stimuluje jeho transkripci. V oblasti vazebních míst pro MYB jsme 

detekovali přítomnost chromatinových značek: H3K9Ac a H3K4Me3. Funkční in vitro eseje 

s primárními buňkami pacientů s B-CLL dále prokázaly vzájemný negativní vztah mezi miR-

155 a PU.1, a pozitivní vztah mezi MYB a miR-155. Na základě našich výsledků jsme vytvořili 

pracovní model pro B-CLL, kde MYB stimuluje transkripci miR-155, který následně snižuje 

produkci PU.1 v B-CLL buňkách. U 20% měřených vzorků B-CLL byl prokázán výše uvedený 

vztah. Úspěšnost léčby B-CLL spočívá v jejím správném zahájení. Zjistili jsme, že zvýšená 

exprese miR-155 koreluje s agresivitou B-CLL. Můžeme shrnout, že měření exprese molekul 

miR-155, MYB a PU.1 u pacientů s B-CLL by tedy mohlo být vhodným nástrojem pro 

detailnější charakterizaci onemocnění, které by dále umožnilo včasné zahájení terapie.  

 

KLÍČOVÁ SLOVA: B-CLL, terapie, mikroRNA, mRNA, miR-155, MYB, PU.1, genová exprese, 

leukemie, chromatinové modifikace, DNA, protein. 
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ABSTRACT (EN) 
 

Chronic lymphocytic leukemia (B-CLL) represents a disease of mature-like B-cells. 

Due to failed apoptosis but also due to enhanced proliferative signals, the leukemic B-cells 

accumulate in the peripheral blood, bone marrow, lymph nodes and spleen. The clinical 

course of B-CLL is very heterogeneous; in some patients B-CLL progresses very rapidly into 

an aggressive form. Such patients need therapy sooner while in other patients with indolent 

B-CLL the onset of therapy takes years. Several standard prognostic and disease progression 

markers are used for disease staging and monitoring, however a reliable marker that will 

suggest when to start therapy is unknown. Expression of small, non-coding microRNAs is 

often deregulated and represent important prognostic markers in variety of cancers 

including leukemia. Hence in our study we concentrated to miR-155, an important molecule 

regulating differentiation of hematopoietic cells, inflammation process and antibody 

production. Its aberrant expression was described in Hodgkin`s as well as in non-Hodgkin`s 

lymphoma, including indolent lymphoproliferations like B-CLL. Our results confirmed 

elevated levels of both, primary miR-155 transcript and mature form of miR-155 in our B-CLL 

patient samples (N=239). The aberrant expression of miR-155 in B-CLL samples associated 

with unfavorable prognosis. Moreover, we also observed elevated miR-155-mediated 

decrease of its direct target – PU.1 in B-CLL cells that is important regulator of B-cell 

maturation. Next, we demonstrated that proto-oncogen MYB directly binds at the promoter 

region of the miR-155 gene - MIR155HG and stimulates its transcription. This coincided with 

enrichement of activated epigenetic marks: hypermethylated histone H3K4 residue and 

spreaded hyperacetylation of H3K9 at the MIR155HG promoter. Our in vitro functional 

assays on the primary B-CLL cells and Raji cell line confirmed the negative relationship 

between miR-155 and PU.1 and positive relationship between MYB and miR-155. We also 

have shown that unfavorable prognosis of B-CLL associates with low expression of miR-150 

(inhibitor of Myb) and high expression of MYB mRNA. Based on above-mentioned results, 

we created working model of relationship between miR-155, MYB and PU.1 that can be 

applied to around 20% of more aggressive B-CLL patients. The success of therapy of B-CLL 

patients depends on the accurate start of the therapy. Our data also indicate that the levels 

of miR-155 in B-CLL patients associate with the disease progression and can be used to 

predict therapy onset. We conclude that measurement of miR-155, MYB and PU.1 

expression associates with B-CLL progression and could help in making valuable clinical 

decisions. 

  

KEY WORDS: B-CLL, therapy, microRNA, mRNA, miR-155, MYB, PU.1, gene expression, 

oncogene, chromatin modifications, DNA, protein. 
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Motto:  

The success of therapy of B-CLL patients depends on the accurate start of the therapy.  



15 

 

1. INTRODUCTION 

1.1 Characterization, diagnosis, progression and therapeutic tools of B-cell 

chronic lymphocytic leukemia (B-CLL) 

1.1.1 What is B-CLL?  

B-CLL represents slow-growing leukemia characterized by an accumulation of 

leukemic, mature appearing B-cells in the bone marrow, lymph nodes, spleen and in the 

peripheral blood 1,2. The WHO classification characterizes B-CLL as leukemia of mature B-

cells 3. Accumulation of leukemic B-cells is due to imbalance between emerging and 

apoptosis of B-cells. As a result of failed apoptosis, most B-CLL cells are arrested in G0/G1 4. 

The high number of lymphocytes in B-CLL patients is caused not only by the prolonged 

survival of B-cells with failed apoptosis, but also by proliferating of subset B-cells in 

proliferative centers in lymph nodes and bone marrow 5,6. Messmer et al. showed that B-CLL 

represents a non-static disease where cells displayed dynamic cellular kinetics: some cells 

proliferate and some die 7. The stimulation of endothelial cells and T-cells activates B-CLL 

cells to divide and reinforces their resistance to apoptosis. The B-CLL cells are then released 

from proliferative centres into peripheral blood where they start to express markers of 

activation (CD154, IL-2, CD38). Activated B-CLL cells are further attracted by chemokines 

back into tissues and proliferative centres 8. Normal healthy B-cells originate from bone 

marrow and mature in the lymph nodes where they are specialized to fight infections by 

producing antibodies. Leukemic B-cells grow out of control, accumulate in the bone 

marrow and in peripheral blood and overgrow healthy normally functioning blood cells 9. It 

is under intensive study how the normal B-cell transforms into the leukemic cell. In vitro 

studies on the primary leukemic cells help to understand the pathogenesis of leukemia in 

more detail.   

The etiology of B-CLL is still unclear and actively discussed. The identification of the 

cellular origin of B-CLL is essential to elucidation of the pathobiology of leukemia 

development. In most B-CLL cases, the disease manifests initially as a precursor phase, 

called monoclonal B lymphocytosis (MBL), characterized by asymptomatic monoclonal or 

oligoclonal proliferation of CD5+ B-cells. The primary leukemogenic event in B-CLL might 

involve self-renewing hematopoietic stem cells. Thus, the accumulation of leukemic events 

in B-CLL cells begins at the HSC stage 10. Moreover, Goldin et al., described that B-CLL 

http://en.wikipedia.org/wiki/Antibodies
http://en.wikipedia.org/wiki/Bone_marrow
http://en.wikipedia.org/wiki/Bone_marrow
http://en.wikipedia.org/wiki/Blood
http://en.wikipedia.org/wiki/Blood_cells
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precedes MBL with higher frequency in the hereditary form of B-CLL 11. The MBL shares 

some similarities with B-CLL, as for example chromosomal aberrations 11,12. Acquisition of 

chromosomal aberrations as deletion of 11q22-23, 17p13, 13q14 or trisomy of  

chromosome 12 appears to be the secondary driver of B-CLL development 10,13. 

Chromosomal aberrations and microenvironment stimuli influence selection and expansion 

of the B-CLL malignant clone 14. 

The study of small non-coding, regulatory microRNAs in the molecular pathogenesis 

and development of B-CLL dramatically increased in the last decade 15. Croce`s research 

group 16 showed the first evidence that miRNAs are involved in the pathogenesis of B-CLL. 

Authors found that decreased expression of miR-15-16 cluster associates with frequent 

deletion of chromosome 13q14 in B-CLL cells 16. The recently published data showed that 

miRNAs as: miR-21, miR-150, miR-155, miR-181b, miR-34, miR-29 are differentially 

expressed in B-CLL 16–18. The recent evidence suggests that miRNAs could be used as 

biomarkers for B-CLL prognosis and progression 19,20. 

 

1.1.2 Epidemiology of B-CLL   

B-CLL belongs to the most common leukemia in the Western world and affects 

mainly elderly population with a median age around 70 years. Rarely, B-CLL developes in the 

individuals under 50 years 21. In contrast, in Asian population B-CLL arise with very rare 

frequency 22. Further, in males B-CLL develops with significantly higher prevalence (the 

male:female ratio is 2:1) 23. In the hereditary form of B-CLL the incidence of B-CLL or another 

lymphoid neoplasm is three times higher as in general population 24. The highest risk of B-

CLL development display siblings of the same gender, especially sons where mother was 

affected with leukemia 25. 

 

1.1.3 Diagnosis of B-CLL 

Typical symptoms of B-CLL include weight loss (≥10%) within 6 month; fevers of >38°C 

for more than 2 weeks without evidence of infection; night sweats; extreme fatique 26. 

Among the B-CLL symptoms there are also presented signs of B-CLL as lymphadenopathy 

(common at the initial phase of B-CLL); painless splenomegaly; hepatomegaly; lessions on 

skin (macules, papules, ulcers, blisters)27; glomerulonephritis have occasionally been 
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described. However, in 25% of B-CLL cases, above described symptoms and signs are not 

present 26.   

The diagnosis of B-CLL follows criteria:  

A: Peripheral blood analysis 

To be diagnosed as B-CLL positive, patient must display more than 5000 of B 

lymphocytes in 1µl of peripheral blood (lymphocytosis) in duration of 3 months. The 

clonallity of the leukemic B-cells must be confirmed by presence of typical B-CLL surface 

markers detected by flow cytometry: CD5/CD23/CD19/CD20. The B-CLL cells display 

reduced levels of IgM, IgD and CD79b as compared to normal B-cells 2. Strict 

immunophenotyping of CD5+ B-cells by flow cytometry confirms the suspected diagnosis of 

B-CLL and helps to distinguish B-CLL from other lymphoproliferative disorders. The CD5+ B-

CLL cells differ in presence of CD23, CD22 surface markers from MCL (mantle cell 

lymphoma) where these markers are missing 21,28. Elevated level of B2 microglobulin in 

serum represents another blood abnormality in B-CLL; it is associated with poor prognosis 

26. 

In the typical blood smear of leukemic B-CLL cells, mature appearing small to medium 

size B-cells with a compact and visible cytoplasm are clearly detected (Figure 1.1). Nucleus is 

dense with partially aggregated chromatin and with hard to recognize nucleolus. A small 

part of B-cells (~10%) may be twice larger with clearly visible nucleolus: these cells are 

designated as prolymphocyte like cells (Figure 1.2). 

 

 

Figure 1.1: Typical blood smear of B-CLL cells (adapted from Brandon Guthery and Nasir Bakshi, 
2007 - http://moon.ouhsc.edu/kfung/jty1/HemeLearn/HemeCase/PB-001-Ans.htm]). Dark blue 
arrow indicates typical B-CLL cell and gray arrow indicates “smudge cell”, that is very often seen in B-
CLL blood smear. 

http://moon.ouhsc.edu/kfung/jty1/HemeLearn/HemeCase/PB-001-Ans.htm
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Figure 1.2: Blood smear of B-CLL with prolymphocytes like cells (adapted from 18). Black arrows 
indicate prolymphocytes. 
 

B: Bone marrow aspiration, biopsy 

The bone marrow examination usually shows more than 30% of mature B-cells. The 

pattern of marrow infiltration (diffuse, non-diffuse) reflects disease progression, provides 

prognostic information 2. The bone marrow examination is accessory parameter for B-CLL 

diagnosis. 

 

C: Mutational status of IgVH genes and expression of prognostic markers CD38 and ZAP-70 

The process of somatic hypermutation introduces mutations in the variable 

segments of immunoglobulin variable heavy chain gene (IgVH). The proliferating B-CLL cells 

display mutated IgVH gene as these cells undergo somatic hypermutation in the germinal 

centers. In contrast, B-CLL cells with unmutated IgVH genes derived from pre-germinal 

centers 29. The IgVH gene is considered as „mutated“ when shows <98% homology to germ 

line. The „unmutated“ IgVH is then when the homology to germ line is >98% 30,31. 

Determination of presence ZAP-70 32 and CD38 on the B-CLL cells 33 allows to predict 

the prognosis of asymptomatic patients. ZAP-70 (zeta association protein; 70kDa) is member 

of family Syk protein tyrozin kinases. The normal B-cells do not express ZAP-70 while the 

normal T and NK cells express ZAP-70. B-cell receptor enhances expression of ZAP-70 on B-

CLL cells 34. ZAP-70 binds on the CD3-zeta and by this engagement activates T-cells 35 

Activated T-cells then differentiate, proliferate and secrete a number of cytokines. The 

estimated cutt-off level of B-cells is usually 20%. Unfortunatelly this method is not well 
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standardized 28, moreover by measuring of the expression ratio of ZAP-70 on T-cells/B-CLL 

cells improves the prognostication and prediction of B-CLL clinical course 36. ZAP-70 

represents a rather surrogate prognostic marker in addition to IgVH mutation status and 

CD38 expression 37. 

Measurement of CD38 surface marker expression on B-CLL cells reflects the situation 

occuring inside the cell while CD38 represents an indicator of cellular activity (dividing and 

growing cells). This is a reason why a such CD38+ B-CLL clone is rather associated with the 

poorer prognosis 38. Generally, the cut-off for CD38 positivity varies from 7-30% 39. The 

percentage of CD38+ cells together with expression of ZAP-70 on B-CLL cells provides even 

stronger prognostic value as each marker separately 40.    

D: Molecular cytogenetic: an optional prognostic test  

Evaluation of chromosomal abnormalities by molecular genetics fluorescence in situ 

hybridization (FISH) helps to predict prognosis of B-CLL progression 28. The hierarchical 

model described by Döhner et al., defines five prognostic categories in B-CLL (1. deletion of 

13q14 as a sole aberration; 2. trisomy of 12 chromosome; 3. deletion of 11q22-23; 4. 

deletion of 17p13; 5. normal karyotype). The most frequent chromosomal abnormality 

represents loss of 13q14.3 region with prevalence 55% 13. This cytogenetic aberration 

associates with favorable prognosis 13.  

The second chromosomal abnormality represents trisomy of long arm of 12 

chromosome (t12q) with prevalence around 12% in B-CLL patients 13. This chromosomal 

aberration represents intermediate risk in B-CLL prognosis 13. 

The third chromosomal aberration represents deletion of chromosome 11q22-23 

with prevalence 18% in B-CLL patients and associates with poor prognosis 13. This deleted 

region includes ataxia-telangiectasia mutated (ATM) gene which is mutated in 30% of B-CLL 

cases and represents sign of rapid disease progression 13,41. 

The fourth chromosomal aberration represents deletion of chromosome 17p13 with 

prevalence 7% 13. The deleted region contains gene TP53: the guardian of the cell genome. 

B-CLL patients with deleted 17p13 chromosome have most likely deleted or mutated gene 

TP53 and predispose to poor prognosis 42. 

 The last category represents normal karyotype 13. 
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1.1.4 Clinical staging of B-CLL 

Standard methods for assessment of B-CLL prognosis represent Rai and Binet staging 

system. These staging systems are based on the results from physical examinations and 

blood tests 43,44. 

The Rai staging system (Kanti R. Rai, USA) defines three categories of risk disease: low, 

intermediate and high 2.  

Low risk: lymphocytosis with leukemic cells (>30%) in blood and/or in bone marrow (Rai 

stage 0) 

Intermediate risk: lymphocytosis; enlarged lymph nodes; splenomegaly and/or 

hepatomegaly (Rai stage I-II) 

High risk: anemia (Hg<11g/dl) or thrombocytopenia (Rai stage III-IV) 

 The Binet staging system (Jacques-Louis Binet, France) is based: on A) area of presented 

enlarged lymph nodes (>1cm) or organomegaly (categories: A-C), B) on presence of anemia 

or thrombocytopenia (categories: 1-5): 

A) Area of presented enlarged lymph nodes: 

1. Head and neck. 

2. Axillae. 

3. Groins. 

4. Palpable spleen. 

5. Palpable liver. 

B) Anemia or thrombocytopenia: 

A: Hg 100g/L or more; platelets 100x109/L or more 

B: Hg 100g/L or more; platelets 100x109/L or more; organomegaly 

C: Hg <100g/L; platelets <100x109/L; irrespective to organomegaly 

 

1.1.5 Progression and transformation of B-CLL 

Small lymphocytic leukemia (SLL) shows very similar manifestation as B-CLL. SLL is 

clinically defined by presence of lymphadenopathy, clonal marrow infiltration, but with 

absence of peripheral blood lymphocytosis and cytopenia. Number of B-cells in the 

peripheral blood should not exceed 5000 per µL. The SLL diagnosis needs to be confirmed by 

histopathological evaluation of lymph nodes 2. 
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B-CLL/SLL could transform into more aggressive non-Hodgkin lymphoma (NHL) called 

Richter’s syndrome (RS) 45. RS develops with frequency 5-7% and is mostly represent as 

diffuse large B-cell lymphoma (DLBCL) 46. Patients with RS have a very poor prognosis 46. The 

molecular mechanism leading to RS transformation from B-CLL is unknown. 

 

1.1.6 Conventional and novel therapeutic tools of B-CLL 

 The manifestation of B-CLL is very heterogeneous. One third of B-CLL patients do not 

need therapy and survive for years; in another third of B-CLL patients the indolent course of 

disease progresses; the remaining third of B-CLL patients exhibits aggressive onset at the 

beginning and needs immediate therapy 29. In many patients, typical symptoms or signs of 

B-CLL do not manifest; in this case, the B-CLL is revealed simply by routine blood test. 

Standard treatment of B-CLL is based on “watch and wait” strategy with controls of blood 

counts and clinical examinations over a period of 3-6 months 26. Therapy to B-CLL patients is 

applied when the symptoms are visible and the disease progresses rapidly 2,26. We can split 

the chemotherapy components into several groups 2: 

A: Cytostatic agents. 

From the purine analogues, the Fludarabine monotherapy is by far the most used and 

studied as it shows the best results: 7-40% of complete remission rate and overall survival 

(OS) 66 month 47. Nowadays, the standard first line of therapy B-CLL patients in good 

condition without comorbidities is considered combination of Fludarabine, 

Cyclophosphamide and Rituximab (FCR). This combined therapy represents very effective 

treatment as 95% of treated patients responded and from 50-70% showed complete 

remission 48,49. Among the most common side effects of this therapy belong toxicity, 

neutropenia, lymphopenia with an increased risk of secondary bacterial infections 50. In 

elder patients and patients with comorbidity is more likely used an alternative therapy 

protocol FCR-lite, where the toxicity is lower 50. For patients where the alkylating agents had 

failed or patient relapsed after second-line of Fludarabine therapy is applied monotherapy 

with Alemtuzumab. It is a recombinant, monoclonal antibody against the CD52 antigen. The 

main use of Alemtuzumab monotherapy was found in “high risk” patients with deleted 17p 

chromosome or with mutated TP53 gene 50. Another monotherapy alternative for elderly 

patient with comorbidity is Chlorambucil (alkylation agents), mainly for its low toxicity and 

low cost. The side effects (cytopenia; myelodysplasia; secondary acute leukemia) and low 
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complete remission (CR) rate are the main disadvantages of Chlorambucil monotherapy. 

Chlorambucil in combinations with anti-CD20 antibodies based therapy such as Rituximab 

shows better results 51.  

B: Agents targeting B-cell receptor (BCR) signaling. 

Signaling through BCR supports survival of B-CLL cells 52. BCR signaling needs interaction 

with different tyrosine kinases: Bruton`s tyrosine kinase (Btk), spleen tyrosine kinases (Syk); 

Src family of tyrosine kinase and PI3K 53. Therefore, novel drugs are based on the inhibition 

of BCR signaling e.g. inhibitors of Btk 54. Ibrutinib inhibits Bruton`s tyrosine kinase and 

induce apoptosis of B-CLL and lymphoma cells 55. In a recent study, in which Ibrutinib was 

orally administered to the patients with relapsed or refractory B-cell lymphoma and B-CLL, it 

was demonstrated that Ibrutinib is well tolerated and induces significant objective 

responses (16% of patients with complete remission)56. 

C: BCL-2 inhibitors. 

Pro-apoptotic proteins the members of Bcl-2 family represent key regulators of apoptosis 57. 

ABT-199 inhibitor selectively inhibits the growth of BCL-2 dependent tumors in vivo and 

spares human platelets. In patients with refractory B-CLL, administration of ABT-199 

resulted in lysis of tumor cells 58. 

D: Immunomodulatory drugs. 

Lenalidomide with its anti-angiogenic, anti-neoplastic properties was primarily used for 

treatment of myelodysplastic syndrome and multiple myeloma 59,60. Lenalidomide therapy is 

also applied to the treatment of B-CLL patients. In 4 year study of Lenalidomide as initiating 

therapy (cohort of 60 B-CLL patients), drug administration resulted in tumor flare reaction 

with overall survival 82%. Treatment with Lenalidomide was also associated with sustained 

(36 months or longer) normalization of the absolute number of circulating T-cells (CD3+) and 

the percentage of CD4+ and CD8+ cells 61. 
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1.2 Introduction to the microRNAs 
 
1.2.1 Discovery, nomenclature of microRNAs 

 
The microRNAs were discovered in 1993 by Lee et al., in Caenorhabditis elegans animal 

model 62. This class of small non-protein coding single stranded RNAs (~19-23 nucleotides in 

length) is now very intensively studied. MiRNAs work as negative post transcriptional 

regulators of gene expression. MiRNAs, endogenously produced RNAs are evolutionary 

conserved among all four kingdoms - Animalia, Plants, Funghi and Viruses. Due to the role of 

small RNAs in controlling the proper timing of development, were firstly named as small 

temporal RNAs (stRNA) 63 and later renamed to microRNAs 64. 

One of the first discovered miRNAs were lin-4 (lineage) and let-7 (lethal) in 1993 by Lee 

et al. in worms Caenorhabditis elegans 62. These miRNAs inhibition mechanism involves 

sense and anti-sense interactions of RNAs. The lin-4 inhibits translation of LIN-14 that is 

responsible for correct timing during the first larval stage and let-7 regulates correct timing 

and development from the last larval stage to the adult stage 65.  

 Nowadays, identification of miRNAs exploits methods as subclonning, de novo 

sequencing studies and bioinformatics approaches. Prediction programs use the 

conservation of miRNAs within species. Variety miRNA databases were developed: miRBASE 

66, miRNA map 67, microRNA 68, coGemiR 69, miRGEN 70and deepBase 71. In publications, 

computationally predicted miRNA target programs/databases are used: Targetscan 72, Pictar 

73, Tarbase 74, microRNA 68, Diana-microT 75, miRecords 76and Starbase 77. Recently, the most 

used miRNA database – „miRBase“ issued the version 19 78 which contains 1600 human 

microRNAs and their number is still rising up. 

Terminology of miRNAs distinguishes the precursor miRNA from the mature miRNA. 

Precursor miRNA is referred to as “hsa-pre-miR-X” while mature as “hsa-miR-X” (where X 

represents a number in line of discovery). The prefix of three letters refers to the origin of 

organism (e.g. hsa = Homo sapiens, mmu = Mus musculus). If there exists a difference in few 

bases in the sequence of mature miRNA, after numeric value X the letters a, b or c are 

added (e.g. hsa-miR-106a; hsa-miR-106b). To specify which arm of the hairpin structure is 

processed from the precursor miRNA, specification 3p (from 3` arm) and 5p (from 5` arm) 

are used (e.g. hsa-miR-155-3p or hsa-miR-155-5p). By processing of both strands from pre-

miRNA, than the less abundant is named as miR-X*. The mature miRNA can result from two 
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genomic loci, then the numeral suffix after X is added (e.g. hsa-miR-181a-1 or e.g. hsa-miR-

181a-2) 79,80. In addition, some miRNAs do not follow such nomenclature (e.g. let-7).  

 

1.2.2 Biological function of microRNAs 

           The cell fate is under tight control of miRNAs that regulate apoptosis, cell cycle, 

proliferation or differentiation of cells. Primarily, miRNAs negatively regulate gene 

expression. MiRNA binds to the 3’ untranslated region (3` UTR) of its target mRNA and 

based on the level of complementarity, the mRNA degradation (Plants) or inhibition of 

translation (Animalia) is executed 81. Besides negative regulation of gene expression, some 

miRNAs could also promote translation of ribosomal RNA 82.  

One miRNA can regulate several target mRNAs and on the other hand, several 

miRNAs can regulate one mRNA target 83,84. The cluster miRNAs as hsa-miR17-92 cluster are 

processed from one primary transcript that is later spliced into several mature miRNAs. The 

single miRNAs as miR-155 are transcribed from one primary transcript of host gene. It was 

estimated that 10–30% of genes are regulated by miRNAs. It is thus not surprising, that 

miRNAs are involved in cancer development where they are differentially expressed. It is 

known, that microRNAs are deregulated during leukemia and tumor development 85. 

Important role of microRNAs in tumor genesis is supported by the fact that microRNAs are 

frequently located at the genomic loci amplified in tumors 86or the loci that frequently 

undergo genetic mutation: breaks or deletions 87. Genes encoding microRNAs and their 

regulatory regions are often located in vicinity of viral integrations, that leads 

to deregulation of their expression 88. MicroRNAs are important for normal development as 

documented by the genetic inactivation of several components of microRNA metabolism, 

resulting in absolute phenotype of early embryonic lethality 89. 

 
1.2.3 Biogenesis of microRNAs 

 
Genes that encode miRNAs are localized on the sex and somatic chromosomes with the 

exception of Y chromosome 79. MicroRNA genes are mainly localized in the chromosomal 

loci that are predisposed to the deletions or amplifications 90. The miRNAs are transcribed 

from RNA transcripts of independent genes or from introns of protein coding genes. MiRNAs 

can be then divided into three categories depending on their genomic location: 1) exonic 



25 

 

miRNAs in non-coding genes; 2) intronic miRNAs in non-coding genes and 3) intronic 

miRNAs in protein-coding genes 91. 

Biogenesis of microRNAs (Figure 1.3) starts in the cell nucleus and continues in the 

cytoplasm. The processing of miRNAs requires RNA polymerase II 92 but some miRNAs as 

miR-515-1, miR-517a, miR-517c and miR-519a-1 could be transcribed also by polymerase III 

93. The first product is the primary transcript - pri-miRNA that is usually several kilobases 

long with a typical hairpin structure (Figure 1.3). The endonuclease - RNase III called Drosha 

digests pri-miRNA. This process is followed by adding three phosphates (3P) at the 5’end on 

which further binds 7-methyl-guanosine (m7G; also called a cap). This cleavage step is 

important as determines the sequence of the mature miRNA and generates the optimal 

conditions for further processing of pri-miRNA 94. 

The second product arising during the biogenesis of miRNA is precursor-miRNA (pre-

miRNA) originated from pri-miRNA. The pre-miRNA (~70-100nt long) arises by digesting of 

the one strand by enzyme Drosha and its cofactor DGCR8 (DiGeorge syndrome Critical 

Region gene 8; dsRNA binding protein). DGCR8 cofactor binds as the molecular anchor to 

the double-stranded RNA and recognizes the pri-miRNA flanking sequences where undergo 

subsequent cleavage of stem-loop mediated by the ribonuclease Drosha. Drosha cleaves in 

approximately 11bp from the junction between the flanking sequences and the stem-loop. 

Such non-symmetric cleavage leaves two unpaired nucleotides at the 3‘OH end 95. Drosha 

complex consists of several factors “accessory components” as EXSR1, FUS, 

ribonucleoproteins and DEAD-box helicases. These “accessory components” may function as 

the enhancers of fidelity and activity of miRNA processing by Drosha 96,97. Processing of pri-

miRNA to the pre-miRNA is a critical step while defines the mature miRNA sequences 

(Figure 1.3).  

Besides the canonical miRNA biogenesis there exists also an alternative biogenesis of 

miRNA called mirtron pathway (Figure 1.3). The mirtron is a short intron with hairpin 

structure. This pathway uses mRNA splicing mechanisms. After lariat (structure that 

originates from intron of mRNA during splicing and processing of mRNA/miRNA) releasing 

the intron by self generates pre-miRNA, however with shorter length as in canonical pre-

miRNA pathway, since lack of lower stem of 1 helical turn that typically recruits and 

mediates cleavage by Drosha/DGCR8 complex 98. Cleavage step by Drosha does not occur in 

the mirtrone pathway 99. The miRNAs originated by mirtron pathway are miRNAs with 
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regulatory function as well as miRNAs that are made up by the canonical biogenesis 

pathway (Figure 1.3).   

The nuclear protein, Exportin-5 (Ran-GTP receptor) guides transport of pre-miRNA 

from the nucleus into the cytoplasm. This boundary of pre-miRNA with Exportin-5 ensures 

two flanking nucleotides on the 3‘end of pre-miRNA. RNaseIII (Dicer) cleaves the terminal 

hair loop of pre-miRNA and give rise to the temporarily present double strand duplex of 

miRNA:miRNA* (~21-23nt). Dicer together with its co-factor TAR RNA binding protein 

(TRBP) regulates processing and liberation of miRNA:miRNA* duplex. Strand with strongest 

boundary to the 5‘end of miRNA:miRNA* duplex is then incorporated into so called miRNP 

(ribonucleoprotein) or RISC complex (RNA Induced Silencing Complex). The miR* strand 

plays role in the pathogenesis of some diseases and acts in regulating signaling events 100. 

Only the active RISC* complex could bind the mature miRNA and transport it to its target 

mRNA. The mechanism of miRNA acting lies in guiding the active RISC* complex to the 

3`UTR of the target mRNA through “seed sequence”. The “seed sequence”, usually 6-8nt 

long is responsible for the correct boundary of miRNA on the 3‘end of the target mRNA 101. 

The key components of RISC are Argonaut proteins 1-4 (AGO1-4). All four proteins stabilize 

the RISC complex, but only AGO-2 has “slicer” activity (slicer activity=cleavage) 102,103. AGO 

proteins interact also with proteins of RISC complex: GW182 (glycine-tryptophan protein of 

182KDa) 103. GW182 than further interacts with poly (A) binding protein (PABP) and together 

recruit deadenylases – to proceed the final step of mRNA deadenylation 104. 

Inhibited targeted mRNA together with miRNA and catalytic components of RISC 

(AGO1-4) are then collected into the P bodies 81. The P bodies (processing) are subcellular 

compartments that serve in mRNA turnover. In P bodies’ proceeds decapping, degradation 

of unwanted mRNAs and storage of mRNA until needed for translation. P bodies also act on 

aiding in translational repression by miRNAs 105,106. Some miRNAs after entering P bodies are 

not degraded but rather utilized for re-initiation of translation 107. 

 

http://en.wikipedia.org/wiki/Messenger_RNA_decapping
http://en.wikipedia.org/wiki/MRNA
http://en.wikipedia.org/wiki/MiRNA


27 

 

 

Figure 1.3: Biogenesis of miRNA (adapted and modified from Breving K and Esquela-Kercher A, 
2009102; Iorio MV and Croce CM, 2011108; Okamura K et al., 2007109; Krol J et al., 2010103). Biogenesis 
of miRNAs starts in the cell nucleus and proceeds in the cytoplasm. There are two pathways of 
biogenesis miRNAs: A) Canonical and B) Alternative mirtron pathway. A) In the canonical pathway, 
the first step is generation of long primary transcript pri-miRNA by polymerase II/III. The pri-miRNA 
transcript contains cap at 5`end and polyA tail at the 3`end. In the second step, digestion of pri-
miRNA by RNAse III-Drosha together with DGCR8 gives rise the precursor - pre-miRNA. B) In the 
alternative mirtron pathway, the first step is generation of mirtron-encoded by introns. Mirtron 
hairpins are spliced and debranched in spliceosome to gives rise to pre-miRNA. From this step, both 
pathways share further steps of generation the mature miRNA. Pre-miRNA is in the third step 
exported from the nucleus to the cytoplasm by Exportin-5. In the cytoplasm the second RNAse III – 
Dicer together with TRBP further process pre-miRNA. In the next step short existing miR:miR* duplex 
arise. The mature miRNA originates from the guided strand - with the strongest boundary to the 
RISC complex and more stable; the miR* strand is usually degraded (but could also play some 
biological role). Mature miRNA is further loaded into RISC complex mediated by AGO1-4 proteins. In 
that step, the mature miRNA becomes ready for action: translational repression/deadenylation (in 
Animals) or mRNA degradation (in Plants).  
 
 

1.2.4 Regulation of the microRNA biogenesis  
 

Proper timing and precise regulation of miRNAs expression are required for 

maintaining cell and tissue homeostasis 110.  

 Both miRNAs and mRNAs have complex promoters regulated by transcription 

factors, enhancers, silencing elements and by chromatin modifications 107,111. Transcription 

of miRNAs genes is regulated at the promoter level by: A) Binding of transcription factors, B) 

Chromatin modifications (Figure 1.4). Direct binding of transcription factors (TF) positively 
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or negatively regulates miRNA expression. TF c-MYC stimulates expression of miR-17-92 

cluster by direct binding at conserved sequence upstream of miR-17-92 host gene 112. 

