
Charles University in Prague 

Faculty of Science 

Department of Experimental Plant Biology 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The role of DSE (Dark Septate Endophytes) in plant 

communities in forest ecosystem 

 

Role DSE (Dark Septate Endophytes) v rostlinném 

spole čenstvu lesního ekosystému 

 

MASTER THESIS 

 

Tereza Lukešová 

 

Praha 2013 

 



2 

 

Supervisor: 

RNDr. Martin VOHNÍK, Ph.D. 

 

Consulting supervisors:   

prof. RNDr. Jana ALBRECHTOVÁ, Ph.D. 

Mgr. Petr KOHOUT 

 

Support:  

GAUK 320311 Grant Agency of Charles University (2010-2013) The role of DSE 

(Dark Septate Endophytes) in plant communities in forest ecosystem. PI: Tereza 

Lukešová 

 

MSMT CR COST OC10058 (2010-2012) Roots, ectomycorrhizas and 

belowground carbon bilance of Norway spruce forests in Central Europe. PI: prof. 

RNDr. Jana Albrechtová, Ph.D. 

 

Short Term Scientific Mission 11171-FP0803 COST (September 2012) 

 

 

 

 

 

 

 

 

Prohlašuji, že jsem závěrečnou práci zpracovala samostatně a že jsem uvedla 

všechny použité informační zdroje a literaturu. Tato práce ani její podstatná část 

nebyla předložena k získání jiného nebo stejného akademického titulu. 

 

Tereza Lukešová 

 

14th August 2013 in Prague 



3 

 

Abbreviations 

AM – arbuscular mycorrhiza 

AMF – arbuscular mycorrhizal fungi 

CMN – common mycorrhizal network 

EcM - ectomycorrhiza 

EcMF – ectomycorrhizal  

EeM - ectendomycorrhiza 

EeMF – ectendomycorrhizal fungi 

ErM – ericoid mycorrhiza 

ErMF – ericoid mycorrhizal fungi 

DSE – dark septate endophytes 

OrM – ochideoid mycorrhiza 

OrMF – orchideoid mycorrhiza 

PAC - Phialocephala fortinii – Acephala applanata species complex  



4 

 

Acknowledgement 

I would like to thank my supervizor RNDr. Martin VOHNÍK, Ph.D. and my 

consulting supervisors prof. RNDr. Jana ALBRECHTOVÁ, Ph.D and Mgr. Petr 

KOHOUT for their help and guidance. My special thank belongs to the University 

of Aberdeen (Scotland, UK), Dr. David JOHNSON for his warm welcome in 

Aberdeen and patience in answering my silly questions. I am most grateful to 

Laura M. KRUITBOS and Rosnida TAJUDDIN for help and guiding me throught 

the lab in Aberdeen and the University of Aberdeen (Scotland, UK). I also thank to 

Dr. Ivano BRUNNER from Swiss Federal Institute for Forest, Snow and 

Landscape Research WSL, Birmensdorf, Switzerland and Dr. Ülle PÜTTSEPP 

from Estonian University of Life Sciences Institute of Agricultural and 

Environmental Sciences Tartu Estonia, for their help with STSM of COST Action 

FP0803 project. I would like to acknowledge my colleagues from the Institute of 

Botany ASCR especially to Mgr. Kristýna VAZAČOVÁ, Doc. RNDr. Zuzana 

MÜNZBERGOVÁ, Ph.D. and RNDr. Tomáš FRANTÍK, Csc. for their help with 

statistical analyses. All people from the Department of Mycorrhizal symbioses 

were very supportive and sympathetic especially Mgr. Mária ŠURINOVÁ and our 

laboratory cat FAZOLE. My great thanks belong to my parents and whole family 

for support and understanding.  



5 

 

Table of content  

Abbreviations.......................................................................................................... 2 

Acknowledgement .................................................................................................. 4 

Table of content...................................................................................................... 5 

Abstrakt .................................................................................................................. 8 

Abstract ................................................................................................................ 10 

Key words............................................................................................................. 12 

Hypothesis tested................................................................................................. 13 

Aims of the present study..................................................................................... 13 

2. Literature review............................................................................................... 15 

2.1 (Hi)story of plant-fungus symbioses............................................................ 15 

2.2 Endophytes – life inside plants ................................................................... 16 

2.2.1 Mycorrhizal endophytes ....................................................................... 17 

2.2.2 Clavicipitaceous endophytes................................................................ 21 

2.2.3 Non-clavicipitaceous endophytes......................................................... 21 

2.3 Endophytic continuum and symbiotic lifestyle switching ............................. 22 

2.4 Dark Septate Endophytes ........................................................................... 24 

2.4.1 DSE species......................................................................................... 24 

2.4.2 Geographical range.............................................................................. 26 

2.4.3 Colonization pattern ............................................................................. 26 

2.4.4 Influence of the mycobiont on the plant................................................ 27 

2.5 Common mycorrhizal networks (CMN) and the role of fungal endophytes . 29 

3. Materials and methods ..................................................................................... 31 

3.1 Experiment 1. In vitro resynthesis experiment with P. abies, V. myrtillus and 

10 different DSE species .................................................................................. 31 

3.1.1 Experimental design Plant and fungi cultivation ................................... 32 

3.1.2 Data collection...................................................................................... 33 

3.2 Experiment 2. In vitro peat resynthesis experiment with V. myrtillus and 10 

different DSE species on peat substrate........................................................... 34 

3.2.1 Plant and fungi cultivation .................................................................... 34 

3.2.2 Experimental design............................................................................. 34 

3.2.3 Data collection...................................................................................... 35 



6 

 

3.2.4 Data processing ................................................................................... 35 

3.3 Experiment 3. Pilot in vitro resynthesis experiment with P. abies and A. 

macrosclerotiorum labelled by 33P to trace nutrient transfer from fungus to plant

.......................................................................................................................... 35 

3.3.1 Plant and fungi cultivation .................................................................... 35 

3.3.2 Inoculation of P. abies seedlings by fungal strains............................... 36 

3.3.3 Labelling design ................................................................................... 37 

3.3.4 Data collection...................................................................................... 37 

3.4 Experiment 4. In vitro resynthesis experiment with P. abies and A. 

macrosclerotiorum labelled by 13C and 15N isotopes ........................................ 37 

3.4.1 Plant and fungi cultivation and inoculation ........................................... 37 

3.4.2 Labelling design ................................................................................... 38 

3.4.3 Data collection...................................................................................... 39 

3.4.4 Data processing ................................................................................... 39 

3.5 Experiment 5. In vitro experiment with B. pendula and DSE (A. 

macrosclerotiorum, P. fortini s.s., A. applanata) ............................................... 40 

3.5.1 Plant and fungi cultivation .................................................................... 40 

3.5.2 Experimental design............................................................................. 40 

3.5.3 Data collection...................................................................................... 40 

3.5.4 Data processing ................................................................................... 41 

4. Results ............................................................................................................. 42 

4.1 Experiment 1. In vitro resynthesis experiment with P. abies, V. myrtillus and 

10 different DSE species .................................................................................. 42 

4.2 Experiment 2. In vitro resynthesis experiment with V. myrtillus and 10 

different DSE species on peat substrate........................................................... 45 

4.3 Experiment 3. Pilot in vitro resynthesis experiment with P. abies and A. 

macrosclerotiorum labelled by 33P to trace nutrient transfer from fungus to plant

.......................................................................................................................... 48 

4.4 Experiment 4. In vitro resynthesis experiment with P. abies and A. 

macrosclerotiorum labelled by 13C and 15N isotopes ........................................ 50 

4.5 Experiment 5. In vitro experiment with B. pendula and DSE A. 

macrosclerotiorum, P. fortini s. s. and A. applanata.......................................... 54 

5. Discussion........................................................................................................ 59 



7 

 

5.1 Methodical approaches............................................................................... 59 

5.1.1 Picea abies and Vaccinium myrtillus as model plants .......................... 59 

5.1.2 Experimental design of in vitro experiments......................................... 60 

5.1.3 Use of stable and radioactive isotopes in study of plant-fungal 

relationship.................................................................................................... 61 

5.2 Discussion of the results ............................................................................ 61 

5.2.1 Colonization patterns of ten DSE species in roots of P. abies and V. 

myrtillus ......................................................................................................... 61 

5.2.2 Influence of colonization by ten different DSE species on V. myrtillus 

growth ........................................................................................................... 63 

5.2.3 33P transport to P. abies via mycelium of DSE A. macrosclerotiorum .. 64 

5.2.4 Nutrient transport between P. abies and A. macrosclerotiorum ........... 65 

5.2.5 Colonization patterns of selected DSE species in roots of B. pendula 

and their effect on growth.............................................................................. 66 

5.3 DSE species and their role in forest ecosystems .................................... 67 

6. Conclusions...................................................................................................... 68 

7. Bibliography...................................................................................................... 69 

8. Attachments ..................................................................................................... 83 



8 

 

Abstrakt 

Všechny rostlinné druhy žijí v symbióze s endofytními houbami – mohou s nimi 

vytvářet mutualistické, komenzální či parazitické symbiózy. Symbióza skupiny 

kořenových endofytů nazývaných podle jejich tmavých přehrádkovaných hyf Dark 

Septate Endophytes (DSE) a rostlin je na rozdíl od mykorhizní symbiózy často 

opomíjená, i když její role pro rostlinná společenstva může být velmi významná. 

Navzdory tomu, že se DSE vyskytují ve všech terestrických ekosystémech a byli 

izolováni i z vodních ekosystémů, je jejich význam pro hostitelské rostliny stále 

nejasný. Výsledky dosud publikovaných studií jsou nejednoznačné – některé 

připisují DSE pozitivní vliv na růst hostitelské rostliny a jiné negativní. Důvodem je 

hlavně komplikovaná taxonomie a obtížné určení jednotlivých kryptických druhů, 

které jsou morfologicky nerozlišitelné. Díky zahraniční spolupráci se nám podařilo 

zkompletovat ucelenou sbírku DSE, především z komplexu kryptických druhů 

Phialocephala fortinii s.l. – Acephala applanata (PAC), která zahrnuje nejběžnější 

druhy vyskytující se v lesních společenstvech.  

Cílem této diplomové práce bylo popsat chování jednotlivých druhů DSE 

v kořenech rostlin typických pro lesní ekosystémy střední Evropy a objasnit jejich 

fyziologický vliv na hostitele. Pro určení kolonizačního potenciálu zkoumaných 

DSE jsme využili in vitro resyntézní pokusy a pro sledování toku látek mezi 

houbou a rostlinou značení radioaktivními i neradioaktivními izotopy.  

Všechny použité izoláty DSE kolonizovaly kořeny všech tří hostitelských 

rostlin (Betula pendula, Picea abies a Vaccinium myrtillus) v in vitro podmínkách. 

Žádný z námi použitých izolátů kryptických druhů nevytvářel mykorhizní struktury 

a jejich vliv na růst hostitelských rostlin byl velmi podobný. Blízký příbuzný 

kryptických druhů PAC, endofyt Acephala macrosclerotiorum byl schopen tvořit 

ektomykorrhizní struktury u P. abies. Ačkoliv byl endofyt A. macrosclerotiorum 

schopen chovat se jako slabý parazit, měl pozitivní vliv na biomasu V. myrtillus a 

B. bendula a u P. abies se nám podařilo pozorovat tok 33P z endofyta do rostliny. 

Ačkoliv jsou kryptické druhy PAC často izolovány z mykorhizních kořenů, 

naše výsledky ukazují, že nevytvářejí v kořenech V. myrtillus a P. abies 

mykorhizní struktury. Nechovají se tedy jako mykorhizní houby, ale pouze se 

společně s nimi vyskytují v kořenech. Význam této koexistence je stále 

nedostatečně prozkoumán. Podle výsledků dosažených v mé práci důvodem pro 
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variabilitu pozorovaných životních strategií DSE není rozdílnost v chování 

kryptických druhů – všechny měly negativní vliv na biomasu hostitelské rostliny. 

Ne všechny druhy DSE se ale chovaly jako slabí parazité, druh A. 

macrosclerotiorum vytvářel mykorhizní struktury a měl pozitivní vliv na růst rostlin. 

Čím byl tento prospěšný vliv DSE způsoben, zůstává nejasné, ale naše výsledky 

napovídají, že endofyt může mít přímý vliv na transport živin do rostliny. 
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Abstract 

All plants live in symbiosis with fungal endophytes – they can form mutualistic, 

commensal or parasitic symbioses. Symbiosis of root endophytes, called for their 

darkly pigmented and septated hyphae dark septate endophytes (DSE), and 

plants has been often overlooked although its role for plant communities can be 

very important. Despite their ubiquitous presence in roots of terrestrial and also 

aquatic plants the influence of DSE on their host plants is still unresolved. Results 

of previous studies are inconsistent - some reported that DSE have positive effects 

on their host plant growth and some negative. The main reason for this 

inconsistency might be their complicated taxonomy and difficult identification of 

different cryptic species which are morphologically indistinguishable. We were able 

to complete a unique collection of the most common DSE species, mainly 

members of the Phialocephala fortinii – Acephala applanata species complex. The 

collection includes the most common DSE species isolated from roots of forest 

plant communities. 

The goal of my thesis was to describe behaviour of DSE in roots of typical forest 

plants and elucidate their physiological influence on host plants. In vitro 

resynthesis experiments were used to observe root colonization patterns. Nutrient 

flow between the plant and the fungus was traced by radioactive and non-

radioactive isotopes. 

All tested isolates colonized roots of all three host plants (Betula pendula, Picea 

abies and Vaccinium myrtillus) in in vitro conditions. No mycorrhizal structures 

were formed by any of isolates of the Phialocephala fortinii s. l. cryptic species and 

their influence on growth of their hosts was very similar. A close relative of the 

cryptic species, Acephala macrosclerotiorum, was able to form ectomycorrhizal 

structures in roots of P. abies. Although the endophyte A. macrosclerotiorum acted 

as a weak parasite in P. abies, it had positive influence on biomass of V. myrtillus 

and B. pendula and 33P flow was detected from the fungus to the host plant. 

Although P. fortinii s. l. cryptic species have been often isolated from mycorrhizal 

roots our result show that they do not form mycorrhizal structures in roots of P. 

abies and V. myrtillus. They thus do not behave as mycorrhizal fungi but they live 

together with mycorrhizal fungi as their co-associates – the importance of this 
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coexistence is still unresolved. According to the findings of my work the reason for 

high variability of life strategies of DSE observed so far is not the difference in 

behaviour of the cryptic species. All species used in our experiments had negative 

influence on host plant biomass. Not all of the DSE species were acting as weak 

parasites – endophyte A. macrosclerotiorum formed mycorrhizal structures and 

had positive influence on host plant growth. What are the mechanisms of the 

positive influence of DSE remains unclear but our results suggest that endophytes 

can have direct influence on nutrient transport to the host plant. 
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1. Introduction 

Fungal root endophytes are colonizers of most plant species in the world, but 

despite their ubiquitous occurrence, their ecophysiological role for hosts is very 

unclear. One of the most common groups of root enophyted forms dark and 

septated hyphae and is, thus, called the Dark Septate Endophytes (DSE). They 

are commonly isolated from ectomycorrhizal (EcM) (Vohník et al., 2013) and 

ericoid mycorrhizal (ErM) roots (Vohník & Albrechtová, 2011). My thesis is mainly 

focused on two forest species – Picea abies L. Karst as an EcM plant and 

Vaccinium myrtillus L. as ErM forming plant and their interactions with DSE. And 

Betula pendula L. was choosen as a common pioneering tree species in P. abies 

forests. 

Thanks to international cooperation a unique collection of DSE species was 

colleceted in the Institute of Botany where my thesis was worked out, the isolates 

were identified and were available for the use in the studies performed under my 

Thesis project. Isolate of A. macrosclerotium was kindly provided by Babette 

Münzenberger Institute of Landscape Matter Dynamics, Leibniz-Centre for 

Agricultural Landscape Research (ZALF), Germany. Isolates of Phialocephala 

fortinii s.s. and Phialocephala turiciensis were identified by Christoph R. Grünig 

Institute of Integrative Biology (IBZ), Forest Pathology and Dendrology, ETH 

Zurich, Switzerland.  

The main goal of my Master Thesis was to contribute and help understanding 

of this very important component of soil biota for temperate forest plant 

communities by testing the following hypotheses:  

Hypothesis tested 

1. The life strategy of DSE is not uniform; they can form parasitic, comensalic 

and mutualistic symbioses. 

2. DSE do influence nutrient uptake of P. abies, B. pendula and V. myrtillus. 

Aims of the present study 

Aims of my thesis were to answer following questions: 

1. How do selected members of DSE influence host plants typical for 

temperate forest ecosystem? 
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1.1  Are the selected DSE species able to colonize all three forest plant species 

(P. abies, B. pendula and V. myrtillus)? 

1.2  What are colonization patterns of selected DSE in roots of P. abies, B. 

pendula and V. myrtillus? 

1.3  How do different DSE influence growth of P. abies, B. pendula and V. 

myrtillus?  

2. Is there a bidirectional flow of nutrients between selected DSE and host 

plants typical for temperate forest ecosystem? 

2.1 Do selected DSE species enhance biomass of P. abies, B. pendula and V. 

myrtillus? 

2.2 How do selected DSE species influence nutrient uptake of P. abies? 
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2. Literature review 

2.1 (Hi)story of plant-fungus symbioses 

Plant and fungi have coexisted for a very long time. Endophytic fungi may have 

been crucial for colonization of the land by plants (Pirozynski & Malloch, 1975) 

either as lichen-forming fungi in lichens or as root/rhizoid colonizing fungi. In 

lichens, the alga is protected by stroma of the fungal partner and is thus able to 

endure wide range of unfavourable conditions (drought, cold, heat, rocky 

substrates, intensive light and other). This feature may have given lichen 

organisms the ability to survive harsh conditions that may have prevailed on land 

during its colonization (Selosse & Le Tacon, 1998).  

The most common plant-fungus symbiosis – arbuscular mycorrhiza (AM) – 

is a partnership between fungi belonging to the Glomeromycota and vascular 

plants. Structures strongly resembling typical AM structures, arbuscules, were 

observed already in Early Devonian fossils of the land plant Aglaophyton major 

(Kidston & Lang) D.S. Edwards (Remy et al., 1994). Moreover, according to a 

phylogenetic analysis, AM-like fungi originated around  600 million years ago 

(Redecker et al., 2000) what supports a hypothesis that fungi colonizing plant 

organs may have played a key role in colonizing land by plants. A recent study 

presented data that Mucoromycotina associating with liverworts, hornworts and 

ferns may predate Glomeromycota and thus be better candidates for facilitating 

terrestrialization during the Mid-Ordovician (475 million years ago)(Bidartondo et 

al., 2011). The “mycorrhizal landing” hypothesis is additionally supported by 

another recent study showing that three genes required for mycorrhiza formation 

were present in a common ancestor of land plants and that they were vertically 

inherited during land plant evolution (Wang et al., 2010).  

AM is an ancestral type of mycorrhiza - the ability to form mutualistic 

symbiosis with glomeromycetous fungi has been inherited since the establishment 

of the symbiosis in the common ancestor of all land plants (Wang & Qiu, 2006). All 

recent plant species that do not form AM either lost the ablity to do so or started to 

form other mycorrhial symbiosis. The most common changes are to the non-

mycorhizal status, to dual mycorrhiza (Ectomycorrhiza (EcM) and AM) or to EcM 

(Brundrett, 2002). The results of a Bayesian relaxed molecular clock analysis 
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performed with fungi, plants, and other eukaryotes show that the EcM symbiosis 

has evolved independently in eight clades of Agaricomycetes in associations with 

gymnosperms and at least in 6 clades of gymnosperms (Hibbett & Matheny, 

2009). 

Not only fungi living in mutualistic symbioses with early land plants were 

described up to date but also fungal endophytes. In fossils from Rhynie chert – an 

Early Devonian hot springs paleoecosystem, three fungal endophytes were 

observed in rhizoids of Nothia aphylla Lyon ex El-Saadawy & Lacy. One of them is 

thought to be a parasite but the ecophysiological role of the others is unclear. They 

do not form arbuscules or any other mycorrhizal structures but the plant response 

(such as secondary thickening of cell walls) suggests that the endophytes were 

colonizing living tissues (Krings et al., 2007). Endophytes were also reported from 

permineralized calamite roots collected in Upper Pennsylvanian Grand-Croix 

cherts of France, where they heavily colonized cells of the outer cortex (Taylor et 

al., 2012). Though, their ecophysiological role remains unclear. 

2.2 Endophytes – life inside plants 

The word endophyte is formed from two Greek words. The prefix endo- originates 

from Greek endon meaning within, inside or internal (literally in the house) and 

phyton referring to plant or a plant characteristic. It can be thus used to describe 

any organism inhabiting plant tissues – for example bacteria, fungi, algae and also 

insects (Schulz & Boyle, 2005). 

Fungal endophytes can be defined as “organisms inhabiting plant organs 

that at some time in their life can colonize internal plant tissues without causing 

apparent harm to their host” (Petrini, 1991). Such definition identifies as 

endophytes fungi performing different life strategies such as mutualistic, parasitic, 

saprobic or even exploitive. It also refers only to the current state of the symbiosis, 

but endophytic fungi or plants are able to change their life strategy in time. They 

can, for example, react on changes of environmental conditions, or in the case of 

facultative saprobes await senescence of the plant tissue. Although the 

mycobionts can vary in many characteristics all the endophytic interactions have in 

common the provision of nutrients and a buffer from environmental stresses and 

microbial competition (Schulz & Boyle, 2005). 
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Fungal endophytes are usually divided into three distinct groups – 

mycorrhizal endophytes, clavicipitaceous endophytes and nonclavicipitaceous 

endophytes. Mycorrhizal fungi can be distinguished from endophytes for they form 

specialised interfaces to enhance nutrient transfer and their development is 

synchronised with the plant (Brundrett, 2004). Clavicipitaceous endophytes 

colonize mainly grass species forming systemic infection in their shoot and are 

able to synthesize alkaloids which may play role in repelling herbivores (Faeth, 

2002). The last group is a highly diverse, polyphyletic assemblage of fungi with 

mostly unknown ecophysiological roles (Rodriguez et al., 2009). 

2.2.1 Mycorrhizal endophytes 

The term “mycorrhiza” was first used in 1885 by a German scientist Albert 

Bernhard Frank in a context with bidirectional flow of nutrients in fungus-conifer 

associations (Frank, 1885). It is composed of two words – mykós, meaning fungus 

and riza corresponding to root. Plant-fungal interactions were described even 

earlier by Franz Kamienski in 1882 when he hypothesized that Monotropa 

hypopitys L. forms a mutualistic symbiosis with fungi that associate with the roots 

of neighbouring trees (republished by Berch et al., 2005).  

The exact definition of mycorrhizal symbiosis is since its first use 

problematic. In the beginning of mycorrhizal research it was described as 

mutualistic (Trappe, 1994) but later on not only positive responses of plant growth 

to mycorrhizal associations were observed (Johnson & Graham, 2013). Brundrett 

defines mycorrhiza as “a symbiotic association essential for one or both partners, 

between a fungus and a root of a living plant that is primarily responsible for 

nutrient transfer”. Furthermore he states that mycorrhizal fungus and mycorrhizal 

plant form an intimate relationship which results from their synchronised 

development (Brundrett, 2004). This definition allows to include also “exploitative 

mycorrhizas” in which the nutrient flow is unidirectional – from fungus to 

mycoheterotrophic plant lacking chlorophyll, that is fully dependent on this 

relationship with fungi (Leake, 1994). 

Mycorrhizal associations are traditionally divided into three groups 

according to morphology of structures formed in host plants – 1. Endomycorrhizas 

(arbuscular mycorrhiza, ericoid mycorrhiza (ErM), orchideoid mycorrhiza (OrM)), 2. 
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Ectomycorrhiza (EcM), and 3. Ectendomycorrhizas (EeM) (arbutoid and 

monotropid mycorrizas) (Smith & Read, 2008) (see Fig. 1). 

Arbuscular mycorrhiza is an ancestral and predominant type of mycorrhiza 

in land plants (Wang & Qiu, 2006).  It is defined by formation of hyphal 

emergences inside of the plant cells separated from the cytoplasm by the 

cytoplasmatic membrane. Two different types of arbuscules can be observed in 

the root – the highly branched Arum-type or heavily curled coils of the Paris type 

(Smith & Read, 2008) together with intermediate structures (Dickson, 2004). The 

AMF are usually described as obligatory symbionts of their plant hosts (Smith & 

Read, 2008). Plants do not obligatory form AM symbiosis but it is a preferred life 

strategy of almost all plants in natural environments (Feddermann et al., 2010). 

AMF belong to the Glomeromycota and are a monophyletic group representing 

one phylum (Schüβler et al., 2001) (). Their hyphae are coenocytic – they lack 

septa and have many genetically different nuclei coexisting in common cytoplasm 

(Koch et al., 2004) and are able to form anastomoses even between two distinct 

individuals, which may thus exchange their genetic information (Croll et al., 2009). 

The effect of the infection by AMF on the plant growth is in most cases positive 

thanks to a better P uptake especially in soils of low or imbalanced nutrient status 

(Smith & Read, 2008). 