Expression of miRNAs is regulated also by chromatin modifications, 5-10% of mammalian 

miRNAs are regulated epigenetically. The tumor suppressor miR‑124a is unmethylated in 

normal cells but undergos methylation in cancer cells 113.  

 

                                                                                   

Figure 1.4: Regulation of miRNAs transcription: Transcription of miRNA genes could be positively or 
negatively regulated by: A) Binding of transcription factors or B) Chromatin modifications. A) Direct 
binding of TF (transcription factor) at miRNA host gene promoter could positively or negatively 
regulate the miRNA host genes expression. B) Methylation of CpG at the miRNA host gene promoter 
region negatively regulates expression of miRNA.  

 

It was shown that processing of miRNAs is regulated by: 1) protein cofactors, 2) 

protein-protein interactions or 3) through direct interactions with pri-miRNA 114. Each step 

of the biogenesis of miRNA is tightly regulated alike the regulation of mRNA maturation. The 

first regulatory step occurs at the processing of pri-miRNA. For example, SMAD proteins and 

p53 protein enhances the maturation of pri-miRNAs through interaction with protein p68 – 

a component of the Drosha microprocessor complex 115,116. An autoregulation of miRNAs 

was recently described - e.g. the let-7 promotes processing of its primary transcript 117. Such 

a regulatory feedback loops are very common in miRNAs and it was postulated that they are 

critical for maintenance of balance between the levels of the Drosha-DGCR8 complex and 

their substrate 118. It was described that processing of pri-miR-155, pri-miR-21 and let-7 by 

Drosha is enhanced by arsenite-resistance protein 2 (ARS2), a component of the nuclear cap 

binding complex. The low expression or depletion of ARS2 inhibits processing of pri-miRNA-

155 119. 
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 The second level of regulation miRNA maturation occurs at pre-miRNA stage. The 

processing of pre-miRNA is mediated not only by Dicer but also by other cofactors as TRBP 

and PACT (protein activator of PKR). These two cofactors enhance the specificity of cleavage 

and promote stability of the Dicer-pre-miRNA complex 120. Translocation of processed pre-

miRNA from the cell nucleus into the cytoplasm mediates the nuclear pore complex called 

Exportin-5 94. Exportin-5 together with pre-miRNAs may shuttle also tRNAs (transfer RNAs). 

Therefore, pre-miRNAs and tRNAs compete for transport by Exportin-5 94. Another 

regulation of pre-miRNA maturation proceeds during interaction of Dicer with Exportin-5, 

thus overproduction of Dicer mRNA or pre-miRNA could work as negative or positive 

feedback loop 121. The processing of Dicer is negatively regulated by viral miRNA – e.g. miR-

BART6-5p encoded by Epstein-Barr virus 122. Another negative regulation of pre-miRNA 

processing respectively export of pre-miRNA represents post-transcriptional process RNA 

editing mediated by adenosine deaminases (ADAR) 103. ADAR proteins catalyze conversion 

of adenosine to inosine what affects base pairing and structural properties of RNA 

transcripts 123. ADARs regulate both Drosha-mediated and Dicer-mediated cleavage and 

prevent the export of pre-miRNAs 103.  

Mutations in the sequences of pre-miRNAs or mature miRNAs influence further 

miRNA processing, stability and target selection. Mutations in the pre-miRNA and miRNA 

sequences originate from changes at the DNA coding sequences and from RNA 

posttranscriptional modifications 124,125. The single substitutions of base pairs (C to T) in the 

sequence of pre-miR-15a and pre-miR-16-1 abolish processing of these two miRNAs in B-CLL 

patient samples 126.  

Briefly, regulation at the pri-miRNA level by interactions with proteins/cofactors 

results in different expression of miRNAs. Changes at the base pairs in pre-miRNA and/or 

mature microRNA sequences alter processing and/or selection of target mRNAs. 

 
1.2.5 miRNAs are involved in pathogenesis of B-CLL 
 

For the first time Calin et al., described the link between B-CLL and miRNAs. Authors 

desribed significant down regulation of the microRNA cluster miR-15-16 (miR-15a and miR-

16-1) in B-CLL patient samples. MiR-15-16 cluster is localized in the 13q14 chromosomal 

region that is often deleted in B-CLL 16. Klein et al., described on the mouse model, that 

deletion of 13q14 region with DLEU2/miR-15a/miR-16-1 leads to clonal B-cell 
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lymphoproliferations similarly as in B-CLL patient cells. Moreover, they proved that deletion 

of cluster miR-15-16 accelerates proliferation of B-cells by enhanced transition of cells from 

G0/G1 to S phase 127. Thus, miR-15-16 cluster plays important role in pathogenesis of B-CLL 

128,129. Another consequence of the deletion 13q14 chromosomal region is elevated 

production of an anti-apoptotic protein – BCL2, thus absence of miR-15-16 cluster increases 

resistance of B-CLL cells to the apoptosis. On the other hand, in the normal B-cells, presence 

of miR-15-16 cluster acts as tumor suppressor gene while it inhibits expression of BCL2 gene 

and drives cells to apoptosis 130. While the BCL2 is in majority of B-CLL patient samples 

overexpressed, it makes BCL2 molecule a potential target in B-CLL therapy. Recent work by 

Masood A et al., showed that an inhibitor of BCL2 (AT-101) induces apoptosis in B-CLL cells 

131.  

It is described that several miRNAs are deregulated in B-CLL cells 90,130,132. The miR-

34a/b/c cluster is the one among them. To the frequent chromosomal aberrations in B-CLL 

belongs loss of the long arm of chromosome 11 and deletion of the short arm of 

chromosome 17. The miR-34a/b/c cluster is localized on these two chromosomes. The miR-

34 cluster downstream regulates the expression of TP53 gene that suggests on link between 

chromosomal deletions (11q, 17p chromosomes) and expression of miR-34a/p53 during B-

CLL progression 133. Fabbri et al., shown that p53 binds at miR-34b/c cluster and thereby 

stimulates expression of miR-34b/c cluster in B-CLL 134. Interestingly, in B-CLL patient cells 

with deletion or mutation of TP53 gene the levels of miR-34 cluster decreased. Based on this 

knowledge, measurement of levels miR-34a could distinguish between the high and low risk 

B-CLL patients. The B-CLL patient samples with high risk expressed lower levels of miR-34a, 

displayed shorter time to treatment and shorter doubling time of lymphocytes in 

comparison to the low risk B-CLL patient samples. Moreover, it was described that low 

expression of miR-34a due to deletion or mutation of TP53 gene positively correlates with 

Fludarabine resistance of B-CLL cells 135.  MiR-34a induces cell cycle arrest and apoptosis in 

the primary B-CLL cells. The cell cycle and apoptosis are in cooperation with p53 – this 

suppose an existence of positive feedback loop between miR-34a and p53 protein.  

Patients with deletion of 17p chromosome (encoding TP53 gene) are clinically 

described as patients with high risk B-CLL. It was shown that B-CLL cells of patients with high 

risk expressed elevated levels of miR-21. Moreover, the B-CLL patients with elevated 

expression of miR-21 displayed shorter overall survival (12 months) in comparison to the 
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patients with low miR-21 expression (24 months). Therefore, measurement of miR-21 levels 

could be in the future used as the marker for overall survival of B-CLL. The statistical analysis 

based on the cytogenetic data has shown that expression of miR-21 is a marker of an early 

stage of B-CLL 136.  

Fulci et al., described three-fold increased levels of miR-150 in the peripheral blood 

and lymph nodes of B-CLL patients 17. The RNA in situ staining of leukemic cells showed very 

clear staining of miR-150 in the outer site of the proliferation centers of leukemic cells in the 

lymph nodes 137. Moreover, expression of miR-150 correlates with poor prognosis as the B-

CLL patient cells with unmutated IgVH expressed less miR-150 as IgVH mutated B-CLL cells 

17,137. 

Decreased expression of miR-181b in B-CLL cells overal correlates with worse 

prognosis of B-CLL. Patients with low levels of miR-181b had higher probability of requiring 

treatment and display shorter overal suvival (5 months) as patients with higher miR-181b 

expression (14 months). Moreover, the B-CLL cells with deletion of short arm of 

chromosome 17 expressed less miR-181b as cells without this deletion. Based on this data 

the low miR-181b expression has become an unfavorable prognostic marker of B-CLL 19,136. 

The B-CLL patient cells with unmutated IgVH expressed lower levels of miR-181b as mutated 

IgVH cells 138. 

Different expression pattern of members miR-17-92 cluster appears to be another 

sign of B-CLL. This cluster encodes six different microRNAs (miR-17p, 18a, 19a, 19b-1, 20a, 

92a). Moreover, the miRNA-17-92 cluster regulates proliferation of B-cells and Ig 

rearrangement as it is highly expressed in progenitor B-cells 139,140. Expression of miR-92, a 

member of miR-17-92 cluster was increased in the lymph nodes of B-CLL patient samples. 

Other members as miR-20a and miR-19b-1 were highly expressed in the peripheral blood of 

B-CLL patients 137. The ChIP analysis has shown that the transcription factor MYC stimulates 

expression of miR-17-92 cluster in B-CLL 112.  

The most studied microRNA in B-CLL represents a multifunctional oncogenic microRNA - 

miR-155. The elevated levels of miR-155 were detected in Hodgkin 141,142 and non-Hodgkin 

lymphomas including B-CLL 17,130,143,144. The aberrant expression of miR-155 represents sign 

of more aggressive course of the disease 143,145. The recent data shows on the potential 

usage of miR-155 as a prognostic marker in distinguishing between two types of DLBCL 

forms (ABC/GC) 146. Based on this information, the measurement of miR-155 levels during 
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disease progression could be potentially used as a marker of B-CLL progression. Very 

recently, a prognostic value of miR-155 as marker of B-CLL progression was confirmed 20. 

Authors shown an association between elevated levels of miR-155 in plasma of B-CLL 

patients and progression of B-CLL from MBL 20. 

 

1.3 Characterization of microRNA-155 and its role in B-cells and leukemia 
 
1.3.1 Overview of microRNA-155/BIC/MIR155HG 

 
MiR-155 is encoded by non-protein coding gene BIC identified by Tam as the B cell 

Integration Cluster while BIC gene represents frequent site for integration of the avian 

leukosis virus (ALV) 147. BIC gene lacks an extensive open reading frame (ORF) and contains 

three exons that form 13kb region within the human chromosome 21q21.3 (Figure 1.5). BIC 

gene does not code any protein-coding gene. The secondary structure of BIC gene 

conserved sequences formed hairpins with imperfectly base paired stem loops. Taken 

together, BIC functions as non-protein coding RNA 147. The human BIC cDNA is in 83% 

identical with the mouse BIC cDNA, moreover mature human (hsa) miR-155 differs from 

mouse (mmu) miR-155 only in a single nucleotide in non seed sequence 148. The BIC gene is 

now designed as MIR155 Host Gene (MIR155HG). 

                
Figure 1.5: Structure of the MIR155HG/BIC gene (NC_000021.8). MIR155HG (BIC) is localized on the 

21q21.2 chromosomal locus. The full length of MIR155HG spans 13024 bp that contains three exons. 

The exon 3 encodes precursor pre-miR-155 (1421 bp). After two endonuclease cleavage steps (by 

endonuclease Drosha and Dicer) arise the mature miR-155 (adapted and modified from Tam W, 

2001148 and http://www.ncbi.nlm.nih.gov/gene/114614). 

          

http://www.ncbi.nlm.nih.gov/gene/114614
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The biogenesis of miR-155 follows canonical miRNA pathway, this process begins in the 

cell nucleus and continues in the cytoplasm (for details see also Figure 1.3). The primary 

transcript of miR-155 – pri-miR-155 (13 024nt) is transcribed from MIR155HG or BIC gene by 

polymerase II (Figure 1.3 and 1.5). The precursor miR-155 - pre-miR-155 (65nt) originates 

from the pri-miR-155 by enzymatic cleavage mediated by endonuclease Drosha. This pre-

miR-155 is further enzymaticaly cleaved by Dicer endonuclease to give rise two mature miR-

155 - miR-155 5p (23nt) and miR-155 3p (also called miR-155*) (22nt) (Figure 1.5) 149. The 

major product represents miR-155 5p that is also the most studied in different cells and 

tissues including hematopoietic and immune system. However, the minor product, miR-155 

3p is less known and it seems that these two products tightly cooperate 100. Authors 

described opposite cooperation between these two miRNAs in regulation of IFNα/β 

(interferon α/β) production in human dendritic cells. Here the miR-155 5p acts as negative 

regulator and miR-155 3p as positive regulator of production IFNα/β. Their opposing 

functions are explained by their different mRNA targets: miR-155 3p targets IRAK3 

(Interleukin-1 Receptor-associated kinase 3) and miR-155 5p targets TAB2 (TGF-β activated 

kinas 1/MAP3K7 binding protein 2) 100. 

MiR-155 (5p) represents a multifunctional microRNA, while it involves in the various 

physiological as well as in the pathological processes (reviewed in 150,151). In the normal 

human hematopoietic stem-progenitor cells (HSPCs) miR-155 maintains early 

hematopoietic stem cells (HSCs) at an early stem-progenitor stage by blocking their further 

maturation into myeloid, lymphoid and erythorid lineage. The transducing of miR-155 into 

erythroid K562 cell line as well as into human CD34+ bone marrow cells resulted in decrease 

of megakaryocytic differentiation and less formation of myeloid and erythroid colonies 152. 

The northern analysis revealed that miR-155 expresses all hematopoietic tissues 153. 

Maturation of B-cells is under control of miR-155 154,155. O`Connell has found that 

permanent expression of miR-155 can increase number of immature granulocytes. 

Moreover, the increased levels of miR-155 led to the granulocytes and monocytes 

expansion, similarly to the myeloid proliferations as AML 156. Vigorito and Xiaochun studied 

the role of miR-155 in immunity 157,158 and inflammation 159. Trotta et al., described that 

miR-155 acts as positive regulator of IFNγ production by natural killer cells 160. The positive 

functioning of miR-155 on the inflammation process underlines also fact that the 

atherosclerotic plaques and pro-inflammatory macrophages displayed high expression of 
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miR-155 that results in inhibition of inflammatory responses and lipid uptake 161. It has been 

described that miR-155 involves in pathogenesis of autoimmune diseases as rheumatoid 

arthritis, multiple sclerosis and systemic lupus erythematosis 162. MiR-155 attenuates 

apoptosis via targeting FADD (Fas-Associated protein with Death Domain) 163. Haasch et al., 

demonstrated a strong up regulation of miR-155 expression in CD3/CD28 activated T-cells, 

suggesting a possible role for miR-155 in T-cell activation 164. Role of miR-155 in the 

cardiovascular disorder support evidence that during the acute inflammatory phase of viral 

myocarditis the increased expression of miR-155 was specifically localized in the infiltrating 

macrophages and T-cells 165. Presence of miR-155 is required for CD8+ T-cell responses to 

both virus and cancer 166. MiR-155 is involved also in the development of different types of 

solid tumors as breast cancer 167,168, lung cancer 85, colon cancer 85 and cervical cancer169. It 

was described that miR-155 is over-expressed in acute myeloid leukemia (AML) 170 and in 

acute lymphocytic leukemia (ALL) 171. In practically all B-cell lymphoproliferations 

(Hodgkin’s and non-Hodgkin’s lymphoma, primary mediastinal B-cell lymphoma, diffuse 

large B-cell lymphoma (DLBCL)) including B-CLL microRNA-155 is aberrantly expressed 

17,141,144,149,172–174.  

Above-mentioned physiological and pathological processes including leukemia/cancer 

underlines the wide range of miR-155 functioning.  

 
1.3.2 Role of miR-155 in normal and leukemic B-cells 

 
The B-cell development is regulated by transcriptional factors that are modulated by 

microRNAs 154. Deregulated expression of miRNAs and transcription factors are key events 

in pathogenesis of B-cell malignancies 175. 

During the normal lymphopoiesis the highest level of miR-155 express germinal center 

cells, intermediate level HSCs and the lowest mature B-cells 152. In the hematopoietic stem 

cells, miR-155 functions as blocker of hematopoietic differentiation along all lineages 

including lymphoid lineage 152. The normal healthy, germinal center B-cells express aberrant 

levels of miR-155. In the germinal centers occurs maturation of antibodies and generation of 

memory B-cells in T-cell dependent antibody responses. As the Hodgkin`s lymphoma 

originate from the germinal center cells, the sustained up regulation of miR-155 is due to 

block of lymphocyte maturation 175.  
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  MiR-155 is required for production of antibodies that documents reduced secretion of 

IgG in B-cells of miR-155 deficient mice. This impaired antibody production is due to defect 

in differentiation of plasmablast cells and reduced proportion of germinal center B-cells. 

Another reason of reduced antibody production in miR-155 deficient mice is failure of BCR 

signaling 157. Thai et al., described that reduced expression of miR-155 leads to reduced 

cytokine production 176.  

It was described that miR-155 does not implicates in the somatic hypermutation (SHM) 

157. In contrast, Teng et al., showed that aberrant expression of miR-155 negatively regulates 

AID (activation-induced cytidine deaminase) expression in B-cells. AID is involved in somatic 

hypermutation, gene conversion and class-switch recombination of immunoglobulin genes. 

Authors showed that absence of AID mediated by miR-155 inhibition resulted in imperfect 

maturation of B-cells 177.  

It has been reported that direct target of miR-155 is SHIP1 (Src homology-2 domain-

containing inositol 5-phosphatase 1) gene that regulates differentiation of B, T-cells and 

macrophages 178. The Ship1 knockout mice displayed spontaneous germinal center 

formation and antibody class-switching 179. 

During B-cell maturation the presence of miR-155 is necessary for activation of B-cell 

receptor (BCR): important for antibody production 141,180,181. The B-CLL cells with high 

expression of miR-155 displayed higher capacity for BCR signaling 34.  

The last stage of B-cell development occurs in the peripheral lymphoid tissues where 

miR-155 is expressed by centroblasts and activated B-cells, necessary for normal B-cell 

development 154. 

 

1.3.3 Mouse models of miR-155  

Until now it was generated four main miR-155 transgenic mouse models with either 

enhanced 182 or deficient miR-155 expression 157,176,183. More information about mechanism 

of miR-155 acting in immune system may help to understand its role in leukemic process. 

In the miR-155 over-expressing transgenic mice ("Eμ–mmu-miR-155" mouse model), 

pre-leukemic stage with polyclonal B-cell expansion and splenomegaly developed initially 

(after 3 weeks) 182. Later, after seven month, pre-leukemic stage progressed into high-grade 

B-cell lymphoma that is direct evidence of miR-155 functioning as activator of leukemia 

development 182. 
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Vigorito et al., confirmed importance of miR-155 in antibody production in germinal 

centers 157. MiR-155 deficient mice had reduced proportion (50%) of germinal center B-cells 

that led to reduced production of high affinity antibodies. Interestingly, authors firstly 

thought that impaired antibody production is result of dysfunctioning of somatic 

hypermutation affected by miR-155. The further experiments showed that miR-155 does 

not affect somatic hypermutation that occurs in germinal center B-cells (SHM) 157. Failure of 

antibody production is due to block in differentiation of plasmablast B-cells (stage of B-cells 

between plasma and mature B-cells) and in reduced production of cytokines. This was 

confirmed also by other groups of researchers as Thai and Rodriguez 176,183. Moreover, the 

miR-155 deficient mice produced less amount of IgM and switched antigen specific 

antibodies after immunization with pathogen – Salmonella typhinurium. The evidence that 

miR-155 regulates also T-cells represents its strong up regulation in activated T-cells 176. 

Rodriguez et al., also proved that dendritic cells failed efficiently activate T-cells 183. 

As the miR-155 bears the potential to be therapy-targeted molecule, Babar et al., 

generated miR-155 Cre-loxP tetracycline controlled knock-in mouse model (miR-155LSLtTA). In 

these mice, the transcription of miR-155 can be deactivated by doxycycline, thus it provides 

“TET OFF” system with temporal controlling of miR-155 transcription. MiR-155 LSLtTA mice 

developed after five month disseminated lymphoma with enlarged lymph nodes and 

splenomegaly. Surprisingly, mice with such miR-155 induced lymphoma after doxycycline 

treated food displayed within two days reduced lymph nodes and in 2 weeks the lymphoid 

organs were as in normal, healthy mice 184.  

To summarize, over expression of miR-155 leads to high grade B -cell lymphoma and 

miR-155 knockout mice model showed on a marked impairment of miR-155 in T- and B-cell 

function. The knock-in mouse model gave strong evidence that miR-155 is inductor of B-cell 

leukemia. Moreover, miR-155 regulates homeostasis of immune system, thus it makes 

potentially very powerful therapy tool.   

 
1.3.4 Transcriptional regulation of MIR155HG 
 

Similarly as mRNA genes, also miRNA host genes are regulated by transcription 

factors and chromatin modifications 102,111. Aberrant expression of miR-155 in the immune 

cells and hematopoietic cells usually results in cancer, leukemia and autoimmune disorder 

162. 
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As miR-155 represents a common target of a broad range of inflammatory mediators 

and regulators of immune homeostasis, it is not surprising that inflammatory molecules and 

members of inflammatory pathways can activate the transcription of MIR155HG.  

It is described that IFNγ (Interferon γ), TNFα (tumor necrosis factor α), Toll-like 

receptor (TLR) ligands positively regulate MIR155HG expression 185,186. Van den Berg et al., 

find an putative NFĸB binding site in -371 to -362bp upstream of the transcription start site 

of MIR155HG 141.  

TGF-β induces MIR155HG transcription through binding of SMAD4 to the promoter 

region. Thus, miR-155 is a direct transcriptional target of the TGF-β/Smad4 pathway which 

activation promotes invasion and metastasis of breast cancer 167. 

Another molecule that mediates inflammatory responses in the immune system and 

induces cytokines represents AP-1. Mathematical and bioinformatical analysis of the 

promoter MIR155HG gene resulted in the identification of AP-1 (activator protein-1) binding 

sites -40nt upstream of the first exon MIR155HG 141. It was confirmed later also by reporter 

assay 187. B-cells carry out its function through B-cell receptor (BCR). Activated BCR signaling 

induces expression of transcription factors c-Fos, FosB, and JunB, members of AP-1 family. 

Transcription factor AP-1 enhances the miR-155 expression through activated BCR and 

complex of transcription factors (FOS/Jun). The mutation in AP-1 binding site decreased 

activity of MIR155HG promoter and impaired BCR signaling 187.  

Several transcription factors regulate expression of MIR155HG. One of them is 

FOXP3 (Fork-head box P3) a regulator of Tregs (T regulatory cells). In the breast cancer cells, 

FOXP3 functions as tumor suppressor gene 188. Over expression of FOXP3 stimulates 

MIR155HG transcription. MiR-155 by this feed-forward regulatory loop inhibits expression 

of its direct target: chromatin-remodeling transcription factor SATB1 (Special AT-rich 

Binding Protein homeobox 1) that implicates in metastasis of breast cancer cells 189. 

Very recently, it was described, that regulator of cell proliferation and survival, 

STAT3 (Signal transducer and activator 3) activates MIR155HG expression in B-CLL cells. 

STAT3 binds to GAS-like elements at the position -709 and -700nt of MIR155HG promoter 

region results in stimulation of MIR155HG transcription 190. 

The viral proteins and viral microRNAs could also activate transcription of miR-155 in the 

leukemic cells. Infection by Epstein-Barr virus (EBV) stimulates proliferation of B-cells. EBV 

infection induces expression of viral microRNAs (miR-BART and miR-BHRF) which enhances 
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the expression of cellular microRNAs. The EBV infected B-cells express high levels of miR-

155 191,192. EBV encodes latent membrane protein-1 (LMP-1), a functional homologue of the 

tumor necrosis factor receptor family, contributes to EBV’s oncogenic potential through 

activation of nuclear factor ĸ B (NFĸB). In the EBV infected B-cells LMP-1 activates 

transcription of MIR155HG through NFĸB and AP-1 191. Authors identified the second NFĸB 

binding site at position -1697nt from TSS of MIR155HG. By recruiting both NFĸB binding 

sites (-1150 and 1697nt from TSS) mediate LMP-1 elevated levels of miR-155 187,191. 

Aberrant expression of miR-155 in the EBV infected B-cells reprograms these cells into 

rapidly dividing cells and evoke the EBV latency 192. The MIR155HG transcription is 

stimulated also by the oncogenic herpes virus - Kaposi's sarcoma-associated herpes virus 

(KSHV) 193,194. 

MiR-155 expression is regulated also epigenetically. Chang S et al., described the BRCA1-

mediated silencing of MIR155HG promoter in breast cancer cells. Authors found that BRCA1 

recruits HDAC2 complex at the MIR155HG promoter 168. Therefore is the MIR155HG 

promoter epigenetically silenced through deacetylation of H2A and H3 histones. Silencing of 

BRCA1 results in increased miR-155 expression 168. 

As the miR-155 is in leukemic or cancer cells aberrantly expressed, the transcription 

factors and inflammatory molecules positively regulate its host gene transcription. The 

MIR155HG is negatively regulated by HDAC2. Viral infection (EBV) contributes to miR-155 

expression likewise. Anti-miRNA therapy could be then orientated on inhibition of miR-155 

either itself or its activators.    

 
1.3.5 Relationship between miRNA-155 and its direct target PU.1  
 

In silico prediction showed that PU.1 transcription factor belongs among miR-155 

target genes. Vigorito et al., validated that miR-155 directly targets PU.1 mRNA in the miR-

155 deficient mouse model in which the mRNA and protein levels of PU.1 were increased. 

The 3`UTR of PU.1 mRNA contains phylogenetically conserved 9nt complementary to miR-

155 seed region (9nt) (Figure 1.6). PU.1 rescue experiment in vitro on the primary B-cells 

resulted in impaired IgG production and increased proportion of IgM 157. The luciferase 

reporter assay confirmed this targeting of PU.1 by miR-155. After transfection of miR-155 

mimic into PU.1 luciferase reporter, the luciferase expression of PU.1 reporter was inhibited 
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157. Together these data confirm that PU.1 decreasment is mediated by elevated level of 

miR-155. 

It was described that over expression of miR-155 leads to decrease of both mRNA 

and protein level of PU.1 in primary B-CLL cells 144.  

  

              

Figure 1.6: The complementary base-pairing between miR-155-5p and the human SPI1 (spleen 
focus forming virus proviral integration oncogene) (also known as PU.1) mRNA. The miR-155-5p 
binding site is located 46-53 base pairs downstream from the SPI1 mRNA stop codon. The "seed 
sequence" base-pairing is represented by 9nt (adapted from miRBASE78). 
 
 

It was described that LMP-1 mediated miR-155 over expression resulted in 2-fold 

decrease of protein level of PU.1 in EBV negative cell line DeFew 191.  

PU.1 also known as SPI1 (spleen focus forming virus proviral integration oncogene) is 

a member of ETS family 195,196. PU.1 controls differentiation of common myeloid and 

lymphoid progenitor cells through regulation of transcription factors 197. Importance of PU.1 

in hematopoiesis underlined PU.1 mouse model (Sfpi1-/-) where the null mutation of Sfpi1 

resulted in perinatal lethality and failure in generation of B-cells, macrophages and 

neutrophils 198. PU.1 acts as oncogene and as tumor suppressor gene 195,196. Interestingly, 

different level of PU.1 defines the cell stage during the differentiation. The low level of PU.1 

favors in the development of granulocytes and high in the development of monocytes 199. In 

the B-cell, the high levels of PU.1 are observed in germinal center B-cells, while PU.1 level 

decreases with maturation 200. Reduced levels of PU.1 in precursor cells leads to leukemia in 

mice and humans and also predict poor prognosis 201–204. Additional data from our lab 

suggest that PU.1 low mice (PU.1ure/ure) develop after three months acute myeloid leukemia 

(AML) with aberrant expression of miR-155 and Myb 205.  

Hematopoietic transcription factor PU.1 regulates differentiation of both lymphoid 

and myeloid cell lineages. The highest levels of PU.1 in B-cell line are expressed in germinal 

center B-cells and with maturation PU.1 expression decreases. Reduced levels of PU.1 in 

leukemia are mediated by aberrant expression of miR-155. 
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 1.4 Characterization of E-box protein MYB and its role in B-cells and 
leukemia 
1.4.1 Characterization of E-box protein MYB 

 
MYB gene is a cellular homolog of viral v-MYB (v-myeloblastosis viral oncogene). It is 

a founding member of E-box (enhancer box) family transcription factors. MYB is a part of 

genome of two avian myeloblastosis viruses: avian myeloblastosis virus (AMV) and E26 virus 

206. These viruses induce acute avian leukemia 206. The E-box family includes also MYBL1 

(also called A-MYB), MYBL2 (also called B-MYB), MYC, N-MYC and the viral v-MYB genes. 

Each member plays different role and is expressed by different tissues and cells 207. The MYB 

gene transcribes from chromosomal locus 6q22-23. Schematic map of MYB gene structure 

shows figure 1.7. MYB contains DNA binding domain (DBD), transactivation domain (TAD) 

and terminal negatively regulated domain (NRD) 208. Product, MYB protein (75kDa) functions 

as DNA binding protein through its binding sequence AACG/TG 209. The MYB gene contains 

15 exons, of which some undergo alternative splicing 210 (Figure 1.7). The alternative splicing 

forms (9A, 10A) showed higher transcriptional and transforming potential 210.  

            

Figure 1.7: Structure of MYB gene (NC_000006.11). The MYB gene contains three domains: DNA 
binding domain (DBD) (blue box), central transactivation domain (TAD) (orange box) and terminal 
negatively regulated domain (NRD) (green box). Human MYB spans 37 858bb long mRNA transcript 
that contains 15 exons (black lines) (adapted and modified from Pattabiram DR and Gonda TJ, 2013 ; 
O`Rourke JP et al., 2008 208,210 
http://www.ebi.ac.uk/s4/summary/molecular?term=MYB&classification=9606&tid=synENSMUSG00
000019982). 
 

The key biological function of MYB transcription factor (TF) lies in the maintaining of 

proliferative potential in progenitor cells. Downregulation of MYB leads to cell 

differentiation. MYB participates on G2/M cell cycle transition in hematopoietic cells by 
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direct stimulation of cyclin B1 expression 211. Moreover, the MYB expression is associated 

with leukemogenesis. Expression of MYB can be activated by itself and by structural 

alterations and/or genomic rearrangements 212. 

 
1.4.2 Role of MYB in normal and leukemic B-cells 
 
 MYB is required for self-renewal in B-cells, T-cells and common lymphoid, myeloid 

progenitors. The expression of MYB is highest in the long term HSC and its production 

reduces with maturation of B-cells 213. During the early B-cell development, presence of 

MYB i s crucial for transition from pro-B to pre-B-cells 214. Loss of MYB causes a partial block 

during B-cell development at the pro-B to pre-B cell transition that result in greatly 

decreased output of new B-cells from the bone marrow. Furthermore, absence of Myb 

prevents normal B-cell homeostasis due to decreased splenic B-cell survival 215. MYB is 

required for survival and accumulation of CD19+ pro B-cells in the peripheral blood 214. 

Impaired B-cell lymphopoiesis due to loss or mutated MYB is related with defect in IL-7 

signaling 213. The cytokine IL-7 regulates pro-B and pre-B cell transition 216.  

 Role of MYB in B-cell malignancies is much less known and studied while MYB was 

firstly found as inducer of myeloid leukemia in chicken 206. There are some studies where 

aberrant expression of MYB resulted in acute lymphoid leukemia in humans 217 and 

childhood lymphoid leukemia 218,219. It was described that elevated levels of MYB in subset 

of B-CLL cells (40%) enhanced the expression of miR-155 144. The Sarvaiaya et al., studied 

knockdown of MYB in the pre-B-ALL leukemic cells. They found that inhibition of MYB 

decreases the expression of BCL2 – the anti-apoptotic protein and a target of MYB. It 

resulted in increased apoptosis of pre-B-ALL leukemic cells and sensitivity to chemotherapy 

219.  

 

1.4.3 Transcription factor MYB and its role in leukemia 
 
 MYB is a driver of leukemogenesis that underscores its identification as inducer of 

avian myeloid leukemia 206.  

In the human T-cell acute lymphoid leukemia (T-ALL) Clappier et al., identified 

genomic alterations as reciprocal translocation t(6;7)(q23;q34) and duplication of MYB loci. 

In these cases, the expression of MYB was much higher as in cases without genomic 
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alterations 220. Similar results shown Lahortiga et al., that the aberrant MYB expression in T-

ALL associates with duplication of MYB. The knockdown of MYB expression initiates 

differentiation of T-cells 221.  