The root colonized by EcMF is characteristic by presence of the Hartig net 

(labyrinth of hyphae in between cells), a hyphal mantle on the surface of the root 

and the extraradical mycelium (Smith & Read, 2008). According to the location of 

the Hartig net in the root EcM colonization can be divided into two categories – 

cortical (typical for Gymnosperms, for example members of Pinaceae) and 

paraepidermal (mainly seen in Angiosperms such as Eucalyptus, Betula, Populus 

or Fagus) (Brundrett, 2004). The architecture of the root undergoes several 

structural changes after fungal infection – it has higher branching densities and 

limited apical growth of root tips (Brundrett, 2002). In pine species dichotomous 

branching of short lateral roots can be seen as a result of plant growth regulators 

supplied by the EcMF (Kaska et al., 1999). EcMF are members of Basidiomycota, 

Ascomycota and Zygomycota, taxa that contain both ectomycorrhizal fungi and 

saprotrophs (Tedersoo et al., 2010). This mutualistic symbiosis has evolved 

repeatedly from saprotrophic precursors and it is not evolutionary stable – multiple 
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reversals to free-living conditions were noted (Hibbett et al., 2000). EcMF mediate 

mineral uptake (especially N, P, K) and water to their host plants gaining 

photosynthetic sugars in exchange (Smith & Read, 2008).  

Ericoid mycorrhizal fungi (ErMF) colonize members of Ericaceae, the 

colonization by intracellular fine hyphal coils occurs in fine hair roots especially in 

the external layer of cells (Cairney & Ashford, 2002). ErMF belong mostly to 

Ascomycota and Sebacinales although sheathed ericoid mycorhizal colonization 

formed by fungus belonging to Basidiomycota was also observed (Vohník et al., 

2012). Members of Ericaceae usually grow on nutrient poor organic substrates 

where N is a limiting source and ErMF possess strong saprotrophic enzymes and 

are thus able to mobilize N and P from recalcitrant substrates and transport the 

nutrients into their plant hosts (Smith & Read, 2008). 

Orchids also host fungi in their roots, most of them belong to Basidiomycota 

and many of them to the genus Rhizoctonia (Rasmussen, 2002). Fungi form coiled 

structures inside of the host plant cortical cells called pelotons (Dearnaley, 2007). 

In OrM symbiosis only unidirectional nutrient flow from the plant to the fungus was 

anticipated but in 2006 a first mutualistic relationship was observed between the 

green-leaved terrestrial orchid Goodyera repens Br. and the fungus 

Ceratobasidium cornigerum (Bourdot) Rogers (Cameron et al., 2006). 

Monotropoid mycorrhizal colonization is similar to EcM – the Hartig net 

surrounding epidermal cells and a hyphal mantle on the surface of the root are 

formed. Moreover in epidermal cells penetrating hyphae induce the plant cell wall 

to invaginate and together they form a fungal peg with membrane protuberances, 

which seem to be the main sites of nutrient transport (Robertson & Robertson, 

1982). Fungi forming monotropoid mycorrhizas typically form also EcM 

associations (Brundrett, 2002). The monotropoid plant hosts belong to Ericaceae 

and are all achlorophyllous and herbaceous. They are nourished through the 

common mycelium from the neighbouring autotrophs (Kamiensky 1982 re-

pulication by Berch et al., 2005, Taylor & Bruns, 1997). 

Also arbutoid mycorrhiza appears in the roots of Ericaceae – in three 

genera Arbutus, Arctostaphylos and Pyrola (Brundrett, 2004). Mycobionts belong 

to Basidiomycota and usually form EcM with trees surrounding the arbutoid 

mycorrhizal plants (Vincenot et al., 2008). Similarly to some orchids in tribe 
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Pyroleae the mixotrophic strategy in gaining C was proved by stable isotope 

analysis (Tedersoo et al., 2007). 

Ectendomycorrhizal colonization combines ecto- and edomycorrhizal 

features – the Hartig net and a hyphal mantle are formed extracellularly while the 

epidermal and cortical cells show intracellular infection (Peterson & Farquhar, 

1994). This type of association is common in Pinus and Larix nurseries and is 

formed by fungi formerly described as E-strain fungi, now identified as a part of 

Ascomycota (Trevor et al., 2001). Ectendomycorrhiza-like colonization was also 

observed in roots of Helianthemum almeriense Pau., a perennial growing in semi-

arid ecosystems (Navarro-Ródenas et al., 2012). 

 

 
Figure 1 Diagram of colonizing patterns of differen t types of mycorrhizae – Arbuscular 

mycorrhiza (AM), Ectomycorrhiza (EcM), Ericoid mycorrhiza (ErM), Orchideoid mycorrhiza (OrM) 

and Ectendomycorrhiza (EeM).  
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2.2.2 Clavicipitaceous endophytes 

This group of fungi contains fungal endophytes from the genera Epichloë and 

Neotyphodium which belong to the Ascomycota. They colonize cold-season grass 

hosts and are able to spend most of their life cycle in the host tissue (Craven, 

2012). Species Neotiphodium non-destructively colonizes developing ovaries of 

the host plant and associates with seeds without causing any symptoms of 

infection. Thanks to this ability Neotipodium does not need to leave plant tissues 

during its whole life cycle  (Saikkonen et al., 2002). Clavicipitaceous fungi are 

referred as mutualists which are able to enhance plant performance by 

synthesizing alkaloids that aid protection of the host plant against herbivores (Clay 

& Schardl, 2002). One of the clavicipitaceous fungi – Epichole typhina (Pers. Ex 

Fr.) can produce sesquiterpens and chokols A-G that have fungitoxic properties 

and thus help to defend its host against leaf spot pathogen Cladosporium phlei 

(C.T. Greg.) G.A. de Vries (Kumar & Kaushik, 2013). 

2.2.3 Non-clavicipitaceous endophytes 

Non-clavicipitaceous fungal endophytes are a diverse group of fungi. They belong 

mostly to the Ascomycota but their life strategies, phylogeny, host preference and 

colonization pattern differ (Schulz & Boyle, 2005). They can be thus divided in at 

least three different functional groups. Rodriguez et al. (2009) distinguishes class 

2, 3 and 4 of fungal non-clavicipitaceous endophytes. 

Class 2 endophytes belong to Dicaria, mainly to the Ascomycota and few to 

the Basidiomycota. They extensively colonize shoots, roots and rhizomes of a 

broad range of hosts, but their in planta diversity is low. Transmission from plant to 

plan can be either vertical or horizontal. They are reported to act mainly as 

mutualists – they can increase plant root and shoot biomass (Barrow, 2003), 

enhance resistance to various abiotic stresses such as high temperature, salinity 

and drought (Redman et al., 2002) and also various biotic stresses (Macia-

Vicente, 2008). 

Fungal endophytes that infect primarily or exclusively above ground tissues 

were classified as Class 3 endophytes. They can be found in photosynthetically 

active tissues but also in flowers (Kumar & Hyde, 2004) as well as in wood and 

bark (Tejesvi et al., 2005). Their host range is broad and in planta biodiversity high 
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but the colonization rates are limited. Fungal species of Class 3 belong mostly to 

the Ascomycota, minority to the Basidiomycota. Their ecophysiological role is 

unresolved mainly due to the high diversity within host tissues (Arnold et al., 

2001). The plans infected by Class 3 endophytes typically do not show any 

changes in biomass production in in vitro conditions (Rodriguez et al., 2009) but 

were reported to decrease leaf necrosis and leaf mortality caused by Phytoshora 

sp. (Arnold et al., 2003). On the other hand they are also capable of decreasing 

plant growth (Schulz et al., 1999). 

This thesis is focused on Class 4 endophytes and they are thus described 

in detail in a special chapter 2.4. 

2.3 Endophytic continuum and symbiotic lifestyle sw itching 

Plant-endophyte interactions can vary from mutualistic to parasitic – this 

phenomenon is called the “endophytic continuum” (Schulz & Boyle, 2005). Fungi 

are thought to express only one life strategy – either they increase (mutualism), 

decrease (parasitism) or have no influence (commensalism) on host plant 

performance (Redman et al., 2001). However, according to recent observations 

the life strategy does not seem to be stable, fungal isolates and/or species are 

able to switch it according to their host plant and environmental conditions 

(Rodriguez & Redman, 2008). 

The fungal species Colletotrichum magna is considered to be a virulent 

pathogen in some host plant species. But when different cultivars of Solanum 

lycopersicum L. were inoculated, the fungus performed a wide range life strategies 

- mutualistic, commensal, and/or parasitic (Rodriguez & Redman, 2008). The life 

strategy can be affected by many factors as for example host genotype, imbalance 

in nutrient exchange or environmental factors (Aly et al., 2011). 

 Another study on Colletotrichum species showed three different strategies 

– they either had a narrow host range and a single lifestyle or a wide host range 

and a single lifestyle or a wide host range and multiple lifestyles. For example, 

Colletotrichum gloeosporioides (Penz.) Sacc. colonized only one host and was 

acting as a parasite. Colletotrichum coccodes (Wallr.) S. Hughes was able to 

colonize various host plants and performed parasitic symbiosis. Lastly 

Colletotrichum orbiculare (Berk. & Mont.) Arx expressed different life strategies 
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(parasitism, commensalism, mutualism) with different host plants (Redman et al., 

2001). In the endophyte Discula quercina (West.) Arx. colonizing Mediterranean 

oaks a change from mutualistic/commensal lifestyle to parasitism was observed. 

This change of behaviour may be caused by an atypical change of conditions – 

prolonged dry season may cause the endophyte to act as a parasite and start 

colonizing the plant tissues epiphytically instead of intercellulary (Moricca & 

Ragazzi, 2008).  

Barbara Schulz and Christine Boyle assume that the nature of plant-fungus 

symbiosis depends on balancing the fungal virulence and host plant defence (Fig. 

2). Symptomless symbiosis can appear only when the antagonisms of both 

partners are put in balance (Schulz & Boyle, 2005). 

 

 
Figure 2 A diagram illustrating balanced antagonism s between plant defence response and 

fungal endophyte virulence factors. Balanced symbiosis can result in asymptomatic 

colonization. Source (Schulz & Boyle, 2005) 

Change of life strategy by a mutation of a single DNA locus was observed. 

When a virulent isolate of C. magna was exposed to UV radiation a mutation 

occurred and the mutant was no longer able to cause disease symptoms in the 

host (Freeman & Rodriguez, 1993). Disruption of the fungus gene by restriction 
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enzyme-mediated integration (REMI) with selectable plasmid also resulted in non-

pathogenic mutants. Authors hypothesise that both of the mutants lost the ability to 

switch between the lifestyles and thus remained restricted to mutualistic or 

commensal symbiosis (Rodriguez & Redman, 2008). 

The ability to perform different life strategies brings up many questions. 

Does the evolution of fugal life strategies show any directionality? Do fungi tend to 

evolve from parasitism to mutualism? The EcM mutualistic behaviour seems to 

have evolved repeatedly in saprotrophic fungi and according to a phylogenetic 

analysis of EcM and free living fungi reversals to non-mutualistic life style were 

also not rare (Hibbett et al., 2000). Recent mathematical model created to analyse 

evolutionary persistence of mutualistic symbioses shows that it is not regulated by 

positive density-dependence (meaning the mutualistic symbioses should be rare in 

nature due to their increased risk of extinction). Additionally, the trade-off between 

given and obtained benefits reduces opportunities for cheating, because if one of 

the partners requires more than it gives the other partner is driven to extinction 

(Johnson & Amarasekare, 2013). Fungi able of symbiotic life strategy switching 

can be undergoing an evolutionary transition or simply use this ecological flexibility 

to enhance their performance (Rodriguez & Redman, 2008). 

2.4 Dark Septate Endophytes 

Fungi with dark and septate mycelia were isolated form plant roots in the 

beginning of 20th century by Gallaud and Peyronel (Jumpponen & Trappe, 

1998a). In 1922, Elias Melin described dark septate fungi isolated from EcM roots 

as “pseudomycorrhizal” because they were not able to form ECM structures in 

resynthesis experiments (Melin, 1922). The fungi were called Mycelium radicis 

atrovirens (MRA) literally translated as “dark root mycelium”; this name was used 

until 1991 when it was replaced by Dark septate endophytes (Stoyke & Currah, 

1991). 

2.4.1 DSE species 

Dark septate endophytes are polyphyletic group of fungi; they can be defined by 

their life strategy and morphology as root endophytes with dark and septate 

mycelia. They belong to Class 4 of non-clavicipitaceous endophytes according to 

(Rodriguez et al., 2009). 
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Figure 3 Phylogenetic tree for PAC species based on  three mt loci Posterior probabilities of BI 

(above branches) and bootstrap values of ML analysis (below branches) are indicated. Acephala 

applanata was chosen as outgroup. Source: Duò et al., 2012 

The most studied group of DSE is fungi belonging to the Phialocephala 

fortinii-Acephala applanata species complex (PAC). This species complex 

comprises fungi that were formerly marked as species Phialocephala fortinii Wang 

& Wilcox (Wang et al., 1985). In the year 1995 the species was, thanks to 

molecular analyses and morphology, divided into two species and a new genus 

Acephala with only one species Acephala applanata Grünig & Sieber was formed 

(Grünig & Sieber, 2005a). Three years later seven morphologicaly 

indistinguishable although reproductively isolated cryptic species (CSP) were 

found within P. fortinii s. l. (Phialocephala europaea Grünig & Sieber, 

Phialocephala helvetica Grünig & Sieber, Phialocephala letzii Grünig & Sieber, 
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Phialocephala subalpina Grünig & Sieber, Phialocephala turiciensis Grünig & 

Sieber, Phialocephala uotolensis Grünig & Sieber and P. fortinii s.s. for more 

information see Fig. 3) (Grünig et al., 2008a). Up to date P. fortinii s. l. was shown 

to be composed of at least 21 reproductively isolated lineages (Duò et al., 2012). 

All these species are now classified into PAC and belong to Helotiales 

(Ascomycota) (Grünig & Sieber, 2002, Duò et al., 2012). 

Not only members of PAC and related species can be included into DSE. 

For example Cadophora finlandica Wang & Wilcox, Chloridium paucisporum Wang 

& Wilcox, Heteroconium chaetospira Grove or Leptodontidium orchidicola Singler 

& Currah are endophytes possessing dark septate hyphae but they are in 

comparison studied much less than the species related to P. fortinii. 

2.4.2 Geographical range 

DSE fungi were isolated from wide range of ecosystems – from tropical (Rains et 

al., 2003) to polar regions (Newsham et al., 2009) and also in aquatic habitats 

(Kohout et al., 2012) Most of the studies were conducted in the Northern 

Hemisphere – in Europe and North America. There is very little known about 

composition of DSE communities in plant roots in Australia and South America 

(Grünig et al., 2008b). Acoording to recent study PAC have a broad range 

geographical distribution and they lack biogeographic structure (Queloz et al., 

2011). 

2.4.3 Colonization pattern 

Two morphological structures are typical for roots colonized by DSE – dark 

septate hyphae growing inter- and intracellulary in the root and microsclerotia. 

Invagination of the cytoplasmatic membrane around intracellulary growing hyphae 

has not yet been observed (Peterson et al., 2008) but a fibrillar material probably 

of a plant origin was seen close to the fungal cell wall (Yonezawa et al., 2004). 

Hyphae penetrating plant cell wall could form appressorium-like structures but the 

colonization usually does not trigger host defence reaction (Yonezawa et al., 

2004).  

Hyphae show brownish or blackish colouring caused by large amounts of melanin 

in the fungal cell wall. Some DSE species are able to form also non melanised 
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hyphae  that need to be visualised by special staining techniques (Barrow & 

Aaltonen, 2001). 

Intracellular colonization is characteristic by formation of microsleclerotia – 

aggregations of irregularly lobed hyphae (Stoyke & Currah, 1991). They usually fill 

the entire volume of the plant cell by thick walled dark and highly septated hyphae. 

Their storage substances are similar to true sclerotia (Yu et al., 2001), structures 

formed on the surface of the root composed of thick-walled, melanised hyphae 

that allow survival of the fungus during unfavourable conditions (Willetts, 1972). 

Some DSE also form sclerotia on host plant roots – for example Acephala 

macrosclerotiorum Münzenberger & Bubner (Münzenberger et al., 2009). Both 

sclerotia and microsclerotia accumulate glycogen, proteins and polyphosphates 

(Yu et al., 2001). Although the function of microsclerotia has not yet been resolved 

the composition of substances they contain indicates that they may serve as 

propagules (Grünig & McDonald, 2004). 

Some DSE species are also able to form EcM structures in roots of their 

hosts. This behaviour was described by Babette Munzenberger for A. 

macrosclerotiorum and Pinus sylvestris L. (Münzenberger et al., 2009). 

2.4.4 Influence of the mycobiont on the plant 

Although the DSE fungi colonize the majority of vascular plants their influence on 

the plant hosts is still unclear. The main focus of studying the effect of inoculation 

by DSE is on three areas – 1. nutrient transport, 2. increasing abiotic stress 

resistance and 3. protection against biotic stresses. The influence of DSE on plant 

nutrient uptake is usually studied in in vitro conditions, which greatly influence the 

behaviour of both the fungus and the plant. For example C:N ratio in the media 

showed high influence on the colonization rates of the endophyte Heteroconium 

chaetospira (Grove) M.B. Ellis in an in vitro experiment with Chinese cabbage. At 

the high level glucose condition (C:N ratio 40:1) the fungus did not enter the roots 

and grew as a saprophyte in the substrate. The fungal biomass in the host roots 

increased as a reaction to decrease in the C:N ratio (Usuki & Narisawa, 2007).  

Results of resynthesis experiments are inconsistent – some show positive effect 

on plant growth (Newsham, 1999; Usuki & Narisawa, 2007; Wu et al., 2010) other 

negative (Wilcox & Wang, 1987; Stoyke & Currah, 1993; Tellenbach, 2011). 

Recently a meta-analysis was performed on 18 research articles in which plants 
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were inoculated by DSE species on sterile substrates. Surprisingly only positive 

influence of inoculation was identified (Newsham, 2011). Due to the lack of 

specialized interfaces for nutrient transfer between most DSE and their host plants 

the cause of the positive influence is unresolved. Two main hypotheses were 

introduced, the synthesis of plant hormones and mineralization of the organic N-

containing substrates (Newsham, 1999; Mandyam & Jumpponen, 2005; Addy, 

2005). 

DSE can influence plant performance also by enhancing abiotic stress 

resistance. Plants growing on geothermal soils in Lassen Volcanic and 

Yellowstone National Parks, USA showed much less mortality in soil of 

temperature 50 ºC when inoculated by the DSE Curvularia sp. They were then 

able to tolerate intermittent soil temperatures as high as 65 ºC for 10 days. 

Moreover both the fungus and the plant were not able to survive separately when 

exposed to temperatures higher than 38 ºC (Redman et al., 2002). In 2007, a 

study was reported that the heat protection of the host plant does not work without 

another symbiotic partner – a mycovirus CThTV (Curvularia thermal tolerance 

virus) (Márquez et al., 2007). DSE fungi are frequently isolated from roots of plants 

growing on naturally metalyferrous soils (Urban et al., 2008; Zhang et al., 2013). 

Authors of these studies hypothesise that DSE contribute to metal tolerance and 

nutrient acquisition on these sites.  

Although inoculation by DSE may have negative effects on plant 

performance, their presence in roots may be tolerated for their indirect benefits to 

the host. Christoph Tellenbach and Thomas N. Sieber observed reduction of 

mortality of P. abies seedlings infected by two pathogenic oomycetes when 

inoculated by Phialocephala subalpina Grünig & T.N. Sieber (Tellenbach & Sieber, 

2012). Recently, Phialocephala europaea Grünig & T.N. Sieber was reported to 

inhibit growth of a pathogenic oomycete in in vitro conditions. The chemical 

compounds were identified as sclerin, sclerolide, sclerotinin A and sclerotinin B 

(Tellenbach et al., 2013). Reduction of infection by the pathogenic fungus 

Verticilium longisporum Krapapa Stark was observed in Brassica campestris L. 

colonized by an unknown DSE fungus (Narisawa et al., 2004). The mechanisms of 

this protection are not yet clarified but the endophyte can produce toxins with 

antifungal activites (Tellenbach et al., 2013), compete with the pathogen for 
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infection sites, nutrinents or space, or rise plant host resistance (Tellenbach & 

Sieber, 2012).  

The effects of DSE on host plant performance are diverse. This diversity is 

caused by many factors – one of the most important is the factor of strain which is 

surprisingly stronger than the species factor. In a recent study the variation in 

virulence of PAC species was much higher within than among species in 

interaction with P. abies in in vitro conditions. Moreover the virulence was not 

correlated with phylogenetic relatedness of the isolates (Tellenbach, 2011). To 

similar conclusions came also Vanessa Reininger in her recent study but she 

observed also influence of strain-plant combination on plant growth and 

competition between PAC strains was alleviating adverse effects of some 

pathogenic strains (Reininger & Sieber, 2012a). Adverse effects of virulent PAC 

strains may be reduced not only by other PAC species but also by mycorrhizal 

fungi that may form physical and/or physiological barriers in the host root 

(Reininger & Sieber, 2012b). Coexistence of mycorrhizal fungi and DSE in natural 

habitats is ubiquitous but its effect on the host plant is still poorly studied.  

2.5 Common mycorrhizal networks (CMN) and the role of fungal 

endophytes 

Most endophytic fungi are not host specific and are able to simultaneously 

colonize many individuals of one or more plant species. And they are not 

fastidious in choosing their plant partners – they can live in symbiosis with small or 

large plant species (Heijden & Horton, 2009). Different plant individuals thus can 

be connected by mycelia and to form common mycorrhizal or mycelial networks 

(CMN) which can enable uni- or bidirectional nutrient flow between plant 

individuals (Selosse et al., 2006). This phenomenon was described by (Simard et 

al., 1997) on tree species Betula papyrifera Marsh. and Pseudotsuga menziesii 

(Mirb.) Franco by 13C and 14C isotope tracking. The trees shared seven EcM 

morphotypes which colonized over 90% of their root tips and indicated possible 

fungal network between the plants. In three consecutive years a bidirectional C 

flow was observed by the authors.  

Specialised trophic interactions such as mycoheterotrophy and mixotrophy have 

evolved due to the existence of CMN. Mycoheterotrophic plants are not able to 
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photosynthesize or lack chlorophyll and use carbon transferred by fungi from other 

green plants. This behaviour can be observed in about 200 species of 

Ochideaceae (Leake, 1994). Some orchid species and also species from the 

genera Pyrola, Orthilia and Chimaphila combine photosynthesis and partial 

heterotrophy as carbon sources (Selosse & Roy, 2009, Bidartondo et al., 2004) 

and are considered mixotrophic. 

Another interesting feature enabled by CMN is the “nurse effect”. Mycelial 

networks enable connection between adult trees and seedlings (Nara, 2006). The 

growth rate and mortality of seedlings is often related to presence of mycorrhizal 

symbionts in their roots. These promote their performance not only by obtaining 

nutrients from the soil but also by providing nutrients from neighbouring adult 

individuals through CMN (Simard et al., 1997, Warren & Brooks, 2008). 

CMN can play also an importand role in supplying plant hosts by water. 

Plant roots  mediate passive movement of water from wet to dry soil parts in 

process called hydraulic redistribution (Prieto et al., 2012). Neighbouring plants 

can access redistributed water by two main ways – indirectly from soil or directly 

by through CMN (Egerton-Warburton et al., 2007). Similarly to nutrient transport in 

nurse effect, CMN can facilitate flow of hydraulically redistributed water from large 

trees to seedlings in field condition. Transport of water from large threes to 

seedlings via EcMF was recorded using water enriched in D2O. Authors 

hypothesize that the flow of water can mediate C or nutrient uptake, but more 

importantly it may help roots and root associated fungi survive seasonal or annual 

drought (Warren et al., 2008). 
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3. Materials and methods 

3.1 Experiment 1. In vitro resynthesis experiment w ith P. abies, V. 

myrtillus and 10 different DSE species 

To describe the colonization potential of different DSE species and isolates in 

roots of ectomycorrhizal and ericoid mycorrhizal forest plants an aseptic in vitro 

experiment on P. abies and V. myrtillus was accomplished. Eleven different fungal 

species were used - 8 members of PAC (A. applanata, P. europea, P. fortinii s. s., 

P. helvetica, P. letzii, P. subalpina, P. turiciensis, P. uotolensis), the newly 

described DSE/ectomycorrhizal fungus A. macrosclerotiorum, P. glacialis and as a 

positive ericoid mycorrhizal control R. ericae (for more information see Table 1). 

From each fungal species two different isolates were used for inoculating both 

host plants. Due to a high number of isolates only 3 replicates, each containing 1 

P. abies and 2 V. myrtillus seedlings, were prepared.  

Species Isolate Origin Isolated from  GenBank nr. 

Acephala applanata AAP-1 CR, Šumava Picea abies  EF093158 

Acephala applanata AAP-2 CR, Šumava Picea abies  - 

Acephala 
macrosclerotiorum 

AMA-1 Germany, Hubertusstock Pinus sylvestris EU882732 

Acephala 
macrosclerotiorum 

AMA-11 CR, Č. Švýcarsko Pinus sylvestris  - 

Phialocephala europea PF-EU-1 Switzerland, Zürichberg Picea abies JN091538 

Phialocephala europea PF-EU-2 Switzerland, Zürichberg Picea abies JN091540 

Phialocephala fortinii s.s. PFO-F CR, Jeseníky Vaccinium myrtillus EF446149 

Phialocephala fortinii s.s. PFO-9 CR, Příbram Pinus sylvestris  - 

Phialocephala helvetica PF-HE-1 Switzerland, Zürichberg Picea abies JN091541 

Phialocephala helvetica PF-HE-2 Switzerland, Zürichberg Picea abies JN091543 

Phialocephala letzii PF-LE-1 Switzerland, Zürichberg Picea abies JN091534 

Phialocephala letzii PF-LE-2 Switzerland, Zürichberg Picea abies JN091536 

Phialocephala subalpina PF-SU-1 Switzerland, Bödmeren Vaccinium myrtillus JN091551 

Phialocephala subalpina PF-SU-2 Switzerland, Bödmeren Picea abies JN091553 

Phialocephala turiciensis PFO-2 CR, Šumava Picea abies EF093162 

Phialocephala turiciensis PFO-6 Czech republic, Šumava Picea abies EF093157 

Phialocephala uotolensis PF-UO-1 Switzerland, Uetliberg Picea abies JN091547 

Phialocephala uotolensis PF-UO-2 Switzerland, Uetliberg Picea abies JN091548 

Phialocephala glacialis PF-GL-1 Switzerland, Creux du Van Vaccinium myrtillus EU434843 

Phialocephala glacialis PF-GL-2 Switzerland, Creux du Van Picae abies EU434842 

Table 1 Fungal isolates used in the study 
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3.1.1 Experimental design Plant and fungi cultivati on 

V. myrtillus and P. abies seeds were surface sterilized in 30% H2O2 for 12 and 21 

minutes, respectively, and then rinsed twice in autoclaved deionised water. P. 

abies seeds were placed on MMN agar media ((Molina and Palmer, 1982), 

content: (NH4)2HPO4 0,25 g, KH2PO4 0,5 g, MgSO4.7H2O 0.15 g, CaCl2.2H2O 

0.05 g, NaCl 0.025 g, Fe EDTA 0,02g, glucose 10.0 g, malt extract 3g, thiamine 

100 µg, agar 7,5 g, deionized water 1000 ml) and germinated in Petri dishes (9 cm 

in diameter) at room temperature in the dark for 2 weeks. V. myrtillus seeds 

germinated on water agar (10g agar, 1000 ml deionised water) at room 

temperature in the dark. 