O`Rourke and Ness described that minor change in the MYB structure by alternative 

splicing gives MYB stronger transforming potential. There is a difference in the expression of 

alternative transcripts in different hematopoietic cells. Truncated variant of MYB (exon 9A) 

in human pediatric B-cell ALL, T-ALL and AML samples displayed higher expression and 

higher oncogenic activity. Thus MYB and its alternative splicing forms strongly contribute to 

the leukemogenesis 210.  

The increased expression of MYB mRNA 222 mediated by low expression of miR-150 

was described in chronic myeloid leukemia (CML) 223. In subset of primary B-CLL cells we 

detected elevated expression of MYB mRNA 144. 

 The aberrant expression of MYB in T-ALL, AML is associated with translocation or 

duplication of MYB gene. 

 

1.4.4 Mouse models of Myb 
 

The null Myb mouse model underscores importance of MYB gene in hematopoiesis. 

Homozygous mutant Myb mice at 15 day of gestation showed abnormal phenotype 

characterized by 10-fold decreased hematocrit; low number of multipotent hematopoietic 

progenitor cells and as well as myeloid and non-nucleated erythrocytes. These mice die at 

day 15 due to anemia 224.  

The Myb null mouse model confirmed importance of MYB in the B-cell development. 

These mice displayed 65% decrease of pre-B-cells, 50% decrease of new pre-B-cells in the 

bone marrow and reduced production of IgM. Loss of Myb causes a partial block during the 

B-cell development at the pro-B to the pre-B cell transition. Myb is mainly important for 

maintenance of pre-B-cells and signals through the pre-BCR and IL-7R. The absence of Myb 

negatively affects also the number of splenic B and follicular B-cells due to decreased bone 

marrow cells output 215. Moreover, Myb deficiency increase the number of apoptotic B-cells, 

probably mediated by decreased level of Bcl2 – a target of Myb 215. 

Greig et al., described another mouse model with Myb deficiency. The bone marrow 

analysis by flow cytometry showed reduced amount of immature and mature CD19+ B-cells. 

In absence of Myb, mice displayed B lymphopenia with reduced response to IL-7. Authors 
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demonstrated that conditional deletion of Myb in B-cell progenitors completely abolished B-

cell development, thus Myb is required for normal development of common lymphoid 

progenitor cells (CLPs) as well as for committed B-cell progenitors. Data from microarrays 

showed that Myb is required for induction of expression several lymphoid genes as Sfpi1, 

Ikzf1, Tcfe2a within multipotent progenitor cells 225. 

Waldron et al., tested the role of Myb in the pathogenesis of p190BCR/ABL dependent 

B cell leukemia in Myb deficient transgenic mouse model. Interestingly, loss of one copy of 

Myb suppresses the leukemogenic potential of B-cells isolated from p190BCR/ABL transgenic 

mice. Similarly, knockdown of Myb in p190BCR/ABL expressing human B-cell leukemia lines (Z-

181, SUP-B15) resulted in reduced proliferation and colony formation B-cells 226. 

These data on mouse models collectively show on the critical role of Myb in the 

regulation of multiple stages of B-cell development, especially in the pro-B to pre-B cell 

transition. 

 
1.4.5 miR-150 a target of MYB gene in leukemia  

 

Among the top 10 predicted targets of miR-150 belongs MYB gene that is critical for 

B-cell development as described above (Targetscan72). MiR-150 is highly B-cell specific 

microRNA 227. Xiao et al., validated this computational prediction by luciferase reporter 

assay in HEK293 cell line where miR-150 targeted MYB. Authors identified three miR-150 

putative binding sites at 3`UTR of MYB mRNA. In addition, the enhanced MYB expression in 

miR-150 deficient B-cells confirmed that miR-150 directly regulates MYB at protein level. 

This direct relationship was further documented by transfection of progenitor B-cells with 

mimic-miR-150 that resulted in dose dependent decrease of MYB levels and led to partial 

block of B cell development with reduced B-cells 228. 

Interestingly, in the Bürkitt lymphoma B-cell lines (Daudi, Raji, BJAB, Ramos) the 

expression of miR-150 is very low. The restoration of miR-150 expression by its stable 

transfection leads to decreased level of MYB and to terminal differentiation of B-cells. 

Moreover, elevated level of miR-150 resulted in reduced proliferation of cells that suggest 

to tumor suppressor role of miR-150 229. 

MYB represents an evolutionary conserved target of miR-150 that is confirmed by 

highly evolutionary conserved seed region of miR-150 at MYB 230.  



44 

 

 

2. INTRODUCTION TO THE THESIS 
 

To the mostly used prognostic markers of B-CLL belong expression of ZAP-70, CD38, 

IgVH status and detection of chromosomal abnormalities by FISH 39. These markers help 

to evaluate the status of B-CLL and to predict disease progression 39. Used prognostic 

markers are not sufficient in answering following questions: 1) When to start with the 

therapy? 2) Will the patient respond to the therapy well?  

Since the development of leukemia is a multistep process where any step can be 

deregulated, more detailed knowledge of regulators of the leukemic process in B-CLL is 

needed. Transcription factors as PU.1 and MYB are involved in regulation of the normal and 

pathologic hematopoiesis 212,231. While the transcription factors may regulate each other a 

tight relationship between transcription factors and miRNAs was recently identified 232. The 

role of miRNAs during the leukemic process and moreover the potential role of miRNAs in 

prognosis and therapy is at present very intensively studied. Fulci et al., described that B-CLL 

cells express high levels of miR-155 and miR-150 17. Moreover, elevated levels of miR-155 

inhibit the expression of PU.1 in B-CLL in comparison to the normal healthy B-cells 17,157.  

Recent data show the potential usage of miR-155 as prognostic marker in the breast 

cancer 233. High expression of miR-155 correlates with higher tumor grade and advanced 

disease stage 233. Application of the antisense miR-155 inhibits cell growth, enhances 

apoptosis and increases sensitivity of the breast cancer cells to the therapy 233. Based on this 

information, the measurement of miR-155 levels during disease progression could be 

similarly used as a marker of B-CLL progression as well. 

During the B-cell development, MYB is required for transition from pro-B to pre-B-

cells and for survival of accumulated pro-B-cells 214. The expression of MYB in the 

hematopoietic cells differs: the highest levels of MYB are in immature, actively dividing cells 

and the lowest ones in the mature, differentiated cells 212,234. It was described that MYB is 

involved in acute myeloid 235 and chronic myeloid leukemia 223, mixed lineage leukemia 236 

and in acute lymphoblastic leukemia 219 but not described in B-CLL yet. MYB gene was 

described among the top 10 target genes of miR-150 228, so we also considered existence of 

relationship between expression of miR-150, MYB and B-CLL progression.  
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2.1 Hypothesis 
 
 

The expression level of oncogenic miR-155 is elevated in hematologic malignancies 

including B-CLL. The direct target of miR-155 is a key hematopoietic transcription factor 

PU.1. The miR-155 inhibits PU.1 as a negative post-transcriptional regulator and this leads to 

progressive blockade of differentiation and leukemogenesis. We hypothesize that MYB 

proto-oncogene is highly expressed in B-CLL, and that MYB directly promotes the elevation 

of miR-155 expression level in B-CLL. This might be caused by direct binding of MYB at the 

promoter region of MIR155HG and by this way stimulates the transcription of MIR155HG in 

B-CLL. The detection of high MYB expression levels may be used as the reliable prognostic 

marker of B-CLL together with miR-155 or miR-150. Moreover, the rescue of PU.1 

expression may turn off the leukemic process and may be used as a therapeutic tool in the 

future. 
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2.2 Aims of the Thesis 

1) To determine whether levels of oncogenic miR-155, miR-150 and transcription factors 

MYB, PU.1 are related to oncogenesis of B-CLL and to delineate their relationship with the B-

CLL disease-prognosis, presence of progression characteristics including ZAP-70, CD38, IgVH 

and Rai stage and to the therapy response.   

 

2) To determine if proto-oncogene MYB binds to the promoter region of MIR155HG and if it 

stimulates transcription of the MIR155HG in B-CLL. To functionally validate direct 

relationship between MYB, miR-155 and PU.1 in B-CLL cells from patients and in Raji cell line 

by in vitro functional assays.  

 

3) To determine the miR-155 and MYB target genes deregulation in B-CLL in comparison to 

the normal B-cells using the global microarray approach. 

2.3 Specific aims of the Thesis 

1) To determine whether levels of oncogenic miR-155, miR-150 and transcription factors 

MYB, PU.1 are related to oncogenesis of B-CLL and to delineate their relationship with the 

B-CLL disease-prognosis, presence of progression characteristics including ZAP-70, CD38, 

IgVH and Rai stage and to the therapy response.   

 

The success of therapy of B-CLL patients is in the proper timing of the therapy. Our aim was 

to determine the levels of miR-155 in B-CLL patients and test whether there is any 

correlation between elevated levels of miR-155 and the disease progression (Rai stage, ZAP-

70, CD38, IgVH). To answer the question if the expression of miR-155 could be used as 

reliable prognostic marker, we measured the levels of miR-155 in B-CLL patients in different 

stages of the disease. MiRNAs negatively regulate transcription of targeted mRNAs. The 

direct target of miR-155 is a key hematopoietic transcription factor PU.1. Reduced levels of 

PU.1 were reported to cause leukemia and lymphoma. Here we determined the mRNA and 

protein levels of PU.1 in B-CLL patient B-cell samples. We also asked if the expression of 

MYB could be used together with miR-155 as reliable prognostic marker of B-CLL. We 

measured the mRNA and protein level of MYB in B-CLL patient samples during different 
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disease stages. Since the miR-150 is a potent inhibitor of MYB, we measured expression 

level of miR-150 in B-CLL cells in relation with Rai stage and prognostic markers.  

 

2) To determine if proto-oncogene MYB binds to the promoter region of MIR155HG and if 

it stimulates transcription of the MIR155HG in B-CLL. To functionally validate direct 

relationship between MYB, miR-155 and PU.1 in B-CLL cells from patients and in Raji cell 

line by in vitro functional assays. 

 

Transcription factors play crucial role in the development of leukemia. Here we focused on 

the role of a member of the E-box family - MYB. Firstly, we asked whether the mRNA of MYB 

is increased in B-CLL. Next, we set to verify MYB binding at the MIR155HG promoter region 

and asked if MYB influences transcription of MIR155HG in B-CLL. We performed chromatin 

immunoprecipitation assay of primary B-CLL cells to test if MYB binds at the promoter 

region of MIR155HG. We transfected constructs with mutated or unmutated MYB binding 

site into HeLa cells and measured the luciferase activity. We asked whether the studied 

molecules: MYB, miR-155 and PU.1 are in close and mutual relationship within B-CLL. We 

aimed to verify the relationship between MYB, miR-155 and PU.1 by in vitro functional 

assays using the primary B-CLL cells and lymphoblastic cell line Raji. Here we manipulated 

the levels of MYB or miR-155 and determined the outcome as well as rescued the levels of 

PU.1.  

 

3) To determine the miR-155 and MYB target genes deregulation in B-CLL in comparison to 

the normal B-cells using the global microarray approach. 

 

We performed the microarray analysis on B-CLL patient samples and normal healthy 

controls to determine if the target genes of miR-155 and MYB are deregulated. Further, by 

gene set enrichment analysis and by additional tools for prediction of target genes we asked 

if miR-155 and MYB targeted genes are differentially expressed within B-CLL microarray 

data. 
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3. MATERIAL AND METHODS 

3.1 Material 

3.1.1 Biological material 
 
3.1.1.1 Primary B-CLL patient samples and normal healthy controls   
 

The B-CLL patient samples were collected in the period from 2007 until 2012. The 

patient cohort included overall 239 peripheral blood samples of 210 B-CLL patients from 

two medical clinics in the Czech Republic: 1) General Faculty Hospital in Prague (under 

leadership of prof. MUDr. Marek Trněný and in close cooperation with MUDr. Tomáš 

Stopka, Ph.D and MUDr. Petra Obrtlíková Ph.D) and 2) Medical Faculty and University 

Hospital in Brno (by kind collaboration with prof. MUDr. Jiří Mayer, CSc. prof. RNDr. Šárka 

Pospíšilová, Ph.D and MUDr. Marek Mráz, Ph.D). Total number of all patient samples 

obtained from General Faculty Hospital in Prague was 210 where 23 patient samples were 

provided two times and three patient samples were provided three times during the study. 

71 samples of these 210 patient samples were separated as peripheral blood mononuclear 

cells (PBMCs) by Ficoll-Paque and 157 samples CD19+ B-CLL cells were separated by Rosette 

separation kit (Table 3.1). The plasma was collected from all patients in parallel with 

peripheral blood, but for this Thesis only ten plasma samples were used (Table 3.1). All 

patient samples (N=41) from Medical Faculty and University Hospital in Brno were 

separated for CD19+ B-cells by Rosette separation kit (Table 3.1). The patient cohort 

consists of 142 men and 68 women (Table 3.2). The patient`s age ranged from 36 to 95 

years with median age 65. All patients signed a written consent in accordance with the 

ethical guidelines.  

Diagnostic and prognostic evaluation of patients was done in both medical institutes 

based on WHO guidelines (http://ncicll.com/ and 28). The B-CLL diagnosed in 196 cases out 

of the 210 patients. B-CLL transformation into Richter’s syndrome observed in 14 cases 

(Table 3.2). Based on the prognostic and cytogenetic data, our patient cohort represents a 

typical B-CLL population (Table 3.2). The distribution (Nr; %) of patients and patient samples 

based on the mutation status of IgVH, expression of ZAP-70, CD38 and cytogenetic 

aberrations are shown in table 3.2. Distribution of patients on Rai staging system as follows: 

Rai stage 0 (N=42; 20%), Rai stage I (N=47; 23%), Rai stage II (N=46; 22%), Rai stage III (N=19; 

http://ncicll.com/
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9%) and Rai stage IV (N=54; 26%) (Table 3.2). 49% of patients were treated during the study 

(Table 3.2). For detailed clinical and expression information of patient samples please see 

section 10. Supplement; Supplemental table: 10.1 and 10.2. 

The B-CLL patient samples were used for following experimental methods: isolation 

of total RNA (including miRNA) (N=239); measurement of protein level by western blot 

(N=5); chromatin immunoprecipitation (ChIP) (N=15); microarrays (N=12); transient 

transfections (N=2); transduction (N=1); DNA sequencing (N=2). 

The cohort of normal healthy donors included overall 22 peripheral blood samples 

collected in the period from 2009 until 2010 on the Institute of Hematology and Blood 

Transfusion in Prague. PBMCs were isolated from 10 samples and CD19+ B-cells were 

separated from 12 samples. Control cohort consisted of 20 males and 2 women; age of 

donors ranged from 20 to 43 years with median age 31. From all donors written consents in 

accordance with the ethical guidelines were obtained. The detailed information about the 

control samples are in section 10. Supplement; Supplemental table 10.3. 

The control patient samples were used for following experimental methods: isolation 

of total RNA (including miRNA) (N=22); measurement of protein level by western blot (N=1); 

chromatin immunoprecipitation (ChIP) (N=8); microarrays (N=5); transient transfections 

(N=5); DNA sequencing (N=1). 

 

Table 3.1: Distribution of patient samples and the sample origin. 

Medical 

Institution 

PBMCs CD19+ Plasma 

Prague 

(N=198) 

71 157* 10 

Brno 

(N=41) 

0 41 0 

*From General Faculty Hospital in Prague were donated in total 198 B-CLL patient samples of the 
peripheral blood including 10 plasma samples. From 30 patient samples were separated PBMCs and 
also CD19+ B-CLL cells. From Medical Faculty and University Hospital in Brno were donated in total 
41 B-CLL patient samples separated for CD19+ B-cells. 
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           Table 3.2: Clinical and biological characteristics of the B-CLL patient cohort. 

Parameter CLL patients (N=210) No (%) CLL samples (N=239)* No (%) 
Epidemiological 
data: 

  

Age at sample 
providing (median) 

36-95 (65) 36-95 (65) 

Gender 
(Female/Male) 

68 (32%)   /   142 (68%) 76 (32%)    /   163 (68%) 

Prognostic 
markers: 

  

IgVH status mutated unmutated mutated unmutated 

48 (26%) 134 (74%) 60 (30%) 141 (70%) 

ZAP-70  positive negative positive negative 

118 (61%) 76 (39%) 135 (61%) 85 (39%) 

CD38 positive negative positive negative 

100 (48%) 108 (52%) 113 (48%) 123 (52%) 

Disease 
progression and 
transformation: 

  

Rai stage 0 I II III IV 0 I II III IV 

42  
(20%) 

47  
(23%) 

46 
(22%) 

19 
(9%) 

54 
(26%) 

44 
(19%) 

53 
(22%) 

55 
(23%) 

23  
(10%) 

60 
(26%) 

Richter’s syndrome 
(DLBCL/MCL) 

DLBCL MCL DLBCL MCL 

11 (5%) 3 (1%) 14 (6%) 3 (1%) 

Cytogenetics:   

Low risk 
(del13q14) 

69 (33%) 78 (33%) 

Intermediate risk 
(trisomy of 12 
chromosome, 
normal karyotype) 

51 (25%) 63 (27%) 

High risk 
(del11q22-
23/del17p13) 

14 (7%)    /   9 (4%) 20 (9%)    /   9 (4%) 

Therapy:   

Therapy prior 
study 

84 (40%) 92 (39%) 

Therapy during 
study 

103 (49%) 124 (52%) 

Overall survival 
(OS) from dg to 
last follow up: 

died / alive died / alive 

OS <5 years  26 (54%)   / 113 (70%) 27 (54%)   / 138 (73%) 

OS 5-10 years  15 (31%)   / 34 (21%) 15 (30%)    / 35 (19%) 

OS >10 years  7 (15%)   / 15 (9%) 8 (16%)   / 16 (9%) 

*23 patients provided two samples and 3 patients provided three samples during the study (2007-
2012). 
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3.1.1.2 Cell lines 
 
The cell lines were obtained from DSMZ (Deutsche Sammlung von Mikroorganismen und 

Zellkulturen GmbH). Cultivation conditions and media were according DSMZ guidelines.  

 

Raji (#ACC 319) cell line was established from the left maxilla of a 12-year-old African boy 

with Burkitt`s lymphoma in 1963. Raji cell line was classified as risk category 1 according to 

the German Central Commission for Biological Safety (ZKBS) 237. 

Morphologically, the cells are round, growing in suspension, partly as single cells or in 

clusters. The cells were cultured in IMDM medium supplemented with 10% FBS, 1% of P/S 

(Penicillin/Streptomycin) in density of about 0.5x106 cells/mL at 37°C with 5% CO2. Doubling 

time of Raji cells is 24-36 hours. Saturated Raji cell culture was splited at ratio 1:4 twice a 

week. Raji cells were frozen in medium containing 70% of RPMI-1640 medium, 20% FBS and 

10% DMSO at aliquots of approximately 3x106 cells per cryotube. 

 

HeLa (#ACC 57) cell line was established from the epithelioid cervix carcinoma of a 31-year-

old Afro-American woman (Henrietta Lacks) in 1951. Later the diagnosis changed into 

adenocarcinoma 238. 

Morphologically, the cells are epithelial-like cells growing in monolayer. HeLa cells were 

cultured in RPM1-1640 medium supplemented with 10% FBS, 1% of P/S in density of about 

1-2x106 cells/mL at 37°C with 5% CO2. Doubling time of HeLa cells was around 48 hours. 

Confluent HeLa cell culture was split 1:4 to 1:6 every 3-5 days using trypsin. HeLa cells were 

frozen in medium containing 70% of RPMI-1640 medium, 20% FBS and 10% DMSO at 

aliquots of approximately 1x106 cells per cryotube. 

 

NB4 (#ACC 207) cell line was established from the bone marrow of a 23-year-old woman 

with acute promyelocytic leukemia (APL = AML FAB M3) in second relapse in 1989. Cells 

carry the t(15;17) PML-RARA fusion gene 239. 

Morphologically, the cells are round, growing in suspension. NB4 cells were cultured in 

RPM1-1640 medium supplemented with 10% FBS, 1% of P/S in density of about 

1x106 cells/mL at 37°C with 5% CO2. Doubling time of NB4 cells was around 35-45 hours. 

Saturated NB4 cell culture was splited at ratio 1:2, 1:3 once a week. NB4 cells were frozen in 

https://www.google.cz/search?hl=en&biw=1920&bih=979&q=epithelioid+cervix+carcinoma&spell=1&sa=X&ei=TOmRUdGkDoHXtQaqo4DYCA&sqi=2&ved=0CCYQvwUoAA
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medium containing 70% of RPMI-1640 medium, 20% FBS and 10% DMSO at aliquots of 

approximately 7x106 cells per cryotube. 

 

3.1.2 Chemicals and buffers 

3.1.2.1 Chemicals 

Name                                                                          Cat #                                 Company 

Acetic acid 99% p.a.                                                  457311                        Penta 

Albumin, from bovine serum (BSA)       A2153                              Sigma-Aldrich 

Annexin V FITC                                                           556419                            BD Biosciences 

Annexin V 10x diluted Binding Buffer                   20090907ANXVBB          BD Biosciences 

anti-miR miRNA inhibitor negative control#1      AM17010                         Ambion 

Bradford Reagent       E530                                 Amresco  

Briliant Blau R 250       3862.2                             Carl Roth GmbH  

CL-XPosure Film (Clear Blue X-ray Film)        34090                        Thermo Scientific 

Deoxycholic acid (sodium salt)                               0613                        Amresco  

Dimethylsulfoxid (DMSO)                                        D06502                            p_lab 

DL-Dithiotherotol (DTT)                                            0281                                Amresco  

DMRIE-c                                                                      10459-014                      Invitrogen 

ECL Plus Western Blotting Detection System       RPN2132                        GE Healthcare 

EDTA       27270                               Sigma-Aldrich  

EGTA                                                                            0732                         Amresco  

Ethanol 99% p.a.                                                       028621                         Penta                      

Fetal Bovine Serum (FBS)                                        10270                                 Gibco, Invitrogen 

Ficoll-Paque PREMIUM gradient                            17-5442-03                       GE Healthcare 

Formaldehyde 37% solution                                   252549                               Sigma-Aldrich 

Glycine                                                                        0167                            Amresco  

Glycerol                                                                      0854                                    Amresco  

Glycogen RNA grade (20mg/mL)                           R0551                                  Fermentas  

Chloroform p.a.                                                        256921                           Penta 

HEPES                                                                         0485                                     Amresco  

hsa-miR-155 anti-miRNA inhibitor                        AM12601                            Ambion 
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hsa-miR-155 mimic                                                 AM17100                             Ambion 

jetPEI                                                                         101-10-101-10N                 Baria 

iBlot Gel Transfer Stacks, PVDF, Mini                  IB4010-02                             LifeTechnologies 

Igepal CA-630                                                           I8896                                    Sigma-Aldrich  

IMDM medium                                                        BE12-722F                           Lonza 

Isopropylalkohol p.a.                                              593001                          Penta   

Linear Acrylamide (5mg/ml)                                  AM9520                              Invitrogen  

MEM non-essential amino acids (100x)               M714                                  Sigma-Aldrich 

Methanol HPLC                                                         21230-12500             Penta  

negative control#1 siRNA                                       4457289                              Ambion 

Nuclease eliminator                                                 E891                              Amresco  

NuPAGE 10% Bis-Tris Gel 1.5mm x 10 well       NP0335BOX              LifeTechnologies 

NuPAGE LDS Sample Buffer (4x)                            NP0007                                LifeTechnologies 

NuPAGE MOPS SDS Running Buffer (20x)            NP0001                                Life Technologies 

OPTI-MEM medium                                                 31985                                    Gibco, Invitrogen 

Penicillin/Streptomycin (P/S) (100x)                    15070063                              Gibco, Invitrogen 

Phosphate Buffered Saline (PBS) (10x)                 L1835                                    Biochrom AG  

Polybrane (8mg/ml)                                                 H9268                                   Sigma-Aldrich 

Ponceau S                                                                  P3504                             Sigma-Aldrich 

Precision Protein Dual Color Standards               161-0374                           BIO-RAD 

Propidium iodid (PI)                                                 P4170                             Sigma-Aldric  

Protease Inhibitor Cocktail                                     P8340                             Sigma-Aldrich 

Protein-A-agarose                                                    P7786                             Sigma-Aldrich 

Protein-G-Agarose                                                   P4691                             Sigma-Aldrich 

Ribonuclease A                                                         R4642                             Sigma-Aldric  

RPMI-1640 medium                                                R7388                                      Sigma-Aldrich 

siRNA MYB                                                                sc-29855                                 Santa Cruz 

Sodium dodecyl sulfate                                          M107                             Amresco  

Sodium chloride                                                       0241                             Amresco  

Steady-Glo Luciferase Assay System                    E1910                                    Eastport (Promega) 

SYBRgreen Master Mix                                          4368702                                               LifeTechnologies 

TaqMan Universal master Mix II                          4427788                             LifeTechnologies 
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Tris-Hcl Ultrapure grade                                        0234                             Amresco 

Triton X-100                                                             0694                             Amresco  

TRIzol reagent                                                         15596-018                               Invitrogen 

Trypsin (0.25%)                                                       15050                                       Gibco, Invitrogen 

Trypan blue solution (0.4%)                                  T8154-100mL                         Sigma-Aldrich 

Tween 20                                                                  0777                              Amresco  

Universal Probe Library (UPL) set                        4683633001                            ROCHE 

 

3.1.2.2 Buffers and solutions 

Buffers and solutions                             Content (final concentrations) 

RIPA lysis buffer (WB) 50mM Tris-Hcl; pH 8,0; 137 mM NaCl; 1% Igepal 

CA-630; 0.5% Deoxycholic acid sodium salt; 

0.1% SDS; Protease Inhibitor Cocktail (dilution 

1:1000) 

 

11% Formaldehyde solution (ChIP)  11% formaldehyd; 0.1M NaCl; EDTA(pH 8.0); 

1mM EDTA; 0,5mM EGTA;  50mM HEPES (pH 

8.0) 

 

Lysis buffer (ChIP) 50mM HEPES-KOH (pH 7.5); 140mM NaCl; 1mM 

EDTA; 10% glycerol; 0.5% Igepal CA-630; 0.25% 

Triton X-100 

 

Lysis buffer II (ChIP) 1mM EDTA (pH 8.0); 0.5mM EGTA (pH 8.0); 

10mM Tris-Hcl (pH 8.0); 200mM NaCl 

 

Lysis buffer III (ChIP) 1mM EDTA (pH 8.0); 0.5mM EGTA (pH 8.0); 10 

mM Tris-Hcl (pH 8.0) 

 

Paro´s IP buffer (ChIP) 0.02% SDS; 2% Triton X-100; 4mM EDTA (pH 

8.0); 40mM Tris-Hcl (pH 8.0); 300mM NaCl 
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Paro´s washing buffer I (ChIP) 0.1% SDS; 1% Triton X-100; 2mM EDTA (pH 8.0); 

20mM Tris-Hcl (pH 8.0); 50mM NaCl 

 

Paro´s washing buffer II (ChIP) 0.1% SDS; 1% Triton X-100; 1% EDTA (pH 8.0); 

20mM Tris-Hcl (pH 8.0); 500mM NaCl 

 

Buffer for Proteinase K (ChIP) 0.5% SDS; 25mM EDTA (pH 8.0); 10mM Tris-HCl 

(pH 8.0); 100mM NaCl 

 

MACS buffer (MACS separation) 0.5% BSA; 2mM EDTA in 1xPBS with Ca2+, Mg2+ 

(pH 7.2)  

 
NH4Cl solution (Erythrocytes lysis)                   8.34g NH4Cl + 1g NaCl + 0.037g EDTA filled up                                                 
 

1L of ddH2O and sterilized. Stored at 4°C for 
one month. 

 

 
3.1.2.3 Commercially kits 

Name                                                                          Cat #                                             Company 

Anti-FITC MicroBeads                                 130-048-701                 MACS, Miltenyi Biotech 

GeneChip HG-U133 Plus 2.0 Array                                          900467                          Affymetrix 

Human B cell line nucleofection kit                     VPA-1001                       Lonza 

miRNAeasy kit                                                         217004                           Qiagen  

hsa-miR-150 (ID:0000473)                                    4427975                         LifeTechnologies 

hsa-miR-155 (ID:0002623)                                     4427975                         LifeTechnologies 

hsa-pri-miR-155 (ID:Hs03303349_pri)                 4427975                         LifeTechnologies 

RNA Nano chips                                                       5067-1511                      Agilent Technologies 

RNU44 (ID: 0001094)                                              4427975                        LifeTechnologies 

RosetteSep B cell enrichment kit                          15064                             Stem Cell Technologies 

TaqMan microRNA Reverse Transcription Kit    4366596                         LifeTechnologies 

 3’-IVT Express Kit                                                    901228                           Affymetrix 
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3.1.2.4 Antibodies 
Name                                                               Cat #                   Method                 Company 
Anti-Actin HRP-conjugated (clone I-19)   sc-1616                     WB                     Santa Cruz 

Anti-CD19 FITC (clone HIB19)                      302206                    FACS                  Biolegend (Luvil) 

Anti-H3K4methyl                                     ab1012                     ChIP         Abcam 

Anti-H3K9acetyl                        07-353                      ChIP                   Merck Millipore 

Anti-v-Myb/MYB (clon EP769Y)                ab45150                 ChIP, WB               Abcam 

Anti-PU.1 (clone T-21)                               sc-352                        WB                       Santa Cruz 

Normal Rabbit IgG                                   NI01                         ChIP                     Merck Millipore  

 
3.1.2.5 Plasmids 
Name                                   Cat#                                                Company 
pcDNA                     kindly provided by M. Dvořák, Institute of Molecular Genetics in Prague  

pmaxGFP                as part of nukleofection kit                          Lonza 

pGL4.17                               E6721                                          EastPort Promega 

PU.1-IRES-GFP         expressing lentivirus kindly provided by Prof. A.I. Skoultchi, New York 

MYB (wt)                  kindly provided by M. Dvořák, Institute of Molecular Genetics in Prague 

(Generic vector maps of plasmids are in the section 10. Supplement; Supplemental material: 

10.1). 

 
3.1.3 Instruments 
Name                                                                                                        Company 
Amaxa nucleofector Device II                                                               Lonza 

BD FACS Aria IIu cell sorter                                                                   BD Biosciences 

BD FACS Canto II fluorescence analyser              BD Biosciences 

Bioanalyzer 2100                             Agilent Technologies 

Cellometer Auto T4                                                                                 Bioscience 

Digital sonifier cell disruptor M500                      Branson 

Genetic Analyzer 3500                 Life Technologies 

iBlot Gel Transfer System                 Life Technologies 

Mastercycler Gradient                 Eppendorf 

Sirius Luminometer                                                                                  Berthold 

Spectrophotometer ND-1000                           NanoDrop Technologies 

7900HT Fast Real-time PCR System     Life Technologies 
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3.1.4 Programs 

Name                                                                Method                                   Company 
Chromas 2.33                     DNA sequencing  Technelysium Pty Ltd 

FACSDiva software v.6.3                           flow cytometry  BD Biosciences 

GeneSpring GX10 software                         microarrays                       Agilent Technologies 

GraphPad Prism (version 5) software         RT-qPCR                            GraphPad Software Inc. 

Scion Image software Beta 4.0.2                     WB                                 Scion Corporation 

ProbeFinder Version 2.45                              RT-qPCR                            ROCHE 

TIGR MeV4 4.0.01                                   microarrays               TM4 Microarray Software 

 
3.2 Methods 
 
3.2.1 Isolation of primary B-cells and plasma 
 
3.2.1.1 Isolation of peripheral blood mononuclear cells (PBMCs) by Ficoll – Paque 
 

The PBMCs were isolated from 71 peripheral blood samples (from General Faculty 

Hospital in Prague) from B-CLL pacients by Ficoll-Paque PREMIUM gradient.  

Briefly, anti-coagulated peripheral blood was diluted with sterile 1xPBS, carefully layered on 

the Ficoll-Paque PREMIUM solution and centrifuged. Differential migration of cells during 

the centrifugation results in the formation of layers that contain different cell types (Figure 

3.1). The PBMCs are found in the interlayer after centrifugation- seen as “foggy ring”, 

recovered from this interlayer by short washing step (100g, 6min, 4°C) with a 1xPBS that 

removes any platelets, rest of Ficoll-Paque PREMIUM and plasma. 

 

 

Figure 3.1: Scheme of separated fractions of blood cells by Ficoll-Paque PREMIUM. After 
centrifugation of peripheral blood on the Ficoll-Paque PREMIUM layer the PBMCs – B, T lymphocytes 
and ~1% of monocytes, platelets were found in the interlayer between the plasma and the Ficoll-
Paque PREMIUM. On the top of the erythrocytes pellet were granulocytes. 
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With the separated B-CLL/SLL patients PBMC cells was done one or more of the 

following experimental procedures: 1) cryopreservation: frozen in the freezing medium 

(90% FBS + 10% DMSO) for 24-48hrs and for the long storage in the liquid nitrogen; 2) 

transient transfections (N=2) or transduction experiments (N=1); 3) Isolation of 

mRNA/miRNA for expression profile (N=71) or 4) Microarray profiling (N=12). 

The primary PBMCs were cultured one week for maximum (for transient 

transfections and transduction) in vitro in IMDM medium supplemented with 20% FBS, 1% 

of MEM non-essential amino acids and 1% of P/S at 37°C in humidified atmosphere with 5% 

of CO2.  

 

3.2.1.2 Isolation of CD19+ B-cells by RosetteSep kit  
 

The CD19+ B-cells were isolated from 198 peripheral blood samples of B-CLL patients 

(157 patients samples were from General Faculty Hospital in Prague and 41 from Medical 

Faculty and University Hospital in Brno) and as well from 12 normal healthy controls from 

Institute of Hematology and Blood Transfusion in Prague (Table 3.1).  

The method of separation the CD19+ B-cells by commercially available Rosette Sep 

kit is based on the principle involves contacting a sample containing nucleated cells and red 

blood cells with an antibody composition which allows immunorosettes of the nucleates 

cells and the red blood cells to form. Briefly, immunorosettes form by crosslinking of B-cell 

enrichment antibody cocktail with the unwanted cells through multiple erythrocytes. 

Immunorosettes are targeted for removal with tetramer antibody complexes recognizing 

CD2, CD3, CD16, CD36, CD56, CD66b and glycophorin A on the erythrocytes. The unwanted 

cells are than pelleted with the free erythrocytes by centrifugation over a density medium 

Ficoll-Paque PREMIUM. Desired cells are not labeled with the antibody cocktail and are 

collected as a highly enriched population at the interlayer between the plasma and the 

Ficoll-Paque PREMIUM density medium (Figure 3.2). 

The purity of separation was confirmed by flow cytometry using anti CD19 FITC 

antibody. The purity exceeded 93%. The viability of separated cells measured by Trypan blue 

and Cellometer Auto T4 was more than 90%. 
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Figure 3.2: Scheme of RosetteSep procedure. During the first step the unwanted cells from whole 
blood bound to the erythrocytes by using special antibody cocktail. Than the suspension incubated 
for 20 minutes at room room temperature (RT). During the second step the suspension is loaded on 
the Ficoll-Paque layer and centrifugated for 20 minutes, RT. The unwanted cells pellet along with the 
erythrocytes. During the third step enriched CD19+ B-cells are collected. The scheme was adapted 
from the Stem Cell Technologies: http://www.stemcell.com/en/Products/All-Products/RosetteSep-
Human-B-Cell-Enrichment-Cocktail.aspx.  
 

3.2.1.3 Plasma separation 
 

The plasma of 10 B-CLL patient peripheral blood samples was obtained by 

centrifugation at 2000rpm for 10min at 4°C. The miRNAs from plasma samples were isolated 

by miRNA easy kit following the manufacturer’s instructions (see section miRNA isolation). 

Plasma samples were stored at -80°C. 

 

3.2.1.4 Lysis of erythrocytes by ammonium chloride (NH4Cl) 
 

The membranes of erythrocytes are effectively permeable to NH4Cl. The 

erythrocytes lysis occurs due to unbalanced osmotic pressure. The peripheral blood samples 

from the normal healthy donors (N=10) were lysed by ammonium chloride (15minutes; 

37°C) prior the magnetic separation of CD19+ B-cells. 

 

3.2.1.5 Magnetic separation of CD19+ B-cells by MACS magnetic beads 
 

 After erythrocytes lysis, the CD19+ B-cells were isolated by magnetic beads 

separation. In the first step, the cells were stained with FITC-labeled anti-CD19 antibody. In 

the second step, anti-FITC magnetic beads were bound to the CD19+ (FITC stained) cells. 

The third step was magnetic separation of CD19+ cells labeled with magnetic beads on the 

MACS columns in the magnetic field, where non-labeled cells goes through the column, and 

labeled cells stay inside the column. Labeled cells were than collected from column. 

http://www.stemcell.com/en/Products/All-Products/RosetteSep-Human-B-Cell-Enrichment-Cocktail.aspx
http://www.stemcell.com/en/Products/All-Products/RosetteSep-Human-B-Cell-Enrichment-Cocktail.aspx
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3.2.2 Flow cytometry analysis (FACS) 
 
3.2.2.1 Control measurements for CD19 purity after MACS separation 
 

The purity of magneticaly enriched CD19+ B-cells was confirmed by flow cytometry 

(FACS). The cell viability and apoptosis was measured by propidium iodide (PI) and AnnexinV 

staining. The purity of MACS isolated cell population exceeds 93% and cell viability exceeds 

90%. The separated CD19+ B-cells were further proceeded for RNA/miRNA isolation (N=10). 

 

3.2.2.2 Propidium iodide (PI) staining 
 

PI is a membrane non-permissible dye that is generally excluded from viable cells. PI 

will stain necrotic and late apoptotic cells with compromised membranes. In dead (or 

apoptotic) cells, PI binds to the double stranded DNA by intercalating between the base 

pairs. 1µL of PI was added per sample directly before FACS analysis.  

 

3.2.2.3 AnnexinV staining 
 

AnnexinV belongs to family of calcium-dependent phospholipid-binding proteins. 

AnnexinV marks mid to late stage apoptotic cells by labeling phosphatidyl serine (PS). Under 

normal physiologic conditions, PS is predominantly located in the inner site of the cell 

membrane. After initiation of apoptosis, PS is translocated on the outer surface of the cell 

membrane. This phenomen is used for the detection of apoptotic cells by fluorescently 

labeled antibodies to AnnexinV. 

Briefly, cells were harvested and washed with 1xPBS and binding buffer. Stained with 

FITC conjugated AnnexinV for 10-15 minutes at room temperature, in dark. After 

AnnexinV staining, cells were washed with binding buffer and analysed by flow cytometry 

within one hour. 
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3.2.3 Transient transfections and transduction 
 
3.2.3.1 Transfection of primary B-CLL cells by lipofection reagent DMRIE-c 
 

Primary PBMC cells isolated from 2 B-CLL patient samples were transfected with 

following molecules: 1) siRNAs MYB (pool of three target specific siRNAs) and negative 

control #1 siRNA; 2) hsa-miR-155 anti-miRNA Inhibitor and miRNA inhibitor negative control 

#1; 30) pmaxGFP plasmid (2µg). The pmaxGFP plasmid was used for optimization of 

transfections - to find the final and most efficient concentration of desired oligonucleotides.  

Transfection reagent DMRIE-c (1,2-dimyristyloxypropyl-3-dimethyl-hydroxy ethyl 

ammonium bromide and cholesterol) represents a liposomal component that forms 

complexes with nucleic acids (RNA, DNA). DMRIE-c is efficient for transfections of 

mammalian cells, particularly lymphoid suspension cells. 

The confluency of cells was around 80%. Cells were washed with the serum and 

antibiotics-free medium OPTI-MEM prior to transfection. The siRNA against MYB (30nM) or 

anti-miR-155 (40nM) as well as negative controls (added in the same final concentrations as 

the concentrations of specific siRNA MYB/anti-miR-155) were mixed with DMRIE-c and 

OPTI-MEM medium. Transfection suspension was added to the cell suspension and 

incubated in humidified atmosphere with 5% CO2 at 37°C for 5 hours. After 5hrs of 

incubation with transfection reagents the equal volume of cultivation IMDM medium was 

added to the cells. The transfection efficiency was controlled by fluorescence activity of 

pmaxGFP, efficacy of B-CLL cells was around 60%. Transfected cells were harvested after 48 

hrs (MYB siRNA) or 96 hrs (anti-miR-155). Total RNA was extracted and RT-qPCR was 

performed (see section RNA isolation and RT-qPCR).  

 

3.2.3.2 Transfection of HeLa cells by lipofection reagent JetPEI 
 

Into HeLa cells were transfected MYB (wt; mutated MYB binding sites) and control 

pcDNA plasmids by lipofection reagent JetPEI (linear polyethilenimine). The confluence of 

HeLa cells prior to transfection was around 60%. Transfection reaction contained plasmid 

DNA, jetPEI solution and NaCl solution. The transfection reagents were mixed and incubated 

for 25 minutes at room temperature to form the complexes. The formed complexes were 

added to the HeLa cells by slow pippeting. HeLa cells were incubated in the humidified 
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atmosphere with 5% CO2 at 37°C. After 48 hrs, the HeLa cells were harvested and lysates for 

luciferase assay and for western blot were prepared.  

 

 
3.2.3.3 Transfection of Raji cells by Amaxa nucleofector  
 

Raji cells were transfected with following molecules: 1) MYB siRNAs (pool of the 

three target specific siRNAs) and siRNA negative control#1; 2) mimic hsa-miR-155 and 

miRNA negative control#1; 3) hsa-miR-155 anti-miRNA Inhibitor and miRNA inhibitor 

negative control#1; 4) MYB and control pcDNA plasmids. The pmaxGFP plasmid was used for 

optimization of transfections - to find the final and most efficient concentration of desired 

oligonucleotides.  

The Raji cells were transfected by nucleofector Amaxa with Human B-cells 

nucleofection kit. 24 hrs prior to transfection the cell number was determined, cells were 

seeded in the ~70% of confluency in 6 well plates and cultured until transfection in IMDM 

medium with FBS, but without antibiotics. On the next day, the cultured Raji cells were 

centrifuged and washed once with 1xPBS. Two million of Raji's cells were mixed with the 

nucleofection solution and transfected with oligonucleotides of hsa-miR-155 (40nM and 

100nM final concentration), anti-miR-155 (40nM and 100nM final concentration/well), 

siRNA MYB (30nM and 100nM final concentration/well), MYB and control pcDNA plasmids 

(0.2µg and 2µg/well) and co-transfected with pmaxGFP plasmid (2µg/well) provided with 

the transfection kit. The program M-013 was used for transfection as recommended. After 

nucleofection the cells were immediately transferred into warmed up culture medium 

(37°C) and incubated in humidified atmosphere with 5% CO2 at 37°C. Transfected cells were 

harvested after 24 hrs for mimic hsa-miR-155 transfection and 48 hrs for transfection of 

siRNA MYB, anti-miR-155, plasmid MYB. The transfection efficiency was controlled by 

fluorescence microscopy by fluorescence activity of pmaxGFP. The transfection efficacy was 

~70%. The RNA was extracted and RT-qPCR was performed.  
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3.2.3.4 Transduction of primary B-CLL cells with lentivirus 
 

Primary PBMC cells from B-CLL patient sample (P40) were infected with either GFP 

expressing plasmid or PU.1-IRES-GFP expressing lentivirus. Infection of primary B-CLL cells 

was performed with MOI=3 [MOI=multiplicity of infection; means 

the ratio of infectious agents (e.g. virus) to infection targets (e.g. cell)]. After 48 hrs, the GFP 

positive infected cells were sorted out (Fluorescence activated cell sorting, BD FACS AriaIIu), 

and cultured for 24 hrs in the IMDM medium supplemented with 10% of FBS and 1% of 

MEM non-essential amino acids in humidified atmosphere with 5% CO2 at 37°C. The viability 

of infected cells was determined by PI and AnnexinV staining (see PI and AnnexinV staining).  

 
3.2.4 Luciferase reporter assay 
 

To test the putative MYB binding site at the promoter region of MIR155HG the 

mutated region in MYB binding site was subcloned into pGL4.17 plasmid. The mutated 

region originated from the region of MYB binding site (E-box1) localized at -397nt to – 335nt 

from TSS. It was deletion of 5nt CCACC in forward direction and deletion of 5nt GGTGG in 

reverse direction (Figure 3.3). The MYB “wt” and MYB “mutated” plasmids were transiently 

transfected into HeLa cells by transfection reagent jetPEI (see also section transfection). The 

HeLa cells were harvested 48hrs post transfection. Following the manufacturer`s instruction 

the luciferase assay was performed.  

The luciferase activity was measured using Dual Luciferase Assay on Sirius 

luminometer with the collection time 10 seconds. The values of luciferase activity were 

normalized to the protein content relative to the signal of transfected cells with the empty 

reporter vector pGL4.17. 

 
 
 
 
 
 
 
 
 
 

http://en.wikipedia.org/wiki/Ratio
http://en.wikipedia.org/wiki/Infection
http://en.wikipedia.org/wiki/Virus
http://en.wikipedia.org/wiki/Cell_(biology)
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Scheme of DNA sequence of MIR155HG with CpG islands and putative MYB binding sites 
 

 CpG                                                          -33 to 349bp (relative to TSS) 

 MYB binding motif (AACT/G)              -399 to -394bp    (E-box 1) 
                                                                                209 to 215bp      (E-box 2) 
                                                                                1201 to 1207bp   (E-box 3) 

 Primers for ChIP and sequencing 
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                                      (E-box 3) 
                                                                                        Primers F, R (+1.6kb) 

 
 
Figure 3.3: Scheme of DNA sequence of MIR155HG with CpG islands and putative MYB binding 
sites. The scheme shows the DNA sequence of MIR155HG with highlighted E-box sequences (blue) 
and putative MYB binding sites (E-box 1, 2, 3 (pink)), CpG islands (green color), TSS (red), primers for 
ChIP: -0.5kb, +0.1kb, +1.6kb from TSS (yellow), TATA box (-44bp; dark yellow). The DNA sequence of 
MIR155HG (NT_000021.8) was obtained from GenBank database and further worked out in the 
program Vector NTI suite 9.    

 
Sequences of primers for subcloning of wt versus mutated MYB binding site into pGL4.17 
plasmid: 
(Oligonucleotides containing the putative MYB binding site (in bold and italic) and 
oligonucleotides with mutation/deletion of putative MYB binding site (E-box 1) are 
highlighted in gray color: 
 
Primer 1F (wt) (in the region of E-box 1 (red box)) 
TCGAGTC GACACTCCTGCCACCCAGTTGCAAGAAGTCGCCACTTCCCCCTCCAGCCGA 
 
Primer 1R (wt) (in the region of E-box 1 (red box)) 
AGCTTCGGCTGGAGGGGGAAGTGGCGACTTCTTGCAACTGGGTGGCAGGAGTGTC GAC 
 
Primer 2F (mut) (in the region of E-box 1 (red box)) with deletion of CCACC 
TCGAGTC GACACTCCTGCAGTTGCAAGAAGTCGCCACTTCCCCCTCCAGCCGA 
 
Primer 2R (mut) (in the region of E-box 1 (red box)) with deletion of GGTGG 
AGCTTCGGCTGGAGGGGGAAGTGGCGACTTCTTGCAACTGCAGGAGTGTC GAC 
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3.2.5 Western blot 
 

Primary PBMC cells of B-CLL patient samples (N=5) and NB4, HeLa cells were lysed 

and sonicated. Denatured cell lysates were loaded on the Bis-Tris gel. The gels were dry-

blotted by iBlot Gel Transfer System. Prior to overnight incubation with primary antibody 

the membranes were blocked by non-fat milk in PBS/Tween 20. The membrane was washed 

with PBS/Tween 20 and incubated with the secondary antibody HRP-conjugated. For 

visualization of bands the ECLPlus Western Blotting Detection System and X-ray films were 

used. As a loading control antibody the anti-Actin HRP-conjugated antibody was used. The 

optical density of protein bands was measured by Scion Image software. 

 

3.2.6 Chromatin immunoprecipitation (ChIP) 
 

Chromatin from 10x106 primary PBMCs cells (isolated from B-CLL patients samples, 

N=15 and normal healthy B-cells (N=8)) was cross-linked with 1% formaldehyde for 10 

minutes at room temperature. Subsequently cells were lysed by a set of lysis buffers to 

isolate the nuclei from cells that were resuspended in 2ml of low-salt buffer and sonicated 

(45% intensity, 500 cycles of 2 seconds, in ice-ethanol cooling bath) with a Branson Sonic 

Dismembrator equipped with a microtip to yield 200bp to 400bp DNA fragments 240,241. ChIP 

was performed using the following antibodies: antibodies against H3K9Ac, H3K4Me3, MYB 

and isotypic normal rabbit IgG as a control nonspecific antibody. DNA extracted from the 

immunoprecipitates was used as template for SYBRGreen based qPCR reactions. Specific 

occupancy on DNA (“percentage of input”) was defined as a copy number of a specific DNA 

fragment in each immunoprecipitate compared with the copy number of that DNA fragment 

within 1/100 input dilution used for immunoprecipitation (1% input DNA). The control 

antibody values were subtracted from the values obtained using the specific antibodies. 

The quantitative PCR was performed on the 384 well plates in the real time PCR 

machine and samples were runned in duplicates. The single qPCR reaction composed of 

8µL=1µL of DNA + 0.4µ of 20µM primers (F+R) + 4µL of SYBRgreen Master Mix + 2.6µL of 

sterile ddH2O.  
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The sequence of primers used for qPCR amplification of precipitated DNA were as follows: 

 
putative MYB binding site 1 (E-box 1): 
MIR155HG (-0.5kb) F: TCTCTTAGGGACCTGCTGGTCTCCAG 
MIR155HG (-0.5kb) R: TGTCTCTACTCTCTCCTTGCAGGGAGC 
 
putative MYB binding site 2(E-box 2): 
MIR155HG (+0.1kb) F: ACCAAGGAGACGCTCCTGGCACTG 
MIR155HG (+0.1kb) R: CGTCCCTGCCACGTTCAAGAGAGG 
 
putative MYB binding site 3 (E-box 3): 
MIR155HG (+1.6kb) F: TCACATAGTGGGTCAGCTCACTCTGG 
MIR155HG (+1.6kb) R: GTTCTCCCTTGAAGTGGTTGTAGGTCTC 
 

Program for SYBRgreen based qPCR:  

50°C 2min, 95°C 10min, 95°C 15sec, 60°C 1min, 95°C 15sec, 60°C 15sec, 95°C 15sec for 40 

cycles. 

Presence of chromatin modifications of histones – “percentage of input” is defined 

as a copy number of specific DNA locus in each specific DNA immunoprecipitate normalized 

on the copy number of the same locus in the same immunoprecipitate sample in dilution 

1:100 (1% of DNA input). From the obtained PCR values of “percentage of input” from the 

specific antibody, the “percentage of input” the control antibody was subtracted. 

 
3.2.7 Isolation of mRNA/miRNA and preparation of cDNA 
 
3.2.7.1 Isolation of mRNA/miRNA from PBMCs, B-cells, Raji cells by TRIzol reagent 
 

Total RNA was extracted from all patients samples (N=239) and control samples 

(N=22) by TRIzol reagent followed by manufacturer`s protocol with modifications. The 

precipitation step with isopropanol at -20°C overnight was enhanced by adding linear 

acrylamide. On the next day, the RNA precipitate was centrifuged at 14000rpm for 30min at 

4°C. RNA precipitate was washed with 75% Ethanol, dried on the air and finally resuspended 

in RNAse free sterile water. The RNA quantity was determined by ND-1000 

Spectrophotometer and quality was determined by Agilent 2100 Bioanalyzer. Isolated RNA 

was stored at -80°C or overwritten into cDNA and run RT-qPCR (see section cDNA and RT-

qPCR). 
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 3.2.7.2 Preparation of cDNA (complementary) 
 

For cDNA preparation the TaqMan microRNA Reverse Transcription Kit was used. The 

manufacturer`s instructions were followed. Single cDNA reaction with components of kit 

and RNA composed of 15µL (set up of single cDNA reaction is below) and reverse 

transcription reaction proceed at thermal cycler with program: 30min 16°C, 30min 42°C, 

5min 85°C, after hold at 4°C. The 5x primers of specific microRNAs (RNU44, miR-155, miR-

150) were as part of specific miRNA assay kit. After reverse transcription reaction complete, 

sterile H2O was added to reach the final volume 50µL. The RT-qPCR was performed. The 

cDNAs were stored at -20°C.  

 

cDNA reaction:                                               1x 

10x RT buffer                                                 1.5µL 

25xdNTPs (100mM)                                     0.4µL 

RNAse inhibitors                                           0.1µL 

RT Random primers (10x)                           0.5µL 

5x primer (for specific miRNA)                   1.5µL 

Multiscribe Reverse Transcriptase (RT)    1.0µL 

RNA (100ng/µL)                                            1.0µL 

ddH2O                                                             9.0µL 

                                                                  15.0µL 

 
3.2.7.3 Isolation of miRNAs from B-CLL patient plasma samples by miRNAeasy kit 
 

MicroRNAs (miR-155, miR-24 and let-7a) were isolated from 10 B-CLL plasma 

samples by miRNA easy kit following the manufacturer`s protocol. Briefly, plasma was lysed 

and homogenized in QIAzol lysis reagent (monophasic solution of phenol and guanidine 

thiocyanate). By adding chloroform and centrifugation the plasma lysate separated into 

aqueous and organic phase. The upper aqueous phase was extracted where the miRNA 

occurred. By adding ethanol the RNA bonded on the RNAeasy mini elute spin column. From 

the column was washed out phenol and other contaminants by washing buffers provided by 

kit. The separated miRNAs were eluted in RNAse free water. 
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3.2.7.4 Preparation of cDNA (complementary) 
 

The miRNAs from plasma were reverse transcribed by using TaqMan microRNA cDNA 

Reverse Transcription kit with specific miRNA primers by following the manufacturer`s 

instructions. Single cDNA reaction composed of 15µL and run at thermal cycler with 

following program: 30min 16°C, 30min 42°C, 5min 85°C, hold 4°C. After completing, the 

reverse transcription was proceeded in Real Time qPCR (RT-qPCR). The cDNAs were stored 

at -20°C.  

cDNA reaction:                                               1x 

10x RT buffer                                                  1.5µL 

25xdNTPs (100mM)                                       0.4µL 

RNAse inhibitors                                             0.1µL 

5x primer (for specific miRNA)                     1.5µL 

Multiscribe Reverse Transcriptase (RT)      1.0µL 

miRNA                                                               5.0µL 

ddH2O                                                                5.5µL 

                                                                     15.0µL 

 
3.2.8 Performing of RT-qPCR by TaqMan system and with ROCHE probes 
 

The expression of mRNAs/miRNAs was determined by TaqMan chemistry together 

with mRNA primers with specific probe and specific miRNA primers provided by microRNA 

assay kits.  

The TaqMan RT-qPCR system is based on fluorogenic-labeled probes that use the 5′ 

nuclease activity of Taq DNA polymerase that detects specific PCR products.  

The quantification by the miRNA assays pass over in the two-step RT-qPCR (Figure 4, 

step 1 and 2). During the reverse transcription (RT) the stem-loop specific miRNA primer (5x) 

gave rise to the first strand of cDNA (Figure 3.4, step 1). Later, during the qPCR are amplified 

the PCR products from cDNAs using the TaqMan specific miRNA assay primers (20x) 

together with the TaqMan Universal PCR Master Mix II that contains the TaqMan probe. 

TaqMan probes are dual labeled (FAM, NFQ) and hydrolysis of probes increases the 

specificity of RT-qPCR. TaqMan probes contain a FAM dye label on the 5’ end and the minor 

groove binder (MGB) that increases the melting temperature (Tm). The MGB is attached on 
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the non-fluorescent quencher (NFQ) localized on the 3’ end that inhibits fluorescence when 

the probe is intact (Figure 3.4, step 3). In the presence of target sequence, the TaqMan 

probe anneals between the primer sites and the Taq DNA polymerase with 5` nuclease 

activity cleaves this boundary during the extension of strand. The reporter dye molecules 

are cleaved from their respective probes with each cycle (Figure 3.4, step 3). The FAM dye 

separates from NFQ and the reporter signal increases. The removing of the TaqMan probe 

from target strand allows primer extension and continuing of the polymerization of the 

template to the end (Figure 3.4, step 4). The increase of fluorescence intensity is equal to 

the amount of produced amplicons. The higher the starting copy number of the nucleic acid 

target, the sooner a significant increase in fluorescence is observed. The 5′nuclease assay 

process (Figure 3.4, steps 4 - 6) takes place during PCR amplification. This process occurs in 

every cycle and does not interfere with the exponential accumulation of product. During 

PCR, the TaqMan MGB probe anneals specifically to a complementary sequence between 

the forward and reverse primer sites (Figure 3.4, step 3). When the probe is intact (Figure 

3.4, step 3 and 4), the proximity of the reporter dye to the quencher dye results in 

suppression of the reporter fluorescence. The Taq polymerase cleaves only probes that are 

hybridized to the target sequence (Figure 3.4, step 5). Cleavage separates the reporter dye 

from the quencher dye; the separation of the reporter dye from the quencher dye results in 

increased fluorescence by the reporter. The increase of fluorescence signal occurs only 

when the target sequence is complementary to the TaqMan probe and is amplified during 

qPCR. Because of these requirements, non-specific amplification is not detected. 

Polymerization of the strand continues, but because the 3′ end of the probe is blocked, 

there is no extension of the probe during PCR (Figure 3.4, step 6). 
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Figure 3.4: Scheme of the TaqMan system RT-qPCR. Scheme describes the preparation of cDNA and 
process of RT-qPCR. In the first step the miRNA specific primer gave rise to first strand of cDNA, the 
next steps describes the process of prolongation of strand during qPCR. During the polymerization 
the FAM and NFQ are attached to the TaqMan probe. During the each extension cycle the reporter 
dye FAM is cleaved from TaqMan probe. After separation of the FAM from NFQ the reporter dye 
emits fluorescence that is measured during qPCR. (adapted from 
http://www3.appliedbiosystems.com/cms/groups/mcb_support/documents/generaldocuments/cm
s_041461.pdf). 

 
The single reaction RT-qPCR reaction was composed from cDNA master mix (MM) 

and primer master mix (miRNA primer MM or mRNA primer MM) with the final volume of 

8µL. The detailed formula for the single master mix reactions are below: 

 
     Single reaction – cDNA master mix:                                      1x 
     TaqMan Universal PCR Master Mix II                                 2.0µL 
     ddH2O                                                                                       1.5µL 
     cDNA                                                                                         0.5µL  
     --------------------------------------------------------------------------------- 
                                                                                                        4.0µL 
      + 
     Single reaction – mRNA primer master mix:                          1x 
     TaqMan Universal PCR Master Mix II                                    2.0µL 
     Primer F+R (20µM)                                                                   0.4µL 
     Probe (10µM)                                                                            0.1µL   
     ddH2O                                                                                         1.5µL    
     ---------------------------------------------------------------------------------- 
                                                                                                          4.0µL 

http://www3.appliedbiosystems.com/cms/groups/mcb_support/documents/generaldocuments/cms_041461.pdf
http://www3.appliedbiosystems.com/cms/groups/mcb_support/documents/generaldocuments/cms_041461.pdf
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     or 
 
     Single reaction – miRNA primer master mix:                        1x                                     
     TaqMan Universal PCR Master Mix                                      2.0µL 
     miR primer (20x)                                                                      0.4µL 
     ddH2O                                                                                        1.6 µL    
     ---------------------------------------------------------------------------------- 
                                                                                                         4.0µL 
 
 

The RT-qPCR reactions were applied on the 384 well plates and run on the qPCR 

instrument according to manufacturer’s instructions. Program for cycling of the TaqMan 

based RT-qPCR reactions was as follows: 95 °C 15s and 60 °C 1´; 40 cycles. 

 
 

The mRNA primers and specific probes were designed by software ProbeFinder 

Version 2.45 and Vector NTI Suite 9. The sequences of mRNA primers with specific ROCHE 

probes are shown in Table 3.3. 

 

Table 3.3: Sequences of mRNA primers with specific ROCHE probes. 

Primer name Probe # Probe sequence        Primer sequence 

GAPDH F 60 CTTCCCCA AGCCACATCGCTCAGACAC 

GAPDH R 60 CTTCCCCA GCCCAATACGACCAAATCC 

PU.1 F 27 CAGGCAGC CCACTGGAGGTGTCTGACG 

PU.1 R 27 CAGGCAGC CTGGTACAGGCGGATCTTCT 

FOS F 67 TGCTGGAG CTACCACTCACCCGCAGACT 

FOS R 67 TGCTGGAG AGGTCCGTGCAGAAGTCCT 

MYB F 56 TGCTGTCC TGCTCCTAATGTCAACCGAGA 

MYB R 56 TGCTGTCC AGCTGCATGTGTGGTTCTGT 

MYC F 34 CTGCCTCT CACCAGCAGCGACTCTGA 

MYC R 34 CTGCCTCT GATCCAGACTCTGACCTTTTGC 

F=Forward; R=Reverse 
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3.2.8.1 RT-qPCR data analysis and statistics 
 

For the RT-qPCR data analysis the delta-delta Ct method was used, where the Ct 

(cycle threshold) values of specific (s) were subtracted from Ct values of reference gene (r); 

calculated by 2ΔΔ(Ctr-Cts) equation. MicroRNA expression levels were normalized on the 

expression levels of reference gene - RNU44 (small nucleolar RNA, C/D box 44) and mRNA 

expression levels were normalized on the reference gene GAPDH (glyceraldehyde-3-

phosphate dehydrogenase). In case of plasma samples, the normalization was done on 

average (AVG) of miR-24 and let-7a Ct values. Expression data are presented as mean (two 

biological duplicates) and error bars indicate the standard error of the mean (SEM). 

For statistical analysis of expression data from B-CLL patient samples (PBMCs, 

CD19+) and controls the Student`s t test and Mann-Whitney test was used (GraphPad 

software) was used. Any difference for which the P value was <0.05 was regarded as 

statistically significant (*). 

 
3.2.9 Microarray mRNA profiling 
 

To perform the genome-wide microarray mRNA profiling by the Affymetrix HG-U133 

Plus2 GeneChip we separated B-cells from B-CLL peripheral blood patient samples (N=16) 

and also from peripheral blood samples of healthy donors (N=5). We filtered out 4 B-CLL 

patient samples due to GeneSpring Quality Control Principal Component Analysis (PCA) 

analysis.  

Briefly, total RNA was purified by TRIzol reagent (see section RNA isolation) followed 

by preparation of biotin-labeled cRNA (complementary) target population according to 3’-

IVT Express Kit protocol. The cRNA probes were used for subsequent hybridization on the 

gene expression chip containing nearly 50 000 probes followed by fluorescent staining, 

fluidics processing and scanning according to the Affymetrix recommendations.  

 
3.2.9.1 Microarray data analysis and statistics 
 

High throughput data analyses were performed using GeneSpring GX10 and TIGR 

MeV4 softwares 242. GeneSpring software was used for probe level data preprocessing and 

summarization (using RMA), quality control analysis based primarily on Principal Component 
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Analysis (PCA) and partially for statistical analysis of microarray data. MeV4 software was 

used for data visualization, for creating the heat maps.  

To determine the expression of miR-155 targets in B-CLL patients samples we used 

the 6 following target prediction tools (data are available on: http://dnasuite.com/gsea/): 

PicTar:http://pictar.mdc-berlin.de/ 

Targetscan:http://www.targetscan.org/  

Microrna:http://www.microrna.org/ 

Microcosm:http://www.ebi.ac.uk/enright-srv/microcosm/ 

TargetsDiana:http://diana.cslab.ece.ntua.gr/tarbase/ 

GSEAset:http://www.broadinstitute.org/gsea/msigdb/cards/AGCATTA,MIR-155.html  

 

To determine pattern of expression of MYB targets we used 3 different lists of MYB 

target prediction tools (data are available on: http://dnasuite.com/gsea/): 

Set MYB TARGETS GENEGO: http://www.genego.com/ 

Set MYB TARGETS RULAI.CSHL.EDU:http://rulai.cshl.edu/cgi-bin/TRED/ 

Set MYB TARGETS LITERATURE is based on the literature search.  

 

To show that notable part of MYB and miR-155 downstream targets are differentially 

regulated we used GSEA (Gene Set Enrichment Analysis) 243.    

GSEA represents the analytical method for interpreting of gene expression data. This 

method focuses on the gene sets that share common biological function, chromosomal 

location or regulation pathway. It is a tool how to show significance of a gene list among 

whole genome expression data of all genes ordered by some significance measure (i.e. t-test 

p-value of a gene expression between two phenotypes or some other measure of 

differential regulation). Significant lists are those in which notable part of genes lies at the 

beginning or at the end of the whole genome ranked list. GSEA scores provided lists of 

genes by enrichment score (ES) and normalized enrichment score (NES). Primary 

measurement of the significance of a list is q-value (lower is better). Default GSEA setting 

marks as significant those list with q-value ≤0.25. The complete GSEA results from our B-CLL 

patient samples and controls are available on: http://www1.lf1.cuni.cz/~vkulv/gsea.  