The isolates listed in 

Table 1 were grown on 

MMN media (as described 

above) for 2 weeks at room 

temperature in the dark.  

Host plants and fungi 

were transferred to square 

Petri dishes (12 x 12 cm). 

The dishes were filled with 

MMN media without glucose 

and malt extract. Two thirds 

of the solidified media were 

then removed leaving 

approximately 40 ml of 

media in one part of the dish. 

The dish was then placed 

vertically with media block on the bottom part. One P. abies and two V. myrtillus 

seedlings were inserted into each Petri dish. The roots were placed on the agar 

media covered by an autoclaved cellulose foil together with 9 agar plugs well-

colonized by newly formed hyphae (three plugs for each of the plants). To prevent 

desiccation of the roots a moistened autoclaved filter paper was placed on the 

agar block covering the roots and fungal plugs. Folded autoclaved filter paper was 

Figure 4 Experimental design of the Experiment 1. Plants 

and fungi were growing on agar media covered by filter paper 

in 9 x 9 cm Petri dishes. Front view.  
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inserted in between the lid and the bottom of the 

dish to enable gas exchange (see Figures 4 and 

5) and the dish was then sealed with an air 

permeable foil. To keep the roots shaded the 

bottom part of the dish was wrapped in 

aluminium foil. The Petri dishes were stored 

vertically in a growth chamber (16 hours of light 

at 20°C, one tungsten lamp and relative humidity 

80%; Fitotron, SANYO)  

3.1.2 Data collection 

One of the microcosms per each treatment was 

harvested after 3 months, the other two month 

later (5 months since the start of the experiment). 

Roots were washed in tap water and prepared 

for microscopy. 

 V. myrtillus roots were placed into 10% 

KOH solution, autoclaved for 10 minutes and 

then rinsed in tap water and acidified by 3% HCl. 

To stain fungal structures the roots were put into a solution of trypan blue in 

lactoglycerol (1:1:3 v.v. lactic acid : glycerol : deionized water as 0.05 % solution) 

and then de-stained in lactoglycerol. An upright microscope with differential 

interference contrast at high magnifications (400× and 1000×) was used to and to 

observe structures formed inter- and intracellulary by the fungal hyphae.  

P. abies roots were observed under a dissecting microscope, mycorrhizal 

and non-colonized root tips were counted and the total root length was measured. 

One or two colonized root tips per each strain were cross-sectioned using a razor 

blade. Cross-sections were then observed with the upright microscope at high 

magnifications (400x and 1000x). 

Figure 5 Experimental design of the 

Experiment 1. Roots and fungal plugs 

were placed in between of two layers 

of filter paper. Side view. 
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3.2 Experiment 2. In vitro peat resynthesis experim ent with V. 

myrtillus and 10 different DSE species on peat subs trate 

The goal of this experiment was to describe interactions between DSE and V. 

myrtillus in in vitro conditions. The same isolates as in Experiment 1 (see Table 1) 

were used. A new experimental design was chosen to prevent some adverse 

effect of in vitro conditions on the seedlings. Six replications were prepared for 

each treatment as well as for non-inoculated control. 

3.2.1 Plant and fungi cultivation 

V. myrtillus seeds (origin: Šumava 

mountains, collected in 2011) were 

sterilized and cultivated in the same 

manner as in Experiment 1 (see 3.1.1) 

in October 2011 on MMN medium. 

Fungal isoaltes were precultivated 

similarly to Experiment 1 (see 3.1.1) 

3.2.2 Experimental design 

One plug of agar media well colonized 

by newly formed hyphae was placed 

into 50 ml sterile autoclavable falcon 

tube on the surface of MMN media 

(see 3.1.1) without glucose and malt 

extract (see Fig. 6). The tubes were 

then placed in a dark cultivation box at 

room temperature. After 2 months 

approximately, 10 ml of thrice 

autoclaved peat (pH 3,9 before and 

4,0 after autoclaving) was added and 

the tubes were stored in the dark for another 2 weeks to enable growth of the 

fungus into the peat substrate. Two-months-old sterile V. myrtillus seedling were 

then transferred into the system, tubes were closed by lids, sealed with an air 

Figure 6 Experimental design of the 

Experiment 2 . V. myrtillus seedling were grown in 

50 ml falcon tubes in peat substrate.  
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permeable foil and stored in a growth chamber (16 hours of light at 20°C, one 

tungsten lamp and relative humidity 80%, Fitotron, SANYO). 

3.2.3 Data collection 

The seedlings were harvested after 3.5 months. The roots were cleaned in tap 

water, surface dried with towel paper, weighted and stained in Trypan blue (see 

2.1.3). Roots were de-stained in lactoglycerol and then observed with an upright 

microscope with differential interference contrast at high magnifications (400× and 

1000×) and percentage of colonized cells was measured (in each root system 500 

cells was counted randomly). The shoots were dried (90 min at 65 º C) and 

weighted.  

3.2.4 Data processing 

Data were analysed using STATISTICA 12 (StatSoft Inc.). Normal distribution of 

the data was checked and logarithmical transformation was used when 

appropriate to treat the data with non-normal distribution. The differences between 

colonization rates, fresh root weight and dry shoot weight were evaluated by 

Breakdown and one-way ANOVA followed by Tukey´s HSD test. Means were 

compared at a significance level of P < 0.05.  

 

3.3 Experiment 3. Pilot in vitro resynthesis experi ment with P. 

abies and A. macrosclerotiorum labelled by 33P to trace nutrient 

transfer from fungus to plant 

Host plants were inoculated in the Czech Republic and then transported to the 

University of Aberdeen (Scotland, UK) to the lab of David Johnson to perform 

radioactive P labelling.  

3.3.1 Plant and fungi cultivation 

P. abies seeds (origin: Kušné hory, collected in 2003) were surface sterilized in 

30% H2O2 for 21 minutes, rinsed twice in autoclaved tap water and seeded to 

water agar (7,5 g agar, 1000  ml water) in 9 cm Petri dishes and cultivated in the 

dark at room temperature in February 2012. After approximately two weeks the 

sealed dishes were transported to a growth chamber (16 hours of light at 20°C, 
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one tungsten lamp and relative humidity 80%) and cultivated for one month. 

Fungal isolate AMA-1 was selected for this experiment due to its ability to form 

EcM in P. abeis roots.  

3.3.2 Inoculation of P. abies  seedlings by fungal strains 

For inoculation square Petri dishes (12 x 12 cm) filed to one third with MMN media 

without malt extract and glucose (similarly to Experiment 1, see Figure 3) were 

used. The roots of the seedlings were placed on the media together with 7 AMA - 

11 inoculated agar plugs. To prevent growth of the roots into the media, sterilized 

filter paper was placed on the surface of the media. To prevent desiccation of the 

roots, another sheet of filter paper was placed to cover the roots. Three seedlings 

were placed in each of the dishes. In total 15 seedling per each treatment were 

prepared and cultivated for approximately 4 months in a growth chamber (16 

Figure 7 Experimental design of the Experiment 3. Three P. abies seedlings were grown on 

agar media in 9x9 cm Petri dish. For labelling the media was cut into three parts and in controls the 

fungal plugs and adjoining hyphae were separated by thin cut. Front view.  
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hours of light at 20°C, one tungsten lamp and relative humidity 80%, Fitotron, 

SANYO) and then transported to the laboratory in Aberdeen (Scotland, UK). 

3.3.3 Labelling design 

Two Petri dishes with plants colonized by AMA-1 were selected for labelling by 
33P. The roots of the three plants were separated by approximately 2 mm wide cut 

in the agar media to prevent diffusion of the 33P solution between the seedlings 

(see Fig. 7). To each Petri dish 33P-phosphoric acid (specific activity 111TBq 

mmol-1, manufacturer: HARTMANN ANALYTIC GmBH, Germany) was added to 2 

mycelial patches (20 µl of 33P-phosphoric acid per patch) per plant. In control 

plants the mycelial patches were separated from the rest of the agar media by thin 

cut to interrupt the mycelial connections between the plant and the labelled patch 

(see Fig. 7).  

3.3.4 Data collection 

After 21, 26 and 45 hours changes in the location of the radioactive isotope were 

observed. Fujifilm imaginig plates were placed for 10 minutes on the surface of the 

agar media to enable it to accumulate the radiation. Imagining plates were then 

scanned using Fujifilm Image Analysis System (FLA 5100) and images 

automaticky analysed by AIDA software (Advance Imaging Data Analyser version 

4.10.020). The digital autoradiograph collects light intensity at a scale of 50.0 µm.  

3.4 Experiment 4. In vitro resynthesis experiment w ith P. abies 

and A. macrosclerotiorum labelled by 13C and 15N isotopes 

The host plant and fungi cultivation was accomplished in the laboratory of the 

Institute of Botany, Academy of Sciences of the Czech Republic (IB ASCR) in 

Průhonice and stable isotope labelling was performed in the University of 

Aberdeen (Scotland, UK) in the lab of Dr. David Johnson.  

3.4.1 Plant and fungi cultivation and inoculation 

The P. abies plants and one isolate of A. macrosclerotiorum (AMA -1) were 

cultivated and inoculated in the same manner as in experiment 4 (3.4.1 and 3.4.2). 
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3.4.2 Labelling design 

After 4 months from 

inoculation the seedlings 

were transferred to new 

microcosms in July 2012. 

Approximately 200 ml of 

autoclaved peat/vermiculite 

substrate (1: 5: 6, v.v. peat : 

vermiculite : water) was 

placed into Magenta dishes. 

To create fungal and root 

compartments 50 µm nylon 

mesh (4,5 cm x 10,5 cm) 

was inserted into the dishes 

and, thus, created 2 equally 

sized compartments (see 

Fig. 8). In one of the 

compartments, one 

colonized P. abies seedling 

was planted. In total 16 

microcosms were prepared - 6 with seedlings inoculated by AMA-1 and 6 control 

plants. The systems were closed and placed in a growth chamber (16 hours at 

high light, at 20 ºC, Fitoron PG660, SANYO). 

After 2.5 months (end of September 2012) 2 needles per each plant were 

sampled to obtain time zero 13C abundance. In three selected plants the majority 

of sclerotia was cut of the root tips and samples of approx. 2 µg of sclerotia was 

prepared. Three ml of 97% (NH4)(NO2) were added in 6 doses into 6 different 

places in the fungal compartment of the microcosm not closer to the mesh than 1 

cm. After 3 days the microcosms were opened and labelled by 13C (>99 atom 

percent 13CO2 at 350ppm CO2 for 3 hours using a flow rate 0.2 to 1 l per minute). 

The 13CO2 labelling was repeated after 15 hours.  

Figure 8 Experimental design  of the Experiment 4 . P. 

abies seedlings were grown in Magenta dishes devided into 

two compartements by nylon mesh. 
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3.4.3 Data collection 

The plants were harvested 24 hours after the first 13CO2 labelling and together with 

the substrate were stored in a freezer and then sent to IB ASCR.  

Soil was dried (90 minutes in 70 º C) and milled. The shoots were dried (90 

min 65 ºC) and weighted. The colonization rate was assessed in the roots using a 

dissecting microscope – numbers of colonized and non-colonized root tips were 

counted and root length was measured. Some of the well colonized root tips were 

cross-sectioned and observed using an upright microscope (Olympus BX 60 with 

differential interference contrast) at high magnifications (400× and 1000×) for 

presence of the Hartig net and a hyphal mantle. Microphotographs were taken by 

OLYMPUS DP70 camera. Root tips cross sections were observed under scaning 

electron microscope FEI Quanta 200 ESEM (Environmental Scanning Electron 

Microscopy) with GSED electron detector, sampes were cooled on 12.5 ºC, no 

preparation technique was used. In three selected plants the majority of sclerotia 

were cut of the root tips and fungal samples were thus prepared. The roots were 

then dried (90 min 65 ºC) and weighted. Substrate from root and fungal 

compartments and shoots were sent back to Aberdeen for further analyses.  