 

The detailed protocols are in section 10. Supplement; Supplemental material 10.2. 

http://dnasuite.com/gsea/
http://pictar.mdc-berlin.de/
http://www.microrna.org/
http://www.ebi.ac.uk/enright-srv/microcosm/
http://dnasuite.com/gsea/
http://rulai.cshl.edu/cgi-bin/TRED/
http://www1.lf1.cuni.cz/~vkulv/gsea
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4. RESULTS 
 

4.1 Expression of candidate oncogenic microRNAs and their targtes in B-CLL 

4.1.1 Expression of miR-155, miR-150 and transcription factors PU.1, FOS, 

MYB and MYC in B-CLL patients and in normal healthy controls 

 

By quantitative PCR and by microarray approach we measured the levels of both: 

mature form of microRNA-155 (miR-155) (NCD19+/PBMC=113; NCD19+=156) and its primary 

transcript generated from the MIR155HG (pri-miR-155) (NB-cells=11; NCD19+=155) (Figure 4.1 

and 2).  

Our data show significant (P<0.001, Student`s t-test; Mann-Whitney test) increase of 

mature miR-155 in the circulating leukemic B-cells in comparison to normal B-cells (Figure 

4.1A, B). Expression of miR-155 increased from 4-fold up to 32-fold in comparison to the 

normal CD19+ B-cells in both PBMCs (peripheral blood mononuclear cells) (graph A) and in 

separated CD19+ B-cells (graph B).  

 

 

 

Figure 4.1: Expression of miR-155 in B-CLL patient samples. Results of TaqMan based RT-qPCR 
showed elevated levels of miR-155 in B-CLL patient samples [(A)NCD19+/PBMC=113; (B)NCD19+=156] in 
comparison with normal CD19+ B-cells [(A)Nctrl CD19+=6; (B)Nctrl CD19+=10]. The Y-axis represents relative 
abundance of mature miR-155 relative to reference gene RNU44. Data are shown as fold change (FC) 
in log2 scale and baseline normalized to the RNA levels of controls (control measurements were set 
equal to 1). Error bars represent standard error of the mean (SEM). Statistics was done by Student`s 
t-test (A) or Mann-Whitney test (B). P values are shown in parentheses. 

A B A 
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We detected 16-32 fold over-production of the pri-miR-155 transcript in B-CLL patient 

cells by RT-qPCR (Figure 4.2A) as well as using a microarray approach (Figure 4.2B) in 

comparison to normal CD19+ B-cells.  

 

 

Figure 4.2: Elevated levels of primary transcript (pri-miR-155) a product of MIR155HG gene in B-
CLL samples. (A) Results of TaqMan based RT-qPCR shown an elevated levels of pri-miR-155 in B-CLL 
patient samples (NCD19+=155) as compared with normal CD19+ B-cells (NCD19+=8). The Y-axis 
represents relative abundance of pri-miR-155 relative to GAPDH. Data are shown as fold change (FC) 
in log2 scale and normalized to the RNA levels of controls (control measurements were set equal to 
1). Error bars represent standard error of the mean (SEM). (B) Results from microarrays shown an 
elevated levels of pri-miR-155 in B-CLL (NCD19+=11) as compared with normal CD19+ B-cells (NCD19+=5). 
Statistics was done by Student`s t-test (A) or Mann-Whitney test (B). P values are shown in 
parentheses. 

 
 

We measured in parallel the expression of mature miR-155 in the peripheral CD19+ 

B-cells (Figure 4.1) and also in the plasma samples (N=10) (Figure 4.3A). For the 

measurement of miR-155 level in plasma we selected the samples with the intermediate 

(~2-fold) and high (~7-fold) expression of mature miR-155 (obtained from measurements in 

the CD19+ cell population). Indeed, positive correlation between expression of miR-155 in 

CD19+ B-cells and in plasma (r=0.5) was observed (Figure 4.3B).  

 

 

(P<0.05) 

A B B pri-miR-155 pri-miR-155 
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Figure 4.3: Expression of mature miR-155 in plasma samples (N=10) derived from B-CLL patients. 
Graph A shows results of TaqMan based RT-qPCR of mature miR-155 measured in plasma samples 
(white box plots) and in separated CD19+ B-CLL samples (black box plots). Expression data are shown 
as fold change (FC) and in the case of B-CLL CD19+ cells normalized to the RNA levels of controls 
(control measurements were set equal to 1). Expression data of miR-155 in plasma were normalized 
on an average of RNA levels of let-7a and miR-24. Error bars represent standard error of the mean 
(SEM). Graph B shows correlation of miR-155 expression in plasma and separated CD19+ B-CLL cells. 
We analyzed plasma and peripheral blood samples of 10 B-CLL patients: P353, P386, P585, P461, 
P279, P297, P320, P281, P251 and P346.  

 
 
 
 
 
 
 

B 

A 
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The key hematopoietic transcription factor PU.1 is validated direct target of miR-155 

that blocks both RNA stabity as well as translation of PU.1 157. miR-155-directed inhibition of 

PU.1 expression may leads to leukemogenesis 156. We herein detected 4-32 fold 

downregulation of mRNA PU.1 in PBMCs (Figure 4.4A) and as well in the purified CD19+ B-

CLL separated population (Figure 4.4B). Decreased amount of mRNA PU.1 coincided with 

decreased PU.1 protein levels (Figure 4.5). The established target of PU.1 gene is early 

transcription gene FOS (FBJ murine osteosarcoma viral oncogene homolog). Indeed, the 

mRNA of FOS in B-CLL patient samples was significantly 4-10 fold decreased as shown in 

Figure 4.6.  

 

 

Figure 4.4: Expression of PU.1 in B-CLL patient B-cell samples.  
Results of TaqMan based RT-qPCR show decrease in mRNA PU.1 in our B-CLL patient samples 
(NCD19+/PBMC=119; NCD19+=157) in comparison with the PU.1 levels in the control CD19+ B-cells (Nctrl 

CD19+=5; Nctrl CD19+=13). Y-axis represents relative abundance of PU.1 normalized to the levels of the 
reference gene - GAPDH. Data are shown as fold change (FC) in log2 scale and normalized to mRNA 
levels of controls (control measurements were set equal to 1). Error bars represent standard error of 
the mean (SEM). Statistics was done by Student`s t-test (A) or Mann-Whitney test (B). P values are 
shown in parentheses. 

(P<0.05) 

A B 
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Figure 4.5: Protein levels of PU.1 and MYB in primary B-CLL cells.  
Immunoblott analysis of MYB and PU.1 in B-CLL (P161, P143, P136, P117, P47) and control B-cells 
(C87). The NB4 cell line was used as a positive control. The optical density (below each lane) of each 
protein band was measured by Scion Image software Beta 4.0.2. The values below the blots 
represent a fold change of densities of the specific bands (or their expected positions) in the patient 
samples. Control lanes (NB4 and C87) were normalized to the levels of reference protein - β-actin. 

 

 

 
Figure 4.6: Expression of FOS in B-CLL patient B-cell samples. Results of TaqMan based RT-qPCR 
show decrease of mRNA FOS in separated CD19+ B-CLL cells (N=113) in comparison with the levels of 
FOS in normal CD19+ B-cells (N=11). The Y-axis represents relative abundance of FOS normalized to 
the levels of reference gene - GAPDH. Data are shown as fold change (FC) in log2 scale and 
normalized to mRNA levels in controls (control measurements were set equal to 1). Error bars 
represent standard error of the mean (SEM). Statistics was done by Student`s t-test. P values are 
shown in parentheses. 

 
 

(P<0.05) 
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In addition to miR-155, miR-150 is likely related to the pathogenesis of B-CLL 17. In 

addition, reviewers of our manuscript 144 asked to determine also miR-150 levels. Our data 

show, that around 30% of B-CLL samples have elevated miR-150 levels while similar 

proportion of patients have down- & un-regulated miR-150 levels in both peripheral blood 

B-CLL cells (Figure 4.7A) and CD19+ B-CLL cells (Figure 4.7B).  

 

 

 
Figure 4.7: Expression of miR-150 in B-CLL patient B-cell samples.  
Results of TaqMan based RT-qPCR showed expression of miR-155 in B-CLL patient samples 
(NCD19+/PBMC=71; NCD19+=151) and normal CD19+ B-cells (Nctrl CD19+=4; Nctrl CD19+=7). The Y-axis represents 
relative abundance of miR-150 relative to reference gene - RNU44. Data are shown as fold change 
and are normalized to RNA levels in controls (control measurements were set equal to 1) and shown 
in log2 scale. Error bars represent standard error of the mean (SEM). Statistics was done by 
Student`s t-test (A) or Mann-Whitney test (B). P values are shown in parentheses. 

 
 

Validated target of both miR-150 and miR-155 is a proto-oncogene and transcription 

factor MYB (v-myb myeloblastosis viral oncogene homolog) that is important for normal B-

cells development 72,73,227. The mRNA levels of MYB showed wide interval of expression 

levels, starting from 2-32 fold in comparison to normal B-cells. In subset (~40%) of B-CLL 

patient samples we detected over-produced MYB mRNA and in 20% its down-production 

(Figure 4.8). The production of MYB protein was in some B-CLL patient samples (N=5) up to 

72-fold higher as in the lysates from normal B-cells. MYB protein normally migrates at ~72 

kDa (wt form) (Figure 4.5). Additionally, we determined the MYC mRNA levels – an another 

member of E-box family. In our B-CLL patient samples the MYC mRNA levels were above the 

levels of normal CD19+ B-cells (Figure 4.9). 

(P<0.0001) 

A B 
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Figure 4.8: Expression of MYB in B-CLL patient B-cell samples.  
Results of TaqMan based RT-qPCR showed expression of MYB in B-CLL patient samples 
(NCD19+/PBMC=109; NCD19+=108) and in normal CD19+ B-cells (Nctrl CD19+=10; Nctrl CD19+=6). The Y-axis 
represents relative abundance of MYB relative to reference gene - GAPDH. Data are shown as fold 
change (in log2 scale) and baseline normalized to the levels of MYB in controls (control 
measurements were set equal to 1). Error bars represent standard error of the mean (SEM). 
Statistics was done by Student`s t-test (left graph) or Mann-Whitney test (right graph). P values are 
shown in parentheses. 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 4.9: Expression of MYC in B-CLL patient B-cell samples.  
Results of TaqMan based RT-qPCR shown decrease of MYC in separated CD19+ B-CLL cells 
(NCD19+=122) and in normal CD19+ B-cells (Nctrl CD19+=12). The Y-axis represents relative abundance of 
MYC relative to GAPDH. Data are shown as fold change (in log2 scale) and baseline normalized to the 
levels of MYB in controls (control measurements were set equal to 1). Error bars represent standard 
error of the mean (SEM). Statistics was done by Mann-Whitney test. P values are shown in 
parentheses. 
  
 
 

 
Ctrl B-CLL

-10

-5

0

5

10

F
C

 (
lo

g
2
),

 +
/-

 S
E

MYC 
(P<0.05) 

(CD19+ cells) 



83 

 

4.1.2 Relationship between expressions of miR-155 – miR-150 - PU.1 – MYB 
in B-CLL patient samples 
 

Based on our previous expression data (section 4.1.1) we asked if there exists 

functional relationship between expression patterns of oncomiR miR-155, miR-150, 

oncogenic transcription factor MYB and tumor supressor transcription factor PU.1 in B-CLL 

patient samples (N=156). All possible pair combinations within this four molecules 

demonstrate figures 4.10-12. In the B-CLL patient samples with elevated miR-155 the PU.1 

mRNA was decreased (Figure 4.10). Interestingly, expression of miR-155 and miR-150 

showed very similar pattern and expression of MYB mRNA in ~30% of B-CLL patients 

samples overlapped with the elevated expression levels of miR-155 (Figure 4.10). 

 

 

Figure 4.10: Expression of miR-155, PU.1, MYB and miR-150 in B-CLL patient B-cell samples.  
Graphs show results of TaqMan based RT-qPCR of B-CLL (NCD19+/PBMC=156) patient samples. The 
dataset contains data that expressed all four genes. The Y-axis represents expression of miR-155 - 
PU.1, miR-155 – miR-150 and miR-155 – MYB. The expression of miR-155 and miR-150 is relative to 
the reference gene RNU44 and of PU.1 and MYB relative to the reference gene GAPDH. Data are 
shown as fold change (in log2 scale) and normalized to the levels of controls (control measurements 
were set equal to 1 – represented by red line). Error bars represent standard error of the mean 
(SEM). P values (in parentheses) represent results of Student`s t test.  
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Figure 4.11: Expression of miR-155, miR-150, PU.1 and MYB in B-CLL patient B-cell samples.  
Graphs show results of TaqMan based RT-qPCR of B-CLL (NCD19+/PBMC=156) patient samples. The 
dataset contains data that expressed all four genes. The Y-axis shows expression of miR-155 - PU.1, 
miR-155 – miR-150 and miR-155 – MYB. The expression of miR-155 and miR-150 is relative to 
reference gene RNU44 and PU.1 and MYB relative to reference gene GAPDH. Data are shown as fold 
change (in log2 scale) and normalized to the levels of controls (control measurements were set equal 
to 1 – red line). Error bars represent standard error of the mean (SEM). P values (in parentheses) 
represent results of Student`s t test.  
 

 
To see how differed the expression pattern of miR-150 and its target MYB in the 

same subset of B-CLL patient samples we showed both expression data in one graph (Figure 

4.11). Interestingly, MYB and miR-150 showed similar expression pattern (statistically non-

significant) and not reciprocal as it would be expected 223. The expression of PU.1 mRNA was 

low as compared to expression of miR-150 (Figure 4.11) and MYB mRNA and indeed high 

levels of MYB showed reciprocal pattern to PU.1 (Figure 4.12). 
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Figure 4.12: Expression of MYB and PU.1 in B-CLL patient B-cell samples.  
Graph shows results of TaqMan based RT-qPCR in B-CLL (NCD19+=156). The Y-axis represents 
expression of MYB, PU.1 relative to GAPDH. Data are shown as fold change (in log2 scale) and 
normalized to the levels of MYB in controls (control measurements were set equal to 1). Error bars 
represent standard error of the mean (SEM). Statistics was done by Student`s t test. P values are 
shown in parentheses. 

 
 

4.1.3  Clinical and prognostic importance of miR-155, miR-150, MYB and PU.1 
expressions in B-CLL patient samples 
 
 

The progression of B-CLL characterizes Rai stage 44. Here, we showed analysis of 

expression of miR-155, PU.1, miR-150 and MYB between different Rai staging categories. 

We also showed the relationship between mRNA/miRNA expression and overall survival, 

therapy regimen in B-CLL patient samples (Figure 4.13 - 17). Our data show significantly 

higher expression of MYB mRNA and lower expression of miR-150 in advanced Rai stages II - 

IV stages while PU.1 and miR-155 appeared to be similar (Figure 4.13). 
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Figure 4.13: Expression of miR-155, PU.1, MYB and miR-150 in B-CLL patient samples based on Rai 
stage (PBMC/CD19+ B-CLL cells). Graph shows two patient subgroups divided by Rai stage: white 
bars – represent patients samples with Rai stage 0-I (NmiR-155=96, NPU.1=96, NMYB=80, NmiR-150=86) and 
black bars represent patients samples with Rai stage II-IV (NmiR-155=135, NPU.1=137, NMYB=114, NmiR-

150=104). Expressions of miR-155, PU.1, MYB and miR-150 are shown as fold change, each bar 
represents average of expression. Error bars represent standard error of the mean. P values are 
shown in parentheses, Student`s t test was used. 
 

 
We compared expression of miR-155, PU.1, MYB and miR-150 with diferent Rai 

stages, therapy regimens and overall survival (from diagnosis to the last follow-up) in B-CLL 

patients. We divided patient samples primarily into two groups based on the Rai staging 

system – Rai stage 0-I and Rai stage II-IV and secondarily into three subgroups based the 

number of therapy regimens (1 or more than 1) and on the overall survival status (OS) (0 

(live) or 1 (dead)). In the advanced Rai stages (II-IV) we detected an increased expression of 

MYB compared with Rai 0-I (Figure 4.14). We observed elevated levels of miR-155 in a 

patient group with advanced Rai stages (II-IV) that underwent at least one line of therapy 

and are still alive (Figure 4.15; grey bar). The PU.1 mRNA levels increased in the group of 

patients that underwent more therapy lines (Figure 4.16). The expression of miR-150 

decreased in the advanced Rai stages (II-IV) and especially in the group of patients that 

underwent more therapy lines (Figure 4.17). 
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Figure 4.14: Expression of MYB based on the Rai stage, overall survival and therapy regimen in B-
CLL patient B-cell samples (PBMC/CD19+ B-CLL cells). Graph shows expression of MYB based on the 
Rai stage. Three patient subgroups are shown: white bars: currently investigated patients (OS 0) 
either treated by first line of therapy or untreated (Th 0-1), NRai 0-I=61, NRai II-IV=66; grey bars: currently 
investigated patients (OS 0) who received second or more lines of therapy (Th>1), NRai 0-I=11, NRai II-

IV=13; black bars: previously investigated patients that already died (OS 1) and received at least one 
line of therapy (Th>1), NRai 0-I=7, NRai II-IV=35. Error bars represent standard error of the mean. P values 
are shown in parentheses, Student`s t test was used. 

 

                                      

Figure 4.15: Expression of miR-155 based on the Rai stage, overall survival and therapy regimen in 
B-CLL patient B-cell samples (PBMC/CD19+ B-CLL cells). Graph shows expression of mR-155 based 
on the Rai stage. Three patient subgroups are shown: white bars: currently investigated patients (OS 
0) either treated by first line of therapy or untreated (Th 0-1), NRai 0-I=73, NRai II-IV=80; grey bars: 
currently investigated patients (OS 0) who received second or more lines of therapy (Th>1), NRai 0-

I=13, NRai II-IV=15; black bars: previously investigated patients that already died (OS 1) and received at 
least one line of therapy (Th>1), NRai 0-I=10, NRai II-IV=40. Error bars represent standard error of the 
mean. P values are shown in parentheses, Student`s t test was used. 
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Figure 4.16: Expression of PU.1 based on the Rai stage, overall survival and therapy regimen in B-
CLL patient B-cell samples (PBMC/CD19+ B-CLL cells). Graph shows expression of PU.1 based on the 
Rai stage. Three patient subgroups are shown: white bars: currently investigated patients (OS 0) 
either treated by first line of therapy or untreated (Th 0-1), NRai 0-I=73, NRai II-IV=82; grey bars: currently 
investigated patients (OS 0) who received second or more lines of therapy (Th>1), NRai 0-I=13, NRai II-

IV=15; black bars: previously investigated patients that already died (OS 1) and received at least one 
line of therapy (Th>1), NRai 0-I=10, NRai II-IV=40. Error bars represent standard error of the mean. P 
values are shown in parentheses, Student`s t test was used. 

                      

                  

Figure 4.17: Expression of miR-150 based on the Rai stage, overall survival and therapy regimen in 
B-CLL patient B-cell samples (PBMC/CD19+ B-CLL cells). Graph shows expression of mR-150 based 
on the Rai stage. Three patient subgroups are shown: white bars: currently investigated patients (OS 
0) either treated by first line of therapy or untreated (Th 0-1), NRai 0-I=68, NRai II-IV=78; grey bars: 
currently investigated patients (OS 0) who received second or more lines of therapy (Th>1), NRai 0-

I=11, NRai II-IV=12; black bars: previously investigated patients that already died (OS 1) and received at 
least one line of therapy (Th>1), NRai 0-I=7, NRai II-IV=14. Error bars represent standard error of the 
mean. P values are shown in parentheses, Student`s t test was used. 
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Prognosis and stage of B-CLL is characterized by Rai staging and also by expression of 

prognostic markers: ZAP-70, CD38 and IgVH gene mutation status. We further analyzed the 

expression of miR-155, PU.1, MYB and miR-150 in the relationship with mRNA/miRNA 

expression with positivity of different prognostic markers (Figures 4.18-20). IgVH – 

unmutated IgVH versus IgVH mutated B-CLL cells expressed more miR-155 and MYB (not 

significantly), similar amounts of PU.1 and less miR-150 (Figure 4.18). As pointed in the 

Introduction, the presence of surface marker ZAP-70 on B-CLL cells categorizes patient into 

more advanced stage with unfavorable prognosis. We found that patient overexpressing 

ZAP-70 also expressed more MYB mRNA, less miR-150, while miR-155 and PU.1 expression 

remained unchanged (Figure 4.19). Presence of another B-CLL prognostic marker, CD38 

categorizes patient into more advanced stage with unfavorable prognosis. B-CLL cells 

expressing the CD38 expressed more miR-155 and mRNA of MYB (significantly), less miR-

150, PU.1 remained unchanged (Figure 4.20). 

Additionally we divided the patient samples by clinical outcome into two patient groups: 

1) favorable (ZAP-70-/CD38-/IgVH mutated) and 2) unfavorable (ZAP-70+/CD38+/IgVH 

unmutated). This creates highly specifialy and robustly two very distinct group whose 

prognosis is different and that is not influenced by false positive or false negative outcomes 

from prognostic determinations. Hence, the expression of miR-155 in group of patients with 

unfavorable clinical outcome was significantly higher than in group with favorable clinical 

outcome (Figure 4.21). Furthermore, the expression of PU.1 mRNA was overall decreased in 

both clinical groups without significant change. Expression of MYB mRNA in unfavorable 

group of patients was significantly increased (~3-fold). On the other hand, expression of 

miR-150 decreased (~2-fold) with disease progression (Figure 4.21). Our data points to the 

relationship between expression of miR-155, PU.1, MYB and miR-150 during the progression 

of B-CLL. This notion is supported by our data indicating that the studied molecules are likely 

involved during disease progression and therapy requirement (unpublished, Manuscript in 

preparation). 
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Figure 4.18: Expression of miR-155, PU.1, MYB and miR-150 based on IgVH status of B-CLL 
(PBMC/CD19+ B-CLL cells). Graph shows expression (shown in fold change) of miR-155, PU.1, MYB 
and miR-150. B-CLL patient samples were divided into two groups based on the IgVH status: 1, IgVH 
mutated (NmiR-155=59, NPU.1=59, NMYB=59, NmiR-150=48) and 2, IgVH unmutated (NmiR-155=140, NPU.1=142, 
NMYB=122, NmiR-150=115). Error bars represent standard error of the mean. Number of patients in 
each group is shown in parentheses above/or in the each bar respectively. P values are shown in 
parentheses, Student`s t test was used. 

         

                         
 
Figure 4.19: Expression of miR-155, PU.1, MYB and miR-150 based on presence of surface marker 
ZAP-70 in B-CLL patient samples (PBMC/CD19+ B-CLL cells). Graph shows expression (shown in fold 
change) of miR-155, PU.1, MYB and miR-150. B-CLL patient samples were divided into two groups 
based on presence of ZAP-70 (sample was assessed as ZAP-70 positive when >20% of cells expressed 
ZAP-70): 1, ZAP-70 negative (NmiR-155=82, NPU.1=82, NMYB=70, NmiR-150=72) and 2, ZAP-70 positive (NmiR-

155=133, NPU.1=135, NMYB=110, NmiR-150=105). Error bars represent standard error of the mean. 
Number of patients in each group is shown in parentheses above/or in the each bar respectively. P 
values are shown in parentheses, Student`s t test was used. 
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Figure 4.20: Expression of miR-155, PU.1, MYB and miR-150 based on presence of surface marker 
CD38 in B-CLL patient samples (PBMC/CD19+ B-CLL cells). Graph shows expression (shown in fold 
change) of miR-155, PU.1, MYB and miR-150. B-CLL patient samples were divided into two groups 
based on presence of CD38 (sample was assessed as CD38 positive when >30% of cells expressed 
CD38): 1, CD38 negative (NmiR-155=118, NPU.1=122, NMYB=93, NmiR-150=93) and 2, CD38 positive (NmiR-

155=113, NPU.1=114, NMYB=92, NmiR-150=85). Error bars represent standard error of the mean. Number 
of patients in each group is shown in parentheses above/or in the each bar respectively. P values are 
shown in parentheses, Student`s t test was used. 

 
      

                      
    
Figure 4.21: Expression of miR-155, PU.1, MYB and PU.1 based on prognostic markers 
(PBMC/CD19+ B-CLL cells). Graph shows expression (shown in fold change) of miR-155, PU.1, MYB 
and miR-150. B-CLL patient samples were divided into two groups based on the clinical outcome: 1) 
favorable clinical outcome = IgVH mutated/CD38-/ZAP-70- (NmiR-155=32, NPU.1=32, NMYB=24, NmiR-

150=30) and 2) unfavorable clinical outcome = IgVH unmutated/CD38+/ZAP-70+ (NmiR-155=71, NPU.1=71, 
NMYB=62, NmiR-150=71). Error bars represent standard error of the mean. Number of patients in each 
group is in parentheses above/or in the each bar respectively. P values are shown in parentheses, 
Student`s t test was used. 
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Besides Rai stage and expression of prognostic surface markers, the progression of B-

CLL is additionally evaluated by chromosomal aberrations. Among such aberrations belongs 

deletions of chromosome 13q14, 11q22-23, 17p13 and trisomy of chromosome 12 (see 

Introduction section). The most frequent aberration of B-CLL cells is deletion of 

chromosome 13q14 that is also described as a low risk factor of B-CLL. The intermediate risk 

represents trisomy of chromosome 12 while high risk are deletions of 11q22-23 and 17p13 

13. We divided our B-CLL patient samples into 5 groups based on the chromosomal 

aberrations (Figure 4.22-25).  

Based on cytogenetics we observed that, expression of miR-155 in the patient 

samples with deletion of 13q14 or 11q22-23 was interestingly higher as compared to B-CLL 

patient samples with negative FISH analysis (Figure 4.22). In the B-CLL patient samples with 

trisomy of chromosome 12 and with the deletion of 17p13 the expression of miR-155 was 

unchanged (Figure 4.22).  

 

             

Figure 4.22: Expression of miR-155 in B-CLL samples based on cytogenetics. Graph shows 
expression (shown in fold change) of miR-155 in the primary B-CLL patient samples (PBMC/CD19+ B-
CLL cells) based on the cytogenetics: FISH (B-CLL) negative (N=42); 13q14 (N=78); t12 (N=19); 
del11q22-23 (N=19); del17p13 (N=9). Error bars represent standard error of the mean. Number of 
patients in each group is in parentheses above/or in the each bar respectively. P values are shown in 
parentheses, Student`s t test was used. 
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 Based on cytogenetics we observed that, expression of PU.1 mRNA is not reciprocal 

to miR-155 (according cytogenetics). In the B-CLL patient samples with deletion of 13q14 

and 11q22-23 PU.1 level remains unchanged relative to FISH negative B-CLL, while in the 

trisomy of chromosome 12 PU.1 was increased (2-fold) and in deletion of 17p13 was 

signifcantly decreased (Figure 4.23). 

 

                                       
Figure 4.23: Expression of PU.1 in B-CLL samples based on the cytogenetics. Graph shows 
expression (shown in fold change) of PU.1 in the primary B-CLL patient samples (PBMC/CD19+ B-CLL 
cells) based on the cytogenetics: FISH (B-CLL) negative (N=42); 13q14 (N=78); t12 (N=19); del11q22-
23 (N=20); del17p13 (N=9). Error bars represent standard error of the mean. Number of patients in 
each group is in parentheses above/or in the each bar respectively. P values are shown in 
parentheses, Student`s t test was used. 

 

 Based on cytogenetics we observed that, levels of MYB mRNA were increased (not 

significantly) in the B-CLL patient samples with trisomy of chromosome 12 and with 13q14 

deletion, but unchanged in the patient samples with deletions 11q22-23, 17p13 (Figure 

4.24). 

 Based on cytogenetics we observed that, interesting expression pattern showed miR-

150 regarding to several cytogenetic aberrations (Figure 4.25). Expression of miR-150 was 

significantly decreased in both high risk groups of B-CLL patient samples: del11q22-23 and 

del17p13. This suggests potential role of miR-150 in aggressive B-CLL as tumor suppressor. 

The low risk and intermediate group of B-CLL patient samples was similar to the group of B-

CLL patient samples with negative FISH analysis (Figure 4.25).  
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 Cytogenetic data unlike data from prognostic markers as ZAP-70/CD38/IgVH did not 

overal support conclusion of association between subgroups and expression of miR-155 and 

its upstream and downstream regulators. 

 

 

                            
Figure 24: Expression of MYB in B-CLL samples based on the cytogenetics. Graph shows expression 
(shown in fold change) of MYB in the primary B-CLL patient samples (PBMC/CD19+ B-CLL cells) based 
on the cytogenetics: FISH (B-CLL) negative (N=33); 13q14 (N=64); t12 (N=16); del11q22-23 (N=15); 
del17p13 (N=8). Error bars represent standard error of the mean. Number of patients in each group 
is in parentheses above/or in the each bar respectively. P values are shown in parentheses, 
Student`s t test was used. 
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Figure 4.25: Expression of miR-150 in B-CLL samples based on the cytogenetics. Graph shows 
expression (shown in fold change) of miR-150 in the primary B-CLL patient samples (PBMC/CD19+ B-
CLL cells) based on the cytogenetics: FISH (B-CLL) negative (N=38); 13q14 (N=66); t12 (N=17); 
del11q22-23 (N=15); del17p13 (N=6). Error bars represent standard error of the mean. Number of 
patients in each group is in parentheses above/or in the each bar respectively. P values are shown in 
parentheses, Student`s t test was used. 
 

 To determine whether there is relationship between expression of MYB mRNA and 

expressions of miR-155, miR-150 and PU.1, we divided B-CLL patient samples into two 

groups: 1) samples over expressing MYB (>1.5-fold change) and 2) samples with low 

expression of MYB (<1.5-fold change). In the MYB-high group we detected increased levels 

of miR-155 (statistically significant), miR-150 (not significant) and surprisingly also of PU.1 

(statistically significant) as compared to MYB-low group (Figure 4.26). Our data indicate on 

the relationship (yet not always in expected direction) between the levels of studied 

molecules. We further split B-CLL patient samples into another two groups based on the 

expression of miR-155 to see the relationship between expression of miR-155 compared to 

PU.1, MYB and miR-150 (Figure 4.28). In patient group with miR-155> 2.5-fold change, the 

expression of miR-150 was significantly higher than in second group (miR-155<2.5-fold 

change). The mRNA of MYB was also increased in group with higher miR-155, but not 

statistically significant. The PU.1 mRNA level was unchanged (Figure 4.27). Again, this data 

indicate on the relationship between the four studied molecules. 
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Figure 4.26: Levels of miR-155, miR-150 and PU.1 in B-CLL based on expression of MYB 
(PBMC/CD19+ B-CLL cells). Graph shows expression of miR-155 (white bars) and miR-150 (grey bars) 
in MYB under-expressors (<1.5 fold decrease, left) and MYB over-expressors (>1.5 fold increase; 
right) relative to control B-cells. Error bars represent standard errors of the mean (SEM). Number of 
patients in each group is in parentheses above/or in the each bar. Statistics was done by Student`s t 
test and P values are shown in parentheses on top of the brackets indicating the groups being 
compared. 
 
 

                      

Figure 4.27: Levels of MYB, miR-150 and PU.1 in B-CLL based on the expression of miR-155 
(PBMC/CD19+ B-CLL cells). Graph shows expression of miR-155 (white bars) and miR-150 (grey bars) 
in miR-155 underexpressors (<2.5 fold decrease, left) and miR-155 overexpressors (>2.5 fold 
increase; right) relative to control B-cells. Error bars represent standard errors of the mean (SEM). 
Number of patients in each group is in parentheses above/or in the each bar. Statistics was done by 
Student`s t test and P values are shown in parentheses on top of the brackets indicating the groups 
being compared. 
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We hypothetisize, the analysis of expression patterns of miR-155, PU.1 and MYB may  

reflect the therapy efficacy. Our B-CLL patient cohort include 40% of patients that 

undergoes therapy prior the study and 49% of patients that undergoes therapy during the 

study (see Table 3.2 in the section 3. Material and Methods). The therapy as well comprised 

from Rituximab (anti-CD20 antibody) treatment (375mg/m2 intravenous infusion D1 of each 

cycle). To test our hypothesis, the peripheral blood of B-CLL patient was collected before, 24 

hrs and 48 hrs after Rituximab treatment. We observed the following expression pattern: 

miR-155 and MYB were markedly decreased after Rituximab (11- and 6-folds respectively). 

In contrast, the level of PU.1 mRNA was increased 1-fold (Figure 4.28). Based on these 

results, the measuring of the levels of miR-155, PU.1 and MYB before and after therapy 

could help to control success of therapy and can be used as molecular biomarkers of 

Rituximab efficacy.   

                          

 
 
Figure 4.28: Expression of miR-155, PU.1 and MYB in B-CLL patient samples after therapy.  
Graphs show expression of miR-155, MYB and PU.1 in the peripheral blood mononuclear cells of B-
CLL patient (P143) before and after B-cell specific treatment by Rituximab (antiCD20 antibody) at 0, 
24 and 48 hours (X-axis). Expression levels are shown as fold change (Y-axis). Error bars represent 
standard errors of the mean (SEM). 
 

 
To summarize this part of results point-by point, we found that expression of miR-155 

and MYB increased, PU.1 remains unchanged and miR-150 decreased with disease 

progression in the advanced Rai stages. Moreover, in the B-CLL patient samples with 

unfavorable clinical outcome (ZAP-70+/CD38+/IgVH unmutated) the levels of miR-155 and 

MYB were increased; PU.1 was unchanged and miR-150 significantly decreased. Based on 

the cytogenetic data, we could conclude that expression of miR-155 increased in the B-CLL 

patient group with deletion 13q14 and 11q22-23 while in other cytogenetic subgroups it 

was unchanged. The PU.1 expression was significantly low in a group of patients with 
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deletion of 17p13, and high in a group with trisomy of chromosome 12. Expression of MYB 

mRNA was higher in patient group with deletion of 13q14 and with trisomy of 12 

chromosome. Significantly low expression of miR-150 correlates with high risk of B-CLL 

based on cytogenetics. The measurement of levels of miR-155, PU.1 and MYB in B-CLL cells 

after Rituximab therapy underlines the importance of these molecules as potential 

biomarkers for disease progression and therapy efficacy. 

 
 

4.2 The occupancy of MYB and epigenetic features at MIR155HG promoter 
region in B-CLL 
 
4.2.1 Occupancy of transcription factor MYB at MIR155HG promoter region 

 
To determine whether MYB recruits the MIR155HG promoter region we performed the 

chromatin immunoprecipitation (ChIP) within the MIR155HG locus. ChIP was followed by 

qPCR, where the amplicons ranged from -3.2 kb to 4.4 kb relative to the transcriptional start 

site (TSS) of MIR155HG promoter. Our data shows that in the primary B-CLL cells (N=6) MYB 

is consistently occupied at the MIR155HG promoter region, exclusively at three loci: -0.5kb; 

+0.1kb and +1.6kb relatively to TSS in comparison to the normal healthy CD19+ B-cells 

(N=6). While the recruitment was not detected anywhere else upstream or downstream of 

the studied MIR155HG promoter region, we could conclude that MYB recruitment at the 

MIR155HG gene is TSS specific (Figure 4.30A). 

To answer the question if MYB has ability to stimulate the transcription of MIR155HG we 

generated luciferase reporter constructs either with mutation in MYB binding site (mut; E-

box 1) or without mutation (wt; E-box 1). The putative MYB binding sites (E-box 1-3) 

sequence A A C T/G G are localized at the positions: 1) -399 – 394bp; 2) +209bp +215bp; 3) 

+1201bp +1207bp adjacent to the CpG island at MIR155HG (Figure 3.3 Section 3. Material 

and Methods; and schematicaly Figure 4.29). The figure 4.30B shows the relative luciferase 

activity of HeLa cells measured after 48 hours post transfection with reporter vectors: 1) 

with mutation in MYB binding site (mut; E-box 1); 2) without mutation in MYB binding site 

(wt; E-box 1) and 3) control vector (empty vector pGL4.17). Based on our results, only the 

construct without mutation in MYB binding site was able to bind and stimulate the 

luciferase activity in HeLa cells. Additionally, we transiently transfected HeLa cells with 

construct that either carries or not the mutation in MYC binding site. In this case the 
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luciferase activity was not stimulated neither with unmutated nor mutated binding sites for 

MYC (data not shown). Based on the ChIP and luciferase assay data we could conclude that 

MYB specifically binds and stimulates the transcription of MIR155HG in B-CLL cells (Figure 

4.30). 

 

 
Figure 4.29: Vista plot of MYB binding sites and CpG at MIR155HG promoter region. Figure shows 
presence of MYB binding sites at the MIR155HG promoter near the CpG region (-33 – 339bp).  

 

             

Figure 4.30: Transcription factor MYB binds and stimulates activity of MIR155HG promoter.  
(A) MYB occupancy within MIR155HG was determined by ChIP by using anti-Myb or control antibodies. 
The ChIP was carried out on cross-linked chromatin isolated from B-CLL cells (N=6, average value 
indicated by black bars, P40, P39, P47, P250, P254, P255) and normal B-cells (N=6, white bars). The Y-axis 
indicates the relative occupancy of MYB. The X-axis marks the positions (in kb) of PCR amplicons relative 
to TSS of MIR155HG. The arrows indicate the positions of MYB DNA binding motifs; black box indicates 
position of the CpG island. Error bars represent standard error of the mean (SEM) of three independent 
experiments. P values <0.05 are indicated by one asterisk. (B) HeLa cells were transiently transfected with 
0.5 µg pGL4.17 reporter vector containing the MYB binding site (-399 bp to -394 bp) (black bars), its 
deletion mutant (grey bars) or a control reporter plasmid (None (pGL4.17); white bars). Reporter vectors 
were transfected either alone (left) or co-transfected with 1 µg MYB cDNA expression vector (right). 
Luciferase activity measured at 48 hrs is shown relative to a control vector, the background activity was 
subtracted, and data were equalized to the protein content. Average values and standard deviation 
(STDEVA) of at least two independent experiments are plotted. 

 

MYB binding sites  
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4.2.2 Active chromatin marks associates with elevated levels of miR-155 in B-CLL cells 
 
The histone modifications are marks of the transcription activity of chromatin. The 

actively transcribed DNA contains chromatin (euchromatin) with active epigenetic markers 

on histones as e.g. H3K9Ac, H3K4Me3. These post translational histone modifications play 

important role in gene expression, especially in the leukemic cells. 

 To determine the acetylation status of lysine 9 of histone H3 (H3K9Ac) we performed 

the ChIP assay on the chromatin of B-CLL patient samples (N=9) and healthy control B-cell 

samples (N=8). Within the MIR155HG promoter region we observed the acetylation peak of 

H3K9Ac at the loci +0.1kb as compared with healthy control B-cell samples (Figure 4.31; 

upper graph). In the B-CLL cells  we detected spread chromatin H3K9acetylation within the 

region from -3.2kb to +1.6kb. This epigenetic pattern of H3K9Ac overlapped with the 

occupied loci (-0.5 - +1.6kb) by MYB at CpG region of MIR155HG (Figure 4.31). Moreover, we 

detected a positive correlation between the MYB mRNA expression and acetylation status 

(H3K9Ac) at the same three loci: -0.5 kb (r=0.5), +0.1kb (r=0.6) and +1.6 kb (r=0.5) of the 

MIR155HG promoter region (Figure 4.32). Based on our data we could conclude that, 

transcription factor MYB activates the MIR155HG transcription in B-CLL cells. 

 We further determined another epigenetic mark, the H3K4Me3 at MIR155HG 

promoter region in B-CLL (N=9) and in the normal healthy controls (N=8). The presence of 

H3K4Me3 mark associated with active gene transcription by DNA dependent RNA 

polymerase II. Significant enrichment of H3K4Me3 methylation occurred at loci -0.5kb – 

+1.6kb of MIR155HG promoter region (Figure 4.31; lower graph). Taken together, ChIP data: 

acetylation of H3K9 and methylation (H3K4Me3) at the loci +0.1kb – +1.6kb and positive 

correlation with expression of MYB mRNA indicates on direct relationship between MYB and 

transcription activity of MIR155HG in B-CLL (Figure 4.31 and 4.32).     
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Figure 4.31: Histone modifications at MIR155HG promoter in B-CLL cells. 
ChIP was performed on cross-linked chromatin from primary B-CLL (N=9: P250, P254, P255, P143, 
P130, P161, P162, P164, P179, P135, black bars) and control B-cells (N=8, grey bars) using the anti-
H3K9Ac, H3K4Me3 and control anti-rabbit IgG antibody as described in section 3. Material and 
Methods. The level of H3K9 acetylation and H3K4 trimethylation (Y-axis) is expressed relative to 
control IgG antibody and relative to upstream -4.7kb locus with consistent low H3K9 acetylation and 
H3K4 methylation patterns. X-axis indicates positions of amplicons (in kb) relative to TSS. Position of 
CpG is indicated by grey box, exons of human MIR155HG indicated as black boxes. Error bars 
represent standard error of the mean. P values bellow 0.05 are indicated by asterisks.  
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Figure 4.32: Correlation between MYB mRNA level and active chromatin marker H3K9Ac at 
MIR155HG promoter region in B-CLL cells. Scatter plots shows the correlation between MYB mRNA 
expression (Y-axis) and the levels of H3K9Ac (X-axis) at three amplicons at the CpG island of 
MIR155HG. Correlation coefficient R is shown at the centre of each graph. 

 
 
4.3 Mutation status of canonical MYB binding motive at the MIR155HG in B-CLL 

 

MIR155HG gene contains highly conserved CpG islands localized -33bp to -349bp 

upstream of TSS (Figure 3.3 in Section 3. Material and Methods). ChIP data indicated that 

MIR155HG promoter is occupied by MYB (Figure 4.30A) and by luciferase assay we 

confirmed that MYB by its binding stimulates MIR155HG transcription (Figure 4.30B). To test 

whether are some mutations within the promoter region of MIR155HG, we prove the 

sequence of MYB binding site (E-box 2). Our sequential data showed that the canonical MYB 

binding motif (E-box 2) within the CpG region at MIR155HG is not mutated in B-CLL samples 

(P89 and P143) in comparison with the sequence from normal healthy control sample (Ctrl; 

C41) (section 10. Supplement; Supplemental data 10.3).  
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4.4 Global gene expression profile in B-CLL unrolls deregulation of MYB and miR-155 
targets 

  
 The mRNA microarray (Affymetrix Human Genome HG-U133 Plus 2.0 Array) was 

performed on mRNAs isolated from twelve peripheral blood B-CLL samples and five normal 

healthy donor blood samples (CD19+ separated B-cells) (Figure 4.33).  

The clinical characterization of the patients samples is as follows: the most patient 

samples are in the advanced Rai stage II-IV (P33, P86, P136, P143, P249, P250, P254, 255); 

more than half of patients express the CD38 surface marker (P33, P86, P137, P138, P143, 

P155, P250), ZAP-70 (P33, P86, P138, P143, P249, P254, P255) and majority of samples have 

unmutated IgVH gene (P33, P86, P38, P143, P155, P250, P255, P271). Half of patients have 

deleted chromosome 11q22-23 (ATM gene) (P33, P138, P143, P155, P255, P271) and two 

patient samples have deleted 17p13 chromosome (TP53 gene) (P86, P136). The majority of 

patients have deleted 13q14 chromosome (P33, P86, P136, P143, P155, P249, P250, P255, 

P271). Transformation into the Richter`s syndrome (DLBCL) occurred in two patient samples 

(P86 and P143). To summarize this informations, the analyzed patients are in the advanced 

Rai stage (II-IV) and have poor prognosis that is underlined by elevated levels of miR-155 

and MYB and decreased level of PU.1. We detected low expression of miR-155 in only one 

patient (P155) however this is due to remission. 

The target genes of miR-155 and MYB programs in B-CLL is one of our research 

interest. We used six prediction tools for in silico data analysis to determine the miR-155 

target genes (for details see section 3. Materials and Methods). The lower part of heat map 

miR-155 target genes shows significantly decreased levels of many miR-155 targeted 

mRNAs, among them also a key hematopoietic transcription factor PU.1 (SPI1) and its target 

FOS gene (Figure 4.33A). This is in accordance with our data from RT-qPCR (Figures 4.4 and 

4.6). Another important transcription factors that were targeted by miR-155 in B-CLL were: 

1) FOS (FBJ murine osteosarcoma viral oncogene homolog); 2) HIF1A (hypoxia inducible 

factor 1); 3) MAFB (v-maf musculoaponeurotic fibrosarcoma oncogene homolog B (avian)) 

transcription factor regulates hematopoiesis); 4) SATB1 (special AT-rich sequence binding 

protein 1).  

We found several genes whose mRNA was up regulated in B-CLL samples and at the 

same time were targets of miR-155 such as KRAS and SMAD2. Expression of these genes is 
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probably regulated by other compensatory mechanism that is dependent or independent on 

the presence of miR-155.   

Three prediction tools were used for construction of MYB target gene list (for details 

see section: 3. Material and Methods). The MYB target gene list included also typical B-cells 

and B-CLL genes as BCL2, CD5, AICDA (Figure 4.33B). The over production of Bcl2, an anti-

apoptotic protein is due to negative regulation by miR-15/16 cluster that is localized at 

chromosome 13q14. The surface marker CD5 is expressed by B-CLL cells, therefore it is used 

for confirmation of B-cell malignancies. Product of gene AICDA, the AID protein is involved 

in two processes that occur during maturation of B-cells: somatic hypermutation and class-

switch recombination.  

From microarray profiling we conclude, that MYB and miR-155 programs are in B-CLL 

deregulated.                                                                                                                                                                                                       
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       Figure 4.33: Targets of miR-155 and MYB are deregulated in B-CLL. 

(A) Heat map shows selected miR-155 target genes which are differentially expressed between 
B-CLL (N=12; patient codes are indicated on top of the heat maps) and normal B-cells samples (P 
value of t-test <0.05). Genes were selected from union of six lists of either predicted or 
experimentally validated target genes of miR-155 (see section 3. Material and Methods/GSEA). 
(B) Heat map shows selected MYB target genes which are differentially expressed between B-CLL 
(N=12; patient codes are indicated on top of the heat maps) and normal B cell samples (P value 
of t-test <0.05). Genes were selected from three independent sources of MYB target genes (see 
section 3. Material and Methods/GSEA).   
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4.5 In vitro changes at levels of MYB, miR-155 and PU.1 in B-CLL cells show on the tight 
relationship between these molecules 
 

Our previously published data show, that miR-155 and its validated target gene PU.1 

are in B-CLL are differently expressed 144. Our data from ChIP and luciferase assay showed 

that MYB binds and stimulates transcription of MIR155HG gene (Figure 4.30). Therefore we 

performed functional assays where we manipulated the levels of miR-155, PU.1 and MYB to 

asses the existence of relationship between these molecules in vitro (Figures 4.34 – 4.38). 

 For downregulation of MYB levels we transfected Raji cells and primary B-CLL cells 

with siRNA MYB. Figure 4.34 indicates on the downregulation of MYB in both Raji and 

primary B-CLL cells (P88) at 48 hours post transfection. Downregulation of MYB was 

followed by a decreased level of miR-155 in Raji cell line and in primary B-CLL cells. 

Reduction of MYB mRNA and afterwards decreased level of miR-155 were concentration 

dependent (Figure 4.34).  

 

Figure 4.34: Transfection of primary B-CLL cells and Raji cell line with siRNA MYB. 
Transfection of primary B-CLL cells (P88) and Raji cell line with siRNA oligonucleotides inhibiting 
expression of MYB or with negative control oligonucleotides (final concentrations 30 - 100nM). After 
48 hours the total RNA was purified, reverse transcribed and measured by quantitative PCR as 
described in section 3. Material and Methods. The Y-axis represents the relative expression of mRNA 
of indicated genes relative to reference gene: GAPDH (for MYB, PU.1) or RNU44 (for miR-155). Data 
are shown as a fold change (FC) and normalized to mRNA levels obtained in negative control 
transfection experiments (control measurements were set equal to 1). Error bars represent standard 
errors of the mean (SEM). For statistical analysis we used Student`s t-test, where the P values <0.05 
are indicated by one and <0.001 by two asterisks respectively. 

 

To see the effect of in vitro increasement of the MYB mRNA and protein level we 

transiently transfected Raji cells and HeLa cells by expression plasmid that contains MYB 
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cDNA. After 48 hours post transfection of HeLa cells with MYB pcDNA we detected by 

western blot 5-fold overproduction of MYB protein (Figure 4.35A) and dose dependent 

increase of MYB mRNA in Raji cells (Figure 4.35B).  

The in vitro transient changes of MYB levels leads to corresponding changes of miR-

155 expression levels in Raji, HeLa cell line and in primary B-CLL cells (Figure 4.34 and 4.35).  

 

       

Figure 4.35: Transfection of primary B-CLL cells and Raji cell line with MYB expression plasmid. 
(A) The figure shows immunoblotting of MYB protein 48 hours post transfection (HeLa cell line) with 
MYB cDNA encoding plasmid. Protein level was normalized on the levels of ß-actin protein. The 
optical density of both proteins is indicated below the blots. (B) The Raji cells were transfected with 
MYB cDNA encoded by expression plasmid (in two final concentrations: 0.2 µg/µL and 2.0 µg/µL) or 
with a negative control plasmid (pcDNA 3.1). Cells were harvested 48 hours post transfection and 
total RNA was extracted and measured by RT-qPCR. Y-axis represents the relative expression of 
miRNA-155 relative to RNU44 (negative control measurements were set equal to 1). Error bars 
represent standard error of the mean. We used Student`s t-test, the P values <0.05 are indicated by 
1and <0.001 by 2 asterisks respectively.  

 
 

Silencing of MYB or exogenous over production of MYB mRNA influences expression 

level of miR-155. Based on this knowledge we silenced or overproduced levels of miR-155 in 

vitro (Figure 4.36 and 4.37).  

We transfected Raji cell line and primary B-CLL cells (P161) by anti-miR-155 

oligonucleotides at final concentrations 40nM and 100nM. The figure 4.37 indicates on the 

significant decrease of miR-155 mediated by anti-miR-155 oligonucleotides. This decrease of 

miR-155 led to a significant PU.1 rescue (3-fold). These results show on the direct effect of 

miR-155 on the mRNA level of its target gene PU.1 in B-CLL (Figure 4.36).   

  A B 
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Figure 4.36: Transfection of primary B-CLL cells and Raji cell line with anti-miR-155 
oligonucleotides. B-CLL cells (P161) and Raji cell line were transfected with anti-miR-155 
oligonucleotides (in the final concentration 40nM, 100nM) and parallel with negative control 
oligonucleotides (in the final concentration 40nM, 100nM). After 96 hours total RNA was purified, 
reverse transcribed and measured by quantitative PCR as described in Methods, Y-axis represents 
the relative expression of mRNA of indicated genes relative to a reference gene GAPDH (for PU.1) or 
RNU44 (for miR-155). Data are normalized to mRNA levels obtained in negative control transfection 
experiment (negative control measurements were set equal to 1). Error bars represent standard 
error of the mean. We used Student`s t-test, the P values <0.05 are indicated by one and <0.01 by 
two asterisks respectively. 
 

 
 

 

We further tested the effect of aberrant expression of miR-155 on its target gene 

PU.1. The Raji cells were transiently transfected with oligonucleotides of mimic-miR-155 in 

the final concentrations 40nM and 100nM. After 24 hours post transfection we detected 

significant increase (~12-32 fold) of miR-155 expression level and corresponding decrease of 

PU.1 mRNA. Expression changes of miR-155 and PU.1 were concentration dependent 

(Figure 4.36).  
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Figure 4.37: Transfection of primary B-CLL cells and Raji cell line with mimic-miR-155 
oligonucleotides. Raji cell line was transfected with miR-155 oligonucleotides (in the final 
concentration 40nM, 100nM) or with negative control oligonucleotides. After 24 hours total RNA 
was purified, reverse transcribed and measured by quantitative PCR as described in Methods, Y-axis 
represents the relative expression of mRNA of indicated genes relative to a reference gene GAPDH 
(for PU.1) or RNU44 (for miR-155). Data are normalized to mRNA levels measured in negative control 
transfection experiments (negative control measurements were set equal to 1). Error bars represent 
standard error of the mean. We used Student`s t-test, the P values <0.05 are indicated by one and 
<0.001 by two asterisks respectively.   

 

The hematopoietic transcription factor PU.1 acts as dose-dependent mediator in 

maturation of myeloid and lymphoid progenitor cells. Extremely low levels of PU.1 in blood 

cells leads to leukemia. From literature is known that in mouse progenitor cells the PU.1 

expression stimulates production of miR-155 thus initiates differentiation of progenitor cells 

157. We asked whether PU.1 regulates expression of miR-155 in the primary B-CLL cells. B-

cells express low levels of PU.1, we next asked: What cause an exogenous increase of PU.1 

in B-CLL cells? To answer this question, we transduced the primary B-CLL cells (P40) with 

lentiviral vector carrying PU.1 and GFP: PU.1-IRES-GFP lentiviral vector. After 72 hours post 

transduction we sorted out the GFP positive infected cells that contained PU.1-IRES-GFP 

lentiviral vector (MOI=3) and afterwards we measured changes at mRNA level. The figure 

4.38 shows that rescued levels of PU.1 caused an increase of the mRNA of PU.1 (>2-fold) 

and resulted in decrease of miR-155 and MYB levels. We could conclude: manipulation with 

PU.1 level significantly decrease miR-155 expression in primary B-CLL cells.   
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Figure 4.38: Transfection of primary B-CLL cells with PU.1-IRES-GFP lentivirus. 
Graph shows results of transduction of primary B-CLL cells (P40) with PU.1-IRES-GFP lentiviral vector. 
After 72 hours the GFP positivity was measured, GFP positive cells with PU.1-IRES-GFP lentiviral 
vector were sorted out by FACS AriaIIu cell sorter. From GFP positive sorted cells were purified total 
RNA, reverse transcribed and measured by quantitative PCR as described in section 3.Material and 
Methods. The Y-axis represents the relative expression (shown in fold change) of mRNA/miRNA of 
indicated genes relative to reference gene GAPDH (for PU.1) or RNU44 (for miR-155). Data were 
normalized to mRNA levels measured in GFP positive sorted cells that do not contain PU.1-IRES and 
were set equal to 1. Error bars represent standard error of mean. For statistical analysis we used 
Student`s t-test. The P values lower than 0.05 are indicated by one asterisk. 

 

Based on our data, we suppose that regulatory pathway: MYBmiR-155 ──│PU.1 

may play a role in reprogramming of gene expression pattern in B-CLL cells. Taken together, 

in our cohort of B-CLL patients the expression profile of miR-155 and MYB are significantly 

elevated in subset of patient samples. On the other hand, the production of mRNA and 

protein of PU.1 were decreased likely by elevated levels of miR-155. We created our 

working model of B-CLL: the transcription factor MYB stimulates the expression of miR-155 

and over production of miR-155 inhibits the production of PU.1 (Figure 4.39). Based on data 

from PU.1 rescue experiment we could add to our model additional finding: increased level 

of PU.1 inhibits miR-155 and MYB expression. To this model we could not add miR-150 as 

we do not have the data from in vitro functional assays. Finally, the 20% of our B-CLL patient 

samples matched the criteria: elevated miR-155 (>2.5-fold), elevated MYB (>1.5-fold) and 

decreased PU.1 (<0.5-fold) (Figure 4.40).  
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Figure 4.39: Scheme of our working model in B-CLL. The elevated level of MYB enhances the 
production of miR-155 that inhibits mRNA and protein production of PU.1 in B-CLL patient samples.    
 
                             

                             
 
Figure 4.40: Venn diagram of B-CLL patient samples divided accordingly expressions of MYB, PU.1 
and miR-155. The patient samples (NCD19+/PBMC=239) were divided into three groups – accordingly 
mRNA/miRNA expression of miR-155 High (FC>2.5), MYB High (FC>1.5) and PU.1 Low (FC<0.5). The 
48 patient samples expressed high levels of miR-155, MYB and low PU.1 levels. The 20% of our B-CLL 
patient samples (20% (48/239)) fit to our working model (Figure 4.39). The Wenn diagram was done 
using the program by Oliveros, J.C. (2007) VENNY. An interactive tool for comparing lists 
withVennDiagrams.http://bioinfogp.cnb.csic.es/tools/venny/index.html. 
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  5. DISCUSSION 

Chronic lymphocytic leukemia (B-CLL) belongs to the most frequent leukemia with 

recurrent relapses and heterogeneous course. There arise questions as: How to predict in 

time the disease progression? How to control patient response to the therapy? When to 

start with therapy? How the normal B-cell transforms into the leukemic cell is under 

intensive study. In vitro studies on the primary leukemic B-cells help us to understand 

pathogenesis of leukemia in more detail.  

 

5.1 Expression profile of miR-155, PU.1, MYB and miR-150 in relation to the clinical data 

and epigenetic markers 

 

This Thesis focuses on the role of miR-155 in B-CLL and on causes of its aberrant 

expression in B-CLL. The miR-155 was identified by Tam et al., as a B-cell integration cluster, 

while it is activated by proviral insertions in avian leucosis virus-induced lymphomas 147. The 

first report about the elevated level of miR-155 in human leukemia was in Hodgkin’s 

lymphoma cells, described by group of van den Berg 141 and later in B-CLL by Callin et al. 145. 

Here we found 4-32 fold increase of mature miR-155 in primary B-CLL cells as well as in 

separated CD19+ B-CLL cells (Figure 4.1A, B). Similar expression pattern described Fulci et al. 

17. We ask if there is an association between the expression of primary transcript of miR-155 

(pri-miR-155) and its mature form (miR-155). We detected elevated levels of both forms in 

the primary B-CLL cells, even the primary transcript showed higher expression (Figure 4.2A, 

B). Our data are in accordance with others 149. We measured in parallel the levels of miR-155 

in plasma of 10 B-CLL patient samples and observed that the levels of miR-155 in plasma 

and in separated CD19+ B-CLL cells were similar (Figure 4.3A, B). In plasma of B-cell 

lymphoma patients were described elevated levels of miRNAs as miR-155, miR-210, miR-21 

that associated with disease progression 244. Thus, the measurement of microRNAs in 

plasma could be used as biomarker of disease and its progression. Callin et al., found a 

positive association between the high expression of specific miRNAs (miR-155, miR-181a, 

miR-146, miR-4-2, miR-23b, miR-23a, miR-222, miR-221) and shorter interval from diagnosis 

to the first therapy in B-CLL patient samples 145. These findings strongly support importance 

of miR-155 in B-CLL as a new prognostic marker. Furthermore, others determined the miR-
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155 levels in plasma of patients with monoclonal B-lymphocytosis (MBL) that developed into 

B-CLL and concluded that miR-155 represents prognostic marker of MBL to B-CLL 

progression 20. Similarly to this report, we observed that expression of miR-155 during the 

disease progression fluctuates thus we hypothesize that it could be a useful prediction 

marker of disease progression and staging 245. Different levels of miR-155 during disease 

progression document its higher level in advanced Rai stage (II-IV) (Figure 4.13). In B-CLL 

patient samples with advanced Rai stage and after therapy, the expression of miR-155 was 

decreased in dependence on the number of therapy cycles and overall survival (Figure 4.14). 

Moreover, B-CLL patient samples after Rituximab treatment displayed rapid decrease of 

miR-155 expression (Figure 4.28). Among the prognostic parameters of B-CLL belong 

mutation status of IgVH and presence of surface markers ZAP-70 and CD38 246. B-CLL cells 

with unmutated IgVH gene underwent final development prior their entry into the germinal 

center that correlates with poor prognosis and shorter overall survival of B-CLL patients 246. 

We measured the levels of miR-155 in both groups of B-CLL patient samples: unmutated vs. 

mutated IgVH status (Figure 4.18). B-CLL cells with unmutated IgVH genes expressed 

significantly higher levels of miR-155 (Figure 4.18). We divided B-CLL patient samples into 

two groups (favorable and unfavorable) based on the presence of surface markers ZAP-70 

and CD38 and on the IgVH status (Figure 4.21). The favorable group is characterized by 

absence of prognostic surface markers ZAP-70 and CD38 and as well by mutated status of 

IgVH gene in contrast to unfavorable group (where the surface markers are present and 

IgVH gene are unmutated). We detected in the B-CLL cells of patient group with unfavorable 

prognosis IgVH unmutated/CD38+/ZAP-70+ significantly higher expression of miR-155 

(Figure 4.21). For additional prognostic evaluation of B-CLL progression the cytogenetic 

measurement of chromosomal aberrations by FISH is used 28. In the B-CLL samples with 

“high risk”, carrying the deletion of chromosomal region 11q22-23 or 17p13 respectively, 

we detected increased expression of miR-155 (Figures 4.24, 4.25).  

We can conclude that expression of miR-155 reflects the progression of B-CLL as the 

levels of miR-155 are higher in advanced Rai stage and in the unfavorable prognostic group. 

The measurement of miR-155 levels in plasma and in peripheral blood correlates, thus it 

could be used as biomarker of B-CLL. Moreover, the levels of miR-155 after therapy 

decreased, that underlines its importance in clinical use. 
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The validated direct target of miR-155 is a key hematopoietic transcription factor - 

PU.1 (SPI1) 157. The role of decreased PU.1 levels in lymphoid malignancies document data 

showing its down regulation in multiple myeloma and T-cell lymphoma 204,247. Here we 

detected in the primary PBMCs and in CD19+ separated B-CLL cells the 3-4 fold decrease of 

PU.1 mRNA (Figure 4.4). This is in accordance with data of Dr. Mankai research group, 

where authors described low levels of PU.1 in B-CLL cells 248. In the protein lysates of B-CLL 

patient samples we detected one-fold decrease of PU.1 production (Figure 4.5). An early 

transcription factor - FOS (FBJ murine osteosarcoma viral oncogene homolog) is a target of 

PU.1. In our B-CLL patient cohort we found a 4-fold decrease of mRNA FOS (Figure 4.6). The 

low expressions of FOS and PU.1 support our data from genome-wide arrays, demonstrating 

their significant down regulation (Figure 4.33A). We detected overall low levels of PU.1 in B-

CLL patient samples based on the prognostic markers as IgVH status and expression of ZAP-

70, CD38 (Figure 4.18-21). The B-CLL patient samples in advanced Rai stage and after 

therapy showed increased level of PU.1 as compared with Rai stage 0-I (Figure 4.16). This 

increase is much stronger when the patients undergo more therapy regimens and displayed 

more aggressive course of disease (Figure 4.16). Similarly, PU.1 expression decreased 1.5-

fold after Rituximab treatment (Figure 4.28). This underlines also fact, that PU.1 expression 

was significantly decreased in B-CLL patient group with deleted chromosome 17p13 – the 

patient group with high risk of B-CLL (Figure 4.25). Silenced production of PU.1 mRNA and 

protein in B-CLL is due to post-transcriptional inhibition mediated by elevated miR-155. 

Similarly, the mice with low expression of PU.1 (~20%) and  with high expression of miR-155 

developed more aggressive acute myeloid leukemia in comparison to mice with normal 

expressions of PU.1 and miR-155 205. It was also described an opposite interaction between 

miR-155 and PU.1 in the myeloid progenitor cells, where PU.1 works as an inhibitor of the 

miR-155 expression 249.  

This data demonstrate that expression of PU.1 is in B-CLL cells inhibited by aberrant 

expression of oncogenic miR-155. Decrease of PU.1 mRNA level correlates with advanced 

stages and more aggressive  course of B-CLL. Thus, measurement of PU.1 showed prognostic 

and disease progression potential for B-CLL.   

Based on above-mentioned information we asked: What causes this increase of miR-

155 expression in B-CLL cells? It is known, that proto-oncogenes stimulate cellular growth 

and what leads to disease progression 250. Increased copy numbers of the proto-oncogen 
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MYC (v-Myc myelocytomatosis viral oncogene homolog) from the E-box family enhance the 

transformation of B-CLL into Richter`s syndrome 46. The expression of MYC mRNA in our 

patient cohort was not up-regulated as reported by others 251. Since the mRNA level of MYC 

in our patient cohort was only slightly above the mRNA MYC levels of control CD19+ B-cells 

(Figure 4.9), we investigated other members of E-box family – MYB, MYBL1 and MYBL2. The 

mRNA levels of MYBL1 and MYBL2 did not show any significant expression changes in B-CLL 

cells as compared with control B-cells (data not shown). Interestingly, we observed that in a 

subset of B-CLL patients (~40%) there was a 3-fold up-regulation of MYB mRNA (Figure 4.8). 

We also investigated the protein levels of MYB in primary B-CLL cells. In protein lysates of B-

CLL cells we detected up to 72-fold up-regulation of the MYB protein as compared with B-

cells from normal healthy donors (Figure 4.5). Here, for the first time we described the role 

of MYB in B-CLL cells 144. Moreover, we found three putative MYB binding sites at the 

MIR155HG promoter region (Figure 4.29 and Figure 3.3). MYB binds exclusively at three loci: 

-0.5kb; +0.1kb and +1.6kb relatively to transcription start site (TSS) of MIR155HG gene 

(Figure 4.30A and section 3. Material and methods, Figure 3.3). Similarly, it was described 

that MYC binds at the MIR155HG promoter region close to TSS and induces development of 

avian lymphomas 252. Based on our data and published data we supposed that MYB in B-CLL 

as MYC in chicken B-cell lymphomas enhances the transcription of MIR155HG thus leads to 

disease progression 144,252. To answer the question if MYB has ability to stimulate 

transcription of MIR155HG, we generated luciferase reporter constructs either with 

mutation in MYB binding site (E-box 1) or without such mutation (Figure 4.30B and section 

3.Material and Methods; Figure 3.3). The mechanism of activation of MIR155HG by MYB is 

proposed to include acetylation of histone H3K9, a notion supported by others 253. By ChIP 

assay we found that active chromatin marks H3K9Ac and H3K4Me3 are recruited at the 

MIR155HG promoter region (Figure 4.31). The enrichment peak of occupancy by H3K9Ac 

and H3K4Me3 (Figure 4.31) culminated exclusively at three loci (0.5kb; +0.1kb and +1.6kb 

relative to TSS) and this enrichment peak correlates with the MYB mRNA expression in 

primary B-CLL cells (Figure 4.32). Next, we asked whether the putative MYB binding site (E-

box 2) is not mutated in the primary B-CLL cells. After sequencing of this region we did not 

observe any mutations in the putative MYB binding site (see the section 10. Supplement; 

Supplemental data 10.3). The question arises: What causes an aberrant expression of MYB 

in the leukemic B-cells? The possible answer could be that NFĸB by its binding at the first 
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intron of MYB activates the expression of MYB 254. Moreover it was shown that NFĸB 

stimulates expression of miR-155 in B-cells 191 and that MYB is a direct target of NFĸB 254. 