Samples for mass spectrometry were dried (12 hours in 75 ºC), weighted 

and encased in aluminium foil and then the isotopic composition of needle 

samples, sclerotia samples, root compartement soil samples and fungal 

compartement soil samples were measured.  

3.4.4 Data processing 

Data were analysed using STATISTICA 12 (StatSoft Inc.). Normal distribution of 

the data was checked and logarithmical transformation was used when needed. 

The differences between colonization rates, fresh root weight and dry shoot weight 

were evaluated by Breakdown and one-way ANOVA followed by Tukey´s HSD 

test. Means were compared at a significance level of P < 0.05.  
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3.5 Experiment 5. In vitro experiment with B. pendu la and DSE (A. 

macrosclerotiorum, P. fortini s.s., A. applanata) 

In this experiment we wanted to determine whether A. macrosclerotiorum is able 

to associate with roots of a broad leaf tree - European birch (B. pendula) in in vitro 

conditions. For each treatment and negative control 6 replications were prepared. 

3.5.1 Plant and fungi cultivation 

Birch seeds were rid of the wings, surface sterilized in 30% H2O2 for 12 minutes 

and then rinsed twice in autoclaved tap water. Germination occurred in 9 cm Petri 

dishes filled with MMN media without glucose and malt extract at room 

temperature in the dark. After 3 weeks the seedlings were planted on a new media 

and placed in a growth chamber (16 hours of light at 20°C, one tungsten lamp and 

relative humidity 80%) for one month.  

Four fungal isolates were selected for this experiment: AMA 1, AMA11, AAP 

1 (see table 1) and the isolate PIN5 of Paxillus involutus (Batsch) Fr. (Origin: 

Varnsdorf, Czech republic, isolated from a fruit body) as positive ectomycorrhizal 

control. 

3.5.2 Experimental design 

Experimental system was similar to the Experiment 2 - fungal plugs were inserted 

into falcon tubes with 10 ml of MMN media without glucose and malt extract and 

cultivated for one month in the dark. Approximately 10 ml of twice autoclaved peat 

vermiculite substrate (1: 5 : 6, v.v. peat : vermiculite : water) was then added to the 

system and one birch seedling was planted into the substrate. The microcosms 

were then closed and placed in a growth chamber (16 hours of light at 20°C, one 

tungsten lamp and relative humidity 80%, Fitotron, SANYO).  

3.5.3 Data collection 

The seedlings were harvested after 6 months. The roots were cleaned in tap 

water, surface dried with towel paper, weighted and stained in Trypan blue (see 

2.1.3). Roots were de-stained in lactoglycerol and then observed with an upright 

microscope with differential interference contrast at high magnifications (400× and 

1000×) and presence of microsclerotia and hyphae was counted in 80 microscopic 
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fields per each root system under 400× magnification, similarly to Kohout et al., 

2012. To determine shoot dry weight the shoots were dried (90 min at 65 º C) and 

then weighted.  

From each of the microcosms 4 samples of peat were aseptically taken and 

placed on MMN media in 9 cm Petri dishes. Dishes were stored for a month in 

dark at 20 °C and repeatedly checked for signs of fungal growth.  

3.5.4 Data processing 

Data were analysed using STATISTICA 12 (StatSoft Inc.). Normal distribution of 

the data was checked. The differences between colonization rates, fresh root 

weight and dry shoot weight were evaluated by Breakdown and one-way ANOVA 

followed by Tukey´s HSD test. Means were compared at a significance level of P < 

0.05.  
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4. Results 

4.1 Experiment 1. In vitro resynthesis experiment w ith P. abies, V. 

myrtillus and 10 different DSE species 

In the roots of all inoculated plants fungal colonization was observed. Non-

inoculated controls were successfully kept free of fungal infection and neither inter- 

nor intracellular colonization were detected. Structures observed in the roots are 

listed in Table 2. 

  

Table 2 Fungal structures observed in the roots of V. myrtillus  and P. abies  colonized by 

10 different DSE species, two isolates per each.  (S – sclerotium, MS – microsclerotium, InC – 

intracellular colonization, HM – hyphal mantle, HN – Hartig net, C – coils, EC – ericoid 

mycorrhizal coils). + denotes presence of the structure, - denotes absence of the structure in the 

root sample. 
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Conditions in microcosms used were favorable for formation of ErM because R. 

ericeae was able to form intracellular hyphal coils typical for ErM in roots of V. 

myrtillus.  

Almost all species belonging to PAC formed intracellular microsclerotia (Fig 

9) in both plant hosts species. They consisted of melanised or hyaline hyphae (Fig 

9). Only A. macrosclerotiorum colonized P. abies strictly intercellulary and formed 

Hartig net and hyphal mantle (Fig. 10). Additionally darkly pigmented sclerotia 

were formed on the surface of some roots. In V. myrtillus roots coils similar to ErM 

and microsclerotia were observed (see Fig. 9) 

 
Figure 9 Structures formed in roots of V. myrtillus by  A. macrosclerotiorum (1 and 2) , by  P. 

helvetica (3) and by  P. fortinii (4) 1, 2 - Intracelullar hyphal loops (asterisks), 3 – microsclerotium 

(black arrow) and melanised hyphae (grey arrows), 4 – massive intercellular colonization by 

microsclerotia. All bars correspond to 20 µm, all roots were stained in trypan blue, observed by light 

microscopy, bright field. 

 

Colonization resembling ErM was formed also by P. glacialis which however did 

not form EcM structures and colonized roots of P. abies intracellulary.  
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Figure 10 Structures formed in roots of P. abies  by A. macrosclerotiorum  (1, 2) and P. 

Helvetica (3) 1 – Root tip cross-section with sclerotium, hyphal mantle (black arrows) and Hartig 

net (black arrowheads) bar corresponds to 50 µm, 2 - Root tips with sclerotia (white arrowheads) 

bar corresponds to 0.5 mm, 3 – Intracellular colonization by microsclerotia (black arrows) bar 

corresponds to 20 µm, 1,3 observed by light microscopy: bright field, 2 – dissecting microscopy. 

 

Differences in seedling survival were observed between the isolates but due to low 

number of replicates no statistical analysis of the data was possible.  
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4.2 Experiment 2. In vitro resynthesis experiment w ith V. myrtillus 

and 10 different DSE species on peat substrate 

All of the inoculated plants had fungal structures developed in the roots. V. 

myrtillus seedlings were colonized in a similar manner as in the Experiment 1. ErM 

structures were formed only in the roots of plants inoculated with R. ericeae. 

Intracellular hyphal coils similar to ErM were formed by AAP-1, AAP-2, AMA-1, 

AMA-11, PH-GL-1 and PH-GL-2. Other isolates formed melanised or hyaline 

microsclerotia. In contrast to the previous results sclerotia were observed on root 

the surface of seedlings inoculated by AAP-1, AMA-1 and AMA-11 while both A. 

macrosclerotiorum isolates did not form microsclerotia. Control plants did not show 

any fungal infection. 
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Figure 11 Differences in colonization for all funga l isolates used in Experiment 2  Compared 

at a significance of P < 0.05. The results of ANOVA significances are given in Table attachement 1. 
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As is to be seen on Fig. 11 the colonization varied between isolates. The 

isolates tended to form two groups – group 1 consisted of A. applanata, A. 

macrosclerotiorum, PF-HE-1, PF-GL-1 with low colonization rates (they were not 

statistically different from control) and Group 2 consisting of P. europea, P. fortinii, 

PF-HE-2, P. letzii, P. subalpina, P. turiciensis, P. uotolensis with higher 

percentage of colonized cells. Some isolates of the same species showed high 

dissimilarity (P. helvetica, P. glacialis) and were even significantly different from 

each other. Table with statistical significances attached (Attachement 1).  
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Figure 12  Differences in dry shoot weight for all fungal isol ates used in Experiment 2 

Compared at a significance of P < 0.05. The results of ANOVA significances are given in 

Attachement 2. 

 

Influence of fungal isolate on dry shoot weight is displayed on Fig. 12. 

Similarly to the colonization rates a trend to form two groups is to be seen. Group 

one is formed by AAP-2, both isolates of A. macrosclerotiorum and the isolate 

PGL-1 and does not significantly differ from the positive mycorrnizal control (R. 



47 

 

ericeae). Group 2 consists of P. europea, P. fortinii, P. hevetica, P. letzii, P. 

subalpina, P. turiciensis, P. uotolensis and the isolate PF-GL-2. The isolate AAP-1 

does not seem belong to either of the groups – it does differ from one of the 

positive control isolates but not from the other. Isolates AAP-1 and PF-GL-2 

differed greatly from the other isolate of the same species. Table with statistical 

significances attached (Attachement 2).  

Fresh root weight of the seedlings was also influenced by fungal isolate 

although inoculated plants did not differ from the uninoculated control (see Fig. 

13). The tendency of forming two separate groups is noticeable for this parameter, 

too. The Group 1 consists of A. applanata, A. macrosclerotiorum and isolates PF-

GL-1 and PF-SU-2 and is not statistically different from the positive mycorrhizal 

control. The Group 2 that differs from most of the isolates in the Group 1 and from 

the positive mycorrhizal control is formed by P. europea, P. fortinii, P. hevetica, P. 

letzii, PF-SU-1, P. turiciensis and P. uotolensis. The difference between isolates of 

one species is most visible in P. subalpina and P. glacialis. Table with statistical 

significances attached (Attachement 3). 
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Figure 13 Differences in root fresh weight for all f ungal isolates used in Experiment  2 Compared 

at a significance of P < 0.05. The results of ANOVA significances are given in Attachement 3. 
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4.3 Experiment 3. Pilot in vitro resynthesis experi ment with P. 

abies and A. macrosclerotiorum labelled by 33P to trace nutrient 

transfer from fungus to plant 

Digital autoradiography does not provide information about anexact amount of 

radioactive 33P transferred into the shoot but enables us to see its distribution in 

the experimental system. 

 
Figure 14  Transport of 33P to shoot mediated by A. macrosclerotiorum  1,2 – Photographs of 

Petri dishes with 3 seedlings of P. abies in each with three control plants, 3,4 – digital 

autoradiography of the dishes 21 hours after applying 33P 5,6 - digital autoradiography of the dishes 

26 hours after applying 33P, shoot of middle seedling with increased 33P content marked by white 

arrow 
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In the pilot experiment one of the seedlings (dish 2, middle section seedling 

B) showed an apparent increase in the content of 33P in the shoot 21 and 26 hours 

after applying solution with 33P (see Fig. 14). Control plants did not show 33P 

enrichment in shoot. All of the plants were colonized by A. macrosclerotiorum and 

typical structures for EcM were formed. 

Although we were not able to measure the quantity of 33P transported to the 

shoot of P. abies, the nutrient transport was detected in one of the labelled plants. 

Based on the results of the pilot Experiment 5 was made to test whether 

bidirectional transport of nutrients between P. abies and A. macrosclerotiorum 

occurs. 
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4.4 Experiment 4. In vitro resynthesis experiment w ith P. abies 

and A. macrosclerotiorum labelled by 13C and 15N isotopes 

All plants inoculated by A. macrosclerotiorum were colonized. The root tips were 

covered by hyphal mantle with sclerotia (see Fig. 15 and 16) and Hartig net was 

formed intercellulary (see Fig. 15). 

 
Figure 15 Cross-section of a root tip of P. abies  colonized by A. macrosclerotiorum.  Hyphal 

mantle is visible on the root surface and Hartig net between cortex cells. A sclerotium formed by 

melanised hyphae is attached on right side of the root. Scanning electron microscopy, bar 

corresponds to 100 µm. 

A flow of 13C from plant to fungal structures was observed. Sclerotia from 

labelled host plants showed significantly higher content of 13C than sclerotia form 

non-labelled plants. 

Percentage of 13C in the fungal compartment was not significantly higher in 

the inoculated plants than in the control plants. Similar results were measured in 

the root compartment soil. A carbon flow from plant tissues to hyphae and soil in 

both compartments was not observed.  
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Figure 16 Structures formed on roots of P. abies  by A. macrosclerotiorum  1 – Root tips with 

sclerotia. Dissecting microscopy, bar corresponds to 500 µm, 2 – Surface structure of sclerotia. 

Scanning electron microscopy, bar corresponds to 50 µm 
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Figure 17 The 13C content in sclerotia from 13C labeled P. abies  seedlings inoculated by A. 

macrosclerotiorum  and in non-labelled plants. Different letters correspond to significant 

differences at P < 0.001 
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Figure 18  The 15N content in siol from the root soil compartment of  the microcosm.  Different 

letters correspond to significant differences at P < 0.05 

 

A significantly higher amount of 15N was measured in the root compartment 

of the control uninoculated plants than in the inoculated plants (see Fig. 18). The 

percentage of 15N in needles and shoot biomass did not significantly differ 

between control and inoculated plants, the values were lower for inoculated plants 

in both cases.  