This let us to speculate that initial step in this leukemic process could be some inflammation 

stimuli that enhance expression of both MYB and miR-155 and let the leukemic cell 

accumulate/proliferate. It was shown that the expression of MYBL1 correlates with the 

proliferation of mature B-cells 255 and with the presence of CD38 surface marker on the 

germinal center B-cells 256. Presence of surface marker CD38 on B-cells indicates their active 

proliferation and communication with microenvironment 257. We observed positive 

correlation between expression of CD38 marker (CD38+) and the elevated expression of 

MYB mRNA in B-CLL cells (Figure 4.20). Moreover, we detected elevated expression of MYB 

mRNA in patient samples with unfavorable prognosis – IgVH unmutated/ZAP-70+/CD38+ 

(Figure 4.21). The prognosis of B-CLL progression defines Rai staging system (0-IV). We 

found significantly elevated MYB mRNA in the B-CLL samples with advanced Rai stage 

(Figure 4.13) and with presence of surface marker ZAP-70 (Figure 4.19). The mutation status 

of IgVH genes does not correlate with expression of MYB in B-CLL cells (Figure 4.18). Taken 

together, expression of MYB in B-CLL could be prognostic marker for disease progression as 

well as for control therapy efficacy.  

Between the top 10 MYB targets belongs B-cell specific microRNA - miR-150 72,228. 

MiR-150 is selectively expressed by mature resting B- and T-cells, but not by their 

progenitors 227. MiR-150 regulates differentiation of B-cells through MYB 228. In our cohort 

of B-CLL patients we observed in 30% of patient samples elevated miR-150 (2-3 fold); in 40% 

above control level and in rest 30% decreased miR-150 (Figure 4.7). Our data are in 

accordance with data of other research groups 17,137,258. Authors described a negative 

correlation between expression of miR-150 and prognostic markers IgVH and ZAP-70 

(Figures 4.18, 4.19). Wang et al., showed a reciprocal relationship between expressions of 

miR-155 and miR-150 in the germinal center B-cells, evaluated by in situ hybridization 137. In 

contrast, we did not found such reciprocal relationship between the expressions of miR-155 

and miR-150 in B-CLL samples (Figure 4.10) but we found a rather positive relationship as it 

show figures 4.27 and 4.10. Since the MYB is a target of miR-150, we assumed between 

these molecules any relationship. It was described a reciprocal relationship between 

expression of miR-150 and MYB in the myelodysplastic syndrome (MDS) 259. We measured 
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the levels of both, and unfortunately did not find such reciprocal relationship between miR-

150 and MYB expressions (Figure 4.11). 

 

5.2 Global gene expression profile: miR-155 and MYB target genes in B-CLL  

 

We performed the global gene expression profiling on the B-CLL patient CD19+ B cell 

samples (N=12) and the normal healthy control CD19+ B cells (N=5) to assess the behavior 

of MYB and miR-155 target genes. Our microarray data showed that miR-155 and MYB 

programs are deregulated in B-CLL (Figure 4.33A, B).   

The multifunctional and oncogenic microRNA - miR-155 regulates vast group of 

targets 73. We selected a few miR-155 (N=53) target genes using the gene set enrichment 

analysis (GSEA)(Figure 4.33A). Among the high score validated target of miR-155 belongs the 

well known hematopoietic transcription factor PU.1, that is extremely low in B-CLL (Figure 

4.33A; 4.4). The highest levels of PU.1 mRNA are detected in granulocytes, 

monocytes/macrophages; the lowest levels are in B-cells and practically no expression in 

erythrocytes and T-cells 204,260. An upstream regulatory element (URE) is located at -14kb 

and -17kb upstream of the transcriptional start site of the PU.1 gene and regulates 80% of 

PU.1 expression 261. Mouse model with deleted URE region showed decreased expression of 

PU.1 levels up to 20% that result into acute myeloid leukemia in mice 247 and in T-lymphoma 

and multiple myeloma in humans 204. We moreover observed that PU.1 low (Pu.1 ure/ure) 

mice with increased miR-155 and MYB mRNA levels developed more aggressive acute 

myeloid leukemia 205. Due to high methylation of the PU.1 promoter, expression of PU.1 in 

Hodgkin`s lymphoma cells is decreased. Further decrease of PU.1 in Hodgkin`s lymphoma 

cells induces cell growth and blocks apoptosis. Exogenous increase of PU.1 levels led to 

tumor regression and stabilization of disease in xenograft mouse model just like in primary 

Hodgkin`s lymphoma cells 262. This data emphasize that PU.1 acts as a tumor suppressor in 

myeloid and lymphoid cells. Rescue of PU.1 is a possible therapeutic option for not only 

patients with Hodgkin`s lymphoma 262 but probably also for patients with B-cell 

malignancies. We performed similar experiment, where we exogenously increased the 

levels of PU.1 in the primary B-CLL cells that resulted in significant increase of mRNA PU.1 

and decrease of miR-155 and MYB mRNA levels (Figure 4.38). Based on this data, the in vitro 

manipulation with PU.1 levels in B-cell leukemia/lymphoma provide the PU.1 potentially 
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useful molecule in the future therapy. The mRNA levels of PU.1 target gene - FOS (FBJ 

murine osteosarcoma viral oncogene homolog) were in B-CLL also significantly decreased 

(Figures 4.6 and 4.33A). FOS is an early transcription factor that by interacting with proteins 

from the JUN family forms a transcription factor complex called AP-1. The AP-1 complex 

enhances activity of B-cell receptor signaling and possibly stimulates transcription of 

MIR155HG 187. Upon activation by the BCR authors showed that JunB (major activator) and 

FosB (minor activator) recruit MIR155HG promoter. Thus, BCR-mediated signaling leads to 

the induction of MIR155HG expression in B-cell line Ramos 187. It is known that during tumor 

growth in the hypoxic environment a hypoxia inducible factor 1 (HIF1A) is aberrantly 

expressed. HIF1A regulates vascular endothelial growth factor (VEGF) and thereby is 

associated with tumor angiogenesis and vascularization. High levels of VEGF were detected 

in the microvesicles localized in plasma of B-CLL patients 263. Microvesicles form an 

important part of the tumor microenvironment and are released by malignant cancer cells. 

The amount of microvesicles is higher in cancer cells compared with normal healthy cells. 

Circulating microvesicles in B-CLL patient plasma samples transfer messages to the targeted 

cells that could be critical for disease progression 263. Microvesicles enhance expression of 

HIF1A and stimulates AKT signaling pathway and thus leads to activation of tumor 

environment 263. Here we detected decreased expression of HIF1A mRNA (Figure 4.33B). 

Previous studies have shown that microvesicles released from tumor cells into the blood 

stream of cancer patients contain also miRNAs. Due to abundant presence of RNases in the 

blood stream, most of the secreted miRNAs are localized in the apoptotic bodies, 

microvesicles and exosomes or bound to RNA-binding proteins 264. Zhang Y et al., reported 

that secreted miR-150 in microvesicles from human blood cells or cultured cells can be 

taken up by microvascular endothelial cells and these regulate the expression of MYB, which 

is a known miR-150 target gene 228,265. Furthermore, Pegtel et al., showed that miRNAs 

released from exosomes of EBV-infected B-cells can be taken up by the peripheral blood 

mononuclear cells and then can suppress EBV target genes 266. These findings strongly 

support that at least some of the exported miRNAs are used for cell-to-cell communication. 

Further research is needed to determine the secretory mechanisms of miRNAs; how miRNAs 

are recognized for uptake and what kind of information can be transferred via this process. 

Changes in the miRNA expression contribute to the pathogenesis of hematopoietic 

malignancies, including B-CLL. However, the mechanisms that cause aberrant miRNA 
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transcription is still poorly described. Among the miR-155 targets we found differentially 

expressed MAFB (viral musculoaponeurotic fibrosarcoma oncogene homolog B) mRNA. 

MAFB is hematopoietic transcription factor that cooperates with MYB 267. We showed that 

elevated level of miR-155 decreased the level of MAFB mRNA in B-CLL patients samples 

(Figure 4.33A). Similarly, it was described decreased expression of MAFB in acute and 

chronic myeloid leukemia (AML, CML) patient samples 268 and recently also in the B-cell low 

grade lymphomas 269. Zhang Y et al., showed the relationship between expression of miR-

155 and MAFB in the mouse primary B-lymphoma cells and in the MEC1 B-CLL cell line 269. 

Authors moreover showed that after inhibition of miR-155 in the primary B-CLL cells and in 

the MEC1 cell line cells increased the levels of MAFB mRNA. Thus, miR-155 negatively 

regulates expression of MAFB in B-cell malignancies 144,269. Therefore, we can conclude that 

miR-155 controls proliferation of B-CLL cells through MAFB, which in this case functions as a 

tumor suppressor. Among miR-155 target genes we also detected the chromatin remodeling 

factor SATB1. Han et al., observed over produced proto-oncogene SATB1 (Special AT-rich 

Binding protein-1) in the breast cancer cells and associated it with poor prognosis of 

patients. In the breast cancer was proven the oncogenic potential of miR-155 167,270. MiR-

155 stimulates expression of the tumor suppressor gene FOXP3. In breast cancer FOXP3 

negatively regulates the expression of SATB1 through miR-155. Collective of authors 

McInnes recently described the existence of so-called “feed-forward regulatory loop” 

between FOXP3, miR-155 and SATB1 in human T-cells 271. Thus, miR-155 negatively 

regulates many important genes. We also found some miR-155 target genes up-regulated, 

such as KRAS and SMAD2. Expression of these genes is probably regulated by other 

compensatory mechanism that could be dependent or independent on the presence of miR-

155. It was described that TGF-β induces MIR155HG transcription through binding of 

SMAD4 to the promoter region 167. 

We detected among the MYB upstream targets also the typical B-CLL genes such as 

BCL2, CD5, AICDA, BCL6 (Figure 4.33B). The product of the gene B-cell lymphoma 2 (BCL2) is 

the anti-apoptotic protein Bcl2 as it blocks the release of mitochondrial cytochrome c and 

inhibits the activation of initiator caspase 9. Bcl2 by inhibition of programmed cell death 

prolongs survival of cells 272. Others and we have reported increased mRNA levels of BCL2 in 

B-cell malignancies 144,273. Increased levels of Bcl2 are caused by negative regulation of 

cluster miR15/16 274. Cluster miR-15-16 is localized at 13q14 region, that is often deleted in 
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B-CLL – therefore the levels of miR-15-16 are very low 16. There is no effect of miR-15a and 

miR-16-1 on BCL2 mRNA stability, so the expression of Bcl2 is regulated at the post-

transcriptional level 16. Elevated levels of BCL2 by miR-15-16 cluster down regulation seems 

to be the main regulatory mechanism involved in the pathogenesis of the major fraction of 

B-CLL cells. Because the miR-15-16 cluster miRNAs work as the natural inhibitor of Bcl2, this 

could be used as therapy in cells that over express BCL2 274. We detected in our B-CLL 

patient samples aberrantly expressed the B-CLL surface marker CD5 144,275,276 (Figure 4.33B). 

Presence of CD5 together with CD22 and CD23 markers help to distinguish between MCL 

and B-CLL 28. During the maturation process, B-cells undergo somatic hypermutation (SHM) 

and class-switch recombination (CSR) of immunoglobulin genes 277. The activation induced 

cytidine deaminase (AID, also known as AICDA) is a RNA-editing enzyme that triggers 

antibody diversification by the deamination of nucleotides within the immunoglobulin locus 

277. Germinal center B-cells after CD40 ligand (CD40L) stimulation express AID 277. AID plays a 

key role in maturation of B-cells, where regulates switching between CSR and SHM 278, but 

the exact mechanisms of how the AID acts remains unclear. It was described that B-CLL cells 

after CSR have IgVH genes unmutated and predominately express AID 279,280. This is in 

accordance with our results where the AICDA expression was high in B-CLL patient cells with 

unmutated IgVH genes (Figure 4.33B). Moreover, it was showed in the mouse model that 

overexpression of Aicda mRNA in B-cells result in T- or B-cell leukemia/lymphoma 281. 

Interestingly, the splenic B-cells of miR-155 deficient mice do not expressed Aicda mRNA 157, 

thus miR-155 is essential for Aicda function. Furthermore, the absence of AID mediated by 

miR-155 inhibition resulted in imperfect maturation of B-cells 177. Among the up-regulated 

MYB targets, we detected BCL6 gene, its mRNA level was increased in B-CLL cells (Figure 

4.33B). BCL6 is a multifunctional regulator (mainly repressor) that controls cell cycle, 

apoptosis, lymphocyte differentiation and immune reactions 273,282. BCL6 also participates in 

the chromosomal translocations that occur in DLBCL and in follicular lymphoma 283. As the 

highest level of BCL6 was detected in B-cells, its oncogenic properties have been explored 

mainly in the lymphoid system. Moreover, BCL6 was described as a potential prognostic 

marker for the diagnosis of B-cell lymphomas 284. For terminal B-cell differentiation is typical 

low expression of BCL6, increased level of BLIMP-1 and low level of MYC. This is regulated by 

an over expression of cell cycle regulating transcription factors MAD1 and MAD4 282. Sandhu 

SK et al., observed contradictory results in Eµ-miR-155 transgenic mice. Authors detected 
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consistently lower mRNA, protein levels of Bcl6 in mouse splenocytes and purified B-cells in 

comparison with wild type counterparts. Authors commented such reduction as a result of 

up-regulation of miR-155 targeted pathway Mxd1/Mad1. Thus transcription of BCL6 is 

indirectly modulated by miR-155 through the Mxd1/Mad pathway 285. Human DLBCL is 

divided into two subtypes: the first subtype is germinal center B-cell (GC) DLBCL, where the 

BCL6 levels were increased and miR-155 was decreased; and the second subtype is the 

activated B-cell (ABC) DLBCL that displays an opposite mRNA expression profile 286. These 

data underline the importance of BCL6 in B-cell malignancies; until now mainly detected in 

B-cell lymphomas. We observed that the target of both miR-155 and MYB - the BCL6 mRNA 

is over produced in the B-CLL cells (Figure 4.33B).  

To conclude this paragraph, the miR-155 and MYB program is in B-CLL deregulated 

based on the GSEA analysis. Among the miR-155 target genes were half (hematopoietic TF – 

PU.1, FOS, HIF1A, SATB1) down regulated and other half upregulated (Figure 4.33A). Among 

the MYB targets we detected also the typical B-CLL genes such as CD5 and genes involved in 

apoptosis as BCL2 (Figure 4.33B). 

 

5.3 In vitro functional assays confirmed relationship between miR-155, PU.1 and MYB in B-

CLL cells  

We further performed functional assays to test the influence of different levels of 

miR-155, MYB and PU.1 on the primary B-CLL cells and Raji cell line. By in vitro 

manipulations of these molecules we corroborated the existence of a relationship between 

them (Figures 4.34-4.38). To decrease the elevated levels of miR-155 we transfected Raji 

and primary B-CLL cells by anti-miR-155 what resulted in significant decrease of miR-155 

and increase of PU.1 levels (Figure 4.36). Exogenous increase of miR-155 level by mimic-

miR-155 caused an inhibition of PU.1 expression in dose dependent manner (Figure 4.37). 

The PU.1 rescue experiment showed a direct relationship between levels of PU.1, miR-155 

and possibly MYB (Figure 4.38). ChIP data and luciferase assay showed that MYB binds and 

stimulates MIR155HG in B-CLL cells (Figure 4.30A, B). We further asked if there is 

relationship between MYB and miR-155. Inhibition of MYB mediated by siRNA MYB caused 

dose dependent decrease of miR-155 levels (Figure 4.34) and transfection of MYB 

expression plasmid led to increase miR-155 expression in Raji cells (Figure 4.35). 
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Relationship between expression of miR-155 and MYB further supports significant elevation 

of miR-155 expression in the B-CLL patients overexpressing MYB (Figures 4.26 and 4.10). 

Here we demonstrated that manipulation of miR-155 levels negatively influences 

PU.1 levels and rescue of PU.1 inhibits expression of miR-155 in B-CLL. We further 

confirmed that MYB and miR-155 are in tight relationship in B-CLL by either its inhibition or 

stimulation. 

 

5.4 Working model of B-CLL and future therapy tools 

 

Based on our functional data we designed a working model for B-CLL. This model 

describes relationship between miR-155, MYB and PU.1 (Figure 4.39) verified by our 

experiments and confronted by published data (Figure 5.1). Here we described for the first 

time stimulatory role of transcription factor MYB on the MIR155HG transcription in primary 

B-CLL cells (Figures 4.30A, B and 4.39, 5.1). Elevated level of miR-155 inhibits production of 

both PU.1 mRNA and protein in B-CLL (Figures 4.4, 4.37). Inhibition of miR-155 increased 

PU.1 mRNA (Figure 4.36). In support of this, Vigorito et al., in miR-155 deficient mice 

detected elevated levels of PU.1 and after PU.1 rescue the levels of miR-155 decreased in in 

vitro model 157(Figure 5.1). This notion is in accordance with our PU.1 rescue experiment, 

where we significantly decreased miR-155 (Figures 4.38, 4.39 and 5.1). Interestingly, we 

found negative relationship between expression of MYB and PU.1, where PU.1 rescue 

decreased MYB expression in B-CLL (Figure 4.38). Zhao et al., found that MYB inhibits PU.1 

expression by ChIP-sequencing method 287. Elevated expression of miR-150 inhibits MYB 

expression 228. Finally, 20% of our patient cohort fit the criteria of described working model: 

>2.5-fold increase miR-155, >1.5-fold increase MYB and <0.5-fold decrease of PU.1 

expression (Figures 4.40; 5.1). Based on these results, therapy of B-CLL could be in future 

directed to development of synthetic molecules - oligonucleotides that will inhibit 

production of MYB (siRNA MYB) or miR-155 (anti-miR-155).  

Due to aberrant expression of miR-155 in numerous leukemia and cancers and its 

impact on the prognosis, disease progression, miR-155 could be a key target for future 

cancer therapy. The first transgenic mouse model (Eµ-mmu-miR-155) confirms that miR-155 

acts on development of B-cell leukemia/lymphoma 182. MiR-155 expressing mice initially 

displayed pre-leukemic B-cell proliferation in spleen and bone marrow followed by 
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splenomegaly and progression in B-cell lymphoma within seven months 182. Recent work on 

miR-155 knock-in mouse model (tTA-miR-155 ROSA26) with elevated levels of miR-155 

proved an anti-miR-155 therapy as possible treatment of B-cell lymphoma 184. The majority 

(~60%) of knock-in mice with induced expression of miR-155 developed in five months 

lymphoma. In contrast, animals without induction of miR-155 expression did not develop 

aggressive lymphoma. After one week of treatment miR-155 knock-in mice with lymphoma 

by anti-miR-155 oligonucleotides encapsulated in nanoparticles led to the visible 

improvement e.g. delay in tumor growth. Efficacy of anti-miR-155 treatment was dose 

dependent and coated nanoparticles may improve tumor cells uptake that led to increased 

therapy efficacy 184. These data underline the anti-cancer potential of anti-miR-155 

nanoparticles in therapy of B-cell malignancies. It has been noted that “antagomirs” (the 

single-stranded RNA analogues complementary to the specific miRNA) or other chemically 

modified oligonucleotides need an appropriate vehicle to achieve efficient inhibition 288. Up 

to now, such experiments with delivery of anti-miR-155 were done only in mice models 184 

or  in vitro on the primary B-CLL cells (Figure 4.36; and 269). All these data collectively suggest 

that approaches based on interruption of miR-155 function may have therapeutic ability in 

treatment of B-cell malignancies.  

The miR-155 acts cooperatively with other proto-oncogene or tumor suppressor 

gene in driving the leukemogenesis; here we found that one such cooperating gene is proto-

oncogene MYB in B-CLL 144. Our data support the importance of MYB proto-oncogene in 

enhancing the miR-155 production in primary B-CLL cells (Figure 4.30B). In normal 

hematopoiesis, MYB regulates cell proliferation and differentiation 212. Higher levels of MYB 

were observed in acute myeloid 235 and lymphoid leukemia 217 but not in B-CLL. Recently 

become rediscovered the role of MYB during leukemogenesis. While the mRNA of MYB is 

often aberrantly produced or duplicated in leukemia – the targeted inhibition of MYB can 

have wide clinical uses. The importance of the MYB transcription factor can be confirmed by 

the fact that homozygous null mice die at the embryonic stage due to inability to switch 

from fetal to adult erythropoiesis; hence, the mice became anemic 224. Authors Lieu and 

Reddy demonstrated reduced proliferative capacity, an aberrant, accelerated differentiation 

of hematopoietic stem cells (HSCs) due to disruption of MYB gene in mouse model. 

Hematopoiesis was also impaired it resulted in decreased production of neutrophils, 

monocytes, B-cells, erythrocytes and megakaryocytes in mice. These data indicate that MYB 
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is a key regulator of self-renewal and differentiation of HSCs 289. Expression of MYB is 

required for leukemia maintenance while MYB suppression in mice resulted in delayed 

disease progression, induced by clearance of leukemia cells from all infiltrated organs and 

led to the complete remission 290. This sensitivity to MYB inhibition could be applied also to 

human leukemia cells because the inhibition of MYB in mouse model was much more 

efficient than mimicking the conventional AML therapy used in humans. The authors found 

that MYB suppression leads to eradication of aggressive AML without any impact on the 

normal myelopoiesis 291. The mRNA and protein half-life should be considered in the target 

gene selection. The MYB mRNA, as well as its encoded protein, has an estimated half-life of 

approximately 30 to 50 minutes 292 that is an important factor for efficiency of mRNA 

targeting. Luger SM et al., showed that mRNA and protein levels correlate. Further, it is clear 

that in the absence of mRNA to translate, the protein levels of MYB decline rapidly 293. In 

2008, a trial study with official title “Infusional MYB Antisense Oligodeoxynucleotide in 

Advanced Hematological Malignancies” was started. The aim of the study was evaluation of 

MYB antisense oligonucleotides in treatment of advanced hematologic malignancies as B-

CLL, chronic myeloid leukemia and multiple myeloma (http://clinicaltrialsfeeds.org/clinical-

trials/show/NCT00780052). Results of this study have not been published yet, but results 

seem to be very promising for leukemia patients. Based on all the evidence presented 

above, anti-microRNA or small interfering mRNA based synthetic molecules seem to be very 

promising therapy tools in leukemia treatment.  

 Aim of the Thesis was to explore and understand the molecular mechanism of miR-

155 and its target genes: MYB, PU.1 in B-CLL and seek for association between expressions 

of studied molecules and prognosis/progression of B-CLL. Importance of miR-155 in 

prognosis/progression confirmes its increased level in advanced Rai stage and in patient 

group with unfavorable prognosis. We shown that aberrant expression of miR-155 in B-CLL 

inhibits both mRNA and protein levels of its target gene PU.1. Here we answer the question 

what causes an aberrant expression of miR-155 in B-CLL and if miR-155 can be used as 

biomarker of B-CLL progression. We provide evidence that MYB binds and stimulates 

MIR155HG in B-CLL. Moreover, the MYB recruited loci at MIR155HG promoter region 

overlapped with pattern of active epigenetic marks as H3K9Ac and H4K4Me3. It should be 

noted that the MYB elevation in B-CLL is possibly important not only for the up-regulation of 

http://clinicaltrialsfeeds.org/clinical-trials/show/NCT00780052
http://clinicaltrialsfeeds.org/clinical-trials/show/NCT00780052
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miR-155 but also for the regulation of additional target genes, including BCL2 and others 

known as deregulated in B-CLL. As well as to look on the global gene expression arrays to 

find out if the miR-155 and MYB programs are deregulated in B-CLL. Finally, we created the 

working model of B-CLL based on the in vitro functional assays on the primary B-CLL cells. 

The criteria of this model fullfiled 20% of B-CLL patients samples in our cohort. 

 

 

 

Figure 5.1: Working model of MYB-miR-155-PU.1 in B-CLL. This model describes the relationship 

between aforementioned molecules based on our results and published data. 
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6. CONCLUSIONS 
 

 We detected significant overproduction of both primary transcript of miR-155 and its 

mature form in B-CLL patient cells as compared with the normal healthy B-cells. 

Expression of miR-155 in the peripheral blood cells and in plasma was similar. The B-

CLL patient samples with advanced Rai stage (II-IV) and with unfavorable prognosis 

(ZAP-70+/CD38+/IgVH unmutated) showed significantly higher expression of miR-

155 in comparison with the patient group with favorable prognosis. Further, 

expression of miR-155 was significantly higher in B-CLL patient group with deletions 

of chromosome 11q22-23 and 13q14. Expression changes of miR-155 in patient 

groups with trisomy of chromosome 12 or with deletion of 17p13 chromosome 

weren’t statistically significant. 

 

 In our B-CLL patient samples we detected low levels of PU.1 at both mRNA and 

protein level. In the group of patient samples with advanced Rai stage (II-IV) and 

after several therapy regimens, the PU.1 mRNA was significantly increased. 

Expression of PU.1 mRNA in both (favorable and unfavorable) prognostic patient 

group remains overal low. Expression of PU.1 mRNA in the B-CLL patient cells with 

deletion of 17p13 chromosome was significantly decreased, while expression 

changes of PU.1 in another cytogenetic subgroups weren’t statistically significant. 

 

 In subset of ~40% of B-CLL patient samples, we detected elevated level of MYB 

mRNA. The protein level of MYB was in selected B-CLL patient lysates overproduced 

as compared to lysates from normal healthy B-cells. The ChIP assay data showed that 

MYB binds at the three specific loci at the promoter region of MIR155HG. Our data 

from luciferase assay showed that MYB enhances the transcription of miR-155 in B-

CLL cells. In the B-CLL patient samples with unfavorable clinical outcome and with 

advanced Rai stages (II-IV) we detected increased expression of MYB mRNA. The 

expression changes of MYB mRNA in our B-CLL patient samples based on 

cytogenetics weren’t statistically significant. 
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  Another B-CLL specific microRNA is miR-150, that is also involed in the maturation of 

B-cells. In subset of ~30 % of B-CLL patient samples we detected elevated expression 

of miR-150. We observed significantly decreased expression of miR-150 in B-CLL 

patient samples with advanced Rai stage (II-IV) and with unfavorable prognosis. 

Expression of miR-150 was significantly decreased in B-CLL patient samples with 

deletions of 11q22-23 and 17p13.  

 
 The in vitro functional assays on Raji cell line and primary B-CLL patient B-cells 

(where expression level of miR-155 was manipulated by anti-miR-155 or mimic miR-

155 and MYB by siRNA MYB or pcDNA MYB), confirmed dependence of miR-155 

expression to MYB and expression of PU.1 to levels of miR-155. Furthermore, we 

were able to push down the expression level of miR-155 by increasing the level of 

PU.1 in PU.1 rescue experiment. By microarray approach we have shown that miR-

155 and MYB programs are deregulated in B-CLL.  

 

 Generally, our data indicate relationship between miR-155, MYB and PU.1 in B-CLL. 

We created working model of this relationship in B-CLL patient cells. About 20% of B-

CLL patients from our cohort match this model. Finally, it should be concluded that 

the read out of miR-155, MYB and PU.1 ratio by RT-qPCR could be used as an 

additional and reliable prognostic marker of B-CLL disorder progression.  
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7. SUMMARY 
 

This PhD Thesis is focused on the detection of the expression changes of two 

microRNAs related to B-CLL (miR-155 and miR-150) and two transcription factors (PU.1 and 

MYB) involved in B-cell maturation process. 

Our expression data confirmed elevated levels of miR-155 in the B-CLL patients` 

peripheral blood mononuclear cells as well as in the blood plasma. We detected increased 

expression of miR-155 in patient samples with advanced Rai stage (II-IV) and with 

unfavorable B-CLL clinical outcome. From cytogenetic point of view, the B-CLL cells with 

deletion of chromosome 17p13 expressed more miR-155.  

The expression level of PU.1 fluctuates during the maturation of blood cells; 

however, when the level of PU.1 expression declines under 20%, the leukemia develops. We 

detected significant decrease of PU.1 mRNA expression and protein level in B-CLL cells. In B-

CLL cells of patients with advanced Rai stage (II-IV), the level of PU.1 mRNA was decreased; 

however, in cells of patients with therapy regimens, the level of PU.1 mRNA was increased. 

The difference between expression of PU.1 mRNA in the B-CLL patient samples with 

favorable and unfavorable prognosis was not statistically significant. Interestingly, B-CLL 

patient samples with deletion of 17p13 chromosome displayed significantly lower 

expression of PU.1 mRNA.  

Transcription factor MYB plays a crucial role during the development of B-cells. 

Aberrant expression of MYB leads to lymphoproliferative disorders. Up to now, the role of 

MYB has been described only in acute and chronic myeloid leukemia but not in B-CLL. We 

observed increased expression of MYB mRNA and protein in a subset of B-CLL patient 

samples (~40%). By ChIP assay, we further detected that MYB specifically binds at the 

promoter region of MIR155HG and thereby stimulates the transcription of miR-155 in B-CLL 

cells. In B-CLL patient samples with advanced Rai stage (II-IV) the expression of MYB was 

higher as in patients with Rai stage 0-I. The group of B-CLL patient samples with unfavorable 

prognosis displayed higher expression of MYB in comparison to favorable prognosis group. 

The expression of MYB mRNA in B-CLL patient samples did not correlate with cytogenetic 

aberrations. 
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Another B-CLL specific microRNA is miR-150, that is also involed in the maturation of 

B-cells. The miR-150 plays role in B-CLL progression. Expression of miR-150 decreased with 

the disease progression: lower miR-150 expression was detected in cells of patients with 

advanced Rai stage (II-IV) and with unfavorable prognosis. Similarly, expression of miR-150 

was significantly lower in the B-CLL patient samples with deletions of 11q22-23 and 17p13. 

 Our data, generated from in vitro functional assays, indicated the existence of tight 

relationship between miR-155, PU.1 and MYB molecules in B-CLL cells. We created the 

working model of such tight relationship. Briefly, the expression of MYB molecule stimulates 

the expression of miR-155 molecule. The abberantly expressed miR-155 inhibits the PU.1 

expression. This leads to B-CLL progression.  

The read out of miR-155, MYB and PU.1 ratio by RT-qPCR could be used as an  

reliable prognostic marker of B-CLL progression. Furthermore, the restoration of the normal 

balance between studied molecules in leukemic B-cells could be used as an future therapy 

of B-CLL.   
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Other sources of literature (internet links): 
  
[1] http://moon.ouhsc.edu/kfung/jty1/HemeLearn/HemeCase/PB-001-Ans.htm (B-CLL cells 

blood smear picture) 

[2] http://www.ncbi.nlm.nih.gov/gene/114614 (MIR155HG gene) 

[3]http://www.ebi.ac.uk/ebisearch/search.ebi?query=MYB&db=allebi&requestFrom=search

Box&submit=Search (MYB gene) 

[4] http://ncicll.com/(WHO B-CLL classification) 

[5]http://www.stemcell.com/en/Products/All-Products/RosetteSep-Human-B-Cell-

Enrichment-Cocktail.aspx (Rosette separtion scheme) 

[6]http://www3.appliedbiosystems.com/cms/groups/mcb_support/documents/generaldoc

uments/cms_041461.pdf (TaqMan qRT-PCR) 

[7] http://bioinfogp.cnb.csic.es/tools/venny/index.html (Wenn diagram) 

[8] http://clinicaltrialsfeeds.org/clinical-trials/show/NCT00780052 (MYB trial study, 2008) 
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miR-155 target gene databases:  

PicTar: http://pictar.mdc-berlin.de/ 

Targetscan: http://www.targetscan.org/  

Microrna: http://www.microrna.org/ 

Microcosm: http://www.ebi.ac.uk/enright-srv/microcosm/ 

TargetsDiana: http://diana.cslab.ece.ntua.gr/tarbase/ 

GSEAset: http://www.broadinstitute.org/gsea/msigdb/cards/AGCATTA,MIR-155.html  

 

MYB target gene databases:  

Set MYB TARGETS GENEGO: http://www.genego.com/ 

Set MYB TARGETS RULAI.CSHL.EDU: http://rulai.cshl.edu/cgi-bin/TRED/ 

 

Our GSEA data are available at: http://www1.lf1.cuni.cz/~vkulv/gsea 
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http://www1.lf1.cuni.cz/~vkulv/gsea
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10. SUPPLEMENT 
 
Supplemental table 10.1: Clinical and expression data of patient cohort from General 
Faculty Hospital in Prague (at the last page of the Thesis). 
 