Total content of N in the shoot biomass was significantly higher in the 

control plants than in the inoculated plants (see Fig. 19) 
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Figure 19  Total shoot N  in control and AMA - 1 inoculats seedlings.  Different letters 

correspond to significant differences at P < 0.05 
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4.5 Experiment 5. In vitro experiment with B. pendu la and DSE A. 

macrosclerotiorum, P. fortini s. s. and A. applanat a  

All of the seedlings inoculated by fungi were colonized. The percentage of root 

sections colonized was significantly higher in AAP-1 and AMA-1 than in AMA-11 

(see Fig. 20) 
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Figure 20 Percentage of colonized root sections in roots of B. pendula  colonized by three 

different Acephala  species (AAP-1, AMA-1 and AMA-11).  Different letters correspond to 

significant differences at P < 0.05 

 

No EcM structures formed by A. macroscletoriorum were observed but 

roots were colonized intracellulary by loose hyphal loops and intercellulary by 

melanised running hyphae. A. applanata formed microsclerotia and sclerotia on 

the root surface. In the roots of all plants inoculated by P. involutus a hyphal 

mantle and the Hartig net were observed (see Fig. 21). The control plants did not 

show any signs of fungal infection.  
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Figure 21  Structures formed in roots of B. pendula  by A. macrosclerotiorum  (1,2), A. 

applanata  (3,4) and P. involutus  (5,6) 1 – Intercellular colonization by melanised hyphae (black 

arrowhead) 2 – Intracellular colonization by hyaline hyphae  (black arrow) 3 – Intercellular 

microsclerotium (black arrow) 4 – Sclerotia on the root surface (white arrows) 5,6 – Hyphal mantle 

on the root surface (grey arrows) and Hartig net (black arrowheads). 1-3, 5 and 6 – light 

microscopy: bright field 4 – dissecting microscopy. 1-3, 5 and 6 stained by trypan blue. Bars 

correspond in 1, 2 and 6 to 50 µm, in 3 to 20 µm and in 4 to 0.2 mm. 
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The inoculation had an influence on dry shoot weight. All inoculated plants 

except positive mycorrhizal control had significantly higher shoot biomass than 

control plants. Significant differences were also observed in influence of the isolate 

– plants inoculated by AAP-1 had significantly higher shoot dry weight than those 

inoculated by both isolates of A. macrosclerotiorum and P. involutus. For more 

information see Fig. 22) 
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Figure 22 Effect of inoculation of B. pendula  with different isolates (for more information see 

Table 1) on dry shoot weight.  Different letters correspond to significant differences at P < 0.05 

 

Differences were also observed in fresh root weight (see Table 23) – all of 

the inoculated plants had higher root biomass than the uninoculated control plants. 

An effect of specific isolates was not observed.  

Correlation between colonization and dry shoot weight and fresh root weight 

was tested, but no significant correlation was found.  
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Root fresh weight
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Figure 23 Effect of inoculation of B. pendula  with different isolates (for more information see 

Table 1) on fresh root weight. Different letters correspond to significant differences at P < 0.05 

 

Concentration of CO2 and O2 was measured to show whether the plant growth is 

not limited by source of C and O in the experimental system. No significant 

differences were noted in concentration of O2. The concentration of CO2 is shown 

in Fig. 24. Only one isolate (AMA-1) showed higher values of CO2. No correlations 

between elevated CO2 concentration and fresh root weight or dry shoot weight 

were observed. 
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Carbon dioxide concentration
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Figure 24 Effect of inoculation of of B. pendula  with different isolates (for more information 

see Table 1) on CO 2 concentration.  Different letters correspond to significant differences at P < 

0.05 
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5. Discussion 

My work is focused on interactions between dark septate endophytes (DSE), 

ubiquitous symbionts of plant roots, and two host plants which often coexist in 

forest ecosystems not only in Central Europe – P. abies and V. myrtillus. DSE 

were detected in virtually every plant species screened (Jumpponen & Trappe, 

1998a) and their ecophysiological role has been intensively discussed since their 

discovery in 1922 (Melin, 1922) up to last work published not a month ago (Zhang 

et al., 2013). I wanted to contribute to the knowledge of this elusive group of fungi; 

thanks to international collaboration a unique collection of DSE was completed 

and thus experiments with the group of the most frequent plant root endophytes 

could be conducted. 

5.1 Methodical approaches 

5.1.1 Picea abies  and Vaccinium myrtillus  as model plants  

P. abies was chosen as a model plant for our experiments because it is one of the 

most common forest conifer species in the Czech Republic and Central Europe. It 

is able to form ectomycorrhizal symbiosis with various asco- and basidiomycetes 

but P. abies ectomycorrhizae regularly host a wide range of co-associated 

endophytes including DSE (Vohník et al., 2013) Moreover DSE were first 

described to form associations with P. abies and P. sylvestris (Melin, 1922). Not 

least, its seeds germinate in in vitro conditions successfully. 

Co-occurrence of P. abies and members of the Ericaceae in Central 

European forests is very common (Kohout et al., 2011). Germination in in vitro 

system was successfully performed for V. myrtillus and in spite of its slow growth 

in sterile conditions (Grelet & Johnson, 2009) culture of aseptic plants was 

established in our department. DSE often associate with roots of Ericaceae 

(Vohník & Albrechtová, 2011) and thus DSE colonization was reported from both 

model plants used in our study. Therefore various features such as CMN between 

EcM and ErM plants could have been studied using these model plants. 
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5.1.2 Experimental design of in vitro  experiments 

In contrast to AMF which live as obligatory symbionts of vascular plants (Smith & 

Read, 2008) DSE could be cultured aseptically on agar media. Experimental 

system can be thus designed to observe behaviour of one individual fungal isolate 

and one individual plant in controlled in vitro conditions. 

Due to limited knowledge of such a complex system as soils, aseptical in 

vitro systems are our best chance to understand physiological effects of fungal 

species on their host performance. The in vitro experimental approach enables us 

to filter effects of other soil microorganisms on the plan-fungus symbiosis and 

observe its formation in conditions of constant irradiation and humidity. It brings 

many advantages – ability to limit adverse effects of contaminating 

microorganisms, to observe the formation of symbiosis constantly and to decrease 

possibility of damaging the plant during harvest process (Kottke et al., 1987). But 

the in vitro approach is not without disadvantages – experimental plants can suffer 

by morphological and physiological anomalies such as hyperhydration (Ziv, 1990).  

And by separating one fungal isolate from plethora of soil biota we have to be 

aware that observed results are to some extent artificial and their application in in 

situ system may be disputable. To overcome this limitation positive mycorrhizal 

controls were used in Experiments 1, 2 and 6 were used to make sure the 

environment in the microcosms was favourable for formation of typical mycorrhizal 

structures and structures observed in in vitro grown roots were compared to roots 

from natural ecosystems. 

The design of the in vitro systems reported in this thesis underwent 

changes during the course of the experiments. Due to high mortality of V. myrtillus 

seedlings in Experiment 1 (unpublished data) where plants and fungi were grown 

on MMN agar in Petri dishes it was decided to use peat as a growth substrate in 

Experiment 2. Peat substrate reflects more natural conditions on sites where V. 

myrtillus seeds germinate and it also shades the roots but during the sterilisation 

process compounds can be released from the substrate that have adverse effects 

on the plants (Stribley et al., 1975). Although the survival rates of the seedling in 

Experiment 2 were better than in Experiment 1 we decided to use peat diluted by 

vermiculite to reduce the possible adverse influence of autoclaved peat in 

Experiments 5 and 6.  
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The germination process was also adjusted - in the beginning MMN 

medium was used but the germination rates were repeatedly lower in MMN than in 

water agar. Although water agar is a limited source of nutrients for plants the 

seedlings were able to undergo the germination process successfully and 

malformations (such as lack of geotrophy) were observed rarely.  

5.1.3 Use of stable and radioactive isotopes in stu dy of plant-fungal 

relationship 

Stable and radioactive isotope tracking can be very useful in studying relationships 

between plants and their fungal associates. It enables us to study nutrient 

transports from plant to fungus and vice versa. Microscopic observation of 

mycorhizal structures (such as arbuscules, Hartig net or hyphal coils) is not a 

sufficient proof of a mutualistic symbiosis – the structures do not have to be 

functional. The detection of changes of isotopic composition enables us to observe 

the crucial feature of any mutualistic root-fungus symbiosis – the nutrient flow. 

The 33P imagining by digital autoradiography is a very interesting technique of 

visualising nutrient transport. It enables us to observe a flow of radioactive 

elements (such as 33P) in flat experimental systems in time. This ability can be 

very useful in studying plant-fungus symbioses in sterile and/or semi sterile in vitro 

systems. 

Detection of the nutrient flow itself is not an evidence for mutualism either – 

the transport does not have to be caused by direct flow through mycelia but by 

exchanging of exudates in the substrate. Microscopic and isotopic analyses 

together with molecular methods of molecular detection can give a better picture of 

processes that take place in mycorrhizal associations.  

5.2 Discussion of the results  

5.2.1 Colonization patterns of ten DSE species in r oots of P. abies  and 

V. myrtillus 

In the Experiment 1 the colonization of roots of P. abies and V. myrtillus by 

members of PAC and P. glacialis and A. macrosclerotiourm was observed in in 

vitro conditions.  Cryptic species (CPS) from the P. fortinii s.l. complex are not only 

morphologically indistinguishable (Grünig et al., 2008a) but in our Experiment 1 
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showed also similar colonization patterns in roots of both tested hosts. All of the 

CSP formed microsclerotia in root cells of both hosts and melanised intracellular 

hyphae were present in the roots as same as in plants colonized by A. applanata.  

In contrast to all tested members of PAC, A. macrosclerotiorum formed 

ectomycorrhizal structures in roots of P. abies. Although DSE species were 

repeatedly isolated from ectomycorrhizal root tips (Melin, 1922, Kaldorf et al., 

2004, Urban et al., 2008) it is not an evidence of their ectomycorrhizal behaviour. 

DSE can live in root tips as EcM co-associated endophytes and thanks to their fast 

growth can overgrow the slower growing EcM fungi during the isolation process. 

The ability of A. macrosclerotiorum to form EcM structures was first proved in an 

axenic in vitro experiment on P. sylvestris (Münzenberger et al., 2009). Similarly in 

our experiment the fungus and host plant formed root tips with sclerotia, the Hartig 

net and a thin hyphal mantle. A. macrosclerotiorum is thus able to form 

ectomycorrhizae not only with P. sylvestris but also with another conifer P. abies 

and thus can be due to this ability an important mycorrhizal symbiont in Middle 

European forest ecosystems, which are formed in almost 50% by large-scale P. 

abies monocultures. Whether the observed mycorrhizal structures are functional, 

i.e. if they enable and enhance nutrient transfer, was tested in the Experiments 3 

and 4.  

Although DSE species are usually thought to have low host specificity 

(Jumpponen et al., 1998), A. macrosclerotiorum was not yet observed to form EcM 

with any of broadleaved tree species. Similarly, in an in vitro experiment with 

hybrid P. tremula L.× P. tremuloides Michx. no EcM root tips were  observed 

(Münzenberger et al., 2009). To test this, we conducted the in vitro Experiment 6 

to decide whether B. pendula can be an ectomycorrhizal host plant of A. 

macrosclerotiorum. We observed that it did not form any EcM structures and A. 

macrosclerotiorum colonized the roots intra- and intercellulary. These results are 

further discussed in Chapter 5.2.5. 

P. glacialis and A. macrosclerotiorum were able to form hyphal loops 

resembling ErM coils in roots of V. myrtillus. Mycorrhizal colonization is typical for 

forming structures that increase surface area (i.e., Hartig net, hyphal coils, 

arbuscules, etc.) to enhance nutrient transport (Brundrett, 2004). Though, typical 

DSE colonization lacks such structures – it mainly comprises microsclerotia and 
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melanised hyphae (Grünig et al., 2008b). Formation of hyphal loops observed in 

the Experiment 1 can signify that there is an “effort” to enhance nutrient adsorption 

surface, which can imply, if bidirectional, a sign of a mutualistic symbiosis.  

DSE species are common associates of roots of plants forming ErM 

(Hambleton & Currah, 1997) and are dominant associates of conifers and 

ericaceous shrubs in heathlands, forests and alpine ecosystems (Sieber & Grünig, 

2006). All of the DSE isolates used in our experiments were able to colonize the 

ErM plant V. myrtillus and formed typical structures in the roots of both host plants. 

Their mycelium might possibly be a mediator of transfer of nutrients between 

individuals of different plant species and could play an important role in forming of 

forest ecosystems.  

5.2.2 Influence of colonization by ten different DS E species on V. 

myrtillus  growth 

The inoculation by DSE affected V. myrtillus performance in in vitro conditions. 

With this respect the isolates used in the Experiment 2 can by divided into two 

groups – Group 1 comprises A. macrosclerotium, one isolate of A. applanata and 

P. glacialis. Isolates from Group 1 did not differ from positive mycorrhizal control in 

both plant biomass parameters measured and their colonization rates were lower 

than those of the secong group. Group 2 was formed by P. europea, P. fortinii, P. 

letzii, P. turiciensis, P. uotolensis and one isolate of P. helvetica and P. subalpina. 

They all varied from positive mycorrhizal control and their colonization was higher 

than Group 1. 

A possibility to discuss our results with previous findings of other authors is 

rather limited because of the fact that all dark septate fungi isolated from plant 

roots were considered as P. fortinii before approx. year 2000. It may have led to 

inconsistent results from resythesis in vitro experiments because different reaction 

of a host plant to inoculation could have been caused by different CSP used in the 

experiments. In our Experiment 2, the behavior of the member of PAC A. 

applanata in roots of V. myrtillus and its effect on plant growth were significantly 

different from those of other members of the PAC species complex. A. applanata 

was virtually unidentifiable from other PAC until it was described by molecular 

methods (Grünig & Sieber, 2005b). 
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Differences between isolates of the same species were also observed – 

especially for species A. applanata, P. glacialis, P. helvetica and P. subalpina. 

Isolate dependent variation of effects on plant growth was also reported in a recent 

study with P. abies in in vitro conditions (Tellenbach, 2011). The authors reported 

higher intraspecific than interspecific variation but only one of the species used 

was highly virulent (Tellenbach, 2011). High among-isolate variability occurs not 

only in PAC but has been reported for many mutualistic AMF (. e.g. Koch et al., 

2006) and parasitic fungi (Rowe & Kliebenstein, 2010). We used only two isolates 

per each cryptic species and thus, the influence of species x isolate on plant 

performance is barely comparable but a trend of high variability between isolates 

of the same fungal species can be seen. 

5.2.3 33P transport to P. abies  via mycelium of DSE A. 

macrosclerotiorum  

Transport of 33P isotope to P. abies shoot mediated by A. macrosclerotiorum was 

observed in one of three tested plants in a pilot in vitro experiment conducted in 

the lab of prof. D. Johnson in Aberdeen. The remaining two plants did not show 

any increase of 33P content in shoot after 26 hours.  

What is surprising is that although one isolate was used to inoculate all of 

the plants and the experimental design was the same for all of the plants the 

behaviour of the plant-fungus symbiosis was different. The reason for this 

inconsistency may be explained by the ability of endophytes to change their life 

strategy according their host plant and conditions (Rodriguez & Redman, 2008). 

The environmental conditions were almost identical (two of the tested plants even 

shared the same Petri dish and were approx. 3 cm apart) but the fungi may have 

adapted their behaviour to the physiological state of the plant or its genotype. The 

seedlings were all from different seeds not of uniform origin. If the fitness of the 

particular host plant was lower the endophyte may have acted as a parasite 

similarly to D. quercina endophyte in leaves of Mediterranean Oaks (Moricca & 

Ragazzi, 2008). To test this hypothesis it would be essential to use more 

replicates and test the host fitness for example indirectly by measuring N and P 

content in the needles before and after the experiment. Using genetically identical 

host plants may help prevent variant responses of the fungus. 
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The hypothesis that the endophyte reacts on plant fitness can be tested by 

using a stress factor (for example drought or lack of nutrients) and observing 

response of the fungus to plants cultivated under different stressor intensity. 

5.2.4 Nutrient transport between P. abies  and A. macrosclerotiorum   

Although A. macrosclerotiorum formed typical mycorrhizal structures in roots of the 

host plant a bidirectional flow of nutrients was not recorded. The fungus did not 

supply the plant with N and C assimilated by the plant was traced in fungal 

structures. Higher amount of 13C in sclerotia can be caused by direct flow of 

glucose and fructose from interfacial apoplast between plant and fungal cell walls 

as in the EcM symbiosis (Smith & Read, 2008) or it may have been absorbed from 

root exudates. The function of sclerotia is to store proteins, lipids, polysaccharides, 

and polyphosphates (Moore et al., 1991). The outer layer is formed by melanised 

hyphae with thickened cell walls (see Fig. 15 and 16 ) which help to protect the 

inner core where lipid bodies are being stored (Münzenberger et al., 2009). The 

structure of sclerotia is similar to intracellular microsclerotia except their size is 

much larger. 

In contrast to sclerotia the increased amount of 13C was not detected in the 

fungal compartment. This can be caused by the speed of movement of the isotope 

through the mycelium – sclerotia are placed straight on the surface of the root and 

thus the isotopes may have accumulated there quicker. The path of 13C to fungal 

soil compartment was much longer and moreover not only the mycelium was 

collected from the soil and thus the concentration of 13C there was much lower. 

The main function of sclerotia is to store nutrients and withstand poor 

environmental conditions in quiescent state and after change of conditions to re-

establish the mycelial growth (Willetts & Bullock, 1992). High flow of C to these 

structures can be caused by their preferential supplying by nutrients. 

Although typical mycorrhizal structures were formed in the roots of P. abies, 

A. macrosclerotiorum was behaving as a weak parasite. The total N content in 

needles of the control nonmycorrhizal plants was higher than in those inoculated. 

Similarly to Experiment 4 this response can be caused by genetical incompatibility 

of the host plant and the endophyte. Alternatively, the experimental conditions 

were not suitable to form mutualistic symbiosis (for example because of low a 

concentration of essential nutrients in the experimental system) and due to low 
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fitness of the host the endophyte started to exploit it. Adverse conditions would 

also explain the flow of C to sclerotia – as to form structures that can endure until 

change of conditions. Nevertheless the plants did not show any signs of disease or 

lack of nutrients or water. 

The 15N content in the root compartment was significantly higher in control 

plants than in the plants inoculated by A. macrosclerotiorum. The diffusion of the 

(NH4)(NO2) solution from the fungal to the root compartment was anticipated but 

there should not be a reason why in systems with fungus the flow should be 

higher. The difference may have been caused by utilization of N by the fungus and 

its transfer to the fungal compartment in microcosms with A. macrosclerotiorum. 

5.2.5 Colonization patterns of selected DSE species  in roots of B. 

pendula  and their effect on growth 

The isolates used in Experiment 6 were chosen for their colonization pattern and 

effect on plant growth observed in Experiments 1 and 2 - A. applanata as a 

member of PAC with mild effect on host plant performance and A. 

macrosclerotiorum as a potential EcM symbiont of B. pendula. P. involutus was 

used for its good ability to form EcM in in vitro systems. 

Neither of the two isolates of A. macrosclerotiorum used formed EcM 

structures although hyphal mantle and Hartig net were observed in the roots 

colonized by P. involutus. The conditions in the experimental system were very 

similar to those used in Experiment 5 where A. macrosclerotiorum formed typical 

EcM structures on roots of P. abies. Therefore, the reason why A. 

macrosclerotiorum did not form similar structures in roots of B. pendula was likely 

not due to unfavourable conditions in the microcosm. The endophyte was not 

forming EcM with another broad-leaf tree P. tremula L.× P. tremuloides Michx. 

hybrid in in vitro conditions (Münzenberger et al., 2009) and was to our knowledge 

not yet reported from any other host plant than P. sylvestris. Possible explanation 

could be that the endophyte A. macrosclerotiorum is EcM host specific to conifers 

and that the other species are colonized only intracellulary. Or it may be restricted 

to dry and sand soils as hypothesized by authors of the first (and until now) only 

resysthesis experiment with A. macrosclerotiorum (Münzenberger et al., 2009) and 

be able to form EcM only with plant species which favor these environments. 
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A. applanata formed sclerotia and typical DSE structures in roots of B. 

pendula. Its colonization rates were similar to those of A. macrosclerotiorum but 

the positive influence on host shoot dry weight was slightly larger. The positive 

influence of fungal inoculation on plant growth in in vitro systems does not have to 

be caused by direct nutrient flow or by releasing nutrients from the substrate, but 

also by fungal respiration increase of CO2 concentration in closed systems. In 

resynthesis experiment with P. fortinii s.l. in aseptic culture system the inoculation 

had positive influence on Pinus contorta Dougl. ex Loud. biomass but foliar 

nutrient concentrations were lowered (Jumpponen & Trappe, 1998b). The authors 

hypothesized that the positive effect of fungal infection was indirectly caused by 

elevated CO2 concentration in the closed system which was affected by fungal 

respiration. The system used in Experiment 6 was also closed, to prevent 

contaminations by airborn fungi and other organisms (bacteria, mites). The levels 

of CO2 in the microcosms were checked but positive correlations between plant 

performance parameters and concentration of CO2 were not detected. Microcosms 

with A. applanata did not have significantly elevated levels of CO2 and thus the 

increased shoot dry weight was not due to concentration of CO2. Whether A. 

applanata had positive influence on plant growth because of direct supplying of the 

host by nutrients, of making nutrients from peat available for the plant or by some 

other cause is a question for further investigation. 

5.3 DSE species and their role in forest ecosystems  

Every DSE isolate used in our experiments was able to colonize EcM and ErM 

forest plant species in in vitro conditions in similar manner as under field 

conditions. Microsclerotia and intracelullar colonization were the most often 

observed structures in the roots, but also structures with increased surface area 

(Hartig net, intracellular coils) were detected in P. abies and V. myrtillus roots. 

These structures are typical for mutualistic mycorrhizal symbioses and increased 

interface absorption surface between host plant and a fungus may help to 

enhance nutrient and water exchange between the plant and the fungus. We were 

not able to detect transport of N from the fungus to the plant and the endophyte 

acted as a mild parasite under our experimental conditions but on the other hand, 

it was able to enhance P uptake. DSE can influence their hosts not only by 

mediating nutrient uptake but can also increase host tolerance to abiotic stresses 
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(Zhang et al., 2013) or protect the host against biotic stressors (Tellenbach et al., 

2013). 

Except A. applanata, DSE from PAC in aseptic cultures did not enhance 

plant biomass but nevertheless, they are still common part of the endofytic fungi 

assemblages detected in roots under natural conditions and they do not cause 

strong plant defense response. Under field conditions of temperate P. abies 

forests they coexist with other fungal species – especially with ectomycorrhizal 

fungi. It has been reported that when DSE colonize roots together with mycorrhizal 

fungi their adverse effects on the host can be reduced. This phenomenon has 

been described for both ErM (Vohník et al., 2005) and EcM hosts (Reininger & 

Sieber, 2012). Mechanisms remain unclear but mycorrhizal fungi can act as a 

barrier against DSE and thus reduce DSE colonization rates (Reininger & Sieber, 

2012). 

Thanks to the ability to colonize plants of different mycorrhizal types, DSE 

maight potentially be able to link species that cannot be connected by mycorrhizal 

networks. DSE do not usually form structures that would enhance nutrient 

transport and thus transport of substances between plants does not seem to be 

very likely. But the network can function as a mediator of spreading of hydraulically 

lifted water as reported by Warren & Brooks, 2008 in the case of drought. Since 

hyphae of DSE grow inside of mature forest trees roots they can easily absorb 

water from adjoining cells when hydraulic redistribution of water occurs and 

transport it to soil and other plants they colonize. Or the network can be used by 

the host plants for signalling – recently it has been described that individuals 

affected by aphid attack were able to warn other plants trough CMN formed by 

AMF (Babikova et al., 2013). But the real importance of linking different plant 

species in ecosystems by DSE still waits to be described. 

6. Conclusions 

DSE have been reported to act in symbiosis with plants as mutualists, 

commensals and/or parasites. This inconsistency could have been caused by 

different influence of morphologically undistinguished cryptic species (CSP) on 

their host plant performance. In my thesis we used duplicates of 10 different 

molecularly identified DSE species (out of which 7 belonged to PAC) to inoculate 
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V. myrtillus and P. abies in in vitro conditions; we were thus able to describe and 

compare colonization patterns of 20 different DSE isolates in roots of both host 

plants. Although DSE are often isolated from EcM and ErM roots, none of the 

isolates tested formed mycorrhizal structures. We did not observe differences in 

life strategy of the tested CSP – all of them had negative influence on host shoot 

biomass and had the same colonization pattern. Interspecific variability thus does 

not explain the inconsistency of results in the DSE research with respect to host 

plant responses; it seems that the true reason is in different combinations of 

particular DSE strains with particular host plants.  

The only DSE that formed true mycorrhizal structures was A. 

macrosclerotiorum. It was known to be mycorrhizal with P. sylvestris but we 

showed for the first time that it was able to form EcM also in roots of P. abies. 

Although DSE are not thought to be host specific, no mycorrhizal structures were 

observed in roots of B. pendula. Both isolates of A. macrosclerotiorum had positive 

influence on shoot biomass of V. myrtillus and B. pendula. The established root-

DSE symbioses varied from mutualistic to weak parasitic and we were able to 

detect a nutrient transport to the plant mediated by DSE. Many aspects of the 

symbiosis between plants and DSE remain still unclear and especially studying the 

coexistence and interactions between DSE and true mycorrhizal fungi could bring 

new insight into the topic. 
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Significances are marked in red according to the 

Tuckey HSD test. 

 



84 

 

Attachment 2  Multiple comparison of means.  

Significances are marked in red according to the 
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