Supplemental table 10.2: Clinical and expression data of patient cohort from University 
Hospital and Medical Faculty Brno (at the last page of the Thesis). 
 
 
 
Supplemental table 10.3: Clinical and expression data of healthy donors (controls) from 
Institute of Hematology and Blood Transfusion in Prague. 

Sample info Expression (fold change) 

Code 
of 

sample 
Date of 
sample 

 
Gender 

Donors 
age at 

the 
date of 
sample 

Sample 
origin 
(PBMC 

or 
CD19+) 

miR-
155  PU.1 MYB 

miR-
150 

pri-miR-
155 FOS MYC 

C63 24.8.2009 M 36 PBMC NA NA 0,51 NA ND ND ND 

C76 10.9.2010 M 22 PBMC 0,61 NA 1,68 NA ND ND ND 

C77 10.9.2010 M 20 PBMC 1,17 1,17 1,78 NA ND ND ND 

C83 27.10.2010 M 22 PBMC NA NA NA NA ND ND ND 

C81 26.10.2010 M 31 PBMC NA NA 0,21 NA ND ND ND 

C84 27.10.2010 M 22 PBMC NA NA 0,61 NA ND ND ND 

C93 6.2.2010 M 31 PBMC 0,44 0,83 0,72 0,99 ND ND ND 

C94 6.2.2010 M 29 PBMC 0,34 1,58 0,73 0,98 ND ND ND 

C95 6.9.2010 M 38 PBMC 0,46 0,77 0,60 1,01 ND ND ND 

C96 7.9.2010 M 38 PBMC 0,42 0,65 0,47 1,02 ND ND ND 

C51  14.7.2010 M 38 CD19+ 1,11 0,44 NA 1,53 0,04 0,61 0,74 

C52 20.7.2009 M 28 CD19+ 0,87 0,33 NA NA NA 0,58 1,05 

C53  20.7.2009 M 35 CD19+ 0,98 0,66 0,00 0,76 0,01 0,77 0,72 

C55  27.7.2009 M 30 CD19+ 0,62 2,78 0,00 0,59 0,02 3,23 2,07 

C56  8.3.2009 M 35 CD19+ 2,40 0,93 0,06 2,30 0,06 0,31 1,29 

C57  8.3.2009 M 29 CD19+ 1,30 0,56 NA 1,69 0,03 0,13 1,71 

C58  8.10.2009 M 31 CD19+ 0,44 0,47 0,01 1,07 0,00 1,16 1,88 

C60  17.8.2009 F 29 CD19+ NA 0,70 NA NA 0,38 0,25 0,35 

C62  24.8.2009 M 43 CD19+ 0,77 0,67 0,01 0,89 0,03 1,34 0,51 

C75 10.6.2009 F 25 CD19+ 0,93 0,55 0,01 NA 0,70 0,57 1,01 

C46 29.6.2009 M 35 CD19+ 0,46 2,95 0,01 NA 1,45 NA 0,57 

C47 29.6.2009 M 28 CD19+ 0,78 0,97 0,00 NA 0,13 1,18 0,09 

 
 
 
 
 
 
 



155 

 

Supplemental material 10.1: Restriction maps of plasmids 
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Supplemental material 10.2: Detailed protocols. 
 
Isolation of peripheral blood mononuclear cells (PBMCs) by Ficoll – Paque: 
1) Dilute the peripheral anti-coagulated blood with sterile 1xPBS in ratio 1:1. 

2) Load carefully diluted blood sample on the Ficoll-Paque PREMIUM layer in ratio 1:1. 

3) Centrifuge at 2000rpm for 25min at 18-20°C; with brake off and use swing out rotor. 

4) Harvest and wash the PBMCs (“foggy ring”) with sterile 1xPBS (3x volume) at 1500rpm for 

6min at 4°C. 

5) The separated PBMCs can be now used for culturing or RNA/miRNA or DNA isolating or 

can be frozen for future experiments.  

 
Isolation of CD19+ B-cells by RosetteSep kit: 
1) To the 1mL of the whole anti-coagulated blood add 50µL of RosetteSep®Human B Cell 

Enrichment Cocktail and incubate for 20min at room temperature. (NOTE: If you have frozen 

blood cells, thaw the cells and wash with sterile 1xPBS supplemented with 2% of FBS; then 

follow the protocol).  

2) Dilute the sample with sterile 1xPBS with 2% of FBS in ratio 1:1 and mix gently. 

3) Load carefully the diluted blood sample on the Ficoll-Paque PREMIUM layer in ratio 1:1. 

4) Centrifuge at 2000rpm for 20min at 18-20°C; with brake off; with swing out rotor. 

5) The desired CD19+ B-cells will be at the interlayer between Ficoll-Paque and plasma. 

6) Wash desired CD19+ B-cells with sterile 1xPBS (3x volume) at 1500rpm for 6min at 4°C. 

6) The desired CD19+ B-cells (untouched) can be used for culturing or RNA/miRNA/DNA 

isolation or can be frozen for future experiments.  

 
Lysis of erythrocytes by ammonium chloride (NH4Cl): 
1) Warm the solution of NH4Cl up to 37°C. 

2) To the 1mL of peripheral blood add 49mL (50x) of warmed up NH4Cl and invert the tube 

several times, incubate at 37°C for 15-20min (in shaking incubator). 

3) Centrifuge the cells after lysis at 1500rpm for 10min at 4°C. 

4) Aspirate the supernatant and the cell pellet resuspend in 10mL of 1xPBS and centrifuge as 

in the step 3. 

5) Resuspend the cell pellet in the appropriate culture medium or start the isolation of RNA, 

DNA or just freeze the cell pellet for later analysis. (NOTE: freezing medium contains 90% of 

FBS and 10% of DMSO). 
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Magnetic separation of CD19+ B-cells by MACS magnetic beads: 
1) Determine the cell number and wash cells with MACS buffer (5mL). 

2) Pellet the cells by centrifuging at 1500rpm for 10min at 4°C.  

3) To the cell pellet add 7µL of anti-CD19 FITC antibody and incubate on ice for 20min. 

4) Wash out the unbound antibody by MACS buffer (3mL), centrifuge at 1500rpm for 10min 

at 4°C. 

5) Add 80µL of MACS buffer to the cell pellet and 20µl of FITC beads per 107 cells. 

6) Mix well and incubate for 15min in the refrigerator by occasional vortexing. 

7) Wash with 3mL of MACS buffer 1500rpm for 10min at 4°C. 

8) Aspirate the supernatant completely and resuspend the cell pellet in 500µL of MACS 

buffer. 

9) Prepare appropriate magnetic separator and magnetic column.  

10) Rinse the column with appropriate volume of MACS buffer (LS column with 3mL of 

MACS buffer) and apply the cell suspension onto the empty column reservoir. 

11) The fraction of unlabeled cells will pass through the column; collect this fraction into 

appropriate tube.  

12) Wash the column with MACS buffer 3 times (LS column with 3x3mL of MACS buffer). 

13) Apply 5mL of MACS buffer onto empty column reservoir and flush out the labeled CD19+ 

B cell fraction. 

14) Centrifuge both fractions (labeled, unlabeled) at 1500rpm for 10min at 4°C and prepare 

aliquots (10x103 cells) for flow cytometry measurement. 

 
Transfection of primary B-CLL cells by lipofection reagent DMRIE-c: 
1)  Grow the cells to ~80% of confluency and determine the cell number. 

2) Prior the transfection with DMRIE-c wash the cells (0.8x106 cells/mL/6 well) with OPTI-

MEM medium (2mL). 

3) Centrifuge the cells at 1500rpm for 6min at 18-20°C and resuspend in 400µL of OPTI-

MEM medium/well. 

4) Prepare transfection reactions with the final volume 100µL/well. Transfection reaction 

contains: DMRIE-c (2µL/reaction) + oligonucleotides (MYB siRNA (30nM) or anti-miR-155 

(40nM) or negative control oligonucleotides) + pmaxGFP plasmid (2µg/reaction). Fill up the 

reaction with OPTI-MEM medium to get the final volume 100µL/well.  
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5) Apply the transfection reactions on the cells and incubate for 5hrs in humidified 

atmosphere with 5% CO2 at 37°C. (NOTE: the transfection reactions should by applied very 

slowly – by drop-wise). 

6) After 5hrs of incubation add the equal volume of cultivation IMDM medium 

supplemented with 20% FBS and 1% of MEM non-essential amino acids (500µl). 

7) After 48-96hrs harvest the cells, isolate RNA and perform RT-qPCR. 

 
Transfection of HeLa cells by lipofection reagent JetPEI: 
1) Grow the cells in confluence ~60% and seed 80x103 cells per 24 well tissue plate in 1mL of 

culture medium (RPMI-1640 supplemented with 10% of FBS). 

2) Prepare transfection reactions in the final volume of 100µL.  

3) To the 50µL of 150mM NaCl solution add 1.5µg of plasmid DNA. Vortex gently and spin 

down briefly. 

4) To the 50µL of 150mM NaCl solution add 2µL of jetPEI solution. Vortex gently and spin 

down briefly. 

5) Mix the prepared solutions, vortex and spin down. Incubate for 25min at room 

temperature. 

6) Apply 100µL of the prepared solution drop-wise onto the cells and culture cells in 

humidified atmosphere with 5% CO2 at 37°C. 

7) After 48hrs harvest the cells, prepare cell lysates and perform the reporter gene assay 

and western blot. 

 
Transfection of Raji cells by Amaxa nucleofector: 
1) 24hrs prior to transfection determine the cell number, seed in concentration 2x106 cells 

per 1/6 well plate and culture in IMDM medium supplemented with 10% of FBS, 1% of MEM 

non-essential amino acids, but without antibiotics! 

2) On the next day, wash the cells with 1xPBS (2mL). 

3) Centrifuge the cells at 400g for 6min at 18-20°C and resuspend in 2mL/well of IMDM 

medium supplemented with 10% of FBS and 1% of MEM non-essential amino acids.  

4) Prepare the working nucleofection solution by mixing the nucleofection solution and 

supplement in ratio 4.5:1. 

5) Combine the 100µl of nucleofection solution with: oligonucleotides [MYB siRNA (30nM, 

100nM)/anti-miR-155 (40nM, 100nM)/mimic-miR-155 (40nM, 100nM) and appropriate 
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negative control oligonucleotides] + pmaxGFP plasmid (2µg/reaction) or MYB and control 

pcDNA plasmids (0.2µg, 2µg).  

6) Transfer the cell/RNA/DNA suspension into certified cuvette (sample must cover the 

bottom of the cuvette without air bubbles), close the cuvette with the cap, insert into 

nucleofector and select the appropriate nucleofector program M-013 for Raji cell line. 

7) Take the cuvette out of the holder once the program is finished and transfer cells 

immediately into prepared warmed up IMDM medium. 

8)  Incubate cells in humidified atmosphere with 5% CO2 at 37°C until analysis. 

9) Harvest the cells after 24hrs for mimic hsa-miR-155 transfection and 48hrs for siRNA 

MYB, anti-miR-155 and plasmid MYB transfections. Isolate RNA and perform RT-qPCR. 

 
Transduction of primary B-CLL cells with lentivirus: 
1) Plate 1x106 B-CLL cells* in 24 well plates.  
 
2) For sensitizing of cells add polybrane in the final concentration 8µg/ml. 
 
3) Add the lentivirus with 3 MOI (MOI in range 3-10). 
 
4) Spin the plate for 30min at 1000g 32°C, incubate overnight in the 37°C incubator. 
 
5) Change the culture medium for cells on the next day. 
 
6) After 72hrs harvest cells, isolate RNA and perform RT-qPCR. 
 
* Cell concentration depends on the cell type, lower is better, because lower cell 
concentration could increase the MOI. 
 
Calculation of MOI: If 60µL of virus (virus titer: 5x107 TU/mL (transduction unit/mL)) was 
added to 1x106 cells, the MOI will be 3. 
 
MOI = virus amount (mL) x virus titer (TU/mL)/cell number 
MOI = 0.06 mL x 5x107TU/mL /1x106=3 (e.g.). 
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Luciferase reporter assay: 
1) Prepare the luciferase reagent by combining the Dual-Glo® Luciferase buffer with Dual-

Glo Luciferase substrate in the ratio 1:100. Mix by inversion until the substrate is thoroughly 

dissolved. 

2) Resuspend the cells in the prepared reagent (75µL/well). (NOTE: Reagents should be 

added 10min before quantifying the luminescence. For the maximal light intensity, samples 

should be measured within 2hrs of reagent addition.) 

3) In 10min measure the luminiscence on the luminometer. 

 

Control measurements for CD19 purity after MACS separation: 
1) Wash the cells (10x103 cells) with 1xPBS/1% BSA buffer; centrifuge at 400g for 6min at 

4°C. 

2) Add 7µL/tube of CD19 FITC antibody to the cell pellet and incubate on ice for 20min.  

3) Wash the cells with 3mL of 1xPBS/1% BSA buffer; centrifuge at 400g for 6min at 4°C. 

4) Resuspend the cell pellet in 300 µL of 1xPBS/1% BSA buffer. 

5) Add 1µL of PI and immediately measure on FACS. 

 
AnnexinV staining:  
1) Harvest cells (~1x106 cells) and wash in 1xPBS; centrifuge at 400g for 6min at 4°C. 

2) Resuspend the cell pellet in 3mL of 10x diluted binding buffer; centrifuge at 400g for 6min 

at 4°C. 

3) Resuspend cell pellet in 100µL of 1x diluted binding buffer and add 5μL of FITC 

conjugated AnnexinV, incubate at room temprature for 10-15min in dark. 

4) Wash cells in 1x binding buffer and centrifuge at 400g for 6min at 4°C. 

5) Resuspend cells in 200 μL of 1x binding buffer and proced FACS analysis. 
 
Western blot: 
1) Harvest cells (3x106); centrifuge at 2000rpm for 5min at RT. 

2) Wash the cells with 1xPBS (500µl); centrifuge at 2000rpm for 5min at RT. 

3) Lyse the cells in RIPA buffer (200µl) and incubate on ice for 12min. In time intervals 3, 6, 9 

and 12min during the incubation time vortex the samples for 15sec. 

4) Sonicate the protein lysates on the Sonic Dismembrator with a micro tip (50% amplitude, 

3 cycles for 1sec, pause 5sec). Immediately after sonication procedure place the samples on 

ice for 10min. 



163 

 

5) Determine the protein concentration on Biophotometer. Use Bradford reagent for 

protein measurement and construct the calibration curve. 

6) To the 20ng protein lysate add 6µL of NuPAGE LDS sample buffer (4x) and fill up with the 

NuPAGE MOPS SDS buffer to the final volume 24µL. 

7) Denaturate proteins at 70°C for 10min and immediately load (20ng per lane) on the 

NuPAGE 10% Bis-Tris gel in NuPAGE MOPS SDS (1x) running buffer. The running conditions 

are as follows: 80V (15min) - 120V (1hr), 125mA, for 90min. 

8) After running the gel, transfer gel into prepared iBlot gel transfer stacks and blot the gel 

on the PVDF membrane (program: P2, blotting time 7min). 

9) To block the unspecific binding, incubate the membrane with 7.5% non-fat milk in 

PBS/0.1% Tween 20 for 45min on the shaking platform.  

10) Incubate with primary antibody (anti-PU.1, anti-MYB, anti-actin) in concentration 1:600 

(PU.1, c-MYB) and 1:100 (β-actin) diluted in  7.5% non-fat milk in PBS/0.1% Tween 20 at 4°C 

overnight. 

11) Wash the membrane 3x with 7.5% non-fat milk in PBS/0.1% Tween 20 for 20min on the 

shaking platform. 

12) Incubate with secondary antibody in concentration 1:4000 diluted in 7.5% non-fat milk 

in PBS/0.1% Tween 20 at room temperature for 1hour on the shaking platform. 

13) Wash the membrane 3x with 7.5% non-fat milk in PBS/0.1% Tween 20 for 20min on the 

shaking platform. 

14) For detection of signal use ECLPlus Western blot system; mix an equal volume of 

detection solution 1 with detection solution 2 allowing sufficient total volume to cover the 

membrane. 

15) Dry the excess of wash buffer from the membrane and place with protein side up on 

wrap; pipette the mixed detection reagent on to the membrane and incubate for 1min at 

room temperature. 

 16) Dry the excess of detection buffer from membrane and place with protein side down on 

to a fresh piece of wrap; wrap up the blots and gently smooth out any air bubbles. Place the 

wrapped blots with the protein side up in an X-ray film cassette. 

17) Place a sheet of autoradiography film (Hyperfilm ECL) on top of the membrane, close the 

cassette and expose for e.g. 15 sec. Develop the first piece of film immediately, and on the 



164 

 

basis of its appearance estimate how long to continue the exposure of the second piece of 

film. 

18) After developing of film store the membrane wet and wrapped in a refrigerator at 4°C. 

 
 
Chromatin immunoprecipitation (ChIP): 
1) Harvest the cells (~1x106) and crosslink with formaldehyde in the final concentration 1% 

(3mL into 30mL of medium) for 15min at room temperature. 

2) Stop the crosslink reaction by adding 2.5M glycine to a final concentration of 0.15M 

(2.6ml to 50ml mixture); incubate on ice for 5min. 

3) Centrifuge the cells at 1900g for 4min at 4C, remove supernatant and leave on ice for 5 

min. Resuspend and rinse the pellets in pre-cold 1xPBS (app. 7.5ml) by up and down 

pipetting several times and leave on ice for about 30min.  

4) Centrifuge at 4000g for 3min to collect pellets. Prepare fresh lysis buffer I, II, III and keep 

them on ice. (NOTE: during all following steps the cell pellets should be done on ice!) 

5) Add to the pellet 10mL of lysis buffer I; mix and centrifuge at 400g for 10min at 4C. 

6) Add to the pellet 10mL of lysis buffer II; mix and leave on ice for10min. 

7) Centrifuge at 400g for 10min at 4C; add 2mL of lysis buffer III to the pellet, mix by short 

vortex and transfer into 15mL polypropylene tube and follow to sonication step or freeze at 

-80C. 

8) Sonicate the samples in a dry ice-ethanol cooling bath with 40% intensity (amplitude) in 

500 cycles of 2sec of pulses to yield the 200-600bp DNA fragments. Centrifuge at 400g for 

10min at 4C. 

9) Add proteinase K buffer (170µL to 20µL of sonicated aliquot), 10µg/tube of RNAse, 

10mg/mL of proteinase K and incubate overnight at 37C. 

10) Add 20µL of 3M sodium acetate (pH=7), 2µL of glycogen, 500µL of 96% ethanol and 

incubate at -20C for 15min. 

11) Centrifuge at max. speed for 15min at 4C, carefully remove supernatant, wash the 

pellets with 500µL of 70% ethanol; Centrifuge at max. speed for 10min at 4C and dry the 

DNA pellets on air. 
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12) Dissolve DNA pellets in 25µL of TE buffer by incubating at 37C for 30min at shaking 

platform. Run an aliquot of sample on 1% agarose gel to check for presence of 200-300bp 

DNA bands. 

13) Add 5µL of protein A and G beads to the 90µL of immunoprecipitation buffer (IP); 

centrifuge at 5000g for 5min at room temperature. Resuspend pellet with beads in 150µL of 

IP buffer and add 30µL of BSA (10mg/mL). Incubate for 2hrs at 4C on shaking platform. 

14) Clear the chromatin by adding 105µL of IP buffer and 10µL of protein A and G beads, 

gently shake and centrifuge at 400g for 5min at 4C. 

15) To the pellet add 30µL of IP buffer and incubate for 4 hrs (or overnight) at 4C on 

shaking platform. 

16) Add 1-2µg of antibody per tube (MYB, H3K9acetyl, H3K4methyl and control antibody 

(IgG)) and incubate for 2hrs at 4C on shaking platform. 

17) Centrifuge at 14000g for 10min at 4C. Take out 100µL of supernatant as “DNA input” 

control. 

18) Add 100µL of chromatin per 100µL of antibody-beads and add 800µL of IP buffer, 

incubate overnight at 4C on shaking platform. 

19) On the next day continue the incubation at room temperature for 1hour on the shaking 

platform. 

20) Centrifuge at 5000g for 5min at 4C, remove supernatant. Add 900µL of IP buffer and 

centrifuge again. 

21) Remove 950µL of supernatant and add 1mL of wash buffer. 

22) Centrifuge at 6000g for 6min at 4C, remove supernatant. Add 900µL of IP buffer and 

centrifuge again. Repeat step 21 an 22. 

23) Add 1mL of wash buffer II and centrifuge at 6000g for 6 at 4C, remove supernatant. 

24) Resuspend pellet in 100µL of proteinase K buffer and add 1µL of proteinase K, 10µL of 

RNAse per 100µL of buffer. Incubate at 37°C for 30min, overnight at 55°C and 2hrs at 65°C 

to reverse crosslink. 

25) Dilute 10% of input into 2%, 1%, 0.5% ,0.25%, 0.125% and 0.0625% for the preparation 

of standard curve. Perform the qPCR. 
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Isolation of mRNA/miRNA from PBMCs, B-cells, Raji cells by TRIzol reagent: 
1) Harvest the cells (~5x106) and centrifuge at 1500rpm for 6min at room temperature. 

2) Decant the supernatant completely and resuspend (by up and down pipetting) the cell 

pellet in 1mL of TRIzol reagent until it´s clear (use syringe with needle), leave for 5 min on 

the bench to complete the cell lysis. In this step you can stop and store the sample at -80°C 

or continue RNA isolation. 

3) To the TRIzol cell suspension add 200µL of chloroform (CH3Cl) (20% of the total volume), 

cap the tube securely and vortex for 20sec. Centrifuge at 11000rpm for 15min at 4°C. 

4) Aspirate the clear upper phase (~500µL) into a new eppendorf tube and mix with the 

same volume of CHCl3, vortex and centrifuge at 11000rpm for 10min at 4°C. 

5) Aspirate the upper aqueous clear phase and transfer into new eppendorf tube and add 

1µL of linear acrylamid, 500µL of isopropanol, vortex and spin shortly, and precipitate at -

20°C overnight. 

6) On the next day vortex the tube/s shortly and centrifuge at max. speed (14000rpm) for 

30min at 4°C. 

7) Decant the supernatant, add 1mL of 75% ethanol, vortex gently and centrifuge at max 

speed (14000rpm) for 5min at 4°C. 

8) Decant the supernatant, spin down shortly and decant the rest of liquid completely, leave 

the pellet to dry on the air for 3-5 min covered with a paper towel. (NOTE: do not over dry 

the RNA pellet!). 

9) Resuspend the RNA pellet in 10-20µL of nuclease free water with RNAse inhibitors (1%) 

and analyze the RNA quantity by Nanodrop and quality by Bioanalysator Agilent. Store the 

RNA at -80%. The good quality RNA should have following parameters: OD A260/A280 as 

well as the OD A260/A230 ratio=2.0 (or close to 2.0), the RIN (RNA Integrity Number) should 

be more >7. 
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Isolation of miRNAs from B-CLL patient plasma samples by miRNAeasy kit: 

1) Thaw the plasma on ice. (NOTE: The plasma samples should be kept on ice until step 6!). 

2) Cool down the centrifuge for 4°C. Replace 250μl of plasma into 1.5 ml sterile tube. Spin 

down at 3000g (5500rpm) for 5min at 4°C (keep the supernatant).  

3) Transfer 200μl of plasma to a new sterile 1.5 ml tube and add 1mL of QIAzol (5x volume) 

and vortex for 30sec. 

4) Incubate for 5min at room temperature (RT) (20-25°C).  

5) Add 200μl of chloroform (in the equal volume to the starting material), vortex and 

incubate for 2min at RT.  

6) Centrifuge at 12000g (10500rpm) for 15min at 4°C.  

7) Heat the centrifuge to RT.  

8) Transfer the upper aqueous phase (~600µL) into 2ml tube.  

9) Add 900µL of ethanol (1.5 volume of obtained aqueous phase) and 25µl of glycogen, mix 

by pipetting. Incubate the samples for 10min at 4°C. 

10) Transfer the 750μl to the RNAeasy mini spin column, centrifuge at 13000g (11500rpm) 

for 30sec at RT, discard the flow-through. Repeat this step until whole sample is used – 

remix the suspension by pipetting before loading it again.  

11) Discard the flow-through. Wash the column with 700μl of RWT, centrifuge at 13000g 

(11500rpm) for 1min at RT.  

12) Discard the flow-through. Wash the column 3x with 500μl of RPE, centrifuge at 13000g 

(11500rpm) for 1min at RT. (NOTE: repeat this step 3x). 

13) Transfer the column into a new collection tube and spin down at 16000g (14000rpm) for 

2min at RT. Leave the tubes open for 2min.  

14) Transfer column to the new 1.5 mL eppendorf tube and carefully add 50μl of RNase-free 

water, the liquid should be centered on the membrane!  

15) Incubate for 2min at RT, then centrifuge at 16000g (14000rpm) for 2min at RT.  

16) Store the isolated miRNA at -80°C. 

The isolated miRNA can be directly used for reverse transcription reaction and followed by 

TaqMan RT-qPCR.  
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Supplemental material 10.3: Data from sequencing of B-CLL patient samples and control 
sample. 
 

MYB F in E-box 2 (from +128bp to +607bp): ACCAAGGAGACGCTCCTGGCACTG 
 
C41 (+128) GTCTCGCGCT-CCGCCCGCCTTTCCTCTCTTGAACGTGGCAGGGACGCCGGGGGACTTCS 
P89             GTCTCGCGCTCCCGCCCGCCTTTCCTCTCTTGAACGTGGCAGGGACGCCGGGGGACTTCS 
P143            -TCTCGCGCT-CCGCCCGCCTTTCCTCTCTTGAACGTGGCAGGGACGCCGGGGGACTTCS 
 
C41        GTGCGAGGGTCACCGCCGGGTTAACTGGCGAGGCAAGGCGGGGGCAGCGCGCACGTGGCC 
P89        GTGCKAGGGTCACCGCCGGGTTAACTGGCGAGGCAAGGCGGGGGCAGCGCGCACGTGGCC   
P143      YTGCGAGGGTCACCGCCGGGTTAACTGGCGAGGCAAGGCGGGGGCAGCGCGCACGTGGCC 
 
C41        GTGRAGCCCGGCCTGGTCCCGCGCGCGCCTGCGGGTGCCCCCTGGGGACTCAGTGGTGTC   
P89        GTGGAGCCCGGCCTGGTCCCGCGCGCGCCTGCGGGTGCCCCCTGGGGACTCAGTGGTGTC  
P143      GTGGAGCCCGGCCTGGTCCCGCGCGCGCCTGCGGGTGCCCCCTGGGGACTCAGTGGTGYC 
 
C41        SCCTCGCCCGGGACCAGAGATTGCGCTGGATGGATTCCCGCGGGCAGAGGCAGGGGGAAG   
P89        GCCTCGCCCGGGACCAGAGATTGCGCTGGATGGATTCCCGCGGGCAGAGGCAGGGGGAAG   
P143      GCCTCGCCCGGGACCAGAGATTGCGCTGGATGGATTCCCGCGGGCAGAGGCAGGGGGAAG 
   
C41         GAGGGGTGTTCGAAACCTAATACTTGAGCTTCTTTGCAAAGTTTCCTTGGATGGTTGGGG   
P89         GAGGGGTGTTCRAAACCTAATACTTGAGCTTCTTTGCAAAGTTTCCTTGGAKGGTTGGGG   
P143 GAGGGGTGTTCGAAACCTAATACTTGAGCTTCTTTGCAAAGTTTCCTTGGATGGTTGGGG 
 
C41        ACGTACCTGTATAATGGCCCTGGACCAGCTTCCCTGTTGGAGTGGCCAGAGAAGTGTGTA   
P89        ACGTACCTGTATAATGGCCCTGGACCASCTTCCCTGTTGGAGTGGCCAGAGAAGTGTGTA   
P143      ACGTACCTGTATAATGGCCCTGGACCAGCTTCCCTGTTGGAGTGGCCAGAGAAGTGTGTA 
            
C41        AAACACACTAGAGGGGCAGGGTGGAAAAAGAGACTGCCTTCAAAACTTGTATCTTTTCGA   
P89        AAACACACTAGAGGGGCAGGGTGGAAAAAGAGACTGCCTTCAAAACTTGTATCTTTTCWA 
P143      AAACACACTAGAGGGGCAGGGTGGAAAAAGAGACTGCCTTCAAAACTTGTATCTTTTCGA 
          
C41 (+548) TTTCATTTTGAAAAATAACTACAAATCTATTTTAATTTTACAAAGTTAGACTCATAGCAT   
P89            TTTCATTTTGAAAAW-AACTA-AA-TCTATTTTAATTTTACAAAGTTR-ACTC-TAGY-T   
P143          TTTCATTTTGAAAAATAACTACAAATCTATTTTAATTTTACAAAGTTAGACTCATAGCAT 
                                                                                                      
Mutations: 
+188 (P143) 
+546 (P89) 
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MYB R in E-box 2 (from +119 to -361bp): CGTCCCTGCCACGTTCAAGAGAGG 

 
C41 (+119)   GCGTACCTGCAGTGCCAGGAGCGTCTCCTTGGTTCCCCGCGCTTGCTCTGCGGGCGGCTC 
P89                  G-G-AC-TGCAG-G-CA-GA-CGTCTCCTTGGTTCCCCGCGCTTGCTCTGCGGGCGGCTC 
P143                GCGTACCTGCAGTGCCAGGAGCGTCTCCTTGGTTCCCCGCGCTTGCTCTGCGGGCGGCTC 
 
C41        GGGGCTCCGCTATCCGCTCCCTTCCCGAGGCTGCAGGCGGCGCTGGGCCCGGGCTCGGCC 
P89         GGGGCTCCGCTATCCGCTCCCTTCCCGAGGCTGCAGGCGGCGCTGGGCCCGGGCTCGGCC 
P143       GGGGCTCCGCTATCCGCTCCCTTCCCGAGGCTGCAGGCGGCGCTGGGCCCGGGCTCGGCC 
 
C41        GCGCACAGGAAGCCCGCGCCTGCGAACGTGCGACCCTTTTATAACTCACTTGTGACTCAT 
P89        GCGCACAGGAAGCCCGCGCCTGCGAACGTGCGACCCTTTTATAACTCACTTGTGACTCAT 
P143      GCGCACAGGAAGCCCGCGCCTGCGAACGTGCGACCCTTTTATAACTCACTTGTGACTCAT 
 
 
C41       AACCGACCAGGCGCCTTTTCTGCAACCCCCCCCCCCTTCYCCCCCCYCCKGCCKGTTYTK 
P89        AACCGACCAGGGGCCTTTTCTGCAACCCCCCCCCCCTTCTCTCCCCCCCTC---------  
P143      AACCGACCAGGCGCCTTTTCTGCAACCCCCCCCCCCTTYYCCCCCCYCCKGCYKGTTYTK 
 
C41       GGAACCWAMAGYTKGAAAAAYTTTTTTYTTTTWAAAGRAAAARYCAAAAAASCCCMSCSC 
P89         ------------------------------------------------------------ 
P143      GGAACCWAMAGYTTGAAAAAWTTTTTTCTTTTWAAAGRAAAAGYCRAAAAAGCCCASSSC  
 
C41       CSGGGWAGKKGGGGTTTYCCCCTTTCCCTTTCCCGGGGGYCWTGGGGGGGGGGTTTTTTT 
P89         ------------------------------------------------------------  
P143       CCGGGRAGKKGGGGTTTYCCCCTTTCCCTTTCYCGGGGGKCATTGSGKGGGTGRTTTTTT 
            
C41        TTTCTCCCAACMCMCSCCGGGTACTTTCCTGCCCCGCGCCSCAGGGYTTGGGCTCCAACC 
P89         ------------------------------------------------------------ 
P143      TTTCTCCCAACMCMCSCCGGGTACTTTCCTGCCCCGCGCCSCARGGSTTGGGCTCCCACC 
 
C41 (-311)   TTTGTTCTTAAAAAAAAGGAAACSCCTTCAAAKGASGGCCCAAASGTCSCCCGAACTTTC  
P89                 ------------------------------------------------------------ 
P143               TTTGTTCTTAAAAAAAAGGAAACSCCTTCAAAKGACGGCCCAAAMGTCSCCCGAACTTTC 
  
Mutations: 
-234 (P143) 
-242 (P143) 
-244 (P143) 
-307 (P143) 
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